Science.gov

Sample records for 17-4 ph martensitic

  1. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  2. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    NASA Astrophysics Data System (ADS)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  3. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  4. Microstructural evolution in a 17-4 PH stainless steel after aging at 400 C

    SciTech Connect

    Murayama, M.; Hono, K.; Katayama, Y.

    1999-02-01

    The microstructure of 17-4 PH stainless steel at various stages of heat treatment, i.e., after solution heat treatment, tempering at 580 C, and long-term aging at 400 C, have been studied by atom probe field ion microscopy (APFIM) and transmission electron microscopy (TEM). The solution-treated specimen consists largely of martensite with a small fraction of {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. After tempering for 4 hours as 580 C, coherent Cu particles precipitate in the martensite phase. At this stage, the Cr concentration in the martensite phase is still uniform. After 5000 hours aging at 400 C, the martensite spinodaly decomposes into Fe-rich {alpha} and Cr-enriched {alpha}{prime}. In addition, fine particles of the G-phase (structure type D8{sub a}, space group Fm{bar 3}m) enriched in Si, Ni, and Mn have been found in intimate contact with the Cu precipitates. Following spinodal decomposition of the martensite phase, G-phase precipitation occurs after long-term aging.

  5. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  6. Hot Ductility of the 17-4 PH Stainless Steels

    NASA Astrophysics Data System (ADS)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  7. Role of alloy additions on strengthening in 17-4 PH stainless steel

    NASA Astrophysics Data System (ADS)

    Murthy, Arpana Sudershan

    Alloy modifications by addition of niobium (Nb), vanadium (V), nitrogen (N) and cobalt (Co) to cast 17-4 PH steel were investigated to determine the effect on mechanical properties. Additions of Nb, V, and N increased the yield strength from 1120 MPa to 1310 MPa while decreased the room temperature charpy V notch (CVN) toughness from 20 J to four Joules. The addition of Co to cast 17-4 PH steel enhanced the yield strength and CVN toughness from 1140 MPa to 1290 MPa and from 3.7 J to 5.5 J, respectively. In the base 17-4 PH steel, an increase in block width from 2.27 ± 0.10 μm in the solution treated condition to 3.06 ± 0.17 μm upon aging at 755 K was measured using orientation image microscopy. Cobalt inhibited recrystallization and block boundary migration during aging resulting in a finer martensitic block structure. The influence of Co on copper (Cu) precipitation in steels was studied using atom probe tomography. A narrower precipitate size distribution was observed in the steels with Co addition. The concentration profile across the matrix / precipitate interface indicated rejection of Co atoms from the copper precipitates. This behavior was observed to be energetically favorable using first principle calculations. The activation energies for Cu precipitation increased from 205 kJ/ mol in the non-cobalt containing alloy, to 243 kJ/ mol, and 272 kJ/ mol in alloys with 3 wt. %Co, and 7 wt. % Co, respectively. The role of Co on Cu precipitation in cast 17-4 PH steel is proposed as follows: (i) Co is rejected out of the Cu precipitate and sets up a barrier to the growth of the Cu precipitate; (ii) results in Cu precipitates of smaller size and narrower distribution; (iii) the coarsening of Cu precipitates is inhibited; and (iv) the activation energy for Cu precipitation increases.

  8. Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Chen, Guoxing; Tan, Ziming; Wu, Shuhui

    2015-11-01

    Shot peening is an effective process to enhance the fatigue performance of turbine blades. In this study, the effect of peening pressures was discussed in terms of the residual stress distribution and the surface morphology. Shot peening processes were designed at varying pressures on a 17-4 PH martensitic stainless steel. The profiles of hardness and residual stress were characterized in the cross section. The thermal stress relaxation was further carried out to evaluate the stability of the compressive residual stress under service temperatures of turbine blades. Results show that a maximum stress depth is obtained with peening pressure of 0.40 MPa, and the residual stress can be maintained up to 400 °C, which ensures the service in low-pressure turbine blades.

  9. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel

    SciTech Connect

    Matlack, Kathryn; Bradley, Harrison A.; Thiele, Sebastian; Kim, Jin-Yeon; Wall, James J.; Jung, Hee Joon; Qu, Jianmin; Jacobs, Laurence J.

    2015-04-01

    The extension of operational lifetime of most US nuclear reactors will cause reactor pressure vessel to be exposed to increased levels of neutron radiation damage. This research is part of a broader effort to develop a nondestructive evaluation technique to monitor radiation damage in reactor pressure vessel steels. The main contributor to radiation embrittlement in these steels is the formation of copper-rich precipitates. In this work, a precipitate hardenable martensitic alloy, 17-4PH stainless steel is exposed to thermal aging treatments, and used as a surrogate material to study the effects of copper precipitates on the measured acoustic nonlinearity parameter. Previous work has demonstrated the effectiveness of these nonlinear ultrasonic (NLU) measurements in the characterization of radiation-induced microstructural changes in neutron irradiated reactor pressure vessel steels. NLU measurements using Rayleigh surface waves are performed on 17-4PH samples subjected to isothermal aging. NLU measurements are interpreted with hardness, thermo-electric power, TEM, and atom probe tomography measurements. The Rayleigh wave measurements showed a decrease in the acoustic nonlinearity parameter with increasing aging time, consistent with evidence of increasing number density of nucleated precipitates.

  10. Effect of porosity on ductility variation in investment cast 17-4PH.

    SciTech Connect

    Wright, Robert D.; Kilgo, Alice C.; Grant, Richard P.; Crenshaw, Thomas B.; Susan, Donald Francis

    2005-02-01

    The stainless steel alloy 17-4PH contains a martensitic microstructure and second phase delta ({delta}) ferrite. Strengthening of 17-4PH is attributed to Cu-rich precipitates produced during age hardening treatments at 900-1150 F (H900-H1150). For wrought 17-4PH, the effects of heat treatment and microstructure on mechanical properties are well-documented [for example, Ref. 1]. Fewer studies are available on cast 17-4PH, although it has been a popular casting alloy for high strength applications where moderate corrosion resistance is needed. Microstructural features and defects particular to castings may have adverse effects on properties, especially when the alloy is heat treated to high strength. The objective of this work was to outline the effects of microstructural features specific to castings, such as shrinkage/solidification porosity, on the mechanical behavior of investment cast 17-4PH. Besides heat treatment effects, the results of metallography and SEM studies showed that the largest effect on mechanical properties is from shrinkage/solidification porosity. Figure 1a shows stress-strain curves obtained from samples machined from castings in the H925 condition. The strength levels were fairly similar but the ductility varied significantly. Figure 1b shows an example of porosity on a fracture surface from a room-temperature, quasi-static tensile test. The rounded features represent the surfaces of dendrites which did not fuse or only partially fused together during solidification. Some evidence of local areas of fracture is found on some dendrite surfaces. The shrinkage pores are due to inadequate backfilling of liquid metal and simultaneous solidification shrinkage during casting. A summary of percent elongation results is displayed in Figure 2a. It was found that higher amounts of porosity generally result in lower ductility. Note that the porosity content was measured on the fracture surfaces. The results are qualitatively similar to those found by

  11. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  12. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams. PMID:22182790

  13. Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.

    2007-01-01

    A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.

  14. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    SciTech Connect

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties were accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.

  15. Mechanical Properties of 17-4PH Stainless Steel Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Lerch, B. a.; Hebsur, M.; Cosgriff, L. M.; Fedor, J.

    2007-01-01

    Rectangular 17-4PH stainless steel sandwiched foam panels were fabricated using a commercial manufacturing technique by brazing two sheets to a foam core. Microstructural observations and ultrasonic nondestructive evaluation of the panels revealed large variations in the quality of the brazed areas from one panel to the next as well as within the same panel. Shear tests conducted on specimens machined from the panels exhibited failures either in the brazed region or in the foam core for the poorly brazed and well-brazed samples, respectively. Compression tests were conducted on the foam cores to evaluate their elastic and plastic deformation behavior. These data were compared with published data on polymeric and metallic foams, and with theoretical deformation models proposed for open cell foams.

  16. Constituted oxides/nitrides on nitriding 304, 430 and 17-4 PH stainless steel in salt baths over the temperature range 723 to 923 K

    NASA Astrophysics Data System (ADS)

    Shih, Teng-Shih; Huang, Yung-Sen; Chen, Chi-Fan

    2011-10-01

    The progressively developed oxides and nitrides that form on nitriding 304, 430 and 17-4 PH stainless steel are analysed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) in this study. The experimental results show that the Cr contents and matrix structures (ferrite, austenite and martensite) play an important role in forming FeCr 2O 4, Cr 2O 3 and Fe 2O 3 oxides as well as nitrides. After a short immersion time, oxides of Cr 2O 3 and FeCr 2O 4 form in nitride films on 304 stainless steel samples. Fe 2O 3 oxide will subsequently form following an increasing immersion time. For the 430 stainless steel, Cr 2O 3 predominately forms after a short dipping time which hinders the growth of the nitride layer. As a result, this sample had the thinnest nitride film of the three for a given immersion time. After the formation of oxides, both CrN and Cr 2N were detected near the surface of the nitride films of three samples while Cr 2N phases formed in the deeper zone. The greatest amount of Fe 2O 3 oxide among the three samples was obtained on the nitriding 17-4 PH stainless steel which also had a high intensity count of N 1s.

  17. Effects of the Treating Time on Microstructure and Erosion Corrosion Behavior of Salt-Bath-Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji

    2013-08-01

    The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.

  18. Precipitation-Induced Changes in Microstrain and Its Relation with Hardness and Tempering Parameter in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Manojkumar, R.; Jayakumar, T.; Das, C. R.; Rao, B. P. C.

    2016-06-01

    17-4 PH (precipitation hardening) stainless steel is a soft martensitic stainless steel strengthened by aging at appropriate temperature for sufficient duration. Precipitation of copper particles in the martensitic matrix during aging causes coherency strains which improves the mechanical properties, namely hardness and strength of the matrix. The contributions to X-ray diffraction (XRD) profile broadening due to coherency strains caused by precipitation and crystallite size changes due to aging are separated and quantified using the modified Williamson-Hall approach. The estimated normalized mean square strain and crystallite size are used to explain the observed changes in hardness. Microstructural changes observed in secondary electron images are in qualitative agreement with crystallite size changes estimated from XRD profile analysis. The precipitation kinetics in the age-hardening regime and overaged regime are studied from hardness changes and they follow the Avrami kinetics and Wilson's model, respectively. In overaged condition, the hardness changes are linearly correlated to the tempering parameter (also known as Larson-Miller parameter). Similar linear variation is observed between the normalized mean square strain (determined from XRD line profile analysis) and the tempering parameter, in the incoherent regime which is beyond peak microstrain conditions.

  19. The Structure and Properties of Diffusion Assisted Bonded Joints in 17-4 PH, Type 347, 15-5 PH and Nitronic 40 Stainless Steels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1981-01-01

    Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.

  20. The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.

    2015-08-01

    The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.

  1. Microstructure and properties of 17-4PH steel plasma nitrocarburized with a carrier gas containing rare earth elements

    SciTech Connect

    Liu, R.L.; Yan, M.F.; Wu, Y.Q.; Zhao, C.Z.

    2010-01-15

    The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surface layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.

  2. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel.

    PubMed

    Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    Axial fully-reversed strain-controlled ([Formula: see text]) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17-4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17-4 PH SS. PMID:26955653

  3. Ultrasonic measurement of elastic moduli of 17-4 pH stainless steel and uranium -2 molybdenum from -40/sup 0/C to 800/sup 0/C

    SciTech Connect

    Gieske, J. H.

    1980-10-01

    Young's Modulus, shear modulus, and Poisson's ratio for 17-4 pH stainless steel and uranium -2 molybdenum are calculated from ultrasonic longitudinal and shear velocities determined from -40/sup 0/C to 800/sup 0/C. The ultrasonic velocities were determined at elevated temperatures using a through-transmission buffer rod arrangement. An indium-gallium slurry bond was used as an ultrasonic couplant between Cupernickel 10 alloy buffer rods and the specimen. Microstructural changes and phase transitions in the specimens are evident from the temperature dependence of the ultrasonic data. 10 figures, 3 tables.

  4. Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Irrinki, Harish; Dexter, Michael; Barmore, Brenton; Enneti, Ravi; Pasebani, Somayeh; Badwe, Sunil; Stitzel, Jason; Malhotra, Rajiv; Atre, Sundar V.

    2016-03-01

    The effects of powders attributes (shape and size distribution) and critical processing conditions (energy density) on the densification and mechanical properties of laser powder bed fusion (L-PBF) 17-4 PH stainless steel were studied using four types of powders. The % theoretical density, ultimate tensile strength and hardness of both water- and gas-atomized powders increased with increased energy density. Gas-atomized powders showed superior densification and mechanical properties when processed at low energy densities. However, the % theoretical density and mechanical properties of water-atomized powders were comparable to gas-atomized powders when sintered at a high energy density of 104 J/mm3. An important result of this study was that, even at high % theoretical density (97% ± 1%), the properties of as-printed parts could vary over a relatively large range (UTS: 500-1100 MPa; hardness: 25-39 HRC; elongation: 10-25%) depending on powder characteristics and process conditions. The results also demonstrate the feasibility of using relatively inexpensive water-atomized powders as starting raw material instead of the typically used gas-atomized powders to fabricate parts using L-PBF techniques by sintering at high energy densities.

  5. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.

    2014-12-01

    The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

  6. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.

    2014-09-01

    The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

  7. The Effect of 17-4 PH Stainless Steel on the Lifetime of a Pennzane(Trademark) Lubricated Microwave Limb Sounder Antenna Actuator Assembly Ball Screw for the AURA Spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Jansen, Mark J.; Chen, Gun-Shing; Lam, Jonathan; Balzer, Mark; Anderson, Mark; Lo, John; Schepis, Joseph P.

    2005-01-01

    During ground based life testing of a Microwave Limb Sounder (MLS) Antenna Actuator Assembly (AAA) ball-screw assembly, lubricant darkening and loss were noted when approximately 10 percent of required lifetime was completed. The MLS-AAA ball screw and nut are made from 17-4 PH steel, the nut has 440C stainless steel balls, and the assembly is lubricated with a Pennzane formulation containing a three weight percent lead naphthenate additive. Life tests were done in dry nitrogen at 50 C. To investigate the MLS-AAA life test anomaly, Spiral Orbit Tribometer (SOT) accelerated tests were performed. SOT results indicated greatly reduced relative lifetimes of Pennzane formulations in contact with 17-4 PH steel compared to 440C stainless steel. Also, dry nitrogen tests yielded longer relative lifetimes than comparable ultrahigh vacuum tests. Generally, oxidized Pennzane formulations yielded shorter lifetimes than non-oxidized lubricant. This study emphasizes surface chemistry effects on the lubricated lifetime of moving mechanical assemblies.

  8. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  9. 32 CFR 17.4 - Interlocutory questions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... trial by military commission. In accordance with 32 CFR 9.4(a)(5)(iv), however, the Presiding Officer... 32 National Defense 1 2010-07-01 2010-07-01 false Interlocutory questions. 17.4 Section 17.4... ADMINISTRATIVE PROCEDURES § 17.4 Interlocutory questions. (a) Certification of interlocutory questions....

  10. 32 CFR 17.4 - Interlocutory questions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... trial by military commission. In accordance with 32 CFR 9.4(a)(5)(iv), however, the Presiding Officer... 32 National Defense 1 2011-07-01 2011-07-01 false Interlocutory questions. 17.4 Section 17.4... ADMINISTRATIVE PROCEDURES § 17.4 Interlocutory questions. (a) Certification of interlocutory questions....

  11. Martensite Embryology

    NASA Astrophysics Data System (ADS)

    Reid, Andrew C. E.; Olson, Gregory B.

    2000-03-01

    Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.

  12. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    SciTech Connect

    Christien, F.; Telling, M.T.F.; Knight, K.S.

    2013-08-15

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)

  13. 43 CFR 17.4 - Assurances required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Assurances required. 17.4 Section 17.4 Public Lands: Interior Office of the Secretary of the Interior NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or...

  14. 43 CFR 17.4 - Assurances required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Assurances required. 17.4 Section 17.4 Public Lands: Interior Office of the Secretary of the Interior NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or...

  15. 43 CFR 17.4 - Assurances required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Assurances required. 17.4 Section 17.4 Public Lands: Interior Office of the Secretary of the Interior NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or...

  16. 43 CFR 17.4 - Assurances required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Assurances required. 17.4 Section 17.4 Public Lands: Interior Office of the Secretary of the Interior NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or...

  17. 43 CFR 17.4 - Assurances required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Assurances required. 17.4 Section 17.4 Public Lands: Interior Office of the Secretary of the Interior NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OF THE DEPARTMENT OF THE INTERIOR Nondiscrimination on the Basis of Race, Color, or...

  18. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  19. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  20. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  1. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  2. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  3. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Applicability to EPA proceedings. 17.4 Section 17.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to...

  4. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Applicability to EPA proceedings. 17.4 Section 17.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to...

  5. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Applicability to EPA proceedings. 17.4 Section 17.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to...

  6. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Applicability to EPA proceedings. 17.4 Section 17.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to...

  7. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Applicability to EPA proceedings. 17.4 Section 17.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to...

  8. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Bureau shall resolve all environmental issues, in accordance with the environmental regulations (47 CFR 1... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1,...

  9. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Bureau shall resolve all environmental issues, in accordance with the environmental regulations (47 CFR 1... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1,...

  10. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  11. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... issues, in accordance with the environmental regulations (47 CFR 1.1301 through 1.1319) specified in part... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. Link to an...

  12. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  13. Mesoscale kinetics produces martensitic microstructure

    NASA Astrophysics Data System (ADS)

    Kastner, Oliver; Ackland, Graeme J.

    2009-01-01

    We present molecular dynamics (MD) simulations of a martensitic phase transformation studying post-transformation microstructure and moving austenite-martensite interfaces. Unlike in energy-minimisation theories, the transformation dynamics dominate the martensite morphology. We use a binary Lennard-Jones potential to describe a square-to-hexagonal transformation by shear-and-shuffle. The high-T stable square lattice and low-T hexagonal lattice represent austenite and martensite, giving four martensitic variants. Compatible twin variants have no lattice misfit and zero interfacial energies which makes our model directly comparable with the crystallographic theory of martensite. Although our dynamical interpretation is different to previous work, our MD simulations exhibit very similar martensitic morphologies to real materials. We observe the nucleation of wedge-shaped, twinned martensite plates, plate growth at narrow, travelling transformation zones, subsonic transformation waves, elastic precursors inducing secondary nucleations and the formation of martensitic domains. Martensite is produced within narrow transformation zones where atoms change their lattice sites in a co-operative manner so as to form crystallographic layers. These motions produce inertia forces on the mesoscopic length-scale which induce the formation of twin variants in the subsequent layers to transform.

  14. Martensitic transformation in zirconia

    SciTech Connect

    Deville, Sylvain . E-mail: sylvain.deville@insa-lyon.fr; Guenin, Gerard; Chevalier, Jerome

    2004-11-08

    We investigate by atomic force microscopy (AFM) the surface relief resulting from martensitic tetragonal to monoclinic phase transformation induced by low temperature autoclave aging in ceria-stabilized zirconia. AFM appears as a very powerful tool to investigate martensite relief quantitatively and with a great precision. The crystallographic phenomenological theory is used to predict the expected relief induced by the transformation, for the particular case of lattice correspondence ABC1, where tetragonal c axis becomes the monoclinic c axis. A model for variants spatial arrangement for this lattice correspondence is proposed and validated by the experimental observations. An excellent agreement is found between the quantitative calculations outputs and the experimental measurements at nanometer scale yielded by AFM. All the observed features are explained fully quantitatively by the calculations, with discrepancies between calculations and quantitative experimental measurements within the measurements and calculations precision range. In particular, the crystallographic orientation of the transformed grains is determined from the local characteristics of transformation induced relief. It is finally demonstrated that the strain energy is the controlling factor of the surface transformation induced by low temperature autoclave treatments in this material.

  15. Computer simulation of martensitic transformations

    SciTech Connect

    Xu, Ping

    1993-11-01

    The characteristics of martensitic transformations in solids are largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, a finite-element computer simulation model was constructed to mimic the transformation process. The transformation is athermal and simulated at each incremental step by transforming the cell which maximizes the decrease in the free energy. To determine the free energy change, the elastic energy developed during martensite growth is calculated from the theory of linear elasticity for elastically homogeneous media, and updated as the transformation proceeds.

  16. Activation response of martensitic steels

    SciTech Connect

    Forty, C.B.A.

    1997-09-01

    A hypothetical martensitic steel has been compositionally designed in order to optimize both metallurgical and reduced activation properties. When compared with two other martensitic steels, its activation characteristics are shown to be superior for all activation indices examined. However, these excellent properties are found to be due to the assumed absence of deleterious tramp impurities. When limiting impurity concentrations are determined for the hypothetical steel, they are found to be extremely stringent, and wholly unachievable using industrial scale production methods. It is concluded that only slight improvements can be made to currently available low activation martensitic steels to reduce residual activity responses further. 26 refs., 1 fig., 2 tabs.

  17. Activation Response of Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Forty, C. B. A.

    1997-09-01

    A hypothetical martensitic steel has been compositionally designed in order to optimize both metallurgical and reduced activation properties. When compared with two other martensitic steels, its activation characteristics are shown to be superior for all activation indices examined. However, these excellent properties are found to be due to the assumed absence of deleterious tramp impurities. When limiting impurity concentrations are determined for the hypothetical steel, they are found to be extremely stringent, and wholly unachievable using industrial scale production methods. It is concluded that only slight improvements can be made to currently available low activation martensitic steels to reduce residual activity responses further.

  18. 24 CFR 17.4 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Administrative claim; evidence and information to be submitted. 17.4 Section 17.4 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development ADMINISTRATIVE CLAIMS Claims Against Government Under...

  19. 24 CFR 17.4 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Administrative claim; evidence and information to be submitted. 17.4 Section 17.4 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development ADMINISTRATIVE CLAIMS Claims Against Government Under Federal Tort Claims Act Procedures §...

  20. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-07-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  1. Coupled dislocation and martensitic phase transformation dynamics

    NASA Astrophysics Data System (ADS)

    Barros, Kipton; Acharya, Amit; Lookman, Turab

    2013-03-01

    We present a field theoretic model that couples dislocation dynamics and plasticity with martensitic phase transformation. Dislocations produce long-range stress via incompatibility of the elastic-distortion field. Phase transformations are modeled with a non-convex elastic potential that contains the crystal symmetries of austenite and martensite phases. We discuss the effects of dislocation dynamics on material microstructure produced under extreme conditions.

  2. 17. 4th floor roof, view south, 4th and 5th floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. 4th floor roof, view south, 4th and 5th floor setback to left and atrium structure to right - Sheffield Farms Milk Plant, 1075 Webster Avenue (southwest corner of 166th Street), Bronx, Bronx County, NY

  3. Application of martensitic, modified martensitic and duplex stainless steel bar stock for completion equipment

    SciTech Connect

    Bhavsar, R.B.; Montani, R.

    1998-12-31

    Martensitic and duplex stainless steel tubing are commonly used for oil and gas applications containing CO{sub 2}. Completion equipment manufacturing requires use of solid round bar or heavy wall hollows. Material properties for this stock are not identical in all cases. Material properties as well as corrosion characteristics are discussed for 13Cr, 13Cr-5Ni-2Mo and 25Cr alloys. Corrosion testing of modified or Enhanced 13Cr solid bar stock, UNS S41425 and other compositions in H{sub 2}S-Cl{sup {minus}} and pH is reported in coupled and uncoupled condition. Corrosion testing of various super duplex bar stock at various H{sub 2}S-chlorides and temperature in CO{sub 2} environment is reported. Impact value requirements, welding issues and special consideration required for these alloys for completion equipment is discussed. Modified 13Cr and Super Duplex Oil Country Tubular Goods (OCTG) are readily available, however, availability of completion equipment raw material compatible with these OCTG is limited.

  4. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  5. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  6. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  7. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  8. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  9. 17. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) APPROACH SPAN FENDER - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  10. 7 CFR 17.4 - Agents of the participant or importer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....4 Agriculture Office of the Secretary of Agriculture SALES OF AGRICULTURAL COMMODITIES MADE AVAILABLE UNDER TITLE I OF THE AGRICULTURAL TRADE DEVELOPMENT AND ASSISTANCE ACT OF 1954, AS AMENDED § 17.4..., or other representative (hereafter “agent”) in connection with arranging the purchase of...

  11. 7 CFR 17.4 - Agents of the participant or importer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....4 Agriculture Office of the Secretary of Agriculture SALES OF AGRICULTURAL COMMODITIES MADE AVAILABLE UNDER TITLE I OF THE AGRICULTURAL TRADE DEVELOPMENT AND ASSISTANCE ACT OF 1954, AS AMENDED § 17.4..., or other representative (hereafter “agent”) in connection with arranging the purchase of...

  12. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  13. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  14. Microstructure of ausformed lath martensite in 18%Ni maraging steel

    NASA Astrophysics Data System (ADS)

    Morito, S.; Kishida, I.; Maki, T.

    2003-10-01

    The microstructure of ausformed lath martensite in 18%Ni maraging steel was studied by analyzing electron backscatter diffraction pattern obtained by scanning electron microscopy and Kikuchi diffraction pattern obtained by transmission electron microscopy. In non-ausformed lath martensite structure, blocks and packets are clearly observed by optical microscopy. By ausforming of 60% at 773K, packet and block widths of lath martensite decrease whereas the packet is elongated along rolling direction. A packet of ausformedlath martensite contains some laths which belong to a crystallographically different packet. The dislocation density in ausformed lath martensite is higher than that in conventional lath martensite. It is concluded that ausforming refines the effective grain size and increases the dislocation density in lath martensite structure.

  15. Corrosion performance of martensitic stainless steel seamless pipe for linepipe application

    SciTech Connect

    Kimura, Mitsuo; Miyata, Yukio; Toyooka, Takaaki; Murase, Fumio

    1999-11-01

    The corrosion performance of two types of weldable martensitic stainless steel seamless pipe for pipeline application is investigated. 11Cr steel pipe developed for sweet environment gives better resistance to CO{sub 2} corrosion than the 13Cr martensitic stainless steel for OCTG. 12Cr steel pipe developed for light sour environment shows good SSC resistance in a mild sour environment and superior CO{sub 2} corrosion resistance at high temperature and high CO{sub 2} partial pressure condition. The suitable condition for the 11Cr steel pipe and the 12Cr steel pipe in sweet environment, and the critical pH and H{sub 2}S partial pressure for the 12Cr steel pipe welded joint in sour environment are clarified. Both welded joints have superior resistance to hydrogen embrittlement under the cathodic protection condition in sea water.

  16. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  17. Langevin Simulation of Microstructure in Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Lookman, T.; Shenoy, S. R.; Saxena, A.; Bishop, A. R.

    1996-03-01

    We present a dynamical model to simulate microstructure in martensitic transformations within the context of shape memory alloys. The Hamiltonian of the system includes a triple-well potential (φ^6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation induced strain gradient terms. We show the formation of twinned martensite below the transformation temperature and tweed precursors above the transformation temperature, as well as indications of hierarchical structures near the habit plane. These phases result from a competition between short range attraction and long range elastic repulsive forces. The long range interaction is incorporated via Fourier spectral methods as discussed by C. Roland and R.C.Desai [Phys. Rev. B 42, 6658 (1990)].

  18. Transformation temperatures of martensite in beta phase nickel aluminide

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1972-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  19. A preliminary ferritic-martensitic stainless steel constitution diagram

    SciTech Connect

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures of arc welds in ferritic and martensitic stainless steels.

  20. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nikitasari, Arini; Mabruri, Efendi

    2016-04-01

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  1. Microstructural analysis of martensite constituents in quenching and partitioning steels

    SciTech Connect

    Santofimia, M.J.; Petrov, R.H.; Zhao, L.; Sietsma, J.

    2014-06-01

    A methodology to distinguish martensite formed in the first quench (M1) from martensite formed in the second quench (M2) of the Quenching and Partitioning process is presented, enabling the study of the structural characteristics of both microstructural constituents. Investigations show that M1 displays larger block size and less lattice imperfections than M2, differences that can be related to their respective carbon contents. - Highlights: • An approach to distinguish “old” from “new” martensite in Q and P steels is presented • Methodology allows separate characterization of microstructure and crystallography “Old” martensite has larger block size and more perfect lattice than the “new” one • The differences between the old and new martensite depend on their carbon contents.

  2. Creep resistant high temperature martensitic steel

    SciTech Connect

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  3. Grouping of \\{15 3 10\\} and \\{225\\} martensite crystals and 3-D geometrical model of filling austenite grains by martensite

    NASA Astrophysics Data System (ADS)

    Pankova, M. N.

    2003-10-01

    New variant of grouping of martensite platelets was observed experimentally for the \\{15. 10. 3\\} and \\{522\\} martensites. This variant represents a closed rhombic bipyramid faced eight habit planes of the same type united around one common direction ⪉ngle 110rangle. The space of an austenite grain is filled by joining bipyramids with common edges into larger bipyramids of the next hierarhical level. Different variants of outgrowing faces in pyramidal groups in combination with different sectioning plane of the specimen allow to explain all observed morphological variants of the grouping martensite.

  4. Did Lake Bonneville Experience A Major Water-Budget Shift At 17.4 cal ka?

    NASA Astrophysics Data System (ADS)

    Oviatt, C.

    2009-12-01

    Lake Bonneville, in western Utah, had transgressed to its highest level by 18.3 cal ka, overflowed into the Snake River drainage basin until 17.4 cal ka, then catastrophically dropped 100 m as its overflow threshold was washed out. This event, which is referred to as the “Bonneville flood,” is well documented geomorphically, stratigraphically, and geochronologically. At the same time the Bonneville flood was occurring, the level of Lake Estancia in central New Mexico dropped over 30 m then returned to its previous high level in an event caused by climate change in that basin. The question is: “did Lake Bonneville experience a correlative climate-induced shift in its water budget (a decrease in the ratio of input to output), even while it continuously overflowed before, during, and after the Bonneville flood?” The answer to this question has a bearing on the global effects of the climate change that is well documented in the Estancia basin. Data from sediment cores from the Bonneville basin are providing a means to address the question. Data include: ostracode faunal changes, total inorganic carbon, stable isotopes, detrital sand, and mineralogy. The challenge is to identify the measurable characteristics of the sediment core that can be used to clearly separate the effects of water-budget change from those caused by the catastrophic (essentially instantaneous) 100-m lowering of Lake Bonneville.

  5. Simulation of an Austenite-Twinned-Martensite Interface

    PubMed Central

    Kearsley, A.J.; Melara, L. A.

    2003-01-01

    Developing numerical methods for predicting microstructure in materials is a large and important research area. Two examples of material microstructures are Austenite and Martensite. Austenite is a microscopic phase with simple crystallographic structure while Martensite is one with a more complex structure. One important task in materials science is the development of numerical procedures which accurately predict microstructures in Martensite. In this paper we present a method for simulating material microstructure close to an Austenite-Martensite interface. The method combines a quasi-Newton optimization algorithm and a nonconforming finite element scheme that successfully minimizes an approximation to the total stored energy near the interface of interest. Preliminary results suggest that the minimizers of this energy functional located by the developed numerical algorithm appear to display the desired characteristics.

  6. Carbon distribution in the martensite structure of structural steel

    NASA Astrophysics Data System (ADS)

    Gundyrev, V. M.; Zel'dovich, V. I.; Schastlivtsev, V. M.

    2016-05-01

    The martensite structure of a hardened pseudosingle crystal of grade 37KhN3A medium-carbon structural steel (0.37 wt % C, 1.50 Cr, 3.0 Ni, 0.33 Mn) had the form of coarse packets with dimensions of to 1 cm in the cross section. Every packet was composed of six-orientation martensite crystals arising on one common austenite plane of type {111}. The position of three texture maximums was determined using an X-ray diffractometer for every orientation. In addition, the position of four maximums of retained austenite was found. The periods of martensite lattices and retained austenite as well as the carbon concentration in martensite lattices and near the boundaries are determined.

  7. Transformation temperatures of martensite in beta-phase nickel aluminide.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1973-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  8. Dislocation structure of martensitic transformation in carbon steel

    NASA Astrophysics Data System (ADS)

    Satdarova, F. F.

    2016-04-01

    The developed method of diffraction analysis has shown that the martensitic transformation in iron crystals with the interstitial carbon atoms produces the highest natural density of dislocations in metals. The transformation occurs via microscopic shears, which collectively rearrange the lattice. This process becomes more evident due to the high concentration of fine dislocation loops, which has initially been identified in cubic and then in tetragonal martensite crystals.

  9. Bulk and thin film microstructures in untwinned martensites

    NASA Astrophysics Data System (ADS)

    Hane, Kevin F.

    1999-09-01

    The microstructure in alloys for which the martensite phase is either the 9R or 18R long-period stacking order structure is investigated. A choice of a new unit cell to describe the lattice of the product phase is made, and it is found to give an exact austenite-martensite interface. A comparison with experimental observations for several different material systems supports this choice of unit cell, and the predictions of the shape strain and habit plane normal vectors are the same as those given by a phenomenological calculation. The approach followed here de-emphasizes the role of the internal defects within the unit cell of the martensite lattice in providing the mechanism by which compatibility between the phases is achieved. It is this reason that the name untwinned martensites is proposed to replace the older name faulted martensites. In addition, microstructures in thin film specimens of the alloys exhibiting the untwinned martensite are studied. In particular, a tent microstructure is constructed in a specially oriented film, and such microstructures have potential applications in micro-devices to act as either a pump or an actuator.

  10. Irradiation hardening of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Morimura, T.; Narui, M.; Matsui, H.

    1996-10-01

    Irradiation response on the tensile properties of 9Cr2W steels has been investigated following FFTF/MOTA irradiations at temperatures between 646 and 873 K up to doses between 10 and 59 dpa. The largest irradiation hardening accompanied by the largest decrease in the elongation is observed for the specimens irradiated at 646 K at doses between 10 and 15 dpa. The irradiation hardening appears to saturate at a dose of around 10 dpa at the irradiation temperature. No hardening but softening was observed in the specimens irradiated at above 703 K to doses of 40 and 59 dpa. Microstructural observation by transmission electron microscope (TEM) revealed that the dislocation loops with the a<100> type Burgers vector and small precipitates which were identified to be M 6C type carbides existed after the irradiation at below 703 K. As for the void formation, the average size of voids increased with increasing irradiation temperature from 646 to 703 K. No voids were observed above 703 K. Irradiation softening was attributed to the enhanced recovery of martensitic structure under the irradiation. Post-irradiation annealing resulted in hardening by the annealing at 673 K and softening by the annealing at 873 K.

  11. Study of a synthetic human olfactory receptor 17-4: expression and purification from an inducible mammalian cell line.

    PubMed

    Cook, Brian L; Ernberg, Karin E; Chung, Hyeyoun; Zhang, Shuguang

    2008-01-01

    In order to begin to study the structural and functional mechanisms of olfactory receptors, methods for milligram-scale purification are required. Here we demonstrate the production and expression of a synthetically engineered human olfactory receptor hOR17-4 gene in a stable tetracycline-inducible mammalian cell line (HEK293S). The olfactory receptor gene was fabricated from scratch using PCR-based gene-assembly, which facilitated codon optimization and attachment of a 9-residue bovine rhodopsin affinity tag for detection and purification. Induction of adherent cultures with tetracycline together with sodium butyrate led to hOR17-4 expression levels of approximately 30 microg per 150 mm tissue culture plate. Fos-choline-based detergents proved highly capable of extracting the receptors, and fos-choline-14 (N-tetradecylphosphocholine) was selected for optimal solubilization and subsequent purification. Analysis by SDS-PAGE revealed both monomeric and dimeric receptor forms, as well as higher MW oligomeric species. A two-step purification method of immunoaffinity and size exclusion chromatography was optimized which enabled 0.13 milligrams of hOR17-4 monomer to be obtained at >90% purity. This high purity of hOR17-4 is not only suitable for secondary structural and functional analyses but also for subsequent crystallization trials. Thus, this system demonstrates the feasibility of purifying milligram quantities of the GPCR membrane protein hOR17-4 for fabrication of olfactory receptor-based bionic sensing device. PMID:18682799

  12. Martensitic transformation, shape memory effects, and other curious mechanical effects

    SciTech Connect

    Vandermeer, R.A.

    1982-01-08

    The objective of this paper is to review tutorially the subject of martensitic transformations in uranium alloys emphasizing their role in the shape memory effect (SME). We examine first what a martensitic transformation is, illustrating some of its characteristics with specific examples. As well as being athermal in nature, as expected, data are presented indicating that martensitic transformations in some uranium alloys also have a strong isothermal component. In addition, a few alloys are known to exhibit thermoelastic martensitic reactions. The SME, which is associated with these, is defined and demonstrated graphically with data from a uranium-6 wt % niobium alloy. Some of the important variables influencing SME behavior are described. Specifically, these are reheat temperature, amount of deformation, crystal structure, and composition. A mechanism for SME is postulated and the association with martensitic transformation is detailed. A self-induced shape instability in the uranium-7.5 wt % niobium-2.5 wt % zirconium alloy with a rationalization of the behavior in terms of texture and lattice parameter change during aging is reviewed and discussed. 24 figures.

  13. Crystallographic variant selection of martensite during fatigue deformation

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2015-03-01

    Metastable austenitic stainless steels are prone to form deformation-induced martensite under the influence of externally applied stress. Crystallographic variant selection during martensitic transformation of metastable austenite has been investigated thoroughly with respect to the interaction between the applied uniaxial cyclic stress and the resulting accumulated plastic strain during cyclic plastic deformation. The orientation of all the Kurdjomov-Sachs (K-S) variants has been evaluated extensively and compared with the measured orientation of martensite with their corresponding interaction energies by applying the elegant transformation texture model recently developed by Kundu and Bhadeshia. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed. It has been found that both the applied uniaxial cyclic stress and the accumulated plastic strain are having strong influence on crystallographic variant selection during cyclic plastic deformation. Patel and Cohen's classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.

  14. Ferrite-Martensite Band Formation During the Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Etesami, S. A.; Enayati, M. H.

    2016-02-01

    Microstructural evolution during the intercritical annealing at 740 and 770 °C for 120-900 s in a low-carbon low-alloy steel from the initial martensitic matrix was studied by electron microscopy equipped with energy dispersive x-ray spectroscopy and x-ray diffraction. It was seen that during the intercritical annealing, the martensitic structure changes to the tempered martensite with carbides. The results depicted that the temperature and time of intercritical annealing influence significantly the distribution and amount of the formed carbides. Two types of austenite morphology were identified to grow simultaneously, i.e., globular and acicular. A longer annealing time led to the coarse globular and thick acicular austenite morphology. The austenite with globular morphology nucleated preferably at prior austenite grain boundary triple and quadruple junctions. The austenite with globular and acicular morphology was developed in Mn-rich and -poor regions, respectively. The globular austenite morphology intensified the banded microstructure of ferrite-martensite dual-phase steel, whereas the acicular austenite morphology led to a more isotropic microstructure. The experimental results illustrated that the intercritical temperature is a significant factor which can contribute to intensify the banded ferrite-martensite microstructure. The volume fractions of austenite with globular and acicular morphology were quantitatively measured. The volume fraction of globular to acicular morphology of austenite was high and low at 770 and 740 °C, respectively.

  15. Subgrain lath martensite mechanics: A numerical-experimental analysis

    NASA Astrophysics Data System (ADS)

    Maresca, F.; Kouznetsova, V. G.; Geers, M. G. D.

    2014-12-01

    Lath martensite reveals a specific hierarchical subgrain structure, with laths, blocks and packets of particular crystallography. The presence of interlath retained austenite layers has been reported in the literature. This paper investigates the potential influence of the interlath retained austenite on the mechanical behaviour of lath martensite subgrains. To this purpose, a martensite grain substructure is modelled using a crystal plasticity framework, with a BCC lath-FCC austenite bicrystal at the fine scale. The main novel contribution of this work is the validation of the hypothesis on the role of the interlath retained austenite in lath martensite using the experimental results reported in the literature. The main features of the experimentally observed deformation behaviour (stress-strain curve, slip activity and roughness pattern) are qualitatively well reproduced by the model. It is shown that the presence of austenite interlath films has the potential to remarkably enhance the local deformation of martensite. In spite of its minor volume fraction, it plays a major role in the orientation dependent mechanical behaviour of the aggregate. It is also shown that if the presence of interlath austenite is neglected, the observed experimental flow curves are not captured.

  16. Non-instantaneous growth characteristics of martensitic transformation in high Cr ferritic creep-resistant steel

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Shao, Yi; Chen, Jianguo; Liu, Yongchang

    2016-08-01

    Microstructural observation and high-resolution dilatometry were employed to investigate kinetics of martensitic transformation in high Cr ferritic creep-resistant steel upon different quenching/cooling rates. By incorporating the classical athermal nucleation and impingement correction, a non-instantaneous growth model for martensitic transformation has been developed. The developed model describes austenite/martensite interface mobility during martensite growth. The growth rate of martensite is found to be varied from 1 × 10-6 to 3 × 10-6 m/s. The low interface mobility suggests that it is not appropriate to presume the instantaneous growth behavior of martensite. Moreover, based on the proposed model, nucleation rate of martensite under different cooling rates is found to be nearly the same, while the growth rate of martensite is promoted by increasing the cooling rate.

  17. Hydrogen-assisted damage in austenite/martensite dual-phase steel

    NASA Astrophysics Data System (ADS)

    Koyama, Motomichi; Cem Tasan, Cemal; Nagashima, Tatsuya; Akiyama, Eiji; Raabe, Dierk; Tsuzaki, Kaneaki

    2016-01-01

    For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy. Localized diffusible hydrogen in martensite causes cracking through two mechanisms: (1) interaction between {1 1 0}M localized slip and {1 1 2}M twin and (2) cracking of martensite-martensite grain interfaces. The former resulted in nanovoids along the {1 1 2}M twin. The coalescence of the nanovoids generated plate-like microvoids. The latter caused shear localization on the specific plane where the crack along the martensite/martensite boundary exists, which led to additional martensite/martensite boundary cracking.

  18. ON QUANTIFICATION OF HELIUM EMBRITTLEMENT IN FERRITIC/MARTENSITIC STEELS

    SciTech Connect

    Gelles, David S.

    2000-12-01

    Helium accumulation due to transmutation has long been considered a potential cause for embrittlement in ferritic/martensitic steels. Three Charpy impact databases involving nickel- and boron-doped alloys are quantified with respect to helium accumulation, and it is shown that all predict a very large effect of helium production on embrittlement. If these predictions are valid, use of Ferritic/Martensitic steels for Fusion first wall applications is highly unlikely. It is therefore necessary to reorient efforts regarding development of these steels for fusion applications to concentrate on the issue of helium embrittlement.

  19. Influence of magnetic fields on structural martensitic transitions

    SciTech Connect

    Lashley, J C; Cooley, J C; Smith, J L; Fisher, R A; Modic, K A; Yang, X- D; Riseborough, P S; Opeil, C P; Finlayson, T R; Goddard, P A; Silhanek, A V

    2009-01-01

    We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.

  20. Martensitic transformations in high-strength steels at aging

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Bannykh, O. A.

    2011-04-01

    The effect of heat treatment and elastic stresses on the texture of maraging NiTi-steels is studied. The interruption of the decomposition of martensite at the early stages is shown to be accompanied by the γ → α transformation, which proceeds upon cooling from the aging temperature and under elastic (σ < σ0.2) tensile stresses. The martensite has a crystallographic texture, which is caused by the evolution of hot-deformation texture as a result of quenching and decomposition of a supersaturated α solid solution.

  1. Synthesis, crystal growth and structure of Mg containing {beta}-rhombohedral boron: MgB{sub 17.4}

    SciTech Connect

    Adasch, Volker; Hess, Kai-Uwe; Vojteer, Natascha; Hillebrecht, Harald . E-mail: harald.hillebrecht@ac.uni-freiburg.de

    2006-09-15

    For the first time, single crystals of Mg containing {beta}-rhombohedral boron MgB{sub 17.4} were synthesised from the elements in a Mg/Cu melt at 1600deg. C. The crystal structure determined by the refinement of single crystal data (space group R-3m, a=10.991(2)A, c=24.161(4)A, 890 reflections, 123 variables, R{sub 1}(F)=0.049, wR{sub 2}(I)=0.122) improves and modifies the former structure model derived from earlier investigations on powder samples. Mg is located on four different positions with partial occupation. While the occupation of the sites D (53.3%), E (91%) and F (7.2%) is already known from other boron-rich borides related to {beta}-rhombohedral boron, the occupation of the fourth position (18h, 6.7%) is observed for the first time. Two boron positions show partial occupation. The summation reveals the composition MgB{sub 17.4} and Mg{sub 5.85}B{sub 101.9}, respectively, confirmed by WDX measurements. The single crystals of MgB{sub 17.4} show the highest Mg content ever found. Preliminary measurements indicate no superconductivity.

  2. Microstructure characterization of the non-modulated martensite in Ni-Mn-Ga alloy

    SciTech Connect

    Han, M. Bennett, J.C.; Gharghouri, M.A.; Chen, J.; Hyatt, C.V.; Mailman, N.

    2008-06-15

    The microstructure of the non-modulated martensite in a Ni-Mn-Ga alloy has been characterized in detail by conventional transmission electron microscopy. Bright field images show that the martensite exhibits an internal substructure consisting of a high density of narrow twins. Using electron diffraction, it is found that the martensite has a tetragonal crystal structure. The lattice correspondence between the parent phase and the non-modulated martensite is investigated. Furthermore, the four twinning elements describing the microtwinning have been graphically and quantitatively determined. The results indicate that the microtwinning within the non-modulated martensite belongs to the compound type.

  3. Martensitic nature of {delta} {yields} {gamma} allotropic transformation in plutonium

    SciTech Connect

    Lopez, P.C.; Cost, J.R.; Axler, K.M.

    1996-09-01

    Isothermal and isoplethal studies using differential scanning calorimetry have been conducted to characterize the allotropic transformations of plutonium. The {delta}-{gamma} transformation (upon cooling) was observed to have a classic martensitic nature. The work described herein is the first quantitative study of this phenomena in plutonium.

  4. Microstructural modeling of heterogeneous failure modes in martensitic steels

    NASA Astrophysics Data System (ADS)

    Hatem, Tarek Moustafa

    A three-dimensional multiple-slip dislocation-density-based crystalline formulation, specialized finite-element formulations, predictive failure models, and infinity-power integrable function based Voronoi tessellations adapted to martensitic orientations, were used to investigate large strain inelastic deformation, dislocation-density evolution in martensitic transformation, and heterogeneous failure modes in martensitic microstructures. The formulation is based on accounting for variant morphologies and orientations, secondary phases, such as retained austenite and inclusions, and initial dislocations-densities that are uniquely inherent to martensitic microstructures. The computational framework and the constitutive formulation were validated with experimental results for 10% Ni high-strength steel alloy. Furthermore, the formulation was used to investigate microstructures mapped directly from SEM/EBSD images of martensitic steel alloys. The interrelated effects of microstructural characteristics, such as parent austenite orientation, variants distribution and arrangement, retained austenite, inclusions, initial dislocation-density, and defects, such as microcracks, and microvoids, were investigated for different failure modes such as rupture, transgranular and intergranular fracture, and shear localization over a broad spectrum of loading conditions that range from quasi-static to high strain-rate conditions. The computational predictions, consistent with experimental observations, indicated that variant morphology and orientations have a direct consequence on how shear-strain accumulation and failure evolves in martensitic microstructures subjected to quasi-static and high strain-rate loading conditions. The analysis shows that shear-strain localization occurs due to slip-system compatibilities corresponding to low-angle blocks boundaries, the loading direction and the long direction of laths, which result in shear-pipes. At specific triple junctions, rotation

  5. Understanding of martensitic (TiCu)-based bulk metallic glasses through deformation behavior of a binary Ti{sub 50}Cu{sub 50} martensitic alloy

    SciTech Connect

    Kim, K. B.; Song, K. A.; Zhang, X. F.; Yi, S.

    2008-06-16

    A binary Ti{sub 50}Cu{sub 50} martensitic alloy having similar atomic clusters to (TiCu)-based martensitic bulk metallic glasses presents a large plastic strain of 18.04% with high fracture strength of 1705 MPa. Detailed microstructural investigations point out that martensite embedded in {gamma}-TiCu matrix is effective to dissipate localization of the shear stress thus leading to rotational propagation, interaction, and multiplication of the shear bands. Furthermore, the propagation of microcracks formed by local stress transition during deformation is hindered by the martensite.

  6. On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2016-07-01

    The present work employs the nanoindentation technique to investigate the effect of prior martensite formation on the mechanical stability of a retained austenite matrix. It is found that the small austenite grains that were surrounded by martensite laths have higher mechanical stability than the large austenite grains that were free of martensite laths. The higher mechanical stability of small austenite grains is due to its higher amount of defects resulting from the prior martensite formation. These defects act as barriers for the later martensite formation and therefore contribute to the higher mechanical stability of small austenite grains. As a result, the present work suggests that the formation of martensite tends to stabilize the surrounding austenite matrix. Therefore, it may explain the lower transformed amount of martensite after quenching as compared to the theoretical calculation using the Koistinen and Marburger (K-M) equation.

  7. On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2016-04-01

    The present work employs the nanoindentation technique to investigate the effect of prior martensite formation on the mechanical stability of a retained austenite matrix. It is found that the small austenite grains that were surrounded by martensite laths have higher mechanical stability than the large austenite grains that were free of martensite laths. The higher mechanical stability of small austenite grains is due to its higher amount of defects resulting from the prior martensite formation. These defects act as barriers for the later martensite formation and therefore contribute to the higher mechanical stability of small austenite grains. As a result, the present work suggests that the formation of martensite tends to stabilize the surrounding austenite matrix. Therefore, it may explain the lower transformed amount of martensite after quenching as compared to the theoretical calculation using the Koistinen and Marburger (K-M) equation.

  8. Revealing the Intrinsic Nanohardness of Lath Martensite in Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2015-02-01

    The mechanical property of martensite blocks in low carbon steel is studied by nanoindentation combined with scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy. The average nanohardnesses of small and large martensite blocks are 6.9 and 5.4 GPa, respectively. A size effect that the smaller is stronger is thus observed. This size effect was ascribed to the different formation sequence of martensite blocks during quenching. Therefore, the present work suggests that the as-quenched martensite may be considered as a composite material with the small but strong martensite blocks embedded in the large but soft martensite block matrix, which is important information for modeling the tensile stress-strain behavior of martensitic steel.

  9. The Impact of Martensite Deformation on Shape Memory Effect Recovery Strain Evolution

    NASA Astrophysics Data System (ADS)

    Lanba, Asheesh; Hamilton, Reginald F.

    2015-08-01

    The one-way shape memory effect of polycrystalline NiTi is investigated after differential levels of martensite deformation. Martensite naturally forms an energy-minimizing configuration, referred to as self-accommodated, of differently oriented martensite variants, which are internally twinned. Stress preferentially orients a select variant that eventually detwins and plastically deforms at the highest stress levels. In this work, the underlying morphology is ascertained based on the evolution of micro-scale deformation measurements using digital image correlation analysis of three characteristic material responses. An initial martensitic structure is deformed at constant temperature. The forward austenite-to-martensite and reverse martensite-to-austenite phase transformations take place during temperature cycling under a constant stress. The austenite-to-martensite transformation is tensile stress induced at a constant temperature and initiates via a localized strain band. For the conversion of self-accommodated martensite to orientated morphology and further deformation, spatially heterogeneous strains accrue over the entire specimen surface. Shape memory recovery during heating, on the other hand, culminates with a centralized strain localization that persists as recovery approaches completion. The recovery temperature differential ( A f - A s) depends on the extent of deformation. This work characterizes the influence of stress on phase transformation and martensite deformation morphology for deformation in the martensitic state compared to the stress-induced phase transformation.

  10. Ferritic/martensitic steels - overview of recent results

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Gelles, D. S.; Jitsukawa, S.; Kimura, A.; Odette, G. R.; van der Schaaf, B.; Victoria, M.

    2002-12-01

    Considerable research work has been conducted on the ferritic/martensitic steels since the last International Conference on Fusion Reactor Materials in 1999. Since only a limited amount of that work can be reviewed in this paper, four areas will be emphasized: (1) the international collaboration under the auspices of the International Energy Agency (IEA) to address potential problems with ferritic/martensitic steels and to prove their feasibility for fusion, (2) the major uncertainty that remains concerning the effect of transmutation helium on mechanical properties of the steels when irradiated in a fusion neutron environment, (3) development of new reduced-activation steels beyond the F82H and JLF-1 steels studied in the IEA collaboration, and (4) work directed at developing oxide dispersion-strengthened steels for operation above 650 °C.

  11. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  12. Intervention of martensite variants on the spatial aspect of microvoids

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2016-06-01

    The spatial aspect of microvoids’ distribution at different strained austenite grains has been investigated through strain rate variation during tensile deformation of metastable austenitic stainless steel at ambient temperature. Ductile fracture micromechanisms of metastable austenite have been investigated through direct measurements of void density, its fraction and their distribution at various levels of stresses/strains for all strain rates. The nature of the distribution of microvoids’ fraction closely corresponds to the local stress-state and strain-state variation and hence is strongly attributed to the crystallographic variant selection of martensite and their spatial nature of distribution. The direct intervention of martensite variants has been looked into for influencing void nucleation, growth and coalescence under tensile deformation of austenitic stainless steel.

  13. Microstructural evolutions and cyclic softening of 9%Cr martensitic steels

    NASA Astrophysics Data System (ADS)

    Benjamin, Fournier; Maxime, Sauzay; Alexandra, Renault; Françoise, Barcelo; André, Pineau

    2009-04-01

    Detailed TEM and EBSD measurements were carried out to quantify the microstructural evolutions and to identify the physical mechanisms taking place during fatigue and creep-fatigue at 823 K on a P91 martensitic steel. The coarsening of former martensitic laths is shown to be heterogeneous for low applied strains, whereas for higher applied strains and longer holding periods the whole microstructure coarsens. Based on these observations and on a careful study of the stress partition (backstress, isotropic and viscous stress), the softening effect in creep-fatigue is found to be mainly related to the cumulated viscoplastic strain at a given fatigue strain range. The microstructural coarsening taking place during cyclic loadings is shown to increase significantly the minimum creep rate of this steel.

  14. Fracture toughness and structure of martensitic class steels

    SciTech Connect

    Golovinskaya, T.M.; Dmitrieva, E.A.; Kaminskii, A.A.; Rudis, T.V.

    1985-05-01

    In this paper the authors present results of a study of the influence of heat-treatment conditions of structural steels with intense decomposition of the metastable structures in tempering after hardening and with decomposition delayed by the addition of the alloy elements molybdenum and vanadium on the crack resistance, structural changes, and micromechanism of fracture. Investigation was made using the martensitic class steels 37KhN3A, 30KhGSA, and 30Kh3SNMVF.

  15. Martensite transformation of epitaxial Ni-Ti films

    SciTech Connect

    Buschbeck, J.; Kozhanov, A.; Kawasaki, J. K.; James, R. D.; Palmstroem, C. J.

    2011-05-09

    The structure and phase transformations of thin Ni-Ti shape memory alloy films grown by molecular beam epitaxy are investigated for compositions from 43 to 56 at. % Ti. Despite the substrate constraint, temperature dependent x-ray diffraction and resistivity measurements reveal reversible, martensitic phase transformations. The results suggest that these occur by an in-plane shear which does not disturb the lattice coherence at interfaces.

  16. Texture evolution during nitinol martensite detwinning and phase transformation

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Ren, Y.

    2013-12-09

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.

  17. Texture evolution during nitinol martensite detwinning and phase transformation

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.

    2013-12-01

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.

  18. Boundaries for martensitic transition of 7Li under pressure

    DOE PAGESBeta

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; Molaison, Jamie J.; Sinogeikin, Stanislav; dos Santos, Antonio M.; Deemyad, Shanti

    2015-08-14

    We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less

  19. Boundaries for martensitic transition of 7Li under pressure

    PubMed Central

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; Molaison, Jamie J.; Sinogeikin, Stanislav; dos Santos, Antonio M.; Deemyad, Shanti

    2015-01-01

    Physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ∼3 GPa, once in fcc phase, lithium does not undergo a martensitic transition. PMID:26271453

  20. Isothermal formation of martensite in a 12Cr-9Ni-4Mo maraging stainless steel

    SciTech Connect

    Holmquist, M.

    1995-11-01

    The present paper is concerned with the nature of the martensite, which provides the basis for the maraging treatment. Rather than forming martensite during cooling, 1RK91 develops martensite when held at a constant temperature in a range from room temperature and below. Isothermal martensite formation showing C-curve kinetics was found to occur in the maraging steel 1RK91, the nose temperature being about {minus}40 C. The kinetics was found to be enhanced for higher austenitizing treatment temperatures, presumably through a combination of larger grain size and a larger number of quenched in nuclei for isothermal martensite transformation. Experiments involving different cooling rates showed that fast cooling enhanced the transformation kinetics. Based on this observation it is suggested that quenched-in vacancy clusters provide suitable strain embryos for isothermal martensite nucleation.

  1. Dislocation centers for nucleation of α-martensite and pairwise joining for martensite crystals with habits {hh l}

    NASA Astrophysics Data System (ADS)

    Kashchenko, M. P.; Konovalov, S. V.; Yablonskaya, T. N.

    1994-04-01

    We analyze the regular pairwise joinings of α-martensite crystals with habits of the {hHl} type. We show that we can consistently interpret all known joinings by considering 60-degree linear dislocations as nucleation centers for crystals with habits {5tilde 57} and {2tilde 25} and by assuming that the directions of the Burgers vectors of the formed nucleation centers of the joined crystals are specified by the directions of the macroscopic or twinning shears of the original crystal.

  2. Observational Evidences for the Existence of 17.4 keV Decaying Degenerate Sterile Neutrinos Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chan, M. H.; Chu, M.-C.

    2011-02-01

    We show that the existence of a degenerate halo of sterile neutrinos with rest mass of 17.4 keV near the Galactic center (GC) can account for both the excess 8.7 keV emission observed by the Suzaku mission and the power needed (1040 erg s-1) to maintain the high temperature of the hot gas (8 keV) near the GC. The required decay rate and mixing angle of the sterile neutrinos are Γ >= 10-19 s-1 and sin22θ ~ 10-3, respectively. These values are consistent with a low reheating temperature, which suppresses the production of sterile neutrinos, resulting in a small sterile neutrino density parameter (Ω s < 10-8). They are also allowed by X-ray background data and the isotope experiment. The large mixing angle leads to the exciting possibility that a sterile-active neutrino oscillation may be visible in near future experiments.

  3. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Byun, Thak Sang; Parish, Chad M

    2013-01-01

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of alpha- and epsilon-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both alpha- and epsilon-martensite were found in the microstructure, but at 1100 MPa only -martensite presented in the specimen. Under indentation, alpha- and epsilon-martensite were observed in the material regardless of stress level.

  4. Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite using Nanoindentation

    SciTech Connect

    Ahn, T.-H.; Oh, C.-S.; Kim, D. H.; Oh, K. H.; Bei, Hongbin; George, Easo P; Han, H. N.

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  5. The partitioning of alloying elements in vacuum arc remelted, Pd-modified PH 13-8 Mo alloys

    NASA Astrophysics Data System (ADS)

    Cieslak, M. J.; Vandenavyle, J. A.; Carr, M. J.; Hills, C. R.; Semarge, R. E.

    1988-12-01

    The partitioning of alloying elements in as-solidified PH 13-8 Mo stainless steel containing up to 1.02 wt pct Pd has been investigated. The as-solidified structure is composed of two major phases, martensite and ferrite. Electron probe microanalysis reveals that Mo, Cr, and Al partition to the ferrite phase while Fe, Ni, Mn, and Pd partition to the martensite (prior austenite) during solidification and cooling from the solidus. In addition to bulk segregation between phases, precipitation of the intermetallic, PdAI, in the retained ferrite is observed. Precipitation of the normal hardening phase, β-NiAl, is also observed in the retained ferrite. Partition ratios of the various alloying elements are determined and are compared with those observed previously in duplex Fe-Cr-Ni stainless steel solidification structures. The martensite start temperature (Ms) was observed to decrease with increasing Pd concentration.

  6. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures. PMID:23842235

  7. High Temperature Measurements Of Martensitic transformations Using Digital Holography

    SciTech Connect

    Thiesing, Benjamin; Mann, Christopher J; Dryepondt, Sebastien N

    2013-01-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

  8. The Formation of Crystal Defects in a Fe-Mn-Si Alloy Under Cyclic Martensitic Transformations.

    PubMed

    Bondar, Vladimir I; Danilchenko, Vitaliy E; Iakovlev, Viktor E

    2016-12-01

    Formation of crystalline defects due to cyclic martensitic transformations (CMT) in the iron-manganese Fe-18 wt.% Mn-2 wt.% Si alloy was investigated using X-ray diffractometry. Conditions for accumulation of fragment sub-boundaries with low-angle misorientations and chaotic stacking faults in crystal lattice of austenite and ε-martensite were analyzed. PMID:26960743

  9. OBSERVATIONAL EVIDENCES FOR THE EXISTENCE OF 17.4 keV DECAYING DEGENERATE STERILE NEUTRINOS NEAR THE GALACTIC CENTER

    SciTech Connect

    Chan, M. H.; Chu, M.-C. E-mail: mcchu@phy.cuhk.edu.h

    2011-02-01

    We show that the existence of a degenerate halo of sterile neutrinos with rest mass of 17.4 keV near the Galactic center (GC) can account for both the excess 8.7 keV emission observed by the Suzaku mission and the power needed (10{sup 40} erg s{sup -1}) to maintain the high temperature of the hot gas (8 keV) near the GC. The required decay rate and mixing angle of the sterile neutrinos are {Gamma} {>=} 10{sup -19} s{sup -1} and sin{sup 2}2{theta} {approx} 10{sup -3}, respectively. These values are consistent with a low reheating temperature, which suppresses the production of sterile neutrinos, resulting in a small sterile neutrino density parameter ({Omega}{sub s} < 10{sup -8}). They are also allowed by X-ray background data and the isotope experiment. The large mixing angle leads to the exciting possibility that a sterile-active neutrino oscillation may be visible in near future experiments.

  10. Thermoelastic martensitic transformations in ternary Ni50Mn50- z Ga z alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.

    2016-01-01

    We have studied the effect of gallium alloying on the structure, phase composition, and physical properties of ternary alloys of the Ni50Mn50- z Ga z (0 ≤ z ≤ 25 at %) quasi-binary section in a broad temperature range. Dependences of the type of crystalline structure of the high-temperature austenite phase and martensite, as well as the critical temperatures of martensitic transformations on the alloy composition, are determined. A phase diagram of the structural and magnetic transformations is constructed. Concentration boundaries of the existence of tetragonal L10 (2 M) martensite and martensitic phases (10 M and 14 M) with complex multilayer crystalline lattices are found. It is established that the predominant martensite morphology is determined by the hierarchy of packets of thin coherent nano- and submicrocrystalline plates with habit planes close to {011} B2, pairwise twinned along one of 24 equivalent {011}<011> B2 twinning shear systems.

  11. Morphology transition of deformation-induced lenticular martensite in Fe-Ni-C alloys

    SciTech Connect

    Zhang, X.M.; Li, D.F.; Xing, Z.S. . Inst. of Metal Research); Gautier, E.; Zhang, J.S.; Simon, A. . Lab. de Science et Genie des Materiaux Metalliques)

    1993-06-01

    The morphology and habit planes of deformation-induced lenticular martensite were investigated by optical and transmission electron microscopy in Fe-30Ni and Fe-30Ni-0.11C alloys. Transitions in morphology were observed with progressive deformation levels going from lenticular to butterfly martensite for the Fe-30Ni-0.11C alloy. The habit planes changed from (225)[sub f] or (259)[sub f] for the thermal lenticular martensite to (111)[sub f] for the strain-induced martensite. The morphology and crystallography of the small butterfly martensites was also investigated. A change in the orientation relationships from K-S to N-W relations was also observed. These changes were attributed to the contribution of mobile dislocations which modified the shear mode form twinning to slip, and to a plastic accommodation of transformation strains.

  12. A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels

    NASA Astrophysics Data System (ADS)

    Huyan, Fei; Hedström, Peter; Höglund, Lars; Borgenstam, Annika

    2016-06-01

    A thermodynamic-based model to predict the fraction of martensite in steels with undercooling has been developed. The model utilizes the thermodynamic driving force to describe the transformation curve and it is able to predict the fraction of athermal martensite at quenching to different temperatures for low alloy steels. The only model parameter is a linear function of the martensite start temperature (M s), and the model predicts that a steel with a higher M s has a lower difference between the martensite start and finish temperatures. When the present model is combined with a previously developed thermodynamic-based model for M s, the model predictions of the full martensite transformation curve with undercooling are in close agreement with literature data.

  13. Influence of Martensite Volume Fraction on Impact Properties of Triple Phase (TP) Steels

    NASA Astrophysics Data System (ADS)

    Zare, Ahmad; Ekrami, A.

    2013-03-01

    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 °C. Room temperature impact properties of TP steels with different martensite volume fractions ( V M) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing V M in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture toughness and the Charpy impact energy. Fractography of Charpy specimens confirmed decrease in TP steels' toughness with increasing V M by considering and comparing radial marks and crack initiation regions at the fracture surfaces of the studied steels.

  14. A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels

    NASA Astrophysics Data System (ADS)

    Huyan, Fei; Hedström, Peter; Höglund, Lars; Borgenstam, Annika

    2016-09-01

    A thermodynamic-based model to predict the fraction of martensite in steels with undercooling has been developed. The model utilizes the thermodynamic driving force to describe the transformation curve and it is able to predict the fraction of athermal martensite at quenching to different temperatures for low alloy steels. The only model parameter is a linear function of the martensite start temperature ( M s), and the model predicts that a steel with a higher M s has a lower difference between the martensite start and finish temperatures. When the present model is combined with a previously developed thermodynamic-based model for M s, the model predictions of the full martensite transformation curve with undercooling are in close agreement with literature data.

  15. Weld microstructure development and properties of precipitation-strengthened martensitic stainless steels

    SciTech Connect

    Brooks, J.

    1994-12-31

    Precipitation-strengthened martensitic stainless steels provide excellent strength (170--220 ksi Y.S.) with high corrosion resistance. However, upon aging, a large reduction in toughness may also occur. The gas tungsten arc (GTA) cold wire feed process was used to weld half inch thick plates of PH 13-8 Mo and Custom 450 from which both tensile and Charpy specimens were machined. A fundamental understanding of the details of weld microstructural evolution was developed by liquid tin quenching GTA welds in which the solidification behavior, primary phase of solidification, microsegregation, and solid-state transformations could be followed. For both alloys studied, the as-welded yield strengths were similar to those of the unaged base material, 130 ksi. Weld properties were very similar to those of the base materials for both alloy systems. Weld strength increases significantly upon aging and achieves a maximum at intermediate aging temperatures. The increase in strength is accompanied by a large decrease in Charpy impact energy; however, the minimum in toughness occurs at aging temperatures slightly less than those resulting in peak strengths. The evolution of the weld microstructure was found to support predictions of microstructural modeling. Although a high degree of alloying partitioning occurs during solidification, a large degree of homogenization occurs upon further solidification and cooling as a result of solid-state diffusion.

  16. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  17. Microstructural analysis of neutron-irradiated martensitic steels

    NASA Astrophysics Data System (ADS)

    Kai, J. J.; Klueh, R. L.

    1996-06-01

    Four martensitic steels for fusion applications were examined by transmission electron microscopy after irradiation in the Fast Flux Test Facility (FFTF) at 420°C to 7.8 X 10 26 n/m 2 ( E > 0.1 MeV), about 35 dpa. There were two commercial steels, 9Cr-IMoVNb and 12Cr-1MoVW, and two experimental reduced-activation steels, 9Cr-2WV and 9Cr-2WVTa. Before irradiation, the tempered martensite microstructures of the four steels contained a high dislocation density, and the major precipitate was M 23C 6 carbide, with few MC carbides. Irradiation caused minor changes in these precipitates. Voids were found in all irradiated specimens, but swelling remained below 1%, with the 9Cr-1MoVNb having the highest void density. Although the 12Cr-IMoVW steel showed the best swelling resistance, it also contained the highest density of radiation-induced new phases, which were identified as chi-phase and possibly α'. Radiation-induced chi-phase was also observed in the 9Cr-1MoVNb steel. The two reduced-activation steels showed very stable behavior under irradiation: a high density of dislocation loops replaced the original high dislocation density; moderate void swelling occurred, and no new phase formed. The differences in microstructural evolution of the steels can explain some of the mechanical properties observations made in these steels.

  18. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  19. O-Demethylation and Successive Oxidative Dechlorination of Methoxychlor by Bradyrhizobium sp. Strain 17-4, Isolated from River Sediment

    PubMed Central

    Masuda, Minoru; Sato, Kiyoshi

    2012-01-01

    O-Demethylation of insecticide methoxychlor is well known as a phase I metabolic reaction in various eukaryotic organisms. Regarding prokaryotic organisms, however, no individual species involved in such reaction have been specified and characterized so far. Here we successfully isolated a bacterium that mediates oxidative transformation of methoxychlor, including O-demethylation and dechlorination, from river sediment. The isolate was found to be closely related to Bradyrhizobium elkanii at the 16S rRNA gene sequence level (100% identical). However, based on some differences in the physiological properties of this bacterium, we determined that it was actually a different species, Bradyrhizobium sp. strain 17-4. The isolate mediated O-demethylation of methoxychlor to yield a monophenolic derivative [Mono-OH; 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane] as the primary degradation product. The chiral high-performance liquid chromatography (HPLC) analysis revealed that the isolate possesses high enantioselectivity favoring the formation of (S)-Mono-OH (nearly 100%). Accompanied by the sequential O-demethylation to form the bis-phenolic derivative Bis-OH [1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane], oxidative dechlorination of the side chain proceeded, and monophenolic carboxylic acid accumulated, followed by the formation of multiple unidentified polar degradation products. The breakdown proceeded more rapidly when reductively dechlorinated (dichloro-form) methoxychlor was applied as the initial substrate. The resultant carboxylic acids and polar degradation products are likely further biodegraded by ubiquitous bacteria. The isolate possibly plays an important role for complete degradation (mineralization) of methoxychlor by providing the readily biodegradable substrates. PMID:22635993

  20. Recent research on the elastic unstableness of shape memory alloy in martensite transformation by micro-high-speed photography

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Wu, Yuehua; Uyemura, Tsuneyoshi

    1993-01-01

    The paper reports the research results on the phenomenon of elastic unstableness in martensite transformation of Cu-Al-Ni shape memory alloy (SMA). We use the method of micro-high speed photography. The martensite of Cu-Al-Ni SMA presents thermoelastic strain in the heating and cooling process. While the sample is heated to As, the martensite begins to contract and the temperature reaches Af point, the martensite is gradually reducing. It is possible that the martensite suddenly disappears from certain visible size at the instant it is heated to Af temperature.

  1. Photon and η production in p + Pb and p + C collisions at √{sNN}=17.4 GeV

    NASA Astrophysics Data System (ADS)

    Aggarwal, M. M.; Ahammed, Z.; Angelis, A. L. S.; Antonenko, V.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T. C.; Baba, P. V. K. S.; Badyal, S. K.; Bathe, S.; Batiounia, B.; Baumann, C.; Bernier, T.; Bhalla, K. B.; Bhatia, V. S.; Blume, C.; Bucher, D.; Büsching, H.; Carlén, L.; Chattopadhyay, S.; Decowski, M. P.; Delagrange, H.; Donni, P.; Dutta Majumdar, M. R.; El Chenawi, K.; Dubey, A. K.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M. S.; Garpman, S.; Gavrishchuk, O.; Geurts, F. J. M.; Ghosh, T. K.; Glasow, R.; Guskov, B.; Gustafsson, H. Å.; Gutbrod, H. H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B. W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Löhner, H.; Luquin, L.; Mahapatra, D. P.; Manko, V.; Martin, M.; Martínez, G.; Maximov, A.; Miake, Y.; Mishra, G. C.; Mohanty, B.; Mora, M.-J.; Morrison, D.; Mukhanova, T.; Mukhopadhyay, D. S.; Naef, H.; Nandi, B. K.; Nayak, S. K.; Nayak, T. K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nilsson, P.; Nishimura, S.; Nomokonov, P.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Pavliouk, S.; Peitzmann, T.; Peressounko, D.; Petracek, V.; Phatak, S. C.; Pinganaud, W.; Plasil, F.; Purschke, M. L.; Rak, J.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rao, N. K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Roy, C.; Rubio, J. M.; Sambyal, S. S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.-R.; Schutz, Y.; Shabratova, G.; Shah, T. H.; Sibiriak, I.; Siemiarczuk, T.; Silvermyr, D.; Sinha, B. C.; Slavine, N.; Söderström, K.; Sood, G.; Sørensen, S. P.; Stankus, P.; Stefanek, G.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Tsvetkov, A.; Tykarski, L.; Pijll, E. C. v. d.; v. Eijndhoven, N.; v. Nieuwenhuizen, G. J.; Vinogradov, A.; Viyogi, Y. P.; Vodopianov, A.; Vörös, S.; Wysłouch, B.; Young, G. R.

    2013-01-01

    Measurements of direct photon production in p + Pb and p + C collisions at √{sNN}=17.4 GeV are presented. Upper limits on the direct photon yield as a function of pT are derived and compared to the results for Pb + Pb collisions at √{sNN}=17.3 GeV. The production of the η meson, which is an important input to the direct photon signal extraction, has been determined in the η→2γ channel for p + C collisions at √{sNN}=17.4 GeV.

  2. Magnetic properties of martensite in metamagnetic Ni-Co-Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Seguí, C.; Cesari, E.; Lázpita, P.

    2016-04-01

    Ni50-x Co x Mn30Ga20 (x  =  6-9) alloys show metamagnetic behaviour, undergoing martensitic transformation (MT) between ferromagnetic austenite and weak magnetic martensite. The temperatures of the structural and magnetic transitions depend on composition and L21 order degree, in such a way that combined composition and thermal treatment allows for MT between any magnetic state of austenite and martensite. For these alloys, mutual influence between atomic and magnetic order has been widely studied. However, the type of magnetism of martensite remains unclear. In this work, the magnetic state of martensite in a Ni43Co7Mn30Ga20 alloy has been studied in detail. Its evolution as a function of post-quench ageing time indicates that improved atomic order enhances the ferromagnetic character of the weakly magnetic martensite. The most important changes occur when austenite switches from paramagnetic to ferromagnetic. The magnetic behavior of martensite is consistent with the presence of ferromagnetic clusters inside a paramagnetic matrix.

  3. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  4. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-06-03

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  5. Heavy hydrogen isotopes penetration through austenitic and martensitic steels

    NASA Astrophysics Data System (ADS)

    Dolinski, Yu.; Lyasota, I.; Shestakov, A.; Repritsev, Yu.; Zouev, Yu.

    2000-12-01

    Experimental results are presented of deuterium and tritium permeability through samples of nickel, austenitic steel (16Cr-15Ni-3Mo-Ti), and martensitic steel DIN 1.4914 (MANET) exposed to a gaseous phase. Experiments were carried out at the RFNC-VNHTF installation, which has the capability of measuring the permeability of hydrogen isotopes by mass spectrometry over a temperature range of 293-1000 K, hydrogen isotope pressure ranges of 50-1000 Pa. Sample disks (30 and 40 mm diam.) can be assembled in the test chamber by electron-beam welding or mounted (30-mm diam. disks) on gaskets. Diffusion and permeability dependencies on temperature and pressure are determined and corresponding activation energies are presented.

  6. Dislocation substructures developed in martensitic steels under thermal fatigue

    NASA Astrophysics Data System (ADS)

    Alvarez-Armas, I.; Armas, A. F.; Petersen, C.

    1992-09-01

    Thermal fatigue tests were carried out on a martensitic steel, DIN denomination W. Nr. 1.4914, commonly named MANET I. The tests were performed in air by allowing the sample to serve as its own heater and converting any longitudinal thermal deformation of the specimen into elastic or inelastic deformation. The low temperature was held constant and equal to 473 K and variable values, 823, 873, 923, 973 K for the high temperature were selected. The effects of different thermal cycling ranges on the mechanical behavior and the accompanying microstructural changes in the specimen were evaluated. A continous softening preceded by a stability period was observed in all thermal fatigue tests. Higher temperature changes produce an accelerated softening process. The original lath structure evolves to a mixed structure of expanded laths and subgrains or a fully subgrain structure depending on the temperature range.

  7. Cleavage-quasi cleavage in ferritic and martensitic steels

    SciTech Connect

    Odette, G.R.; Edsinger, K.V.; Lucas, G.E.

    1997-12-31

    Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage in a low alloy pressure vessel steel and two 8--12 Cr martensitic steels as a function of temperature. While differences between the steels were observed, they shared some common characteristics that differ from the conventional view of cleavage. Most notably cleavage does not occur as a single weakest link event; rather it is the consequence of a critical condition when a previously nucleated dispersion of microcracks suddenly coalesce to form a large, rapidly propagating macroscopic crack. It is argued that the critical event can be treated as a bridging instability. The stabilizing effect of the ductile ligaments separating the cleavage facets increases with increasing temperature. Indeed, even in the ductile tearing regime cleavage facets form a significant fraction of nuclei for larger microvoids.

  8. Simulation of Crack Growth Rate in Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Odukwe, A. O.; Ajayi, O. O.; Oluwadare, G. O.

    This research used the stress intensity factor with rate of crack growth per cycle of loading to model and simulates the crack growth in Martensitic steel in air environment. The basic parameters used were da/dN and ΔK, log (da/dN) was analyzed against log (ΔK) and a regression analysis using data from log (da/dN) vs log (ΔK) was carried out and the outcome employed to develop a model and simulation which gave rise to interactive software that can be used to predict the behavior of a structural member under conditions of certain loading. Additionally, it can be employed to have quick access to data and design considerations, when input data are supplied. This became useful in monitoring the point at which crack can initiate and the rate at which it would grow in a particular structural member of interest. The software has been tested with theoretical and experimental data.

  9. Analysis of fracture toughness of explosion-hardened martensitic steel

    NASA Astrophysics Data System (ADS)

    Moskvitina, L. V.

    2015-10-01

    In this work we study a shift of the following nonlinear states: tempering + abatement + 10 GPa shock loading + welding thermocycle. As a result the self-organized HAZ metal structure with elements of self-similarity on different scales is found. The fractal analysis shows how formed defects affect the HAZ metal hardness of 14H2GMR steel with the martensitic structure of static fracture. The statistical analysis of stereometric parameters of fracture shows a higher energy intensity of static fracture in specimens treated by explosion. The multifractal analysis reveals hardness of the grid dislocation structure induced by explosion in the air-hardening zone. The homogeneity of the dislocation structure related to carbides increases the resistance of HAZ metal of static fracture.

  10. Observations on the formation of [var epsilon] martensite in an Fe-23. 2%Mn alloy

    SciTech Connect

    Akguen, I.; Durlu, T.N. . Dept. of Physics)

    1994-11-15

    In Fe-Mn binary alloys the formation behavior of [var epsilon] martensite is quite sensitive to the Mn percentage and although both [var epsilon] and [alpha][prime] type martensites are formed in low Mn alloys, mostly [gamma] [yields] [var epsilon] transformation occur as the Mn concentration is increased. The present study was undertaken to examine the formation of thermally induced and also strain-induced [var epsilon] martensites, and their intersections in a Fe-23.2%Mn alloy by using transmission electron microscopy techniques.

  11. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  12. Carbides in a High-Chromium Ferritic/Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Shen, Yin Zhong; Ji, Bo; Zhou, Xiao Ling; Zhu, Jun

    2014-06-01

    The precipitate phases in an 11 pct Cr ferritic/martensitic steel normalized at 1323 K (1050 °C) for 0.5 hour and tempered at 1053 K (780 °C) for 1.5 hours have been investigated. Except for dominant phases, Cr-rich M23C6 carbide and Nb-rich, Ta-Nb-rich, and V-rich MC carbides, needle-like precipitates with a typical size of 70 to 310 and 10 to 30 nm for the length of the long and short axis of the needles, respectively, were also observed on the extraction carbon replica of the steel. The typical metallic element composition of the needle-like precipitates is about 53-82Fe, 14-26Cr, 0.5-18Ta, 1-6W, and 2-5Co in atomic pct. Through energy dispersive X-ray analysis and electron diffraction along with calculations regarding lattice parameter and interplanar spacing, the needle-like precipitates were identified as a Fe-rich M5C2 carbide, which is not known to have been reported previously in high-chromium steels. The M5C2 carbide has a base-centered monoclinic crystal structure with the approximate lattice parameters a/ b/ c = 1.142/0.5186/0.5383 nm and β = 104.68 deg. The formation of the Fe-rich M5C2 carbides in the steel has been discussed. The effect of chromium content in matrix and boron addition on the precipitate phases in ferritic/martensitic steels has also been discussed.

  13. TEM Observation of Martensite Layer at the Weld Interface of an A508III to Inconel 82 Dissimilar Metal Weld Joint

    NASA Astrophysics Data System (ADS)

    Chen, Z. R.; Lu, Y. H.

    2015-12-01

    A lenticular martensite layer at the weld interface in an A508III/Inconel 82 dissimilar metal weld (DMW) joint was studied by TEM. The martensite/weld metal boundary was observed as the fusion boundary. There was a K-S orientation relationship between martensite and weld metal. The formation of the martensite was mainly determined by the distribution of alloy elements. The martensite was responsible for the hardness peak in the DMW.

  14. Stabilization of Fe-C Martensitic Phase by Low-Temperature Ageing

    SciTech Connect

    Dabrowski, L.; Winek, T.; Neov, S.

    2007-04-23

    Martensite containing 0.87 wt.% carbon was aged at liquid nitrogen temperature during 30 days. X-ray diffraction measurements showed that ageing does not lead to the phase transition {alpha} {yields} {kappa} up to 800 K.

  15. Influence of interface mobility on the evolution of Austenite-Martensite grain assemblies during annealing

    SciTech Connect

    Clarke, Amy J; Santofimia, Maria J; Speer, John G; Zhao, L; Sietsma, Jilt

    2009-01-01

    The quenching and partitioning (Q&P) process is a new heat treatment for the creation of advanced high-strength steels. This treatment consists of an initial partial or full austenitization, followed by a quench to form a controlled amount of martensite and an annealing step to partition carbon atoms from the martensite to the austenite. In this work, the microstructural evolution during annealing of martensite-austenite grain assemblies has been analyzed by means of a modeling approach that considers the influence of martensite-austenite interface migration on the kinetics of carbon partitioning. Carbide precipitation is precluded in the model, and three different assumptions about interface mobility are considered, ranging from a completely immobile interface to the relatively high mobility of an incoherent ferrite-austenite interface. Simulations indicate that different interface mobilities lead to profound differences in the evolution of microstructure that is predicted during annealing.

  16. Stabilization of Fe-C Martensitic Phase by Low-Temperature Ageing

    NASA Astrophysics Data System (ADS)

    Dabrowski, L.; Neov, S.; Winek, T.

    2007-04-01

    Martensite containing 0.87 wt.% carbon was aged at liquid nitrogen temperature during 30 days. X-ray diffraction measurements showed that ageing does not lead to the phase transition α ==> κ up to 800 K.

  17. Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The microstructure and hardness of high-carbon martensitic stainless steel (HMSS) were investigated using thermal expansion analyzer, Thermo-calc, scanning electron microscope, x-ray diffraction, and Ultra-high temperature confocal microscope. The results indicate that the experimental steel should be austenitized in the temperature range of 1025-1075 °C, which can give a maximum hardness of 62 HRc with the microstructure consisting of martensite, retained austenite, and some undissolved carbides. With increasing austenitizing temperature, the amount of retained austenite increases, while the volume fraction of carbides increases first and then decreases. The starting temperature and finish temperature of martensite formation decrease with increasing cooling rates. Air-quenched samples can obtain less retained austenite, more compact microstructure, and higher hardness, compared with that of oil-quenched samples. For HMSS, the martensitic transformation takes place at some isolated areas with a slow nucleation rate.

  18. Possible martensitic transformation and ferrimagnetic properties in Heusler alloy Mn2NiSn

    NASA Astrophysics Data System (ADS)

    Duan, Ying-Ni; Fan, Xiao-Xi; Kutluk, Abdugheni; Du, Xiu-Juan; Zhang, Zheng-Wei; Song, Yu-Ling

    2015-07-01

    The electronic structure and magnetic properties of Hg2CuTi-type Mn2NiSn have been studied by performing the first-principle calculations. It is found that the phase transformation from the cubic to the tetragonal structure reduces the total energy, indicating that the martensitic phase is more stable and the phase transition from austenite to martensite may happen at low temperature for Hg2CuTi-type Mn2NiSn. Concerning the magnetism of Hg2CuTi-type Mn2NiSn, both austenitic and martensitic phases are suggested to be ferrimagnets. Furthermore, martensitic transformation decreases the magnetic moment per formula unit compared with austenitic phase. The results are helpful to accelerate the use of Mn2NiSn alloys in the series for magnetic shape memory applications.

  19. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L’vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni–Mn–Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10‑4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10‑6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  20. The effect of substrate constraint on the martensitic transformation of Ni-Ti thin films

    SciTech Connect

    Mathews, S.A.; Wuttig, M.; Su, Q.

    1996-09-01

    Previous work on an equiatomic alloy of nickel and titanium (nitinol) indicates that the martensitic transformation in thin films may be suppressed by interfacial constraint imposed by the substrate. Ni{sub 50}Ti{sub 50} films were deposited at room temperature on oxidized (100) Si substrates and tested to determine when the martensitic transformation occurred for both attached and free-standing conditions.

  1. HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

    SciTech Connect

    Morgan, M; Ps Lam, P

    2008-12-11

    Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.

  2. The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels

    SciTech Connect

    Morris, J.W. Jr.; Chan, J.W.; Mei, Z.

    1992-06-01

    The 300-series stainless steels that are commonly specified for the structures of high field superconducting magnets are metastable austenitic alloys that undergo martensitic transformations when deformed at low temperature. The martensitic tranformation is promoted by plastic deformation and by exposure to high magnetic fields. The transformation significantly influences the mechanical properties of the alloy. The mechanisms of this influence are reviewed, with emphasis on fatigue crack growth effects and magnetomechanical phenomena that have only recently been recognized.

  3. Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite

    NASA Astrophysics Data System (ADS)

    Wang, Meimei; Tasan, C. Cem; Koyama, Motomichi; Ponge, Dirk; Raabe, Dierk

    2015-09-01

    Partial reversion of interlath austenite nano-films is investigated as a potential remedy for hydrogen embrittlement susceptibility of martensitic steels. We conducted uniaxial tensile tests on hydrogen-free and pre-charged medium-Mn transformation-induced plasticity-maraging steels with different austenite film thicknesses. Mechanisms of crack propagation and microstructure interaction are quantitatively analyzed using electron channelling contrast imaging and electron backscatter diffraction, revealing a promising strategy to utilize austenite reversion for hydrogen-resistant martensitic steel design.

  4. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  5. Microstructural Features of Quenching and Partitioning: A New Martensitic Steel Heat Treatment

    SciTech Connect

    Edmonds, D. V.; He, K.; Miller, Michael K; Rizzo, F. C.; Clarke, A.; Matlock, D. K.; Speer, J. G.

    2007-01-01

    The microstructure following a new martensite heat treatment has been examined, principally by high-resolution microanalytical transmission electron microscopy and by atom probe tomography. The new process involves quenching to a temperature between the martensite-start (Ms) and martensite-finish (Mf) temperatures, followed by ageing either at or above, the initial quench temperature, whereupon carbon can partition from the supersaturated martensite phase to the untransformed austenite phase. Thus the treatment has been termed ''Quenching and Partitioning'' (Q&P). The carbon must be protected from competing reactions, primarily carbide precipitation, during the first quench and partitioning steps, thus enabling the untransformed austenite to be enriched in carbon and largely stabilised against further decomposition to martensite upon final quenching to room temperature. This microstructural objective is almost directly opposed to conventional quenching and tempering of martensite, which seeks to eliminate retained austenite and where carbon supersaturation is relieved by carbide precipitation. This study focuses upon a steel composition representative of a TRIP-assisted sheet steel. The Q&P microstructure is characterised, paying particular attention to the prospect for controlling or suppressing carbide precipitation by alloying, through examination of the carbide precipitation that occurs.

  6. Transformation-rate maxima during lath martensite formation: plastic vs. elastic shape strain accommodation

    NASA Astrophysics Data System (ADS)

    Loewy, Sarah; Rheingans, Bastian; Mittemeijer, Eric J.

    2016-05-01

    Recently, a modulated formation behaviour of lath martensite in Fe-Ni(-based) alloys was observed, exhibiting a series of transformation-rate maxima. This peculiar transformation behaviour was explained on the basis of the hierarchical microstructure of lath martensite, minimising the net shape strain associated with martensite formation, by a block-by-block formation of martensite packages occurring simultaneously in all packages. In the present work, the martensitic transformation upon slow cooling of two Fe-Ni alloys, containing 22 and 25 at.% of Ni, respectively, was investigated by high-resolution dilatometry with the aim of identifying the influence of alloy composition on the modulated transformation behaviour. The differences observed for the two alloys, a more rapid sequence of the transformation-rate maxima and a narrower temperature range in case of Fe-25 at.% Ni, can be explained consistently as a consequence of the lower transformation temperatures in Fe-25 at.% Ni, highlighting the role of temporary accommodation of the shape strain during formation of the lath martensite microstructure: the depression of the transformation toward lower temperatures leads to a higher strength of the austenite, hence resulting in a more elastic (less plastic) temporary accommodation of the shape strain upon block formation and thereby in a more effective mutual compensation of the shape strain by neighbouring blocks. A kinetic model on the basis of energy-change considerations is presented which is able to describe the observed modulated transformation behaviour.

  7. Martensite Transformation and Magnetic Properties of Ni-Fe-Ga Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Nath, Hrusikesh; Phanikumar, Gandham

    2015-11-01

    Compositional instability and phase formation in Ni-Fe-Ga Heusler alloys are investigated. The alloys are synthesized into two-phase microstructure. Their structures are identified as fcc and L 21, respectively. The γ-phase formation could be suppressed with higher Ga-content in the alloy as Ga stabilizes austenite phase, but Ga lowers the martensite transformation temperature. The increase of Fe content improves the magnetization value and the increase of Ni from 52 to 55 at. pct raises the martensite transformation temperature from 216 K to 357 K (-57 °C to 84 °C). Magnetic properties and martensitic transformation behavior in Ni-Fe-Ga Heusler alloys follow opposite trends, while Ni replaces either Fe or Ga, whereas they follow similar trends, while Fe replaces Ga. Modulated martensite structure has low twinning stress and high magneto crystalline anisotropic properties. Thus, the observation of 10- and 14 M-modulated martensite structures in the studied Ni-Fe-Ga Heusler alloys is beneficial for shape memory applications. The interdependency of alloy composition, phase formation, magnetic properties, and martensite transformation are discussed.

  8. Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual Phase Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, the effects of the mechanical properties of the martensite phase on the failure mode and ductility of dual phase (DP) steels are investigated using a micromechanics-based finite element method. Actual microstructures of DP sheet steels obtained from scanning electron microscopy are used as representative volume element (RVE) in two-dimensional plane-stress finite element calculations. Failure is predicted as plastic strain localization in the RVE during deformation. The mechanical properties of the ferrite and martensite phases in a commercial DP 980 steel are obtained based on the in-situ X-ray diffraction measurements of a uniaxial tensile test. Computations are then conducted on the RVE in order to investigate the influence of the martensite mechanical properties and volume fraction on the macroscopic behavior and failure mode of DP steels. The computations show that, as the strength and volume fraction of the martensite phase increase, the ultimate tensile strength (UTS) of DP steels increases but the UTS strain and failure strain decrease. These results agree well with the general experimental observations on DP steels. Additionally, shear dominant failure modes usually develop for DP steels with lower martensite strengths, whereas split failure modes typically develop for DP steels with higher martensite strengths.

  9. Designation of alloy composition of reduced-activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Kayano, H.; Misawa, T.; Matsui, H.

    1994-09-01

    An alloy composition of reduced-activation martensitic steel for fusion reactor is designed on the basis of the experimental results of postirradiation microstructure, mechanical properties, such as creep, fracture toughness and tensile properties, hydrogen effects and corrosion. At present, a desired composition of the steel is 0.1C-0.05Si-0.5Mn-9Cr-2W-0.25V-0.02Ti-0.05Ta- < 0.002S- < 0.002P by weight percent. Effects of the other minor elements such as Al, Zr and B are also inspected. An addition of 0.05 wt% Ta increases the high temperature strength but reduces the fracture toughness. Susceptibility to hydrogen-induced cracking is reduced by an addition of 0.03 wt% Al, though it results in a severe degradation of the fracture toughness. An addition of 30 wppm B together with the addition of 0.02 wt% Ti increases the fracture toughness. Void nucleation at grain boundaries, however, is enhanced by the B addition under the FFTF irradiation at 638 K in 10 dpa.

  10. UNDERSTANDING DAMAGE MECHANISMS IN FERRITIC/MARTENSITIC STEELS

    SciTech Connect

    Swindeman, R.W.; Maziasz, P.J.; Swindeman, M.J.

    2003-04-22

    Advanced ferritic/martensitic steels are being used extensively in fossil energy applications. New steels such as 2 1/4Cr-W-V (T23, T24), 3Cr-W-V, 9Cr-Mo-V (T91), 7Cr-W-V, 9Cr-W-V (T92 and T911), and 12Cr-W-V (T122, SAVE 12, and NF12) are examples of tubing being used in boilers and heat recovery steam generators (1). Other products for these new steels include piping, plates, and forgings. There is concern about the high-temperature performance of the advanced steels for several reasons. First, they exhibit a higher sensitivity to temperature than the 300 series stainless steels that they often replace. Second, they tend to be metallurgically unstable and undergo significant degradation at service temperatures in the creep range. Third, the experience base is limited in regard to duration. Fourth, they will be used for thick-section, high-pressure components that require high levels of integrity. To better understand the potential limitations of these steels, damage models are being developed that consider metallurgical factors as well as mechanical performance factors. Grade 91 steel was chosen as representative of these steels for evaluation of cumulative damage models since laboratory and service exposures of grade 91 exceed 100,000 hours.

  11. Tritium retention in reduced-activation ferritic/martensitic steels

    SciTech Connect

    Hatano, Y.; Abe, S.; Matsuyama, M.; Alimov, V.K.; Spitsyn, A.V.; Bobyr, N.P.; Cherkez, D.I.; Khripunov, B.I.; Golubeva, A.V.; Ogorodnikova, O.V.; Klimov, N.S.; Chernov, V.M.; Oyaidzu, M.; Yamanishi, T.

    2015-03-15

    Reduced-activation ferritic/martensitic (RAFM) steels are structural material candidates for breeding blankets of future fusion reactors. Therefore, tritium (T) retention in RAFM steels is an important problem in assessing the T inventory of blankets. In this study, specimens of RAFM steels were subjected to irradiation of 20 MeV W ions to 0.54 displacements per atom (dpa), exposure to high flux D plasmas at 400 and 600 K and that to pulsed heat loads. The specimens thus prepared were exposed to DT gas at 473 K. Despite severe modification in the surface morphology, heat loads had negligible effects on T retention. Significant increase in T retention at the surface and/or subsurface was observed after D plasma exposure. However, T trapped at the surface/subsurface layer was easily removed by maintaining the specimens in the air at about 300 K. Displacement damage led to increase in T retention in the bulk due to the trapping effects of defects, and T trapped was stable at 300 K. It was therefore concluded that displacement damages had the largest influence on T retention under the present conditions.

  12. Materials design data for reduced activation martensitic steel type EUROFER

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  13. Impurities block the alpha to omega martensitic transformation in titanium.

    PubMed

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations. PMID:15665839

  14. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  15. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  16. Modeling the Flow Curve of AISI 410 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Momeni, A.; Dehghani, K.; Heidari, M.; Vaseghi, M.

    2012-11-01

    In the present study, hot deformation behavior of AISI 410 martensitic stainless steel was investigated and modeled after conducting compression tests at the temperature range of 900-1150 °C and strain rate range of 0.001-1 s-1. At the studied temperature and strain rates, the flow curves were typical of dynamic recrystallization (DRX) showing a hardening peak followed by a softening one, and a steady state. The flow curves up to the peaks were modeled using the Estrin and Mecking equation. The softening due to DRX was also considered to increase the consistency of the developed model. The experimental equation proposed by Cingara and McQueen was also used to model the work hardening region. The results showed that the phenomenological model based on the Estrin and Mecking equation resulted in a better model for the work hardening region. Based on the Avrami equation, a model was developed to estimate the flow softening due to DRX between the peak and the starting point of steady state. The average value of the Avrami exponent was determined as 2.2, and it decreased with the increasing Zener-Hollomon parameter.

  17. Thermal Desorption Analysis of Hydrogen in High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Enomoto, M.; Hirakami, D.; Tarui, T.

    2012-02-01

    Thermal desorption analyses (TDA) were conducted in high strength martensitic steels containing carbon from 0.33 to 1.0 mass pct, which were charged with hydrogen at 1223 K (950 °C) under hydrogen of one atmospheric pressure and quenched to room temperature. In 0.33C steel, which had the highest M s temperature, only one desorption peak was observed around 373 K (100 °C), whereas two peaks, one at a similar temperature and the other around and above 573 K (300 °C), were observed in the other steels, the height of the second peak increasing with carbon content. In 0.82C steel, both peaks disappeared during exposure at room temperature in 1 week, whereas the peak heights decreased gradually over 2 weeks in specimens electrolytically charged with hydrogen and aged for varying times at room temperature. From computer simulation, by means of the McNabb-Foster theory coupled with theories of carbon segregation, these peaks are likely to be due to trapping of hydrogen in the strain fields and cores of dislocations, and presumably to a lesser extent in prior austenite grain boundaries. The results also indicate that carbon atoms prevent and even expel hydrogen from trapping sites during quenching and aging in these steels.

  18. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    NASA Astrophysics Data System (ADS)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2015-06-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  19. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.

    PubMed

    Li, Y J; Ponge, D; Choi, P; Raabe, D

    2015-12-01

    B-added low carbon steels exhibit excellent hardenability. The reason has been frequently attributed to B segregation at prior austenite grain boundaries, which prevents the austenite to ferrite transformation and favors the formation of martensite. The segregation behavior of B at prior austenite grain boundaries is strongly influenced by processing conditions such as austenitization temperatures and cooling rates and by alloying elements such as Mo, Cr, and Nb. Here an local electrode atom probe was employed to investigate the segregation behavior of B and other alloying elements (C, Mn, Si, and Cr) in a Cr-added Mo-free martensitic steel. Similar to our previous results on a Mo-added steel, we found that in both steels B is segregated at prior austenite grain boundaries with similar excess values, whereas B is neither detected in the martensitic matrix nor at martensite-martensite boundaries at the given cooling rate of 30K/s. These results are in agreement with the literature reporting that Cr has the same effect on hardenability of steels as Mo in the case of high cooling rates. The absence of B at martensite-martensite boundaries suggests that B segregates to prior austenite grain boundaries via a non-equilibrium mechanism. Segregation of C at all boundaries such as prior austenite grain boundaries and martensite-martensite boundaries may occur by an equilibrium mechanism. PMID:25801276

  20. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Su, Y.; Y Yang, S.; Shi, Z.; Liu, X. J.

    2014-02-01

    In this study, a new type of Cu-Al-Ta (Cu86Al12Ta2 wt%) shape memory alloy with high martensitic transformation temperature is explored. The microstructure, reversible martensitic transformation and shape memory properties are investigated by means of optical microscopy, back-scattered electron, electron probe microanalysis, x-ray diffraction, differential scanning calorimetry and tensile tests. It is proposed that Cu86Al12Ta2 alloy consists of a mixture of primarily {\\beta }_{1}^{\\prime} martensite and a little {\\gamma }_{1}^{\\prime} martensite and some different precipitates. The tiny thin-striped Ta2(Al,Cu)3 precipitate is predominant in the as-quenched condition, whereas the particle-shaped Cu(Al, Ta) precipitate is dominant after hot-rolling. Additionally, the dendritic-shaped γ1(Cu9Al4) phase begins to appear after hot-rolling, but it disappears when the sample is re-quenched. All studied samples have reversible martensitic transformation temperatures higher than 450 ° C. The results show that two-step martensitic transformation behavior is observed for Cu86Al12Ta2 alloy in all three different conditions due to the transformations between ({\\beta }_{1}^{\\prime}+{\\gamma }_{1}^{\\prime}) martensites and the austenite parent phase. The results further show that the recovery ratios are almost 100% when the pre-strains are ≤2.5%, then they gradually decrease with further increase of the pre-strains. The shape memory effects clearly increase as a result of increase of the pre-strains, up to a maximum value of 3.2%.

  1. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  2. pH optrode

    DOEpatents

    Northrup, M. Allen; Langry, Kevin C.

    1993-01-01

    A process is provided for forming a long-lasting, stable, pH-sensitive dye-acrylamide copolymer useful as a pH-sensitive material for use in an optrode or other device sensitive to pH. An optrode may be made by mechanically attaching the copolymer to a sensing device such as an optical fiber.

  3. pH Basics

    ERIC Educational Resources Information Center

    Lunelli, Bruno; Scagnolari, Francesco

    2009-01-01

    The exposition of the pervasive concept of pH, of its foundations and implementation as a meaningful quantitative measurement, in nonspecialist university texts is often not easy to follow because too many of its theoretical and operative underpinnings are neglected. To help the inquiring student we provide a concise introduction to the depth just…

  4. Ph.D. shortage

    NASA Astrophysics Data System (ADS)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  5. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    NASA Astrophysics Data System (ADS)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger

  6. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    SciTech Connect

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.

  7. Hydrogen permeation and diffusion in a 0. 2C-13Cr martensitic stainless steel

    SciTech Connect

    Xu, J.; Sun, X.K. . State Key Lab. of RSA); Yuan, X.Z.; Wei, B.M. . Dept. of Applied Chemistry)

    1993-10-01

    The phenomenon of hydrogen embrittlement for engineering alloys, especially for alloy steels, has long attracted the attention of material researchers. Presently, it is thought that the occurrence of the phenomenon correlates with the processes of hydrogen entry and transport in metals. Therefore, a great effort has been made to understand the hydrogen permeation and diffusion in metals and alloys. Even so, the knowledge of the hydrogen permeation and diffusion in steels with a martensitic structure is still limited. In most of the investigations performed on martensite, the electrochemical permeation technique was employed for measurement; hence, only limited data near ambient temperature have been determined. A few results obtained at higher temperature are very scattered also. For instance, the hydrogen diffusivity of AISI 4130 steel in the quenched and tempered (martensite) condition is 2 orders of magnitude higher than of cryoformed 301 stainless steel (containing 90% of [alpha][prime] martensite). In the present work, the hydrogen permeability and diffusivity of a 0.2C-13Cr martensitic stainless steel (2Cr13), roughly corresponding to AISI 420, was determined by means of the gaseous permeation technique. Measurements were made above ambient temperature.

  8. Microstructures and Mechanical Properties of High-Mn TRIP Steel Based on Warm Deformation of Martensite

    NASA Astrophysics Data System (ADS)

    Guo, Zhikai; Li, Longfei; Yang, Wangyue; Sun, Zuqing

    2015-04-01

    High-Mn TRIP steel with about 5 wt pct Mn was prepared by a thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region. The microstructural evolution and the mechanical properties of the used steel during such treatment were investigated. The results indicate that during warm deformation of martensite in the intercritical region, the decomposition of martensite was accelerated by warm deformation and the occurrence of dynamic recrystallization of ferrite led to the formation of equiaxed ferrite grains. Meanwhile, the reverse transformation of austenite was accelerated by warm deformation to some extent. During subsequent annealing in the intercritical region, static recrystallization of ferrite led to the increase in the fraction of equiaxed ferrite grains, and the formation of the reversed austenite was accelerated by the addition of the deformation-stored energy, while the stability of the reversed austenite was improved by the accelerated diffusions of C atoms and Mn atoms. As a whole, the mechanical properties of the used steel by the thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region were comparable to the steels with similar compositions subjected to intercritical annealing for hours after cold rolling of martensite.

  9. Influence of Dynamic Compression on Phase Transformation of Martensitic NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2015-10-01

    Shape memory alloys (SMAs) exhibit high damping capacity in both austenitic and martensitic phases, due to either a stress-induced martensite phase transformation or a stress-induced martensite variant reorientation, making them ideal candidates for vibration suppression devices to protect structural components from damage due to external forces. In this study, both quasi-static and dynamic compression was conducted on a martensitic NiTi SMA using a mechanical loading frame and on a Kolsky compression bar, respectively, to examine the relationship between microstructure and phase transformation characteristics of martensitic NiTi SMAs. Both endothermic and exothermic peaks disappear completely after experiencing deformation at a strain rate of 103 s-1 and to a strain of about 10 pct. The phase transformation peaks reappear after the deformed specimens were annealed at 873 K (600 °C) for 30 minutes. As compared to samples from quasi-static loading, where a large amount of twinning is observed with a small amount of grain distortion and fracture, samples from dynamic loading show much less twinning with a larger amount of grain distortion and fracture.

  10. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  11. Crystallographic features of the structure of a martensite packet of the NiMn intermetallic compound

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Belosludtseva, E. S.; Kazantsev, V. A.

    2016-06-01

    Optical microscopy, scanning electron microscopy, and X-ray diffraction are used to show that a pseudosingle crystal forms upon cooling of an alloy Ni49Mn51 single crystal below the temperature of the β→θ (bcc → fct) transformation. At room temperature, this pseudosingle crystal has the structure of tetragonal L10 martensite with parameters a = 0.3732 nm and c = 0.3537 nm and a tetragonality c/ a = 0.94775. The temperatures of the forward and reverse B2 → L10 transformations are determined. The crystallographic features of martensite packet formation are analyzed. As shown by EBSD, neighboring martensite packets always have three kinds of tetragonal martensite plates, which are in a twin position and have different tetragonality axis directions. Repeated heating and quenching of the pseudosingle crystal result in recrystallization with the formation of coarse grains. The packet structure of the tetragonal martensite is retained in this case, and the sizes of the packets formed within a grain decrease by a factor of 2-3 as compared to the initial pseudosingle crystal.

  12. Evidence of martensitic phase transitions in magnetic Ni-Mn-In thin films

    SciTech Connect

    Sokolov, A.; Zhang, Le; Dubenko, I.; Samanta, T.; Ali, N.; Stadler, S.

    2013-02-18

    Ni{sub 50}Mn{sub 35}In{sub 15} Heusler alloy thin films (with thicknesses of about 10 nm) have been grown on single crystal MgO and SrTiO{sub 3} (STO) (100) substrates using a laser-assisted molecular beam epitaxy method. Films of mixed austenitic and martensitic phases and of pure martensitic phase have been detected for those grown on MgO and STO substrates, respectively. Thermomagnetic curves were measured using a SQUID magnetometer and are consistent with those of off-stoichiometric In-based bulk Heusler alloys, including a martensitic transition at T = 315 K for films grown on MgO. The differences in the properties of the films grown on MgO and STO are discussed.

  13. Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Zhou, Qiangguo; Zhang, Wenfeng; Yan, Wei; Wang, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-12-01

    Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (-30 °C), which could be further reduced by purification.

  14. A new approach to improve creep resistance of high Cr martensitic steel

    NASA Astrophysics Data System (ADS)

    Tamura, Manabu; Kumagai, Takuya; Sakai, Kazuhisa; Shinozuka, Kei; Esaka, Hisao

    2011-10-01

    A modified 9Cr-1Mo steel was cooled to 200 °C from the normalizing temperature and then directly heated to the tempering temperature. It was found that the time to rupture at 650-700 °C for the steel heat-treated at 200 °C increased three times over than that of the modified 9Cr-1Mo steel conventionally normalized and tempered. The microstructure of the improved steel was tempered martensite and the size of martensite blocks was larger than for the conventional treatment. The hardness of the improved steel was adequately recovered after tempering. Aging tests showed that the particle sizes of Cr 23C 6 and VN type carbonitride in the improved steel were finer in the conventional steel. The above-mentioned heat treatment was applied to the reduced activation martensitic steel F-82H and the improvement was confirmed.

  15. Assessment of martensitic steels as structural materials in magnetic fusion devices

    SciTech Connect

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600/sup 0/C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity.

  16. A New XRD Method to Quantify Plate and Lath Martensites of Hardened Medium-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Quanshun

    2016-06-01

    This paper introduces a new technique to separately measure the volume fraction and tetragonal ratio of co-existing lath and plate martensites in ultrahigh strength steel, and to calculate their different carbon contents. First, the two martensites are assumed to have body-centered tetragonal lattice structures of different tetragonal ratios. X-ray diffraction is then applied to obtain the overlapping {200} diffraction peak, which is subsequently separated as four sub-peaks using a self-made multiple Gaussian peak-fitting method to allow the measurement of the individual lattice parameters c and a. Finally, a modified equation is applied to calculate the carbon contents from the obtained tetragonal ratios. The new technique is then applied to investigate the effect of subsequent tempering on the decarbonization of the as-quenched martensites.

  17. Martensitic stainless steel seamless linepipe with superior weldability and CO{sub 2} corrosion resistance

    SciTech Connect

    Miyata, Y.; Kimura, M.; Koseki, T.; Toyooka, T.; Murase, F.

    1997-08-01

    Two types of new martensitic stainless steel with good weldability and superior corrosion resistance have been developed for line pipe application. Both steels are suitable for welding without preheating owing to lowering C and N contents, and they show good low temperature toughness in welds without PWHT. One is applied to sweet environments. It gives better resistance to CO{sub 2} corrosion than the 13Cr martensitic stainless steel for OCTG. Lowering C and addition of Ni contribute to reduction of general corrosion rate in the CO{sub 2} environment. The addition of Cu improves the pitting resistance. The other is applied to light sour environments. It gives good SSC resistance in welds owing to the improvement of the pitting resistance due to Mo addition. The seamless pipes of these martensitic stainless steels are applicable as substitutes for a part of duplex stainless steel flow lines.

  18. A New XRD Method to Quantify Plate and Lath Martensites of Hardened Medium-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Quanshun

    2016-04-01

    This paper introduces a new technique to separately measure the volume fraction and tetragonal ratio of co-existing lath and plate martensites in ultrahigh strength steel, and to calculate their different carbon contents. First, the two martensites are assumed to have body-centered tetragonal lattice structures of different tetragonal ratios. X-ray diffraction is then applied to obtain the overlapping {200} diffraction peak, which is subsequently separated as four sub-peaks using a self-made multiple Gaussian peak-fitting method to allow the measurement of the individual lattice parameters c and a. Finally, a modified equation is applied to calculate the carbon contents from the obtained tetragonal ratios. The new technique is then applied to investigate the effect of subsequent tempering on the decarbonization of the as-quenched martensites.

  19. Iterative Determination of the Orientation Relationship Between Austenite and Martensite from a Large Amount of Grain Pair Misorientations

    NASA Astrophysics Data System (ADS)

    Nyyssönen, Tuomo; Isakov, Matti; Peura, Pasi; Kuokkala, Veli-Tapani

    2016-06-01

    An automatic, iterative method to determine the orientation relationship between parent austenite and martensite is described. The algorithm generates the orientation relationship from grain boundary misorientations through an iterative procedure based on correct symmetry operator assignment. The automatic method is demonstrated to work on both martensitic and bainitic steels and to provide comparable results to a manual grain selection method.

  20. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.

    1996-12-31

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations.

  1. Liquid-metal-induced fracture mode of martensitic T91 steels

    SciTech Connect

    Martin, M.L.; Auger, T.; Johnson, Duane, Robertson, I.M.

    2012-04-04

    The liquid–metal-induced fracture mode of T91 martensitic steel was investigated by using transmission electron microscopy techniques to characterize the microstructure and crack network in specimens obtained from focused-ion beam machining at and immediately below the fracture surface. Contrary to previous claims of quasi-cleavage fracture, the dominant fracture mode is intergranular cracking at martensite laths and prior austenite grain boundaries. These fracture mode results clarify an outstanding issue in liquid–metal embrittlement of steels that generally occur in a heavily-deformed microstructure. Several cracks were arrested at intergranular carbides, suggesting a metallurgical strategy for impeding liquid–metal-induced crack propagation.

  2. A Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Jae; van Tyne, Chester J.

    2012-02-01

    An empirical martensite kinetics model is proposed that both captures the sigmodial transformation behavior for alloy steels and remains computationally efficient. The model improves on the Koistinen and Marburger model and the van Bohemen and Sietsma model with a function that better represents the transformation rate, especially during the early stages. When compared with existing models, the proposed model exhibits better predictions of volume fraction of martensite. The proposed model also predicts various other transformation properties accurately, such as M90 temperatures and retained austenite.

  3. Underdamped strain dynamics of a martensitic model with power-law interactions

    NASA Astrophysics Data System (ADS)

    Shankaraiah, N.; Puri, Sanjay; Shenoy, S. R.

    2014-04-01

    Focusing on conversion-time delays in athermal martensites, we present our results on underdamped strain dynamics of triple-well Landau free-energies with power-law anisotropic interactions for square-rectangle ferroelastic transition. After a temperature quench of 2% initial martensite seeds, the deterministic underdamped strain dynamics shows, interestingly, both fast conversions below a temperature and incubation delays above it, as in experiment and Monte Carlo simulations. On increasing damping constant, the fast conversions transform to incubation delays. Surprisingly, conversion-time delays have Vogel-Fulcher divergences as in Monte Carlo simulations. Microstructural evolutions are in good agreement with earlier studies.

  4. Structure fragmentation in Fe-based alloys by means of cyclic martensitic transformations of different types

    PubMed Central

    2014-01-01

    The effect of martensite transformations of different types on the misorientation of austenite crystalline lattice, which characterizes the degree of structure fragmentation, was investigated for Fe-Ni and Fe-Mn alloys. As a result of multiple face-centered cubic (f.c.c.)-body-centered cubic (b.c.c.)-f.c.c. transformations, an austenite single-crystalline specimen is transformed in a polycrystalline one due to progressive fragmentation. It was shown that the degree of fragmentation depends on the magnitude of volume change and the density of dislocations generated on martensitic transformations. PMID:24565160

  5. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  6. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

    NASA Astrophysics Data System (ADS)

    Liu, Peixing; Zhu, Bin; Wang, Yilin; Zhang, Yisheng

    2016-08-01

    In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the `martensite/austenite interface' is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature ( M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

  7. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

    NASA Astrophysics Data System (ADS)

    Liu, Peixing; Zhu, Bin; Wang, Yilin; Zhang, Yisheng

    2016-05-01

    In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the `martensite/austenite interface' is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature (M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

  8. Thermodynamic modeling of martensitic transformations in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Guthikonda, Venkata Suresh Reddy

    The unusual properties of shape memory alloys (SMAs) are due to solid-to-solid martensitic transformations (MTs) which correspond to a lattice level instability of the crystal structure. Currently, there exists a shortage of material models that can capture the details of lattice level MTs occurring in SMAs. In the first part of this work, an effective interaction potential (EIP) model is developed for the SMA AuCd. EIPs are atomic interaction potentials that are explicit functions of temperature. In particular, the Morse pair potential is used and its adjustable coefficients are taken to be temperature dependent. A hysteretic temperature-induced MT between the B2 cubic and B19 orthorhombic crystal structures is predicted. This is the behavior that is observed in the real material. The model predicts, to reasonable accuracy, the transformation strain tensor and captures the latent heat and thermal hysteresis to within an order of magnitude. The second part of this work consists of developing a lattice dynamics model to simulate the MTs. The atomic interactions are modeled using temperature independent Morse pair potentials. The effects of atomic vibrations on the material properties are captured using the first-order self-consistent approach which consists of renormalizing the frequencies of atomic vibration using self-consistent equations. These renormalized frequencies are dependent on both configuration and temperature. The model is applied for the case of a one-dimensional bi-atomic chain. The constant Morse pair potential parameters are chosen to demonstrate the usefulness of the current model. The resulting model is evaluated by generating equilibrium paths with temperature and mechanical load as the loading parameters. In both types of loading, a first-order MT is predicted indicating that the current model is able to capture the first-order MTs that occur in SMAs. This qualitative prediction of a first-order MT indicates the likely-hood that the current

  9. A Study of the Properties of a Room Temperature Martensitic Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature

    NASA Astrophysics Data System (ADS)

    Norwich, Dennis W.

    2011-07-01

    Room temperature martensitic Nitinol alloys provide a challenge to end users of the material because they are martensitic and soft at room temperature. These are commonly referred to as Shape Memory alloys as they revert to their superelastic (pseudoelastic) form and austenitic structure at a temperature above ambient. For this study, a NiTi wire, Ti-55.3 wt.%Ni in composition (Alloy-B) and heat-treated to an Af ≈ 60 °C was used. Tensile testing was performed to fully characterize the performance of the material at a series of temperatures above and below its transformation temperature. This article will summarize the properties of the material along with the effects of multiple strains on key material performance characteristics.

  10. Improved bounds on the energy-minimizing strains in martensitic polycrystals

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël

    2016-07-01

    This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable) strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at finite strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The simplest form of the bounds presented is obtained by combining recent results for single crystals with a homogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the development of a more detailed analysis, leading to improved polycrystalline bounds that are notably consistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and the results are compared with lower bounds obtained by considering laminate textures.

  11. Probing Martensitic Transition in Nitinol Wire: A Comparison of X-ray Diffraction and Other Techniques

    SciTech Connect

    Butler, J.; Tiernan, P.; Tofail, S. A. M.; Ghandi, A. A.

    2011-01-17

    Martensitic to austenite transformation in Nitinol wire can be measured by a number of techniques such as XRD (X-Ray Diffraction), DSC (Differential Scanning Calorimetry), BFR (Bend and Free Recovery) and Vickers indentation recovery. A comparison of results from these varied characterisation techniques is reported here to obtain a greater understanding of the thermal-elastic-structural changes associated with martensitic transformation. The transformation temperatures measured by DSC were found to correspond well with the structural and mechanical information obtained from XRD, BFR and Vickers indent recovery methods. Indent recovery is a relatively new and accurate method of monitoring stress induced martensitic transformations in NiTi and is one of only a few methods of stress inducing martensitic transformation in large scale samples. It is especially useful for NiTi in the as-cast billet form, where tensile testing is impossible. BFR is uniquely popular in the NiTi wire manufacturing sector and is recognised as the most accurate method of measuring the transformation temperature. Here the material is stressed to a representative in-service stress level during the test. No other test uses the shape memory effect for measuring the transformation temperature of NiTi. The results show that the DSC thermogram and XRD diffractogram have a peak overlap which is a common occurrence in NiTi that has been extensively processed. The XRD method further explains the observations in the DSC thermogram and in combination they confirm the transformation temperature.

  12. Prediction of diffusion assisted hydrogen embrittlement failure in high strength martensitic steels

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Zikry, M. A.

    2015-12-01

    A stress assisted hydrogen diffusion transport model, a dislocation-density-based multiple-slip crystalline plasticity formulation, and an overlapping fracture method were used to investigate hydrogen diffusion and embrittlement in lath martensitic steels with distributions of M23C6 carbide precipitates. The formulation accounts for variant morphologies based on orientation relationships (ORs) that are uniquely inherent to lath martensitic microstructures. The interrelated effects of martensitic block and packet boundaries and carbide precipitates on hydrogen diffusion, hydrogen assisted crack nucleation and growth, are analyzed to characterize the competition between cleavage fracture and hydrogen diffusion assisted fracture along preferential microstructural fracture planes. Stresses along the three cleavage planes and the six hydrogen embrittlement fracture planes are monitored, such that crack nucleation and growth can nucleate along energetically favorable planes. High pressure gradients result in the accumulation of hydrogen, which embrittles martensite, and results in crack nucleation and growth along {110} planes. Cleavage fracture occurs along {100} planes when there is no significant hydrogen diffusion. The predictions indicate that hydrogen diffusion can suppress the emission and accumulation of dislocation density, and lead to fracture with low plastic strains.

  13. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  14. Probing Martensitic Transition in Nitinol Wire: A Comparison of X-ray Diffraction and Other Techniques

    NASA Astrophysics Data System (ADS)

    Butler, J.; Tiernan, P.; Tofail, S. A. M.; Ghandi, A. A.

    2011-01-01

    Martensitic to austenite transformation in Nitinol wire can be measured by a number of techniques such as XRD (X-Ray Diffraction), DSC (Differential Scanning Calorimetry), BFR (Bend and Free Recovery) and Vickers indentation recovery. A comparison of results from these varied characterisation techniques is reported here to obtain a greater understanding of the thermal-elastic-structural changes associated with martensitic transformation. The transformation temperatures measured by DSC were found to correspond well with the structural and mechanical information obtained from XRD, BFR and Vickers indent recovery methods. Indent recovery is a relatively new and accurate method of monitoring stress induced martensitic transformations in NiTi and is one of only a few methods of stress inducing martensitic transformation in large scale samples. It is especially useful for NiTi in the as-cast billet form, where tensile testing is impossible. BFR is uniquely popular in the NiTi wire manufacturing sector and is recognised as the most accurate method of measuring the transformation temperature. Here the material is stressed to a representative in-service stress level during the test. No other test uses the shape memory effect for measuring the transformation temperature of NiTi. The results show that the DSC thermogram and XRD diffractogram have a peak overlap which is a common occurrence in NiTi that has been extensively processed. The XRD method further explains the observations in the DSC thermogram and in combination they confirm the transformation temperature.

  15. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  16. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  17. Evidence for reentrant strain glass behavior in a ferroelastic-martensitic system Ti-Pd-V

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Xu, Guizhou; Liu, Enke; Wang, Wenhong; Wu, Guangheng; Institute of Physics Team

    2015-03-01

    The concept of strain glass (SG) has recently received much attention because of its unique properties such as shape memory effect, superelasticity, and stress-tuned intelligent damping behavior. Recent in-situ TEM experiments have proved that, only local-symmetry change in the crystal structure has been observed during the SG transition, but the macroscopic symmetry or average structure is still keeping unchanged. In this presentation, we report the discovery of reentrant-strain-glass (RSG) behavior in a ferroelastic-martensitic system Ti50Pd50-xVx (x is from 6 to 12). Unlike the SG, with decreasing of temperature, the RSG system first undergoes a macroscopic martensitic transition and then the martensite variants further transforms to a frustrated glassy state below a critical temperature. The X-ray diffraction and high resolution TEM results further indicate the RSG no longer remains the average structure of the high-temperature parent phase, but rather low-temperature martensitic phase. This new discovery may open a new research field and may lead to new insights into a range of possible applications of this unique class of materials.

  18. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) --> ɛ(hcp) --> α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ɛ/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ɛ martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.

  19. Dissecting the mechanism of martensitic transformation via atomic-scale observations.

    PubMed

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-01-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ε/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys. PMID:25142283

  20. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    PubMed Central

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-01-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α′(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α′ martensite inclusion, the transition lattices at the ε/α′ interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys. PMID:25142283

  1. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  2. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  3. Strain-Induced Martensite Formation and Recrystallization Behavior in 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Al-Fadhalah, Khaled J.

    2015-04-01

    The effect of recrystallization on the evolution of microstructure, texture, and mechanical properties has been examined in an AISI 304 stainless steel, subjected to strain-induced α '-martensite transformation and subsequent annealing. Samples were processed by cold rolling and subzero rolling to induce different amounts of α '-martensite, using three reductions of 20, 40, and 60%, and later solution annealed to ensure complete recrystallization. Large transformation to α '-martensite occurred for subzero-rolled samples at low reduction (20%), while only a gradual increase of α '-martensite in cold-rolled samples took place with the increasing rolling reduction. Results from electron back-scattered diffraction indicate that annealing of cold-rolled samples produces finer recrystallized grains with increasing rolling reduction, while the predominant formation of α '-martensite in subzero-rolled microstructures is believed to have strong effect on the production of similar grain size upon annealing. Twin-related Σ3 boundaries were formed during annealing with maximum fraction of 53%. These boundaries become longer, straighter, and less incorporated into grain boundary network with the increasing rolling reduction and/or using subzero rolling, demonstrating an indirect mechanism of grain boundary engineering. Also, annealing caused scattering around the rolling texture components (Brass, Goss, S, and Copper) and the recrystallization textures become more random with the increasing rolling reduction and/or using subzero rolling. Nevertheless, recrystallization textures of samples reduced by 60% show formation of Cube and Dillamore orientations and strengthening of Brass orientation. This is thought to contribute to the enhancement of the tensile strength and microhardness of annealed samples.

  4. Effects of Microalloying on the Impact Toughness of Ultrahigh-Strength TRIP-Aided Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Junya; Ina, Daiki; Nakajima, Yuji; Sugimoto, Koh-ichi

    2013-11-01

    The effects of the addition of Cr, Mo, and/or Ni on the Charpy impact toughness of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel with a lath-martensite structure matrix ( i.e., a TRIP-aided martensitic steel or TM steel) were investigated with the aim of using the steel in automotive applications. In addition, the relationship between the toughness of the various alloyed steels and their metallurgical characteristics was determined. When Cr, Cr-Mo, or Cr-Mo-Ni was added to the base steel, the TM steel exhibited a high upper-shelf Charpy impact absorbed value that ranged from 100 to 120 J/cm2 and a low ductile-brittle fracture appearance transition temperature that ranged from 123 K to 143 K (-150 °C to -130 °C), while also exhibiting a tensile strength of about 1.5 GPa. This impact toughness of the alloyed steels was far superior to that of conventional martensitic steel and was caused by the presence of (i) a softened wide lath-martensite matrix, which contained only a small amount of carbide and hence had a lower carbon concentration, (ii) a large amount of finely dispersed martensite-retained austenite complex phase, and (iii) a metastable retained austenite phase of 2 to 4 vol pct in the complex phase, which led to plastic relaxation via strain-induced transformation and played an important role in the suppression of the initiation and propagation of voids and/or cleavage cracks.

  5. Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles

    NASA Astrophysics Data System (ADS)

    Omori, T.; Nagasako, M.; Okano, M.; Endo, K.; Kainuma, R.

    2012-12-01

    Microstructure and martensitic transformation yielding a magnetic change were investigated for Fe43.5Mn34Al15Ni7.5 alloy with B2-type fine precipitates. Thermoelastic martensitic transformation from the ferromagnetic parent phase to the weak magnetic martensite with a nano-twinned fcc structure was confirmed. High-angle annular dark-field scanning transmission electron microscopic observation revealed that a β particle of about 10 nm maintains coherency with the matrix martensite phase, even though distorted due to the martensitic transformation. The martensitic transformation temperatures decreased about 75 K by application of a magnetic field of 70 kOe and magnetic field-induced reverse martensitic transformation was confirmed.

  6. Quantitative microstructural characterisation of Fe-30Ni alloy after martensitic transformations by means of stereological and magnetic methods

    SciTech Connect

    Ciura, Franciszek . E-mail: ciura@uci.agh.edu.pl; Dubiel, Beata; Satora, Kazimierz

    2006-06-15

    In the Fe-30Ni alloy investigated a martensitic transformation can occur both during quenching or plastic deformation. Martensite formed during plastic deformation, depending on the thermo-mechanical treatment applied, exhibits a different morphology from that achieved during quenching and forms the so-called composite-like structure. The morphology and volume fraction of martensite depends both on strain and temperature. In the present studies Fe-30Ni alloy was deformed by monotonic rolling in one path and perpendicular rolling in the temperature range M {sub D}-M {sub S}. The aim of the investigations was a determination of martensite volume fraction depending on the strain and temperature. To examine the influence of strain, the alloy was deformed by rolling in one path or perpendicular rolling at a temperature of - 30 deg. C, in the strain range of 10-30%. The dependence of temperature was investigated by rolling with 30% strain in a temperature range from - 30 deg. C to - 80 deg. C. The variants of thermo-mechanical treatment performed enabled us to achieve different martensite morphologies and volume fractions. Microstructural analysis was performed by means of light microscopy and transmission electron microscopy. The results of quantitative microstructural analysis of martensite and retained austenite volume fractions formed in different thermo-mechanical treatments were compared with those obtained by magnetic measurements. The fraction of deformation-induced martensite determined varied from 2% to 86%. The partial volume fractions V {sub V} {sup MF} of martensite formed in different deformation directions were also determined. It was found that the influence of the temperature on the martensite volume fraction is more pronounced than the influence of strain.

  7. Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni-Mn-In magnetic superelastic alloys

    NASA Astrophysics Data System (ADS)

    Mañosa, Lluís; Moya, Xavier; Planes, Antoni; Gutfleisch, Oliver; Lyubina, Julia; Barrio, Maria; Tamarit, Josep-Lluís; Aksoy, Seda; Krenke, Thorsten; Acet, Mehmet

    2008-01-01

    We report magnetization and differential thermal analysis measurements as a function of pressure across the martensitic transition in magnetically superelastic Ni-Mn-In alloys. It is found that the properties of the martensitic transformation are significantly affected by the application of pressure. All transition temperatures shift to higher values with increasing pressure. The largest rate of temperature shift with pressure has been found for Ni50Mn34In16 as a consequence of its small entropy change at the transition. Such a strong pressure dependence of the transition temperature opens up the possibility of inducing the martensitic transition by applying relatively low hydrostatic pressures.

  8. Effect of Boron on the Kinetics of Low-Temperature Decomposition of Martensite in Quenched Medium-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Grinberg, E. M.

    2016-03-01

    The effect of boron on the microstructure, microhardness, and kinetics of low-temperature decomposition of martensite in the 40Kh and 30KhRA steels quenched at different cooling rates has been studied. It has been shown that the low-temperature decomposition of martensite in the boron-containing steel after quenching from 1050°C at a high cooling rate is strongly decelerated at the initial stage of decomposition. At low quenching cooling rates, the martensite decomposition in the steels under investigation is characterized by a similar kinetics.

  9. Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sugimoto, Koh-Ichi; Hojo, Tomohiko

    2016-04-01

    Low cycle fatigue hardening/softening behavior of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-1.0 pct Cr-0.2 pct Mo-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel consisting of a wide lath martensite structure matrix and a narrow lath martensite-metastable retained austenite mixture was investigated. The steel exhibited notable fatigue hardening in the same way as TRIP-aided bainitic ferrite steel, although conventional martensitic steel such as SCM420 steel with the same tensile strength exhibited fatigue softening. The considerable fatigue hardening of this steel is believed to be associated mainly with the compressive internal stress that results from a difference in flow stress between the matrix and the martensite-austenite-like phase, with a small contribution from the strain-induced transformation and dislocation hardenings.

  10. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    PubMed

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed. PMID:27142875

  11. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation

    NASA Astrophysics Data System (ADS)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-05-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  12. Structural-scale levels of development of inelastic martensitic deformation during isothermal loading of submicrocrystalline titanium nickelide in premartensitic condition

    SciTech Connect

    Bakach, G. P.; Dudarev, E. F. Skosyrskii, A. B.; Maletkina, T. Yu.

    2015-10-27

    The results are presented of an experimental investigation into the regularities and mechanisms of the development of thermoelastic martensitic transformation in submicrocrystalline alloy Ti{sub 49.4}Ni{sub 50.6} with different ways of thermo-power actions using the methods of optical microscopy in situ and X-ray diffraction. The peculiarities of localization of martensite transformation at the meso- and macroscale levels in this alloy with submicrocrystalline structure are considered. Experimental data on the relay mechanism of propagation of the martensitic transformation are presented. The interrelation between the localization of the martensitic transformation on the meso-and macroscale levels and deformation behavior under isothermal loading alloy Ti{sub 49.4}Ni5{sub 0.6} in submicrocrystalline condition are shown and discussed.

  13. A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Moumni, Ziad; He, Yongjun; Zhang, Weihong

    2014-03-01

    The large strain in Ferromagnetic Shape Memory Alloys (FSMA) is due to the martensite reorientation driven by mechanical stresses and/or magnetic fields. Although most experiments studying the martensite reorientation in FSMA are under 1D condition (uniaxial stress plus a perpendicular magnetic field), it has been shown that the 2D/3D configurations can improve the working stress and give much flexibility of the material's applications [He, Y.J., Chen, X., Moumni, Z., 2011. Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys. Journal of Applied Physics 110, 063905]. To predict the material's behaviors in 3D loading conditions, a constitutive model is developed in this paper, based on the thermodynamics of irreversible processes with internal variables. All the martensite variants are considered in the model and the temperature effect is also taken into account. The model is able to describe all the behaviors of martensite reorientation in FSMA observed in the existing experiments: rotating/non-rotating magnetic-field-induced martensite reorientation, magnetic-field-assisted super-elasticity, super-elasticity under biaxial compressions and temperature-dependence of martensite reorientation. The model is further used to study the nonlinear bending behaviors of FSMA beams and provides some basic guidelines for designing the FSMA-based bending actuators.

  14. Stabilisation of the 2H martensite in Cu-Zn-AI single crystals with e/a = 1.53

    NASA Astrophysics Data System (ADS)

    Arneodo Larochette, P.; Condo, A. M.; Ahlers, M.

    2003-10-01

    The 2H martensitic phase can be induced by tensile stressing the L21; ordered β phase, provided the temperature is kept between Ms and Ms+25°C, where Ms is the temperature for the spontaneous martensitic transformation β to 2H. The resulting microstructure depends strongly on the orientation of the tensile axis : If its direction is close to the line joining the [1 0 0]β and the [1 1 1]β directions in the stereographic projection, a twinned martensite is obtained. For other tensile axis directions, a single variant martensite is induced on loading. When diffusional processes are permitted to occur in the 2H phase, by raising the temperature above room temperature, the retransformation temperature As is increased by more than 300°C in the latter case. For the twinned martensite the measured increase in As is similar to that reported for the 18R martensite. A possibly reason for these different behaviours will be presented.

  15. Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hidalgo, Javier; Santofimia, Maria Jesus

    2016-05-01

    Current trends in steels are focusing on refined martensitic microstructures to obtain high strength and toughness. An interesting manner to reduce the size of martensitic substructure is by reducing the size of the prior austenite grain (PAG). This work analyzes the effect of PAGS refinement by thermal cycling on different microstructural features of as-quenched lath martensite in a 0.3C-1.6Si-3.5Mn (wt pct) steel. The application of thermal cycling is found to lead to a refinement of the martensitic microstructures and to an increase of the density of high misorientation angle boundaries after quenching; these are commonly discussed to be key structural parameters affecting strength. Moreover, results show that as the PAGS is reduced, the volume fraction of retained austenite increases, carbides are refined and the concentration of carbon in solid solution as well as the dislocation density in martensite increase. All these microstructural modifications are related with the manner in which martensite forms from different prior austenite conditions, influenced by the PAGS.

  16. Study of the martensitic transformation in the Co-9 at % Al alloy

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Stepanova, N. N.; Vinogradova, N. I.; Demakov, S. L.; Yurovskikh, A. S.; Davydov, D. I.; Shishkin, D. A.; Rigmant, M. B.; Romanov, E. P.

    2016-01-01

    Phase transformations in the Co-9 at % Al have been investigated after slow furnace cooling. It has been shown that the structure and phase composition of the alloy after slow cooling do not correspond to the equilibrium phase diagram of the alloy of this chemical composition. It has been established that the α → ɛ martensitic transformation does not require overcooling and occurs even during a slow cooling of the alloy. It has been found that the formation of 4 H modulated martensite is a specific feature of the binary alloys of cobalt and is not connected with the rate of their cooling. The Curie temperatures for the B2, α, and ɛ phases have been determined.

  17. Effect of strain on the martensitic phase transition in superconducting Nb/sub 3/Sn

    SciTech Connect

    Hoard, R.W.; Scanlan, R.M.; Smith, G.S.; Farrell, C.L.

    1980-09-22

    The connection between the cubic-to-tetragonal martensitic phase transformation and the phenomenon of superconductivity in A15 compounds is being investigated. The degradation of the critical parameters, such as T/sub c/, H/sub c2/, and J/sub c/, with mechanical straining is of particular interest. Low-temperature x-ray diffraction experiments are performed on Nb/sub 3/Sn ribbons (with the bronze layers etched off) mounted on copper and indium sample stages. The cryostat used is unique in that it has a vacuum mechanical insert which allows the superconductor to be placed under both compressive and tensile strains while at low temperatures. Preliminary results indicate that the martensitic phase transition temperature, T/sub m/, increases with compressive strains. Other effects of strain on tetragonal phase production are also discussed.

  18. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  19. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  20. Nitrogen strengthening of a martensitic steel: Relation between microstructure and mechanical behavior

    SciTech Connect

    France, C.; Kloecker, H.; Coze, J. Le.; Fraczkiewicz, A.

    1997-07-01

    Four synthetic martensitic steels containing different nitrogen levels were prepared by powder technique and HIP. The base composition of the four alloys corresponds to H13 steel except for the carbon content. The nitrogen contents of the difficult specimens are, respectively, 0.2, 0.5, 1.0 and 1.5 wt%. The flow stresses and Young`s moduli of the four alloys were determined between room temperature and 600 C. The volume fractions of micron-size and manometric second-phase particles were determined as a function of the total nitrogen content. The mechanical and microstructural analyses show that nitrogen strengthening of martensitic tool steel is suitably described by Orowan`s mechanism.

  1. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  2. Cavitation Erosion Characteristics of Nitrocarburized and HPDL-Treated Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Pant, B. K.; Arya, Vivek; Mann, B. S.

    2012-06-01

    This article deals with plasma ion-nitrocarburising and high power diode laser (HPDL) surface treatment of 13Cr4Ni and X10CrNiMoV1222 martensitic stainless steels to enhance their cavitation erosion resistance. These steels are commonly used in hydro turbines and boiler feed pumps. These treated steels have been evaluated for cavitation erosion resistance and it has been observed that the plasma ion-nitrocarburising process has significantly enhanced the cavitation erosion resistance as compared to untreated steel whereas HPDL-treated steels have shown marginal improvement. This is due to formation of high hardness nitrides during nitrocarburising and formation of moderate hardness martensitic phase due to rapid heating and cooling rates involved in HPDL treatment. The cavitation erosion and micro-hardness data of plasma ion-nitrocarburized as well as HPDL-treated steel samples and their comparison with hard deposits such as stellite and HVOF coating form the main part of the article.

  3. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    SciTech Connect

    Klueh, R.L.

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  4. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Wei, B. C.; Wang, Y. R.; Li, W. H.; Cheung, T. L.; Shek, C. H.

    2005-08-01

    Zr48.5Cu46.5Al5 bulk metallic glass matrix composites with diameters of 3 and 4mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr2Cu and plate-like Cu10Zr7 compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  5. Neutron diffraction study of a nitrogen martensitic steel 0Kh16N4AB under load

    NASA Astrophysics Data System (ADS)

    Sumin, V. V.; Papushkin, I. V.; Bannykh, O. A.; Blinov, V. M.; Lukáš, P.

    2008-01-01

    An austenitic-martensitic nitrogen steel 0Kh16N4AB has been studied under load using high-resolution neutron diffraction analysis on an FSD neutron diffractometer at an IBR-2 reactor (Dubna) and on a diffractometer with a focusing monochromator on a reactor of the Nuclear Physics Institute (Czech Republic). Young's moduli calculated from different reflections of the martensite and austenite phases have been obtained. It has been found that the yield strength σ0.2 corresponding to the slip plane (111) of the austenite phase is anomalously low and that with increasing degree of uniaxial tension the width of lines (111)γ strongly grows. In the steel under consideration the plane (111) of the austenite phase appears to be an easy-slip plane that ensures the enhanced properties of the steel, i.e., the combination of a high ultimate strength (1600 MPa) with a high plasticity (δ = 16%).

  6. A physically based model for the isothermal martensitic transformation in a maraging steel

    NASA Astrophysics Data System (ADS)

    Kruijver, S. O.; Blaauw, H. S.; Beyer, J.; Post, J.

    2003-10-01

    Isothermal transformation from austenite to martensite in steel products during or after the production process often show residual stresses which can create unacceptable dimensional changes in the final product. Tn order to gain more insight in the effects infiuencing the isothermai transformation, the overall kinetics in a low Carbon-Nickel maraging steel is investigated. The influence of the austenitizing température, time and quenching rate on the transformation is measured magnetically and yields information about the transformation rate and final amount of transformation. A physically based model describing the nucleation and growth of martensite is used to explain the observed effects. The results show a very good fit of the experimental values and the model description of the transformation, within the limitations of the inhomogeneities (carbides and intermetallics, size and distribution in the material and stress state) and experimental conditions.

  7. Iron alloys with new functional properties obtained during reverse martensitic transformation

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Danilchenko, V. E.; L'Heritier, P.; Sagaradze, I. V.

    2003-10-01

    It was shown that different types of the austenite (homogeneous and inhomogeneous polyhedral, or submicrocrystalline and nanocrystalline plate austenite) can be formed, providing new functional properties of various steels and alloys. The austenite formed during a partial αtoγ transformation increases considerably the strength of the martensite, enhances the coercive force and improves the square shape of the hysteresis loop of maraging steels. The thermal expansion coefficient of the austenitic alloy type 32Ni can be adjusted over broad limits thanks to different αtoγ transformation conditions. A stainless steel with a structure of alternating laths of the martensite and the austenite has a high resistance to radiation void formation.

  8. On the Mechanisms for Martensite Formation in YAG Laser Welded Austenitic NiTi

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Braz Fernandes, F. M.; Miranda, R. M.; Schell, N.

    2016-03-01

    Extensive work has been reported on the microstructure of laser-welded NiTi alloys either superelastic or with shape memory effect, motivated by the fact that the microstructure affects the functional properties. However, some effects of laser beam/material interaction with these alloys have not yet been discussed. This paper aims to discuss the mechanisms for the occurrence of martensite in the heat-affected zone and in the fusion zone at room temperature, while the base material is fully austenitic. For this purpose, synchrotron radiation was used together with a simple thermal analytic mathematical model. Two distinct mechanisms are proposed for the presence of martensite in different zones of a weld, which affects the mechanical and functional behavior of a welded component.

  9. Irradiation effects on base metal and welds of 9Cr-1Mo (EM10) martensitic steel

    SciTech Connect

    Alamo, A.; Seran, J.L.; Rabouille, O.; Brachet, J.C.; Maillard, A.; Touron, H.; Royer, J.

    1996-12-31

    9Cr martensitic steels are being developed for core components (wrapper tubes) of fast breeder reactors as well as for fusion reactor structures. Here, the effects of fast neutron irradiation on the mechanical behavior of base metal and welds of 9Cr-1Mo (EM10) martensitic steel have been studied. Two types of weldments have been produced by TIG and electron beam techniques. Half of samples have been post-weld heat treated to produce a stress-relieved structure. The irradiation has been conducted in the Phenix reactor to doses of 63--65 dpa in the temperature range 450--459 C. The characterization of the welds, before and after irradiation, includes metallographic observations, hardness measurements, tensile and Charpy tests. It is shown that the mechanical properties of the welds after irradiation are in general similar to the characteristics obtained on the base metal, which is little affected by neutron irradiation.

  10. A structured continuum modelling framework for martensitic transformation and reorientation in shape memory materials.

    PubMed

    Bernardini, Davide; Pence, Thomas J

    2016-04-28

    Models for shape memory material behaviour can be posed in the framework of a structured continuum theory. We study such a framework in which a scalar phase fraction field and a tensor field of martensite reorientation describe the material microstructure, in the context of finite strains. Gradients of the microstructural descriptors naturally enter the formulation and offer the possibility to describe and resolve phase transformation localizations. The constitutive theory is thoroughly described by a single free energy function in conjunction with a path-dependent dissipation function. Balance laws in the form of differential equations are obtained and contain both bulk and surface terms, the latter in terms of microstreses. A natural constraint on the tensor field for martensite reorientation gives rise to reactive fields in these balance laws. Conditions ensuring objectivity as well as the relation of this framework to that provided by currently used models for shape memory alloy behaviour are discussed. PMID:27002064

  11. Mössbauer studies of medium-carbon, high-chromium martensitic steels

    NASA Astrophysics Data System (ADS)

    Peters, J. A.; Kolk, B.; Bleloch, A. L.

    1986-02-01

    57Fe Mössbauer effect spectroscopy is employed to determine the relationship between the microstructure and the mechanical properties of martensitic steels with base composition Fe-10wt%Cr-0,26wt%C. The microstructure consists predominantly of two phases: martensite and austenite. The effect of low concentrations of both Mn and Ni on the structure and the mechanical properties of these steels is studied. The results indicate that Mn and Ni additions are equally effective in increasing the fraction of retained austenite. The austenite is an important phase since it is considered to be beneficial to the toughness of steel. However, we find that the impact toughness first decreases and then increases as a function of the fraction of austenite.

  12. Void swelling of Japanese candidate martensitic steels under FFTF/MOTA irradiation

    NASA Astrophysics Data System (ADS)

    Morimura, T.; Kimura, A.; Matsui, H.

    1996-12-01

    Microstructural observations of six Japanese candidate 7-9% Cr reduced activation martensitic steels were carried out after heavy neutron irradiation in order to investigate the void swelling behavior of each steel. Neutron irradiations were performed in the FFTF/MOTA up to 67 dpa at temperatures between 638 and 873 K. Transmission electron microscope observations revealed that voids were formed in all the steels irradiated to 67 dpa at 703 K, and the highest void swelling was observed in JLM-1 which was added with 30 wt.ppm of boron (0.74%), and the minimum void swelling was observed in F82H steel (0.12%). The 9% Cr martensitic steels showed the peak of void swelling at temperatures around 700 K, where void swelling gradually increased with increasing irradiation fluence to 30 dpa and increased rapidly above it. It is considered that the incubation period of void swelling of 9% Cr martensitic steels (JLM series) is about 30 dpa. JLM-1 showed the highest void swelling rate (0.045%/dpa at most). The addition of 30 wt.ppm of boron enhanced void swelling, while it was suppressed by the addition of 100 wt.ppm Ti in the 9% Cr martensitic steel. The JLF-3 steel (7.03% Cr) and F82H (7.65% Cr) showed less void swelling than JLF-I (9.04% Cr). The alloying effects on the swelling behavior of the steels were interpreted in terms of the difference in the precipitation morphology of carbides.

  13. Distribution of plates' sizes tell the thermal history in a simulated martensitic-like phase transition

    NASA Astrophysics Data System (ADS)

    Ţolea, F.; Ţolea, M.; Sofronie, M.; Văleanu, M.

    2015-07-01

    A phenomenological 2D model, simulating the martensitic transformation, is built upon existing experimental observations that the size of the formed plates - in direct transformation - decreases as the temperature is lowered; then they transform back in reversed order. As such, if a reverse transformation is incomplete (arrested), the subsequent direct one will show anomalously a large number of big size plates - old plus newly formed - but consequentially a depletion of intermediate sizes, due to geometrical constraints, phenomenon that generates thermal memory.

  14. Energetic shape recovery associated with martensitic transformation in shape-memory alloys

    SciTech Connect

    Golestaneh, A.A.

    1980-01-01

    The present paper contains an investigation of the mechanical energy associated with the transformation of the stress-induced martensite, ..beta..', to the parent phase, ..beta.., during the shape recovery (SR) of a deformed shape-memory (SM) material. We describe a heat-mechanical energy converter, or solid-state engine, which operates by this SR phenomenon. The energy output of such an engine is expressed in terms of a fraction ..cap alpha.. of the latent heat ..delta..H of the martensitic reaction. This ..cap alpha.. is found to depend on two parameters. One is the difference between the ..delta..H of the ..beta..' ..-->.. ..beta.. reaction and the ..delta..H of the transformation of the quench-induced martensite, ..gamma..', to ..beta.., the other is the fraction of ..gamma..' which can be transformed via the channel ..gamma..' ..-->.. ..beta..' ..-->.. ..beta.. instead of the direct channel ..gamma..' ..-->.. ..beta... Moreover, it is shown that within certain ranges of temperature T and applied strain epsilon, the heat-mechanical energy balance equation leads to an expression identical in form to the Clapeyron-Clausius equation, which is usually valid for a first-order transition. Within these epsilon and T ranges the coefficient ..cap alpha.. is also found to be equal to log (T/sub csigma//T/sub c/) where T/sub csigma/ and T/sub c/ are the SR critical temperatures with and without the presence of an applied stress sigma, respectively. We discuss the role of the ..gamma..' martensite in this process and explain the so-called two-way SR phenomenon. In addition, the parameters that limit the output of the SR energy are evaluated. This output depends sensitively on both ..cap alpha.. and the material characteristic temperature h = C/sup -1/..delta..H, where C is the specific heat. For a solid-state engine made with the Ni-Ti SM alloy, the efficiency is found to be limited to about 5%.

  15. Molecular dynamics simulation of a glissile dislocation interface propagating a martensitic transformation.

    PubMed

    Lill, J V; Broughton, J Q

    2000-06-19

    The method of Parrinello and Rahman is generalized to include slip in addition to deformation of the simulation cell. Equations of motion are derived, and a microscopic expression for traction is introduced. Lagrangian constraints are imposed so that the combination of deformation and slip conform to the invariant plane shear characteristic of martensites. Simulation of a model transformation demonstrates the nucleation and propagation of a glissile dislocation interface. PMID:10991054

  16. Microstructure of cryogenically treated martensitic shape memory nickel-titanium alloy

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    Context: Recent introduction of shape memory (SM) nickel-titanium (NiTi) alloy into endodontics is a major breakthrough. Although the flexibility of these instruments was enhanced, fracture of rotary endodontic instruments during instrumentation is an important challenge for the operator. Implementation of supplementary manufacturing methods that would improve the fatigue life of the instrument is desirable. Aim: The purpose of this study was to investigate the role of dry cryogenic treatment (CT) conditions on the microstructure of martensitic SM NiTi alloy. Materials and Methods: Experiments were conducted on Ni-51 wt% Ti-49 wt% SM alloy. Five cylindrical specimens and five sheet specimens were subjected to different CT conditions: Deep CT (DCT) 24 group: −185°C; 24 h, DCT 6 group: −185°C; 6 h, shallow CT (SCT) 24 group: −80°C, 24 h, SCT 6 group: −80°C, 6 h and control group. Microstructure of surface was observed on cylindrical specimens with an optical microscope and scanning electron microscope at different magnifications. Subsurface structure was analyzed on sheet specimens using X-ray diffraction (XRD). Results: Microstructures of all SM NiTi specimens had equiaxed grains (approximately 25 μm) with well-defined boundaries and precipitates. XRD patterns of cryogenically treated specimens revealed accentuation of austenite and martensite peaks. The volume of martensite and its crystallite size was relatively more in DCT 24 specimen. Conclusions: DCT with 24 h soaking period increases the martensite content of the SM NiTi alloy without altering the grain size. PMID:26180413

  17. Influence of nonmartensitic transformation products on mechanical properties of tempered martensite

    NASA Technical Reports Server (NTRS)

    Hodge, J M; Lankford, W T

    1952-01-01

    The influence of nonmartensitic transformations products on the mechanical properties of tempered martensite is presented for samples of a SAE 4340 steel, partially isothermally transformed to specific high-temperature transformation products and quenched and tempered to hardness values of from 25 to 40 Rockwell c. The effects of upper bainite in amounts of 1,5, 10, 20 and 50 percent, of 5 percent ferrite, and of 5 percent pearlite on the tensile, impact, and fatigue properties are evaluated. (author)

  18. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    SciTech Connect

    Li Rutao Zuo Xiurong Hu Yueyue Wang Zhenwei Hu, Dingxu

    2011-08-15

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: {yields}The pipe with ferrite/martensite microstructure shows high deformability. {yields}The base metal of the pipe consists of ferrite and martensite. {yields}Heat affected zone shows excellent low temperature toughness. {yields}Weld metal mainly consists of intragranularly nucleated acicular ferrites. {yields}Weld metal shows excellent low temperature toughness and high strength.

  19. The effect of texture on stress-induced martensite formation in nickel-titanium

    NASA Astrophysics Data System (ADS)

    Kim, K.; Daly, S.

    2013-07-01

    An experimental study was performed to investigate the effect of texture on stress-induced martensitic phase transformation in the shape memory alloy (SMA) nickel-titanium (Nitinol). Thin sheet specimens of Nitinol were examined under uniaxial tensile loading using three-dimensional digital image correlation in order to spatially and temporally track strain localization indicative of martensitic transformation. Tensile specimens were fabricated along directions oriented 0° (RD), 45°, and 90° (TD) to the rolling direction of the sheet and subjected to 50 cycles at prescribed strain rates of {\\dot {\\varepsilon }}_{{g}}=1{0}^{-4},1{0}^{-3}, and 10-2 s-1. It was found that upon loading, specimens unfavorably oriented for transformation (TD specimens) nucleated a greater number of deformation bands due to a smaller difference between nucleation and propagation stresses, and also accommodated less axial strain inside the band and more axial strain outside the band. The unfavorable (TD) specimens also exhibited a stronger cycle-to-cycle similarity in the strain accommodated inside the deformation band, which has important implications for the design of SMA structures for fatigue applications. Finally, the (primarily martensite) region of the deformation band(s) consistently showed significantly stronger cycle-to-cycle similarity than the (primarily austenite) region outside the band(s), regardless of specimen texture.

  20. Sensing of retained martensite during thermal cycling of shape memory alloy wires via electrical resistance

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher B.

    2013-04-01

    Shape memory alloys (SMAs) remain one of the most commercially viable active materials, thanks to a high specific work and the wide availability of high quality material. Still, significant challenges remain in predicting the degradation of SMA actuators during thermal cycling. One challenges in both the motivation and verification of degradation models is the measurement of retained martensite fraction during cycling. Direct measurement via diffraction is difficult to perform in situ, impossible for thin wires, (< 0.5mm) and prohibitively difficult for lengthy studies. As an alternative, the temperature coefficient of electrical resistivity (TCR) is used as an indicator of martensite phase fraction during thermal cycling of SMA wires. We investigate this technique with an example cycling experiment, using the TCR to successfully measure a 20% increase in retained martensite fraction over 80000 thermal cycles. As SMA wire temperature is difficult to measure directly during resistive heating, we also introduce a method to infer temperature to within 5 °C by integrating the lumped heat equation.

  1. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  2. Boundaries for martensitic transition of 7Li under pressure

    SciTech Connect

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; Molaison, Jamie J.; Sinogeikin, Stanislav; dos Santos, Antonio M.; Deemyad, Shanti

    2015-08-14

    We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.

  3. Critical phenemona at the martensitic transition in the shape-memory alloy gold-zinc.

    NASA Astrophysics Data System (ADS)

    Lashley, Jason; Darling, Tim; Thoma, D. J.; Chu, Fuming; Migliori, Albert; Hults, W. L.; Lopez, Michael; Batista, Cristian; Smith, J. L.; Lang, Brian; Woodfield, Brian

    2002-03-01

    Since the discovery of the shape-memory effect, the martensitic transition has been described within the framework of classical equilibrium thermodynamics as a first-order displacive transition. However, as we investigate the physical properties (elastic moduli,specific heat, and stress/strain measurements) through the martensitic transition in AuZn at cryogenic temperatures, we find clear signatures of recoverable plastic strain and a second-order (continuous) transition at 64.7 K. It is argued that the combination of equiatomic composition (removing internal strains) and a low transition temperature (reducing both diffusion and entropy effects) constrain the chemical potential and its derivatives to exhibit behavior that lies at the borderline between that of a first-order (discontinuous) and a continuous phase transition. For these reasons, we propose a critical point in composition-temperature space located at mole fraction, x = 0.5 Zn and T approximately 65 K, connecting two coexistence lines of first-order martensitic phase transitions. Further support of the critical point is based on resistivitiy data of N. Ridley and H. Pops, Met. Trans. 1, 2867 (1970), cold-stage optical results of H. Pops and T. B. Massalski, Trans. AIME 233, 728 (1965), and de Haas-van Alphen measurements of A. Beck, J. P. Jan, W. B. Pearson, and I. M. Templeton, Phil. Mag. 8, 351 (1963).

  4. Precipitation Effects on the Martensitic Transformation in a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Lohan, Nicoleta-Monica; Pricop, Bogdan; Mihalache, Elena; Mocanu, Mihai; Bujoreanu, Leandru-Gheorghe

    2016-04-01

    This paper describes the effects of precipitation of α-phase on a Cu-Al-Ni shape memory alloy (SMA) with chemical composition bordering on β region. By differential scanning calorimetry, a series of reproducible heat flow fluctuations was determined on heating a hot-rolled martensitic Cu-Al-Ni SMA, which was associated with the precipitation of α-phase. Two heat treatments were given to the SMA so as to "freeze" its states before and after the thermal range for precipitation, respectively. The corresponding microstructures of the two heat-treated states were observed by optical and scanning electron microscopy and were compared with the initial martensitic state. Energy dispersive spectroscopy experiments were carried out to determine the chemical compositions of the different phases formed in heat-treated specimens. The initial as well as the heat-treated specimens with a lamellar shape were further comparatively investigated by dynamic mechanical analysis and two-way shape memory effect (TWSME) tests comprising heating-cooling cycles under a bending load. Temperature scans were applied to the three types of specimens (initial and heat-treated states), so as to bring out the effects of heat treatment. The storage modulus increased, corresponding to the reversion of thermoelastic martensite and disappeared with the formation of precipitates. These features are finally discussed in association with TWSME under bending.

  5. The effect of martensitic stainless steel microstructure on the ultrasonic inspection of turbine runner joints

    NASA Astrophysics Data System (ADS)

    Boukani, Hamid Habibzadeh; Chentouf, Samir Mourad; Viens, Martin; Tahan, Antoine; Gagnon, Martin

    2015-03-01

    Martensitic stainless steel runners are widely used in the hydroelectric turbine industry because of their good mechanical properties, cavitation and corrosion resistance. The high downtime cost and limited in-service inspection possibility of these turbine runners increase the need for accurate fatigue models to estimate the life of these equipment. One of the key inputs of these models is the distribution of flaw size and their location near highly stressed area. The critical area is generally located near the welded joint and flaw sizes are estimated using the outcome of nondestructive inspection. In such case, more reliable NDT results will lead to less uncertainty in the life estimation and hence unfavorable consequences, such as unexpected failure during service or non-essential down time for unnecessary inspections, are avoided. Turbine runner welded joints are inspected using ultrasonic refracted shear waves. Considering the dependence of the refracted angle to the shear wave velocity in the material as well as the role of this angle in the precision of defects' localization, the martensitic microstructure effect on sound wave velocity needs to be accurately known. Furthermore, attenuation coefficient, which affects reflected signal amplitude, is an essential data for the evaluation of defect size which is also dependent on microstructure. In this context, dependence of ultrasonic shear wave properties on metallurgical characteristics of martensitic stainless steel was studied. Our objective is to obtain better POD from a more accurate characterization of received indications.

  6. Evaluation of the strain-induced martensite of TRIP 800 steel by magnetic induction

    NASA Astrophysics Data System (ADS)

    Miguel, V.; Avellaneda, F. J.; Coello, J.; Martínez, A.; Calatayud, A.

    2012-04-01

    TRIP 800 steels, that are used in many applications in which de conformability and the dimension tolerances of the formed parts must be compatible, changes their structure with the deformation grade. So, the retained austenite turns into martensite what is called "deformation induced martensite". Then, the evaluation of this effect as a function of the strain that the steel can take in forming processes is important from the viewpoint of modelling some effects as springback, for example. In this work, a magnetic induction method is experimented in order to determine the evolution of a TRIP 800 steel microstructure with the strain grade. The variables that can have influence on this kind of analysis methodology have been studied and their effects determined. This method has been applied to determine the induced martensite after the deformation under pure shear condition, that is typical of deep-drawing processes. Results point that this method allows to determine the microstructure evolution that takes place in TRIP 800 steels.

  7. Crystallographic peculiarities of the eutectoid and martensite structures in the U-1.5 % Mo alloy

    NASA Astrophysics Data System (ADS)

    Kabanova, I. G.; Klyukina, M. F.; Sagaradze, V. V.; Pecherkina, N. L.; Zuev, Yu. N.

    2016-06-01

    Using electron microscopy, samples of U-1.5 wt % Mo alloy with a partial structure of eutectoid, which consists of alternating plates of α phase depleted of molybdenum (α-U) and ordered γ' phase (U2Mo), have been studied. The structures of a eutectoid and martensite have been obtained by the quenching of samples characterized by delayed cooling from 1000°C. It has been shown that, in the eutectoid, the constant orientation relationships (ORs) are observed between the α-U and U2Mo phases, namely, {[ {100} ]_α }{| {[ {331} ]} ._{γ '}},{( {010} )_α }{| {( {11bar 6} )} ._{γ '}},{( {010} )_α }{| {( {bar 110} )} ._{γ '}} These relationships are similar to the ORs observed in the martensite between an orthorhombic α' martensite and initial bcc γ phase that have been found in low alloys of U-Nb, U-Zr, U-Mo and experimentally confirmed in this work. It has been established that, in the γ' phase, principal axes a, b, c remain parallel to the principal axes of the matrix γ phase. However, its axis of tetragonality c has the only nonequivalent crystallographic direction at which the plates in the eutectoid colonies that are parallel to the planes of atomic ordering of the γ' phase have interphase boundaries of (001)_{γ '} ||(130)_α.

  8. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  9. Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Khan, Z.; Ahmed, M.

    1996-04-01

    This paper addresses the influence of cyclic stress-induced martensitic transformation on fatigue crack growth rates in metastable austenitic stainless steels. At low applied stress and mean stress values in AISI type 301 stainless steel, fatigue crack growth rate is substantially retarded due to a cyclic stress-induced γ-α' and γ-ɛ martensitic transformation occurring at the crack-tip plastic zone. It is suggested that the transformation products produce a compressive residual stress at the tip of the fatigue crack, which essentially lowers the effective stress intensity and hence retards the fatigue crack growth rate. At high applied stress or mean stress values, fatigue crack growth rates in AISI type 301 steels become almost equal to those of stable AISI type 302 alloy. As the amount of transformed products increases (with an increase in applied or mean stress), the strain-hardening effect brought about by the transformed martensite phase appears to accelerate fatigue crack growth, offsetting the contribution from the compressive residual stress produced by the positive volume change of γ → α' or ɛ transformation.

  10. Analysis of the strain induced martensitic transformation in austenitic steel subjected to dynamic perforation

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, J. A.; Rusinek, A.; Pesci, R.; Zaera, R.

    2012-08-01

    An experimental and numerical analysis on the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles is reported. Two target thicknesses are considered, 0.5 and 1.0 mm, and impact velocities range from 35 to 200 m/s. The perforation mechanisms are identified and the effect of the projectile nose-shape on the ability of the target for energy absorption is evaluated. Martensite has been detected in all the impacted samples and the role played by the projectile nose-shape on the transformation is highlighted. A 3D model implemented in ABAQUS/Explicit allowed to simulate the perforation tests. The material is defined through a constitutive description developed by the authors to describe the strain induced martensitic transformation taking place in metastable austenitic steels at high strain rates. The numerical results are compared with the experimental evidence and satisfactory matching is obtained. The numerical model succeeds in describing the perforation mechanisms associated to each projectile-target configuration analysed.

  11. Effect of Weld Intercooling Temperature on the Structure and Impact Strength of Ferritic-Martensitic Steels

    SciTech Connect

    T.C. Totemeier; J.A. Simpson; H. Tian

    2006-06-01

    The effect of inadequate weld intercooling (cooling prior to post-weld heat treatment) on the structure and impact properties of 9Cr-1MoVNb (ASME Grade 91) and 12Cr-1Mo-WV (Type 422 stainless) steels was studied. A range of weld intercooling conditions were simulated by air cooling the two steels from the standard 1050°C normalization temperature to temperatures ranging from 250 to 450°C for Grade 91 and 100 to 300°C for Type 422, and then immediately tempering at 760°C for two hours. For Grade 91 steel, austenite retained at the intercooling temperature transformed to ferrite during tempering; final microstructures were mixtures of ferrite and tempered martensite. For Type 422 steel, austenite retained at the intercooling temperature was stable in the tempering condition and formed martensite upon cooling to room temperature; final microstructures were mixtures of tempered and untempered martensite. Hardness and impact properties of the two steels reflected the changes in microstructure with intercooling temperature.

  12. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  13. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    SciTech Connect

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  14. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  15. Observation on Formation of Fresh Martensite from the Reversed Austenite During Water-Quenching Process in Fe-0.2C-5Mn Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan; Zhang, Chi; Cao, Wen-Quan; Yang, Zhi-Gang; Weng, Yu-Qing

    2015-09-01

    Phase transformation behavior during intercritical annealing in Fe-0.2C-5Mn was studied. Austenite lath formed and transformed at martensite lath during annealing. XRD revealed that retained austenite amount did not always increase with time. TEM result may firstly demonstrate that reversed austenite partly changed into fresh martensite during quenching while the remained part was retained as retained austenite. The final structure consisted of ferrite, retained austenite and fresh martensite. Simulation was done by DICTRA to support TEM result.

  16. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, Low Alloy, Steel

    SciTech Connect

    Sherman, D. H.; Cross, Steven M; Kim, Sangho; Grandjean, F.; Long, G. J.; Miller, Michael K

    2007-01-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct non-iron metallic elements. Mossbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 C) than for SAE 4130 steel ({approx}300 C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 C) than for carbon steels (100 C to 200 C and 200 C to 350 C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite

  17. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel

    NASA Astrophysics Data System (ADS)

    Sherman, Donald H.; Cross, Steven M.; Kim, Sangho; Grandjean, Fernande; Long, Gary J.; Miller, Michael K.

    2007-08-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (˜300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in

  18. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    SciTech Connect

    Li, Zongbin; Zou, Naifu; Zhao, Xiang; Zuo, Liang E-mail: yudong.zhang@univ-lorraine.fr; Zhang, Yudong E-mail: yudong.zhang@univ-lorraine.fr; Esling, Claude; Gan, Weimin

    2014-07-14

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  19. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  20. On the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics

    SciTech Connect

    Van Humbeeck, J.; Planes, A.

    1996-05-01

    Experimentally, two distinct classes of martensitic transformations are considered: athermal and isothermal. In the former class, on cooling, at some well-defined start temperature (M{sub s}), isolated small regions of the martensitic product begin to appear in the parent phase. The transformation at any temperature appears to be instantaneous in practical time scales, and the amount of transformed material (x) does not depend on time, i.e., it increases at each step of lowering temperature. The transition is not completed until the temperature is lowered below M{sub f} (martensite finish temperature). The transformation temperatures are only determined by chemical (composition and degree of order) and microstructural factors. The external controlling parameter (T or applied stress) determines the free energy difference between the high and the low temperature phases, which provides the driving force for the transition. In the development of athermal martensite activation kinetics is secondary. Athermal martensite, as observed in the well known shape memory alloys Cu-Zn-Al, Cu-Al-Ni and Ni-Ti, cannot be attributed to a thermally activated mechanism for which kinetics are generally described by the Arrhenius rate equation. However, the latter has been applied by Lipe and Morris to results for the Martensitic Transformation of Cu-Al-Ni-B-Mn obtained by conventional Differential Scanning Calorimetry (DSC). It is the concern of the authors of this letter to point out the incongruences arising from the analysis of calorimetric results, corresponding to forward and reverse thermoelastic martensitic transformations, in terms of standard kinetic analysis based on the Arrhenius rate equation.

  1. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  2. Esophageal pH monitoring

    MedlinePlus

    pH monitoring - esophageal; Esophageal acidity test ... esophagitis You may need to have the following tests if your doctor suspects esophagitis : Barium swallow Esophagogastroduodenoscopy (also called upper GI endoscopy)

  3. PhEDEx Data Service

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-04-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the "SiteDB" service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  4. Voltammetric pH Nanosensor.

    PubMed

    Michalak, Magdalena; Kurel, Malgorzata; Jedraszko, Justyna; Toczydlowska, Diana; Wittstock, Gunther; Opallo, Marcin; Nogala, Wojciech

    2015-12-01

    Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid-liquid, liquid-liquid, and liquid-gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (-54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH(-)) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions. PMID:26516786

  5. Optical and magneto-optical studies of martensitic transformation in Ni-Mn-Ga magnetic shape memory alloys

    SciTech Connect

    Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.

    2015-05-07

    Optical and magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.

  6. The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA Nickel-Titanium

    NASA Astrophysics Data System (ADS)

    Kimiecik, Michael; Jones, J. Wayne; Daly, Samantha

    2016-04-01

    A combined experimental and analytical study to determine the configurations of transforming martensite during ambient temperature cyclic deformation of superelastic Nickel-Titanium has been conducted. Full-field, sub-grain-size microscale strain measurements were made in situ during cycling using distortion-corrected Digital Image Correlation combined with Scanning Electron Microscopy (SEM-DIC). Using grain orientation maps from Electron Backscatter Diffraction analysis, possible configurations of martensite formed during cyclic deformation were identified by matching the calculated and measured strain fields. This analysis showed that the inclusion of Correspondence Variants (CVs) in addition to Habit Plane Variants (HPVs) of transformed martensite was necessary to provide a robust fit between calculated and measured strain fields. The approach also provided evidence that there was a more rapid accumulation of residual strain in CV regions and that a correlation existed between residual strain accumulation and the loss of actively transforming martensite in later cycles. It was also found that regions of CVs could coexist with untransformed austenite and Habit Plane Variants (HPVs) in individual grains throughout the microstructure, and that these regions of CVs formed before the end of the macroscopic stress plateau. The CV structure that forms during the initial superelastic deformation of Nickel-Titanium plays a critical role in shaping and stabilizing subsequent martensite recovery during cyclic loading.

  7. Effects of strain and strain-induced α'-martensite on passive films in AISI 304 austenitic stainless steel.

    PubMed

    Lv, Jinlong; Luo, Hongyun

    2014-01-01

    In this paper, the effects of strain and heat treatment on strain-induced α'-martensite of AISI 304 stainless steel tubes were measured by X-ray diffraction. Moreover, the effects of strain and content of α'-martensite on passivated property on the surface of the material in borate buffer solution were evaluated by electrochemical technique. The results showed that the volume fraction of α'-martensite increased gradually with the increase of tensile strain for as-received and solid solution samples. However, α'-martensite in as-received sample was more than that in the solid solution sample. The electrochemical impedance spectroscopy results showed that the solid solution treatment improved corrosion resistance of the steel, especially for samples with small strain. Moreover, acceptor densities were always higher than donor densities for as-received and solid solution samples. With the increase of strain, the increase tendency of acceptor density was more significant than that of donor density. We also found that the total density of the acceptor and donor almost increased linearly with the increase of α'-martensite. The present results indicated that the increased acceptor density might lead to the decreased corrosion resistance of the steel. PMID:24268285

  8. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.

    PubMed

    Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij

    2016-12-01

    Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect. PMID:26897002

  9. Optical and magneto-optical studies of martensitic transformation in Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.

    2015-05-01

    Optical and magneto-optical properties of single crystal of Ni50.1Mn28.4Ga21.5 magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along {100} planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.

  10. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy

    NASA Astrophysics Data System (ADS)

    Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij

    2016-02-01

    Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect.

  11. Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures

    NASA Astrophysics Data System (ADS)

    Maresca, F.; Kouznetsova, V. G.; Geers, M. G. D.

    2016-02-01

    Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers thick, and they are often characterized by high contrasts in plastic properties. As a consequence, fracture in these lamellar microstructures generally occurs along the layer interfaces or within one of the layers, typically parallel to the interface. This paper presents a computational framework that addresses the lamellar nature of these microstructures, by homogenizing the plastic deformation at the mesoscale by using the microscale response of the laminates. Failure is accounted for by introducing a family of damaging planes that are parallel to the layer interface. Mode I, mode II and mixed-mode opening are incorporated. The planes along which failure occurs are captured using a smeared damage approach. Coupling of damage with isotropic or anisotropic plasticity models, like crystal plasticity, is straightforward. The damaging planes and directions do not need to correspond to crystalline slip planes, and normal opening is also included. Focus is given on rate-dependent formulations of plasticity and damage, i.e. converged results can be obtained without further regularization techniques. The validation of the model using experimental observations in martensite-austenite lamellar microstructures in steels reveals that the model correctly predicts the main features of the onset of failure, e.g. the necking point, the failure initiation region and the failure mode. Finally, based on the qualitative results obtained, some material design guidelines are provided for martensitic and multi-phase steels.

  12. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    NASA Astrophysics Data System (ADS)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  13. Statistical physics concepts for the explanation of effects observed in martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Oberaigner, Eduard Roman; Leindl, Mario

    2012-09-01

    Structural solid-to-solid transformations play a key role for the behaviour of several materials, e.g., shape memory alloys, steels, polymers and ceramics. A novel theoretical approach modelling martensitic phase transformation is demonstrated in the present study. The generally formulated model is based on the block-spin approach and on renormalization in statistical mechanics and is applied to a representative volume element (resp. representative mole element) which is assumed to be in a local thermodynamic equilibrium. The neighbouring representative volume elements are in a generally different thermodynamic equilibrium. This leads to fluxes between those elements. Using fundamental physical properties of a shape memory alloy (SMA) single crystal as input data the model predicts the order parameter ‘total strain’, the martensitic phase fraction and the stress-assisted transformation accompanied by pseudo-elasticity without the requirement of evolution equations for internal variables and assumptions on the mathematical structure of the classical free energy. In order to demonstrate the novel approach the first computations are carried out for a simple one-dimensional case, which can be generalized to the two- and three-dimensional case. Results for total strain and martensitic phase fraction are in good qualitative agreement with well known experimental data according to their macroscopic strain rearrangement when phase transformation occurs. Further a material softening effect during phase transformation in SMAs is predicted by the statistical physics approach. Formulas are presented for the relevant quantities such as volume fraction, total strain, transformation strain, rates of the volume fractions and of the strains.

  14. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  15. On the Decomposition of Martensite During Bake Hardening of Thermomechanically Processed TRIP Steels

    SciTech Connect

    Pereloma, E. V.; Miller, Michael K; Timokhina, I. B.

    2008-01-01

    Thermomechanically processed (TMP) CMnSi transformation-induced plasticity (TRIP) steels with and without additions of Nb, Mo, or Al were subjected to prestraining and bake hardening. Atom probe tomography (APT) revealed the presence of fine C-rich clusters in the martensite of all studied steels after the thermomechanical processing. After bake hardening, the formation of iron carbides, containing from 25 to 90 at. pct C, was observed. The evolution of iron carbide compositions was independent of steel composition and was a function of carbide size.

  16. Energetic shape recovery associated with martensitic transformation in shape-memory alloys

    SciTech Connect

    Golestaneh, A.A.

    1980-10-01

    The present paper contains an investigation of the mechanical energy associated with the transformation of the stress-induced martensite, ..beta..', to the parent phase, ..beta.., during the shape recovery (SR) of a deformed shape-memory (SM) material. We describe a heat-mechanical energy converter, or solid-state engine, which operates by this SR phenomenon. The energy output of such an engine is expressed in terms of a fraction ..cap alpha.. of the latent heat ..delta..H of the martensitic reaction. This ..cap alpha.. is found to depend on two parameters. One is the difference between the ..delta..H of the ..beta..' ..-->.. ..beta.. reaction and the ..delta..H of the transformation of the quench-induced martensite, ..gamma..', to ..beta.., the other is the fraction of ..gamma..' which can be transformed via the channel ..gamma..' ..-->.. ..beta..' ..-->.. ..beta.. instead of the direct channel ..gamma..' ..-->.. ..beta... Moreover, it is shown that within certain ranges of temperature T and applied strain epsilon, the heat-mechanical energy balance equation leads to an expression identical in form to the Clapeyron-Clausius equation, which is usually valid for a first-order transition. Within these epsilon and T ranges the coefficient ..cap alpha.. is also found to be equal to log(T/sub c sigma//T/sub c/) where T/sub c sigma/ and T/sub c/ are the SR critical temperatures with and without the presence of an applied stress sigma, respectively. We discuss the role of the ..gamma..' martensite in this process and explain the so-called two-way SR phenomenon. In addition, the parameters that limit the output of the SR energy are evaluated. This output depends sensitively on both ..cap alpha.. and the material characteristic temperature h = C/sup -1/..delta..H, where C is the specific heat. For a solid-state engine made with the Ni-Ti SM alloy, the efficiency is found to be limited to about 5%.

  17. Radiation hardening and deformation behavior of irradiated ferritic-martensitic steels

    SciTech Connect

    Robertson, J.P.; Klueh, R.L.; Rowcliffe, A.F.; Shiba, K.

    1998-03-01

    Tensile data from several 8--12% Cr alloys irradiated in the High Flux Isotope Reactor (HFIR) to doses up to 34 dpa at temperatures ranging from 90 to 600 C are discussed in this paper. One of the critical questions surrounding the use of ferritic-martensitic steels in a fusion environment concerns the loss of uniform elongation after irradiation at low temperatures. Irradiation and testing at temperatures below 200--300 C results in uniform elongations less than 1% and stress-strain curves in which plastic instability immediately follows yielding, implying dislocation channeling and flow localization. Reductions in area and total elongations, however, remain high.

  18. Stability analysis of the martensitic phase transformation in Co2NiGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Talapatra, Anjana; Arróyave, Raymundo; Entel, Peter; Valencia-Jaime, I.; Romero, Aldo H.

    2015-08-01

    Phase competition and the subsequent phase selection are important characteristics of alloy systems exhibiting numerous states of distinct symmetry but comparable energy. The stoichiometric Co2NiGa Heusler alloy exhibits a martensitic transformation with concomitant reduction in symmetry from an austenitic L 21 phase (cubic) to a martensitic L 10 phase (tetragonal). A structural search was carried out for this alloy and it showed the existence of a number of structures with monoclinic and orthorhombic symmetry with ground state energies comparable to and even less than that of the L 10 structure, usually reported as the ground state at low temperatures. We describe these structures and focus in particular on the structural transition path from the L 21 to tetragonal and orthorhombic structures for this material. Calculations were carried out to study the Bain (L 21-L 10 ) and Burgers (L 21-hcp ) transformations. The barrierless Burgers path yielded a stable martensitic phase with orthorhombic symmetry (O ) with energy much lower—beyond the expected uncertainty of the calculation methods—than the known tetragonal L 10 martensitic structure. This low-energy structure (O ) has yet to be observed experimentally and it is thus of scientific interest to discern the cause for the apparent discrepancy between experiments and calculations. It is postulated that the Co2NiGa Heusler system exhibits a classic case of the phase selection problem: although the unexpected O phase may be relatively more stable than the L 10 phase, the energy barrier for the (L 21-O ) transformation may be much higher than the barrier to the (L 21-L 10 ) transformation. To validate this hypothesis, the stability of this structure was investigated by considering the contributions of elastic and vibrational effects, configurational disorder, magnetic disorder, and atomic disorder. The calculations simulating the effect of magnetic disorder/high temperature as well as the atomic disorder

  19. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    SciTech Connect

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-15

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  20. Recent Progress of R&D Activities on Reduced Activation Ferritic/Martensitic Steels

    SciTech Connect

    Huang, Q.; Baluc, N.; Dai, Y.; Jitsukawa, S.; Kimura, A.; Konys, J.; Kurtz, Richard J.; Lindau, R.; Muroga, T.; Odette, George R.; Raj, B.; Stoller, Roger E.; Tan, L.; Tanigawa, Hiroyasu; Tavassoli, A,-A.F.; Yamamoto, Takuya; Wan, F.; Wu, Y.

    2013-01-03

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER TBM and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical porperties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation with different TBM and DEMO options

  1. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-01

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  2. Austenite precipitation during tempering in 16Cr-2Ni martensitic stainless steels

    SciTech Connect

    Balan, K.P.; Reddy, A.V.; Sarma, D.S.

    1998-09-04

    The 16Cr-2Ni steel when quenched from austenitizing temperature of 1,323K results in the formation of a complex microstructure consisting of the inherited {delta}-ferrite, martensite and retained austenite with a few undissolved M{sub 23}C{sub 6} carbides. There do not appear to be many reports on tempering behavior of 16Cr-2Ni steel through microstructural characterization using transmission electron microscopy. A comprehensive study is under progress to examine the structure-fracture-property relationship on 16Cr-2Ni steel and the microstructural changes that occur on tempering the steel are dealt with in this paper.

  3. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect

    Liu, W. B.; Chen, L. Q.; Zhang, C. Yang, Z. G.; Ji, Y. Z.; Zang, H.; Shen, T. L.

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  4. Martensitic stainless steel AISI 420—mechanical properties, creep and fracture toughness

    NASA Astrophysics Data System (ADS)

    Brnic, J.; Turkalj, G.; Canadija, M.; Lanc, D.; Krscanski, S.

    2011-11-01

    In this paper some experimental results and analyses regarding the behavior of AISI 420 martensitic stainless steel under different environmental conditions are presented. That way, mechanical properties like ultimate tensile strength and 0.2 percent offset yield strength at lowered and elevated temperatures as well as short-time creep behavior for selected stress levels at selected elevated temperatures of mentioned material are shown. The temperature effect on mentioned mechanical properties is also presented. Fracture toughness was calculated on the basis of Charpy impact energy. Experimentally obtained results can be of importance for structure designers.

  5. Crystal grain growth during room temperature high pressure Martensitic alpha to omega transformation in zirconium

    SciTech Connect

    Velisavljevic, Nenad; Chesnut, Gary N; Stevens, Lewis L; Dattelbaum, Dana M

    2008-01-01

    Systematic increase in transition pressure with increase in interstitial impurities is observed for the martensitic {alpha} {yields} {omega} structural phase transition in Zr. Significant room temperature crystal grain growth is also observed for the two highest purity samples at this transition, while in the case of the lowest purity sample interstitial impurities obstruct grain growth even as the sample is heated to 1279 K. Our results show the importance of impurities in controlling structural phase stability and other mechanical properties associated with the {alpha} {yields} {omega} structural phase transition.

  6. Thermoelastic Martensitic Transformations in Single Crystals of FeNiCoAlX(B) Alloys

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kuts, O. A.; Platonova, Yu. N.; Poklonov, V. V.; Kukshauzen, I. V.; Kukshauzen, D. A.; Panchenko, M. Yu.; Reunova, K. A.

    2016-03-01

    Using single crystals of Fe-based disordered alloys (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% X (0.05% B) (at.%) (X = Ti, Nb(B), (Ti + Nb)B), undergoing thermoelastic γ-α '-martensitic transformations (MTs), it is shown that precipitation of particles of the ordered γ'-phase in the course of aging at T = 973 K for 5 h results in the development of shape memory (SME) and superelasticity (SE) effects. It is experimentally found that variation in chemical composition and size of disperse particles of the γ'-phase allows controlling both mechanical and functional properties - SME and SE.

  7. Creep-Induced Evolution of Ultrasonic Attenuation in a Martensite Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ohtani, T.

    2008-02-01

    Electromagnetic acoustic resonance (EMAR) is a contactless resonance method using an electromagnetic acoustic transducer (EMAT). In this study, EMAR was applied to detect the creep damage process in a martensite stainless steel (JIS-SUS403). We used a bulk-wave EMAT and measured ultrasonic attenuation and velocity as creep progressed. Attenuation coefficient exhibits a much larger sensitivity to the damage accumulation than the velocity. It shows a maximum peak at approximately 20% and a minimum peak at 50% of the creep life.

  8. Structure and thermoelastic martensitic transformations in ternary Ni-Ti-Hf alloys with a high-temperature shape memory effect

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Pushin, A. V.; Uksusnikov, A. N.; Kourov, N. I.

    2016-07-01

    The effect of alloying by 12-20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi-NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19' martensitic transformations, which occur in the temperature range 320-600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19' phases are measured, and the microstructure of the B19' martensite is analyzed.

  9. Isothermal martensitic transformation in a 12Cr-9Ni-4Mo-2Cu stainless steel in applied magnetic fields

    NASA Astrophysics Data System (ADS)

    San Martín, D.; Aarts, K. W. P.; Rivera-Díaz-del-Castillo, P. E. J.; van Dijk, N. H.; Brück, E.; van der Zwaag, S.

    This work concerns an in situ study of the isothermal formation of martensite in a stainless steel under the influence of magnetic fields up to 9 T at three different temperatures (213, 233 and 253 K). It is shown that the presence of a constant applied magnetic field promotes the formation of martensite significantly. The activation energy for the nucleation of martensite has been derived using a semi-empirical kinetic model. The experimental results have been analyzed using the Ghosh and Olson model. While this model describes the time and field dependences of the experimental data well, the thermal frictional energy and the defect size values are much lower than those expected from earlier work.

  10. Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite

    NASA Astrophysics Data System (ADS)

    Pagounis, E.; Szczerba, M. J.; Chulist, R.; Laufenberg, M.

    2015-10-01

    We report the performance of a Ni-Mn-Ga single crystal with a seven-layered lattice modulation (14M martensite), demonstrating large actuation work output driven by an external magnetic field. A magnetic field-induced strain of 11.2%, a twinning stress of 0.64 MPa, and a magneto-crystalline anisotropy energy of 195 kJ/m3 are measured at room temperature, which exceed the best results reported in Ni-Mn-Ga 14M martensites. The produced magnetically induced work output of about 70 kJ/m3 makes the material attractive for actuator applications. Detailed XRD investigation reveals that the studied 14M martensite is stress-induced. With increasing compression stress, the stress-induced intermartensitic transformation sequence 10M → 14M → NM was demonstrated.

  11. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Bischoff, A. J.; Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K.; Mayr, S. G.

    2016-04-01

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe70Pd30 ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  12. Role of Chemical Driving Force in Martensitic Transformations of High-Purity Fe-Cr-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Behjati, P.; Najafizadeh, A.

    2011-12-01

    The main objective of the present work is to point out the respective roles of chemical driving force and stacking fault energy (SFE) in the occurrence of martensitic transformations in high-purity Fe-Cr-Ni alloys. For this purpose, the transmission electron microscope (TEM), X-ray diffractometer, thermal differential microanalyzer (TDA), and tension test were employed to report M s temperatures, austenite stacking fault energies, and driving forces for the concerned alloys. It was observed that the martensitic transformations in the studied alloys occur through the γ → ɛ → α' steps. As a remarkable result, it was shown that a low SFE, if necessary to ɛ-phase nucleation, is not a sufficient condition for nucleation of α' phase. In fact, the formation of stable α' nuclei from α' embryos occur if the required chemical driving force is provided. Also, an equation was proposed for the kinetics of spontaneous martensitic transformation as a function of driving force.

  13. Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable ɛ-Martensite, and Mn Concentration

    NASA Astrophysics Data System (ADS)

    Koyama, Motomichi; Okazaki, Shota; Sawaguchi, Takahiro; Tsuzaki, Kaneaki

    2016-06-01

    To obtain a basic understanding of hydrogen embrittlement associated with ɛ-martensite, we investigated the tensile behavior of binary Fe-Mn alloys with high Mn content under cathodic hydrogen charging. We used Fe-20Mn, Fe-28Mn, Fe-32Mn, and Fe-40Mn alloys. The correlation between the microstructure and crack morphology was clarified through electron backscatter diffraction measurements and electron channeling contrast imaging. ɛ-martensite in the Fe-20Mn alloy critically deteriorated the resistance to hydrogen embrittlement owing to transformation to α'-martensite. However, when ɛ-martensite is stable, hydrogen embrittlement susceptibility became low, particularly in the Fe-32Mn alloys, even though the formation of ɛ-martensite plates assisted boundary cracking. The Fe-40Mn alloys, in which no martensite forms even after fracture, showed higher hydrogen embrittlement susceptibility compared to the Fe-32Mn alloy. Namely, in Fe-Mn binary alloys, the Mn content has an optimal value for hydrogen embrittlement susceptibility because of the following two reasons: (1) The formation of stable ɛ-martensite seems to have a positive effect in suppressing hydrogen-enhanced localized plasticity, but causes boundary cracking, and (2) an increase in Mn content stabilizes austenite, suppressing martensite-related cracking, but probably decreases the cohesive energy of grain boundaries, causing intergranular cracking. As a consequence, the optimal Mn content was 32 wt pct in the present alloys.

  14. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  15. Mössbauer studies of a martensitic transformation and of cryogenic treatments of a D2 tool steel

    NASA Astrophysics Data System (ADS)

    Costa, B. F. O.; Blumers, M.; Kortmann, A.; Theisen, W.; Batista, A. C.; Klingelhöfer, G.

    2013-04-01

    A D2 tool steel X153CrVMo12 with composition C1.53 Cr12 V0.95 Mo0.80 Mn0.40(wt% Fe balanced) was studied by use of Mössbauer spectroscopy and X-ray diffraction. It was observed that the study of carbides by X-ray diffraction was difficult while Mössbauer spectroscopy gives some light on the process occurring during cryogenic treatment. With the increase of the martensitic phase the carbides decrease and are dissolved in solid solution of martensite as well as the chromium element.

  16. Microstructural Evolution and Recrystallization Kinetics of a Cold-Rolled, Ferrite-Martensite Structure During Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Etesami, S. A.; Enayati, M. H.

    2016-05-01

    The recrystallization behavior of 80 pct, cold-rolled, low-carbon, dual-phase steel during intercritical annealing for different times was studied. The annealed microstructures showed that the recrystallization initially occurred in the deformed martensitic regions. The values of Avrami exponent for recrystallization varied from 3.8 to 4 with an activation energy of 46.9 kJ/mol. This study also introduced a novel method for the production of bimodal grain structures in low-carbon, ferrite-martensite steel.

  17. Narrowing of hysteresis of cubic-tetragonal martensitic transformation by weak axial stressing of ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kosogor, Anna

    2016-06-01

    An influence of axial mechanical stress on the hysteresis of martensitic transformation and ordinary magnetostriction of ferromagnetic shape memory alloy has been described in the framework of a Landau-type theory of phase transitions. It has been shown that weak stress can noticeably reduce the hysteresis of martensitic transformation. Moreover, the anhysteretic deformation can be observed when the applied mechanical stress exceeds a critical stress value. The main theoretical results were compared with recent experimental data. It is argued that shape memory alloys with extremely low values of shear elastic modulus are the candidates for the experimental observation of large anhysteretic deformations.

  18. Microstructural Evolution and Recrystallization Kinetics of a Cold-Rolled, Ferrite-Martensite Structure During Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Etesami, S. A.; Enayati, M. H.

    2016-07-01

    The recrystallization behavior of 80 pct, cold-rolled, low-carbon, dual-phase steel during intercritical annealing for different times was studied. The annealed microstructures showed that the recrystallization initially occurred in the deformed martensitic regions. The values of Avrami exponent for recrystallization varied from 3.8 to 4 with an activation energy of 46.9 kJ/mol. This study also introduced a novel method for the production of bimodal grain structures in low-carbon, ferrite-martensite steel.

  19. Effect of aluminum alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni-Mn-Al alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Kourov, N. I.; Pushin, V. G.; Stukalov, V. Yu.; Uksusnikov, A. N.

    2015-07-01

    The properties, the martensitic transformation, and the structure of Ni50Mn50 - x Al x ( x = 5, 10, 18, 20, 22, 24, 25) alloys are studied by electrical resistivity measurements, transmission electron microscopy, scanning electron microscopy, and X-ray diffraction over wide temperature and composition ranges. It is found that, as the aluminum content increases, the martensite transformation temperature decreases significantly and the structure of martensite changes. Complex multilayer (10 M, 14 M) martensite phases are detected in the ternary alloys. Martensite is shown to have a predominant morphology in the form of hierarchic packets of thin coherent plates of nanoand submicrocrystalline crystallites, which have plane habit boundaries close to {110} B2 and are pairwise twinned along one of the 24 equivalent systems of twinning shear.

  20. First-principles investigation of possible martensitic transformation and magnetic properties of Heusler-type Pt2-xMn1+xIn alloys

    NASA Astrophysics Data System (ADS)

    Feng, Lin; Zhang, Wenxing; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2015-06-01

    The phase stability, electronic structure and magnetism of Pt2-xMn1+xIn (x = 0, 0.25, 0.5, 0.75, 1) alloys are studied by first-principles calculations. The possible magnetic martensitic transformation in this series has been investigated. For all the five compounds, the energy minimums occur around c/a = 1.30, and the energy differences between the austenitic and martensitic phases are large enough to overcome the resistance of phase transformation. By comparing the electronic structures of austenitic and martensitic phases, we can find that the phase stability is enhanced by the martensitic transformation. The magnetic structures of the austenitic and martensitic phases are also discussed.

  1. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  2. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 4 January - 21 March 1994)

    SciTech Connect

    Kozyr, Alex

    2005-06-30

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana, on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.

  3. Dependence of impact properties on irradiation temperature in reduced-activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Kimura, Akihiko; Narui, Minoru; Misawa, Toshihei; Matsui, Hideki; Kohyama, Akira

    1998-10-01

    Ductile-brittle transition (DBT) behavior of 9%Cr-2%W reduced-activation martensitic (RAM) steels has been investigated following neutron irradiation in the fast flux test facility, materials open test facility (FFTF/MOTA) at different temperatures. Both the irradiations at 663 and 733 K cause an increase in DBT temperature, while the irradiation at 663 K induces the hardening and the softening at 733 K. Microstructural observation by transmission electron microscope (TEM) revealed that small dislocation loops existed in the specimen irradiated at 663 K and no such a loop, but relatively large M 6C carbides and Laves phase were formed by the irradiation at 733 K. There appears to be a linear dependence between ΔDBTT and Δ σY in neutron irradiated RAM steels when irradiation induces the hardening. Irradiation embrittlement accompanied by the softening is considered to be due to reduction of cleavage fracture stress caused by the irradiation-induced recovery of the martensitic structure, namely decrease in dislocation density and formation of large precipitates.

  4. Simulation study of mechanical properties of bulk metallic glass systems: martensitic inclusions and twinned precipitates

    NASA Astrophysics Data System (ADS)

    Zaheri, A.; Abdeljawad, F.; Haataja, M.

    2014-12-01

    Monolithic bulk metallic glasses (BMGs) exhibit a unique combination of mechanical properties, such as high strength and large elasticity limits, but the lack of ductility is considered the main Achilles' heel of BMG systems. To increase the competitiveness of BMGs vis-à-vis conventional structural materials, the problem of catastrophic failure via intense plastic strain localization (‘shear banding’) has to be addressed. Recent experimental observations suggest that the addition of structural heterogeneities, in the form of crystalline particles, to BMG systems hinders the catastrophic propagation of shear bands and leads to enhanced ductility. These structural heterogeneities can be introduced by either forming BMG composites, where second-phase crystalline particles accommodate applied loads via martensitic transformation mechanisms, or developing glassy alloys that precipitate crystalline particles under deformation, a process by which further deformation can be sustained by twinning mechanisms in the crystalline phase. In this work, we present a non-linear continuum model capable of capturing the structural heterogeneity in the glassy phase and accounting for intrinsic work hardening via martensitic transformations in second-phase reinforcements in BMG composites and deformation twinning in precipitated crystalline particles. Simulation results reveal that in addition to intrinsic work hardening in the crystalline phase, particle size greatly affects the overall mechanical behavior of these BMG systems. The precipitation of crystalline particles in monolithic BMGs yields two-phase microstructures that promote more homogeneous deformation, delay the propagation of incipient shear bands, and ultimately result in improved ductility characteristics.

  5. Effect of Strain-Induced Martensite on Tensile Properties and Hydrogen Embrittlement of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kim, Young Suk; Bak, Sang Hwan; Kim, Sung Soo

    2016-01-01

    Room temperature tensile tests have been conducted at different strain rates ranging from 2 × 10-6 to 1 × 10-2/s on hydrogen-free and hydrogen-charged 304 stainless steel (SS). Using a ferritescope and neutron diffraction, the amount of strain-induced martensite (SIM) has been in situ measured at the center region of the gage section of the tensile specimens or ex situ measured on the fractured tensile specimens. The ductility, tensile stress, hardness, and the amount of SIM increase with decreasing strain rate in hydrogen-free 304 SS and decrease in hydrogen-charged one. Specifically, SIM that forms during tensile tests is beneficial in increasing the ductility, strain hardening, and tensile stress of 304 SS, irrespective of the presence of hydrogen. A correlation of the tensile properties of hydrogen-free and hydrogen-charged 304 SS and the amount of SIM shows that hydrogen suppresses the formation of SIM in hydrogen-charged 304 SS, leading to a ductility loss and localized brittle fracture. Consequently, we demonstrate that hydrogen embrittlement of 304 SS is related to hydrogen-suppressed formation of SIM, corresponding to the disordered phase, according to our proposition. Compelling evidence is provided by the observations of the increased lattice expansion of martensite with decreasing strain rate in hydrogen-free 304 SS and its lattice contraction in hydrogen-charged one.

  6. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  7. Study of irradiation effects in China low activation martensitic steel CLAM

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Li, Jiangang; Chen, Yixue

    2004-08-01

    Reduced activation ferritic/martensitic steels (RAFM steels) are presently considered as the primary structural materials for a demonstration (DEMO) fusion plant and the first fusion power reactors because of their attractive properties. Studies on various properties of China low activation martensitic steel (CLAM) are underway. The activation level of CLAM steel was calculated with the widely used inventory code FISPACT with the latest data library FENDL/A-2 based on the first wall (FW) neutron spectrum of the fusion-driven subcritical system (FDS) from the Monte Carlo transport code MCNP/4C calculation with FENDL-2 data library. The results were compared with the activation levels of other RAFM steels, such as EUROFER97, F82H, JLF-1 and 9Cr-2WVTa etc., under the same irradiation conditions. Furthermore, the dominant nuclides to γ-ray dose rate of CLAM steel were analyzed. The required control levels of impurities in CLAM steel will soon be implemented based on the hands-on and remote recycling dose rate limits.

  8. Defect-induced incompatability of elastic strains: dislocations within the Landau theory of martensitic phase transformations

    SciTech Connect

    Groger, Roman1; Lockman, Turab; Saxena, Avadh

    2008-01-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  9. Phase-filed modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

    SciTech Connect

    Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

    2008-11-12

    A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% ({+-}1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% ({+-}1%) retained austenite was measured.

  10. Novel high-strength ternary Zr-Al-Sn alloys with martensite structure for nuclear applications

    NASA Astrophysics Data System (ADS)

    Nie, Li; Zhan, Yongzhong; Hu, Tong; Chen, Xiaoxian; Wang, Chenghui

    2013-11-01

    High strength is essential for the practical application of Zr alloys as structural materials. In this work, Zr-5Al-xSn (x = 2, 3, 4, 5 and 6) alloys have been designed and fabricated through arc melting in order to effectively improve the strength while retaining good ductility. Phase analysis results show that all the samples consist of single phase α-Zr. The variation trend of lattice constants as a function of Sn content has been analyzed. The microstructural analysis indicates that the Zr-5Al-xSn alloys mainly contain martensite structure. Mechanical tests show that these Zr-5Al-xSn alloys exhibit high compressive strength (1250-1450 MPa), high yield stress (800-1000 MPa), and favorable plastic strain of 18-23%. The fracture mode has been experimentally analyzed. Finally, both Zr-5Al-3Sn and Zr-5Al-5Sn are subjected to heat treatments for further study on the roles of Sn element and controlled heat treatment on the microstructure and mechanical properties of Zr alloys. Sn is found to promote the formation of ZrAl in the Zr-5Al-xSn alloys. Moreover, the martensite laths are observed to evolve into larger strip grains and fine equiaxed grains after heat treatment at 900 °C for 2 h. These factors strengthen the Zr-5Al-xSn alloys.

  11. Characterization of a New Fe-C-Mn-Si-Cr Bearing Alloy: Tempered Martensite Embrittlement Susceptibility

    NASA Astrophysics Data System (ADS)

    Marcomini, J. B.; Goldenstein, H.

    2014-03-01

    Bearing steels containing 1% C and 1.5% Cr have been the usual material of choice for machine components submitted to rolling and contact fatigue, for more than a century. As a rule these steels are quenched from the intercritical gamma + carbide region and tempered at low temperatures (less than 250 °C), in order to retain the high hardness of the martensite matrix and avoid the tempered martensite embrittlement (TME) phenomena, which compromise the toughness of steels tempered at higher temperatures. A new high Si alloy was developed for bearing applications. The inhibiting and/or retarding effect of Si on the kinetics of cementite precipitation leads to a higher temperature of TME occurrence, allowing the tempering of the components at a higher temperature, thus increasing the toughness, without sacrificing the high hardness. The purpose of this work was to confirm the TME resistance of the new alloy. In this work, impact tests result for commercial SAE/AISI 52100 (0.25% Si) and for a modified 52100 containing 1.74% Si, were compared. No evidence of TME was detected on the Si-modified steel.

  12. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    SciTech Connect

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the <100> directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a)/sup 2/ from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V/sub 2/Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy ..beta../m wall motion relative to the easy m/m motion of the A15's. For the V/sub 2/Zr, a peak in delta is observed, qualitatively in agreement with expected ..beta../m wall motion.

  13. The weirdest martensite: Smectic liquid crystal microstructure and Weyl-Poincaré invariance

    NASA Astrophysics Data System (ADS)

    Liarte, Danilo; Bierbaum, Matthew; Mosna, Ricardo; Kamien, Randall; Sethna, James

    We propose a generalization of the mathematical theory of martensites to describe the complex assembly of focal conics in smectic liquid crystals. Smectics are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the restricted Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations.

  14. Phase selection during laser surface melting of martensitic stainless tool steels

    SciTech Connect

    Colaco, R.; Vilar, R.

    1997-01-15

    Laser surface melting (LSM) of tool steels allows for the complete dissolution of large brittle carbides, leading to homogeneous and extremely fine microstructures. Due to its characteristics, LSM allows improvement of the performance of tool steels by increasing their resistance to erosive and abrasive wear. Nevertheless, when DIN X42Cr13 and DIN X100Cr18 martensitic stainless steels are submitted to LSM, considerable amounts of austenite and {delta}-ferrite formed during the first stage of solidification can be retained in metastable condition at room temperature by mechanisms which are not yet fully understood. The purpose of the present work is to establish the influence of solidification conditions on the primary solidification mode of these two martensitic stainless tool steels, aimed to optimize the LSM operating conditions. Accordingly, samples of DIN X40Cr13 and DIN X100Cr18 were submitted to LSM with a wide range of solidification speeds. The microstructures were analyzed in order to identify the primary solidification mode. The experimental results were compared with theoretical predictions, based on comparison of the dendrite tip temperatures of austenite and {delta}-ferrite as function of the solidification speed.

  15. Investigation of microstructure and thermal stability of pulsed plasma processed chromium ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Emelyanova, O.; Dzhumaev, P.; Yakushin, V.; Polsky, V.

    2016-04-01

    This paper presents results of the microstructural evolution and thermal stability of the promising Russian ferritic-martensitic steels (EP 823, EP 900, EK 181 and ChS 139) for the nuclear and fusion application after surface modification by high temperature pulsed plasma flows (HTPPF) treatment. Investigations of microstructure, topography and elemental content changes associated with irradiation by nitrogen plasma with energy density 19-28 J/ cm2 and pulse duration 20 μs were carried out. Changes in microstructure and elemental content occurring in the modified surface layer were characterized by means of scanning electron microscopy (SEM) and X-ray microanalysis (EDS and WDS). It was shown that independently of initial microstructure and phase composition, HTPPF treatment of ferritic- martensitic steels leads to formation of ultrafine homogeneous structure in the near surface layers with typical grain size ∼100 nm. Results of microstructure investigations after annealing during 1 hour demonstrates significant thermal stability of nanostructure formed by HTPPF treatment.

  16. Atomistic simulation of martensite-austenite phase transition in nanoscale nickel-titanium crystals

    NASA Astrophysics Data System (ADS)

    Kexel, Christian; Schramm, Stefan; Solov'yov, Andrey V.

    2015-09-01

    Shape-memory (SM) alloys can, after initial inelastic deformation, reconstruct their pristine lattice structure upon heating. The underlying phenomenon is the structural solid-solid phase transition from low-temperature lower-symmetry martensite to the high-temperature higher-symmetry austenite. Conventional nickel-titanium (NiTi) with near-equiatomic concentration already possesses an eminent importance for many applications, whereas the nanostructured equivalent can exhibit yet enhanced thermomechanical properties. However, no plausible microscopic theory of the SM effect in NiTi exists, especially for nanoscale systems. We investigate the thermally induced martensite-austenite phase transition in free equiatomic nanocrystals, comprising up to approximately 40 000 atoms, by means of molecular-dynamics simulations (MD) using a classical Gupta-type many-body scheme. Thereby we complement and extend a previously published study [D. Mutter, P. Nielaba, Eur. Phys. J. B 84, 109 (2011)]. The structural transition, revealing features of a first-order phase transition, is demonstrated. It is contrasted with the melting phase transition, a quantum solid model and bulk experimental findings. Moreover, a nucleation-growth process is observed as well as the irreversibility of the transition upon cooling.

  17. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    SciTech Connect

    Godec, Matjaz; Batic, Barbara Setina; Mandrino, Djordje; Nagode, Ales; Leskovsek, Vojteh; Skapin, Sreco D.; Jenko, Monika

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbides were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.

  18. Application of nitrogen-alloyed martensitic stainless steels in the aviation industry

    SciTech Connect

    Stein, G.; Kirschner, W.; Lueg, J.

    1997-12-31

    Nitrogen in stainless martensitic steels has a beneficial influence on the mechanical as well as on the chemical properties. However the effect of nitrogen is limited due to the rather low solubility of this element. A special alloy development in combination with a pressurized melting technique lead to distinctly higher nitrogen contents. Stainless martensitic steels containing high nitrogen contents are manufactured by VSG today on an industrial scale using the PESR-process (Pressurized Electroslag Remelting). Depending on special applications these steels are available with different chemical analysis under the trademark CRONIDUR. The basic composition of all CRONIDUR-alloys consists of about 15% Chromium, 1% Molybdenum, 0.15 to 0.35% Carbon and 0.20 to 0.40% Nitrogen. The combination of Cr + Mo + N leads to a superior corrosion resistance of these HNS-steels (HNS: High Nitrogen Steels) in comparison to similar carbon based alloys. Focused on applications with a required minimum hardness of 58 HRC, like stainless bearings or screw shafts, the C+N-content is tuned between 0.60 and 0.80% (Brand: CRONIDUR 30). Additions of max. 0.3% Vanadium and 0.1% Niobium qualifies the brand CRONIDUR 20 for enhanced temperature applications like turbine disks or blades.

  19. Microstructural Effects on Fracture Behavior of Ferritic and Martensitic Structural Steels

    NASA Astrophysics Data System (ADS)

    Ibrahim, Omyma H.; Elshazly, Ezzat S.

    2013-02-01

    The effect of microstructure on fracture behavior of 1Cr-0.5Mo and 9Cr-1Mo structural steels was evaluated. 1Cr-0.5Mo steel is used in steam pipes and superheater tubes of power stations. Its microstructure is typically comprised of bainite in a pre-eutectoid ferrite matrix with an average grain size of 10 μm. 9Cr-1Mo steel was developed for applications in steam power stations and as a candidate structural material for first-wall and blanket components of future fusion reactors. Its microstructure consisted of a fully martensitic structure with a prior austenite grain size of 25 μm. The fracture properties were measured using instrumented impact testing at temperatures between -196 and 300 °C. The total impact fracture energy, the crack initiation and propagation energy, the dynamic yield strength, the brittleness temperature, and the cleavage fracture stress were measured. The bainitic-ferritic alloy steel exhibited much higher resistance to ductile fracture at high test temperatures, while its resistance to brittle fracture at low test temperatures was reduced compared to that of the fully martensitic alloy steel. The results were discussed in terms of the chemical composition and microstructure of the two steel types.

  20. Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors

    NASA Astrophysics Data System (ADS)

    Saroja, S.; Dasgupta, A.; Divakar, R.; Raju, S.; Mohandas, E.; Vijayalakshmi, M.; Bhanu Sankara Rao, K.; Raj, Baldev

    2011-02-01

    This paper presents the results on the physical metallurgy studies in 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic/Martensitic (RAFM) steels. Yttria strengthened ODS alloy was synthesized through several stages, like mechanical milling of alloy powders and yttria, canning and consolidation by hot extrusion. During characterization of the ODS alloy, it was observed that yttria particles possessed an affinity for Ti, a small amount of which was also helpful in refining the dispersoid particles containing mixed Y and Ti oxides. The particle size and their distribution in the ferrite matrix, were studied using Analytical and High Resolution Electron Microscopy at various stages. The results showed a distribution of Y 2O 3 particles predominantly in the size range of 5-20 nm. A Reduced Activation Ferritic/Martensitic steel has also been developed with the replacement of Mo and Nb by W and Ta with strict control on the tramp and trace elements (Mo, Nb, B, Cu, Ni, Al, Co, Ti). The transformation temperatures ( Ac1, Ac3 and Ms) for this steel have been determined and the transformation behavior of the high temperature austenite phase has been studied. The complete phase domain diagram has been generated which is required for optimization of the processing and fabrication schedules for the steel.

  1. Martensitic Transformation During Compressive Deformation of a Non-conventional Stainless Steel and Its Quantitative Assessment

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Sampark, P.; Majhi, Goutam Kumar; Dutta, Krishna

    2015-11-01

    This report aims to examine the extent of deformation-induced phase transformation in a non-conventional austenitic stainless steel known as ISO/TR 15510 X12CrMnNiN17-7-5, upon compressive loading at room temperature. Experiments were carried out under varying length to diameter ratios (0.8, 1.0, 1.2, 1.4, and 1.6). TFE (Tetrafluoroethylene)-fluorocarbon tapes were used at specimen-platen interfaces to reduce the effect of friction. The results indicate that the lubrication was effective up to 15% of strain. Optical microscopy and x-ray diffraction (XRD) studies indicated martensitic phase transformation in the deformed specimens. The extent of phase transformation was determined by analyzing the XRD peaks using integrated intensity of the corresponding phases. The results are correlated with the extent of deformation in the respective samples. The presence of γ and α'-martensite on the deformed samples has been substantiated by some limited experiments using transmission electron microscopy.

  2. Urine pH test

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Kidney Stones Urinalysis Browse the Encyclopedia A. ...

  3. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  4. Nucleation and growth of the Alpha-Prime Phase martensitic phase in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K M; Krenn, C R; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    In a Pu-2.0 at% Ga alloy, it is observed experimentally that the amount of the martensitic alpha-prime product formed upon cooling the metastable delta phase below the martensite burst temperature (M{sub b}) is a function of the holding temperature and holding time of a prior conditioning (''annealing'') treatment. Before subjecting a sample to a cooling and heating cycle to form and revert the alpha-prime phase, it was first homogenized for 8 hours at 375 C to remove any microstructural memory of prior transformations. Subsequently, conditioning was carried out in a differential scanning calorimeter apparatus at temperatures in the range between -50 C and 370 C for periods of up to 70 hours to determine the holding time and temperature that produced the largest volume fraction of alpha-prime upon subsequent cooling. Using transformation peak areas (i.e., the heats of transformation) as a measure of the amount of alpha-prime formed, the largest amount of alpha-prime was obtained following holding at 25 C for at prime least 6 hours. Additional time at 25 C, up to 70 hours, did not increase the amount of subsequent alpha-prime formation. At 25 C, the Pu-2.0 at% Ga alloy is below the eutectoid transformation temperature in the phase diagram and the expected equilibrium phases are {alpha} and Pu{sub 3}Ga, although a complete eutectoid decomposition of delta to these phases is expected to be extremely slow. It is proposed here that the influence of the conditioning treatment can be attributed to the activation of alpha-phase embryos in the matrix as a beginning step toward the eutectoid decomposition, and we discuss the effects of spontaneous self-irradiation accompanying the Pu radioactive decay on the activation process. Subsequently, upon cooling, certain embryos appear to be active as sites for the burst growth of martensitic alpha-prime particles, and their amount, distribution, and potency appear to contribute to the total amount of martensitic product formed. A

  5. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    DOE PAGESBeta

    Benafan, O.; Padula, S. A.; Noebe, R. D.; Sisneros, T. A.; Vaidyanathan, R.

    2012-11-01

    Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocationmore » activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less

  6. Estimation of martensite feature size in a low-carbon alloy steel by microtexture analysis of boundaries.

    PubMed

    Karthikeyan, T; Dash, Manmath Kumar; Saroja, S; Vijayalakshmi, M

    2015-01-01

    A methodology for classifying the hierarchy of martensite boundaries from the EBSD microtexture data of low-carbon steel is presented. Quaternion algebra has been used to calculate the ideal misorientation between product α variants for Kurdjumov-Sachs (KS) and its nearby orientation relationships, and arrive at the misorientation angle-axis set corresponding to packet (12 types), block (3 types) and sub-block boundaries. Analysis of proximity of experimental misorientation between data points from the theoretical misorientation set is found to be useful for identifying the different types of martensite boundaries. The optimal OR in the alloy system and the critical deviation threshold for identification of martensite boundaries could both be ascertained by invoking the 'Enhancement Factor' concept. The prior-γ grain boundaries, packet, block and sub-block boundaries could be identified reasonably well, and their average intercept lengths in a typical tempered martensite microstructure of 9Cr-1Mo-0.1C steel was estimated as 31 μm, 14 μm, 9 μm and 4 μm respectively. PMID:25464145

  7. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Padula, S. A.; Noebe, R. D.; Sisneros, T. A.; Vaidyanathan, R.

    2012-11-01

    Deformation of a B19' martensitic, polycrystalline Ni49.9Ti50.1 (at. %) shape memory alloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situ neutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocation activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni49.9Ti50.1.

  8. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  9. Direct observation of phase transformations in the simulated heat-affected zone of a 9Cr martensitic steel

    SciTech Connect

    Mayr, Peter; Palmer, T. A.; Elmer, J. W.; Specht, Eliot D

    2008-01-01

    An experimental test melt of a boron alloyed 9Cr-3W-3Co-V,Nb steel for high temperature applications in the thermal power generation industry was produced by vacuum induction melting. This grade of steel typically displays a homogeneous tempered martensitic microstructure in the as-received condition. However, after welding, this microstructure is significantly altered, resulting in a loss of its desired properties. The phase transformations during simulated thermal cycles typical of those experienced in the weld heat-affected zone (HAZ) were directly observed by in situ X-ray diffraction experiments using synchrotron radiation. Heating rates of 10 C s-1 and 100 C s-1 up to a peak temperature of 1300 C are investigated here. The final microstructures observed after both simulated weld thermal cycles are primarily composed of martensite with approximately 4% retained delta ferrite and 4% retained austenite, by volume. With the temporal resolution of the in situ X-ray diffraction technique, phase transformations from tempered martensite to austenite to delta ferrite during heating and to martensite during cooling were monitored. With this technique, the evolution of the final microstructure through both heating and cooling is monitored, providing additional context to the microstructural observations.

  10. Heat treatment of investment cast PH 13-8 Mo stainless steel; Part 2: Isothermal aging kinetics

    SciTech Connect

    Robino, C.V.; Cieslak, M.J. . Physical and Joining Metallurgy Dept.); Hochanadel, P.W.; Edwards, G.R. . Dept. of Metallurgical and Materials Engineering)

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 C to 593 C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 C, 538 C, 566 C, and 593 C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that [beta]-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the [beta]-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels.

  11. Martensitic phase transformation and ferromagnetic shape memory effect in iron palladium single crystal

    NASA Astrophysics Data System (ADS)

    Cui, Jun

    In this thesis the ferromagnetic shape memory effect in Fe70Pd 30 alloys is studied in three stages. The first stage is to grow a single crystal of Fe70Pd30 using Bridgman method; the second stage focuses on the characterization of material properties. Both x-ray analysis and DSC measurements show that the FCC-FCT transformation is a weak first order thermoelastic transition. The average lattice parameters are a = 3.822 A and c = 3.6298 A for the FCT martensite, and a0 = 3.7557 A for the cubic austenite. The latent heat is 10.79 +/- 11 J/cm3. The Curie temperature is 300°C. The saturation magnetization is ms = 1217 emu/cm3 for the martensite and ms = 1081 emu/cm 3 for the austenite in Fe70Pd30 alloy; the easy axis is in the [100] or [010] direction (the long axis of the FCT lattice). The magnetic anisotropy is -4.8 x 103 erg/cm 3 for the austenite at 60°C, and it is 3.46 x 10 5 erg/cm3 for the martensite at -20°C. In addition, the effect of heat treatment on the materials properties is investigated. The third stage is to characterize the ferromagnetic shape memory effect of this alloy using magnetomechanical tests and the results are compared with micromagnetic theory. The sign of the field-induced strain agrees with the constrained theory. The maximum ferromagnetic strain in this material is about 0.9%, which is 1/4 of the theoretical prediction. The blocking stress is about -4 MPa, and the work output is about 20 x 103 J/m 3 per cycle at -12 MPa and 10°C. Furthermore, stress has large effect on the phase transformation temperature, for the compressive stress, it is 0.7°C/MPa. The phase transformation temperature can also be changed by applying a magnetic field during cooling or heating. The direction and the degree of changes depends on the direction of the field. The most significant change happens at a [001] field less than 1700 G, where [001] refers to the short axis of the FCT lattice.

  12. The Methods Behind PH WINS

    PubMed Central

    Leider, Jonathon P.; Bharthapudi, Kiran; Pineau, Vicki; Liu, Lin; Harper, Elizabeth

    2015-01-01

    The Public Health Workforce Interests and Needs Survey (PH WINS) has yielded the first-ever nationally representative sample of state health agency central office employees. The survey represents a step forward in rigorous, systematic data collection to inform the public health workforce development agenda in the United States. PH WINS is a Web-based survey and was developed with guidance from a panel of public health workforce experts including practitioners and researchers. It draws heavily from existing and validated items and focuses on 4 main areas: workforce perceptions about training needs, workplace environment and job satisfaction, perceptions about national trends, and demographics. This article outlines the conceptualization, development, and implementation of PH WINS, as well as considerations and limitations. It also describes the creation of 2 new data sets that will be available in public use for public health officials and researchers—a nationally representative data set for permanently employed state health agency central office employees comprising over 10 000 responses, and a pilot data set with approximately 12 000 local and regional health department staff responses. PMID:26422490

  13. The Methods Behind PH WINS.

    PubMed

    Leider, Jonathon P; Bharthapudi, Kiran; Pineau, Vicki; Liu, Lin; Harper, Elizabeth

    2015-01-01

    The Public Health Workforce Interests and Needs Survey (PH WINS) has yielded the first-ever nationally representative sample of state health agency central office employees. The survey represents a step forward in rigorous, systematic data collection to inform the public health workforce development agenda in the United States. PH WINS is a Web-based survey and was developed with guidance from a panel of public health workforce experts including practitioners and researchers. It draws heavily from existing and validated items and focuses on 4 main areas: workforce perceptions about training needs, workplace environment and job satisfaction, perceptions about national trends, and demographics. This article outlines the conceptualization, development, and implementation of PH WINS, as well as considerations and limitations. It also describes the creation of 2 new data sets that will be available in public use for public health officials and researchers--a nationally representative data set for permanently employed state health agency central office employees comprising over 10,000 responses, and a pilot data set with approximately 12,000 local and regional health department staff responses. PMID:26422490

  14. Effect of gallium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni-Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.

    2016-04-01

    The effect of gallium alloying on the structure, the phase composition, and the properties of quasibinary Ni50Mn50- z Ga z (0 ⩽ z ⩽ 25 at %) alloys is studied over a wide temperature range. The influence of the alloy composition on the type of crystal structure in high-temperature austenite and martensite and the critical martensitic transformation temperatures is analyzed. A general phase diagram of the magnetic and structural transformations in the alloys is plotted. The temperature-concentration boundaries of the B2 and L21 superstructures in the austenite field, the tetragonal L10 (2 M) martensite, and the 10 M and 14 M martensite phases with complex multilayer crystal lattices are found. The predominant morphology of martensite is shown to be determined by the hierarchy of the packets of thin coherent lamellae of nano- and submicrocrystalline crystals with planar habit plane boundaries close to {011} B2. Martensite crystals are twinned along one of the 24 24{ {011} }{< {01bar 1} rangle _{B2}} "soft" twinning shear systems, which provides coherent accommodation of the martensitic transformation-induced elastic stresses.

  15. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  16. Summary Report of Summer Work: High Purity Single Crystal Growth & Microstructure of Ferritic-Martensitic Steels

    SciTech Connect

    Pestovich, Kimberly Shay

    2015-08-18

    Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratory’s missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NE’s Fuel Cycle Research and Development program to close the nuclear fuel cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.

  17. Deformation of a Ti-Nb alloy containing a"-martensite and omega phases

    SciTech Connect

    Cai, S; Schaffer, J. E.; Ren, Yang

    2015-03-30

    Microscopic deformation of a Ti-17at. %Nb alloy with high fractions of alpha"-martensite and omega phases was studied by in-situ synchrotron X-ray diffraction. Textures, phase fractions, individual lattice strains, and peak intensities during deformation were studied. It is found that, to accommodate the external tensile strain, some of the alpha" and omega grains were first transformed to the beta-phase, which then continuously transformed to the alpha"-phase with chosen variants that effectively accommodate the deformation strain. A strong (010)(alpha") fiber texture was formed at the expense of the (001)(alpha") and (111)(alpha") fiber textures. Above 400 MPa applied stress, (110)(alpha") deformation twinning was triggered with a simultaneous stress relaxation in the (110)(alpha") family and a slight increase in its texture strength in the loading direction. (C) 2015 AIP Publishing LLC.

  18. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

    NASA Astrophysics Data System (ADS)

    Huang, Zilin; Wang, Gang; Wei, Shaopeng; Li, Changhong; Rong, Yiming

    2016-07-01

    Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power (P), scanning speed (V s), wire feed rate (V f), and wire current (I), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.

  19. Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. S.; Okhapkin, K. A.; Mikhailov, M. S.; Skutin, V. S.; Zubova, G. E.; Fedotov, B. V.

    2016-06-01

    In the process of the investigation of the heat resistance of a 0.07C-12Cr-Ni-Mo-V-Nb steel of the martensitic-ferritic class, a reduction was revealed in the long-term strength of its welded joints to below the level of the strength of the base metal. To establish the causes for the accelerated failure of the welded joints, an imitation of the thermal cycles was carried out that produce the structure of the heataffected zone using a dilatometer. In the samples with the structure that corresponds to that of the heataffected zone, a local zone of softening was revealed. The investigations of the metal structure using transmission electron microscopy have shown that the reduction in the creep rupture strength was caused by structural changes under the conditions of the thermal cycle of welding upon the staying of the steel in the temperature range between the Ac 1 and Ac 3 points.

  20. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  1. Effect of mechanical restraint on weldability of reduced activation ferritic/martensitic steel thick plates

    NASA Astrophysics Data System (ADS)

    Serizawa, Hisashi; Nakamura, Shinichiro; Tanaka, Manabu; Kawahito, Yousuke; Tanigawa, Hiroyasu; Katayama, Seiji

    2011-10-01

    As one of the reduced activation ferritic/martensitic steels, the weldability of thick F82H plate was experimentally examined using new heat sources in order to minimize the total heat input energy in comparison with TIG welding. A full penetration of 32 mm thick plate could be produced as a combination of a 12 mm deep first layer generated by a 10 kW fiber laser beam and upper layers deposited by a plasma MIG hybrid welding with Ar + 2%O shielding gas. Also, the effect of mechanical restraint on the weldability under EB welding of thick F82H plate was studied by using FEM to select an appropriate specimen size for the basic test. The appropriate and minimum size for the basic test of weldability under EB welding of 90 mm thick plate might be 200 mm in length and 400 mm in width where the welding length should be about 180 mm.

  2. Weirdest Martensite: Smectic Liquid Crystal Microstructure and Weyl-Poincaré Invariance

    NASA Astrophysics Data System (ADS)

    Liarte, Danilo B.; Bierbaum, Matthew; Mosna, Ricardo A.; Kamien, Randall D.; Sethna, James P.

    2016-04-01

    Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations.

  3. Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Spätig, P.; Victoria, M.

    2002-12-01

    The ball punch test technique was used to evaluate the conventional tensile and impact properties of the tempered martensitic steel EUROFER97 from room temperature down to liquid nitrogen temperature. The testing was carried out on unirradiated material only with small disks, 3 mm in diameter and 0.25 mm in thickness. For comparison, tensile tests were also performed over the same temperature range. Correlations between the load at the plastic bending initiation and the maximum load of the punch tests with the yield stress and the ultimate tensile stress of the tension tests could be established. The temperature dependence of the specific fracture energy of the punch test was used to define a ductile-brittle transition temperature (DBTT) and to correlate this with the DBTT measured from impact Charpy on KLST specimens. The results are compared with other available correlations done in the past on other ferritic steels.

  4. Martensitic phase transformation in Nb/sub 3/Sn - X-Ray observations

    SciTech Connect

    Roberge, R.; Foner, S.; Lehuy, H.

    1985-03-01

    A compilation is presented of room temperature lattice spacing, a /SUB o/ , versus martensitic phase transformation temperature, T /SUB m/ , of Nb/sub 3/Sn for over 50 set of data including data of other investigations. The low temperature tetragonal phase transition occurs with c/a < 1 for a /SUB o/ between 5.289 and 5.2933 A, with c/a > 1 for a /SUB o/ between 5.2865 and 5.2883 A. Nb/sub 3/Sn remains in the cubic phase (no transformation) for a /SUB o/ < 5.2865 A and a /SUB o/ > 5.2933 A, and for a very narrow region between 5.2883 A and 5.289 A. The effect of additives and the effect of matrix strain on the width of T /SUB m/ is also discussed. A detailed tabulation is presented for the various Nb/sub 3/Sn materials and their resultant transformation characteristics.

  5. Metallographic characterization of hypoeutectic martensitic white cast irons: Fe-C-Cr system

    SciTech Connect

    Pero-Sanz, J.A.; Plaza, D.; Verdeja, J.I.; Asensio, J.

    1999-07-01

    High wear resistance and low cost are among the most appreciated properties for the non-alloyed white cast irons. Their toughness levels, however, are poor. An attempt to optimize the compromise between abrasive wear resistance and impact toughness could be reached through the use of low-alloy Ni-Hard cast irons satisfying the majority of mining applications in mineral crushing, classification, and transportation. The present work, based on microstructural considerations, points out some of the limitations in the use of Ni-Hard martensitic cast irons, in contrast to the advantages brought about by the use of white cast irons of non-ledeburitic matrix with high chromium content with respect to the wear resistance and toughness level.

  6. Multi-scale modeling of the iron bcc arrow hcp martensitic phase transformation

    NASA Astrophysics Data System (ADS)

    Caspersen, Kyle; Carter, Emily; Lew, Adrian; Ortiz, Michael

    2004-03-01

    Pressures exceeding 10 GPa induce a martensitic phase transformation in iron, where ferro-magnetic bcc transforms into non-magnetic hcp. The transition pressure is not known precisely, but is thought to depend strongly on shear. To investigate the properties of this transformation and the role of shear, we have developed a multi-scale iron model. This model contains a free energy derived from an ab-initio based non-linear elastic expansion, a kinematically compatible spinodal decomposition of phases, ab-initio based interfacial energies, and a dependence on the bcc rightarrow hcp transformation path(s). The model shows spinodal decomposition behavior (with a slight expected deviation) as well as predicting 10 GPa to be the transformation pressure. Additionally, the model predicted that the inclusion of shear facilitates the transformation, causing transformation pressure to decrease.

  7. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Jayakumar, T.

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  8. Mechanical properties of low activating martensitic 8?10% CrWVTa steels of type OPTIFER

    NASA Astrophysics Data System (ADS)

    Schäfer, L.; Schirra, M.; Ehrlich, K.

    1996-10-01

    A series of low activating steels (OPTIFER-Ia, Ib, II, III and IV) has been developed as materials for the first wall and blanket structures of a future fusion device. The steels have been characterized by metallurgical examinations and by tests of the mechanical properties using tensile, impact bending and creep rupture tests. In comparison with conventional martensitic 9-12% CrMoVNb steels (e.g., MANET and P91 steels) a strong improvement of upper shelf impact energy and a remarkable shift to lower DBTT = -118°C was obtained, whereas other mechanical data are similar. Fracture toughness can be optimized by proper selection of austenitization temperature, quenching and tempering treatment with a preference of a lower austenitizing temperature.

  9. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  10. Design of a low-alloy high-strength and high-toughness martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-jun; Ren, Xue-ping; Yang, Wen-chao; Zang, Yue

    2013-08-01

    To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500°C and 700°C, M7C3 exits below 720°C, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280°C, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.

  11. Resistance spot weldability of 11Cr-ferritic/martensitic steel sheets

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-02-01

    Resistance spot welding of 11Cr-0.4Mo-2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  12. The role of the martensite transformation for the mechanical amorphization of NiTi

    SciTech Connect

    Ewert, J.C.; Boehm, I.; Haider, F.; Peter, R.

    1997-05-01

    Mechanical amorphization by cold rolling and uniaxial deformation of the intermetallic compound NiTi was studied by TEM and DSC. In cold rolled samples it could be clearly shown that amorphization occurs and that the amorphous regions recrystallize at T {approx} 350 C. In uniaxially deformed material a microstructure similar to that of cold rolled samples and a DSC-peak at the same temperature was found. In the TEM, extended amorphous regions could only be identified after a moderate heat treatment at 250 C. After deformation at temperatures above room temperature, a considerably lower degree of amorphization was found, and the fraction of amorphous volume was found to depend on the martensite transition temperature of the material.

  13. Dry sliding wear system response of ferritic and tempered martensitic ductile iron

    NASA Astrophysics Data System (ADS)

    Jha, V. K.; Mozumder, Y. H.; Shama, S.; Behera, R. K.; Pattaniak, A.; P, Sindhoora L.; Mishra, S. C.; Sen, S.

    2015-02-01

    Spheroidal graphite cast iron (SG iron) is the most preferable member of cast iron family due to its strength and toughness along with good tribological properties. SG iron specimens with annealed and martensitic matrix were subjected to dry sliding wear condition and the system response was correlated to matrix microstructure. Respective microstructure was obtained by annealing and quench and tempering heat treatment process for an austenitizing temperature of 1000°C. Specimens were subjected to Ball on plate wear tester under 40N, 50N, 60N load for a sliding distance of 7.54m. Except for quench and tempered specimen at 50N, weight loss was observed in every condition. The wear surface under optical microscope reveals adhesive mechanism for as-cast and annealed specimen whereas delaminated wear track feature was observed for quench and tempered specimen.

  14. Deformation of a Ti-Nb alloy containing α'-martensite and omega phases

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Ren, Y.

    2015-03-30

    Microscopic deformation of a Ti-17at. %Nb alloy with high fractions of α″-martensite and ω phases was studied by in-situ synchrotron X-ray diffraction. Textures, phase fractions, individual lattice strains, and peak intensities during deformation were studied. It is found that, to accommodate the external tensile strain, some of the α″ and ω grains were first transformed to the β-phase, which then continuously transformed to the α″-phase with chosen variants that effectively accommodate the deformation strain. A strong (010){sub α″} fiber texture was formed at the expense of the (001){sub α″} and (111){sub α″} fiber textures. Above 400 MPa applied stress, (110){sub α″} deformation twinning was triggered with a simultaneous stress relaxation in the (110){sub α″} family and a slight increase in its texture strength in the loading direction.

  15. Tensile and creep properties of reduced activation ferritic-martensitic steel for fusion energy application

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Vanaja, J.; Laha, K.; Varaprasad Reddy, G.; Chandravathi, K. S.; Bhanu Sankara Rao, K.

    2011-10-01

    Tensile and creep properties of a reduced activation ferritic-martensitic (RAFM) steel for Indian Test Blanket Module (TBM) to be tested in ITER have been evaluated. The tensile strength was found to decrease with temperature; the rate of decrease being slower in the intermediate temperature range of 450-650 K. Tensile ductility of the steel decreased with increase in temperature up to 650 K, followed by a rapid increase beyond 650 K. Creep studies have been carried out at 773, 823 and 873 K over a stress range of 100-300 MPa. The variation of minimum creep rate with applied stress followed a power law, ɛ = Aσ n. The ' n' value decreased with increase in temperature. The creep rupture life was found to relate inversely with minimum creep rate through the Monkman-Grant relation, t r · ɛ = constant. The tensile and creep properties of the steel were comparable with those of Eurofer 97.

  16. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  17. Reduced activation martensitic steels as a structural material for ITER test blanket

    NASA Astrophysics Data System (ADS)

    Shiba, K.; Enoeda, M.; Jitsukawa, S.

    2004-08-01

    A Japanese ITER test blanket module (TBM) is planed to use reduced-activation martensitic steel F82H. Feasibility of F82H for ITER test blanket module is discussed in this paper. Several kinds of property data, including physical properties, magnetic properties, mechanical properties and neutron-irradiation data on F82H have been obtained, and these data are complied into a database to be used for the designing of the ITER TBM. Currently obtained data suggests F82H will not have serious problems for ITER TBM. Optimization of F82H improves the induced activity, toughness and HIP resistance. Furthermore, modified F82H is resistant to temperature instability during material production.

  18. Study of tempering behavior of lath martensite using in situ neutron diffraction

    SciTech Connect

    Shi, Z.M.; Gong, W.; Tomota, Y.; Harjo, S.; Li, J.; Chi, B.; Pu, J.

    2015-09-15

    To elucidate changes in the density and substructure of dislocations during tempering of lath martensite steel, a convolutional multiple whole-profile fitting method was applied to in situ neutron diffraction profiles. With increasing tempering temperature, the dislocation density scarcely changed in the beginning and then decreased at temperatures above 473 K, whereas the dislocation arrangement drastically changed at temperatures above 673 K. The strength of the steel is speculated to depend on the density and arrangement of dislocations. - Highlights: • A convolutional multiple whole-profile fitting method was applied. • Dislocation density and dislocation arrangement changing with tempering were discussed. • Dislocation density scarcely changed in the beginning. • And then dislocation density decreased at temperatures above 473 K. • The dislocation arrangement drastically changed at temperatures above 673 K.

  19. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  20. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Ding, Hui-Li; Zhang, Tao; Gao, Rui; Wang, Xian-Ping; Fang, Qian-Feng; Liu, Chang-Song; Suo, Jin-Ping

    2015-09-01

    Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90°C to 20°C. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60°C. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field ( H C) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of ln H C versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.

  1. Weirdest Martensite: Smectic Liquid Crystal Microstructure and Weyl-Poincaré Invariance.

    PubMed

    Liarte, Danilo B; Bierbaum, Matthew; Mosna, Ricardo A; Kamien, Randall D; Sethna, James P

    2016-04-01

    Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations. PMID:27104728

  2. X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hossein Nedjad, S.; Hosseini Nasab, F.; Movaghar Garabagh, M. R.; Damadi, S. R.; Nili Ahmadabadi, M.

    2011-08-01

    18Ni (300) maraging steel possessing lath martensite structure was deformed by four passes of equal-channel angular pressing (ECAP) at ambient temperature. Line profile analysis (LPA) of X-ray diffraction (XRD) patterns identified strong strain anisotropy and remarkable increases in the relative fraction of screw dislocations after ECAP. The strain anisotropy was reasonably accounted for by the anisotropy of elastic constants. Domination of screw dislocations in the deformed structure was attributed to the preferred annihilation of edge dislocations in the early stages of deformation along with the difficulties for annihilation of screw dislocations by cross slipping. Cobalt addition was mainly assumed to make cross slipping difficult by reducing stacking-fault energy and favoring short-range ordering.

  3. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)

    SciTech Connect

    Zhao Fei; Qiao Jiansheng; Huang Yina; Wan Farong Ohnuki, Soumei

    2008-03-15

    CLAM is one composition of a Reduced Activation Ferritic/Martensitic steel (RAFM), which is being studied in a number of institutes and universities in China. The effect of electron-beam irradiation temperature on irradiation swelling of CLAM was investigated by using a 1250 kV High Voltage Electron Microscope (HVEM). In-situ microstructural observations indicated that voids formed at each experimental temperature - 723 K, 773 K and 823 K. The size and number density of voids increased with increasing irradiation dose at each temperature. The results show that CLAM has good swelling resistance. The maximum void swelling was produced at 723 K; the swelling was about 0.3% when the irradiation damage was 13.8 dpa.

  4. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  5. Mechanical behaviour of the T91 martensitic steel under monotonic and cyclic loadings in liquid metals

    NASA Astrophysics Data System (ADS)

    Vogt, J.-B.; Verleene, A.; Serre, I.; Legris, A.

    2004-11-01

    The paper deals with the mechanical properties in liquid metals of the T91 martensitic steel, a candidate material for the window of an accelerating driven system (ADS). Two main questions are examined, the risk of liquid metal embrittlement and the accelerated fatigue damage by a liquid metal. It is found that the transition from ductile to brittle behaviour induced by a liquid metal is possible as a result of a decrease in surface energy caused by the adsorbed liquid metal. The embrittlement can occur only with a hard microstructure and a nucleation of very sharp defects inside the liquid metal. Under cycling straining, the fatigue resistance of the standard T91 steel is decreased by a factor of about 2 in the liquid metal as compared to air. It is proposed that short crack growth is promoted by the liquid metal which weakens the microstructural grain boundary barriers and skip the microcrack coalescence stage.

  6. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kohno, Y.; Kohyama, A.; Hirose, T.; Hamilton, M. L.; Narui, M.

    Mechanical property changes of Fe- XCr-2W-0.2V,Ta ( X: 2.25-12) low activation ferritic/martensitic steels including Japanese Low Activation Ferritic/martensitic (JLF) steels and F82H after neutron irradiation were investigated with emphasis on Charpy impact property, tensile property and irradiation creep properties. Dose dependence of ductile-to-brittle transition temperature (DBTT) in JLF-1 (9Cr steel) irradiated at 646-700 K increased with irradiation up to 20 dpa and then decreased with further irradiation showing highest DBTT of 260 K at 20 dpa. F82H showed similar dose dependence in DBTT to JLF-1 with higher transition temperature than that of JLF-1 at the same displacement damage. Yield strength in JLF steels and F82H showed similar dose dependence to that of DBTT. Yield strength increased with irradiation up to 15-20 dpa and then decreased to saturate above about 40 dpa. Irradiation hardening in 7-9%Cr steels (JLF-1, JLF-3, F82H) were observed to be smaller than those in steels with 2.25%Cr (JLF-4) or 12%Cr (JLF-5). Dependences of creep strain on applied hoop stress and neutron fluence were measured to be 1.5 and 1, respectively. Temperature dependence of creep coefficient showed a maximum at about 700 K which was caused by irradiation induced void formation or irradiation enhanced creep deformation. Creep coefficient of F82H was larger than those of JLF steels above 750 K. This was considered to be caused by the differences in N and Ta concentration between F82H and JLF steels.

  7. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding

    NASA Astrophysics Data System (ADS)

    Dubuisson, Philippe; Carlan, Yann de; Garat, Véronique; Blat, Martine

    2012-09-01

    The development of ODS materials for the cladding for Sodium Fast Reactors is a key issue to achieve the objectives required for the GEN IV reactors. CEA, AREVA and EDF have launched in 2007 an important program to determine the optimal fabrication parameters, and to measure and understand the microstructure and properties before, under and after irradiation of such cladding materials. The aim of this paper is to present the French program and the major results obtained recently at CEA on Fe-9/14/18Cr1WTiY2O3 ferritic/martensitic ODS materials. The first step of the program was to consolidate Fe-9/14/18Cr ODS materials as plates and bars to study the microstructure and the mechanical properties of the new alloys. The second step consists in producing tubes at a geometry representative of the cladding of new Sodium Fast Reactors. The optimization of the fabrication route at the laboratory scale is conducted and different tubes were produced. Their microstructure depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. To join the plug to the tube, the reference process is the welding resistance. A specific approach is developed to model the process and support the development of the welds performed within the "SOPRANO" facility. The development at CEA of Fe-9/14/18Cr new ODS materials for the cladding for GENIV Sodium Fast Reactors is in progress. The first microstructural and mechanical characterizations are very encouraging and the full assessment and qualification of this new alloys and products will pass through the irradiation of specimens, tubes, fuel pins and subassemblies up to high doses.

  8. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3 T M ( T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  9. Studies on Nb Microalloying of 13Cr Super Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoping; Wang, Lijun; Subramanian, Sundaresa V.; Liu, Chunming

    2012-12-01

    The effect of Nb microalloying on microstructure, mechanical properties, and pitting corrosion properties of quenched and tempered 13 pct Cr-5 pct Ni-0.02 pct C martensitic stainless steels with different Mo and N contents was investigated. The microstructure, density, and dispersion of high-angle boundaries, nanoscale precipitates, and amount of retained austenite were characterized by using electron backscattered diffraction, transmission electron microscopy, and X-ray diffraction to correlate with properties. The results show that the combined effects of lowering nitrogen content in 13 pct Cr-5 pct Ni-1~2 pct Mo-0.02 pct C steels to 0.01 wt pct, and adding 0.1 pct Nb are to decrease the amount of Cr-rich precipitates, as Nb preferentially combines with residual carbon and nitrogen to form carbonitrides, suppressing the formation of Cr2N and Cr23C6. Austenite grain refinement can be achieved by Nb microalloying through proper heat treatment. If the nitrogen content is kept high, then Cr-rich precipitates would occur irrespective of microalloying addition. The NbN would also occur at high temperature, which will act as substrate for nucleation of coarse precipitates during subsequent tempering, impairing the toughness of the steel. It was shown that the addition of Nb to low interstitial super martensitic stainless steel retards the formation of reversed austenite and results in the formation of nanoscale precipitates (5 to 15 nm), which contribute to a significant increase in strength. More importantly, the pitting corrosion resistance was found to increase with Nb addition. This is attributed to suppression of Cr-rich precipitates, which can cause local depletion of Cr in the matrix and the initiation of pitting corrosion.

  10. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  11. Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Liu, Lingbo; Xiang, Xin; Rao, Yongchu; Ye, Xiaoqiu; Chen, Chang An

    2016-03-01

    Reduced Activation Ferritic/Martensitic (RAFM) steels have been considered as the most promising candidate structure materials for a fusion reactor. In the recent decades, two new types of RAFM steels, called China Low Activation Martensitic (CLAM) steel and China Low-activation Ferritic (CLF-1) steel, have been developed. The gas evolution permeation technique has been used to investigate diffusive transport parameters of deuterium through CLAM and CLF-1 over the temperature range 623 ∼ 873 K at deuterium pressure of 105 Pa. The resultant transport parameters are: Φ (mol. m-1 s-1 Pa-1/2) = 5.40 × 10-8 exp (-46.8 (kJ. mol-1)/RT), D(m2 s-1) = 3.81 × 10-7 exp(-24.0(kJ. mol-1)/RT) and S (mol. m-3 Pa-1/2) = 1.42 × 10-1 exp(-22.8(kJ. mol-1)/RT) for CLAM; while Φ(mol m-1 s-1 Pa-1/2) = 1.76 × 10-8 exp(-43.9(kJ. mol-1)/RT), D(m2. s-1) = 1.02 × 10-7 exp(-16.9(kJ. mol-1)/RT) and S(mol. m-1 Pa-1/2) = 1.73 × 10-1 exp(-27.0(kJ. mol-1) /RT) for CLF-1. The results show that CLAM is more permeable than CLF-1, thus it is easier for hydrogen isotopes to transport and be removed.

  12. The pH of antiseptic cleansers

    PubMed Central

    Kulthanan, Kanokvalai; Varothai, Supenya; Nuchkull, Piyavadee

    2014-01-01

    Background Daily bathing with antiseptic cleansers are proposed by some physicians as an adjunctive management of atopic dermatitis (AD). As atopic skin is sensitive, selection of cleansing products becomes a topic of concern. Objective Our purpose is to evaluate the pH of various antiseptic body cleansers to give an overview for recommendation to patients with AD. Methods Commonly bar and liquid cleansers consisted of antiseptic agents were measured for pH using pH meter and pH-indicator strips. For comparison, mild cleansers and general body cleansers were also measured. Results All cleansing bars had pH 9.8-11.3 except syndet bar that had neutral pH. For liquid cleansers, three cleansing agents had pH close to pH of normal skin, one of antiseptic cleansers, one of mild cleansers and another one of general cleansers. The rest of antiseptic cleansers had pH 8.9-9.6 while mild cleansers had pH 6.9-7.5. Syndet liquid had pH 7 and general liquid cleansers had pH 9.6. Conclusion The pH of cleanser depends on composition of that cleanser. Adding antiseptic agents are not the only factor determining variation of pH. Moreover, benefit of antiseptic properties should be considered especially in cases of infected skin lesions in the selection of proper cleansers for patients with AD. PMID:24527408

  13. Effect of titanium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni—Mn—Ti alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Kourov, N. I.; Pushin, V. G.; Uksusnikov, A. N.

    2015-09-01

    The behavior and the properties of Ni50Mn50- y Ti y ( y = 5, 10, 15, 25, 30) alloys are studied by electrical resistivity measurements, transmission electron microscopy, scanning electron microscopy, and X-ray diffraction over a wide temperature range. It is found that the martensite transformation temperature of the complex alloys can be significantly lower than the transformation temperature range of binary Ni50Mn50 and Ni49Mn51 alloys. Apart from tetragonal L10 martensite, a complex multilayer (10 M) crystal lattice is revealed in the alloys. Martensite is shown to have a predominant morphology in the form of hierarchic packets of thin coherent plates of nanoand submicrocrystalline crystallites, which have plane habit boundaries. In the case of tetragonal L10 and 10 M martensite, these boundaries are close to {011} B2 and are pairwise twinned along one of the 24 equivalent twinning shear systems.

  14. Effect of thermal cycling on the R-phase and martensitic transformations in a Ti-rich NiTi alloy

    SciTech Connect

    Pelosin, V.; Riviere, A.

    1998-04-01

    The effect of thermal cycling on transformation temperature was studied on a Ti-rich NiTi alloy. The study was carried out by determining the electrical resistance, the internal friction, and the elastic modulus vs temperature. This study shows that the martensite microstructure is modified by the successive cycling transformation. In addition, the authors established that both the martensite internal friction and the transition peak are sensitive to the transient effect (the vibration frequency lies around 300 Hz). But the major results concern the behavior associated with the R phase occurrence and its evolution. They have stated that the premartensitic phase becomes stable following the diminishment of the beginning of the martensite formation (M{sub s}). Interrupted cooling has also shown that, contrary to the martensite, the R phase exhibits no hysteretic behavior.

  15. Irreversibility of the martensitic transformation in Ni-Mn-In single crystal studied by resistivity under pressure and in situ optical observations

    NASA Astrophysics Data System (ADS)

    Porcar, L.; Courtois, P.; Crouigneau, G.; Debray, J.; Bourgault, D.

    2014-10-01

    Optical observations under uniaxial pressure and in-situ resistivity measurements were undertaken in Ni-Mn-In single crystals as a function of temperature to study the thermal hysteresis of the martensitic transformation. The irreversibility of the isothermal transformation under pressure was clearly observed, and it was possible to stabilize the martensitic phase with large and coarsen variants by applying a pressure at a stable temperature Ms reached during cooling down (cooling branch of the hysteresis). When the uniaxial pressure is applied in the heating branch of the hysteresis, the martensitic transformation occurs in a complete reversible way as the hysteresis delimitates the metastability of the martensitic/austenitic phases and the energy barrier to overcome for the transformation. This procedure leads to a piezoresistance as large as 200%.

  16. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  17. Effect of heat treatment and irradiation temperature on mechanical properties and structure of reduced-activation Cr-W-V steels of bainitic, martensitic, and martensitic-ferritic classes

    NASA Astrophysics Data System (ADS)

    Gorynin, I. V.; Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.; Nesterova, E. V.; Klepikov, E. Yu

    2000-12-01

    Effects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic-ferritic classes containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic steels were varied by changing the cooling rates from the austenitization temperature (from values typical for normalization up to V=3.3 × 10-2°C/s) and then tempering. The steels were irradiated to a fluence of 4×1023 n/m2 (⩾0.5 MeV) at 270°C and to fluences of 1.3×1023 and 1.2×1024 n/m2 (⩾0.5 MeV) at 70°C. The 2.5Cr-1.4WV and 8Cr-1.5WV steels have shown lower values of the shifts in ductile-brittle transition temperature (DBTT) under irradiation in comparison with corresponding Cr-Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest in bainitic 2.5Cr-1.4WV steel and martensitic-ferritic 11Cr-1.5WV steel. The positive effect of molybdenum replacement by tungsten at irradiation temperature ∼300°C is reversed at Tirr=70∘C.

  18. High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic transformations in multifunctional Ti-24Nb-4Zr-8Sn alloy

    SciTech Connect

    Liu, J. P.; Wang, Y. D.; Hao, Y. L.; Wang, H. L.; Wang, Y.; Nie, Z. H.; Su, R.; Wang, D.; Ren, Y.; Lu, Z. P.; Wang, J. G.; Hui, X. D.; Yang, R.

    2014-12-01

    Two main explanations exist for the deformation mechanisms in Ti-Nb-based gum metals, i.e. the formation of reversible nanodisturbance and reversible stress-induced martensitic transformation. In this work, we used the in situ synchrotron-based high-energy X-ray diffuse-scattering technique to reveal the existence of a specific deformation mechanism, i.e. deformation-induced spatially confined martensitic transformations, in Ti-24Nb-4Zr-8Sn-0.10O single crystals with cubic 13 parent phase, which explains well some anomalous mechanical properties of the alloy such as low elastic modulus and nonlinear superelasticity. Two kinds of nanosized martensites with different crystal structures were found during uniaxial tensile loading along the [11 0](beta) axis at room temperature and 190 K, respectively. The detailed changes in the martensitic phase transformation characteristics and the transformation kinetics were experimentally observed at different temperatures. The domain switch from non-modulated martensite to a modulated one occurred at 190 K, with its physical origin attributed to the heterogeneity of local phonon softening depending on temperature and inhomogeneous composition in the parent phase. An in-depth understanding of the formation of stress-induced spatially confined nanosized martensites with a large gradient in chemical composition may benefit designs of high-strength and high-ductility alloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NASA Astrophysics Data System (ADS)

    Navarro-López, A.; Sietsma, J.; Santofimia, M. J.

    2016-03-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature ( M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent transformation. This kinetic effect is commonly attributed to the creation of potential nucleation sites at martensite-austenite interfaces. The aim of this study is to determine qualitatively and quantitatively the effect of a small volume fraction of martensite on the nucleation kinetics of the subsequent transformation. For this purpose, dilatometry experiments were performed at different temperatures above and below the M s temperature for athermal martensite in a low-carbon high-silicon steel. Microstructural analysis led to the identification of the isothermal decomposition product formed above and below M s as bainitic ferrite. The analysis of the transformation processes demonstrated that the initial stage of formation of bainitic ferrite at heat treatments below M s is at least two orders of magnitude faster than above M s due to the presence of martensite.

  20. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Jang, Min-Ho; Park, Min-Gu; Han, Heung Nam

    2014-12-01

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs.

  1. Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Mohtadi-Bonab, M. A.; Basu, R.; Nezakat, M.; Kermanpur, A.; Szpunar, J. A.; Nahar, S.; Baghpanah, A. H.

    2015-02-01

    The crystallographic orientation of cold-rolled 316L stainless steel is investigated during reversion of strain-induced ά-martensite to nano/ultrafine-grained austenite upon annealing at 750 °C for different holding times; 1, 5, 15, and 30 min. The texture of nanoscale reverted austenite reveals a Brass ({110}<112>) and a Goss ({110}<100>) textures after annealing for 1 min. No new texture component is appeared through the completion of martensite to austenite reversion for 5 min, but the intensity of Brass and Goss textures are increased. Further annealing for 30 min results in a stronger texture with higher intensity for Brass compared to Goss.

  2. Pros and cons of nickel- and boron-doping to study helium effects in ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Klueh, R. L.; Shiba, K.

    2002-12-01

    In the absence of a 14 MeV neutron source, the effect of helium on structural materials for fusion must be simulated using fission reactors. Helium effects in ferritic/martensitic steels have been studied by adding nickel and boron and irradiating in a mixed-spectrum reactor. Although the nickel- and boron-doping techniques have limitations and difficulties to estimate helium effects on the ferritic/martensitic steels, past irradiation experiments using these techniques have demonstrated similar effects on the swelling and Charpy impact properties that are indicative of a helium effect. Although both techniques have disadvantages, it should be possible to plan experiments using the nickel- and boron-doping techniques to develop an understanding of the effects of helium on mechanical properties.

  3. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    DOE PAGESBeta

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phasesmore » under hydrostatic pressure, and compare to experiments and previous calculations.« less

  4. Dynamic strain aging behavior of modified 9Cr-1Mo and reduced activation ferritic martensitic steels under low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Prasad Reddy, G. V.; Mathew, M. D.

    2013-04-01

    Influence of temperature and strain rate on low cycle fatigue (LCF) behavior of modified 9Cr-1Mo ferritic martensitic steel and 1.4W-0.06Ta reduced activation ferritic martensitic (RAFM) steel in normalized and tempered conditions was studied. Total strain controlled LCF tests between 300 and 873 K on modified 9Cr-1Mo steel and RAFM steel and at various strain rates on modified 9Cr-1Mo steel were performed at total strain amplitude of ±0.6%. Both the steels showed continuous cyclic softening at all temperatures. Whereas manifestations of dynamic strain aging (DSA) were observed in both the steels which decreased fatigue life at intermediate temperatures, at higher temperatures, oxidation played a crucial role in decreasing fatigue life.

  5. Curvature effect on the mechanical behaviour of a martensitic shape-memory-alloy wire for applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Tran, Hanh; Balandraud, Xavier; Destrebecq, Jean-François

    2015-02-01

    The mechanical response of a bent shape memory alloy (SMA) wire is a key point for the understanding of the process of the creation of confining effects in a wrapped concrete cylinder for example. The objective of the present study is to model the phenomena involved in the bending of a martensitic SMA wire. The mechanism of martensite reorientation is considered in the model, which also takes into account the asymmetry between tension and compression. For validation purposes, experiments were performed on Ni-Ti wires: measurement of residual curvatures after bending release and tensile tests on pre-bent wires. In particular, the analysis shows a variation in axial stiffness as a function of the preliminary curvature. This result shows the necessity of modelling the distributions of the state variables within the wire cross-section for the simulation of confinement processes using SMA wires. It also opens prospects to potential application to the bending of SMA fibres in smart textiles.

  6. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phases under hydrostatic pressure, and compare to experiments and previous calculations.

  7. Ultrafine Grain Formation in a Ti-6Al-4V Alloy by Thermomechanical Processing of a Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Chao, Qi; Hodgson, Peter D.; Beladi, Hossein

    2014-05-01

    In the current study, ultrafine equiaxed grains with a size of 150 to 800 nm were successfully produced in a Ti-6Al-4V alloy through thermomechanical processing of a martensitic starting microstructure. This was achieved through a novel mechanism of grain refinement consisting of several concurrent processes. This involves the development of substructure in the lath interiors at an early stage of deformation, which progressed into small high-angle segments with increasing strain. Consequently, the microstructure was gradually transformed to an equiaxed ultrafine grained structure, mostly surrounded by high-angle grain boundaries, through continuous dynamic recrystallization. Simultaneously, the supersaturated martensite was decomposed during deformation, leading to the progressive formation of beta phase, mainly nucleated on the intervariant lath boundaries.

  8. Analyses of Transformation Kinetics of Carbide-Free Bainite Above and Below the Athermal Martensite-Start Temperature

    NASA Astrophysics Data System (ADS)

    Yakubtsov, I. A.; Purdy, G. R.

    2012-02-01

    The isothermal transformation kinetics of austenite decomposition in Fe-0.4C-2.78Mn-1.81Si was analyzed by an electrical resistivity technique in the temperature interval 723 K to 418 K (450 °C to 145 °C). The analysis of transformation kinetics of the bainite transformation was performed using the Johnson-Mehl-Avrami-Kolgomorov (JMAK) and Austin-Rickett (AR) approaches. The kinetic parameters, the reaction constant n, rate constant k = k( T), and apparent activation energy Q were evaluated for isothermal transformations below and above the martensite-start temperature M S = 548 K (275 °C), which was determined experimentally. The formation of strain-induced martensite, which starts to accompany the bainite transformation at just above M S , increases the rate of transformation and decreases the apparent activation energy of austenite decomposition.

  9. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    SciTech Connect

    Tang, Wei; Chen, Gaoqiang; Chen, Jian; Yu, Xinghua; Frederick, David Alan; Feng, Zhili

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  10. Influence of quenching rate on the magnetic and martensitic properties of Ni-Fe-Ga melt-spun ribbons

    SciTech Connect

    Okumura, H.; Uemura, K.

    2010-08-15

    We have fabricated Ni-Fe-Ga {beta} single phase alloy ribbons with Ga content less than 25 at. %. Higher spinning rate of melt-spinning technique can produce {beta} single phase alloys without precipitation of {gamma} particles, whereas lower spinning rate results in the {beta}+{gamma} two phase structure. This higher quenching rate is found to be able to fully suppress the formation of {gamma} phase during fabrication. The martensitic and magnetic transition temperatures of {beta} phase ribbons are both above room temperature, and the ribbon show saturation magnetization as high as 56.5 emu/g at room temperature. These features are attractive for practical applications. The effects of quenching rate on microstructure, martensitic transformation, and magnetic properties are discussed.

  11. The effect of copper doping on martensite shear stress in porous TiNi(Mo,Fe,Cu) alloys

    NASA Astrophysics Data System (ADS)

    Khodorenko, V. N.; Kaftaranova, M. I.; Gunther, V. E.

    2015-03-01

    The properties of alloys based on porous nickel-titanium (TiNi) with copper additives have been studied. It is established that the copper doping of porous TiNi(Mo,Fe,Cu) alloys fabricated by the method of self-propagating high-temperature synthesis leads to a significant decrease in the martensite shear stress (below 30 MPa). Low values of the martensite shear stress (σmin) in copper-doped TiNi-based alloys allows medical implants of complex shapes to be manufactured for various purposes, including oral surgery. The optimum concentration of copper additives (within 3-6 at %) has been determined that ensures high performance characteristics of TiNi-based porous alloys for medical implants.

  12. Effect of temperature and strain distribution on martensitic transformation during uniaxial testing of AISI-304 stainless steel

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Singhal, L. K.

    1988-04-01

    A coupled finite element method has been used to determine the true plastic strain, effective strain, and temperature distribution inside the tensile specimen of AISI-304 austenitic stainless steel during uniaxial testing at low and high strain rates. The volume fraction of martensite has been computed along the gage length by employing Olson-Cohen analysis and using the value of a and β parameters from Heckers curve at the temperatures which were obtained by FEM analysis in different elements of the specimen. The results reveal that due to nonhomogeneous distribution of plastic strain and variation in temperature along the gage length, the volume fraction of martensite would be different near the end of gage length and the center of the specimen.

  13. Temperature-induced martensite in magnetic shape memory Fe{sub 2}MnGa observed by photoemission electron microscopy

    SciTech Connect

    Jenkins, Catherine; Scholl, Andreas; Kainuma, R.; Elmers, Hans-Joachim; Omori, Toshihiro

    2012-01-18

    The magnetic domain structure in single crystals of a Heusler shape memory compound near the composition Fe{sub 2}MnGa was observed during phase transition by photoelectron emission microscopy at Beamline 11.0.1.1 of the Advanced Light Source. The behavior is comparable with recent observations of an adaptive martensite phase in prototype Ni{sub 2}MnGa, although the pinning in the recent work is an epitaxial interface and in this work the e ective pinning plane is a boundary between martensitic variants that transform in a self-accommodating way from the single crystal austenite phase present at high temperatures. Temperature dependent observations of the twinning structure give information as to the coupling behavior between the magnetism and the structural evolution.

  14. Re-equilibration after quenches in athermal martensites: Conversion delays for vapor-to-liquid domain-wall phases

    NASA Astrophysics Data System (ADS)

    Shankaraiah, N.; Murthy, K. P. N.; Lookman, T.; Shenoy, S. R.

    2015-06-01

    Entropy barriers and aging states appear in martensitic structural-transition models, slowly re-equilibrating after temperature quenches, under Monte Carlo dynamics. Concepts from protein folding and aging harmonic oscillators turn out to be useful in understanding these nonequilibrium evolutions. We show how the athermal, nonactivated delay time for seeded parent-phase austenite to convert to product-phase martensite arises from an identified entropy barrier in Fourier space. In an aging state of low Monte Carlo acceptances, the strain structure factor makes constant-energy searches for rare pathways to enter a Brillouin zone "golf hole" enclosing negative-energy states, and to suddenly release entropically trapped stresses. In this context, a stress-dependent effective temperature can be defined, that re-equilibrates to the quenched bath temperature.

  15. Effects of high magnetic fields on the martensitic transformation and on the mechanical behavior of cryogenic Fe-9Ni steel

    SciTech Connect

    Fior, G.O.

    1984-11-01

    The advancement of high field superconducting magnet technology requires structural steel that can bear large stresses at cryogenic temperatures in the presence of high magnetic fields. One class of candidate materials is high strength ferritic steels, such as Fe-9Ni steel, which are commonly toughened for cryogenic service by a two-phase tempering treatment that forms small austenite (..gamma..) precipitates. A fine dispersion of sub-micron sized ..gamma.. is retained upon cooling to cryogenic temperatures and its presence is believed to play an important role in the suppression of the ductile-to-brittle transition of this materials. The retained ..gamma.., however, is metastable with respect to the martensitic transformation, and since the magnetic properties of ..gamma.. (paramagnetic) differ from those of the martensite (..cap alpha..') matrix (ferromagnetic), it is argued that a high magnetic field will influence the stability of ..gamma... This investigation was devoted to the study of high magnetic field effects on the martensitic transformation of retained ..gamma.. and the corresponding effects on the mechanical properties of cryogenic Fe-9Ni steel. Thermomagnetic exposure to 16 Tesla pulsed fields and thermo-magneto-mechanical exposure to 18.1 Tesla steady fields confirmed the presence of magnetically induced ..gamma.. ..-->.. ..cap alpha..' transformation in the liquid helium to room temperature range. The amount of transformation exceeded that expected from equilibrium thermodynamics and resulted in a detrimental effect on the mechanical behavior of this material. The detrimental effect of the ..gamma.. ..-->.. ..cap alpha..' transformation on the mechanical properties correlated to an increase in quasi-cleavage fracture surface area. Microstructural characterization of the ..gamma.. ..-->.. ..cap alpha..' transformation identified the crystallographic degradation of the martensitic matrix as the source of inferior mechanical properties.

  16. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  17. Microstructural development under irradiation in European ODS ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Schäublin, R.; Ramar, A.; Baluc, N.; de Castro, V.; Monge, M. A.; Leguey, T.; Schmid, N.; Bonjour, C.

    2006-06-01

    Oxide dispersion strengthened steels based on the ferritic/martensitic steel EUROFER97 are promising candidates for a fusion reactor because of their improved high temperature mechanical properties and their potential higher radiation resistance relative to the base material. Several EUROFER97 based ODS F/M steels are investigated in this study. There are the Plansee ODS steels containing 0.3 wt% yttria, and the CRPP ODS steels, whose production route is described in detail. The reinforcing particles represent 0.3-0.5% weight and are composed of yttria. The effect of 0.3 wt% Ti addition is studied. ODS steel samples have been irradiated with 590 MeV protons to 0.3 and 1.0 dpa at room temperature and 350 °C. Microstructure is investigated by transmission electron microscopy and mechanical properties are assessed by tensile and Charpy tests. While the Plansee ODS presents a ferritic structure, the CRPP ODS material presents a tempered martensitic microstructure and a uniform distribution of the yttria particles. Both materials provide a yield stress higher than the base material, but with reduced elongation and brittle behaviour. Ti additions improve elongation at high temperatures. After irradiation, mechanical properties of the material are only slightly altered with an increase in the yield strength, but without significant decrease in the total elongation, relative to the base material. Samples irradiated at room temperature present radiation induced defects in the form of blacks dots with a size range from 2 to 3 nm, while after irradiation at 350 °C irradiation induced a0<1 0 0>{1 0 0} dislocation loops are clearly visible along with nanocavities. The dispersed yttria particles with an average size of 6-8 nm are found to be stable for all irradiation conditions. The density of the defects and the dispersoid are measured and found to be about 2.3 × 10 22 m -3 and 6.2 × 10 22 m -3, respectively. The weak impact of irradiation on mechanical properties of ODS F

  18. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    NASA Astrophysics Data System (ADS)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  19. Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition

    NASA Astrophysics Data System (ADS)

    Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg

    2015-10-01

    Phase transitions in nickel-titanium shape-memory alloys are investigated by means of atomistic simulations. A second nearest-neighbor modified embedded-atom method interatomic potential for the binary nickel-titanium system is determined by improving the unary descriptions of pure nickel and pure titanium, especially regarding the physical properties at finite temperatures. The resulting potential reproduces accurately the hexagonal-close-packed to body-centered-cubic phase transition in Ti and the martensitic B 2 -B 19' transformation in equiatomic NiTi. Subsequent large-scale molecular-dynamics simulations validate that the developed potential can be successfully applied for studies on temperature- and stress-induced martensitic phase transitions related to core applications of shape-memory alloys. A simulation of the temperature-induced phase transition provides insights into the effect of sizes and constraints on the formation of nanotwinned martensite structures with multiple domains. A simulation of the stress-induced phase transition of a nanosized pillar indicates a full recovery of the initial structure after the loading and unloading processes, illustrating a superelastic behavior of the target system.

  20. Measurement of transformation temperatures and specific heat capacity of tungsten added reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Raju, S.; Jeya Ganesh, B.; Rai, Arun Kumar; Mythili, R.; Saroja, S.; Mohandas, E.; Vijayalakshmi, M.; Rao, K. B. S.; Raj, Baldev

    2009-06-01

    The on-heating phase transformation temperatures up to the melting regime and the specific heat capacity of a reduced activation ferritic-martensitic steel (RAFM) with a nominal composition (wt%): 9Cr-0.09C-0.56Mn-0.23V-1W-0.063Ta-0.02N, have been measured using high temperature differential scanning calorimetry. The α -ferrite + carbides → γ-austenite transformation start and finish temperatures, namely A c1, and A c3, are found to be 1104 and 1144 K, respectively for a typical normalized and tempered microstructure. It is also observed that the martensite start ( MS) and finish ( Mf) temperatures are sensitive to the austenitising conditions. Typical MS and Mf values for the 1273 K normalized and 1033 K tempered samples are of the order 714 and 614 K, respectively. The heat capacity CP of the RAFM steel has been measured in the temperature range 473-1273 K, for different normalized and tempered samples. In essence, it is found that the CP of the fully martensitic microstructure is found to be lower than that of its tempered counterpart, and this difference begins to increase in an appreciable manner from about 800 K. The heat capacity of the normalized microstructure is found to vary from 480 to 500 J kg -1 K -1 at 500 K, where as that of the tempered steel is found to be higher by about, 150 J kg -1 K -1.

  1. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  2. Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Breda, Marco; Brunelli, Katya; Grazzi, Francesco; Scherillo, Antonella; Calliari, Irene

    2015-02-01

    Duplex stainless steels (DSSs) are biphasic steels having a ferritic-austenitic microstructure that allows them to combine good mechanical and corrosion-resistance properties. However, these steels are sensitive to microstructural modifications, such as ferrite decomposition at high temperatures and the possibility of strain-induced martensite (SIM) formation from cold-worked austenite, which can significantly alter their interesting features. In the present work, the effects of cold rolling on the developed microstructural features in a cold-rolled SAF 2205 DSS and the onset of martensitic transformation are discussed. The material was deformed at room temperature from 3 to 85 pct thickness reduction, and several characterization techniques (scanning and transmission electron microscopy, X-ray diffraction, hardness measurements, and time-of-flight-neutron diffraction) were employed in order to fully describe the microstructural behavior of the steel. Despite the low stacking fault energy of DSS austenite, which contributed to SIM formation, the steel was found to be more stable than other stainless steel grades, such as AISI 304L. Rolling textures were similar to those pertaining to single-phase materials, but the presence of the biphasic (Duplex) microstructure imposed deformation constraints that affected the developed microstructural features, owing to phases interactions. Moreover, even if an intensification of the strain field in austenite was revealed, retarded SIM transformation kinetics and lower martensite amounts with respect to AISI 304L were observed.

  3. Lattice image studies on the intervariant boundary structure and substructure of Cu-Zn-Al 18R martensite

    NASA Astrophysics Data System (ADS)

    Adachi, Kenji; Perkins, Jeff

    1985-09-01

    The boundaries between 18R martensite plates in a Cu-Zn-Al alloy, which join martensite variani each plate group and are designated as the A:C and A:D type intervariant boundaries, have been studied in a lattice imaging mode. The details of the atomic configurations across these interfaces are discussed. It is found that the A:C boundary is a straight coherent twin boundary matching exactly the (128)18R planes of the adjoining martensite variant plates. The A:D boundary, although generally planar, does not match a particular crystallographic plane of a variant plate, but rather has a tendency to wander and form curved segments, except in the regions where occasional 2H structural faults internal to one of the variants, meet the 18R structure in the variant on the other side of the boundary Nonbasal stacking faults are observed as well, with a faulting plane, (128), which is crys tallographically equivalent to the A:C type intervariant plane. This nonbasal faulting is considered to be a consequence of cross-slipping of partial dislocations related to the basal plane faults.

  4. Micromechanics of stress-induced martensitic transformation in mono- and polycrystalline shape memory alloys: Ni-Ti

    SciTech Connect

    Liang, Y.; Taya, M.; Mori, T.

    1999-07-01

    Stress-induced martensitic transformation in single crystals and polycrystals are examined on the basis of micromechanics. A simple method to find a stress- and elastic energy-free martensite plate (combined variant), which consists of two variants, is presented. External and internal stresses preferentially produce a combined variant, to which the stresses supply the largest work upon its formation. Using the chemical energy change with temperature, the phase boundary between the parent and martensitic phases is determined in stress-temperature diagrams. The method is extended to a polycrystal, modeled as an aggregate of spherical grains. The grains constitute axisymmetric multiple fiber textures and a uniaxial load is applied to the fiber axis. The occurrence and progress of transformation are followed by examining a stress state in the grains. The stress is the sum of the external stress and internal stress. The difference in the fraction of transformation and, thus, in transformation strains between the grains causes the internal stress, which is calculated with the average field method. After a short transition stage, all the grains start to transform, and the external uniaxial stress to continue the transformation increases linearly thereafter. The external stress at the end of the transition is defined as the macroscopic yield stress due to the transformation in polycrystals. The yield stress tends to saturate, as the number of the textures increases.

  5. Prediction of precipitate evolution and martensite transformation in Ti-Ni-Cu shape memory alloys by computational thermodynamics

    NASA Astrophysics Data System (ADS)

    Povoden-Karadeniz, A.; Cirstea, D. C.; Kozeschnik, E.

    2016-04-01

    Ti-50Ni to Ti-55Ni (at.%) can be termed as the pioneer of shape memory alloys (SMA). Intermetallic precipitates play an important role for strengthening. Their influence on the start temperature of the martensitic transformation is a crucial property for the shape memory effect. Efforts for increasing the martensite start temperature include replacement of a part of Ni atoms by Cu. The influence of Cu-addition to Ti-Ni SMA on T0- temperatures and the character of the austenite-martensite transformation is evaluated using a new thermodynamic database for the Ti-Ni-system extended by Cu. Trends of precipitation of intermetallic phases are simulated by combining the assessed thermodynamics of the Ti-Ni-Cu system with assessed diffusion mobility data and kinetic models, as implemented in the solid-state transformation software MatCalc and are presented in the form of time-temperature-precipitation diagrams. Thermodynamic equilibrium considerations, complemented by predictive thermo-kinetic precipitation simulation, facilitates SMA alloy design and definition of optimized aging conditions.

  6. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    NASA Astrophysics Data System (ADS)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  7. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    NASA Astrophysics Data System (ADS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  8. Fracture properties of neutron-irradiated martensitic 9Cr-WVTa steels below room temperature

    NASA Astrophysics Data System (ADS)

    Abe, F.; Narui, M.; Kayano, H.

    1994-09-01

    Fracture properties of the reduced activation martensitic 9Cr-1WVTa and 9Cr-3WVTa steels were investigated by carrying out instrumented Charpy impact tests and tensile tests at temperatures below room temperature after irradiation in the Japan Materials Testing Reactor at 493 and 538 K. Modified 9Cr-1MoVNb steel was also examined for comparison. The irradiation-induced increase in ductile-to-brittle transition temperature was 53, 26 and 40 K for the {1}/{3} size Charpy specimens of 9Cr-1WVTa, 9Cr-3WVTa and 9Cr-1MoVNb steels, respectively, which resulted primarily from the irradiation-induced increase in yield stress. The cleavage fracture stress was 1820-1870 MPa for the three steels in unirradiated conditions, which was scarcely affected by irradiation. The deflections to the maximum load and to the brittle fracture initiation were decreased by irradiation. In the tensile test, quasi-cleavage fracture occurred at 77 K in both unirradiated and irradiated conditions. The cleavage fracture stress was 1320-1380 MPa for the tensile specimens of the three steels, which was about 1.4 times smaller than that for the Charpy specimens.

  9. Charpy impact tests on martensitic/ferritic steels after irradiation in SINQ target-3

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Marmy, Pierre

    2005-08-01

    Charpy impact tests were performed on martensitic/ferritic (MF) steels T91, F82H, Optifer-V and Optimax-A/-C irradiated in SINQ Target-3 up to 7.5 dpa and 500 appm He in a temperature range of 120-195 °C. Results demonstrate that for all the four kinds of steels, the ductile-to-brittle transition temperature (DBTT) increases with irradiation dose. The difference in the DBTT shifts (ΔDBTT) of the different steels is not significant after irradiation in the SINQ target. The ΔDBTT data from the previous small punch (Δ DBTT SP) and the present Charpy impact (ΔDBTT CVN) tests can be correlated with the expression: Δ DBTT SP = 0.4ΔDBTT CVN. All the ΔDBTT data fall into a linear band when they are plotted versus helium concentration. The results indicate that helium effects on the embrittlement of MF steels are significant, particularly at higher concentrations. It suggests that MF steels may not be very suitable for applications at low temperatures in spallation irradiation environments where helium production is high.

  10. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  11. Precipitate phases in normalized and tempered ferritic/martensitic steel P92

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Liu, Huan; Shang, Zhongxia; Xu, Zhiqiang

    2015-10-01

    Ferritic/martensitic steel P92 is a promising candidate for cladding and duct applications in Sodium-Cooled Fast Reactor. The precipitate phases of the P92 steel normalized at 1323 K (1050 °C) for 30 min and tempered at 1038 K (765 °C) for 1 h have been investigated using transmission electron microscopes. Four types of phases consisting of M23C6, MX, M2X and sigma-FeCr were identified in the steel. MX phases consist of Nb-rich M(C,N) carbonitride, Nb-rich MC carbide, V-rich M(C,N) carbonitride, V-rich MC carbide, V-rich MN nitride, and complex MC carbides with Nb-rich MC core and V-rich MC wings. M2X phases consist of Cr-rich M2(C,N) carbonitride, Cr-rich M2C carbide and M2N nitride. Sigma-FeCr has a simple tetragonal lattice and a typical chemical formula of Fe0.45Cr0.45W0.1. M23C6 and MX are the dominant phases, while the sigma-FeCr has the lowest content. The formation of sigma-FeCr and M2X phases in the steel is also discussed.

  12. PHONON PRECURSORS TO THE HIGH TEMPERATURE MARTENSITIC TRANSFORMATION IN TI50PD42CR8.

    SciTech Connect

    SHAPIRO,S.M.; WINN,B.L.; SCHLAGEL,D.L.; LOGRASSO,T.; ERWIN,R.

    2002-06-10

    Inelastic neutron scattering measurements were carried out on the Ti{sub 50}Pd{sub 50-x}Cr{sub x} alloy, which has the potential for being a high temperature shape memory material. For x = 0, the transformation temperature is {approx}800K and for the composition studied (x = 8 at.%) T{sub M} {approx} 400K. The majority of the measurements were performed in the parent, {beta}-phase, up to 873K. Most of the phonons propagating along the three symmetry directions [{zeta}00], [{zeta}{zeta}{zeta}], and [{zeta}{zeta}0] were well defined with the exception of the [{zeta}{zeta}0] transverse acoustic mode with displacements along the [-{zeta}{zeta}0] corresponding to the C{prime} = 1/2(C{sub 11}-C{sub 12}) elastic constant. These phonons are well defined for small {zeta}, but for {zeta} > 0.15 they are strongly overdamped near the transition temperature, but become better defined at higher temperatures. An elastic peak develop in the cubic phase at {zeta} = 0.22 and increases in intensity as T{sub M} is approached. However, this dispersion curves show no anomaly at this particular wavevector, in marked contrast to the lattice dynamic studies of other systems exhibiting Martensitic transformations.

  13. Current status and recent research achievements in ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  14. An energetic approach to abrasive wear of a martensitic stainless steel

    SciTech Connect

    Pamuk, U.; Baydogan, M.; Niluefer, B.; Cimenoglu, H.

    2000-04-01

    Abrasive wear is the most common type of wear that causes failure of machine elements. Examinations of abraded surfaces revealed presence of embedded particles and grooves elongated along the sliding direction. This indicates that, there are two sequential stages of an abrasion process. In the first stage, asperities on the hard surface and/or hard abrasive grains penetrate into the soft material surface and then in the second stage, they grind the surface in the sliding direction. Therefore, indentation and scratching of an indenter, which can be realized by hardness and scratch tests, can simulate the damage produced on the abraded surface. On the basis of this simulation, an energetic model is proposed for abrasive wear in the present study. In this study, abrasive wear behavior of a martensitic stainless steel is examined by hardness and scratch tests. The results of tests were evaluated to estimate the work done during abrasion and to find out the dimensional wear coefficient according to the model proposed above.

  15. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Dong, Ziqiang; Liu, Zhe; Li, Ming; Luo, Jing-Li; Chen, Weixing; Zheng, Wenyue; Guzonas, Dave

    2015-02-01

    Ferritic-Martensitic (F/M) steels are important candidate alloys to be used in the next generation (Generation-IV) SCWRs. In this work, two F/M steels with the same Cr content of around 12 wt.% and varied Si content from 0.6 wt.% to 2.2 wt.% were evaluated in supercritical water (SCW) at 500 °C and 25 MPa for up to 1000 h. The effect of ultrasonic shot peening on the oxidation behavior of these F/M steels have been investigated. The results showed that the oxidation was affected by the Si content as well as the surface modification. The F/M steel with low Si concentration exhibited higher corrosion resistance than that of the alloy with high Si content. Shot peening, which could modify the microstructure at the surface, showed significantly beneficial effect to improving the oxidation resistance. A thin, uniform oxide layer formed on the peened sample could be attributed to the enhanced diffusion of Cr induced by the surface modification.

  16. Interdiffusion Behavior of Al-Rich Oxidation Resistant Coatings on Ferritic-Martensitic Alloys

    SciTech Connect

    Velraj, S.; Zhang, Ying; Hawkins, W. E.; Pint, Bruce A.

    2012-06-21

    We investigated interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic–martensitic alloys in the temperature range of 650–700°C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H2O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. Moreover, the model was also applied to predict coating lifetime at 650–700°C based on a minimum Al content (Cb) required at the coating surface to re-form protective oxide scale. In addition to a Cb value established from the failure of a thin CVD coating at 700°C, values reported for slurry aluminide coatings were also included in lifetime predictions.

  17. Formation and Oxidation Performance of Low-Temperature Pack Aluminide Coatings on Ferritic-Martensitic Steels

    SciTech Connect

    Bates, Brian; Wang, Y. Q.; Zhang, Ying; Pint, Bruce A

    2009-01-01

    A pack cementation process was developed to coat commercial 9% Cr ferritic-martensitic steel T91 at temperatures below its normal tempering temperature to avoid any potential detrimental effect on the mechanical properties of the coated alloy. In order to prevent the formation of Fe{sub 2}Al{sub 5} coatings, the Al activity in the pack cementation process was reduced by substituting the pure Al masteralloy with binary Cr-Al masteralloys containing either 15 or 25 wt.% Al. When the Cr-25Al masteralloy was used, a duplex coating was formed at 700 C, consisting of a thin Fe{sub 2}Al{sub 5} outer layer and an inner layer of FeAl. With the Cr-15Al masteralloy, an FeAl coating of {approx} 12 {micro}m thick was achieved at 700 C. The pack aluminide coatings fabricated at 700 C are being evaluated in air + 10 vol.% H{sub 2}O at 650 C and 700 C to determine their long-term oxidation performance.

  18. Microstructure control for high strength 9Cr ferritic-martensitic steels

    SciTech Connect

    Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T; Sokolov, Mikhail A; Klueh, Ronald L

    2012-01-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literature data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.

  19. Microstructural development in advanced ferritic–martensitic steel HCM12A

    SciTech Connect

    Allen, T. R.; Tan, L; Gan , J; Gupta, G; Was, Gary S.; Kenik, E A.; Shutthanandan, V; Thevuthasan, Suntharampillai

    2006-06-01

    HCM12A is an advanced nominal 12Cr ferritic?martensitic steel designed for higher temperature operation and is under consideration for application in core components in Generation IV nuclear energy systems. This work provides information on the hardening and microstructural changes in HCM12A after irradiation using 2.0 MeV protons at 400 *C to 10 dpa and at 500 *C to 3 dpa, and using 5 MeV Ni-ions at 500 *C to 50 dpa. Following irradiation, changes in hardness were measured using Vickers hardness indentation, changes in microstructure and phase stability were studied using transmission electron microscopy, and changes in microchemistry were measured using scanning Auger microscopy and analytical electron microscopy. The hardness at 400 *C increases by roughly 70% and saturates by roughly 5 dpa. The microstructural changes contributing to this hardness increase are mainly the formation of precipitate phases. Hardness increases are much smaller at 500 *C. Chromium is enriched at grain boundaries prior to irradiation, likely due to grain boundary carbides, and increases further during irradiation at least partially due to radiation-induced segregation.

  20. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  1. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Chen, Shenghu; Rong, Lijian

    2015-04-01

    The effect of Si in the range of 0.05-0.77 wt.% on the microstructure, tensile properties and impact toughness of reduced activation ferritic/martensitic (RAFM) steels has been investigated. An increase in Si content affected the prior austenite grain size resulting in an increase in the tensile strength at room temperature. The tensile strength of steels tested above 773 K did not change significantly with the addition of Si, which was due to the diminished carbide hardening effect and boundary strengthening effect. Detailed fractographic analysis revealed that tear fractures occurred in the samples tensile tested at room temperature, while cup and cone fractures were found in samples tensile tested at temperatures above 773 K, which were induced by the easing of dislocation pile-ups. The ductile-to-brittle transition temperature (DBTT) decreased when the Si content increased to 0.22 wt.%. However, the DBTT increased when the Si content reached 0.77 wt.% and this was due to the precipitation of Laves phase. The RAFM steel with approximately 0.22 wt.% Si content was found to possess an optimized combination of microstructure, tensile properties and impact toughness.

  2. Radiation damage in ferritic/martensitic steels for fusion reactors: a simulation point of view

    NASA Astrophysics Data System (ADS)

    Schäublin, R.; Baluc, N.

    2007-12-01

    Low activation ferritic/martensitic steels are good candidates for the future fusion reactors, for, relative to austenitic steels, their lower damage accumulation and moderate swelling under irradiation by the 14 MeV neutrons produced by the fusion reaction. Irradiation of these steels, e.g. EUROFER97, is known to produce hardening, loss of ductility, shift in ductile to brittle transition temperature and a reduction of fracture toughness and creep resistance starting at the lowest doses. Helium, produced by transmutation by the 14 MeV neutrons, is known to impact mechanical properties, but its effect at the microstructure level is still unclear. The mechanisms underlying the degradation of mechanical properties are not well understood, despite numerous studies on the evolution of the microstructure under irradiation. This impedes our ability to predict materials' behaviour at higher doses for use in the future fusion reactors. Simulations of these effects are now essential. An overview is presented on molecular dynamics simulations of the primary state of damage in iron and of the mobility of a dislocation, vector of plasticity, in the presence of a defect.

  3. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Yavari, R.; Snipes, J. S.; Ramaswami, S.; Yen, C.-F.; Cheeseman, B. A.

    2014-06-01

    An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material constitutive models for Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material. The main effort was directed toward developing reliable material constitutive models for Carpenter Custom 465 and toward improving functional relations and parameterization of the workpiece/workpiece contact-interaction models. The LFW process model is then used to predict thermo-mechanical response of Carpenter Custom 465 during LFW. Specifically, temporal evolutions and spatial distribution of temperature within, and expulsion of the workpiece material from, the weld region are examined as a function of the basic LFW process parameters, i.e., (a) contact-pressure history, (b) reciprocation frequency, and (c) reciprocation amplitude. Examination of the results obtained clearly revealed the presence of three zones within the weld, i.e., (a) Contact-interface region, (b) Thermo-mechanically affected zone, and (c) heat-affected zone. While there are no publicly available reports related to Carpenter Custom 465 LFW behavior, to allow an experiment/computation comparison, these findings are consistent with the results of our ongoing companion experimental investigation.

  4. Microstructural analysis of ferritic-martensitic steels irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Rowcliffe, A.F.; Wakai, E.

    1998-09-01

    Disk specimens of ferritic-martensitic steel, HT9 and F82H, irradiated to damage levels of {approximately}3 dpa at irradiation temperatures of either {approximately}90 C or {approximately}250 C have been investigated by using transmission electron microscopy. Before irradiation, tempered HT9 contained only M{sub 23}C{sub 6} carbide. Irradiation at 90 C and 250 C induced a dislocation loop density of 1 {times} 10{sup 22} m{sup {minus}3} and 8 {times} 10{sup 21} m{sup {minus}3}, respectively. in the HT9 irradiated at 250 C, a radiation-induced phase, tentatively identified as {alpha}{prime}, was observed with a number density of less than 1 {times} 10{sup 20} m{sup {minus}3}. On the other hand, the tempered F82H contained M{sub 23}C{sub 6} and a few MC carbides; irradiation at 250 C to 3 dpa caused minor changes in these precipitates and induced a dislocation loop density of 2 {times} 10{sup 22} m{sup {minus}3}. Difference in the radiation-induced phase and the loop microstructure may be related to differences in the post-yield deformation behavior of the two steels.

  5. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  6. Microstructural behavior of 8Cr-ODS martensitic steels during creep deformation

    NASA Astrophysics Data System (ADS)

    Shinozuka, K.; Esaka, H.; Tamura, M.; Tanigawa, H.

    2011-10-01

    Oxide dispersion strengthened (ODS) steels show a high anisotropy in their creep behavior because of the δ-ferrite grain elongated in the hot-rolled direction and the characteristic formation of creep cavities. In this work, the relationship between the δ-ferrite grain and the growth of creep cavities in 8Cr-ODS steels was investigated. The samples of two ODS steels with different δ-ferrite volume fractions were machined parallel and perpendicular to the hot-rolled direction. Creep rupture tests and interrupted tests were performed at 700 °C and about 197 MPa. Cavities formed in the martensite along δ-ferrite grains during creep deformation. The area fraction of the cavities of all specimens increased in proportion to the cube root of test time. When the volume fraction of δ-ferrite was high and δ-ferrite grains elongated parallel to the load direction, δ-ferrite then obstructed the propagation of cracks. However, when the volume fraction of δ-ferrite was low and δ-ferrite grains elongated perpendicular to the load direction, δ-ferrite grains had little effect on crack propagation.

  7. The development of ferritic-martensitic steels with reduced long-term activation

    NASA Astrophysics Data System (ADS)

    Ehrlich, K.; Kelzenberg, S.; Röhrig, H.-D.; Schäfer, L.; Schirra, M.

    1994-09-01

    Ferritic-martensitic 9-12% CrMoVNb steels of MANET type possess a number of advantageous properties for fusion reactor application. Their optimization has led to improved creep and fracture-toughness properties. New 9-10% CrWVTa alloys have been developed by KfK/IMF in collaboration with the SAARSTAHL GmbH which have a reduced long-term activation and show in addition superior fracture toughness properties. The calculation of dose rate and other radiological parameters with the presently available FISPACT/EAF codes, extended by KfK files for sequential reactions has shown that the long-term dose-rate in these alloys is governed by the remaining 'impurity level' of Nb and the alloying elements W and Ta. Sequential reactions — though relevant for single alloying elements like Cr, Mn, V and N — provide only a second order effect in Fe-based alloys. A challenge for the future materials development is the production of alloys with the desired narrow specification of elements and impurities, which necessitates new ways of steelmaking.

  8. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  9. Using nonlinear ultrasound measurements to track thermal aging in modified 9%Cr ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Marino, Daniel; Kim, Jin-Yeon; Jacobs, Laurence J.; Ruiz, Alberto; Joo, Young-Sang

    2015-03-01

    This study investigates early thermal aging in 9%Cr ferritic martensitic (FM) steel, which is caused by the formation of second phases during high temperature exposure. This study employs a recently developed nonlinear ultrasonic technique to explore the sensitivity of the nonlinearity parameter. Experimental results show that the nonlinearity parameter is sensitive to certain changes in material's properties such as thermal embrittlement and hardness changes; therefore, it can be used as an indicator of the thermal damage. The specimens investigated are heat treated for different holding times ranging from 200h to 3000h at 650°C. Nonlinear ultrasonic experiments are conducted for each specimen using a wedge transducer to generate and an air-coupled transducer to detect Raleigh surface waves. The amplitudes of the first and second order harmonics are measured at different propagation distances and these amplitudes are used to obtain the relative nonlinearity parameter for each specimen with a different holding time. The nonlinear ultrasonic results are compared with independent mechanical measurements and metallographic images. This research proposes the nonlinear ultrasonic technique as a nondestructive evaluation tool not only to detect thermal damage in early stages, and also to qualitatively assess the stage of thermal damage.

  10. High-strength economically alloyed corrosion-resistant steels with the structure of nitrogen martensite

    NASA Astrophysics Data System (ADS)

    Bannykh, O.; Blinov, V.; Lukin, E.

    2016-04-01

    The use of nitrogen as the main alloying element allowing one both to increase the corrosion resistance and mechanical properties of steels and to improve their processability is a new trend in physical metallurgy of high-strength corrosion resistant steels. The principles of alloying, which are developed for high-nitrogen steel in IMET RAS, ensure the formation of the structure, which contains predetermined amounts of martensite (70-80%) and austenite (20-30%) and is free from δ-ferrite, σ-phase, and Cr23C6 carbide. These principles were used as the base for the creation of new high-strength corrosion-resistant weldable and deformable 0Kh16AN5B, 06Kh16AN4FD, 08Kh14AN4MDB, 09Kh16AN3MF, 27Kh15AN3MD2, 40Kh13AN3M2, and 19Kh14AMB steels, which are operative at temperatures ranging from - 70 to 400°C. The developed nitrogen-containing steels compared with similar carbon steels are characterized by a higher resistance to pitting and crevice corrosion and are resistant to stress corrosion cracking. The new steels successfully passed trial tests as heavy duty articles.

  11. Compatibility of martensitic/austenitic steel welds with liquid lead bismuth eutectic environment

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Almazouzi, A.

    2009-04-01

    The high-chromium ferritic/martensitic steel T91 and the austenitic stainless steel 316L are to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both tungsten inert gas (TIG) and electron beam (EB) T91/316L welds have been examined by means of metallography, scanning electron microscopy (SEM-EDX), Vickers hardness measurements and tensile testing both in inert gas and in LBE. Although the T91/316L TIG weld has very good mechanical properties when tested in air, its properties decline sharply when tested in LBE. This degradation in mechanical properties is attributed to the liquid metal embrittlement of the 309 buttering used in TIG welding of T91/316L welds. In contrast to mixed T91/316L TIG welding, the mixed T91/316L EB weld was performed without buttering. The mechanical behaviour of the T91/316L EB weld was very good in air after post weld heat treatment but deteriorated when tested in LBE.

  12. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  13. Deformation Microstructure of a Reduced-Activation Ferritic/Martensitic Steel Irradiated in HFIR

    SciTech Connect

    Hashimoto, N.; Klueh, R.L.; Ando, M.; Tanigawa, H.; Sawai, T.; Shiba, K.

    2003-09-15

    In order to determine the contributions of different microstructural features to strength and to deformation mode, microstructure of deformed flat tensile specimens of irradiated reduced activation F82H (IEA heat) base metal (BM) and its tungsten inert-gas (TIG) weldments (weld metal and weld joint) were investigated by transmission electron microscopy (TEM), following fracture surface examination by scanning electron microscopy (SEM). After irradiation, the fracture surfaces of F82H BM and TIG weldment showed a martensitic mixed quasi-cleavage and ductile-dimple fracture. The microstructure of the deformed region of irradiated F82H BM contained dislocation channels. This suggests that dislocation channeling could be the dominant deformation mechanism in this steel, resulting in the loss of strain-hardening capacity. While, the necked region of the irradiated F82H TIG, where showed less hardening than F82H BM, showed deformation bands only. From these results, it is suggested that the pre-irradiation microstructure, especially the dislocation density, could affect the post-irradiation deformation mode.

  14. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Sam, Shiju; Das, C. R.; Ramasubbu, V.; Albert, S. K.; Bhaduri, A. K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-12-01

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  15. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.

    2014-12-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.

  16. Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR

    SciTech Connect

    Yamamoto, Takuya; Odette, George R.; Miao, Pifeng; Edwards, Danny J.; Kurtz, Richard J.

    2009-04-30

    Microstructural evolutions in tempered martensitic steels (TMS) under neutron-irradiation, at fusion relevant He/dpa ratios and dpa rates, were characterized using a novel in situ He-implanter technique. F82H-mod3 was irradiated at 500 C in HFIR to a nominal 9 dpa and 190 or 380 appm He in both in the as-tempered (AT) and 20% cold-worked (CW) conditions. In all cases, a high number density of 1-2 nm He-bubbles were observed, along with fewer but larger 10 nm void-like faceted cavities. The He-bubbles form preferentially on dislocations and various interfaces. A slightly larger number of smaller He bubbles were observed in the CW condition. The lower He/dpa ratio produced slightly smaller and fewer He-bubbles. Comparisons of these observations to the results in nano-structured ferritic alloy (NFA) MA957 provide additional evidence that TMS may be susceptible to He-embrittlement as well as void swelling at fusion relevant He concentrations, while NFA are much more resistant to these degradation phenomena.

  17. Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation

    SciTech Connect

    Cantrell, John H.

    2006-09-15

    Self-organized substructural arrangements of dislocations formed during cyclic stress-induced fatigue of metals produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter {beta} extracted from acoustic harmonic generation measurements. The contributions to {beta} from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model [Proc. R. Soc. London, Ser. A 460, 757 (2004)] as a function of percent full fatigue life to fracture. A wave interaction factor f{sub WI} is introduced into the model to account experimentally for the relative volume of fatigue damage included in the total volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f{sub WI}=0.013 the model predicts a monotonic increase in {beta} from dislocation substructures of almost 100% from the virgin state to roughly 95% full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, during the last 5% of fatigue life the model predicts a rapid monotonic increase of {beta} by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f{sub WI} of 0.013.

  18. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  19. Modeling the Flow Curve Characteristics of 410 Martensitic Stainless Steel Under Hot Working Condition

    NASA Astrophysics Data System (ADS)

    Momeni, Amir; Dehghani, Kamran; Ebrahimi, Golam Reza; Keshmiri, Hamid

    2010-11-01

    The hot deformation behavior of AISI 410 martensitic stainless steel was investigated by conducting hot compression tests between 1173 K (900 °C) and 1423 K (1150 °C) and between strain rates of 0.001 s-1 to 1 s-1. The hyperbolic sine function described the relation well between flow stress at a given strain and the Zener-Hollomon parameter ( Z). The variation of flow stress with deformation temperature gave the average value of apparent activation energy as 448 kJ/mol. The strain and stress corresponding to two important points associated with flow curve ( i.e., peak strain and the onset of steady-state flow) were related to the Z parameter using power-law equations. A model also was proposed based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation to estimate the fractional softening of dynamic recrystallization at any given strain. This model can be used readily for the prediction of flow stress. The values of n and k, material constants in the JMAK equation, were determined for the studied material. The strains regarding the peak and the onset of steady-state flow were formulated in term of applied strain rate and the constants of the JMAK equation. A good agreement was found between the predicted strains and those obtained by the experimental work.

  20. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  1. Effect of Partitioning Treatment on the Mechanical Property of Fe-0.19C-1.47Mn-1.50Si Steel with Refined Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Yang, Jilan; Guo, Zhenghong; Chen, Shipu; Rong, Yonghua; Chen, Nailu

    2016-03-01

    In order to understand the effect of microstructural features on the mechanical property, quenching and partitioning (Q&P) and quenching and tempering (Q&T) treatments were carried out on a cold-rolled low-carbon Fe-0.19C-1.47Mn-1.50Si steel sheet. It has been shown that because of the rolling in advance, the grain size of prior austenite was dramatically reduced, which resulted in a great decrease in martensite packet/block size and an increase in dislocation density in martensite in the as-quenched state. However, there was no obvious change in average lath size. Different from Q&T treatment, Q&P not only stabilized a large amount of retained austenite, but also led to a serious carbon depletion in martensite as revealed by X-ray diffraction and three-dimensional-atom-probe analyses. In Q&T and Q&P samples, refining martensitic microstructure improves both the strength and impact toughness markedly but does not affect the elongation very much. Compared with Q&T sample, Q&P one is softer due to the existence of considerable amount of retained austenite and less carbon content in martensite, i.e., it has higher elongation and impact toughness but lower strength. Analyses indicated that the strength loss caused by carbon depletion in martensite is critical which has even completely covered up the strengthening effect of microstructural refinement. On the other hand, the carbon depletion in martensite is more essential in improving impact toughness, comparing the role of microstructural refinement and the existence of more retained austenite. Through a combination of rolling and Q&P processes, the refined Q&P microstructure was achieved for a greatly improved product of strength and elongation and a much lower ductile-to-brittle transition temperature.

  2. pH Meter probe assembly

    DOEpatents

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  3. pH Meter probe assembly

    DOEpatents

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  4. The effect of cobalt and carbon the microstructure and mechanical properties of martensitic precipitation strengthened stainless steels

    NASA Astrophysics Data System (ADS)

    Komolwit, Piyamanee

    The effects of cobalt additions on the mechanical properties and strengthening mechanisms of a martensitic precipitation strengthening stainless steel whose composition is (in wt. %) 0.005C/12Cr/5Mo/1.5Ni has been investigated for cobalt levels of 9, 12, 15, 18, and 21 wt. %. Hardness, yield strength and ultimate tensile strength increase as the cobalt content increases, while the Charpy impact energy decreases as tempering temperature increases. At the peak strength of the 21 wt. % cobalt alloy, which is after tempering at 550°C, the yield strength is 1772 MPa, the ultimate tensile strength is 1916 MPa, and the hardness is 55 HRC. The martensite start temperature decreases as cobalt content increases. In this alloys there is no retained austenite after austenitizing, oil quenching and then refrigerating in liquid nitrogen prior to tempering. These alloys contain no reverted austenite except for the 21 wt. % cobalt alloy after tempering at 600°C. Optical micrographs show lath martensite as the matrix for all alloys. Increasing cobalt content has little effect on prior austenite grain size. Transmission electron micrographs show a substructure of lath martensite and a b.c.c. matrix for all alloys after tempering at 525°C. Precipitates were observed in dark field images at all cobalt levels and were seen in bright field images of 21 wt. % cobalt alloy. One of the precipitates was identified as omega phase with a trigonal structure with lattice parameter of a = b = 4.1 A, c = 2.51 A with c/a = 0.612. The particle size appears to be 17 nanometers in diameter and they were found only in the foils of 21 wt. % cobalt alloy. The second precipitate type was identified as a monoclinic phase with a monoclinic structure with lattice parameters of a = 5.464 A, b = 2.843 A, c = 3.178 A, and alpha = gamma = 90° and beta = 63.4°. The monoclinic phase particles appear to significantly contribute to the strength of these alloys, with particles size and volume fraction

  5. The evaluation of tempered martensite embrittlement in 4130 steel by instrumented charpy V-notch testing

    NASA Astrophysics Data System (ADS)

    Zia-Ebrahimi, F.; Krauss, G.

    1983-06-01

    Tempered martensite embrittlement (TME) was studied in vacuum-melted 4130 steel with either 0.002 or 0.02 wt pct P. TME was observed as a severe decrease in Charpy V-notch impact energy, from 46 ft-lb. at 200 °C to 35 ft-lb. at 300 °C in the low P alloy. The impact energy of the high P alloy was consistently lower than that of the low P alloy in all tempered conditions. Fracture was transgranular for all specimens; therefore, segregation of P to the prior austenitic grain boundaries was not a factor in the o°Currence of TME. Analysis of load-time curves obtained by instrumented Charpy testing revealed that the embrittlement is associated with a drop in the pre-maximum-load and post-unstable-fracture energies. In specimens tempered at 400 °C the deleterious effect of phosphorus on impact energy became pronounced, a result more consistent with classical temper embrittlement rather than TME. A constant decrease in pre-maximum-load energy due to phosphorus content was observed. The pre-maximum-load energy decreases with increasing tempering temperature in the range of 200 °C to 400 °C, a result explained by the change in work hardening rate. Carbon extraction replicas of polished and etched as-quenched specimens revealed the presence of Fe2MoC and/or Fe3C carbides retained after austenitizing. Ductile crack extension close to the notch root was related to the formation of fine micro voids at the retained carbides.

  6. Mechanical behavior and brittle-ductile transition of high-chromium martensitic steel

    NASA Astrophysics Data System (ADS)

    Odnobokova, M. V.; Kipelova, A. Yu.; Belyakov, A. N.; Kaibyshev, R. O.

    2016-04-01

    The article presents data on the static tensile tests and dynamic impact-toughness tests of a highchromium martensitic 10Kh9V1M1FBR steel (0.12 wt % C, 9.8 wt % Cr, 0.93 wt % W, 1.01 wt % Mo, 0.2 wt % V, 0.05 wt % Nb, 0.05 wt % N, 0.003 wt % B, 0.36 wt % Mn, 0.2 wt % Ni, 0.06 wt % Si, 0.01 wt % P, 0.008 wt % S, 0.02 wt % Cu, 0.1 wt % Co, 0.015 wt % Al, and the remainder is Fe) in the temperature range from 20 to-196°C. In the case of static loading, a reduction in the temperature leads to an increase in the strength characteristics; upon a drop in the temperature from 20 to-100°C, the plasticity also increases. This is connected with the fact that the ductile fracture remains the basic mechanism down to cryogenic temperatures. The brittle-ductile transition related to the transition from ductile intragranular fracture to quasibrittle one is observed at-45°C. The steel exhibits high impact toughness to the temperature of-60°C ( KCV -60 = 95 J/cm2), at which the fraction of the ductile component in fracture is equal to 20%. At 80°C, the impact toughness decreases down to critical values (30 J/cm2), which correlates with the decrease in the fraction of the ductile component on the fracture surface down to 1%. The further decrease in the impact toughness down to 10 J/cm2 at-196°C is related to the transition from intragranular to intergranular brittle fracture.

  7. Martensitic transformation behaviors of rapidly solidified Ti–Ni–Mo powders

    SciTech Connect

    Kim, Yeon-wook

    2012-10-15

    For the fabrication of bulk near-net-shape shape memory alloys and porous metallic biomaterials, consolidation of Ti–Ni–Mo alloy powders is more useful than that of elemental powders of Ti, Ni and Mo. Ti{sub 50}Ni{sub 49.9}Mo{sub 0.1} shape memory alloy powders were prepared by gas atomization, and transformation temperatures and microstructures of those powders were investigated as a function of powder size. XRD analysis showed that the B2–R–B19 martensitic transformation occurred in powders smaller than 150 μm. According to DSC analysis of the as-atomized powders, the B2–R transformation temperature (T{sub R}) of the 25–50 μm powders was 18.4 °C. The T{sub R} decreased with increasing powder size, however, the difference in T{sub R} between 25–50 μm powders and 100–150 μm powders is only 1 °C. Evaluation of powder microstructures was based on SEM examination of the surface and the polished and etched powder cross sections and the typical images of the rapidly solidified powders showed cellular morphology. Porous cylindrical foams of 10 mm diameter and 1.5 mm length were fabricated by spark plasma sintering (SPS) at 800 °C and 5 MPa. Finally these porous TiNi alloy samples are heat-treated for 1 h at 850 °C, and then quenched in ice water. The bulk samples have 23% porosity and 4.6 g/cm{sup 3} density and their T{sub R} is 17.8 °C.

  8. Creep deformation modeling of a tool steel with a tempered martensitic structure used for extrusion dies

    NASA Astrophysics Data System (ADS)

    Reggiani, Barbara; Donati, Lorenzo; Tomesani, Luca

    2011-05-01

    Aim of an extrusion die is to allow the production of the profile with the required dimension tolerances and quality level. One of the main impediment to achieve this aim could be an excessive die deformation due to the high cyclic loads and temperatures acting on the die during the extrusion process. In order to investigate the mechanisms that influence the die deformation, a physical experiment reproducing the thermo-mechanical conditions of a die was performed on a martensitic tool steel used for extrusion tools (AISI H11). The design of experiment consisted of 4 levels of temperature, 3 levels of stress and 3 types of load, i.e. pure creep, pure fatigue and creep-fatigue. In all cases, the same pattern of the mandrel displacement-time curve was found consisting of 3 stages as those typical of the strain evolution in a standard creep test with a marked primary phase. Thus, with the aim to define an easy-applicable equation to estimate the die deformation, the time hardening creep law was chosen. In order to obtain the temperature gradient within the specimen coupled thermo-electric simulations were previously performed. The nodal temperature have been then imported within the structural model and the mechanical properties assigned to the each element as a function of these values. Coefficients of the time-hardening law were optimized, for each testing condition, on the basis of experimental data starting from values for similar alloys found in literature. The values found were validated against additional experimental data performed with different specimen geometries. A good average agreement was found between experimental and numerical results.

  9. Influence of structural-phase state of ferritic-martensitic steels on the helium porosity development

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Staltsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu; Dzhumaev, P. S.; Emelyanova, O. V.; Drozhzhina, M. V.; Manukovsky, K. V.; Nikolaeva, I. D.

    2016-04-01

    Transmission electron microscopy (TEM) has been used to study the effect of the initial structural-phase state (SPhS) of ferritic-martensitic steels EK-181, EP-450 and EP-450- ODS (with 0.5 wt.% nanoparticles of Y2O3) on the of helium porosity formation and gas swelling. Different SPhS of steel EK-181 was produced by water quenching, annealing, normalizing plus tempered, intensive plastic deformation by torsion (HPDT). Irradiation was carried out by He+-40 keV ions at 923 K up to fluence of 5-1020 He+/m2. It is shown that the water quenching causes the formation of uniformly distributed small bubbles (d¯ ∼ 2 nm) of the highest density (ρ∼ 1025 m-3). After normalization followed by tempering as well as after annealing bubbles distribution is highly non-uniform both by volume and in size. Very large faceted bubbles (pre-equilibrium gas-filled voids) are formed in ferrite grains resulting in high level of gas swelling of the irradiated layer with S = 4,9 ± 1,2 and 3.8 ± 0.9% respectively. Nano- and microcrystalline structure created by HPDT completely degenerate at irradiation temperature and ion irradiation formed bubbles of the same parameters as in the annealed steel. Bubbles formed in EP-450-ODS steel are smaller in size and density, which led to a decrease of helium swelling by 4 times (S = 0.8 ± 0.2%) as compared to the swelling of the matrix steel EP-450 (S = 3.1 ± 0.7%).

  10. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  11. Microstructure and martensitic transformation in Si-coated TiNi powders prepared by ball milling

    SciTech Connect

    Kim, Jae-hyun; Cho, Gyu-bong; Im, Yeon-min; Chun, Byong-sun; Kim, Yeon-wook; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Amorphous Si-coated TiNi powders were prepared successfully by ball milling. • Ti{sub 4}Ni{sub 4}Si{sub 7} was formed at the interface between Si and TiNi after annealing. • Si-coated Ti–Ni powders displayed the R phase after annealing. - Abstract: Si was coated on the surface of Ti–49Ni (at%) alloy powders by ball milling in order to improve the electrochemical properties of the Si electrodes of secondary Li ion batteries and then the microstructure and martensitic transformation behavior were investigated by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Ti–Ni powders coated with Si were fabricated successfully by ball milling. As-milled powders consisted of highly deformed Ti–Ni powders with the B2 phase and amorphous Si layers. The thickness of the Si layer coated on the surface of the Ti–Ni powders increased from 3–5 μm to 10–15 μm by extending the milling time from 3 h to 48 h. However, severe contamination from the grinding media, ZrO{sub 2} occurred when the ball milling time was as long as 48 h. By heating as-milled powders to various temperatures in the range of 673–873 K, the highly deformed Ti–Ni powders were recovered and Ti{sub 4}Ni{sub 4}Si{sub 7} was formed. Two-stage B2–R–B19′ transformation occurred when as-milled Si-coated Ti–49Ni alloy powders were heated to temperatures below 873 K, above this temperature one-stage B2–B19′ transformation occurred.

  12. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    SciTech Connect

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-08-28

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to its superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.

  13. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  14. CALCULATING THE PH OF CALCIUM CARBONATE SATURATION

    EPA Science Inventory

    Two new expressions for the pH of saturation (pH subs) were derived. One is a simplified equation developed from an aqueous carbonate equilibrium system in which correction for ionic strength was considered. The other is a more accurate quadratic formula that involves computerize...

  15. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  16. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  17. Acid loading test (pH)

    MedlinePlus

    The acid loading test (pH) measures the ability of the kidneys to send acid to the urine when there is too much acid in the ... Urine with a pH less than 5.3 is normal. Normal value ranges may vary slightly among different laboratories. Some labs use different ...

  18. Fetal scalp pH testing

    MedlinePlus

    ... Normal pH: 7.25 to 7.35 Borderline pH: 7.20 to 7.25 The examples above are common measurements for results of these tests. Normal value ranges may vary slightly among different laboratories. Some ...

  19. Middle School and pH?

    ERIC Educational Resources Information Center

    Herricks, Susan

    2007-01-01

    A local middle school requested that the Water Center of Advanced Materials for Purification of Water With Systems (WaterCAMPWS), a National Science Foundation Science and Technology Center, provide an introduction to pH for their seventh-grade water-based service learning class. After sorting through a multitude of information about pH, a…

  20. Influence of the presence of pre-existing thermal [var epsilon]-martensite on the formation of stress-induced [var epsilon]-martensite and on the shape memory effect of a Fe-Mn-Cr-Si-Ni shape memory alloy

    SciTech Connect

    Federzoni, L.; Guenin, G. )

    1994-07-01

    At present, many investigations are done on Fe-Mn-based shape memory alloys because of their particularly good one-way type shape memory effect and their low cost. With addition of Cr and Ni, it is possible to reach a good corrosion resistance, which confers to this type of alloys a commercial significance. The shape memory effect is associated with the formation of stress-induced [var epsilon]-martensite by deformation of an austenitic ([gamma]) sample. The reversion by heating of the [var epsilon]-martensite provides the shape memory effect. It is generally admitted that the presence of thermal [var epsilon]-martensite before deformation has a negative influence on the formation of the stress-induced martensite and on the shape memory effect. The authors' purpose is to evaluate the real influence of the pre-existing thermal [var epsilon]-martensite on the formation of the stress-induced [var epsilon]-martensite, its recovery and on the shape memory effect.

  1. Determination Of Ph Including Hemoglobin Correction

    DOEpatents

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  2. Parameters affecting downhole pH

    SciTech Connect

    Garber, J.D.; Jangama, V.R.; Willmon, J.

    1997-09-01

    The presence of acetic and formic acids in the produced water of gas condensate wells has been known for some time by the industry. In traditional water analysis, it has been titrated and reported as alkalinity. The calculation of accurate downhole pH values requires that these ions be analyzed separately in the water and that an organic acid material balance be performed on all three phases in the separator. In this manner, it is then possible to use phase distribution coefficients involving ionic equilibrium to determine how these acids distribute themselves between phases as the pH calculation proceeds downhole. In this paper, the above method of calculation of pH and {Delta}pH is used to examine the effect that various concentrations of these acids have on the downhole pH. Various concentrations of acids are examined, and two cases are calculated in which the effect of condensate on the pH is examined.

  3. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel

    SciTech Connect

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2012-09-15

    In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolution of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.

  4. Simultaneous investigation of thermal, acoustic, and magnetic emission during martensitic transformation in single-crystalline Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Tóth, László Z.; Daróczi, Lajos; Szabó, Sándor; Beke, Dezső L.

    2016-04-01

    Simultaneous thermal, acoustic, and magnetic emission (AE and ME) measurements during thermally induced martensitic transformation in Ni2MnGa single crystals demonstrate that all three types of the above noises display many coincident peaks and the same start and finish temperatures. The amplitude and energy distribution functions for AE and ME avalanches satisfy power-law behavior, corresponding to the symmetry of the martensite. At zero external magnetic field asymmetry in the exponents was obtained: their value was larger for heating than for cooling. Application of constant, external magnetic fields (up to B =722 mT) leads to the disappearance of the above asymmetry, due to the decrease of the multiplicity of the martensite variants. Time correlations (i.e., the existence of nonhomogeneous temporal processes) within AE as well as ME emission events are demonstrated by deviations from the uncorrelated behavior on probability distributions of waiting times as well as of a sequence of number of events. It is shown that the above functions collapse on universal master curves for cooling and heating as well as for AE and ME noises. The analysis of the existence of temporal correlations between AE and ME events revealed that at short times the acoustic signals show a time delay relative to the magnetic one, due to the time necessary for the propagation of the ultrasound. At intermediate times, as expected, the magnetic signal is delayed, i.e., the magnetic domain rearrangement followed the steps of structural transformation. At much longer times the deviation from an uncorrelated (Poisson-type) behavior is attributed to the nonhomogeneity of the avalanche statistics.

  5. Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel

    SciTech Connect

    Karimi, M.; Najafizadeh, A.; Kermanpur, A.; Eskandari, M.

    2009-11-15

    The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600-900 deg. C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 deg. C for 10 s exhibited the smallest average austenite grain size of 240 {+-} 60 nm with an almost fully-austenitic structure.

  6. Irreversible deformation and the superplasticity of a TN-1 alloy during thermal cycling through the martensitic transformations ranges under loading

    NASA Astrophysics Data System (ADS)

    Andronov, I. N.; Ryabkov, Yu. I.; Bogdanov, N. P.; Severova, N. A.; Danilov, A. N.; Churilina, I. V.

    2015-10-01

    The influence of the thermal cycling conditions on the thermal-cycling creep of a TN-1 alloy and the related irreversible deformations is studied. The conditions under which an anomalous increase in the irreversible deformations begins are determined. The structural mechanism of the irreversible deformations of an equiatomic alloy is shown to be analogous to the structural mechanism of metal creep at high temperatures: it predominantly has a dislocation character. It is proposed to use the effect of anomalous increase in the deformation of materials with reversible martensitic transformations for forming parts made of these materials at low temperatures.

  7. TIG and HIP joining of Reduced Activation Ferrite/Martensitic steel for the Korean ITER-TBM

    NASA Astrophysics Data System (ADS)

    Ku, Duck Young; Oh, Seungjin; Ahn, Mu-Young; Yu, In-Keun; Kim, Duck-Hoi; Cho, Seungyon; Choi, Im-Sub; Kwon, Ki-Bum

    2011-10-01

    Korea is developing a Helium Cooled Solid Breeder Test Blanket Module for ITER. The primary candidate structural material is a Reduced Activation Ferritic/Martensitic steel. The complex TBM structure requires developing joining technologies for successful fabrication. The characteristics of Tungsten Inert Gas welding and Hot Isostatic Pressing joining of RAFM steel were investigated. Metallurgical examinations showed that the steel grain size was increased after HIP joining and recovered by post joining heat treatment. Both TIG welding and HIP joining are found to be acceptable for ITER TBM based on mechanical tests and microstructure examination.

  8. Microscale deformation of a tempered martensite ferritic steel: Modelling and experimental study of grain and sub-grain interactions

    NASA Astrophysics Data System (ADS)

    Golden, Brian J.; Li, Dong-Feng; Guo, Yina; Tiernan, Peter; Leen, Sean B.; O'Dowd, Noel P.

    2016-01-01

    In this paper, a finite-element modelling framework is presented with explicit representation of polycrystalline microstructure for a tempered martensite ferritic steel. A miniature notched specimen was manufactured from P91 steel with a 20,000 h service history and tested at room temperature under three point bending. Deformation at the microscale is quantified by electron back scattered diffraction (EBSD) before and after mechanical loading. A representative volume element was developed, based on the initial EBSD scan, and a crystal plasticity model used to account for slip-based inelastic deformation in the material. The model showed excellent correlation with the experimental data when the relevant comparisons were made.

  9. Features of structure-phase transformations and segregation processes under irradiation of austenitic and ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Voyevodin, V. N.

    1994-09-01

    The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.

  10. Ferritic-Martensitic steel Test Blanket Modules: Status and future needs for design criteria requirements and fabrication validation

    NASA Astrophysics Data System (ADS)

    Salavy, J.-F.; Aiello, G.; Aubert, P.; Boccaccini, L. V.; Daichendt, M.; De Dinechin, G.; Diegele, E.; Giancarli, L. M.; Lässer, R.; Neuberger, H.; Poitevin, Y.; Stephan, Y.; Rampal, G.; Rigal, E.

    2009-04-01

    The Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble Bed are the two breeding blankets concepts for the DEMO reactor which have been selected by EU to be tested in ITER in the framework of the Test Blanket Module projects. They both use a 9%CrWVTa Reduced Activation Ferritic-Martensitic steel, called EUROFER, as structural material and helium as coolant. This paper gives an overview of the status of the EUROFER qualification program and discusses the future needs for design criteria requirements and fabrication validation.

  11. The crystallography of M23C6 carbides in a martensitic 9% Cr steel after tempering, aging and creep

    NASA Astrophysics Data System (ADS)

    Kipelova, A.; Belyakov, A.; Kaibyshev, R.

    2013-06-01

    The orientation relationships of M23C6 carbides in a martensitic creep resistant steel were studied. Almost all M23C6 carbides were located at (sub)grain boundaries after tempering and aging. The carbides were slightly elongated along the boundary planes and obeyed the Kurdjumov-Sachs, Nishiyama-Wassermann, and Pitsch orientation relationships as well as two new orientation relationships, that is ? and ? , with α-Fe matrix. On the other hand, the M23C6 particles in the neck portion of crept specimen lost their orientation relationships with α-Fe.

  12. Fast Salt Bath Heat Treatment for a Bainitic/Martensitic Low-Carbon Low-Alloyed Steel

    NASA Astrophysics Data System (ADS)

    Urbanec, Julia; Saastamoinen, Ari; Kivivuori, Seppo; Louhenkilpi, Seppo

    2015-11-01

    The mechanical properties of a low-alloyed steel with 0.06 wt pct C were investigated after a series of heat treatment processes using salt bath followed by quenching into water in order to obtain bainitic/martensitic steel. Salt bath holding time varied from 30 to 330 seconds. Hardness, tensile properties and toughness have been examined. The results show the obtained microstructure significantly enhances the impact strength (up to 187 J) and toughness (up to 71.4 pct critical reduction) with good hardness (239 ± 4 HV) and tensile strength (720 to 800 MPa) compared to direct quenching heat treatment without salt bath holding.

  13. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Schubert, L.E.

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  14. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    SciTech Connect

    Vaidyanathan, R.; Bourke, M.A.M.; Dunand, D.C.

    1998-12-31

    Superelastic NiTi (51.0 at% Ni) with 0, 10 and 20 vol% TiC particles were deformed under uniaxial compression as neutron diffraction spectra were simultaneously obtained. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. A detailed Rietveld determination is made of the phase fractions and the evolving strains in the reinforcing TiC particles and the austenite as it transforms to martensite on loading (and its subsequent back transformation on unloading). These strains are used to shed light on the phenomenon of load transfer in composites where the matrix undergoes a stress-induced phase transformation.

  15. Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs

    SciTech Connect

    Jones, R.H.; Gelles, D.S.

    1993-08-01

    Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry.

  16. Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai

    2015-07-01

    The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.

  17. Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16 : dc magnetization studies

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Chattopadhyay, M. K.; Roy, S. B.

    2007-10-01

    We report results of dc magnetization studies focusing particularly on the austenite-martensite phase transition in Ni50Mn34In16 . We show that the nature of this phase transition depends significantly on the temperature (T) and magnetic field (H) history of the sample. In the presence of high magnetic field, this austenite to martensite first order phase transition is kinetically arrested. The low-temperature and high-field magnetic state shows a typical nonergodic glasslike dynamical response. Comparisons are made with similar phenomena observed recently in various classes of magnetic materials including CMR manganites.

  18. Magnetic and transport properties of (β+γ) Ni35Co35Al30 ferromagnetic shape memory alloy across the martensitic transition

    NASA Astrophysics Data System (ADS)

    Sokhey, Kanwaljeet S.; Manekar, Meghmalhar; Chattopadhyay, M. K.; Kaul, Rakesh; Roy, S. B.; Chaddah, P.

    2003-06-01

    The results of dc-magnetization, resistivity and ac-susceptibility studies performed on (β+γ) Ni35Co35Al30 magnetic shape memory alloy are presented highlighting the transition between two equilibrium lattice configurations of austenite and martensite phases. The first order nature of this martensitic transition is emphasized by highlighting the presence of thermal hysteresis and phase co-existence. This transition is apparently broadened with the introduction of γ-phase in the pure β-phase Ni35Co35Al30 alloy giving rise to a relatively large thermal hysteresis.

  19. An investigation of the high-temperature and solidification microstructures of PH 13-8 Mo stainless steel

    NASA Astrophysics Data System (ADS)

    Cieslak, M. J.; Hills, C. R.; Hlava, P. F.; David, S. A.

    1990-09-01

    Differential thermal analysis (DTA), high-temperature water-quench (WQ) experiments, and optical and electron microscopy were used to establish the near-solidus and solidification microstructures in PH 13-8 Mo. On heating at a rate of 0. 33 °C/s, this alloy begins to transform from austenite to δ-ferrite at ≈1350 °C. Transformation is complete by ≈1435 °C. The solidus is reached at ≈1447 °C, and the liquidus is ≈1493 °C. On cooling from the liquid state at a rate of 0. 33 °C/s, solidification is completed as δ-ferrite with subsequent transformation to austenite beginning in the solid state at ≈1364 °C. Insufficient time at temperature is available for complete transformation and the resulting room-temperature microstructure consists of matrix martensite (derived from the shear decomposition of the austenite) and residual δ-ferrite. The residual δ-ferrite in the DTA sample is enriched in Cr (≈16 wt pct), Mo (≈4 wt pct), and Al (≈1. 5 wt pct) and depleted in Ni (≈4 wt pct) relative to the martensite (≈12. 5 wt pct Cr, ≈2 wt pct Mo, ≈1 wt pct Al, ≈9 wt pct Ni). Solid-state transformation of δ σ γ was found to be quench-rate sensitive with large grain, fully ferritic microstructures undergoing a massive transformation as a result of water quenching, while a diffusionally controlled Widmanstätten structure was produced in air-cooled samples.

  20. Mechanical behavior of deep cryogenically treated martensitic shape memory nickel–titanium rotary endodontic instruments

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2016-01-01

    Objectives: The aim of this study was to investigate the role of deep cryogenic treatment (DCT) on the cyclic fatigue resistance and cutting efficiency of martensitic shape memory (SM) nickel–titanium (NiTi) rotary endodontic instruments. Materials and Methods: Seventy-five HyFlex® CM instruments were randomly divided into three groups of 25 each and subjected to different DCT (–185° C) conditions based on soaking time: DCT 24 group: 24 h, DCT 6 group: 6 h, and control group. Each group was randomly subdivided for evaluation of cyclic fatigue resistance in custom-made artificial canals (n = 15) and cutting efficiency in plexiglass simulators (n = 10). The cyclic fatigue resistance was measured by calculating the number of cycles to failure (NCF) and cutting efficiency was measured using the loss of weight method. Results: Increase in NCF of instruments in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference). There was no difference in weight loss of plexiglass simulators in all the groups (P > 0.05; one-way analysis of variance). In conclusion, deep dry cryogenic treatment with 24 h soaking time significantly increases the cyclic fatigue resistance without affecting the cutting efficiency of SM NiTi endodontic instruments. Materials and Methods: Seventy-five HyFlex® CM instruments were randomly divided into three groups of 25 each and subjected to different DCT (–185° C) conditions based on soaking time: DCT 24 group: 24 h, DCT 6 group: 6 h, and control group. Each group was randomly subdivided for evaluation of cyclic fatigue resistance in custom-made artificial canals (n = 15) and cutting efficiency in plexiglass simulators (n = 10). The cyclic fatigue resistance was measured by calculating the number of cycles to failure (NCF) and cutting efficiency was measured using the loss of weight method. Results: Increase in NCF of instruments in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference