Science.gov

Sample records for 17-4 ph martensitic

  1. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  2. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    NASA Astrophysics Data System (ADS)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  3. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  4. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  5. Hot Ductility of the 17-4 PH Stainless Steels

    NASA Astrophysics Data System (ADS)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  6. Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Chen, Guoxing; Tan, Ziming; Wu, Shuhui

    2015-11-01

    Shot peening is an effective process to enhance the fatigue performance of turbine blades. In this study, the effect of peening pressures was discussed in terms of the residual stress distribution and the surface morphology. Shot peening processes were designed at varying pressures on a 17-4 PH martensitic stainless steel. The profiles of hardness and residual stress were characterized in the cross section. The thermal stress relaxation was further carried out to evaluate the stability of the compressive residual stress under service temperatures of turbine blades. Results show that a maximum stress depth is obtained with peening pressure of 0.40 MPa, and the residual stress can be maintained up to 400 °C, which ensures the service in low-pressure turbine blades.

  7. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel

    SciTech Connect

    Matlack, Kathryn; Bradley, Harrison A.; Thiele, Sebastian; Kim, Jin-Yeon; Wall, James J.; Jung, Hee Joon; Qu, Jianmin; Jacobs, Laurence J.

    2015-04-01

    The extension of operational lifetime of most US nuclear reactors will cause reactor pressure vessel to be exposed to increased levels of neutron radiation damage. This research is part of a broader effort to develop a nondestructive evaluation technique to monitor radiation damage in reactor pressure vessel steels. The main contributor to radiation embrittlement in these steels is the formation of copper-rich precipitates. In this work, a precipitate hardenable martensitic alloy, 17-4PH stainless steel is exposed to thermal aging treatments, and used as a surrogate material to study the effects of copper precipitates on the measured acoustic nonlinearity parameter. Previous work has demonstrated the effectiveness of these nonlinear ultrasonic (NLU) measurements in the characterization of radiation-induced microstructural changes in neutron irradiated reactor pressure vessel steels. NLU measurements using Rayleigh surface waves are performed on 17-4PH samples subjected to isothermal aging. NLU measurements are interpreted with hardness, thermo-electric power, TEM, and atom probe tomography measurements. The Rayleigh wave measurements showed a decrease in the acoustic nonlinearity parameter with increasing aging time, consistent with evidence of increasing number density of nucleated precipitates.

  8. Effect of porosity on ductility variation in investment cast 17-4PH.

    SciTech Connect

    Wright, Robert D.; Kilgo, Alice C.; Grant, Richard P.; Crenshaw, Thomas B.; Susan, Donald Francis

    2005-02-01

    The stainless steel alloy 17-4PH contains a martensitic microstructure and second phase delta ({delta}) ferrite. Strengthening of 17-4PH is attributed to Cu-rich precipitates produced during age hardening treatments at 900-1150 F (H900-H1150). For wrought 17-4PH, the effects of heat treatment and microstructure on mechanical properties are well-documented [for example, Ref. 1]. Fewer studies are available on cast 17-4PH, although it has been a popular casting alloy for high strength applications where moderate corrosion resistance is needed. Microstructural features and defects particular to castings may have adverse effects on properties, especially when the alloy is heat treated to high strength. The objective of this work was to outline the effects of microstructural features specific to castings, such as shrinkage/solidification porosity, on the mechanical behavior of investment cast 17-4PH. Besides heat treatment effects, the results of metallography and SEM studies showed that the largest effect on mechanical properties is from shrinkage/solidification porosity. Figure 1a shows stress-strain curves obtained from samples machined from castings in the H925 condition. The strength levels were fairly similar but the ductility varied significantly. Figure 1b shows an example of porosity on a fracture surface from a room-temperature, quasi-static tensile test. The rounded features represent the surfaces of dendrites which did not fuse or only partially fused together during solidification. Some evidence of local areas of fracture is found on some dendrite surfaces. The shrinkage pores are due to inadequate backfilling of liquid metal and simultaneous solidification shrinkage during casting. A summary of percent elongation results is displayed in Figure 2a. It was found that higher amounts of porosity generally result in lower ductility. Note that the porosity content was measured on the fracture surfaces. The results are qualitatively similar to those found by

  9. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-11-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  10. Microstructures, mechanical properties, and fracture behaviors of metal-injection molded 17-4PH stainless steel

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Huang, Zeng-Kai; Tseng, Chun-Feng; Hwang, Kuen-Shyang

    2015-05-01

    Metal injection molding (MIM) is a versatile technique for economically manufacturing various metal parts with complicated shapes and excellent properties. The objective of this study was to clarify the effects of powder type (water-atomized and gas-atomized powders) and various heat treatments (sintering, solutioning, H900, and H1100) on the microstructures, mechanical properties, and fracture behaviors of MIM 17-4PH stainless steels. The results showed that better mechanical properties of MIM 17-4PH can be achieved with gas-atomized powder than with water-atomized powder due mainly to the lower silicon and oxygen contents and fewer SiO2 inclusions in the steels. The presence of 10 vol% δ ferrite does not impair the UTS or elongation of MIM 17-4PH stainless steels. The δ ferrite did not fracture, even though the neighboring martensitic matrix was severely cracked. Moreover, H900 treatment produces the highest hardness and UTS, along with moderate elongation. H1100 treatment produces the best elongation, along with moderate hardness and UTS.

  11. Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Gui-jiang; Wang, Jun; Li, Cong; Peng, Qian; Gao, Jian; Shen, Bao-luo

    2008-05-01

    An attempt that the precipitation hardening steel 17-4PH was conducted by DC plasma nitriding (DCPN) is made to develop a kind of candidate material for nuclear reactor. Nitriding process performed at temperature ⩽ 400 °C takes effect on creation of the layers composed of S-phase (expanded austenite) and αN‧ (expanded martensite). Up to the temperature of 420 °C, the S-phase peaks disappear due to the transformation occurrence (S-phase → αN‧ + CrN). For the samples nitrided at temperature ⩾ 450 °C, no evidence of αN‧ is found owing to a precipitation (αN‧ → α +CrN) taking place. For the 480 °C/4 h treated sample, it is the surface microhardness that plays the lead role in the wear rate reduction but the surface roughness; while for the 400 °C/4 h treated sample, it is both of the surface roughness and the S-phase formation. Dry sliding wear of the untreated 17-4PH is mainly characterized by strong adhesion, abrasion and oxidation mechanism. Samples nitrided at 400 °C which is dominated by slight abrasion and plastic deformation exhibit the best dry sliding wear resistance compared to the samples nitrided at other temperatures.

  12. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  13. Optimized postweld heat treatment procedures for 17-4 PH stainless steels

    SciTech Connect

    Bhaduri, A.K.; Sujith, S.; Srinivasan, G.; Gill, T.P.S.; Mannan, S.L.

    1995-05-01

    The postweld heat treatment (PWHT) procedures for 17-4 PH stainless steel weldments of matching chemistry was optimized vis-a-vis its microstructure prior to welding based on microstructural studies and room-temperature mechanical properties. The 17-4 PH stainless steel was welded in two different prior microstructural conditions (condition A and condition H 1150) and then postweld heat treated to condition H900 or condition H1150, using different heat treatment procedures. Microstructural investigations and room-temperature tensile properties were determined to study the combined effects of prior microstructural and PWHT procedures.

  14. Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel

    DOE PAGES

    Schaller, Rebecca; Taylor, Jason; Rodelas, Jeffrey; ...

    2017-02-18

    The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. Lastly, a micro-electrochemical cell was employed to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥ 50 µm.

  15. Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.

    2007-01-01

    A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.

  16. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    SciTech Connect

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties were accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.

  17. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone.

  18. Mechanical Properties of 17-4PH Stainless Steel Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Lerch, B. a.; Hebsur, M.; Cosgriff, L. M.; Fedor, J.

    2007-01-01

    Rectangular 17-4PH stainless steel sandwiched foam panels were fabricated using a commercial manufacturing technique by brazing two sheets to a foam core. Microstructural observations and ultrasonic nondestructive evaluation of the panels revealed large variations in the quality of the brazed areas from one panel to the next as well as within the same panel. Shear tests conducted on specimens machined from the panels exhibited failures either in the brazed region or in the foam core for the poorly brazed and well-brazed samples, respectively. Compression tests were conducted on the foam cores to evaluate their elastic and plastic deformation behavior. These data were compared with published data on polymeric and metallic foams, and with theoretical deformation models proposed for open cell foams.

  19. Synergetic effect of hardness and phosphorus grain-boundary segregation on the ductile-to-brittle transition temperature of 17-4 PH steel

    NASA Astrophysics Data System (ADS)

    Christien, F.; Le Gall, R.; Saindrenan, G.

    2003-11-01

    The influence of hardness and phosphorus grain-boundary segregation (PGBS) on the ductile-to-brittle transition temperature (DBTT) of a 17-4 PH martensitic steel was studied. Thermal treatments including long-time aging at low temperature were made to get different hardness levels and different PGBS amounts. A synergetic effect between PGBS and hardness on the DBTT of the steel is evidenced; in other words, the DBTT shift due to PGBS increases with hardness. If hardness is low enough, PGBS can even have no effect on the DBTT. A tentative interpretation of this synergetic effect is proposed, based on the assumption that the detrimental effect of PGBS on the grain-boundary cohesion increases with temperature.

  20. Experimental investigation on selective laser melting of 17-4PH stainless steel

    NASA Astrophysics Data System (ADS)

    Hu, Zhiheng; Zhu, Haihong; Zhang, Hu; Zeng, Xiaoyan

    2017-01-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technique that uses powders to fabricate 3Dparts directly. The objective of this paper is to perform an experimental investigation of selective laser melted 17-4PH stainless steel. The investigation involved the influence of separate processing parameters on the density, defect, microhardness and the influence of heat-treatment on the mechanical properties. The outcomes of this study show that scan velocity and slice thickness have significant effects on the density and the characteristics of pores of the SLMed parts. The effect of hatch spacing depends on scan velocity. The processing parameters, such as scan velocity, hatch spacing and slice thickness, have effect on microhardness. Compared to the samples with no heat-treatment, the yield strength of the heat-treated sample increases significantly and the elongation decreases due to the transformation of microstructure and the changes in the precipitation strengthening phases. By a combination of changes in composition and precipitation strengthening, microhardness improved.

  1. Effects of the Treating Time on Microstructure and Erosion Corrosion Behavior of Salt-Bath-Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji

    2013-08-01

    The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.

  2. Precipitation-Induced Changes in Microstrain and Its Relation with Hardness and Tempering Parameter in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Manojkumar, R.; Jayakumar, T.; Das, C. R.; Rao, B. P. C.

    2016-06-01

    17-4 PH (precipitation hardening) stainless steel is a soft martensitic stainless steel strengthened by aging at appropriate temperature for sufficient duration. Precipitation of copper particles in the martensitic matrix during aging causes coherency strains which improves the mechanical properties, namely hardness and strength of the matrix. The contributions to X-ray diffraction (XRD) profile broadening due to coherency strains caused by precipitation and crystallite size changes due to aging are separated and quantified using the modified Williamson-Hall approach. The estimated normalized mean square strain and crystallite size are used to explain the observed changes in hardness. Microstructural changes observed in secondary electron images are in qualitative agreement with crystallite size changes estimated from XRD profile analysis. The precipitation kinetics in the age-hardening regime and overaged regime are studied from hardness changes and they follow the Avrami kinetics and Wilson's model, respectively. In overaged condition, the hardness changes are linearly correlated to the tempering parameter (also known as Larson-Miller parameter). Similar linear variation is observed between the normalized mean square strain (determined from XRD line profile analysis) and the tempering parameter, in the incoherent regime which is beyond peak microstrain conditions.

  3. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-01-01

    The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

  4. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-03-01

    The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

  5. The Structure and Properties of Diffusion Assisted Bonded Joints in 17-4 PH, Type 347, 15-5 PH and Nitronic 40 Stainless Steels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1981-01-01

    Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.

  6. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel.

    PubMed

    Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    Axial fully-reversed strain-controlled ([Formula: see text]) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17-4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17-4 PH SS.

  7. The effect of 17-4PH stainless steel on the lifetime of a Pennzane lubricated Microwave Limb Sounder Antenna Actuator Assembly ball screw for the AURA spacecraft

    NASA Astrophysics Data System (ADS)

    Jones, William R., Jr.; Jansen, Mark J.; Chen, Gun-Shing; Lam, Jonathan; Balzer, Mark; Lo, John; Anderson, Mark; Schepis, Joseph P.

    2005-07-01

    During ground based life testing of a Microwave Limb Sounder (MLS) Antenna Actuator Assembly (AAA) ball-screw assembly, lubricant darkening and loss were noted when approximately 10% of required lifetime was completed. The MLS-AAA ball screw and nut are made from 17-4 PH steel, the nut has 440C stainless steel balls, and the assembly is lubricated with a Pennzane formulation containing a three weight percent lead naphthenate additive. Life tests were done in dry nitrogen at 50°C. To investigate the MLS-AAA life test anomaly, Spiral Orbit Tribometer (SOT) accelerated tests were performed. SOT results indicated greatly reduced relative lifetimes of Pennzane formulations in contact with 17-4 PH steel compared to 440C stainless steel. Also, dry nitrogen tests yielded longer relative lifetimes than comparable ultrahigh vacuum tests. Generally, oxidized Pennzane formulations yielded shorter lifetimes than non-oxidized lubricant. This study emphasizes surface chemistry effects on the lubricated lifetime of moving mechanical assemblies.

  8. Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Irrinki, Harish; Dexter, Michael; Barmore, Brenton; Enneti, Ravi; Pasebani, Somayeh; Badwe, Sunil; Stitzel, Jason; Malhotra, Rajiv; Atre, Sundar V.

    2016-03-01

    The effects of powders attributes (shape and size distribution) and critical processing conditions (energy density) on the densification and mechanical properties of laser powder bed fusion (L-PBF) 17-4 PH stainless steel were studied using four types of powders. The % theoretical density, ultimate tensile strength and hardness of both water- and gas-atomized powders increased with increased energy density. Gas-atomized powders showed superior densification and mechanical properties when processed at low energy densities. However, the % theoretical density and mechanical properties of water-atomized powders were comparable to gas-atomized powders when sintered at a high energy density of 104 J/mm3. An important result of this study was that, even at high % theoretical density (97% ± 1%), the properties of as-printed parts could vary over a relatively large range (UTS: 500-1100 MPa; hardness: 25-39 HRC; elongation: 10-25%) depending on powder characteristics and process conditions. The results also demonstrate the feasibility of using relatively inexpensive water-atomized powders as starting raw material instead of the typically used gas-atomized powders to fabricate parts using L-PBF techniques by sintering at high energy densities.

  9. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.

    2014-12-01

    The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

  10. The Effect of 17-4 PH Stainless Steel on the Lifetime of a Pennzane(Trademark) Lubricated Microwave Limb Sounder Antenna Actuator Assembly Ball Screw for the AURA Spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Jansen, Mark J.; Chen, Gun-Shing; Lam, Jonathan; Balzer, Mark; Anderson, Mark; Lo, John; Schepis, Joseph P.

    2005-01-01

    During ground based life testing of a Microwave Limb Sounder (MLS) Antenna Actuator Assembly (AAA) ball-screw assembly, lubricant darkening and loss were noted when approximately 10 percent of required lifetime was completed. The MLS-AAA ball screw and nut are made from 17-4 PH steel, the nut has 440C stainless steel balls, and the assembly is lubricated with a Pennzane formulation containing a three weight percent lead naphthenate additive. Life tests were done in dry nitrogen at 50 C. To investigate the MLS-AAA life test anomaly, Spiral Orbit Tribometer (SOT) accelerated tests were performed. SOT results indicated greatly reduced relative lifetimes of Pennzane formulations in contact with 17-4 PH steel compared to 440C stainless steel. Also, dry nitrogen tests yielded longer relative lifetimes than comparable ultrahigh vacuum tests. Generally, oxidized Pennzane formulations yielded shorter lifetimes than non-oxidized lubricant. This study emphasizes surface chemistry effects on the lubricated lifetime of moving mechanical assemblies.

  11. Use of the double-loop reactivation test to measure sensitization in aged and welded pH 13-8 Mo martensitic stainless steel

    SciTech Connect

    Cieslak, W.R.; Cieslak, M.J.; Hills, C.R.

    1987-01-08

    Electrochemical potentiokinetic reactivation (EPR) testing provides quantitative detection of small degrees of sensitization. We have used double-loop (DL-EPR) testing, a method which has been characterized for use on austenitic stainless steels, to measure sensitization resulting from aging or from welding of PH 13-8 Mo martensitic stainless steel. Aging at either 500/sup 0/C or 620/sup 0/C results in an increase of the reactivation current density. The 500/sup 0/C treatment promotes preferential susceptibility to corrosion along prior austenite grain boundaries, and the 620/sup 0/C treatment promotes preferential susceptibility along martensite interlath boundaries. A narrow band in the heat-affected zone of autogenous weldments also undergoes localized corrosion during the reactivation scan. Increased reactivation current density is likely caused by classic Cr-depletion resulting from carbide precipitation.

  12. Hot-cracking mechanism in CO/sub 2/ laser beam welds of dissimilar metals involving PH martensitic stainless steels

    SciTech Connect

    Cieslak, M.J.

    1987-02-01

    Autogenous CO/sub 2/ laser beam welds were made between Alloy HP 9-4-20 and both 15-5 PH and PH 13-8 Mo stainless steel. Small scale circular-patch test specimens revealed that the combination involving the Nb-bearing alloy, 15-5 PH, was far more crack susceptible than the combination involving the Nb-free alloy, PH 13-8 Mo. Analytical electron microscopy was used to identify an NbC/austenite eutectic-like constituent as being responsible for the cracking phenomenon.

  13. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  14. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    SciTech Connect

    Christien, F.; Telling, M.T.F.; Knight, K.S.

    2013-08-15

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)

  15. Hydrogen Embrittlement in 17-4PH Stainless Steel

    DTIC Science & Technology

    1982-08-01

    Precipitation-Strengthened St.2.nless Steels", Met. Trans. A., Vol. 7A (1976), pp. 315-318. 4. J. K. Stanley. " Stress Corrosion Cracking and Hydrogen Embrittle... corrosion resistance. However, in the past 20 years, evidence has been presented which indicates that there is considerable susceptibility to stress ... corrosion cracking (SCC) and 1-yd- rogen embrittlement (HE) in components produced from these steels. One* early example of this was the failure of 17

  16. The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.

    2017-01-01

    Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.

  17. Fatigue Crack Growth under High Pressure of Gaseous Hydrogen in a 15-5PH Martensitic Stainless Steel: Influence of Pressure and Loading Frequency

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Moriconi, C.; Benoit, G.; Halm, D.; Henaff, G.

    2013-03-01

    In this study, the effect of gaseous hydrogen pressure in relation with the loading frequency on the fatigue crack growth behavior of a precipitation-hardened martensitic stainless steel is investigated. It is found that increasing the hydrogen pressure from 0.09 to 9 MPa induces an enhancement of the fatigue crack growth rates. This enhancement is pronounced particularly at higher stress intensity factor amplitudes at 9 MPa. Meanwhile, decreasing the frequency from 20 to 0.2 Hz under 0.9 MPa of hydrogen reveals a significant increase in the crack growth rates that tends to join the curve obtained under 9 MPa at 20 Hz, but with a different cracking mode. However, it is shown that the degradation in fatigue crack growth behavior derives from a complex interaction between the fatigue damage and the amount of hydrogen enriching the crack tip, which is dependent on the hydrogen pressure, loading frequency, and stress intensity factor level. Scanning electron microscope (SEM) observations of the fracture surfaces are used to support the explanations proposed to account for the observed phenomena.

  18. Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping

    2016-11-01

    The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.

  19. Microstructural evolution and response to double-loop reactivation testing of heat-treated pH 13-8 Mo martensitic stainless steel

    SciTech Connect

    Cieslak, W.R.; Cieslak, M.J.; Hills, C.R.

    1987-01-01

    The double loop electrochemical potentiokinetic reactivation (DL-EPR) test was used to investigate the intergranular and interlath corrosion susceptibility of pH 13-8 Mo as a function of heat treatment. Degree of sensitization was measured to the ratio of the peak current on a reverse (reactivation) scan to that on the forward anodic scan. Corrosion morphology was characterized by SEM, and microstructure by AEM. PH 13-8 Mo in the as-received condition was not sensitized. Precipitation-strengthening to the H925 temper caused susceptibility to intergranular corrosion, and averaging at H1150 caused susceptibility to interlath corrosion. Corrosion susceptibility was most likely caused by a classic Cr-depletion mechanism. 4 refs., 3 figs. (CS)

  20. Adaptive modulations of martensites.

    PubMed

    Kaufmann, S; Rössler, U K; Heczko, O; Wuttig, M; Buschbeck, J; Schultz, L; Fähler, S

    2010-04-09

    Modulated phases occur in numerous functional materials like giant ferroelectrics and magnetic shape-memory alloys. To understand the origin of these phases, we employ and generalize the concept of adaptive martensite. As a starting point, we investigate the coexistence of austenite, adaptive 14M phase, and tetragonal martensite in Ni-Mn-Ga magnetic shape-memory alloy epitaxial films. We show that the modulated martensite can be constructed from nanotwinned variants of the tetragonal martensite phase. By combining the concept of adaptive martensite with branching of twin variants, we can explain key features of modulated phases from a microscopic view. This includes metastability, the sequence of 6M-10M-14M-NM intermartensitic transitions, and the magnetocrystalline anisotropy.

  1. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  2. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  3. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  4. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  5. 22 CFR 17.4 - Equity and good conscience.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Equity and good conscience. 17.4 Section 17.4 Foreign Relations DEPARTMENT OF STATE PERSONNEL OVERPAYMENTS FROM THE FOREIGN SERVICE RETIREMENT AND... PENSION SYSTEM (FSPS) § 17.4 Equity and good conscience. (a) Defined. Recovery is against equity and...

  6. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. Link to an amendment... antenna structure that requires notice of proposed construction to the Federal Aviation...

  7. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  8. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  9. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  10. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Applicability to EPA proceedings. 17.4... ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to EPA proceedings. The Act applies to an adversary adjudication pending before EPA at any time between October...

  11. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Applicability to EPA proceedings. 17.4... ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to EPA proceedings. The Act applies to an adversary adjudication pending before EPA at any time between October...

  12. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Applicability to EPA proceedings. 17.4... ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to EPA proceedings. The Act applies to an adversary adjudication pending before EPA at any time between October...

  13. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Applicability to EPA proceedings. 17.4... ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to EPA proceedings. The Act applies to an adversary adjudication pending before EPA at any time between October...

  14. 40 CFR 17.4 - Applicability to EPA proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Applicability to EPA proceedings. 17.4... ACCESS TO JUSTICE ACT IN EPA ADMINISTRATIVE PROCEEDINGS General Provisions § 17.4 Applicability to EPA proceedings. The Act applies to an adversary adjudication pending before EPA at any time between October...

  15. Computer simulation of martensitic transformations

    SciTech Connect

    Xu, Ping

    1993-11-01

    The characteristics of martensitic transformations in solids are largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, a finite-element computer simulation model was constructed to mimic the transformation process. The transformation is athermal and simulated at each incremental step by transforming the cell which maximizes the decrease in the free energy. To determine the free energy change, the elastic energy developed during martensite growth is calculated from the theory of linear elasticity for elastically homogeneous media, and updated as the transformation proceeds.

  16. Computer Simulation of Martensitic Transformations.

    NASA Astrophysics Data System (ADS)

    Rifkin, Jonathan A.

    This investigation attempted to determine the mechanism of martensitic nucleation by employing computer molecular dynamics; simulations were conducted of various lattices defects to see if they can serve as nucleation sites. As a prerequisite to the simulations the relation between transformation properties and interatomic potential was studied. It was found that the interatomic potential must have specific properties to successfully simulate solid-solid transformations; in particular it needs a long range oscillating tail. We've also studied homogeneous transformations between BCC and FCC structures and concluded it is unlikely that any has a lower energy barrier energy than the Bain transformation. A two dimensional solid was modelled first to gain experience on a relatively simple system; the transformation was from a square lattice to a triangular one. Next a three dimensional system was studied whose interatomic potential was chosen to mimic sodium. Because of the low transition temperature (18K) the transformation from the low temperature phase to high temperature phase was studied (FCC to BCC). The two dimensional system displayed many phenomena characteristic of real martensitic systems: defects promoted nucleation, the martensite grew in plates, some plates served to nucleate new plates (autocatalytic nucleation) and some defects gave rise to multiple plates (butterfly martensite). The three dimensional system did not undergo a permanent martensitic transformation but it did show signs of temporary transformations where some martensite formed and then dissipated. This happened following the dissociation of a screw dislocation into two partial dislocations.

  17. Lath martensites in low carbon steels

    SciTech Connect

    Sarikaya, M.; Thomas, G.

    1982-01-01

    The morphology and crystallography of lath martensite in low and medium carbon steels have been studied by transmission electron microscopy and diffraction. The steels have microduplex structures of dislocated lath martensite (a < b much less than c) with fairly straight boundaries and continuous interlath thin films of retained austenite. Stacks of laths (i.e., single crystals of martensite) form the packets which are derived from different (111) transformation variants of austenite. Microdiffraction experiments directly allow the determination of the orientation relationships between austenite and martensite. Relative orientations of adjacent individual laths cluster about common orientations from small to large angular differences all around a common <110>M direction. The overall microstructure and orientations result from minimization of the total strain and shape deformation. Considerable accommodation occurs by deformation of laths (sometimes twinned) and austenite (sometimes tripped to twin martensite). In the meantime, microchemical analyses have shown considerable carbon segregation to the martensite-austenite interface. 4 figures.

  18. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  19. International Conference on Martensitic Transformations (ICOMAT 92)

    DTIC Science & Technology

    1993-03-05

    of stress -induced (that is, occuring in the region ahead of a crack tip) t-ni martensitic transformation to fracture toughness Of ceramics is...discussed in detail. and considered that it is related to th differenet Initial stress iields Intr~odu4ed by the constrained- h 5tiR in the P"ent Phase...diffractometer, which makes the accurate determination of struc- tures possible for single crystal martensites produced by stress - induced transformation

  20. Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite

    NASA Astrophysics Data System (ADS)

    Gundyrev, V. M.; Zel'dovich, V. I.; Schastlivtsev, V. M.

    2016-10-01

    Based on X-ray diffraction studies of the martensite texture in a single martensite packet, exact orientation relationships between the orientations of martensite crystallites and the original austenite single crystal in medium-carbon steel 37KhN3A have been determined to be as follows: (011)α||(1; 0.990; 1.009)γ to an accuracy of ± 0.15°, [ {01overline 1 } ]_α ||{[ {1;1.163; - 2.133} ]_γ } to an accuracy of ±0.15°. It has been shown that the orientation relationships proved to be almost the same as in the Fe-31% Ni alloy with a twinned martensite with close lattice parameters. Therefore, the conclusion has been drawn that the mechanism of the lattice deformation upon the martensitic transformation is the same in both alloys. It is described as follows. The lattice deformation occurs by shear on the (111) plane in the {[ {11overline 2 } ]_{_γ }} direction and is accompanied by an additional change in the dimensions in the mutually perpendicular directions {[ {11overline 2 } ]_{_γ }},[ {111} ],and{[ {1overline 1 0} ]_{_γ }}. The invariantlattice deformation is implemented by slip in martensite on the planes of the (112)α type in the direction {[ {overline 1 overline 1 1} ]_α }. One of the 24 crystallographically equivalent variants of the transformation mechanism has been considered. Apart from this type of deformation, an additional deformation of martensite is possible that does not change its orientation. It has been shown that the orientation of the martensite crystallite calculated via the phenomenological theory of the martensitic transformations (PTMT) differs by approximately 1° from the experimentally determined orientation. This refers to both the lath and twinned martensite. In the twinned martensite, the invariant plane obtained in the PTMT calculations and the habit plane coincide. In lath martensite of 37KhN3A steel, the invariant plane of the martensite crystal obtained in PTMT calculations deviates by 25° from the orientation of the

  1. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  2. Time-temperature equivalence in Martensite tempering

    SciTech Connect

    Hackenberg, Robert E.; Thomas, Grant A.; Speer, John G.; Matlock, David K.; Krauss, George

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  3. Microstructure and cleavage in lath martensitic steels.

    PubMed

    Morris, John W; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  4. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  5. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Hamilton, M.L. ); Huang, F.H.; Hu, Wan-Liang )

    1992-06-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were re-examined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9.

  6. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Huang, F.H.; Hu, W.L. ); Hamilton, M.L. )

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs.

  7. Technological properties of steels of martensitic class

    NASA Astrophysics Data System (ADS)

    Kleiner, L. M.; Greben'kov, S. K.; Zakirova, M. G.; Tolchina, I. V.; Ryaposov, I. V.

    2011-03-01

    Process, design, and ecological advantages of low-carbon martensitic steels (LCMS) are presented as compared to medium-carbon heat-treatable structural steels with a structure of tempered sorbite. The factors ensuring high manufacture adaptability in all stages of the production cycle are considered. Technological properties of widely used commercial weldable LCMS are analyzed.

  8. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  9. 17. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. (4"X5" image enlarged from 2 1/4" negative) Sam Fowler, Photographer, February 1998 VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) APPROACH SPAN FENDER - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  10. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... organizations or to pending agency trial-type proceedings shall be released only in limited circumstances in... 45 Public Welfare 1 2010-10-01 2010-10-01 false Regulatory investigations and trial-type... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type...

  11. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  12. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  13. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  14. 45 CFR 17.4 - Regulatory investigations and trial-type proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RELEASE OF ADVERSE INFORMATION TO NEWS MEDIA § 17.4 Regulatory investigations and trial-type proceedings... economic harm may occur unless the public is notified immediately, it may release information to news media... operating component shall rely on the news media to the extent necessary to provide such notice even...

  15. Martensitic transformations in laser processed coatings

    SciTech Connect

    Burg, M. van den; De Hosson, J.T.M. . Dept. of Applied Physics)

    1993-09-01

    This paper concentrates on laser coating of Fe-22 wt% Cr and a duplex steel SAF2205 by injecting Cr[sub 2]O[sub 3] powder into the melt pool. In particular the work focuses on the stabilization of high temperature distorted spinel phases due to the high quench rates involved as well as on the a quantitative crystallographic analysis of the resulting morphologies. The microstructure observed in TEM indicates that the material does not solidify in the distorted spinel structure. The presence of a small amount of cubic (Fe, Cr)-spinel suggests that the distorted spinel in fact might be nucleated from the cubic spinel phase. The plate like morphology of the distorted spinel phase in combination with the twinned internal structure of the plates put forward the idea that the transformation might be martensitic. Martensitic calculations executed with the lattice parameters of the cubic and distorted (Fe, Cr)-spinel phases are in excellent agreement with the experimental data confirming that the transformation might be martensitic indeed.

  16. Transformation temperatures of martensite in beta phase nickel aluminide

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1972-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  17. Acoustic emission and shape memory effect in the martensitic transformation.

    PubMed

    Sreekala, S; Ananthakrishna, G

    2003-04-04

    Acoustic emission signals are known to exhibit a high degree of reproducibility in time and show correlations with the growth and shrinkage of martensite domains when athermal martensites are subjected to repeated thermal cycling in a restricted temperature range. We show that a recently introduced two dimensional model for the martensitic transformation mimics these features. We also show that these features are related to the shape memory effect where near full reversal of morphological features are seen under these thermal cycling conditions.

  18. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  19. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nikitasari, Arini; Mabruri, Efendi

    2016-04-01

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  20. Crystallography of lath martensite and stabilization of retained austenite

    SciTech Connect

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  1. Creep resistant high temperature martensitic steel

    DOEpatents

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  2. Creep resistant high temperature martensitic steel

    DOEpatents

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  3. Cleavage fracture in bainitic and martensitic microstructures

    SciTech Connect

    Zhang, X.Z.; Knott, J.F.

    1999-09-29

    This paper addresses the mechanisms of cleavage fracture in the pressure-vessel steel A533B. Microstructures of single bainite microstructures exhibit a higher propensity for brittle cleavage fracture than do those of auto-tempered martensites. The K{sub 1c} values of mixed microstructures are determined by the statistical distribution of the two phases and the range of the values is bounded by limits set by those for the single-phase microstructures. The results are explained in terms of the RKR model, which involves a local cleavage stress {sigma}*{sub F} and a distance ahead of the macrocrack tip, X, as two critical parameters. It is found that the carbides or carbide colonies act as critical microcrack nuclei, and hence play a key role in determining the fracture toughness, although packet boundaries in bainite may give rise to pop-in arrests in displacement-controlled tests.

  4. Simulation of an Austenite-Twinned-Martensite Interface.

    PubMed

    Kearsley, A J; Melara, L A

    2003-01-01

    Developing numerical methods for predicting microstructure in materials is a large and important research area. Two examples of material microstructures are Austenite and Martensite. Austenite is a microscopic phase with simple crystallographic structure while Martensite is one with a more complex structure. One important task in materials science is the development of numerical procedures which accurately predict microstructures in Martensite. In this paper we present a method for simulating material microstructure close to an Austenite-Martensite interface. The method combines a quasi-Newton optimization algorithm and a nonconforming finite element scheme that successfully minimizes an approximation to the total stored energy near the interface of interest. Preliminary results suggest that the minimizers of this energy functional located by the developed numerical algorithm appear to display the desired characteristics.

  5. Transformation temperatures of martensite in beta-phase nickel aluminide.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1973-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  6. Deformation behavior of duplex austenite and ε-martensite high-Mn steel.

    PubMed

    Kwon, Ki Hyuk; Suh, Byeong-Chan; Baik, Sung-Il; Kim, Young-Woon; Choi, Jong-Kyo; Kim, Nack J

    2013-02-01

    Deformation and work hardening behavior of Fe-17Mn-0.02C steel containing ε-martensite within the austenite matrix have been investigated by means of in situ microstructural observations and x-ray diffraction analysis. During deformation, the steel shows the deformation-induced transformation of austenite → ε-martensite → α'-martensite as well as the direct transformation of austenite → α'-martensite. Based on the calculation of changes in the fraction of each constituent phase, we found that the phase transformation of austenite → ε-martensite is more effective in work hardening than that of ε-martensite → α'-martensite. Moreover, reverse transformation of ε-martensite → austenite has also been observed during deformation. It originates from the formation of stacking faults within the deformed ε-martensite, resulting in the formation of 6H-long periodic ordered structure.

  7. Elastic model of a dislocation center for martensite nucleation

    SciTech Connect

    Vereshchagin, V.P.; Kashchenko, M.P.

    1995-01-01

    The possibility of spontaneous nucleation of a crystal of new phase when the original structure is metastable is usually connected with the catalyzing effect of defects playing the role of nucleation centers. In the case of the {gamma}{r_arrow}{alpha} martensite transformation in iron alloys, even individual dislocations can act as such defects, based on analysis of long-range elastic fields of isolated linear dislocations in a linearly elastic anisotropic continuum, the authors established the existence of a correlation between the geometric characteristics of the elastically deformed state in the vicinity of 60-degree and 30-degree dislocations and the structure and morphological characteristics of {alpha}-martensite observed in massive iron alloy samples. These results suggest that the dislocation affects the pathway of the martensite reaction and allows the authors to say that the specific characteristics of heterogeneous nucleation of new phase for the martensite mechanism of the {gamma}{r_arrow}{alpha} transformation involves singling out a single structural rearrangement variant which is suitable from the standpoint of adapation of the transforming lattice to the characteristic features of the elastically deformed state created by the dislocation. The possibilities for such adaption are limited by the crystallography of the transformation and the reactions of the surrounding austenite occurring when regular connections exist with the morphological characteristics of the martensite crystal, and are not necessarily compatible with the individual features of the elastic field of each dislocation. Considering this, the authors can introduce the concept of a dislocation center for nucleation of a martensite crystal about the region of the dislocation where conditions are realized which are favorable for the formation of a nucleus of martensite crystal of a certain shape and orientation, and they can develop an elastic model corresponding to this concept.

  8. Martensitic transformation, shape memory effects, and other curious mechanical effects

    SciTech Connect

    Vandermeer, R.A.

    1982-01-08

    The objective of this paper is to review tutorially the subject of martensitic transformations in uranium alloys emphasizing their role in the shape memory effect (SME). We examine first what a martensitic transformation is, illustrating some of its characteristics with specific examples. As well as being athermal in nature, as expected, data are presented indicating that martensitic transformations in some uranium alloys also have a strong isothermal component. In addition, a few alloys are known to exhibit thermoelastic martensitic reactions. The SME, which is associated with these, is defined and demonstrated graphically with data from a uranium-6 wt % niobium alloy. Some of the important variables influencing SME behavior are described. Specifically, these are reheat temperature, amount of deformation, crystal structure, and composition. A mechanism for SME is postulated and the association with martensitic transformation is detailed. A self-induced shape instability in the uranium-7.5 wt % niobium-2.5 wt % zirconium alloy with a rationalization of the behavior in terms of texture and lattice parameter change during aging is reviewed and discussed. 24 figures.

  9. Influences of cyclic loading on martensite transformation of TRIP steels

    NASA Astrophysics Data System (ADS)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.

    2013-03-01

    While austenite transformation into martensite induces increasing of the crack initiation life and restraining of the growth of fatigue cracks in cyclic-loading processes, TRIP-assisted steels have a better fatigue life than the AHSS (Advance High Strength Steels). As two key parameters in the cyclic loading process, strain amplitude and cyclic frequency are used in a kinetic transformation model to reasonably evaluate the phase transformation from austenite into martensite with the shear-band intersections theory, in which strain amplitude and cyclic frequency are related to the rate of shear-band intersection formation and the driving force of phase transformation. The results revealed that the martensite volume fraction increased and the rate of phase transformation decrease while the number of cycles increased, and the martensite volume fraction was almost constant after the number of cycles was more than 2000 times. Higher strain amplitude promotes martensite transformation and higher cyclic frequency impedes phase transformation, which are interpreted by temperature increment, the driving force of phase transformation and the rate of shearband intersection formation.

  10. Complexion-mediated martensitic phase transformation in Titanium

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A.-C.; Raabe, D.

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α'' (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  11. Structure and properties of low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Kleiner, L. M.; Simonov, Yu. N.

    1999-08-01

    Sudies begun in the 1960s under the guidance of R. I. Éntin at the Institute of Metal Physics of the Bardin Central Research Institute of Ferrous Metals have shown that high stability of low-carbon austenite in both the "normal"2 and bainite regions can be provided at a specific proportion of carbon and the alloying elements. The starting temperature of martensite transformation M 5 remains at 300-400°C. This makes it possible to obtain in steels the structure of lath martensite in large cross sections by air cooling. These low-carbon martensite steels (LCMS) possess a favorable combination of mechanical properties and a number of technological advantages even in the quenched state, which widens their range of application in industry. In recent years several new groups of LCMS have been created.

  12. Complexion-mediated martensitic phase transformation in Titanium.

    PubMed

    Zhang, J; Tasan, C C; Lai, M J; Dippel, A-C; Raabe, D

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  13. Complexion-mediated martensitic phase transformation in Titanium

    PubMed Central

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.

    2017-01-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484

  14. Radiation embrittlement of manganese-stabilized martensitic stainless steel

    SciTech Connect

    Gelles, D.S.; Hu, W.L.

    1986-12-01

    Fractographic examination has been performed on selected Charpy specimens of manganese stabilized martensitic stainless steels in order to identify the cause of irradiation embrittlement. Embrittlement was found to be partly due to enhanced failure at grain boundaries arising from precipitation. Microstructural examination of a specimen irradiated at higher temperature has demonstrated the presence of Fe-Cr-Mn chi phase, a body centered cubic intermetallic phase known to cause embrittlement. This work indicated that manganese stabilized martensitic stainless steels are prone to intermetallic phase formation which is detrimental to mechanical properties.

  15. Influence of magnetic fields on structural martensitic transitions

    SciTech Connect

    Lashley, J C; Cooley, J C; Smith, J L; Fisher, R A; Modic, K A; Yang, X- D; Riseborough, P S; Opeil, C P; Finlayson, T R; Goddard, P A; Silhanek, A V

    2009-01-01

    We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.

  16. Martensitic transformations in high-strength steels at aging

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Bannykh, O. A.

    2011-04-01

    The effect of heat treatment and elastic stresses on the texture of maraging NiTi-steels is studied. The interruption of the decomposition of martensite at the early stages is shown to be accompanied by the γ → α transformation, which proceeds upon cooling from the aging temperature and under elastic (σ < σ0.2) tensile stresses. The martensite has a crystallographic texture, which is caused by the evolution of hot-deformation texture as a result of quenching and decomposition of a supersaturated α solid solution.

  17. AM363 martensitic stainless steel: A multiphase equation of state

    NASA Astrophysics Data System (ADS)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  18. Strain-induced martensite to austenite reverse transformation in an ultrafine-grained Fe-Ni-Mn martensitic steel

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Koohdar, H. R.; Habibi-Parsa, M.; Nedjad, S. Hossein; Alidokht, S. A.; Langdon, Terence G.

    2014-05-01

    Research was conducted to evaluate the effect of heavy cold rolling on microstructural evolution in an Fe-10Ni-7Mn (wt.%) martensitic steel. The chemical driving force for the strain-induced martensite to austenite reverse transformation was calculated using thermodynamic principles and a model was developed for estimating the effect of applied stress on the driving force of the martensite to austenite reverse transformation through heavy cold rolling. These calculations show that, in order to make a reverse transformation feasible, the applied stress on the material should supply the total driving force, both chemical and non-chemical, for the transformation. It is demonstrated that after 60% cold rolling the required driving force for the reverse transformation may be provided. Experimental results, including cold rolling and transmission electron microscopy images, are utilized to verify the thermodynamic calculations.

  19. Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagashima, Akihide; Nagasako, Makoto; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2017-03-01

    We report the martensitic transformation behavior in Co-V-Ga Heusler alloys. Thermoanalysis and thermomagnetization measurements were conducted to observe the martensitic transformation. By using a transmission electron microscope and an in situ X-ray diffractometer, martensitic transformation was found to occur from the L21 Heusler parent phase to the D022 martensite phase. Phase diagrams were determined for two pseudo-binary sections where martensitic transformation was detected. Magnetic properties, including the Curie temperatures and spontaneous magnetization of the parent phase, were also investigated. The magnetic properties showing behaviors different from those of NiMn-based alloys were found.

  20. Aspects of thermal martensite in a FeNiMnCo alloy.

    PubMed

    Güler, M; Güler, E; Kahveci, N

    2010-07-01

    Thermal martensite characteristics in Fe-29%Ni-2%Mn-2%Co alloy were investigated with scanning electron microscopy (SEM) and Mössbauer spectroscopy characterization techniques. SEM observations obviously revealed the lath martensite morphology in the prior austenite phase of examined alloy. As well, the martensitic transformation kinetics was found to be as athermal type. On the other hand, Mössbauer spectroscopy offered the paramagnetic austenite phase and ferromagnetic martensite phase with their volume fractions. Also, the internal magnetic field of the martensite was measured as 32.9T from the Mössbauer spectrometer.

  1. Microstructure characterization of the non-modulated martensite in Ni-Mn-Ga alloy

    SciTech Connect

    Han, M. Bennett, J.C.; Gharghouri, M.A.; Chen, J.; Hyatt, C.V.; Mailman, N.

    2008-06-15

    The microstructure of the non-modulated martensite in a Ni-Mn-Ga alloy has been characterized in detail by conventional transmission electron microscopy. Bright field images show that the martensite exhibits an internal substructure consisting of a high density of narrow twins. Using electron diffraction, it is found that the martensite has a tetragonal crystal structure. The lattice correspondence between the parent phase and the non-modulated martensite is investigated. Furthermore, the four twinning elements describing the microtwinning have been graphically and quantitatively determined. The results indicate that the microtwinning within the non-modulated martensite belongs to the compound type.

  2. Crystal symmetry and the reversibility of martensitic transformations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Conti, Sergio; Zanzotto, Giovanni; Zimmer, Johannes

    2004-03-01

    Martensitic transformations are diffusionless, solid-to-solid phase transitions, and have been observed in metals, alloys, ceramics and proteins. They are characterized by a rapid change of crystal structure, accompanied by the development of a rich microstructure. Martensitic transformations can be irreversible, as seen in steels upon quenching, or they can be reversible, such as those observed in shape-memory alloys. In the latter case, the microstructures formed on cooling are easily manipulated by loads and disappear upon reheating. Here, using mathematical theory and numerical simulation, we explain these sharp differences in behaviour on the basis of the change in crystal symmetry during the transition. We find that a necessary condition for reversibility is that the symmetry groups of the parent and product phases be included in a common finite symmetry group. In these cases, the energy barrier to lattice-invariant shear is generically higher than that pertaining to the phase change and, consequently, transformations of this type can occur with virtually no plasticity. Irreversibility is inevitable in all other martensitic transformations, where the energy barrier to plastic deformation (via lattice-invariant shears, as in twinning or slip) is no higher than the barrier to the phase change itself. Various experimental observations confirm the importance of the symmetry of the stable states in determining the macroscopic reversibility of martensitic transformations.

  3. Identification of epsilon martensite in a Fe-based shape memory alloy by means of EBSD.

    PubMed

    Verbeken, K; Van Caenegem, N; Raabe, D

    2009-01-01

    Ferrous shape memory alloys (SMAs) are often thought to become a new, important group of SMAs. The shape memory effect in these alloys is based on the reversible, stress-induced martensitic transformation of austenite to epsilon martensite. The identification and quantification of epsilon martensite is crucial when evaluating the shape memory behaviour of this material. Previous work displayed that promising results were obtained when studying the evolution of the amount of epsilon martensite after different processing steps with Electron BackScatter Diffraction (EBSD). The present work will discuss in detail, on the one hand, the challenges and opportunities arising during the identification of epsilon martensite by means of EBSD and, on the other hand, the possible interpretations that might be given to these findings. It will be illustrated that although the specific nature of the austenite to epsilon martensite transformation can still cause some points of discussion, EBSD has a high potential for identifying epsilon martensite.

  4. The Impact of Martensite Deformation on Shape Memory Effect Recovery Strain Evolution

    NASA Astrophysics Data System (ADS)

    Lanba, Asheesh; Hamilton, Reginald F.

    2015-08-01

    The one-way shape memory effect of polycrystalline NiTi is investigated after differential levels of martensite deformation. Martensite naturally forms an energy-minimizing configuration, referred to as self-accommodated, of differently oriented martensite variants, which are internally twinned. Stress preferentially orients a select variant that eventually detwins and plastically deforms at the highest stress levels. In this work, the underlying morphology is ascertained based on the evolution of micro-scale deformation measurements using digital image correlation analysis of three characteristic material responses. An initial martensitic structure is deformed at constant temperature. The forward austenite-to-martensite and reverse martensite-to-austenite phase transformations take place during temperature cycling under a constant stress. The austenite-to-martensite transformation is tensile stress induced at a constant temperature and initiates via a localized strain band. For the conversion of self-accommodated martensite to orientated morphology and further deformation, spatially heterogeneous strains accrue over the entire specimen surface. Shape memory recovery during heating, on the other hand, culminates with a centralized strain localization that persists as recovery approaches completion. The recovery temperature differential ( A f - A s) depends on the extent of deformation. This work characterizes the influence of stress on phase transformation and martensite deformation morphology for deformation in the martensitic state compared to the stress-induced phase transformation.

  5. A phenomenological approach to micromagnetics in martensitic steels

    NASA Astrophysics Data System (ADS)

    Tomka, G. J.; Gore, J. G.; Earl, J.; Murray, N.; Maylin, M. G.; Squire, P. T.

    2000-09-01

    A series of applied field measurements have been done on rods of martensitic steel using a BH-permeameter incorporated into a stress-strain apparatus. Zero stress measurements have been cross-checked using a VSM. For the unstressed steel, it is shown that it is necessary to adapt the Jiles-Atherton model to account for a significant departure in the virgin and demagnetisation curves from that predicted in the standard model. The adapted model gives a good description of magnetisation changes for points on the curve and provides an insight into the reversal mechanism in martensitic steel. Measurements under stress indicate that the nature of the reversal mechanism is stress dependent.

  6. An Investigation Into 6-Fold Symmetry in Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Kinney, Christopher; Pytlewski, Ken; Qi, Liang; Khachaturyan, Armen G.; Morris, J. W.

    2016-11-01

    Austenite grains that have undergone a martensitic transformation are typically composed of 24 variants that can be categorized by their Bain axis of transformation. There are 3 <001> axes for Bain transformations, therefore the (001) pole figure of a prior austenite grain displays 3-fold symmetry. However, we observed superficially similar prior austenite grains containing 6-fold symmetry in the (001) pole figure. This paper introduces evidence of this 6-fold symmetry and explores the crystallographic origins.

  7. Isothermal formation of martensite in a 12Cr-9Ni-4Mo maraging stainless steel

    SciTech Connect

    Holmquist, M.

    1995-11-01

    The present paper is concerned with the nature of the martensite, which provides the basis for the maraging treatment. Rather than forming martensite during cooling, 1RK91 develops martensite when held at a constant temperature in a range from room temperature and below. Isothermal martensite formation showing C-curve kinetics was found to occur in the maraging steel 1RK91, the nose temperature being about {minus}40 C. The kinetics was found to be enhanced for higher austenitizing treatment temperatures, presumably through a combination of larger grain size and a larger number of quenched in nuclei for isothermal martensite transformation. Experiments involving different cooling rates showed that fast cooling enhanced the transformation kinetics. Based on this observation it is suggested that quenched-in vacancy clusters provide suitable strain embryos for isothermal martensite nucleation.

  8. An assessment of the influence of complex stress states on martensite start temperature

    SciTech Connect

    Todinov, M.T.; Knott, J.F.; Strangwood, M.

    1996-12-01

    In the present investigation a general model for predicting the influence of a complex stress state on the martensite start temperature of polycrystalline materials is proposed. An analytical equation linking the martensite start temperature and the principal stresses has been derived. It has been established that the martensite start temperature depends only on maximum and minimum principal stresses and is independent of the intermediate principal stress. Analytical relationships for the habit plane orientation of the first martensite plates to form have also been derived. The possible habit planes were found to be parallel to the direction of the intermediate principal stress. In cases where the magnitude of the stresses acting leads to relatively small changes in martensite start temperature, the general model can be simplified so that the shift in martensite start temperature can be presented as a linear function of maximum and minimum principal stresses.

  9. Texture evolution during nitinol martensite detwinning and phase transformation

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Ren, Y.

    2013-12-09

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.

  10. Boundaries for martensitic transition of 7Li under pressure

    DOE PAGES

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; ...

    2015-08-14

    We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less

  11. Texture evolution during nitinol martensite detwinning and phase transformation

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.

    2013-12-01

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.

  12. Reversed austenite for enhancing ductility of martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Dieck, S.; Rosemann, P.; Kromm, A.; Halle, T.

    2017-03-01

    The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening.

  13. Boundaries for martensitic transition of 7Li under pressure

    PubMed Central

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; Molaison, Jamie J.; Sinogeikin, Stanislav; dos Santos, Antonio M.; Deemyad, Shanti

    2015-01-01

    Physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ∼3 GPa, once in fcc phase, lithium does not undergo a martensitic transition. PMID:26271453

  14. Influence of the Martensitic Transformation on the Microscale Plastic Strain Heterogeneities in a Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel

    2017-01-01

    The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.

  15. Suppression of Martensitic Transformation in Co2Cr(Ga,Si) Heusler Alloys by Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Xiao, Fei; Jin, Xuejun; Fukuda, Takashi; Kakeshita, Tomoyuki

    2017-03-01

    We have investigated the influence of thermal cycles on martensitic transformation of a Co2Cr(Ga,Si) ferromagnetic Heusler alloy. The as-quenched specimen exhibits successive L21(L)-D022-L21(H) martensitic transformation in the cooling process, which is known as reentrant martensitic transformation. However, heating to 800 K (527 °C) for reverse D022-L21 transformation with a rate of 10 K/min (10 °C/min) stabilizes the parent phase, meaning that the martensitic transformation is suppressed by the thermal cycles. We found precipitate after thermal cycles, and it will be the reason for the stabilization of parent phase.

  16. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Byun, Thak Sang; Parish, Chad M

    2013-01-01

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of alpha- and epsilon-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both alpha- and epsilon-martensite were found in the microstructure, but at 1100 MPa only -martensite presented in the specimen. Under indentation, alpha- and epsilon-martensite were observed in the material regardless of stress level.

  17. Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite using Nanoindentation

    SciTech Connect

    Ahn, T.-H.; Oh, C.-S.; Kim, D. H.; Oh, K. H.; Bei, Hongbin; George, Easo P; Han, H. N.

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  18. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  19. A new Framework for the Interpretation of Modulated Martensites in Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Jusuf, Vincent

    Shape memory alloys (SMAs) are a class of materials with unusual properties that have been attributed to the material undergoing a martensitic phase transformation (MPT). An MPT consists of the material's crystal structure evolving in a coordinated fashion from a high symmetry austenite phase to a low symmetry martensite phase. Often in SMAs, the austenite is a B2 cubic configuration that transforms into a Modulated Martensite (MM) phase. MMs are long-period stacking order structures consisting of cubic (110) basal planes. First-principles computational results have shown that the minimum energy phase for these materials is not a MM, but a short-period structure called the ground state martensite. It is commonly argued that energy contributions associated with kinematic compatibility constraints at the austenite-martensite interface explain the experimental observation of meta-stable MMs, as opposed to the expected ground state martensite phase. To date, a general approach for predicting the properties of the MM structure that will be observed for a particular material has not been available. In this work, we develop a new framework for the interpretation of MMs as natural features of the material's energy landscape (expressed as a function of the lattice parameters and individual atomic positions within a perfect infinite crystal). From this energy-based framework, a new understanding of MMs as a mixture of two short-period base martensite phases is developed. Using only a small set of input data associated with the two base martensites, this Modulated Martensite Mixture Model is capable of accurately predicting the energy, lattice constants, and structural details of an arbitrary modulated martensite phase. This is demonstrated by comparing the Modulated Martensite Mixture Model predictions to computational results from a particular empirical atomistic model.

  20. AFM/MFM hybrid nanocharacterization of martensitic transformation and degradation for Fe-Pd shape memory alloy

    NASA Astrophysics Data System (ADS)

    Suzuki, Takayuki; Nagatani, Kohei; Hirano, Kazumi; Teramoto, Tokuo; Taya, Minoru

    2003-07-01

    Martensitic transformation and degradation characteristics for Fe-Pd ferromagnetic shape memory alloy were investigated by the developed AFM (Atomic Force Microscope)/MFM (Magnetic Force Microscope) hybrid nano-characterization technique. In AFM martensitic transformation was detected by the changes of surface topography of martensite plates. In MFM martensitic transformation was detected by the changes of magnetic domain structures. This technique has an advantage that martensitic transformation characteristics such as martensitic transformation temperature and reverse transformation temperature can be measured at microscopic and nanoscopic small area. Degradation characteristics of martensitic transformation under cyclic loading were also detected by the changes of AFM and MFM images. In AFM images surface topography of martensite plates became flat and in MFM images the morphology of magnetic domain structures became unfocused under cyclic loading. Then it was found that the hybrid nano-characterization was very high sensitive technique to evaluate degradation for Fe-Pd ferromagnetic shape memory alloy.

  1. Dissociation energies of PH and PH+.

    NASA Astrophysics Data System (ADS)

    Reddy, R. R.; Nazeer Ahammed, Y.; Srinivasa Rao, A.; Rao, T. V. R.

    1995-12-01

    Dissociation energies for the ground electronic states of diatomic PH and PH+ are determined by fitting empirical potential functions to the respective RKRV curves using correlation coefficients. The estimated ground state dissociation energies of PH and PH+ are 3.10 and 3.20 eV respectively by the curve fitting procedure using the Lippincott potential function. The computed values are in good agreement with experimental values.

  2. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates

  3. Kinetics of martensitic transformations in magnetic field or under hydrostatic pressure.

    PubMed

    Kakeshita, Tomoyuki; Nam, Jung-Min; Fukuda, Takashi

    2011-02-01

    We have recently constructed a phenomenological theory that provides a unified explanation for athermal and isothermal martensitic transformation processes. On the basis of this theory, we predict some properties of martensitic transformation and confirm them experimentally using some Fe-based alloys and a Ni-Co-Mn-In magnetic shape memory alloy.

  4. The Formation of Crystal Defects in a Fe-Mn-Si Alloy Under Cyclic Martensitic Transformations.

    PubMed

    Bondar, Vladimir I; Danilchenko, Vitaliy E; Iakovlev, Viktor E

    2016-12-01

    Formation of crystalline defects due to cyclic martensitic transformations (CMT) in the iron-manganese Fe-18 wt.% Mn-2 wt.% Si alloy was investigated using X-ray diffractometry. Conditions for accumulation of fragment sub-boundaries with low-angle misorientations and chaotic stacking faults in crystal lattice of austenite and ε-martensite were analyzed.

  5. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    DTIC Science & Technology

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are...Carpenter Custom 465 precipitation-hardened martensiticstainless steel , linear friction welding, process modeling REPORT DOCUMENTATION PAGE 11

  6. High Temperature Measurements Of Martensitic transformations Using Digital Holography

    SciTech Connect

    Thiesing, Benjamin; Mann, Christopher J; Dryepondt, Sebastien N

    2013-01-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

  7. Substructures of the (252) ferrous martensite and their crystallographic significance

    SciTech Connect

    Wang Shidao |; Hei Zukun

    1999-04-23

    Many ferrous martensites have been found to possess a macroscopically invariant habit plane close to (252){sub f} and to exhibit complex and variable substructures that cannot be not only satisfactorily explained but also fully characterized so far. The present work attempts to examine the mechanism of occurrence of the complex substructures and their correlation to other crystallographic properties, esp. to the shape strain, on the basis of a new theory. The theory describes the atomic movements in the lattice change represented with the Bain distortion in the past.

  8. Structural heredity in low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Yugai, S. S.; Kleiner, L. M.; Shatsov, A. A.; Mitrokhovich, N. N.

    2004-11-01

    The reason for the development of low-carbon martensitic steels (LCMS) is the absence of universal and comparatively inexpensive structural iron alloys combining high mechanical properties with processibility. Hardening of LCMS commonly includes heating above Ac 3 (930 - 950°C) and air-cooling. The present paper studies the possibility of heat hardening after heating in the intercritical temperature range, the role of special carbides in realization of structural heredity, the laws of formation of structure, and the properties of commercial LCMS of grades 10Kh3GNM and 12Kh2G2NMFT.

  9. Power-law statistics for avalanches in a martensitic transformation.

    PubMed

    Ahluwalia, R; Ananthakrishna, G

    2001-04-30

    We devise a two-dimensional model that mimics the recently observed power-law distributions for the amplitudes and durations of the acoustic emission signals observed during martensitic transformation [Vives et al., Phys. Rev. Lett. 72, 1694 (1994)]. We include a threshold mechanism, long-range interaction between the transformed domains, inertial effects, and dissipation arising due to the motion of the interface. The model exhibits thermal hysteresis and, more importantly, it shows that the energy is released in the form of avalanches with power-law distributions for their amplitudes and durations. Computer simulations also reveal morphological features similar to those observed in real systems.

  10. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

  11. The partitioning of alloying elements in vacuum arc remelted, Pd-modified PH 13-8 Mo alloys

    NASA Astrophysics Data System (ADS)

    Cieslak, M. J.; Vandenavyle, J. A.; Carr, M. J.; Hills, C. R.; Semarge, R. E.

    1988-12-01

    The partitioning of alloying elements in as-solidified PH 13-8 Mo stainless steel containing up to 1.02 wt pct Pd has been investigated. The as-solidified structure is composed of two major phases, martensite and ferrite. Electron probe microanalysis reveals that Mo, Cr, and Al partition to the ferrite phase while Fe, Ni, Mn, and Pd partition to the martensite (prior austenite) during solidification and cooling from the solidus. In addition to bulk segregation between phases, precipitation of the intermetallic, PdAI, in the retained ferrite is observed. Precipitation of the normal hardening phase, β-NiAl, is also observed in the retained ferrite. Partition ratios of the various alloying elements are determined and are compared with those observed previously in duplex Fe-Cr-Ni stainless steel solidification structures. The martensite start temperature (Ms) was observed to decrease with increasing Pd concentration.

  12. Postirradiation thermocyclic loading of ferritic-martensitic structural materials

    NASA Astrophysics Data System (ADS)

    Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.

    Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.

  13. Transition temperature of martensitic transformations in hafnia and zirconia

    NASA Astrophysics Data System (ADS)

    Luo, Xuhui; Demkov, A. A.

    2008-03-01

    Transition metal oxides find applications in ceramics, catalysis and semiconductor technology. In particular, hafnium dioxide or hafnia will succeed silica as a gate dielectric in advanced transistors. However, thermodynamic properties of thin hafnia films are not well understood, despite their technological importance. We use density functional theory to investigate the tetragonal to monoclinic phase transition in hafnia and zirconia. We find that unlike the case of the cubic to tetragonal transition, this phase transition is not driven by a soft mode. We use transition state theory to identify the minimum energy path (MEP) employing first principle calculations for hafnia and zirconia, sow that both transformations are martensitic, and obtain the transition barriers. Martensitic transformations include both the internal coordinate transformation and deformation of the cell lattice vectors (``strain and shuffle''), therefore the potential energy surface and MEP are function not only of the internal atomic coordinates but also of the unit cell lattice vectors. Considering the simplest case of uniform strain the transition temperatures we then relate the barrier height to the transition temperature. As a self-consistency check, assuming the equality of thermodynamics potentials of the tetragonal and monoclinic phases during the transition, and using the difference in the internal energy calculated from first principles we estimate the entropy change associated with the transition which is found in good agreement with that calculated form the phonon spectra.

  14. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  15. Nanoscale martensitic phase transition at interfaces in shape memory materials

    NASA Astrophysics Data System (ADS)

    Dar, Rebecca D.; Chen, Ying

    2017-01-01

    In polycrystalline shape memory materials, mechanical interactions between martensitic transformation and grain boundaries at small scales play a critical role. Using a cobalt-based shape memory alloy, instrumented nanoindentation that probes nanoscale behavior reveals that grain boundary regions are resistant to transformation and have an adverse effect on shape memory possibly because an increase in strain energy outweighs reduction in interface energy. When grain boundaries are replaced by a thin, intergranular layer of a ductile and more malleable phase, grain boundary constraints are greatly alleviated, and transformation nearby can be well accommodated. Statistical analysis of results from a large number of nanoindents shows a decrease in shape recovery near grain boundaries and an increase in shape recovery near the new grain boundary phase, compared to grain interior. This is corroborated by analysis of nanoscale hardness and energy dissipation. Nanoscale martensitic transformation near interfaces depends largely on how the material across the interface accommodates transformation displacement. Engineering interfaces and enhancing local compatibility could drastically alter the energetics for phase transition at interfaces favorable for shape memory.

  16. Weld microstructure development and properties of precipitation-strengthened martensitic stainless steels

    SciTech Connect

    Brooks, J.

    1994-12-31

    Precipitation-strengthened martensitic stainless steels provide excellent strength (170--220 ksi Y.S.) with high corrosion resistance. However, upon aging, a large reduction in toughness may also occur. The gas tungsten arc (GTA) cold wire feed process was used to weld half inch thick plates of PH 13-8 Mo and Custom 450 from which both tensile and Charpy specimens were machined. A fundamental understanding of the details of weld microstructural evolution was developed by liquid tin quenching GTA welds in which the solidification behavior, primary phase of solidification, microsegregation, and solid-state transformations could be followed. For both alloys studied, the as-welded yield strengths were similar to those of the unaged base material, 130 ksi. Weld properties were very similar to those of the base materials for both alloy systems. Weld strength increases significantly upon aging and achieves a maximum at intermediate aging temperatures. The increase in strength is accompanied by a large decrease in Charpy impact energy; however, the minimum in toughness occurs at aging temperatures slightly less than those resulting in peak strengths. The evolution of the weld microstructure was found to support predictions of microstructural modeling. Although a high degree of alloying partitioning occurs during solidification, a large degree of homogenization occurs upon further solidification and cooling as a result of solid-state diffusion.

  17. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  18. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  19. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-06-03

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  20. Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena

    NASA Astrophysics Data System (ADS)

    Jin, Yongmei M.; Wang, Yu U.; Ren, Yang

    2015-12-01

    Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.

  1. A 0.7-V 17.4- μ W 3-lead wireless ECG SoC.

    PubMed

    Khayatzadeh, Mahmood; Zhang, Xiaoyang; Tan, Jun; Liew, Wen-Sin; Lian, Yong

    2013-10-01

    This paper presents a fully integrated sub-1 V 3-lead wireless ECG System-on-Chip (SoC) for wireless body sensor network applications. The SoC includes a two-channel ECG front-end with a driven-right-leg circuit, an 8-bit SAR ADC, a custom-designed 16-bit microcontroller, two banks of 16 kb SRAM, and a MICS band transceiver. The microcontroller and SRAM blocks are able to operate at sub-/near-threshold regime for the best energy consumption. The proposed SoC has been implemented in a standard 0.13- μ m CMOS process. Measurement results show the microcontroller consumes only 2.62 pJ per instruction at 0.35 V . Both microcontroller and memory blocks are functional down to 0.25 V. The entire SoC is capable of working at single 0.7-V supply. At the best case, it consumes 17.4 μ W in heart rate detection mode and 74.8 μW in raw data acquisition mode under sampling rate of 500 Hz. This makes it one of the best ECG SoCs among state-of-the-art biomedical chips.

  2. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  3. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    SciTech Connect

    Behler, Anna; Teichert, Niclas; Auge, Alexander; Hütten, Andreas; Dutta, Biswanath; Hickel, Tilmann; Waske, Anja; Eckert, Jürgen

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  4. Martensitic transformation in ZrO 2-based ceramics at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Li, L.-F.; Hong, C.-S.; Li, Y.-Y.; Zhang, Z.

    The microstructural changes associated with the tetragonal to monoclinic martensitic transformation at cryogenic temperatures in sintered CeO2-ZrO2 ceramics containing 15.5-16.5 mol% CeO2 have been studied by means of TEM observations. X-ray diffraction analysis indicates that the stress-induced martensitic phase increases with decreases in both temperature and CeO2 content. The effects of martensitic morphologies, anti-phase boundaries (APBs) and various dislocation features on mechanical properties are also discussed in the paper.

  5. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  6. Laser milling of martensitic stainless steels using spiral trajectories

    NASA Astrophysics Data System (ADS)

    Romoli, L.; Tantussi, F.; Fuso, F.

    2017-04-01

    A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.

  7. Thermally activated martensitic transformations in Mg-PSZ

    SciTech Connect

    Behrens, G.; Heuer, A.H.

    1996-04-01

    The thermally activated, stress-assisted martensitic tetragonal {yields} monoclinic (t {yields} m) and tetragonal {yields} orthorhombic (t {yields} o) transformations in a high-toughness Mg-PSZ were investigated by monitoring the phase assemblage with Raman spectroscopy after a variety of heat treatments and loading conditions. After a short anneal at 1,000 C, which transforms m- and o-ZrO{sub 2} to the t polymorph, isothermal t {yields} m and t {yields} o transformations occur at room temperature during the months following the anneal. The transformation rates in the annealed samples are greatly enhanced under external stress. Alternatively, samples containing regions of significant residual stress, introduced by indentation for example, and then annealed at relatively low temperatures, underwent additional thermally activated transformation in the stressed regions. The thermodynamics and kinetics of this complex transformation ``plasticity,`` and its effect on mechanical properties, are discussed.

  8. Magnetic domains in Ni Mn Ga martensitic thin films

    NASA Astrophysics Data System (ADS)

    Chernenko, V. A.; Lopez Anton, R.; Kohl, M.; Ohtsuka, M.; Orue, I.; Barandiaran, J. M.

    2005-08-01

    A series of martensitic Ni52Mn24Ga24 thin films deposited on alumina ceramic substrates has been prepared by using RF (radio-frequency) magnetron sputtering. The film thickness, d, varies from 0.1 to 5.0 µm. Magnetic domain patterns have been imaged by the MFM (magnetic force microscopy) technique. A maze domain structure is found for all studied films. MFM shows a large out-of-plane magnetization component and a rather uniform domain width for each film thickness. The domain width, δ, depends on the film thickness as \\delta \\sim \\sqrt {d} in the whole studied range of film thickness. This dependence is the expected one for magnetic anisotropy and magnetostatic contributions in a perpendicular magnetic domain configuration. The proportionality coefficient is also consistent with the values of saturation magnetization and magnetic anisotropy determined in the samples.

  9. Crystallography of Martensite in TiAu Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Hosoda, H.

    2011-01-01

    The twin structure, habit plane orientation, and morphology of B19 martensite in TiAu, which is a candidate shape memory alloy (SMA) for high-temperature and biomedical applications, were investigated by conventional transmission electron microscopy. Almost all internal twins were {111} type I twins as lattice-invariant deformation (LID). The <211> type II twin was scarcely observed in TiAu, unlike in TiPd and TiPt SMAs. The habit plane roughly corresponded to the twinning plane ( K 1 plane) of the <211> type II twin because of the superb lattice parameter ratio of TiAu. As a result, an energy-minimizing microstructure referred to as "twins within twins" appears as the major microstructure. The selection rules for the twinning of LID are also discussed considering the results of extensive studies on LID in SMAs.

  10. O-Demethylation and Successive Oxidative Dechlorination of Methoxychlor by Bradyrhizobium sp. Strain 17-4, Isolated from River Sediment

    PubMed Central

    Masuda, Minoru; Sato, Kiyoshi

    2012-01-01

    O-Demethylation of insecticide methoxychlor is well known as a phase I metabolic reaction in various eukaryotic organisms. Regarding prokaryotic organisms, however, no individual species involved in such reaction have been specified and characterized so far. Here we successfully isolated a bacterium that mediates oxidative transformation of methoxychlor, including O-demethylation and dechlorination, from river sediment. The isolate was found to be closely related to Bradyrhizobium elkanii at the 16S rRNA gene sequence level (100% identical). However, based on some differences in the physiological properties of this bacterium, we determined that it was actually a different species, Bradyrhizobium sp. strain 17-4. The isolate mediated O-demethylation of methoxychlor to yield a monophenolic derivative [Mono-OH; 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane] as the primary degradation product. The chiral high-performance liquid chromatography (HPLC) analysis revealed that the isolate possesses high enantioselectivity favoring the formation of (S)-Mono-OH (nearly 100%). Accompanied by the sequential O-demethylation to form the bis-phenolic derivative Bis-OH [1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane], oxidative dechlorination of the side chain proceeded, and monophenolic carboxylic acid accumulated, followed by the formation of multiple unidentified polar degradation products. The breakdown proceeded more rapidly when reductively dechlorinated (dichloro-form) methoxychlor was applied as the initial substrate. The resultant carboxylic acids and polar degradation products are likely further biodegraded by ubiquitous bacteria. The isolate possibly plays an important role for complete degradation (mineralization) of methoxychlor by providing the readily biodegradable substrates. PMID:22635993

  11. Possible martensitic transformation and ferrimagnetic properties in Heusler alloy Mn2NiSn

    NASA Astrophysics Data System (ADS)

    Duan, Ying-Ni; Fan, Xiao-Xi; Kutluk, Abdugheni; Du, Xiu-Juan; Zhang, Zheng-Wei; Song, Yu-Ling

    2015-07-01

    The electronic structure and magnetic properties of Hg2CuTi-type Mn2NiSn have been studied by performing the first-principle calculations. It is found that the phase transformation from the cubic to the tetragonal structure reduces the total energy, indicating that the martensitic phase is more stable and the phase transition from austenite to martensite may happen at low temperature for Hg2CuTi-type Mn2NiSn. Concerning the magnetism of Hg2CuTi-type Mn2NiSn, both austenitic and martensitic phases are suggested to be ferrimagnets. Furthermore, martensitic transformation decreases the magnetic moment per formula unit compared with austenitic phase. The results are helpful to accelerate the use of Mn2NiSn alloys in the series for magnetic shape memory applications.

  12. Martensitic and magnetic transformation in Mn50Ni50-xSnx ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ma, L.; Wang, S. Q.; Li, Y. Z.; Zhen, C. M.; Hou, D. L.; Wang, W. H.; Chen, J. L.; Wu, G. H.

    2012-10-01

    A martensitic transformation (MT) from a body-centered-cubic austenitic phase to a tetragonal martensitic phase has been found in Mn50Ni50-xSnx (0 ≤ x ≤ 11) alloys. The martensitic transformation temperature can be decreased by about 71.6 K by increasing the Sn concentration by 1 at. %. For 9 ≤ x ≤ 11, Mn50Ni50-xSnx ferromagnetic shape memory alloys are obtained. Due to the large magnetization difference (ΔM = 60 emu/g) and small thermal hysteresis (ΔT = 6 K) in the Mn50Ni40Sn10 alloy, a two-way magnetic-field-induced martensitic transformation is observed with dT/dH = 2 K/T.

  13. Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.

    PubMed

    Pun, G P Purja; Mishin, Y

    2010-10-06

    Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.

  14. A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping

    NASA Astrophysics Data System (ADS)

    Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang

    2017-01-01

    In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.

  15. Modeling Hardenable Stainless Steels Using Calculated Martensite Start Temperatures in Thermodynamic Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Seifert, Merlin; Theisen, Werner

    2016-12-01

    In this work, martensite start temperatures of several martensitic stainless steels containing different amounts and types of carbides were calculated by means of thermodynamic equilibrium calculations. Two different equations were introduced into the Thermo-Calc® software. The calculations were performed for the respective compositions at austenitization temperature and compared to martensite start temperatures measured using a quenching dilatometer. The purpose was to estimate hardenability and hardness of newly developed steels. Even though the equations used were determined empirically for specific alloying systems, general trends for the investigated steels were found to be reproduced very well. Thus, the comparison of martensite start temperatures of different steels in comparable alloying systems is highly effective for modeling new steels and for predicting their hardenability.

  16. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  17. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L'vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni-Mn-Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10-4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10-6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  18. Magnetic indication of the stress-induced martensitic transformation in ferromagnetic Ni Mn Ga alloy

    NASA Astrophysics Data System (ADS)

    Heczko, O.; L'vov, V. A.; Straka, L.; Hannula, S.-P.

    2006-07-01

    A quantitative study of the stress-induced martensitic transformation in Ni 49.7Mn 29.1Ga 21.2 magnetic shape memory alloy has been carried out in two different ways: the first way is based on the measurements of saturation magnetization under variable mechanical stress and the second one is founded on the quantitative theoretical treatment of experimental stress-strain loops. A functional dependence between the volume fraction of transformed martensite and applied stress has been determined from both magnetization and strain values. A quantitative agreement between the functions determined in two different ways has been observed, and hence, the effectiveness of the magnetic indication of the stress-induced martensitic transformations has been proved. This method can be used to monitor stress-induced transformations in martensitic films, needles and small specimens.

  19. A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping

    NASA Astrophysics Data System (ADS)

    Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang

    2017-03-01

    In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.

  20. Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The microstructure and hardness of high-carbon martensitic stainless steel (HMSS) were investigated using thermal expansion analyzer, Thermo-calc, scanning electron microscope, x-ray diffraction, and Ultra-high temperature confocal microscope. The results indicate that the experimental steel should be austenitized in the temperature range of 1025-1075 °C, which can give a maximum hardness of 62 HRc with the microstructure consisting of martensite, retained austenite, and some undissolved carbides. With increasing austenitizing temperature, the amount of retained austenite increases, while the volume fraction of carbides increases first and then decreases. The starting temperature and finish temperature of martensite formation decrease with increasing cooling rates. Air-quenched samples can obtain less retained austenite, more compact microstructure, and higher hardness, compared with that of oil-quenched samples. For HMSS, the martensitic transformation takes place at some isolated areas with a slow nucleation rate.

  1. HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

    SciTech Connect

    Morgan, M; Ps Lam, P

    2008-12-11

    Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.

  2. Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite

    NASA Astrophysics Data System (ADS)

    Wang, Meimei; Tasan, C. Cem; Koyama, Motomichi; Ponge, Dirk; Raabe, Dierk

    2015-09-01

    Partial reversion of interlath austenite nano-films is investigated as a potential remedy for hydrogen embrittlement susceptibility of martensitic steels. We conducted uniaxial tensile tests on hydrogen-free and pre-charged medium-Mn transformation-induced plasticity-maraging steels with different austenite film thicknesses. Mechanisms of crack propagation and microstructure interaction are quantitatively analyzed using electron channelling contrast imaging and electron backscatter diffraction, revealing a promising strategy to utilize austenite reversion for hydrogen-resistant martensitic steel design.

  3. On the Prediction of α-Martensite Temperatures in Medium Manganese Steels

    NASA Astrophysics Data System (ADS)

    Field, Daniel M.; Baker, Daniel S.; Van Aken, David C.

    2017-02-01

    A new composition-based method for calculating the α-martensite start temperature in medium manganese steel is presented and uses a regular solution model to accurately calculate the chemical driving force for α-martensite formation, Δ G_{Chem}^{γ to α } . In addition, a compositional relationship for the strain energy contribution during martensitic transformation was developed using measured Young's moduli (E) reported in literature and measured values for steels produced during this investigation. An empirical relationship was developed to calculate Young's modulus using alloy composition and was used where dilatometry literature did not report Young's moduli. A comparison of the Δ G_{Chem}^{γ to α } normalized by dividing by the product of Young's modulus, unconstrained lattice misfit squared (δ 2), and molar volume (Ω) with respect to the measured α-martensite start temperatures, M_{S}^{α } , produced a single linear relationship for 42 alloys exhibiting either lath or plate martensite. A temperature-dependent strain energy term was then formulated as Δ G_{str}^{γ to α } ( {{J}/{mol}} ) = EΩ δ2 (14.8 - 0.013T) , which opposed the chemical driving force for α-martensite formation. M_{S}^{α } was determined at a temperature where Δ G_{Chem}^{γ to α } + Δ G_{str}^{γ to α } = 0 . The proposed M_{S}^{α } model shows an extended temperature range of prediction from 170 K to 820 K (-103 °C to 547 °C). The model is then shown to corroborate alloy chemistries that exhibit two-stage athermal martensitic transformations and two-stage TRIP behavior in three previously reported medium manganese steels. In addition, the model can be used to predict the retained γ-austenite in twelve alloys, containing ɛ-martensite, using the difference between the calculated M_{S}^{ɛ} and M_{S}^{α }.

  4. Quantitative analysis of martensite and bainite microstructures using electron backscatter diffraction.

    PubMed

    Wang, Yongzhe; Hua, Jiajie; Kong, Mingguang; Zeng, Yi; Liu, Junliang; Liu, Ziwei

    2016-09-01

    In the present work, ultra-high-strength steels with multiphase microstructures containing martensite and bainite were prepared by controlling the cooling rate. A new approach was proposed for quantitatively statistical phase analysis using electron backscatter diffraction (EBSD) based on the band contrast which correlates to the quality and intensity of the diffraction patterns. This approach takes advantage of the inherently greater lattice imperfections of martensite, such as dislocations and low-angle grain boundaries, relative to that of bainite. These can reduce the intensity and quality of the EBSD patterns of martensite, which decrease the band contrast. Thus, combined with morphological observations, Gaussian two-peak fitting was employed to analyze the band contrast profile and confirm the ranges of band contrast for the two phases. The volume fractions of bainite and martensite in different samples were determined successfully. In addition, the results show that increased cooling rates improve the proportion of martensite and the ratio of martensite to bainite. Microsc. Res. Tech. 79:814-819, 2016. © 2016 Wiley Periodicals, Inc.

  5. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  6. Microstructural Features Controlling Ductile-to-Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals

    DTIC Science & Technology

    1990-10-01

    Development Report Microstructural Features Controlling Ductile-to- Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals C 0by...Martensitic Steel Weld Metals PERSONAL AUTHOR(S) .J. DeLoach, Jr. .TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT I...if necessary and identify by block number) FIELD GROUP SUB-GROUP High strength steel , Ductile-brittle transition Martensitic Mechanical proper ties

  7. Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process

    DTIC Science & Technology

    2013-05-23

    Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process M. Grujicic, S. Ramaswami, J.S...hardness armor martensitic steel . The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics...FZ, and the adjacent heat-affected zone, HAZ) of a prototypical high-hardness armor-grade martensitic steel MIL A46100 (Ref 1). It is hoped that the

  8. Phase composition and hardening of steels of the Fe-Cr-Ni-Co-Mo system with martensite-austenite structure

    NASA Astrophysics Data System (ADS)

    Tarasenko, L. V.; Shal'kevich, A. B.

    2007-03-01

    The phase composition and mechanical properties of maraging steels of the Fe-Cr-Ni-Co-Mo system are studied as a function of the alloying and of the temperatures of quenching and aging. The intermetallic phases strengthening martensite in different aging stages are determined. The degree of the hardening and the variation of the impact toughness at cryogenic temperatures are compared for steels with different structures (martensite and martensite-austenite) in the stages of maximum hardening and overaging. The effect of retained and reverted austenite on the resistance to crack propagation under impact loading is determined for steels with martensite of a different nature and amount of hardening phases.

  9. Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface.

    PubMed

    Levitas, Valery I; Javanbakht, Mahdi

    2010-10-15

    The Ginzburg-Landau theory for multivariant martensitic phase transformations is advanced in three directions: the potential is developed that introduces the surface tension at interfaces; a mixed term in gradient energy is introduced to control the martensite-martensite interface energy independent of that for austenite-martensite; and a noncontradictory expression for variable surface energy is suggested. The problems of surface-induced pretransformation, barrierless multivariant nucleation, and the growth of an embryo in a nanosize sample are solved to elucidate the effect of the above contributions. The obtained results represent an advanced model for coherent interface.

  10. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.

    PubMed

    Li, Y J; Ponge, D; Choi, P; Raabe, D

    2015-12-01

    B-added low carbon steels exhibit excellent hardenability. The reason has been frequently attributed to B segregation at prior austenite grain boundaries, which prevents the austenite to ferrite transformation and favors the formation of martensite. The segregation behavior of B at prior austenite grain boundaries is strongly influenced by processing conditions such as austenitization temperatures and cooling rates and by alloying elements such as Mo, Cr, and Nb. Here an local electrode atom probe was employed to investigate the segregation behavior of B and other alloying elements (C, Mn, Si, and Cr) in a Cr-added Mo-free martensitic steel. Similar to our previous results on a Mo-added steel, we found that in both steels B is segregated at prior austenite grain boundaries with similar excess values, whereas B is neither detected in the martensitic matrix nor at martensite-martensite boundaries at the given cooling rate of 30K/s. These results are in agreement with the literature reporting that Cr has the same effect on hardenability of steels as Mo in the case of high cooling rates. The absence of B at martensite-martensite boundaries suggests that B segregates to prior austenite grain boundaries via a non-equilibrium mechanism. Segregation of C at all boundaries such as prior austenite grain boundaries and martensite-martensite boundaries may occur by an equilibrium mechanism.

  11. Stress-induced martensite variant reorientation in magnetic shape memory Ni Mn Ga single crystal studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Molnar, P.; Sittner, P.; Lukas, P.; Hannula, S.-P.; Heczko, O.

    2008-06-01

    Stress-induced martensite variant reorientation in magnetic shape memory Ni-Mn-Ga single crystal was studied in situ by the neutron diffraction technique. Principles of determination of individual tetragonal martensitic variants in shape memory alloys are explained. Using neutron diffraction we show that the macroscopic strain originates solely from the martensite structure reorientation or variant redistribution. Neutron diffraction also reveals that the reorientation of martensite is not fully completed even at a stress value of 25 MPa, which is about 20 times larger than the mean stress needed for reorientation. Only one twinning system is active during the reorientation process.

  12. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  13. Thermal Desorption Analysis of Hydrogen in High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Enomoto, M.; Hirakami, D.; Tarui, T.

    2012-02-01

    Thermal desorption analyses (TDA) were conducted in high strength martensitic steels containing carbon from 0.33 to 1.0 mass pct, which were charged with hydrogen at 1223 K (950 °C) under hydrogen of one atmospheric pressure and quenched to room temperature. In 0.33C steel, which had the highest M s temperature, only one desorption peak was observed around 373 K (100 °C), whereas two peaks, one at a similar temperature and the other around and above 573 K (300 °C), were observed in the other steels, the height of the second peak increasing with carbon content. In 0.82C steel, both peaks disappeared during exposure at room temperature in 1 week, whereas the peak heights decreased gradually over 2 weeks in specimens electrolytically charged with hydrogen and aged for varying times at room temperature. From computer simulation, by means of the McNabb-Foster theory coupled with theories of carbon segregation, these peaks are likely to be due to trapping of hydrogen in the strain fields and cores of dislocations, and presumably to a lesser extent in prior austenite grain boundaries. The results also indicate that carbon atoms prevent and even expel hydrogen from trapping sites during quenching and aging in these steels.

  14. Impurities block the alpha to omega martensitic transformation in titanium.

    PubMed

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  15. Tritium retention in reduced-activation ferritic/martensitic steels

    SciTech Connect

    Hatano, Y.; Abe, S.; Matsuyama, M.; Alimov, V.K.; Spitsyn, A.V.; Bobyr, N.P.; Cherkez, D.I.; Khripunov, B.I.; Golubeva, A.V.; Ogorodnikova, O.V.; Klimov, N.S.; Chernov, V.M.; Oyaidzu, M.; Yamanishi, T.

    2015-03-15

    Reduced-activation ferritic/martensitic (RAFM) steels are structural material candidates for breeding blankets of future fusion reactors. Therefore, tritium (T) retention in RAFM steels is an important problem in assessing the T inventory of blankets. In this study, specimens of RAFM steels were subjected to irradiation of 20 MeV W ions to 0.54 displacements per atom (dpa), exposure to high flux D plasmas at 400 and 600 K and that to pulsed heat loads. The specimens thus prepared were exposed to DT gas at 473 K. Despite severe modification in the surface morphology, heat loads had negligible effects on T retention. Significant increase in T retention at the surface and/or subsurface was observed after D plasma exposure. However, T trapped at the surface/subsurface layer was easily removed by maintaining the specimens in the air at about 300 K. Displacement damage led to increase in T retention in the bulk due to the trapping effects of defects, and T trapped was stable at 300 K. It was therefore concluded that displacement damages had the largest influence on T retention under the present conditions.

  16. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  17. Materials design data for reduced activation martensitic steel type EUROFER

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  18. Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Ungár, Tamás; Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Ribárik, Gábor; Shi, Zengmin

    2017-01-01

    Based on high-resolution neutron diffraction experiments, we will show that in lath martensite steels, the initially homogeneous dislocation structure, i.e., homogeneous on the length scale of grain size, is disrupted by plastic deformation, which, in turn, produces a composite on the length scale of martensite lath packets. The diffraction patterns of plastically strained martensitic steel reveal characteristically asymmetric peak profiles in the same way as has been observed in materials with heterogeneous dislocation structures. The quasi homogeneous lath structure, formed by quenching, is disrupted by plastic deformation producing a composite structure. Lath packets oriented favorably or unfavorably for dislocation glide become soft or hard. Two lath packet types develop by work softening or work hardening in which the dislocation densities become smaller or larger compared to the initial average dislocation density. The decomposition into soft and hard lath packets is accompanied by load redistribution and the formation of long-range internal stresses between the two lath packet types. The composite behavior of plastically deformed lath martensite opens a new way to understand the elastic-plastic response in this class of materials.

  19. Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Shibata, Akinobu; Murata, Tamotsu; Takahashi, Hiroshi; Matsuoka, Takahiro; Tsuji, Nobuhiro

    2015-12-01

    Hydrogen-related fracture behaviors in low-carbon (Fe-0.1wtpctC) and medium-carbon (Fe-0.4wtpctC) martensitic steels were characterized through crystallographic orientation analysis using electron backscattering diffraction. The martensitic steels with lower strength (Fe-0.1C specimen or Fe-0.4C specimen tempered at higher temperature) exhibited transgranular fracture, where fractured surfaces consisted of dimples and quasi-cleavage patterns. Crystallographic orientation analysis revealed that several of the micro-cracks that formed around the prior austenite grain boundaries propagated along {011} planes. In contrast, fracture surface morphologies of the martensitic steels with higher strength (Fe-0.4C specimen tempered at lower temperature) appeared to be intergranular-like. Crystallographic orientation analysis demonstrated that, on a microscopic level, the fracture surfaces comprised the facets parallel to {011} planes. These results suggest that the hydrogen-related fractures in martensitic steels with higher strength are not exactly intergranular at the prior austenite grain boundaries, but they are transgranular fractures propagated along {011} planes close to the prior austenite grain boundaries. A description of the mechanism of hydrogen-related fracture is proposed based on the results.

  20. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Su, Y.; Y Yang, S.; Shi, Z.; Liu, X. J.

    2014-02-01

    In this study, a new type of Cu-Al-Ta (Cu86Al12Ta2 wt%) shape memory alloy with high martensitic transformation temperature is explored. The microstructure, reversible martensitic transformation and shape memory properties are investigated by means of optical microscopy, back-scattered electron, electron probe microanalysis, x-ray diffraction, differential scanning calorimetry and tensile tests. It is proposed that Cu86Al12Ta2 alloy consists of a mixture of primarily {\\beta }_{1}^{\\prime} martensite and a little {\\gamma }_{1}^{\\prime} martensite and some different precipitates. The tiny thin-striped Ta2(Al,Cu)3 precipitate is predominant in the as-quenched condition, whereas the particle-shaped Cu(Al, Ta) precipitate is dominant after hot-rolling. Additionally, the dendritic-shaped γ1(Cu9Al4) phase begins to appear after hot-rolling, but it disappears when the sample is re-quenched. All studied samples have reversible martensitic transformation temperatures higher than 450 ° C. The results show that two-step martensitic transformation behavior is observed for Cu86Al12Ta2 alloy in all three different conditions due to the transformations between ({\\beta }_{1}^{\\prime}+{\\gamma }_{1}^{\\prime}) martensites and the austenite parent phase. The results further show that the recovery ratios are almost 100% when the pre-strains are ≤2.5%, then they gradually decrease with further increase of the pre-strains. The shape memory effects clearly increase as a result of increase of the pre-strains, up to a maximum value of 3.2%.

  1. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    NASA Astrophysics Data System (ADS)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger

  2. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    SciTech Connect

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.

  3. Crystallographic features of the structure of a martensite packet of the NiMn intermetallic compound

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Belosludtseva, E. S.; Kazantsev, V. A.

    2016-06-01

    Optical microscopy, scanning electron microscopy, and X-ray diffraction are used to show that a pseudosingle crystal forms upon cooling of an alloy Ni49Mn51 single crystal below the temperature of the β→θ (bcc → fct) transformation. At room temperature, this pseudosingle crystal has the structure of tetragonal L10 martensite with parameters a = 0.3732 nm and c = 0.3537 nm and a tetragonality c/ a = 0.94775. The temperatures of the forward and reverse B2 → L10 transformations are determined. The crystallographic features of martensite packet formation are analyzed. As shown by EBSD, neighboring martensite packets always have three kinds of tetragonal martensite plates, which are in a twin position and have different tetragonality axis directions. Repeated heating and quenching of the pseudosingle crystal result in recrystallization with the formation of coarse grains. The packet structure of the tetragonal martensite is retained in this case, and the sizes of the packets formed within a grain decrease by a factor of 2-3 as compared to the initial pseudosingle crystal.

  4. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  5. Microstructures and Mechanical Properties of High-Mn TRIP Steel Based on Warm Deformation of Martensite

    NASA Astrophysics Data System (ADS)

    Guo, Zhikai; Li, Longfei; Yang, Wangyue; Sun, Zuqing

    2015-04-01

    High-Mn TRIP steel with about 5 wt pct Mn was prepared by a thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region. The microstructural evolution and the mechanical properties of the used steel during such treatment were investigated. The results indicate that during warm deformation of martensite in the intercritical region, the decomposition of martensite was accelerated by warm deformation and the occurrence of dynamic recrystallization of ferrite led to the formation of equiaxed ferrite grains. Meanwhile, the reverse transformation of austenite was accelerated by warm deformation to some extent. During subsequent annealing in the intercritical region, static recrystallization of ferrite led to the increase in the fraction of equiaxed ferrite grains, and the formation of the reversed austenite was accelerated by the addition of the deformation-stored energy, while the stability of the reversed austenite was improved by the accelerated diffusions of C atoms and Mn atoms. As a whole, the mechanical properties of the used steel by the thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region were comparable to the steels with similar compositions subjected to intercritical annealing for hours after cold rolling of martensite.

  6. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    NASA Astrophysics Data System (ADS)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-02-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  7. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Liu, H.; Zhang, X. X.; Zhang, M.; Dai, X. F.; Hu, H. N.; Chen, J. L.; Wu, G. H.

    2004-08-01

    The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni 50+ xFe 25- xGa 25 ( x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L2→B2 transition occurs in the samples treated at 873 K, while the γ phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni 2FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni 2FeGa on the saturation magnetization and exchange interaction are also discussed.

  8. Plasma Nitriding Behavior of Fe-C-M (M = Al, Cr, Mn, Si) Ternary Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Kitsuya, Shigeki; Oh-ishi, Keilchiro; Hono, Kazuhiro; Miyamoto, Goro; Furuhara, Tadashi

    2014-01-01

    Change in surface hardness and nitrides precipitated in Fe-0.6C binary and Fe-0.6 mass pct C-1 mass pct M (M = Al, Cr, Mn, Si) ternary martensitic alloys during plasma nitriding were investigated. Surface hardness was hardly increased in the Fe-0.6C binary alloy and slightly increased in Fe-0.6C-1Mn and Fe-0.6C-1Si alloys. On the other hand, it was largely increased in Fe-0.6C-1Al and Fe-0.6C-1Cr alloys. In all the Fe-0.6C-1M alloys except for the Si-added alloy, fine platelet alloy nitrides precipitated inside martensite laths. In the Fe-0.6C-1Si alloy, Si-enriched film was observed mainly at a grain boundary and an interface between cementite and matrix. Crystal structure of nitrides observed in the martensitic alloys was similar to those in Fe-M binary ferritic alloys reported previously. However, there was a difference in hardening behavior between ferrite and martensite due to a high density of dislocations acting as a nucleation site of the nitrides and partitioning of an alloying element between martensite and cementite changing the driving force of precipitation of the nitrides.

  9. On the mechanism of two way shape memory effect obtained by stabilized stress induced martensite

    SciTech Connect

    Guilemany, J.M.; Fernandez, J. . Dept. de Ingenieria Quimica y Metalurgia)

    1994-02-01

    Two way shape memory effect (TWME) can be obtained by suitable thermomechanical processing which involve repetitive training routines. J. Perkins found that TWME take place as a result of a macroscopic non-uniform residual stress field, concluding that plastic deformation was necessary to get TWME. K. Enami et al found that complex dislocations arrays are generated by thermomechanical cycling during the training procedure. TWME results obtained by the above training methods are not as good as would be expected, because during the thermal cycles, above and below A[sub f] and M[sub f] respectively, new dislocations are generated which interact with the dislocations that control TWME so giving a loss of TWME. A different training method has been developed by J.M. Guilemany et al based on the stabilization of stress induced martensite variants (SSIM). This method has been derived from the observation made by J. Perkins and R.O. Sponholz who found that retained (not stabilized) martensite acts as a nucleation site of thermal martensite. Thus, during cooling the stabilized martensite would grow or influence the nucleation and growth of the thermal martensite giving TWME. The effect of training temperature, time and stress on TWME obtained by SSIM has been studied.

  10. Confined martensitic phase transformation kinetics and lattice dynamics in Ni–Co–Fe–Ga shape memory alloys

    SciTech Connect

    Cong, Daoyong; Rule, Kirrily Clair; Li, Wen-Hsien; Lee, Chi-Hung; Zhang, Qinghua; Wang, Haoliang; Hao, Yulin; Wang, Yandong; Huang, E-Wen

    2016-09-02

    Here we describe insights into the phase transformation kinetics and lattice dynamics associated with the newly discovered confined martensitic transformation, which are of great significance to the in-depth understanding of the phase transformation behavior responsible for the rich new physical phenomena in shape memory alloys and could shed light on the design of novel multifunctional properties through tuning the confined martensitic transformation.

  11. Nature of the effect of magnetic fields on the starting temperature of martensitic transformation in iron alloys

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Mirzaev, D. A.; Kaletina, Yu. V.; Fokina, E. A.

    2016-02-01

    The effect of a magnetic field on martensitic transformations, which is satisfactorily described by the Krivoglaz-Sadovskii formula, has been analyzed taking into account the nonequilibrium of the martensitic transformation, the possible adiabatic conditions, and the magnetostriction of the paraprocess in ferromagnetic austenite.

  12. Investigation on microstructure and martensitic transformation of neodymium-added NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Maashaa, Dovchinvanchig; Dorj, Ulzii-Orshikh; Lee, Malrey; Lee, Min Hi; Zhao, Chunwang; Dashjav, Munguntsetseg; Woo, Seon-Mi

    2016-10-01

    The effect of rare earth element neodymium (Nd) addition on the microstructure and martensitic transformation behavior of Ni50Ti50-xNdx (x = 0, 0.1, 0.3, 0.5 and 0.7 at.%) shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results show that the microstructure of Ni-Ti-Nd ternary alloy consists of NiNd phase, NiTi2 and the NiTi matrix. A one-step martensitic transformation is observed in the alloys. The martensitic transformation temperature Ms increases sharply increasing 0.1-0.7 at.% Nd content is added.

  13. Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Zhou, Qiangguo; Zhang, Wenfeng; Yan, Wei; Wang, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-12-01

    Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (-30 °C), which could be further reduced by purification.

  14. Evidence of martensitic phase transitions in magnetic Ni-Mn-In thin films

    SciTech Connect

    Sokolov, A.; Zhang, Le; Dubenko, I.; Samanta, T.; Ali, N.; Stadler, S.

    2013-02-18

    Ni{sub 50}Mn{sub 35}In{sub 15} Heusler alloy thin films (with thicknesses of about 10 nm) have been grown on single crystal MgO and SrTiO{sub 3} (STO) (100) substrates using a laser-assisted molecular beam epitaxy method. Films of mixed austenitic and martensitic phases and of pure martensitic phase have been detected for those grown on MgO and STO substrates, respectively. Thermomagnetic curves were measured using a SQUID magnetometer and are consistent with those of off-stoichiometric In-based bulk Heusler alloys, including a martensitic transition at T = 315 K for films grown on MgO. The differences in the properties of the films grown on MgO and STO are discussed.

  15. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys.

    PubMed

    Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C

    2010-08-11

    Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.

  16. Magnetic field and atomic order effect on the martensitic transformation of a metamagnetic alloy.

    PubMed

    Barandiaran, J M; Chernenko, V A; Cesari, E; Salas, D; Gutierrez, J; Lazpita, P

    2013-12-04

    The martensitic transformation (MT) of metamagnetic shape memory alloys is very sensitive to the applied magnetic field and atomic order. We analyze the alloy Ni50Mn34.5In15.5 in magnetic fields up to 13 T. The alloy has been prepared both in an ordered state by slow cooling, and in a disordered state by rapid quenching. In both cases the dependence of the martensitic transition temperature on the field is highly nonlinear. Such departure from linearity is due to a decrease of the entropy change at the transition, ΔS, with the applied field. This can be explained by the ordering effect of the magnetic field on the frustrated magnetic structure of the alloy in the martensitic phase. Compliance with a recent model, relying on the strong magnetoelastic interactions in these compounds, is very satisfactory.

  17. Martensitic fcc-to-hcp transformations in solid xenon under pressure: a first-principles study.

    PubMed

    Kim, Eunja; Nicol, Malcolm; Cynn, Hyunchae; Yoo, Choong-Shik

    2006-01-27

    First-principles calculations reveal that the fcc-to-hcp pressure-induced transformation in solid xenon proceeds through two mechanisms between 5 and 70 GPa. The dynamics of the phase transition involves a sluggish stacking-disorder growth at lower pressures (path I) that changes to a path involving an orthorhombic distortion at higher pressures (path II). The switchover is governed by a delicate interplay of energetics (enthalpy of the system for the structural stability) and kinetics (energy barrier for the transition). The two types of martensitic transformations involved in this pressure-induced structural transformation are a twinned martensitic transition at lower pressures and a slipped martensitic transition at higher pressures.

  18. Crystallographic Features of The Martensitic Transformation in PbTiO3 Compound

    NASA Astrophysics Data System (ADS)

    Navruz, N.

    2010-01-01

    Martensitic transformations are displacive in nature and occur in the solid state in a wide variety of metallic and non metallic materials. Although the occurrence of martensitic transformations in inorganic and ceramic compounds has been well recognized for many years, it is only in the last decade that they have achieved prominence. An important group of materials in which martensitic transformations play a significant role in determining microstructure and thus properties are the perovskite-type oxides such as PbTiO3. In this study, emphasis is given to the crystallography of the paraelectric cubic to ferroelectric tetragonal phase transformation in PbTiO3 compound. A detailed crystallographic analysis is performed in Lead Titanate (PbTiO3) and the crystallographic parameters are calculated. The predictions of the crystallographic analysis are compared with the experimental results available.

  19. Martensitic accommodation strain and the metal-insulator transition in manganites

    NASA Astrophysics Data System (ADS)

    Podzorov, V.; Kim, B. G.; Kiryukhin, V.; Gershenson, M. E.; Cheong, S.-W.

    2001-10-01

    In this paper, we report polarized optical microscopy and electrical transport studies of manganese oxides that reveal that the charge ordering transition in these compounds exhibits typical signatures of a martensitic transformation. We demonstrate that specific electronic properties of charge-ordered manganites stem from a combination of martensitic accommodation strain and effects of strong electron correlations. This intrinsic strain is strongly affected by the grain boundaries in ceramic samples. Consistently, our studies show a remarkable enhancement of low field magnetoresistance and the grain size effect on the resistivity in polycrystalline samples and suggest that the transport properties of this class of manganites are governed by the charge-disordered insulating phase stabilized at low temperature by virtue of martensitic accommodation strain. High sensitivity of this phase to strains and magnetic field leads to a variety of striking phenomena, such as unusually high magnetoresistance (1010%) in low magnetic fields.

  20. Possible martensitic transformation in Heusler alloy Mn2PdSn from first principles

    NASA Astrophysics Data System (ADS)

    Feng, L.; Feng, X.; Liu, E. K.; Wang, W. H.; Wu, G. H.; Hu, J. F.; Zhang, W. X.

    2016-12-01

    The tetragonal distortion, electronic structure and magnetic property of Mn2PdSn have been systematically investigated by first-principles calculations. The results indicate that the total energy of tetragonal martensitic phase is lower than cubic austenitic phase for Mn2PdSn. The corresponding c/a ratio and energy difference are 1.23 and 41.62 meV/f.u., respectively. This suggests that there is a great possibility for martensitic transformation to occur in Mn2PdSn with temperature decreasing. The electronic structure shows that there are sharp DOS peaks originating from p-d hybridization in the vicinity of Fermi level in the cubic phase. And these peaks disappear or become more flat in the martensitic phase.

  1. Magnetic Study of Martensitic Transformation in Austenitic Stainless Steel by Low Field Hysteresis Loops Analysis

    SciTech Connect

    Zhang Lefu; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki; Mumtaz, Khalid; Ara, Katsuyuki; Sato, Masaya

    2005-04-09

    Magnetic method has been used to evaluate the volume percentage of {alpha}' martensitic phase in austenitic stainless steels by measuring saturation magnetization, and it is said to be a candidate NDE method. However, nondestructive detection of saturation magnetization without high magnetic field is difficult. In the current work, we present a NDE method for evaluating the magnetic properties of strain induced {alpha}' martensitic phase. Low field hysteresis loops of an austenitic stainless steels type SUS 304 after cold rolling were measured by using a yoke sensor. The results show that the initial permeability {mu}i and the relative coercive field Hcl calculated by low field hysteresis loop analysis keep monotonic relation with saturation magnetization and coercive force measured by VSM, respectively. By this method, it is possible to characterize the volume content and particle properties of {alpha}' martensitic phase in stainless steels.

  2. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, M.; Wang, W. Q.; Wang, W. H.; Chen, J. L.; Wu, G. H.; Meng, F. B.; Liu, H. Y.; Liu, B. D.; Qu, J. P.

    2002-11-01

    Quaternary Heusler alloy Ni2)(Mn,FeGa has been studied systematically for the structure, martensitic transformation, and magnetic properties in two systems of Ni50.5Mn25-xFexGa24.5 and Ni50.4Mn28-xFexGa21.6. Substituting Fe for Mn up to about 70%, the pure L21 phase and the thermoelastic martensitic transformation still can be observed in these quaternary systems. Iron doping dropped the martensitic transformation temperature from 220 to 140 K, increased the Curie temperature from 351 to 429 K, and broadened the thermal hysteresis from about 7 to 18 K. Magnetic analysis revealed that Fe atoms contribute to the net magnetization of the material with a moment lower than that of Mn. The temperature dependence of magnetic-field-induced strains has been improved by this doping method.

  3. Fragmentation of the fluorite type in Fe8Al(17.4)Si(7.6): structural complexity in intermetallics dictated by the 18 electron rule.

    PubMed

    Fredrickson, Rie T; Fredrickson, Daniel C

    2012-10-01

    This Article presents the synthesis, structure determination, and bonding analysis of Fe(8)Al(17.4)Si(7.6). Fe(8)Al(17.4)Si(7.6) crystallizes in a new monoclinic structure type based on columns of the fluorite (CaF(2)) structure type. As such, the compound can be seen as part of a structural series in which the fluorite structure-adopted by several transition metal disilicides (TMSi(2))-is fragmented by the incorporation of Al. Electronic structure analysis using density functional theory (DFT) and DFT-calibrated Hückel calculations indicates that the fluorite-type TMSi(2) phases (TM = Co, Ni) exhibit density of states (DOS) pseudogaps near their Fermi energies. An analogous pseudogap occurs for Fe(8)Al(17.4)Si(7.6), revealing that its complex structure serves to preserve this stabilizing feature of the electronic structure. Pursuing the origins of these pseudogaps leads to a simple picture: the DOS minimum in the TMSi(2) structures arises via a bonding scheme analogous to those of 18 electron transition metal complexes. Replacement of Si with Al leads to the necessity of increasing the (Si/Al):TM ratio to maintain this valence electron concentration. The excess Si/Al atoms are accommodated through the fragmentation of the fluorite type. The resulting picture highlights how the elucidating power of bonding concepts from transition metal complexes can extend into the intermetallic realm.

  4. Electric field control of Martensitic Phase Transitions in Thin Films of Ni-Mn-In

    NASA Astrophysics Data System (ADS)

    Al-Aqtash, Nabil; Sokolov, Andrei; Sabirianov, Renat

    2015-03-01

    We propose the electric field control of martensite transformation of Ni-Mn-In thin films deposited on ferroelectric (FE) substrate. DFT- based calculations indicate that the off-stochiometric Ni2Mn1.5In0.5 alloy shows that the ferromagnetic (FM) cubic phase undergoes transformation to tetragonal ferromagnetic (FiM) martensite phase at low temperature. The presence of FE substrate changes the relative stability of FM austenite and FiM martensite phases. (SrZrO3/PbZrO3) superlattices were considered as FE substrates with polarization perpendicular to the interface. The relative stability of two phases of the thin films can be tuned by polarization reversal in FE due to the change in sign of induced charges at the interface. The energetically favorable structures of the FE/Ni2Mn1.5In0.5 systems depend on interface structure between FE and Ni2Mn1.5In0.5 layers, e.g Ni-(Pb-O) interface. The energy difference (per NiMnIn f.u) between FM austenite and FiM martensite states of the film on FE substrate is ΔE = 0.22 eV with polarization away from interface, upon polarization reversal ΔE = 0.75 eV, compared to (ΔE = 0.24 eV) in the bulk. Additionally Pb atoms in PbO3 planes shifted in opposite direction with respect to oxygen planes and alter the chemical bonding of Pb with Ni atoms of the thin films. These changes possibly cause the shift of the martensite transition temperature. These results clearly indicate the possibility of control of martensitic transition in Ni-Mn-In thin films by FE substrate.

  5. An energy criterion for the stress-induced martensitic transformation in a ductile system

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Weng, G. J.

    1994-11-01

    An energy criterion is developed to calculate the stress-strain behavior of a ductile system involving martensitic transformation under the application of stress. The martensitic inclusions are taken to develop from the ductile austenitic matrix due to the reduction in the Gibbs free energy, which consists of the chemical free energy and the surface energy of the parent and product phases, and the mechanical potential energy of the nonlinear system. The inclusions thus formed are assumed to be thin spheroidal platelets, randomly oriented in the matrix, each possessing a normal and shear component of transformation strain. A micromechanical theory is established to determine the nonlinear potential energy and the change in Gibbs free energy of the two-phase system at a given stage of transformation. It is found that the stressstrain behavior of the metastable system is the outcome of two competing effects, one from the ductility due to the plastic deformation of the ductile matrix and the phase transformation strain of the martensite inclusions, and the other from the stiffness due to the purely elastic response of the transformed martensites. While the ductility prevails in the early stage of deformation the stiffening effect later becomes more dominant with increasing amount of transformation. The resulting stress-strain curve then exhibits the familiar sigmoidal shape, characteristically different from that of an ordinary ductile phase. The theory does not assume any a priori law for the evolving volume fraction of the martensite ; it is calculated incrementally based on the change of Gibbs free energy between the current and the transformed state. Nor does the theory assume any a priori flow rule for the transformation strains, which are calculated strictly from the lattice parameters of the parent and transformed phase. Comparison with some available experimental data for the stress-strain behavior of a TRIP steel and the corresponding evolution of the

  6. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.

    1996-12-31

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations.

  7. Decomposition of Austenite Under Conditions of Competition of Martensitic and Bainitic Transformations

    NASA Astrophysics Data System (ADS)

    Kozvonin, V. A.; Shatsov, A. A.; Simonov, M. Yu.

    2016-05-01

    Low-carbon martensitic steels (LCMS) 15Kh2G2NMFB and 27Kh2G2NMFB are studied after an isothermal hold at 360°C and 340°C, respectively, with subsequent continuous cooling in air. The temperature and ranges of the dominant shear and diffusion mechanisms of the γ → α transformations are determined by computation. The principal differences in the morphology and the sizes of laths and packets of low-carbon martensite and upper bainite are determined.

  8. Structure fragmentation in Fe-based alloys by means of cyclic martensitic transformations of different types.

    PubMed

    Bondar, Volodimir I; Danilchenko, Vitalij Ie; Dzevin, Ievgenij M

    2014-02-24

    The effect of martensite transformations of different types on the misorientation of austenite crystalline lattice, which characterizes the degree of structure fragmentation, was investigated for Fe-Ni and Fe-Mn alloys. As a result of multiple face-centered cubic (f.c.c.)-body-centered cubic (b.c.c.)-f.c.c. transformations, an austenite single-crystalline specimen is transformed in a polycrystalline one due to progressive fragmentation. It was shown that the degree of fragmentation depends on the magnitude of volume change and the density of dislocations generated on martensitic transformations.

  9. In-situ investigations of the martensitic transformation in TiNi by synchrotron radiation

    SciTech Connect

    Kulkov, S.N.; Mironov, Yu.P.

    1999-01-01

    By means of synchrotron X-ray diffraction method the stress-induced martensite transformation in TiNi (with two different phase compositions) at room temperature was investigated in situ. It has been shown that in the alloys with temperature-induced martensite in the initial state a nonperiodic fluctuation of intensity of the X-ray reflexes appeared due to anomalous transformation B2 + B19{prime}{sub T} {r_arrow} B2 {r_arrow} B19{prime}{sub Si}.

  10. Micromagnetic and Moessbauer spectroscopic investigation of strain-induced martensite in austenitic stainless steel

    SciTech Connect

    Meszaros, I.; Kaldor, M.; Hidasi, B.; Vertes, A.; Czako-Nagy, I.

    1996-08-01

    Strain-induced martensite in 18/8 austenitic stainless steel was studied. Magnetic measurements and Moessbauer spectroscopic investigations were performed to characterize the amount of {alpha}{prime}-martensite due to room-temperature plastic tensile loading. The effects of cold work and annealing heat treatment were explored using magnetic Barkhausen noise, saturation polarization, coercive force, hardness, and conversion electron Moessbauer spectroscopy. The suggested Barkhausen noise measurement technique proved to be a useful quantitative and nondestructive method for determining the ferromagnetic phase ratio of the studied alloy.

  11. Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, M.; Cui, Y. T.; Zhou, Y. Q.; Wang, W. H.; Wu, G. H.; Zhang, X. X.; Xiao, Gang

    2003-01-01

    We have synthesized ferromagnetic Heusler alloy Ni2FeGa using the melt-spinning technique. The Ni2FeGa ribbon, having a high chemical ordering L21 structure, exhibits a thermoelastic martensitic transformation from cubic to orthorhombic structure at 142 K and a premartensitic transformation. The alloy has a relatively high Curie temperature of 430 K, a magnetization of 73 Am2/kg, and a low saturated field of 0.6 T. The textured samples with preferentially oriented grains show a completely recoverable two-way shape memory effect with a strain of 0.3% upon the thermoelastic martensitic transformation.

  12. Strengthening and toughening mechanisms in low-c microalloyed martensitic steel as influenced by austenite conditioning

    NASA Astrophysics Data System (ADS)

    Kennett, Shane C.

    Three low-carbon ASTM A514 microalloyed steels were used to assess the effects of austenite conditioning on the microstructure and mechanical properties of martensite. A range of prior austenite grain sizes with and without thermomechanical processing were produced in a Gleeble RTM 3500 and direct-quenched. Samples in the as-quenched, low temperature tempered, and high temperature tempered conditions were studied. The microstructure was characterized with scanning electron microscopy, electron backscattered diffraction, transmission electron microscopy, and x-ray diffraction. The uniaxial tensile properties and Charpy V-notch properties were measured and compared with the microstructural features (prior austenite grain size, packet size, block size, lath boundaries, and dislocation density). For the equiaxed prior austenite grain conditions, prior austenite grain size refinement decreases the packet size, decreases the block size, and increases the dislocation density of as-quenched martensite. However, after high temperature tempering the dislocation density decreases with prior austenite grain size refinement. Thermomechanical processing increases the low angle substructure, increases the dislocation density, and decreases the block size of as-quenched martensite. The dislocation density increase and block size refinement is sensitive to the austenite grain size before ausforming. The larger prior austenite grain size conditions have a larger increase in dislocation density, but the small prior austenite grain size conditions have the largest refinement in block size. Additionally, for the large prior austenite grain size conditions, the packet size increases with thermomechanical processing. The strength of martensite is often related to an effective grain size or carbon concentration. For the current work, it was concluded that the strength of martensite is primarily controlled by the dislocation density and dislocation substructure; which is related to a grain

  13. Repassivation of 13% Cr steel dependent on brine pH

    SciTech Connect

    Skogsberg, J.W.; Walker, M.L.

    2000-02-01

    A joint laboratory project, involving an oil production and oil well service company, investigated repassivation of martensitic 13% Cr steel. The rate at which this alloy is repassivated after losing its protective passive oxide layer to hydrochloric acid (HCI) depended on the pH of the spent acid returns. Test samples of 13% Cr cut from oilfield tubing were subjected to a fluid sequence of (1) initial brine, (2) HCI, (3) spent acid, and (4) final brine. In 9 days, the samples regained their passive oxide layers. When spent acid was taken out of the fluid sequence, the samples regained passive oxide layers in 3 days.

  14. Thermal stability and phase transformations of martensitic Ti-Nb alloys

    NASA Astrophysics Data System (ADS)

    Bönisch, Matthias; Calin, Mariana; Waitz, Thomas; Panigrahi, Ajit; Zehetbauer, Michael; Gebert, Annett; Skrotzki, Werner; Eckert, Jürgen

    2013-10-01

    Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti-Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti-Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti-Nb alloys. In this work, the formation of martensites (α‧ and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a \\alpha '/\\alpha '' \\to \\alpha + \\beta \\to \\beta transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α″ martensite form.

  15. Ab initio simulations of phase stability and martensitic transitions in NiTi

    NASA Astrophysics Data System (ADS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-12-01

    For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.

  16. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  17. Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Long, B.; Dai, Y.

    2008-06-01

    In this work metallography investigations and microhardness measurements have been performed on 15 ferritic/martensitic (FM) steels and 6 weld metals irradiated in the SINQ Target Irradiation Program (STIP). The results demonstrate that all the steels have quite similar martensite lath structures. However, the sizes of the prior austenite grain (PAG) of these steels are quite different and vary from 10 to 86 μm. The microstructure in the fusion zones (FZ) of electron-beam welds (EBWs) of 5 steels (T91, EM10, MANET-II, F82H and Optifer-IX) is similar in respect to the martensite lath structure and PAG size. The FZ of the inert-gas-tungsten weld (TIGW) of the T91 steel shows a duplex structure of large ferrite gains and martensite laths. The microhardness measurements indicate that the normalized and tempered FM steels have rather close hardness values. The unusual high hardness values of the EBW and TIGW of the T91 steel were detected, which suggests that these materials are without proper tempering or post-welding heat treatment.

  18. Structure and properties of carburized coatings with reverted austenite on low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Kokovyakina, S. A.; Pertsev, A. S.

    2011-03-01

    The process of creation and subsequent hardening of a gradient carburized layer in low-carbon martensitic steel 17Kh2G2NMFTB is studied. It is shown that the structure and properties of the carburized layer can be optimized due to formation of reverted austenite hardened by quenching from the intercritical temperature range.

  19. About Reverted Austenite in Carburized Layers of Low-Carbon Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Bogdanova, M. V.; Vylezhnev, V. P.

    2015-05-01

    Processes of surface hardening in low-carbon martensitic steel 24Kh2G2NMFTB under carburizing and subsequent quenching from the intercritical temperature range are studied. Special features of formation of reverted austenite with high strength and stability are considered.

  20. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  1. New mechanism for the alpha to omega martensitic transformation in pure titanium.

    PubMed

    Trinkle, D R; Hennig, R G; Srinivasan, S G; Hatch, D M; Jones, M D; Stokes, H T; Albers, R C; Wilkins, J W

    2003-07-11

    We propose a new direct mechanism for the pressure driven alpha-->omega martensitic transformation in pure titanium. A systematic algorithm enumerates all possible pathways whose energy barriers are evaluated. A new, homogeneous pathway emerges with a barrier at least 4 times lower than other pathways. The pathway is shown to be favorable in any nucleation model.

  2. Thermal stability and phase transformations of martensitic Ti-Nb alloys.

    PubMed

    Bönisch, Matthias; Calin, Mariana; Waitz, Thomas; Panigrahi, Ajit; Zehetbauer, Michael; Gebert, Annett; Skrotzki, Werner; Eckert, Jürgen

    2013-10-01

    Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti-Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti-Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti-Nb alloys. In this work, the formation of martensites (α' and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a [Formula: see text] transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α″ martensite form.

  3. Intra-variant substructure in Ni–Mn–Ga martensite: Conjugation boundaries

    SciTech Connect

    Muntifering, B.; Pond, R. C.; Kovarik, L.; Browning, N. D.; Müllner, P.

    2014-06-01

    The microstructure of a Ni–Mn–Ga alloy in the martensitic phase was investigated using transmission electron microscopy. Inter-variant twin boundaries were observed separating non-modulated tetragonal martensite variants. In addition, intra-variant boundary structures, referred to here as “conjugation boundaries”, were also observed. We propose that conjugation boundaries originate at the transformation interface between austenite and a nascent martensite variant. In the alloy studied, deformation twinning was observed, consistent with being the mode of lattice-invariant deformation, and this can occur on either of two crystallographically equivalent conjugate View the MathML source{101}(101⁻) twinning systems: conjugation boundaries separate regions within a single variant in which the active modes were distinct. The defect structure of conjugation boundaries and the low-angle of misorientation across them are revealed in detail using high-resolution microscopy. Finally, we anticipate that the mobility of such boundaries is lower than that of inter-variant boundaries, and is therefore likely to significantly affect the kinetics of deformation in the martensitic phase.

  4. Probing Martensitic Transition in Nitinol Wire: A Comparison of X-ray Diffraction and Other Techniques

    SciTech Connect

    Butler, J.; Tiernan, P.; Tofail, S. A. M.; Ghandi, A. A.

    2011-01-17

    Martensitic to austenite transformation in Nitinol wire can be measured by a number of techniques such as XRD (X-Ray Diffraction), DSC (Differential Scanning Calorimetry), BFR (Bend and Free Recovery) and Vickers indentation recovery. A comparison of results from these varied characterisation techniques is reported here to obtain a greater understanding of the thermal-elastic-structural changes associated with martensitic transformation. The transformation temperatures measured by DSC were found to correspond well with the structural and mechanical information obtained from XRD, BFR and Vickers indent recovery methods. Indent recovery is a relatively new and accurate method of monitoring stress induced martensitic transformations in NiTi and is one of only a few methods of stress inducing martensitic transformation in large scale samples. It is especially useful for NiTi in the as-cast billet form, where tensile testing is impossible. BFR is uniquely popular in the NiTi wire manufacturing sector and is recognised as the most accurate method of measuring the transformation temperature. Here the material is stressed to a representative in-service stress level during the test. No other test uses the shape memory effect for measuring the transformation temperature of NiTi. The results show that the DSC thermogram and XRD diffractogram have a peak overlap which is a common occurrence in NiTi that has been extensively processed. The XRD method further explains the observations in the DSC thermogram and in combination they confirm the transformation temperature.

  5. X-ray measurements of the self-organization of martensitic variants during thermal cycling

    NASA Astrophysics Data System (ADS)

    Perez, Daniel; Sutton, Mark; Rogers, Michael

    The deformation of most types of metals involves an irreversible flow of crystallographic dislocations. This allows for their ductility. The deformation of a metallic shape memory alloy (SMA), on the other hand, is accommodated by a solid-solid phase transition. If deformed in the low-temperature martensitic phase, an SMA can be returned to its original shape by raising its temperature to the point where it changes back to its high-temperature parent phase. When the reverse occurs and the transformation is from parent to martensitic phase, an SMA goes from a high-symmetry to a low-symmetry state in which a number of martensitic variants are produced. We monitored the self-organization of these variants during cycles of periodic thermal driving. This was done using in situ X-ray Photon Correlation Scectroscopy (XPCS), which uses correlation from X-ray speckle to quantify the degree of microstructural change in a material. Our measurements revealed enhanced reversibility in the organization of the martensitic variants as the system evolved during repeated thermal cycling.

  6. Thermal stability and phase transformations of martensitic Ti–Nb alloys

    PubMed Central

    Bönisch, Matthias; Calin, Mariana; Waitz, Thomas; Panigrahi, Ajit; Zehetbauer, Michael; Gebert, Annett; Skrotzki, Werner; Eckert, Jürgen

    2013-01-01

    Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti–Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti–Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti–Nb alloys. In this work, the formation of martensites (α′ and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α″ martensite form. PMID:27877611

  7. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) --> ɛ(hcp) --> α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ɛ/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ɛ martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.

  8. Phase diagram of Ti50-xNi50+x : Crossover from martensite to strain glass

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Wang, Yu; Wang, Dong; Zhou, Yumei; Otsuka, Kazuhiro; Ren, Xiaobing

    2010-06-01

    We systematically investigated the variation in transition behavior and physical properties over a wide excess Ni (acting as defect) concentration range (x=0-2.5) in Ti50-xNi50+x alloys. This enables the establishment of an updated quantitative phase diagram for this important system. The phase diagram shows not only the well-known parent phase and martensite phase but also a premartensitic state and a strain glass state. Our experiments were able to determine quantitatively the borders of these states, the latter two having been unclear so far. The new phase diagram shows that a crossover from martensite to strain glass occurs at x=1.3 , and the appearance of a “premartensitic phase” below a critical temperature Tnd for defect-containing compositions (x>0) . We propose that point defects (excess Ni here) play two roles in a ferroelastic/martensitic system: (i) changing the thermodynamic driving force for the formation of long-range strain order (martensite) and (ii) creating random local stress that favors a premartensitic nanostructure and strain glass. Our work enables a simple explanation for several long-standing puzzles, such as the appearance of premartensitic nanostructure, the vanishing of transition latent heat with increasing Ni content and the anomalous negative temperature coefficient of electrical resistivity in Ni-rich Ti-Ni alloys.

  9. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    PubMed Central

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-01-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α′(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α′ martensite inclusion, the transition lattices at the ε/α′ interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys. PMID:25142283

  10. Dissecting the mechanism of martensitic transformation via atomic-scale observations.

    PubMed

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-21

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ε/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.

  11. Strength and cracking resistance of hot-deformed steel with a low-carbon martensite structure

    NASA Astrophysics Data System (ADS)

    Romanov, I. D.; Shatsov, A. A.; Kleiner, L. M.

    2013-10-01

    Effect of the structure of the low-carbon martensitic steel air-quenched from the temperature of the end of the hot deformation on the strength and impact-toughness characteristics has been studied. A connection between the sizes of typical structure elements and the level of mechanical properties was established.

  12. Suppression of martensitic transformation in Fe50Mn23Ga27 by local symmetry breaking

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Liu, Xiaolian; Yan, Mi; Wu, Chen; Ren, Shuai; Li, Huiying; Fang, Minxia; Qiu, Zhiyong; Ren, Xiaobing

    2015-05-01

    Defects-induced local symmetry breaking has led to unusual properties in nonferromagnetic ferroelastic materials upon suppressing their martensitic transformation. Thus, it is of interest to discover additional properties by local symmetry breaking in one important class of the ferroelastic materials, i.e., the ferromagnetic shape memory alloys. In this letter, it is found that local symmetry breaking including both tetragonal nano-inclusions and anti-phase boundaries (APBs), suppresses martensitic transformation of a body-centered-cubic Fe50Mn23Ga27 alloy, however, does not affect the magnetic ordering. Large electrical resistivity is retained to the low temperature ferromagnetic state, behaving like a half-metal ferromagnet. Lower ordering degree at APBs and local stress fields generated by the lattice expansion of tetragonal nanoparticles hinder the formation of long-range-ordered martensites. The half-metal-like conducting behavior upon suppressing martensitic transformation extends the regime of ferromagnetic shape memory materials and may lead to potential applications in spintronic devices.

  13. Mid-Tertiary Isopach and Lithofacies Maps for the Los Angeles Region, California: Templates for Palinspastic Reconstruction to 17.4 Ma

    USGS Publications Warehouse

    McCulloh, Thane H.; Beyer, Larry A.

    2004-01-01

    Opening of the Neogene Los Angeles Basin began abruptly about 17.4 Ma. Extensional rifting, with local basaltic volcanism, began the process and accompanied its early stages. Crustal detachment, followed by clockwise tectonic rotation and translation of large crustal blocks has been shown by previous paleomagnetic declination measurements in the western Transverse Ranges Province northwest of the basin and by large strike-slip and dip-slip separations on several major faults transecting it. Successful palinspastic reconstruction of the region to its arrangement before 17.4 Ma depends on understanding and integration of many stratigraphic and structural components. Before 17.4 Ma, fluviatile, alluvial and floodplain deposits, interstratified in the younger part with shallow marine to deeper shelf transgressive equivalents, accumulated to thicknesses as great as several kilometers. This report maps the surface and subsurface extents, thickness variations, and facies patterns of these strata, the Sespe plus Vaqueros and Trancas Formations or equivalents. Separate southeast and northwest sectors are revealed, each with distinctive internal thickness and facies patterns, which must have been related before rifting and transrotation. Terrestrial vertebrate and marine molluscan and foraminiferal fossils, plus magnetostratigraphic profiles of other workers and a few dates of igneous rocks, provide timing for key depositional and structural events. Our preliminary reconstruction of the region brings the internal patterns of the northwest and southeast sectors toward congruity but leaves unsatisfied discrepancies that suggest important information is missing. The reconstruction focuses attention on critical elements, specific uncertainties, and deficiencies of prior reconstructions. It also provides a new foundation for further work

  14. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Koizumi, Yuichiro; Chiba, Akihiko

    2014-04-01

    Locally developed strains caused by athermal γ face-centered cubic (fcc)→ε hexagonal close-packed (hcp) martensitic transformation were investigated for the γ matrix of Ni-free Co-29Cr-6Mo (wt%) alloys prepared with or without added nitrogen. Electron-backscatter-diffraction-(EBSD)-based strain analysis revealed that in addition to ε-martensite interiors, the N-free alloy that had a duplex microstructure consisting of the γ matrix and athermal ε-martensite plates showed larger magnitudes of both elastic and plastic strains in the γ phase matrix than the N-doped counterpart that did not have a ε-martensite phase. Transmission electron microscopy (TEM) results indicated that the ε-martensite microplates were aggregates of thin ε-layers, which were formed by three different {111}γ〈112¯〉γ Shockley partial dislocations in accordance with a previously proposed mechanism (Putaux and Chevalier, 1996) that canceled the shear strains of the individual variants. The plastic strains are believed to have originated from the martensitic transformation itself, and the activity of dislocations is believed to be the origin of the transformation. We have revealed that the elastic strains in the γ matrix originate from interactions among the ε-martensite phase, extended dislocations, and/or thin ε-layers. The dislocations highly dissociated into stacking faults, making stress relaxation at intersections difficult and further introducing local strain evolution.

  15. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  16. Effects of Microalloying on the Impact Toughness of Ultrahigh-Strength TRIP-Aided Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Junya; Ina, Daiki; Nakajima, Yuji; Sugimoto, Koh-ichi

    2013-11-01

    The effects of the addition of Cr, Mo, and/or Ni on the Charpy impact toughness of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel with a lath-martensite structure matrix ( i.e., a TRIP-aided martensitic steel or TM steel) were investigated with the aim of using the steel in automotive applications. In addition, the relationship between the toughness of the various alloyed steels and their metallurgical characteristics was determined. When Cr, Cr-Mo, or Cr-Mo-Ni was added to the base steel, the TM steel exhibited a high upper-shelf Charpy impact absorbed value that ranged from 100 to 120 J/cm2 and a low ductile-brittle fracture appearance transition temperature that ranged from 123 K to 143 K (-150 °C to -130 °C), while also exhibiting a tensile strength of about 1.5 GPa. This impact toughness of the alloyed steels was far superior to that of conventional martensitic steel and was caused by the presence of (i) a softened wide lath-martensite matrix, which contained only a small amount of carbide and hence had a lower carbon concentration, (ii) a large amount of finely dispersed martensite-retained austenite complex phase, and (iii) a metastable retained austenite phase of 2 to 4 vol pct in the complex phase, which led to plastic relaxation via strain-induced transformation and played an important role in the suppression of the initiation and propagation of voids and/or cleavage cracks.

  17. Strength of initially virgin martensites at - 196 °C after aging and tempering

    NASA Astrophysics Data System (ADS)

    Eldis, George T.; Cohen, Morris

    1983-06-01

    The compressive strength at -196°C of martensites in Fe-0.26 pct C-24 pct Ni, Fe-0.4 pct C-21 pct Ni, and Fe-0.4 pct C-18 pct Ni-3 pct Mo alloys, all with subzero M temperatures, has been determined in the virgin condition and after one hour at temperatures from -80 to +400 °C. The effects of ausforming (20 pct reduction in area of the austenite by swaging at room temperature prior to the martensitic transformation) were also investigated. For the unausformed martensites, aging at temperatures up to 0 °C results in relatively small increases in strength. Above 0 °C, the age hardening increment increases rapidly, reaching a maximum at 100 °C. Above 100 °C, the strength decreases continuously with increasing tempering temperature except for the molybdenum-containing alloy, which exhibits secondary hardening on tempering at 400 °C. For the ausformed martensites, the response to aging at subzero temperatures is greater than for unausformed material. Strength again passes through a maximum on aging at 100 °C. However, on tempering just above 100 °C, the ausformed materials show a slower rate of softening than the unausformed martensites. The strengthening produced by the ausforming treatment is largest for the Fe-0.4 pct C-18 pct Ni-3 pct Mo alloy, but there is no evidence of carbide precipitation in the deformed austenite to a°Count for this effect of molybdenum.

  18. Effect of Microstructure on Torsional Fatigue Endurance of Martensitic Carbon Steel

    NASA Astrophysics Data System (ADS)

    Toyoda, Shunsuke; Ishiguro, Yasuhide; Kawabata, Yoshikazu; Sakata, Kei; Sato, Akio; Sakai, Jun'ichi

    The microstructural influence of martensitic carbon steel on torsional fatigue endurance was investigated, taking into consideration the application of high strength steel electric resistance welded (ERW) tubes to automotive structural parts. The chemical composition of the base steel alloy was 0.1-0.2%C-0.2-1.5%Si-1.3-1.9%Mn-0.01%P-0.001%S-(Cr, Mo, Ti, Nb, B). Laboratory vacuum-fused ingots were hot-rolled, heated to 1023 or 1223 K in a salt bath, and then water-quenched and tempered at 473 K. Consequently, three types of microstructure, martensite (M), martensite and ferrite (M+F), and ferrite and pearlite (F+P), were prepared. Fully reversed torsional fatigue testing was conducted with 6 mm diameter round bar specimens. Torsional fatigue endurance was found to monotonously increase with increases in the tensile strength of the specimen from 540 to 1380 MPa. The martensitic single structure and the M+F dual-phase structure showed a similar level of fatigue endurance at a tensile strength of approximately 950 MPa. However, fatigue micro-crack morphology varied slightly between them. At the surface of the M+F specimen, many small cracks were observed in addition to the main crack. Conversely, in the martensitic specimen, these small cracks were rarely observed. ΔK decreasing/increasing crack growth testing with compact tension (CT)-type specimens was also conducted. Based on these experimental results, the effect of microstructure and stress level on the initiation/propagation cycle ratio is discussed. In addition to fatigue properties, some practical properties, such as low-temperature toughness and hydrogen embrittlement resistance, were also evaluated in view of actual applications for automotive structural parts.

  19. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2014-01-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  20. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2013-04-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  1. Stressed microstructures in thermally induced M9R M18R martensites

    NASA Astrophysics Data System (ADS)

    Balandraud, Xavier; Zanzotto, Giovanni

    2007-01-01

    We revisit the phase transformation that produces 'long-period stacking' M9R-M18R martensites in Cu-based shape-memory alloys and analyze some associated microstructures, in particular, the typical wedge-shaped configuration. Our basic premise is that the cubic-to-monoclinic martensitic phase change in these alloys is, geometrically, but a slight modification of the well-known bcc-to-9R transformation occurring in various elemental crystals, whose lattice strain is, at the microlevel, the same Bain strain as for the bcc-to-fcc transformation. For the memory alloys we thus determine the 'near-Bain' microstrain, thereby analyzing the faulted, long-period stacking martensite as a mesoscale structure derived from compatibility with the austenite. We compute the transformation-twin systems, habit planes, average deformation and stacking-fault density of the 9R, 18R, M9R or M18R martensites, as they arise from the compatibility conditions between the parent and product lattices. We confirm earlier conclusions that a stress-free wedge is not kinematically compatible in these materials. However, we show that this microstructure is 'close enough' to compatibility, finding that its stress levels are low and should cause only minimal plastification and damage in the crystal. The wedge is therefore rationalized as a viable path for the transformation also in these substances. We verify this to hold for all the lattice parameters reported for Cu-based alloys. In general, we conclude that martensitic microstructures can be stressed to a degree also in good memory materials. Furthermore, we find that the lattice-parameter relations, guaranteeing the zero-stress compatibility of special configurations favoring the transformation and its reversibility, do not need to be strictly enforced in these crystals, because the residual stresses in microstructures are low regardless of lattice-parameter values.

  2. Boron's effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys

    NASA Astrophysics Data System (ADS)

    Xuan, H. C.; Wang, D. H.; Zhang, C. L.; Han, Z. D.; Gu, B. X.; Du, Y. W.

    2008-03-01

    The most used method for changing the martensitic transformation temperatures in the ferromagnetic shape memory alloys is tuning the valence election concentration e /a. In this paper, we report an alternative way, i.e., introducing few interstitial boron atoms in Ni43Mn46Sn11 alloy. The experimental results show that the martensitic transformation temperatures increase with the increasing boron content remarkably and large magnetic entropy changes can be obtained in these alloys. A possible origin of the enhanced martensitic transformation temperatures and large magnetic entropy changes is discussed in this paper.

  3. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Lin, Dong; Suslov, Sergey; Cheng, Gary J.

    2012-08-01

    In this study, laser shock peening (LSP) was utilized to generate localized deformation induced martensite (DIM) in NiTi shape memory alloy. The DIM was investigated by x-ray diffraction and transmission electron microscopy. The effects of temperature and laser intensity on DIM transformation were investigated. It has been found that higher laser intensity and lower processing temperature leads to higher volume fraction of DIM. This is attributed to the increase of the chemical driving force and the increase in the density of potential martensite variant for martensite nucleation at low temperatures. The localized shape memory effect in micrometer scale after low temperature LSP has been evaluated.

  4. Characterization of strain-induced martensite phase in austenitic stainless steel using a magnetic minor-loop scaling relation

    SciTech Connect

    Kobayashi, Satoru; Saito, Atsushi; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki

    2008-05-05

    We propose a combined magnetic method using a scaling power-law rule and initial permeability in magnetic minor hysteresis loops for characterization of ferromagnetic {alpha}{sup '} martensites in austenitic stainless steel. The scaling power law between the hysteresis loss and remanence is universal, being independent of volume fraction of strain-induced {alpha}{sup '} martensites. A coefficient of the power law largely decreases with volume fraction, while the initial permeability linearly increases, reflecting a change in the morphology and quantity of martensites, respectively. The present method is highly effective for integrity assessment of austenitic stainless steels because of the sensitivity and extremely low measurement field.

  5. Effect of Boron on the Kinetics of Low-Temperature Decomposition of Martensite in Quenched Medium-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Grinberg, E. M.

    2016-03-01

    The effect of boron on the microstructure, microhardness, and kinetics of low-temperature decomposition of martensite in the 40Kh and 30KhRA steels quenched at different cooling rates has been studied. It has been shown that the low-temperature decomposition of martensite in the boron-containing steel after quenching from 1050°C at a high cooling rate is strongly decelerated at the initial stage of decomposition. At low quenching cooling rates, the martensite decomposition in the steels under investigation is characterized by a similar kinetics.

  6. pH Basics

    ERIC Educational Resources Information Center

    Lunelli, Bruno; Scagnolari, Francesco

    2009-01-01

    The exposition of the pervasive concept of pH, of its foundations and implementation as a meaningful quantitative measurement, in nonspecialist university texts is often not easy to follow because too many of its theoretical and operative underpinnings are neglected. To help the inquiring student we provide a concise introduction to the depth just…

  7. pH optrode

    DOEpatents

    Northrup, M. Allen; Langry, Kevin C.

    1993-01-01

    A process is provided for forming a long-lasting, stable, pH-sensitive dye-acrylamide copolymer useful as a pH-sensitive material for use in an optrode or other device sensitive to pH. An optrode may be made by mechanically attaching the copolymer to a sensing device such as an optical fiber.

  8. Ph.D. shortage

    NASA Astrophysics Data System (ADS)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  9. Direct observation of temperature-/magnetic-field-induced transition between martensite and premartensite and their relaxation in Ni–Mn–In–Al alloy

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Xia, Z. C.; Wang, R. L.; Wei, M.; Jin, Z.; Huang, S.; Shang, C.; Wu, H.; Zhang, X. X.; Xiao, G. L.; Ouyang, Z. W.

    2017-04-01

    The microstructure evolution of the transition between premartensite and martensite in Ni50Mn34In15.5Al0.5 alloy was investigated directly by in situ optical microscope under various temperatures and pulsed magnetic fields. The microscopic observations at different temperatures indicate that the martensitic transition from premartensite to martensite and the reverse transition can be induced through cooling and heating respectively. A time-dependent relaxation phenomenon can be detected in the cooling process, in other words, the martensite continues to grow with holding time at temperatures between the martensite start and finish temperature, and the relaxation time to the equilibrium state at temperatures near the martensitic transition finishing temperature is shorter than that at higher temperatures. Reverse martensitic transition from martensite to premartensite induced by a pulsed magnetic field and the isothermal growth of martensite after removing the pulsed high magnetic field can be observed at a temperature of 230 K, at which the reverse transition induced by the magnetic field is partly reversible. Hence, the result here directly evidences the isothermal nature of the martensitic transition and the athermal nature of the reverse transition.

  10. Characterization of Ferrite in Tempered Martensite of Modified 9Cr-1Mo Steel Using the Electron Backscattered Diffraction Technique

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murty, B. S.

    2011-12-01

    Ferrite was identified and characterized in tempered martensitic modified 9Cr-1Mo steel using the electron backscattered diffraction (EBSD) technique. Microstructural examination of the as-received modified 9Cr-1Mo steel revealed the presence of polycrystalline grains without lath morphology having low hardness within a predominantly tempered lath martensitic matrix. These grains were identified as the ferrite phase, and subsequent EBSD data analysis confirmed that the image quality (IQ) index of these grains is higher and boundary line length per unit area is lower than those of martensitic matrix. Therefore, it is proposed that characterization of ferrite phase in martensitic matrix can be carried out using microstructural parameters such as IQ index and boundary line length per unit area obtained from EBSD data analysis.

  11. Formation of carburized layer structure with reverted austenite on low-carbon martensitic steel 12Kh2G2NMFT

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Bogdanova, M. V.

    2013-03-01

    The structure of surface layer in low-carbon martensitic steel 12Kh2G2NMFT obtained by carburizing followed by high-temperature tempering and quenching from the intercritical temperature range is investigated.

  12. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    PubMed

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  13. Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sugimoto, Koh-Ichi; Hojo, Tomohiko

    2016-11-01

    Low cycle fatigue hardening/softening behavior of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-1.0 pct Cr-0.2 pct Mo-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel consisting of a wide lath martensite structure matrix and a narrow lath martensite-metastable retained austenite mixture was investigated. The steel exhibited notable fatigue hardening in the same way as TRIP-aided bainitic ferrite steel, although conventional martensitic steel such as SCM420 steel with the same tensile strength exhibited fatigue softening. The considerable fatigue hardening of this steel is believed to be associated mainly with the compressive internal stress that results from a difference in flow stress between the matrix and the martensite-austenite-like phase, with a small contribution from the strain-induced transformation and dislocation hardenings.

  14. Structural-scale levels of development of inelastic martensitic deformation during isothermal loading of submicrocrystalline titanium nickelide in premartensitic condition

    SciTech Connect

    Bakach, G. P.; Dudarev, E. F. Skosyrskii, A. B.; Maletkina, T. Yu.

    2015-10-27

    The results are presented of an experimental investigation into the regularities and mechanisms of the development of thermoelastic martensitic transformation in submicrocrystalline alloy Ti{sub 49.4}Ni{sub 50.6} with different ways of thermo-power actions using the methods of optical microscopy in situ and X-ray diffraction. The peculiarities of localization of martensite transformation at the meso- and macroscale levels in this alloy with submicrocrystalline structure are considered. Experimental data on the relay mechanism of propagation of the martensitic transformation are presented. The interrelation between the localization of the martensitic transformation on the meso-and macroscale levels and deformation behavior under isothermal loading alloy Ti{sub 49.4}Ni5{sub 0.6} in submicrocrystalline condition are shown and discussed.

  15. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    DTIC Science & Technology

    2013-06-01

    most of the commercially available metallic materials, in particular steels (including stainless steels ), super alloys, aluminum alloys, etc., can...REPORT Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel 14. ABSTRACT 16...Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel Report Title ABSTRACT A conventional gas metal

  16. Stress-induced martensitic transformation in Ni-Ti(-Cu) interlayers controlling stress distribution in functional coatings during sliding

    NASA Astrophysics Data System (ADS)

    Callisti, M.; Polcar, T.

    2015-01-01

    The stress-induced martensitic transformation occurring in sputter-deposited Ni48.1Ti51.9 and Ni43.4Ti49.6Cu7 interlayers, integrated in a W-S-C/Ni-Ti(-Cu) bilayer design, was investigated by transmission electron microscopy, after these bilayers were subjected to different sliding conditions. Martensitic bands across the interlayers were formed depending on the sliding direction with their shape and distribution a function primarily of both applied normal load and grain size. The Ni48.1Ti51.9 interlayer (lateral grain size of ∼3 μm) showed well oriented and ordered martensitic bands extended through the interlayer thickness under low load (5 N). At a higher load (18 N) the growth of these bands was limited by the stabilised martensite formed as a consequence of the high compressive stress, at the interface with the substrate. The Ni43.4Ti49.6Cu7 interlayer (lateral grain size of ∼650 nm) exhibited no significant evidence of stabilised martensite under different loading conditions. The martensitic transformation was limited by the smaller grain size and most of the stress was relaxed by elastic and, to some extent, pseudo-elastic deformation of the austenitic phase. Grain boundaries were found to stop the growth of martensitic bands, thus limiting the activation of the martensitic transformation into the neighbouring grains during sliding. The grain refinement caused a change in the capability of the interlayer to relax shear and compressive stresses. Such a change was found to affect the formation of the WS2-rich tribolayer on the W-S-C sliding surface, and consequently the shear stress transmitted down throughout the bilayers thickness. Accordingly, different levels of deformation were observed on the top layer.

  17. A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Moumni, Ziad; He, Yongjun; Zhang, Weihong

    2014-03-01

    The large strain in Ferromagnetic Shape Memory Alloys (FSMA) is due to the martensite reorientation driven by mechanical stresses and/or magnetic fields. Although most experiments studying the martensite reorientation in FSMA are under 1D condition (uniaxial stress plus a perpendicular magnetic field), it has been shown that the 2D/3D configurations can improve the working stress and give much flexibility of the material's applications [He, Y.J., Chen, X., Moumni, Z., 2011. Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys. Journal of Applied Physics 110, 063905]. To predict the material's behaviors in 3D loading conditions, a constitutive model is developed in this paper, based on the thermodynamics of irreversible processes with internal variables. All the martensite variants are considered in the model and the temperature effect is also taken into account. The model is able to describe all the behaviors of martensite reorientation in FSMA observed in the existing experiments: rotating/non-rotating magnetic-field-induced martensite reorientation, magnetic-field-assisted super-elasticity, super-elasticity under biaxial compressions and temperature-dependence of martensite reorientation. The model is further used to study the nonlinear bending behaviors of FSMA beams and provides some basic guidelines for designing the FSMA-based bending actuators.

  18. Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hidalgo, Javier; Santofimia, Maria Jesus

    2016-11-01

    Current trends in steels are focusing on refined martensitic microstructures to obtain high strength and toughness. An interesting manner to reduce the size of martensitic substructure is by reducing the size of the prior austenite grain (PAG). This work analyzes the effect of PAGS refinement by thermal cycling on different microstructural features of as-quenched lath martensite in a 0.3C-1.6Si-3.5Mn (wt pct) steel. The application of thermal cycling is found to lead to a refinement of the martensitic microstructures and to an increase of the density of high misorientation angle boundaries after quenching; these are commonly discussed to be key structural parameters affecting strength. Moreover, results show that as the PAGS is reduced, the volume fraction of retained austenite increases, carbides are refined and the concentration of carbon in solid solution as well as the dislocation density in martensite increase. All these microstructural modifications are related with the manner in which martensite forms from different prior austenite conditions, influenced by the PAGS.

  19. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  20. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga.

    PubMed

    Dutta, B; Çakır, A; Giacobbe, C; Al-Zubi, A; Hickel, T; Acet, M; Neugebauer, J

    2016-01-15

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  1. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  2. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  3. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    SciTech Connect

    Sun, Y.F.; Wei, B.C.; Wang, Y.R.; Li, W.H.; Cheung, T.L.; Shek, C.H.

    2005-08-01

    Zr{sub 48.5}Cu{sub 46.5}Al{sub 5} bulk metallic glass matrix composites with diameters of 3 and 4 mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr{sub 2}Cu and plate-like Cu{sub 10}Zr{sub 7} compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  4. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    SciTech Connect

    Klueh, R.L.

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  5. Effect of Quenching and Partitioning with Hot Stamping on Martensite Transformation and Mechanical Properties of AHSS

    NASA Astrophysics Data System (ADS)

    Chang, Ying; Li, Guanzhong; Wang, Cunyu; Li, Xiaodong; Dong, Han

    2015-08-01

    Two-step quenching and partitioning treatment with hot stamping was applied to advanced high-strength steel (AHSS). The newly treated steel possesses a fine microstructure and typically curved micromorphology. The martensite start temperature of the newly treated steel is increased through the effect of plastic deformation on austenitic microstructure. However, the martensite volume fraction of this steel is deceased because of the enhanced stability of the untransformed austenite after plastic deformation. Consequently, the fraction of retained austenite is increased. The newly treated steel also shows excellent mechanical properties. The volume fraction of retained austenite reaches the highest value of 17.2% when hot stamping is performed at 750 °C. Hence, the steel displays favorable plasticity with an elongation of 14.5%. Moreover, the highest hardness value of 426 HV is obtained when hot stamping is performed at 650 °C. The newly developed process may be employed to develop a new generation of AHSSs.

  6. A structured continuum modelling framework for martensitic transformation and reorientation in shape memory materials.

    PubMed

    Bernardini, Davide; Pence, Thomas J

    2016-04-28

    Models for shape memory material behaviour can be posed in the framework of a structured continuum theory. We study such a framework in which a scalar phase fraction field and a tensor field of martensite reorientation describe the material microstructure, in the context of finite strains. Gradients of the microstructural descriptors naturally enter the formulation and offer the possibility to describe and resolve phase transformation localizations. The constitutive theory is thoroughly described by a single free energy function in conjunction with a path-dependent dissipation function. Balance laws in the form of differential equations are obtained and contain both bulk and surface terms, the latter in terms of microstreses. A natural constraint on the tensor field for martensite reorientation gives rise to reactive fields in these balance laws. Conditions ensuring objectivity as well as the relation of this framework to that provided by currently used models for shape memory alloy behaviour are discussed.

  7. Fatigue strength of low-activation ferritic-martensitic high-chromium EK-181 steel

    NASA Astrophysics Data System (ADS)

    Kolmakov, A. G.; Terent'ev, V. F.; Prosvirnin, D. V.; Chernov, V. M.; Leont'eva-Smirnova, M. V.

    2016-04-01

    The static and cyclic mechanical properties of low-activation ferritic-martensitic EK-181 (Fe‒12Cr-2W-V-Ta-B-C) steel are studied in the temperature range 20-920°C (static tests) and at 20°C (cyclic tests). The fracture mechanisms of the steel under static tension and fatigue fracture conditions are analyzed by scanning electron microscopy.

  8. High Strain Rate Compression of Martensitic NiTi Shape Memory Alloy at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2017-02-01

    The compressive response of martensitic NiTi shape memory alloy (SMA) rods has been investigated using a modified Kolsky compression bar at various strain rates (400, 800, and 1200 s-1) and temperatures [room temperature and 373 K (100 °C)], i.e., in the martensitic state and in the austenitic state. SEM, DSC, and XRD were performed on NiTi SMA rod samples after high strain rate compression in order to reveal the influence of strain rate and temperature on the microstructural evolution, phase transformation, and crystal structure. It is found that at room temperature, the critical stress increases slightly as strain rate increases, whereas the strain-hardening rate decreases. However, the critical stress under high strain rate compression at 373 K (100 °C) increase first and then decrease due to competing strain hardening and thermal softening effects. After high rate compression, the microstructure of both martensitic and austenitic NiTi SMAs changes as a function of increasing strain rate, while the phase transformation after deformation is independent of the strain rate at room temperature and 373 K (100 °C). The preferred crystal plane of the martensitic NiTi SMA changes from ( 1bar{1}1 )M before compression to (111)M after compression, while the preferred plane remains the same for austenitic NiTi SMA before and after compression. Additionally, dynamic recovery and recrystallization are also observed to occur after deformation of the austenitic NiTi SMA at 373 K (100 °C). The findings presented here extend the basic understanding of the deformation behavior of NiTi SMAs and its relation to microstructure, phase transformation, and crystal structure, especially at high strain rates.

  9. Dependence of the enthalpy of the direct martensitic transformation in titanium nickelide on the stress

    NASA Astrophysics Data System (ADS)

    Egorov, S. A.; Volkov, A. E.

    2017-02-01

    An original technique of differential thermal analysis for studying thermal properties of samples loaded with a tangential stress has been created. In a series of experiments studying the direct martensitic transformation B2 → B19' in titanium nickelide during cooling under constant stress, it has been found that the enthalpy of transformation linearly decreases with an increase in stress and, at a stress of 100 MPa, it is 30% less than that of the sample in a free state.

  10. Molecular dynamics simulation of a glissile dislocation interface propagating a martensitic transformation.

    PubMed

    Lill, J V; Broughton, J Q

    2000-06-19

    The method of Parrinello and Rahman is generalized to include slip in addition to deformation of the simulation cell. Equations of motion are derived, and a microscopic expression for traction is introduced. Lagrangian constraints are imposed so that the combination of deformation and slip conform to the invariant plane shear characteristic of martensites. Simulation of a model transformation demonstrates the nucleation and propagation of a glissile dislocation interface.

  11. Influence of nonmartensitic transformation products on mechanical properties of tempered martensite

    NASA Technical Reports Server (NTRS)

    Hodge, J M; Lankford, W T

    1952-01-01

    The influence of nonmartensitic transformations products on the mechanical properties of tempered martensite is presented for samples of a SAE 4340 steel, partially isothermally transformed to specific high-temperature transformation products and quenched and tempered to hardness values of from 25 to 40 Rockwell c. The effects of upper bainite in amounts of 1,5, 10, 20 and 50 percent, of 5 percent ferrite, and of 5 percent pearlite on the tensile, impact, and fatigue properties are evaluated. (author)

  12. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    DTIC Science & Technology

    2013-06-01

    development. While high speed steel or WC-Co tools can be used for aluminum and copper alloys, FSW of steel generally requires even more refractory... steel and the microstructure produced by FSW is much more critical than in aluminum alloys. The αγδ phase transformations can cause complex, multi...thesis explores the processing-microstructure-property relationships in friction stir welded ( FSW ) HT9A ferritic-martensitic steel . HT9 has previously

  13. Electronic structure and ferromagnetism in the martensitic-transformation material Ni2FeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Hu, H. N.; Liu, G. D.; Cui, Y. T.; Zhang, M.; Chen, J. L.; Wu, G. H.; Xiao, Gang

    2004-04-01

    We calculated the electronic structures of the Heusler alloy Ni2FeGa for both the cubic and the orthorhombic structures by self-consistent full-potential linearized-augmented plane-wave method. The localized moment of Fe atom is interpreted based on the electronic structure and the popular explanation of the localized moment of Mn in Heusler alloy X2MnY. Comparing the density of states of cubic and orthorhombic structures, we observed that a Ni peak near the density of states of d band for the cubic structure splits for the orthorhombic structure, indicating a band Jahn-Teller mechanism should be responsible for the structural transition. Accompanied by this transformation, an increase of Ni moment and magnetization redistribution occurred. Temperature-dependence anisotropy field shows an evidence of martensitic transformation between 125 and 190 K. The magnetic behavior seems to contain a transition from Heisenberg-like at temperature below 70 K to itinerant magnetism at temperature higher than 160 K upon martensitic transformation. Temperature dependence of saturation magnetization reveals the spontaneous magnetization at martensite and parent phase are 3.170μB and 3.035μB, respectively. The calculated magnetic moment at martensite is 3.171μB, which is quite consistent with the experimental value. The magnetic moment of Fe and Ni atom in Heusler alloy Ni2FeGa is analyzed based on the computational results and the experimental magnetization curves. It is found that the magnetic moment of Fe atoms is about 10 43% larger than that of α-Fe.

  14. Microstructure of cryogenically treated martensitic shape memory nickel-titanium alloy

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    Context: Recent introduction of shape memory (SM) nickel-titanium (NiTi) alloy into endodontics is a major breakthrough. Although the flexibility of these instruments was enhanced, fracture of rotary endodontic instruments during instrumentation is an important challenge for the operator. Implementation of supplementary manufacturing methods that would improve the fatigue life of the instrument is desirable. Aim: The purpose of this study was to investigate the role of dry cryogenic treatment (CT) conditions on the microstructure of martensitic SM NiTi alloy. Materials and Methods: Experiments were conducted on Ni-51 wt% Ti-49 wt% SM alloy. Five cylindrical specimens and five sheet specimens were subjected to different CT conditions: Deep CT (DCT) 24 group: −185°C; 24 h, DCT 6 group: −185°C; 6 h, shallow CT (SCT) 24 group: −80°C, 24 h, SCT 6 group: −80°C, 6 h and control group. Microstructure of surface was observed on cylindrical specimens with an optical microscope and scanning electron microscope at different magnifications. Subsurface structure was analyzed on sheet specimens using X-ray diffraction (XRD). Results: Microstructures of all SM NiTi specimens had equiaxed grains (approximately 25 μm) with well-defined boundaries and precipitates. XRD patterns of cryogenically treated specimens revealed accentuation of austenite and martensite peaks. The volume of martensite and its crystallite size was relatively more in DCT 24 specimen. Conclusions: DCT with 24 h soaking period increases the martensite content of the SM NiTi alloy without altering the grain size. PMID:26180413

  15. High-strength state of ultrafine-grained martensitic steel produced by high pressure torsion

    NASA Astrophysics Data System (ADS)

    Karavaeva, M. V.; Nikitina, M. A.; Ganeev, A. V.; Islamgaliev, R. K.

    2017-02-01

    The paper presents the study results on the effect of severe plastic deformation (SPD) via high pressure torsion (HPT) on the structure and properties of martensitic steel. The contribution of different strengthening mechanisms in the strength of steel has been analyzed. It is shown that independently of the deformation temperature the main contribution in hardening belongs to grain boundaries (about 50 %), whereas the dislocation and solid solution components achieve 15 and 25 %, respectively.

  16. γ→α‧ Martensitic transformation and magnetic property of cold rolled Fe-20Mn-4Al-0.3C steel

    NASA Astrophysics Data System (ADS)

    Ma, Biao; Li, Changsheng; Han, Yahui; Wang, Jikai

    2016-12-01

    Direct γ→α‧ martensitic transformation during cold rolling deformation was investigated for a high-Mn non-magnetic steel. Its influence on magnetic property was also analyzed. The magnetization under rolling reduction less than 50% almost presents a linear increase with the applied magnetic field. With deformation up to 73% and 93% thickness reductions, strain induced α‧-martensite transformation starts to occur, causing the steel to be slightly magnetized. The α‧-martensite prefers to nucleate directly at either microband-microband or microband-twin intersections without participation of intermediate ε-martensite. The volume fraction of α‧-martensite is estimated as 0.070% and 0.17%, respectively, based on the magnetic hysteresis loops. Such a small fraction of ferromagnetic α‧-martensite shows little influence on the magnetic induction intensity and low relative permeability.

  17. Precipitation Effects on the Martensitic Transformation in a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Lohan, Nicoleta-Monica; Pricop, Bogdan; Mihalache, Elena; Mocanu, Mihai; Bujoreanu, Leandru-Gheorghe

    2016-04-01

    This paper describes the effects of precipitation of α-phase on a Cu-Al-Ni shape memory alloy (SMA) with chemical composition bordering on β region. By differential scanning calorimetry, a series of reproducible heat flow fluctuations was determined on heating a hot-rolled martensitic Cu-Al-Ni SMA, which was associated with the precipitation of α-phase. Two heat treatments were given to the SMA so as to "freeze" its states before and after the thermal range for precipitation, respectively. The corresponding microstructures of the two heat-treated states were observed by optical and scanning electron microscopy and were compared with the initial martensitic state. Energy dispersive spectroscopy experiments were carried out to determine the chemical compositions of the different phases formed in heat-treated specimens. The initial as well as the heat-treated specimens with a lamellar shape were further comparatively investigated by dynamic mechanical analysis and two-way shape memory effect (TWSME) tests comprising heating-cooling cycles under a bending load. Temperature scans were applied to the three types of specimens (initial and heat-treated states), so as to bring out the effects of heat treatment. The storage modulus increased, corresponding to the reversion of thermoelastic martensite and disappeared with the formation of precipitates. These features are finally discussed in association with TWSME under bending.

  18. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  19. Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steels

    SciTech Connect

    Figueroa, C. A.; Alvarez, F.; Mitchell, D. R. G.; Collins, G. A.; Short, K. T.

    2006-09-15

    In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI{sup 3}) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the {alpha}{sup '}-martensite is degraded to{alpha}-Fe (ferrite). The nitrided layer thickness follows a fairly linear relationship with the temperature and a parabolic law with the process time. The corrosion resistance depends strongly on chromium segregation from the martensitic matrix, as a result of the formation of CrN during the nitrogen implantation process and the formation of Cr{sub x}C during the heat treatment process. Briefly speaking, the best results are obtained using low tempering temperature and low implantation temperature (below 375 deg. ) due to the increment of the corrosion resistance and nitrogen dissolution in the structure with not too high diffusion depths (about 5-10 {mu}m)

  20. The effect of martensitic stainless steel microstructure on the ultrasonic inspection of turbine runner joints

    NASA Astrophysics Data System (ADS)

    Boukani, Hamid Habibzadeh; Chentouf, Samir Mourad; Viens, Martin; Tahan, Antoine; Gagnon, Martin

    2015-03-01

    Martensitic stainless steel runners are widely used in the hydroelectric turbine industry because of their good mechanical properties, cavitation and corrosion resistance. The high downtime cost and limited in-service inspection possibility of these turbine runners increase the need for accurate fatigue models to estimate the life of these equipment. One of the key inputs of these models is the distribution of flaw size and their location near highly stressed area. The critical area is generally located near the welded joint and flaw sizes are estimated using the outcome of nondestructive inspection. In such case, more reliable NDT results will lead to less uncertainty in the life estimation and hence unfavorable consequences, such as unexpected failure during service or non-essential down time for unnecessary inspections, are avoided. Turbine runner welded joints are inspected using ultrasonic refracted shear waves. Considering the dependence of the refracted angle to the shear wave velocity in the material as well as the role of this angle in the precision of defects' localization, the martensitic microstructure effect on sound wave velocity needs to be accurately known. Furthermore, attenuation coefficient, which affects reflected signal amplitude, is an essential data for the evaluation of defect size which is also dependent on microstructure. In this context, dependence of ultrasonic shear wave properties on metallurgical characteristics of martensitic stainless steel was studied. Our objective is to obtain better POD from a more accurate characterization of received indications.

  1. Boundaries for martensitic transition of 7Li under pressure

    SciTech Connect

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; Molaison, Jamie J.; Sinogeikin, Stanislav; dos Santos, Antonio M.; Deemyad, Shanti

    2015-08-14

    We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.

  2. Temperature dependence of magnetically induced deformation of Ni-Mn-Ga martensite

    NASA Astrophysics Data System (ADS)

    L'Vov, V. A.; Glavatska, N.; Aaltio, I.; Söderberg, O.; Glavatskiy, I.; Hannula, S.-P.

    2008-05-01

    In the present work the contributions of the temperature-dependent (i) crystal lattice parameters (related to the magnetic anisotropy energy), (ii) Young's modulus, (iii) saturation magnetization and (iv) thermal fluctuations of the microstress to the temperature dependence of the magnetic field induced strain (MFIS) in Ni-Mn-Ga martensite are considered in the framework of a statistical model. Both individual and cooperative effects of these factors on the achievable MFIS value and on the characteristic values of the magnetic fields, which trigger and saturate MFIS, are estimated. It is shown that all the factors affect both the achievable MFIS value and characteristic fields under the real experimental conditions, and none of them can be neglected in the quantitative theoretical analysis of the experimental strain-field dependencies obtained for different temperature values. In addition, the influence of specimen shape on the characteristic fields is illustrated for different temperature values. For the available experimental dependencies (i) (iii) and the reasonable set of model parameters the switching magnetic field proved to be equal to 160 kA/m when the temperature was by 15 K below the martensite start temperature and raised to 320 kA/m when the temperature was by 45 K below the martensite start temperature. Obtained results agree with the experimental data reported by O. Heczko and L. Straka, in J. Appl. Phys. 94, 7139 (2003).

  3. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    SciTech Connect

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  4. Observation on Formation of Fresh Martensite from the Reversed Austenite During Water-Quenching Process in Fe-0.2C-5Mn Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan; Zhang, Chi; Cao, Wen-Quan; Yang, Zhi-Gang; Weng, Yu-Qing

    2015-09-01

    Phase transformation behavior during intercritical annealing in Fe-0.2C-5Mn was studied. Austenite lath formed and transformed at martensite lath during annealing. XRD revealed that retained austenite amount did not always increase with time. TEM result may firstly demonstrate that reversed austenite partly changed into fresh martensite during quenching while the remained part was retained as retained austenite. The final structure consisted of ferrite, retained austenite and fresh martensite. Simulation was done by DICTRA to support TEM result.

  5. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    SciTech Connect

    Li, Zongbin; Zou, Naifu; Zhao, Xiang; Zuo, Liang E-mail: yudong.zhang@univ-lorraine.fr; Zhang, Yudong E-mail: yudong.zhang@univ-lorraine.fr; Esling, Claude; Gan, Weimin

    2014-07-14

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong 〈0 1 0〉{sub 7M} preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  6. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel

    NASA Astrophysics Data System (ADS)

    Sherman, Donald H.; Cross, Steven M.; Kim, Sangho; Grandjean, Fernande; Long, Gary J.; Miller, Michael K.

    2007-08-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (˜300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in

  7. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, Low Alloy, Steel

    SciTech Connect

    Sherman, D. H.; Cross, Steven M; Kim, Sangho; Grandjean, F.; Long, G. J.; Miller, Michael K

    2007-01-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct non-iron metallic elements. Mossbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 C) than for SAE 4130 steel ({approx}300 C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 C) than for carbon steels (100 C to 200 C and 200 C to 350 C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite

  8. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  9. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures.

    PubMed

    Wang, Zemin; Fang, Xulei; Li, Hui; Liu, Wenqing

    2017-03-16

    The formation of copper-rich precipitates of 17-4 precipitate hardened stainless steel has been investigated, after tempering at 350-570°C for 4 h, by atom probe tomography (APT). The results reveal that the clusters, enriched only with Cu, were observed after tempering at 420°C. Segregation of Ni, Mn to the Cu-rich clusters took place at 450°C, contributing to the increased hardening. After tempering at 510°C, Ni and Mn were rejected from Cu-rich precipitates and accumulated at the precipitate/matrix interfaces. Al and Si were present and uniformly distributed in the precipitates that were <1.5 nm in radius, but Ni, Mn, Al, and Si were enriched at the interfaces of larger precipitates/matrix. The proxigram profiles of the Cu-rich precipitates formed at 570°C indicated that Ni, Mn, Al, and Si segregated to the precipitate/matrix interfaces to form a Ni(Fe, Mn, Si, Al) shell, which significantly reduced the interfacial energy as the precipitates grew into an elongated shape. In addition, the number density of Cu-rich precipitates was increased with the temperature elevated from 350 up to 450°C and subsequently decreased at higher temperatures. Also, the composition of the matrix and the precipitates were measured and found to vary with temperature.

  10. Optical and magneto-optical studies of martensitic transformation in Ni-Mn-Ga magnetic shape memory alloys

    SciTech Connect

    Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.

    2015-05-07

    Optical and magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.

  11. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.

    PubMed

    Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij

    2016-12-01

    Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect.

  12. First-principles study of martensitic transformation and magnetic properties of carbon doped Ni-Mn-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xiao, Haibo; Yang, Changping; Wang, Ruilong; Xu, Linfang; Liu, Guozhen; Marchenkov, V. V.

    2016-10-01

    The magnetic properties, structural stabilities and martensitic transformation of carbon doped Ni-Mn-Sn Heusler alloys are investigated by means of ab initio calculations in framework of the density functional theory. The results of calculations have shown that the martensitic transformation can be realized in all series of carbon doped Ni2Mn1.5Sn0.5 - xCx alloys with tetragonal ratio of 1.34, 1.40,1.42 and 1.44, respectively for x = 0.125 , 0.25 , 0.375 and 0.5. The DOS peak at the Fermi level almost disappearing in the tetragonal phase near the Fermi level is the evidence of triggering martensitic transformation which is due to the structural Jahn-Teller effect. We have also found that the difference between the austenitic and martensitic phases increases with increasing carbon content, which implies an enhancement of the martensitic phase transition temperature (TM). Besides, the electron density difference shows the enhancement of bonding between Mn and carbon atoms with the distortion taken place.

  13. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy

    NASA Astrophysics Data System (ADS)

    Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij

    2016-02-01

    Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect.

  14. Energy separations for the electronic states of PH -2,PH 2 and PH +2

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1993-03-01

    All-electron complete-active space multi-configuration self-consistent field (CASSCF) followed by second-order configuration interaction (SOCI) calculations in conjunction with large P(13s10p3d2flg/7s6p3d2flg) and H (10s5p1d/8s5p1d) basis sets are made on the electronic states of PH -2, PH 2 and PH +2. We compute the adiabatic electron affinities of PH 2 and PH. The 3B 1-X 1A 1, 1B 1-X 1A 1 energy separations of PH +2 and the 2A 1-X 2B 1 energy separation of PH 2 are computed.

  15. Statistical physics concepts for the explanation of effects observed in martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Oberaigner, Eduard Roman; Leindl, Mario

    2012-09-01

    Structural solid-to-solid transformations play a key role for the behaviour of several materials, e.g., shape memory alloys, steels, polymers and ceramics. A novel theoretical approach modelling martensitic phase transformation is demonstrated in the present study. The generally formulated model is based on the block-spin approach and on renormalization in statistical mechanics and is applied to a representative volume element (resp. representative mole element) which is assumed to be in a local thermodynamic equilibrium. The neighbouring representative volume elements are in a generally different thermodynamic equilibrium. This leads to fluxes between those elements. Using fundamental physical properties of a shape memory alloy (SMA) single crystal as input data the model predicts the order parameter ‘total strain’, the martensitic phase fraction and the stress-assisted transformation accompanied by pseudo-elasticity without the requirement of evolution equations for internal variables and assumptions on the mathematical structure of the classical free energy. In order to demonstrate the novel approach the first computations are carried out for a simple one-dimensional case, which can be generalized to the two- and three-dimensional case. Results for total strain and martensitic phase fraction are in good qualitative agreement with well known experimental data according to their macroscopic strain rearrangement when phase transformation occurs. Further a material softening effect during phase transformation in SMAs is predicted by the statistical physics approach. Formulas are presented for the relevant quantities such as volume fraction, total strain, transformation strain, rates of the volume fractions and of the strains.

  16. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    NASA Astrophysics Data System (ADS)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  17. The anomalous expansion of lattice parameter as a function of temperature for an Fe-24Mn alloy during {gamma}{yields}{epsilon} martensitic transformation

    SciTech Connect

    Lu, X.; Qin, Z.; Zhang, Y.; Ding, B.; Hu, Z.

    2000-02-14

    In the present letter, the authors will report their experiment on an Fe-24Mn alloy using high temperature XRD and dilation. A relation between the lattice parameter of austenite and temperature during {gamma}{yields}{epsilon} martensitic transformation was determined. It is expected to be helpful in the understanding of {gamma}{yields}{epsilon} martensitic transformation in Fe-Mn based alloys.

  18. Radial Distribution of Martensitic Phase Transformation in a Metastable Stainless Steel under Torsional Deformation: A Synchrotron X-ray Diffraction Study

    SciTech Connect

    Cakmak, Ercan; Choo, Hahn; An, Ke; Ren, Yang

    2011-01-01

    The strain-induced martensitic phase transformation in a metastable 304 L stainless steel under torsional deformation was investigated using synchrotron X-ray diffraction. The measured radial distribution of the martensite phase fraction in a solid cylindrical specimen agrees well with the prediction based on a combination of transformation kinetics and a radial plastic strain distribution equation.

  19. Structure and thermoelastic martensitic transformations in ternary Ni-Ti-Hf alloys with a high-temperature shape memory effect

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Pushin, A. V.; Uksusnikov, A. N.; Kourov, N. I.

    2016-07-01

    The effect of alloying by 12-20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi-NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19' martensitic transformations, which occur in the temperature range 320-600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19' phases are measured, and the microstructure of the B19' martensite is analyzed.

  20. Effect of constituent phase on mechanical properties of 9Cr-1WVTa reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hoon; Moon, Joonoh; Park, Min-Gu; Lee, Tae-Ho; Jang, Min-Ho; Kim, Hyoung Chan; Suh, Dong-Woo

    2014-12-01

    Influence of the formation of ferrite and accompanying carbides in martensite matrix on the tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steel. As the fractions of ferrite and carbide adjacent to the ferrite grain boundary increase, both tensile and Charpy impact properties deteriorated in as-normalized condition. In particular, the tensile strength and elongation decreased simultaneously, which is believed to be led by the localized deformation in ferrite which is softer than martensite, promoting the formation and growth of voids. In addition, the formation of ferrite was also detrimental to the Charpy impact properties regarding to the absorbed energy because the precipitation of carbides around ferrite were vulnerable to the nucleation and propagation of cleavage cracks. The degradation of tensile properties can be recovered by tempering, but the DBTT temperature still increases with presence of ferrite.

  1. Role of Chemical Driving Force in Martensitic Transformations of High-Purity Fe-Cr-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Behjati, P.; Najafizadeh, A.

    2011-12-01

    The main objective of the present work is to point out the respective roles of chemical driving force and stacking fault energy (SFE) in the occurrence of martensitic transformations in high-purity Fe-Cr-Ni alloys. For this purpose, the transmission electron microscope (TEM), X-ray diffractometer, thermal differential microanalyzer (TDA), and tension test were employed to report M s temperatures, austenite stacking fault energies, and driving forces for the concerned alloys. It was observed that the martensitic transformations in the studied alloys occur through the γ → ɛ → α' steps. As a remarkable result, it was shown that a low SFE, if necessary to ɛ-phase nucleation, is not a sufficient condition for nucleation of α' phase. In fact, the formation of stable α' nuclei from α' embryos occur if the required chemical driving force is provided. Also, an equation was proposed for the kinetics of spontaneous martensitic transformation as a function of driving force.

  2. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys

    NASA Astrophysics Data System (ADS)

    Wei, Z. Y.; Liu, E. K.; Li, Y.; Han, X. L.; Du, Z. W.; Luo, H. Z.; Liu, G. D.; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H.

    2016-08-01

    The all-d-metal Mn2-based Heusler ferromagnetic shape memory alloys Mn50Ni40-xCoxTi10 (x = 8 and 9.5) are realized. With a generic comparison between d-metal Ti and main-group elements in lowering the transformation temperature, the magnetostructural martensitic transformations are established by further introducing Co to produce local ferromagnetic Mn-Co-Mn configurations. A 5-fold modulation and (3, -2) stacking of [00 10] of martensite are determined by X-ray diffraction and HRTEM analysis. Based on the transformation, a large magneto-strain of 6900 ppm and a large volume change of -2.54% are observed in polycrystalline samples, which makes the all-d-metal magnetic martensitic alloys of interest for magnetic/pressure multi-field driven applications.

  3. Origin of an Isothermal R -Martensite Formation in Ni-rich Ti-Ni Solid Solution: Crystallization of Strain Glass

    NASA Astrophysics Data System (ADS)

    Ji, Yuanchao; Wang, Dong; Ding, Xiangdong; Otsuka, Kazuhiro; Ren, Xiaobing

    2015-02-01

    We report that R martensite isothermally forms with time in a solution-treated Ti48.7Ni51.3 single crystal. This abnormal formation originates from the growth of a short-range ordered R phase with time, i.e., the "crystallization" of strain glass. The established time-composition-temperature Ti-Ni diagram shows a time evolution of the R phase and composition-temperature phase diagram. The presence or absence of the R phase in this new diagram, as well as in other conditions (like doping Fe or aging), is explained in a unified framework of free-energy landscape. Our finding suggests a new mechanism for the isothermal martensite formation, which could be applied to other metal and ceramic martensitic systems to find new phases and novel properties.

  4. Cooperative effect of monoclinic distortion and sinusoidal modulation in the martensitic structure of Ni 2FeGa

    NASA Astrophysics Data System (ADS)

    Lu, J. B.; Yang, H. X.; Tian, H. F.; Zeng, L. J.; Ma, C.; Feng, L.; Wu, G. H.; Li, J. Q.; Jansen, J.

    2010-02-01

    The structural features of the "5M" martensitic phase in Ni 2FeGa alloys have been determined by electron diffraction using the multi-slice least-squares (MSLS) method. The results demonstrate that the "5M" phase contains an evident cooperative effect of monoclinic distortion and sinusoidal modulation along the [110] c direction. Theoretical simulations based on our refined data suggest that the "5M" martensitic phase observed in Ni-Fe-Ga and Ni-Mn-Ga has visible common behaviors in both stacking sequence and local structural distortion. Considering the cooperative effect of monoclinic distortion and sinusoidal modulation, we demonstrate that the "7M" martensitic phase could adopt two equivalent structural phases corresponding with the stacking sequences of (43-)2 and (52-)2, respectively.

  5. Effect of N on Phase Transformations During Martensite Thermomechanical Processing of the Nano/Ultrafine-Grained 201L Steel

    NASA Astrophysics Data System (ADS)

    Saeedipour, S.; Kermanpur, A.; Najafizadeh, A.

    2016-12-01

    Effect of N addition on microstructural evolutions and mechanical properties of a 201L austenitic stainless steel during the martensite thermomechanical treatment was investigated. The as-homogenized samples were cold-rolled by 90% thickness reduction followed by reversion annealing at 800-900 °C for different times of 15-1800 s. The microstructures were characterized by optical and scanning electron microscopy and magnetic measurement, while mechanical properties were determined by hardness and shear punch tests. It was found that N addition retards the kinetics of strain-induced martensitic transformation, but accelerates the martensite reversion. The hardness, yield and ultimate shear strengths were increased by N alloying at the expense of elongation in both solution-annealed and reversion-annealed specimens.

  6. Radiation hardening and deformation behavior of irradiated ferritic-martensitic steels

    SciTech Connect

    Robertson, J.P.; Klueh, R.L.; Rowcliffe, A.F.; Shiba, K.

    1998-03-01

    Tensile data from several 8--12% Cr alloys irradiated in the High Flux Isotope Reactor (HFIR) to doses up to 34 dpa at temperatures ranging from 90 to 600 C are discussed in this paper. One of the critical questions surrounding the use of ferritic-martensitic steels in a fusion environment concerns the loss of uniform elongation after irradiation at low temperatures. Irradiation and testing at temperatures below 200--300 C results in uniform elongations less than 1% and stress-strain curves in which plastic instability immediately follows yielding, implying dislocation channeling and flow localization. Reductions in area and total elongations, however, remain high.

  7. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  8. Structure and Mechanical Properties of Maraging and Low-Carbon Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Shvetsov, V. V.; Simonov, Yu. N.; Kleiner, L. M.

    2005-01-01

    The structure, mechanical properties, and crack resistance after tempering of maraging steel 03Kh11N10M2T (EP-678) and low-carbon martensitic steel 12Kh2G2NMFT are studied. The range of tempering temperatures ensuring the combination of properties required for massive parts (σr #x2265; 1300 MPa, σ0.2 ≥ 1100 MPa, KCT ≥ 0.2 MJ/m2) is determined. It is shown that steel 12Kh2G2NMFT is better adaptable to manufacture because it is hardened by air-cooling.

  9. Numerical simulation of martensitic transformations in magnetic transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Entel, P.; Kadau, K.; Meyer, R.; Herper, H. C.; Acet, M.; Wassermann, E. F.

    1998-01-01

    We have performed molecular-dynamics (MD) simulations of martensitic nucleation processes in iron-based transition-metal alloys. In order to handle a sufficiently large number of atoms in the simulation process, use has been made of the embedded-atom method (EAM). Results for structural transition temperatures, superelastic behavior as well as tendential-shape memory effects compare qualitatively well with experimental results. Results are also compared with a zero-temperature stability analysis on the basis of full-potential band-structure calculations.

  10. Nanoscale Analyses of High-Nickel Concentration Martensitic High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Isheim, Dieter; Hunter, Allen H.; Zhang, Xian J.; Seidman, David N.

    2013-07-01

    Austenite reversion in martensitic steels is known to improve fracture toughness. This research focuses on characterizing mechanical properties and the microstructure of low-carbon, high-nickel steels containing 4.5 and 10 wt pct Ni after a QLT-type austenite reversion heat treatment: first, martensite is formed by quenching ( Q) from a temperature in the single-phase austenite field, then austenite is precipitated by annealing in the upper part of the intercritical region in a lamellarization step ( L), followed by a tempering ( T) step at lower temperatures. For the 10 wt pct Ni steel, the tensile strength after the QLT heat treatment is 910 MPa (132 ksi) at 293 K (20 °C), and the Charpy V-notch impact toughness is 144 J (106 ft-lb) at 188.8 K (-84.4 °C, -120 °F). For the 4.5 wt pct Ni steel, the tensile strength is 731 MPa (106 ksi) at 293 K (20 °C) and the impact toughness is 209 J (154 ft-lb) at 188.8 K (-84.4 °C, -120 °F). Light optical microscopy, scanning electron and transmission electron microscopies, synchrotron X-ray diffraction, and local-electrode atom-probe tomography (APT) are utilized to determine the morphologies, volume fractions, and local chemical compositions of the precipitated phases with sub-nanometer spatial resolution. The austenite lamellae are up to 200 nm in thickness, and up to several micrometers in length. In addition to the expected partitioning of Ni to austenite, APT reveals a substantial segregation of Ni at the austenite/martensite interface with concentration maxima of 10 and 23 wt pct Ni for the austenite lamellae in the 4.5 and 10 wt pct Ni steels, respectively. Copper-rich and M2C-type metal carbide precipitates were detected both at the austenite/martensite interface and within the bulk of the austenite lamellae. Thermodynamic phase stability, equilibrium compositions, and volume fractions are discussed in the context of Thermo-Calc calculations.

  11. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect

    Liu, W. B.; Chen, L. Q.; Zhang, C. Yang, Z. G.; Ji, Y. Z.; Zang, H.; Shen, T. L.

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  12. Martensitic fcc-to-hcp transformation observed in xenon at high pressure.

    PubMed

    Cynn, H; Yoo, C S; Baer, B; Iota-Herbei, V; McMahan, A K; Nicol, M; Carlson, S

    2001-05-14

    Angle-resolved x-ray diffraction patterns of Xe to 127 GPa indicate that the fcc-to-hcp transition occurs martensitically between 3 and 70 GPa in diamond-anvil cells without an intermediate phase. These data also reveal that the transition occurs by the introduction of stacking disorder in the fcc lattice at low pressure, which grows into hcp domains with increasing pressure. The small energy difference between the hcp and the fcc structures may allow the two phases to coexist over a wide pressure range. Evidence of similar stacking disorder and incipient growth of an hcp phase are also observed in solid Kr.

  13. Elastocaloric effect associated with the martensitic transition in shape-memory alloys.

    PubMed

    Bonnot, Erell; Romero, Ricardo; Mañosa, Lluís; Vives, Eduard; Planes, Antoni

    2008-03-28

    The elastocaloric effect in the vicinity of the martensitic transition of a Cu-Zn-Al single crystal has been studied by inducing the transition by strain or stress measurements. While transition trajectories show significant differences, the entropy change associated with the whole transformation (DeltaS_(t)) is coincident in both kinds of experiments since entropy production is small compared to DeltaS_(t). The values agree with estimations based on the Clausius-Clapeyron equation. The possibility of using these materials for mechanical refrigeration is also discussed.

  14. The features of microstructure and mechanical properties of austenitic steel after direct and reverse martensitic transformations

    NASA Astrophysics Data System (ADS)

    Litovchenko, I. Yu.; Akkuzin, S. A.; Polekhina, N. A.; Tyumentsev, A. N.; Naiden, E. P.

    2015-10-01

    The features of structural states of metastable austenitic steel after thermomechanical treatments, including low-temperature deformation, warm deformation and subsequent annealing are investigated. It is shown that under these conditions the direct (γ → α') and reverse (α' → γ) martensitic transformations occur and submicrocrystalline structural states are formed. The proposed thermomechanical treatment allows varying the strength and plastic properties of austenitic steel in a wide range. The strength of steel in submicrocrystalline state is 4-6 times higher than its original value.

  15. {225}γ habit planes in martensitic steels: from the PTMC to a continuous model

    PubMed Central

    Baur, Annick P.; Cayron, Cyril; Logé, Roland E.

    2017-01-01

    Fine twinned microstructures with {225}γ habit planes are commonly observed in martensitic steels. The present study shows that an equibalanced combination of twin-related variants associated to the Kurdjumov-Sachs orientation relationship is equivalent to the Bowles and Mackenzie’s version of the PTMC for this specific {225}γ case. The distortion associated to the Kurdjumov-Sachs orientation relationship results from a continuous modeling of the FCC-BCC transformation. Thus, for the first time, an atomic path can be associated to the PTMC. PMID:28106127

  16. Martensitic transition and structural modulations in the Heusler alloy Ni 2FeGa

    NASA Astrophysics Data System (ADS)

    Li, J. Q.; Liu, Z. H.; Yu, H. C.; Zhang, M.; Zhou, Y. Q.; Wu, G. H.

    2003-05-01

    We have found two distinctive structural modulations altering evidently along with the martensitic transition (MT) in the Ni 2FeGa alloy. The first one ( q1), corresponding to the well-known phonon anomalies in the [ ζζ0] TA 2 branch, occurs along the <110> direction. The second one ( q2), an incommensurate modulation observed for the first time, occurs along the <211>-direction. Both modulations change gradually with the premartensitic phonon softening and discontinuously with the MT. Anomalies in magnetic properties emerging around the MT have been briefly discussed.

  17. {225}γ habit planes in martensitic steels: from the PTMC to a continuous model.

    PubMed

    Baur, Annick P; Cayron, Cyril; Logé, Roland E

    2017-01-20

    Fine twinned microstructures with {225}γ habit planes are commonly observed in martensitic steels. The present study shows that an equibalanced combination of twin-related variants associated to the Kurdjumov-Sachs orientation relationship is equivalent to the Bowles and Mackenzie's version of the PTMC for this specific {225}γ case. The distortion associated to the Kurdjumov-Sachs orientation relationship results from a continuous modeling of the FCC-BCC transformation. Thus, for the first time, an atomic path can be associated to the PTMC.

  18. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    SciTech Connect

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-15

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  19. First-principles study of martensitic transformation of IrTi alloy

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Zhou; Jiang, Zhen-Yi; Si, Liang; Li, Li-Sha; Zhou, Bo

    2011-10-01

    Ab initio phonon calculations were performed to probe the martensitic transformation of IrTi. The details of the orthorhombic structure were obtained by the soft-phonon approach. We demonstrate that the tetragonal (L10)→ orthorhombic ( Cmmm) transition is driven by the softening of a phonon at the R point (0 1/2 1/2) of the Brillouin zone. The energy landscapes between the various phases of IrTi show that the structural behaviors of IrTi alloy are from cubic to tetragonal, then to orthorhombic and thus the original thought of cubic to monoclinic transition is modified.

  20. Twinning in shear and uniaxial loading in five layered martensite Ni-Mn-Ga single crystals

    NASA Astrophysics Data System (ADS)

    Aaltio, Ilkka; Ge, Yanling; Hannula, Simo-Pekka

    2013-02-01

    Five-layered martensite Ni-Mn-Ga single crystals are known for their exceptionally mobile twin boundaries allowing a shape change under mechanical stress and by magnetic field. The mechanically measured twinning stress has usually been studied in uniaxial mode, however the twinning and detwinning is generally accepted to be resulted by the shear component. We have studied the twinning behavior at uniaxial and shear stress. In addition we have applied the shear stress at different angles in relation to the expected twinning direction [ {10bar 1} ]. The results show that the onset of twinning lays at similar stress levels in both uniaxial and shear modes.

  1. Direct optical observation of magnetic domains in Ni-Mn-Ga martensite

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Heczko, O.; Söderberg, O.; Hannula, S.-P.

    2006-08-01

    This letter reports the direct optical observation, i.e., without polarization, of the magnetic domain structure explained by a large surface relief in Ni-Mn-Ga martensite. The authors suggest that the relief is due to the different straining of the surface and the bulk caused by the internal stresses associated with the magnetic shape memory effect. As a result of the relief the projection of the (011) twin traces upon the (010) plane creates the observed zigzag pattern. The surface tilt angle calculated from the zigzag pattern is ˜3°.

  2. Temperature dependence of single twin boundary motion in Ni-Mn-Ga martensite

    NASA Astrophysics Data System (ADS)

    Straka, L.; Hänninen, H.; Heczko, O.

    2011-04-01

    Magnetic-field-induced reorientation in Ni-Mn-Ga five-layered martensite (10 M) mediated by the motion of single twin boundary was evaluated from magnetization measurements between 20 and 300 K. At 300 K, the single twin boundary moved in an exceptionally small field of 25 kA/m. Twinning stress, as a measure of the twin boundary mobility, was determined from the magnetization curves using a magnetic-energy-based model; it increased from ≈0.1 MPa at 300 K to ≈0.8 MPa at 20 K. The dependence is discussed in terms of thermal activation and the effect of intermartensitic transformation is considered.

  3. Thermoelastic Martensitic Transformations in Single Crystals of FeNiCoAlX(B) Alloys

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kuts, O. A.; Platonova, Yu. N.; Poklonov, V. V.; Kukshauzen, I. V.; Kukshauzen, D. A.; Panchenko, M. Yu.; Reunova, K. A.

    2016-03-01

    Using single crystals of Fe-based disordered alloys (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% X (0.05% B) (at.%) (X = Ti, Nb(B), (Ti + Nb)B), undergoing thermoelastic γ-α '-martensitic transformations (MTs), it is shown that precipitation of particles of the ordered γ'-phase in the course of aging at T = 973 K for 5 h results in the development of shape memory (SME) and superelasticity (SE) effects. It is experimentally found that variation in chemical composition and size of disperse particles of the γ'-phase allows controlling both mechanical and functional properties - SME and SE.

  4. Frequent Occurrence of Discontinuous Dynamic Recrystallization in Ti-6Al-4V Alloy with α' Martensite Starting Microstructure

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroaki; Bin, Liu; Lee, Sang-Hak; Li, Yunping; Ono, Yoshiki; Chiba, Akihiko

    2013-07-01

    The microstructural conversion mechanism in an α' martensite starting microstructure during hot deformation (at 973 K (700 °C)-10 s-1) of the Ti-6Al-4V alloy is studied through detailed microstructural observations, kinetic analysis of deformation in the microstructure, and various theoretical models. After compressing the α' starting microstructure at 973 K (700 °C)-10 s-1 and at a height strain of 0.8, it is observed that the α' starting microstructure with acicular morphology evolved into an ultrafine-grained microstructure with an average grain size of 0.2 μm and a high fraction of high-angle grain boundaries. At the initial stage of deformation, subgrain formation in martensite variants and the formation of new grains with high-angle boundaries at interfaces of martensite variants, and \\{ 10bar{1}1\\} twins are dominant. On increasing the height strain to 0.8, discontinuous dynamic recrystallization (DDRX) along with heterogeneous nucleation and fragmentation of grains with high-angle boundaries becomes dominant. In contrast, in the case of an ( α + β) starting microstructure, continuous dynamic recrystallization (CDRX) is dominant throughout the deformation process. Thus, we found that DDRX becomes dominant by changing the starting microstructure from the conventional ( α + β) to the acicular α' martensite one. This behavior of the α' martensite microstructure is attributed to the considerable number of nucleation sites such as dislocations, interfaces of martensite variants and \\{ 10bar{1}1\\} twins, and the high-speed grain fragmentation along with subgrain formation in the α' starting microstructure during the initial stage of deformation.

  5. Martensitic transformations and the evolution of the defect microstructure of metastable austenitic steel during severe plastic deformation by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Litovchenko, I. Yu.; Tyumentsev, A. N.; Akkuzin, S. A.; Naiden, E. P.; Korznikov, A. V.

    2016-08-01

    It has been shown that, in metastable austenitic Fe-18Cr-10Ni-Ti steel, under conditions of torsion under pressure, local reversible (forward plus reverse) (γ → α' → γ) martensitic transformations can occur, which are one of the mechanisms of the formation of nanostructured states. An increase in the rotation rate, which leads to an increase in the deformation temperature, stimulates the reverse (α' → γ) transformation. The evolution of the structural and phase states is represented as the following sequence: (1) mechanical twinning; (2) nucleation of martensitic plates in the microtwinned structure of the austenite with the formation of two-phase (γ + α') structures, packet α' martensite, and structural states with a high curvature of the crystal lattice; (3) reverse (α' → γ)-transformations; and (4) the fragmentation of nanosized crystals via the formation of a nanotwinned structure in the austenite and of a nanoscale banded structure of the ɛ martensite in the α' martensite.

  6. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  7. Narrowing of hysteresis of cubic-tetragonal martensitic transformation by weak axial stressing of ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kosogor, Anna

    2016-06-01

    An influence of axial mechanical stress on the hysteresis of martensitic transformation and ordinary magnetostriction of ferromagnetic shape memory alloy has been described in the framework of a Landau-type theory of phase transitions. It has been shown that weak stress can noticeably reduce the hysteresis of martensitic transformation. Moreover, the anhysteretic deformation can be observed when the applied mechanical stress exceeds a critical stress value. The main theoretical results were compared with recent experimental data. It is argued that shape memory alloys with extremely low values of shear elastic modulus are the candidates for the experimental observation of large anhysteretic deformations.

  8. Deformation Microstructure and Deformation-Induced Martensite in Austenitic Fe-Cr-Ni Alloys Depending on Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Gorbatov, Oleg I.; Borgenstam, Annika; Ruban, Andrei V.; Hedström, Peter

    2017-01-01

    The deformation microstructure of austenitic Fe-18Cr-(10-12)Ni (wt pct) alloys with low stacking fault energies, estimated by first-principles calculations, was investigated after cold rolling. The ɛ-martensite was found to play a key role in the nucleation of α'-martensite, and at low SFE, ɛ formation is frequent and facilitates nucleation of α' at individual shear bands, whereas shear band intersections become the dominant nucleation sites for α' when SFE increases and mechanical twinning becomes frequent.

  9. Origin of steps in magnetization loops of martensitic Ni-Mn-Ga films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Laptev, Aleksej; Lebecki, Kristof; Welker, Gesa; Luo, Yuansu; Samwer, Konrad; Fonin, Mikhail

    2016-09-01

    We study the temperature dependent magnetization properties of (010)-oriented Ni-Mn-Ga epitaxial films on MgO(001) substrates. In the martensitic phase, we observe pronounced abrupt slope changes in the magnetization loops for all studied samples. Our experimental findings are discussed in conjunction with the micromagnetic simulations, revealing that the characteristic magnetization behavior is governed solely by the magnetization switching within the specific martensitic variant pattern, and no reorientation of twin variants is involved in the process. Our study emphasizes the important role of the magnetostatic interactions in the magnetization behavior of magnetic shape memory alloy thin films.

  10. Proceedings of the IEA working group meeting on ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.

    1995-02-01

    An International Energy Agency (IEA) working group consist- ng of researchers from Japan, the European Union (EU), and the United States, met at the Oak Ridge National Laboratory (ORNL) 16 February 1995 to continue planning a collaborative test program on reduced-activation ferritic/martensitic steels for fusion applications. Plates from a 5-ton, a 1-ton, and three 150 kg heats of reduced-activation martensitic steels have been melted and processed to 7.5- and 15-mm plates in Japan. Plates were delivered in 1994 to the three parties that will participate in the test program. A second 5-ton IEA heat of modified F82H steel was produced in Japan in late 1994, and it was processed into 15- and 25-mm plates, which are to be shipped in February, 1995. Weldments will be produced on plates from this heat, and they will be shipped in April, 1995. At the ORNL meeting, a detailed test program and schedule was presented by the EU representatives, and less detailed programs were presented by the Japanese and US representatives. Detailed program schedules are required from the latter two programs to complete the program planning stage. A meeting is planned for 19--20 September 1995 in Switzerland to continue the planning and coordination of the test program and to present the preliminary results obtained in the collaboration.

  11. Characterization of a New Fe-C-Mn-Si-Cr Bearing Alloy: Tempered Martensite Embrittlement Susceptibility

    NASA Astrophysics Data System (ADS)

    Marcomini, J. B.; Goldenstein, H.

    2014-03-01

    Bearing steels containing 1% C and 1.5% Cr have been the usual material of choice for machine components submitted to rolling and contact fatigue, for more than a century. As a rule these steels are quenched from the intercritical gamma + carbide region and tempered at low temperatures (less than 250 °C), in order to retain the high hardness of the martensite matrix and avoid the tempered martensite embrittlement (TME) phenomena, which compromise the toughness of steels tempered at higher temperatures. A new high Si alloy was developed for bearing applications. The inhibiting and/or retarding effect of Si on the kinetics of cementite precipitation leads to a higher temperature of TME occurrence, allowing the tempering of the components at a higher temperature, thus increasing the toughness, without sacrificing the high hardness. The purpose of this work was to confirm the TME resistance of the new alloy. In this work, impact tests result for commercial SAE/AISI 52100 (0.25% Si) and for a modified 52100 containing 1.74% Si, were compared. No evidence of TME was detected on the Si-modified steel.

  12. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys.

    PubMed

    Bruno, N M; Wang, S; Karaman, I; Chumlyakov, Y I

    2017-01-16

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg(-1) K(-1) or 22 J kg (-1) K(-1), and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  13. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg‑1 K‑1 or 22 J kg ‑1 K‑1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  14. Defect-induced incompatability of elastic strains: dislocations within the Landau theory of martensitic phase transformations

    SciTech Connect

    Groger, Roman1; Lockman, Turab; Saxena, Avadh

    2008-01-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  15. Formation Wear Resistant Coatings on Martensite Steel Hardox 450 by Welding Methods

    NASA Astrophysics Data System (ADS)

    Konovalov, S. V.; Kormyshev, V. E.; Nevskii, S. A.; Ivanov, Yu F.; Gromov, V. E.

    2016-08-01

    By methods of modern physical materials science the investigations analysis of phase composition, defect substructure, mechanical and tribological properties of Cr-Nb-C-V containing coatings formed in surfacing on martensitic wear resistant steel Hardox 450 were carried out. It was shown that surfacing resulted in the formation of high strength surface layer 6 mm in thinness. This layer had wear resistance 138 times greater than that of the base and friction coefficient 2.5 times less. Having analyzed the deflected mode of the deposited material in conditions of friction, a conclusion is drawn that plastic shear deformation is localized in the surface layer due to the high friction factor, as the result, scratches are formed. The maximum of tangential stress is deflected deep into the material provided that friction factor is low. On the basis of the investigations by methods of X-ray structural analysis and transmission diffraction electron microscopy it was shown that increase strength and tribological properties of surfacing metal were caused by its phase composition and state of defect substructure, namely, availability of interstitial phases (more than 36%) and martensitic type of a-phase structure.

  16. M5C2 carbide precipitates in a high-Cr martensitic steel

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Ji, Bo; Zhou, Xiaoling

    2014-05-01

    The precipitate phases in an advanced 11% Cr martensitic steel, expected to be used at 650 °C, have been investigated to understand the effect of precipitates on the creep-rupture strength of the steel. M23C6 and MX precipitates were dominant phases in this steel. Needle-like precipitates with a typical length of 180 nm and width of 20 nm; and metallic-element compositions of 53-74Fe, 16-26Cr, 3-18Ta, 2-8W, and 2-4Co (at%); were observed mainly within the martensite laths of the normalized-and-tempered steel. The needle-like precipitates have been identified as monoclinic carbide M5C2, which is not known to have been reported previously in high chromium steels, or in heat-resistant steels those have been normalized-and-tempered. This indicates that the formation of M5C2 carbides can occur in heat-resistant steels produced under appropriate tempering conditions, and that this does not require long-term isothermal aging or creep testing, in all cases.

  17. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  18. Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors

    NASA Astrophysics Data System (ADS)

    Saroja, S.; Dasgupta, A.; Divakar, R.; Raju, S.; Mohandas, E.; Vijayalakshmi, M.; Bhanu Sankara Rao, K.; Raj, Baldev

    2011-02-01

    This paper presents the results on the physical metallurgy studies in 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic/Martensitic (RAFM) steels. Yttria strengthened ODS alloy was synthesized through several stages, like mechanical milling of alloy powders and yttria, canning and consolidation by hot extrusion. During characterization of the ODS alloy, it was observed that yttria particles possessed an affinity for Ti, a small amount of which was also helpful in refining the dispersoid particles containing mixed Y and Ti oxides. The particle size and their distribution in the ferrite matrix, were studied using Analytical and High Resolution Electron Microscopy at various stages. The results showed a distribution of Y 2O 3 particles predominantly in the size range of 5-20 nm. A Reduced Activation Ferritic/Martensitic steel has also been developed with the replacement of Mo and Nb by W and Ta with strict control on the tramp and trace elements (Mo, Nb, B, Cu, Ni, Al, Co, Ti). The transformation temperatures ( Ac1, Ac3 and Ms) for this steel have been determined and the transformation behavior of the high temperature austenite phase has been studied. The complete phase domain diagram has been generated which is required for optimization of the processing and fabrication schedules for the steel.

  19. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.

    PubMed

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-02

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  20. Martensite transformations in Mn2NiGa thin films grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; Neckel, I. T.; Mazzaro, I.; Graff, I. L.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2016-11-01

    The purpose of this work is to investigate the correlation between magnetism and crystallographic structures of Mn2NiGa thin films grown by molecular beam epitaxy on GaAs(1 1 1) and GaAs(0 0 1) surfaces. The films present themselves with thermoelastic martensitic transformations upon cooling, and heating with high-temperature leads to austenite structures exhibiting a preferable (1 1 0) texture. X-ray diffraction measurements performed as a function of temperature reveal three different types of domain variants in the films within a large interval of temperatures. The austenite structures with lattice parameters ranging from 0.574 nm to 0.601 nm undergo volume conserving structural transitions to martensite with a c/a ratio of 1.2. The coexistence of variants with different domain configurations is induced on each GaAs substrate. Although the Curie temperatures (~360 K) are similar for films grown on GaAs(1 1 1) and GaAs (0 0 1) substrates, their saturation magnetizations are respectively 18 kA m-1 and 8 kA m-1 at room temperature and exhibit quite different magnetic irreversibility behaviors. Our results indicate that a multiplicity of possible equivalent variant domains on the GaAs surfaces makes it difficult to stabilize epitaxial films on these substrates.

  1. Atomistic simulation of martensite-austenite phase transition in nanoscale nickel-titanium crystals

    NASA Astrophysics Data System (ADS)

    Kexel, Christian; Schramm, Stefan; Solov'yov, Andrey V.

    2015-09-01

    Shape-memory (SM) alloys can, after initial inelastic deformation, reconstruct their pristine lattice structure upon heating. The underlying phenomenon is the structural solid-solid phase transition from low-temperature lower-symmetry martensite to the high-temperature higher-symmetry austenite. Conventional nickel-titanium (NiTi) with near-equiatomic concentration already possesses an eminent importance for many applications, whereas the nanostructured equivalent can exhibit yet enhanced thermomechanical properties. However, no plausible microscopic theory of the SM effect in NiTi exists, especially for nanoscale systems. We investigate the thermally induced martensite-austenite phase transition in free equiatomic nanocrystals, comprising up to approximately 40 000 atoms, by means of molecular-dynamics simulations (MD) using a classical Gupta-type many-body scheme. Thereby we complement and extend a previously published study [D. Mutter, P. Nielaba, Eur. Phys. J. B 84, 109 (2011)]. The structural transition, revealing features of a first-order phase transition, is demonstrated. It is contrasted with the melting phase transition, a quantum solid model and bulk experimental findings. Moreover, a nucleation-growth process is observed as well as the irreversibility of the transition upon cooling.

  2. Application of nitrogen-alloyed martensitic stainless steels in the aviation industry

    SciTech Connect

    Stein, G.; Kirschner, W.; Lueg, J.

    1997-12-31

    Nitrogen in stainless martensitic steels has a beneficial influence on the mechanical as well as on the chemical properties. However the effect of nitrogen is limited due to the rather low solubility of this element. A special alloy development in combination with a pressurized melting technique lead to distinctly higher nitrogen contents. Stainless martensitic steels containing high nitrogen contents are manufactured by VSG today on an industrial scale using the PESR-process (Pressurized Electroslag Remelting). Depending on special applications these steels are available with different chemical analysis under the trademark CRONIDUR. The basic composition of all CRONIDUR-alloys consists of about 15% Chromium, 1% Molybdenum, 0.15 to 0.35% Carbon and 0.20 to 0.40% Nitrogen. The combination of Cr + Mo + N leads to a superior corrosion resistance of these HNS-steels (HNS: High Nitrogen Steels) in comparison to similar carbon based alloys. Focused on applications with a required minimum hardness of 58 HRC, like stainless bearings or screw shafts, the C+N-content is tuned between 0.60 and 0.80% (Brand: CRONIDUR 30). Additions of max. 0.3% Vanadium and 0.1% Niobium qualifies the brand CRONIDUR 20 for enhanced temperature applications like turbine disks or blades.

  3. Geometrical model for martensitic phase transitions: Understanding criticality and weak universality during microstructure growth

    NASA Astrophysics Data System (ADS)

    Torrents, Genís; Illa, Xavier; Vives, Eduard; Planes, Antoni

    2017-01-01

    A simple model for the growth of elongated domains (needle-like) during a martensitic phase transition is presented. The model is purely geometric and the only interactions are due to the sequentiality of the kinetic problem and to the excluded volume, since domains cannot retransform back to the original phase. Despite this very simple interaction, numerical simulations show that the final observed microstructure can be described as being a consequence of dipolar-like interactions. The model is analytically solved in 2D for the case in which two symmetry related domains can grow in the horizontal and vertical directions. It is remarkable that the solution is analytic both for a finite system of size L ×L and in the thermodynamic limit L →∞ , where the elongated domains become lines. Results prove the existence of criticality, i.e., that the domain sizes observed in the final microstructure show a power-law distribution characterized by a critical exponent. The exponent, nevertheless, depends on the relative probabilities of the different equivalent variants. The results provide a plausible explanation of the weak universality of the critical exponents measured during martensitic transformations in metallic alloys. Experimental exponents show a monotonous dependence with the number of equivalent variants that grow during the transition.

  4. Defect-induced incompatibility of elastic strains: Dislocations within the Landau theory of martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Gröger, R.; Lookman, T.; Saxena, A.

    2008-11-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  5. Demonstration of a high burnup heterogeneous core using ferritic/martensitic materials

    SciTech Connect

    Lovell, A J; Fox, G L; Sutherland, W H; Hecht, S L

    1986-04-11

    The purpose of the Core Demonstration Experiment (CDE) is to demonstrate the capability of a mixed-oxide fuel system to achieve a three year life in a prototypic LMR heterogeneous reactor environment. The CDE assemblies are fabricated using wire-wrapped, large-diameter, advanced-oxide fuel and blanket pins with tempered martensitic HT9 cladding, wire wrap, and duct. The highest power fuel assembly operates with a Beginning of Life (BOL) peak linear pin power of 445 W/cm and a peak cladding temperature of 615C. The fuel and blanket assembly irradiation will start in FFTF Cycle 9 and continue for about 900 Equivalent Full Power Days (EFPD). The successful utilization of the tempered martensitic HT9 alloy in an FFTF test assembly is fully anticipated. The low swelling, observed at intermediate neutron fluence and projected to higher fluences, together with reasonable creep behavior gives acceptable mechanical performance for fuel pins, blanket pins and ducts. Duct length increase, dilation and bow; plus fuel and blanket pin diameter increases remain within specified tolerances. In addition, stress rupture data from unirradiated HT9 imply cumulative damage fractions for the nominal fuel and blanket pins that are low.

  6. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    PubMed Central

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg−1 K−1 or 22 J kg −1 K−1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed. PMID:28091551

  7. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    PubMed Central

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-01-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry. PMID:28150692

  8. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    NASA Astrophysics Data System (ADS)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  9. Study of martensitic-ferritic dual phase steels produced by hot stamping

    NASA Astrophysics Data System (ADS)

    Erişir, E.; Bilir, O. G.

    2017-02-01

    The effects of heat treatment and initial microstructure on tensile properties of 22MnB5 and 30MnB5 high-strength hot stamping steels with martensite-ferrite matrix were investigated. Hot stamping steels possessed limited elongations of about 5% in a tensile strength ranging from 1300 to 1500 MPa when quenched at temperatures above A3 temperatures. The total elongations were tried to improve by partial austenization between Ac1 and Ac3 temperature and quenching. Ac1 and Ac3 temperatures were calculated via ThermoCalc. Microstructural characterization was made by using Light Microscope and Scanning Electron Microscope. Microstructure is composed of ferrite+martensite. It was seen that annealing temperature affects the volume fraction of phases. It was concluded that initial microstructure is an important parameter for the final microstructure. This method can be used for automobile parts which require higher TE with sufficient yield and tensile strength. Also this process may be a way of using Zn coated steel sheets in hot stamping process.

  10. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  11. Nucleation and growth of the Alpha-Prime Phase martensitic phase in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K M; Krenn, C R; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    In a Pu-2.0 at% Ga alloy, it is observed experimentally that the amount of the martensitic alpha-prime product formed upon cooling the metastable delta phase below the martensite burst temperature (M{sub b}) is a function of the holding temperature and holding time of a prior conditioning (''annealing'') treatment. Before subjecting a sample to a cooling and heating cycle to form and revert the alpha-prime phase, it was first homogenized for 8 hours at 375 C to remove any microstructural memory of prior transformations. Subsequently, conditioning was carried out in a differential scanning calorimeter apparatus at temperatures in the range between -50 C and 370 C for periods of up to 70 hours to determine the holding time and temperature that produced the largest volume fraction of alpha-prime upon subsequent cooling. Using transformation peak areas (i.e., the heats of transformation) as a measure of the amount of alpha-prime formed, the largest amount of alpha-prime was obtained following holding at 25 C for at prime least 6 hours. Additional time at 25 C, up to 70 hours, did not increase the amount of subsequent alpha-prime formation. At 25 C, the Pu-2.0 at% Ga alloy is below the eutectoid transformation temperature in the phase diagram and the expected equilibrium phases are {alpha} and Pu{sub 3}Ga, although a complete eutectoid decomposition of delta to these phases is expected to be extremely slow. It is proposed here that the influence of the conditioning treatment can be attributed to the activation of alpha-phase embryos in the matrix as a beginning step toward the eutectoid decomposition, and we discuss the effects of spontaneous self-irradiation accompanying the Pu radioactive decay on the activation process. Subsequently, upon cooling, certain embryos appear to be active as sites for the burst growth of martensitic alpha-prime particles, and their amount, distribution, and potency appear to contribute to the total amount of martensitic product formed. A

  12. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    DOE PAGES

    Benafan, O.; Padula, S. A.; Noebe, R. D.; ...

    2012-11-01

    Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocationmore » activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less

  13. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-08-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  14. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  15. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure.

    PubMed

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  16. Nano- and microvoid formation in ultrafine-grained martensitic Fe-Ni-Mn steel after severe cold rolling

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nanesa, Hadi; Nili-Ahmadabadi, Mahmoud; Mirsepasi, Arya; Zamani, Cyrus

    2014-03-01

    Severe cold-rolling was applied on solution annealed Fe-Ni-Mn steel with fully lath martensite structure to obtain ultrafine-grained structure. Field emission scanning electron microscopy and high resolution transmission electron microscopy (HRTEM) were employed to investigate the microstructural evolution after severe cold-rolling. HRTEM images showed the typical deformed structure consisting of lamellar dislocation cell blocks. HRTEM study also revealed strain-induced reverse martensitic transformation (activated during grain refinement). It was assumed that severe plastic deformation route and related deformation mode were responsible for microstructural evolutions. X-ray diffraction (XRD) diagram revealed 7% (volume fraction) reverted austenite after final deformation pass. Moreover, HRTEM images revealed nano-void nucleation at the interface of severely deformed martensite and reverted austenite presumably due to high strain energy of misfit and molar volume difference between the austenite and the martensite. It seems that the coalescence of nano-voids could lead to the formation of microvoids in the microstructure.

  17. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension-unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension-unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain.

  18. Linking simulations and experiments for the multiscale tracking of thermally induced martensitic phase transformation in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Gur, Sourav; Frantziskonis, George N.

    2016-10-01

    Martensitic phase transformation in NiTi shape memory alloys (SMA) occurs over a hierarchy of spatial scales, as evidenced from observed multiscale patterns of the martensitic phase fraction, which depend on the material microstructure and on the size of the SMA specimen. This paper presents a methodology for the multiscale tracking of the thermally induced martensitic phase transformation process in NiTi SMA. Fine scale stochastic phase field simulations are coupled to macroscale experimental measurements through the compound wavelet matrix method (CWM). A novel process for obtaining CWM fine scale wavelet coefficients is used that enhances the effectiveness of the method in transferring uncertainties from fine to coarse scales, and also ensures the preservation of spatial correlations in the phase fraction pattern. Size effects, well-documented in the literature, play an important role in designing the multiscale tracking methodology. Molecular dynamics (MD) simulations are employed to verify the phase field simulations in terms of different statistical measures and to demonstrate size effects at the nanometer scale. The effects of thermally induced martensite phase fraction uncertainties on the constitutive response of NiTi SMA is demonstrated.

  19. Stress-induced martensitic transformation and impact toughness of cast irons and high-carbon Fe-Ni-C steel

    NASA Astrophysics Data System (ADS)

    Zhang, M.-X.; Kelly, P. M.

    2001-11-01

    The relationship between the impact toughness and stress-induced martensitic transformation, which occurs during the impact process, has been studied in white cast irons and an Fe-Ni-C alloy at different temperatures. The experimental results have shown that in the brittle white cast irons, the stress-induced martensitic transformation makes a positive contribution to the impact toughness, and lowering the stability of austenite increases the toughness. In contrast, the transformation makes a negative contribution to the toughness of high-carbon austenitic steels, and lowering the stability of austenite decreases the toughness. The present work supports the early theory[1] that the magnitude of the toughness change depends on the fracture properties of the new phase and the energy being dissipated during the transformation process. Using the crystallographic model for the stress-induced martensitic transformation, which was originally developed in ceramics and was then refined and extended to irons and steels, the effect of the stress-induced martensitic transformation on the impact toughness can be predicted.

  20. Antiferromagnetic coupling between martensitic twin variants observed by magnetic resonance in Ni-Mn-Sn-Co films

    NASA Astrophysics Data System (ADS)

    Golub, V. O.; Lvov, V. A.; Aseguinolaza, I.; Salyuk, O.; Popadiuk, D.; Kharlan, Y.; Kakazei, G. N.; Araujo, J. P.; Barandiaran, J. M.; Chernenko, V. A.

    2017-01-01

    Magnetic properties of N i46.0M n36.8S n11.4C o5.8/MgO (001 ) epitaxial thin film, which undergo a martensitic phase transformation from cubic austenitic phase to a twinned orthorhombic martensitic phase at 270 K, were studied by the magnetic resonance at the microwave frequency of 9.45 GHz. It was found that the single resonance line observed in the austenite splits into three lines in the martensitic phase. A theoretical approach was developed to show that the additional resonance lines are caused by the weak antiferromagnetic coupling of the ferromagnetic twin components across twin boundaries. Fitting of the experimental resonance lines to model gives an effective field of antiferromagnetic coupling of about 1.5 kOe, which is two or three orders of magnitude lower than in the conventional antiferromagnetic solids because the number of magnetic ions interacting antiferromagnetically through the twin boundary is much less than the total number of magnetic ions in the twin. This feature shows a strong resemblance between the submicron twinned martensite and artificial antiferromagnetic superlattices, whereby providing a distinctive insight into magnetism of the studied magnetic shape memory material.

  1. Effects of volume fraction of tempered martensite on dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Geun; Lee, You Hwan; Lee, Chong Soo; Lee, Sunghak

    2005-03-01

    The effects of the volume fraction of tempered martensite on the tensile and dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure were investigated in this study. Five microstructures having various tempered-martensite volume fractions were obtained by varying heat-treatment conditions. Dynamic torsional tests were conducted on them using a torsional Kolsky bar. The test data were analyzed in relation to microstructures, tensile properties, and adiabatic shear-band formation. Under a dynamic loading condition, the maximum shear stress increased with increasing tempered-martensite volume fraction, whereas the fracture shear strain decreased. Observation of the deformed area after the dynamic torsional test indicated that a number of voids initiated mainly at α-phase/tempered-martensite interfaces, and that the number of voids increased with increasing martensite volume fraction. Adiabatic shear bands of 6 to 10 μm in width were formed in the specimens having lower martensite volume fractions, while they were not formed in those having higher martensite volume fractions. The possibility of adiabatic shear-band formation was explained by concepts of absorbed deformation energy and void initiation.

  2. Influence of Ti additions on martensitic transformation and magnetic properties of cast Ni51Fe22-xGa27Tix shape memory alloys

    NASA Astrophysics Data System (ADS)

    El-Bagoury, Nader; Mohsen, Q.; Kaseem, M. A.; Hessien, M. M.

    2013-09-01

    The effect of Ti addition on the microstructure, martensitic transformation, magnetic and mechanical properties of polycrystalline Ni51Fe22- x Ga27Ti x ( x=0, 2 and 4) ferromagnetic shape memory alloy was investigated by scanning electron microscope, differential scanning calorimetry and X-ray diffraction. The results showed that the martensitic transformation temperature increases monotonously with the increase of fraction of Ti substitution for Fe. The increase in the martensite transformation temperatures should be related to the change of the electron concentration after the addition of Ti to Ni51Fe22- x Ga27Ti x alloys. According to the results of X-ray diffraction and magnetic properties, Ti has significant effect the structure of Ni51Fe22- x Ga27Ti x . Adding of 4 at% Ti altered the structure of the matrix from five-layered tetragonal martensite of Ni51Fe22Ga27 and Ni51Fe20Ga27Ti2 alloys to non-modulated tetragonal martensite. Magnetic properties proved that the alloy transits from ferromagnetic, five-layered tetragonal martensite, to paramagnetic, non-modulated martensite structure, with increasing Ti content to 4 at.%. Saturation magnetization, remnant magnetization and coercivity of the alloy were significantly influenced by Ti additions. Hardness values of Ni51Fe22Ga27 increased by the addition of Ti.

  3. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  4. SEM Technique Development for Exploring Martensitic Phase Transformations in Multi-Variant Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Chapman, Michael G.

    The purpose of this work is to validate that the martensitic transformations predicted by the model from Xian Chen and Dick James from the University of Minnesota. This model uses multiple criteria for compatibility between the austenite and martensite lattices including limitations of the middle eigenvalue of the transformation stretch matrix and what are called the "cofactor conditions." An alloy satisfying these criteria was found, (Au30Cu25Zn 45) but the traditional methods for verifying the shape and crystallographic orientation relationships of the transformation could not be used (serial sectioning and 3D Electron Backscatter Diffraction (EBSD)). The first method developed in this work uses the intensity peak of the background of EBSD patterns to extract surface topography measurements. Monte Carlo simulations were used to calculate the deviation from specular reflection for electrons on different materials at varying voltages. The geometric setup of the EBSD camera and the sample were then used with the experimentally measured intensity peak location on the camera to calculate the surface normal vectors for each point on a sample. A proof of concept experiment was first performed on the Tin sphere calibration standard, in which the surface normal vectors were found within around 0:5ffi error near the standard EBSD sample orientation. This technique was then used to measure the surface relief caused by the martensitic transformation of the AuCuZn alloy which can be matched to predicted surface shearing values to confirm the Chen/James model. The second method developed in this thesis measures the out-of-plane grain boundary inclination angle using 2D EBSD. This utilizes the penetration depth of the electron interaction volume, and is measured by calculating the proportion of the pattern that is created from each grain. This is completed by performing dot products between an EBSD line scan across the grain boundary and reference patterns taken from the bulk

  5. Martensitic transformation in as-grown and annealed near-stoichiometric epitaxial Ni2MnGa thin films

    NASA Astrophysics Data System (ADS)

    Machain, P.; Condó, A. M.; Domenichini, P.; Pozo López, G.; Sirena, M.; Correa, V. F.; Haberkorn, N.

    2015-08-01

    Magnetic shape memory nanostructures have a great potential in the field of the nanoactuators. The relationship between dimensionality, microstructure and magnetism characterizes the materials performance. Here, we study the martensitic transformation in supported and free-standing epitaxial Ni47Mn24Ga29 films grown by sputtering on (0 0 1) MgO using a stoichiometric Ni2MnGa target. The films have a Curie temperature of ~390 K and a martensitic transition temperature of ~120 K. Similar transition temperatures have been observed in films with thicknesses of 1, 3 and 4 μm. Thicker films (with longer deposition time) present a wider martensitic transformation range that can be associated with small gradients in their chemical concentration due to the high vapour pressure of Mn and Ga. The magnetic anisotropy of the films shows a strong change below the martensitic transformation temperature. No features associated with variant reorientation induced by magnetic field have been observed. Annealed films in the presence of a Ni2MnGa bulk reference change their chemical composition to Ni49Mn26Ga25. The change in the chemical composition increases the martensitic transformation temperature, being closer to the stoichiometric compound, and reduces the transformation hysteresis. In addition, sharper transformations are obtained, which indicate that chemical inhomogeneities and defects are removed. Our results indicate that the properties of Ni-Mn-Ga thin films grown by sputtering can be optimized (fixing the chemical concentration and removing crystalline defects) by the annealing process, which is promising for the development of micromagnetic shape memory devices.

  6. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 4 January - 21 March 1994)

    SciTech Connect

    Kozyr, Alex

    2005-06-30

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana, on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.

  7. Urine pH test

    MedlinePlus

    ... pubmed/7797810 . Read More Acid loading test (pH) Acute kidney failure Alkalosis Chronic obstructive pulmonary disease Diabetic ketoacidosis Diarrhea - overview Distal renal tubular acidosis Gastric suction Interstitial nephritis Kidney stones ...

  8. Exercise and Pulmonary Hypertension (PH)

    MedlinePlus

    ... Process: Some First Steps Adoption Success Story Watch Classroom Recordings Empowered Patient Online Toolkit Tab 1: Very ... Kathy Groebner Education Programs Patients and Caregivers PHA Classroom PHA on the Road: PH Patients and Families ...

  9. Esophageal pH monitoring

    MedlinePlus

    ... test can also be done during upper GI endoscopy by clipping a pH monitor to the lining of the esophagus. ... esophagitis : Barium swallow Esophagogastroduodenoscopy (also called upper GI endoscopy)

  10. Cyclic Martensitic Transformations Influence on the Diffusion Of Carbon Atoms in Fe-18 wt.%Mn-2 wt.%Si alloy

    NASA Astrophysics Data System (ADS)

    Danilchenko, Vitaliy E.; Filatov, Alexander V.; Mazanko, Vladimir F.; Iakovlev, Viktor E.

    2017-03-01

    A significant carbon diffusion mobility acceleration as a result of cyclic γ↔ɛ martensitic transformations in iron-manganese alloy is determined by one- and two-dimensional structure defects of ɛ-martensite with face-centered close-packed lattice. Such defects (dislocations, low angle sub-boundaries of dislocations, chaotic stacking faults) were formed during cyclic γ↔ɛ martensitic transformations. Peak carbon diffusion coefficient increase was observed under thermocycling when maximum quantity of lattice defects increase was fixed.

  11. Low temperature stability of 4O martensite in Ni49.1Mn38.9Sn12 metamagnetic Heusler alloy ribbons

    NASA Astrophysics Data System (ADS)

    Czaja, P.; Przewoźnik, J.; Gondek, Ł.; Hawelek, L.; Żywczak, A.; Zschech, E.

    2017-01-01

    The structural transformation sequence in Ni49.1Mn38.9Sn12 ribbons is studied using calorimetric, thermomagnetic, resistivity and in-situ XRD measurements. It is confirmed that the ferromagnetic L21 austenite phase transforms into 4O martensite at 242 K. The austenite phase persists in the sample to well below the TC of martensite. Upon further cooling the 4O martensite phase is stable down to the low temperature range, what is ascribed to its limited Ni/Mn and e/a ratios. On heating lattice constants assume lower values resulting from stress relief upon thermal cycling.

  12. Investigation of the effect of cyclic laser heating for creating dispersed structures in the austenitic-martensitic alloys based on Fe-Cr-Ni system

    NASA Astrophysics Data System (ADS)

    Andreev, A. O.; Mironov, V. D.; Petrovskii, V. N.; Orlov, A. V.; Libman, M. A.

    2016-09-01

    The effect of cyclic laser heating on the formation of the austenite structure in the austenitic-martensitic alloys based on Fe-Cr-Ni system is investigated. It is shown that under the influence of ultra-fast laser heating on the martensite, which was formed during plastic deformation, the reverse martensitic transformation occurs, and austenite with high strength characteristics is formed. Repeated and multiple laser heating effectively grinds areas of austenite to a size close to the large nanoparticles. There is an additional increase in the strength characteristics of austenite as a result of this fragmentation.

  13. PhEDEx Data Service

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-04-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the "SiteDB" service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  14. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  15. Low-temperature criticality of martensitic transformations of Cu nanoprecipitates in α-Fe.

    PubMed

    Erhart, Paul; Sadigh, Babak

    2013-07-12

    Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in α-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the α-Fe lattice.

  16. Mechanical properties and microstructure of advanced ferritic-martensitic steels used under high dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Shamardin, V. K.; Golovanov, V. N.; Bulanova, T. M.; Povstianko, A. V.; Fedoseev, A. E.; Goncharenko, Yu. D.; Ostrovsky, Z. E.

    Some results of the study of mechanical properties and structure of ferritic-martensitic chromium steels with 13% and 9% chromium, irradiated in the BOR-60 reactor up to different damage doses are presented in this report. Results concerning the behaviour of commercial steels, containing to molybdenum, vanadium and niobium, and developed for the use in fusion reactors, are compared to low-activation steels in which W and Ta replaced Mo and Nb. It is shown that after irradiation to the dose of ˜10 dpa at 400°C 0.1C-9Cr-1W, V, Ta steels are prone to lower embrittlement as deduced from fracture surface observations of tensile specimens. Peculiarities of fine structure and fracture mode, composition and precipitation reactions in steels during irradiation are discussed.

  17. Multi-stage martensitic transformation in Ni-rich NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiebin; Verlinden, Bert; Kustov, Sergey

    Precipitation hardening is an effective way to improve the functional stability of NiTi shape memory alloys. The precipitates, mainly Ni4Ti3, could be introduced by aging treatment in Ni-rich NiTi alloys. However, the presence of Ni4Ti3 precipitates could disturb the transformation behavior, resulting in the multi-stage martensitic transformation (MMT). With the presence of MMT, it is difficult to control the transformation behavior, and thus limits the applicability of NiTi alloys. In this work, previous efforts on explaining the observed MMT are summarized. The difficulties in developing a unified explanation are discussed, and a possible way to avoid the MMT is proposed.

  18. Toughness of 12%Cr ferritic/martensitic steel welds produced by non-arc welding processes

    SciTech Connect

    Ginn, B.J.; Gooch, T.G.

    1998-08-01

    Low carbon 12%Cr steels can offer reduced life cycle costs in many applications. The present work examined the behavior of commercial steels of varying composition when subject to low heat input welding by the electron beam (EB) process and to a forge cycle by linear friction welding (LFW). Charpy impact testing was carried out on the high temperature heat-affected zone (HAZ)/fusion boundary or weld interface, with metallographic examination. With EB welding, the ductile-brittle transition temperature (DBTT) was below 0 C (32 F) only for steel of low ferrite factor giving a fully martensitic weld area. Higher ferrite factor alloys showed predominantly ferritic transformed microstructures and a transition well above room temperature. Grain coarsening was found even with low EB process power, the peak grain size increasing with both heat input and steel ferrite factor. Use of LFW gave a fine weld area structure and DBTTs around 0 C even in high ferrite factor (FF) material.

  19. Mechanical properties of low activating martensitic 8?10% CrWVTa steels of type OPTIFER

    NASA Astrophysics Data System (ADS)

    Schäfer, L.; Schirra, M.; Ehrlich, K.

    1996-10-01

    A series of low activating steels (OPTIFER-Ia, Ib, II, III and IV) has been developed as materials for the first wall and blanket structures of a future fusion device. The steels have been characterized by metallurgical examinations and by tests of the mechanical properties using tensile, impact bending and creep rupture tests. In comparison with conventional martensitic 9-12% CrMoVNb steels (e.g., MANET and P91 steels) a strong improvement of upper shelf impact energy and a remarkable shift to lower DBTT = -118°C was obtained, whereas other mechanical data are similar. Fracture toughness can be optimized by proper selection of austenitization temperature, quenching and tempering treatment with a preference of a lower austenitizing temperature.

  20. Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Spätig, P.; Victoria, M.

    2002-12-01

    The ball punch test technique was used to evaluate the conventional tensile and impact properties of the tempered martensitic steel EUROFER97 from room temperature down to liquid nitrogen temperature. The testing was carried out on unirradiated material only with small disks, 3 mm in diameter and 0.25 mm in thickness. For comparison, tensile tests were also performed over the same temperature range. Correlations between the load at the plastic bending initiation and the maximum load of the punch tests with the yield stress and the ultimate tensile stress of the tension tests could be established. The temperature dependence of the specific fracture energy of the punch test was used to define a ductile-brittle transition temperature (DBTT) and to correlate this with the DBTT measured from impact Charpy on KLST specimens. The results are compared with other available correlations done in the past on other ferritic steels.

  1. Reduction method of DBTT shift due to irradiation for reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Okubo, N.; Ando, M.; Yamamoto, T.; Takada, F.

    2010-03-01

    The method for reducing irradiation-induced DBTT shift of reduced-activation ferritic/martensitic steels was examined. F82H-LN (low nitrogen, 20 ppm), F82H+60 ppm 11B+200 ppmN and F82H+60 ppm 10B+200 ppmN steels tempered at 780 °C for 0.5 h were irradiated at 250 °C to 2 dpa, and the results for Charpy impact tests were analyzed. The upper shelf energy of F82H+ 11B+N steel was hardly changed by the irradiation, and DBTT shift was very small. From our research, DBTT shift due to irradiation can be reduced by the control of tempered conditions before irradiation, and it is found to be furthermore reduced by impurity doping with 60 ppm 11B and 200 ppmN to F82H steel.

  2. Microstructure and mechanical properties of newly developed low activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Gavillet, D.; Spätig, P.; Rezai-Aria, F.; Rossmann, S.

    1996-10-01

    The reference ferritic-martensitic steel of the European Fusion Technology Program, the 10CrMoNbV MANET cast, has been modified by replacing the elements that result in long term residual radioactivity when irradiated under a fusion neutron spectra by others which have shorter activation periods. A base composition of a 9CrWVTa steel has been so defined. Two different compositions of the base alloy have been cast from high purity components, which the Mn and N contents have been varied. The extracted carbide types and their size distribution have been studied under the electron microscope. The mechanical properties of both compositions have been determined. Both steel compositions have a ductile-brittle transition temperature (DBTT) well below room temperature while their tensile properties are comparable to those of the parent (MANET) steel.

  3. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Ding, Hui-Li; Zhang, Tao; Gao, Rui; Wang, Xian-Ping; Fang, Qian-Feng; Liu, Chang-Song; Suo, Jin-Ping

    2015-09-01

    Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90°C to 20°C. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60°C. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field ( H C) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of ln H C versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.

  4. Research and development on the China low activation martensitic steel (CLAM)

    NASA Astrophysics Data System (ADS)

    Yu, Jinnan; Huang, Qunying; Wan, Farong

    2007-08-01

    Chinese low activation martensitic steel (CLAM) has been designed with improved composition, and its performance, such as tensile properties, ductile-brittle transition temperature (DBTT 41J), creep and thermal physical properties, has been determined. The interaction experiments between CLAM and plasma were carried out in the HT-7 tokamak facility and the activities, afterheat and gamma dose rate for CLAM as a function of cooling time (CT) were calculated to obtain the required control levels of impurities in CLAM. The insulator coatings on CLAM steel prepared by the CVD process at 700 °C and 740 °C have pure Al 2O 3 and Al 2O 3 with an oxygen deficiency layer on surface about 1 μm thick. The electrical resistivity of the coating reaches about 10 4 Ωm 2 on the surface.

  5. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  6. X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hossein Nedjad, S.; Hosseini Nasab, F.; Movaghar Garabagh, M. R.; Damadi, S. R.; Nili Ahmadabadi, M.

    2011-08-01

    18Ni (300) maraging steel possessing lath martensite structure was deformed by four passes of equal-channel angular pressing (ECAP) at ambient temperature. Line profile analysis (LPA) of X-ray diffraction (XRD) patterns identified strong strain anisotropy and remarkable increases in the relative fraction of screw dislocations after ECAP. The strain anisotropy was reasonably accounted for by the anisotropy of elastic constants. Domination of screw dislocations in the deformed structure was attributed to the preferred annihilation of edge dislocations in the early stages of deformation along with the difficulties for annihilation of screw dislocations by cross slipping. Cobalt addition was mainly assumed to make cross slipping difficult by reducing stacking-fault energy and favoring short-range ordering.

  7. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

    NASA Astrophysics Data System (ADS)

    Huang, Zilin; Wang, Gang; Wei, Shaopeng; Li, Changhong; Rong, Yiming

    2016-09-01

    Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power ( P), scanning speed ( V s), wire feed rate ( V f), and wire current ( I), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.

  8. Crystal Dynamics of Forming ɛ-Martensite with Habit Planes {443}α in Titanium

    NASA Astrophysics Data System (ADS)

    Kashchenko, M. P.; Chashchina, V. G.

    2017-02-01

    Formation of crystals with habit planes {443}α in titanium with BCC-HCP (α - ɛ) reorganization is considered within the limits of the dynamic theory of martensitic transformations. It is shown that the start of fast wave crystal growth is possible in elastic fields of rectangular dislocation loops with basic segments along the <1 overline{1} 0>α directions and the <001>α Burgers vectors. The relative change of the volume δ is considered negative. For wide loops, the habit planes {443}α (like {334}α) can be associated with invariant planes. For narrow loops, selection in favor of the crystals having habit planes {443}α is due to the fulfillment of the condition δ < 0.

  9. Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. S.; Okhapkin, K. A.; Mikhailov, M. S.; Skutin, V. S.; Zubova, G. E.; Fedotov, B. V.

    2016-06-01

    In the process of the investigation of the heat resistance of a 0.07C-12Cr-Ni-Mo-V-Nb steel of the martensitic-ferritic class, a reduction was revealed in the long-term strength of its welded joints to below the level of the strength of the base metal. To establish the causes for the accelerated failure of the welded joints, an imitation of the thermal cycles was carried out that produce the structure of the heataffected zone using a dilatometer. In the samples with the structure that corresponds to that of the heataffected zone, a local zone of softening was revealed. The investigations of the metal structure using transmission electron microscopy have shown that the reduction in the creep rupture strength was caused by structural changes under the conditions of the thermal cycle of welding upon the staying of the steel in the temperature range between the Ac 1 and Ac 3 points.

  10. Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy

    NASA Astrophysics Data System (ADS)

    Barandiaran, J. M.; Chernenko, V. A.; Cesari, E.; Salas, D.; Lazpita, P.; Gutierrez, J.; Orue, I.

    2013-02-01

    We study the martensitic transformation (MT) of metamagnetic shape memory alloy Ni50Mn34.5In15.5 in the magnetic fields up to 12 T. The observed dependence of the MT temperature, Tm, on the field is highly nonlinear. As far as magnetization change, ΔM, remains field-independent, a depart from linearity of Tm(H) function is attributed to a decrease of the transformation entropy, ΔS. This decrease correlates with the parameter (TC-Tm), controlled by magnetic field, where TC is the Curie temperature of austenite, and with the dependence of ΔS on the width of the MT temperature interval deduced from a ferroelastic model of MT.

  11. Variation of magnetic domain structure during martensite variants rearrangement in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xingzhe; Li, Fang

    2012-07-01

    Studies of magnetic domain and anisotropy in ferromagnetic shape memory alloys (FSMAs) are crucial for both understanding their ferromagnetism and engineering in applications. The experimental measurements showed that magnetization rotations and domain-wall motions exhibit distinct characteristics in the field-preferred variants and stress-preferred variants of FSMAs [Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz, and J. McCord, Appl. Phys. Lett. 90, 192504 (2007)]. Aiming at characterization of formation and variation of the complex magnetic microstructure in FSMAs, we present an analytical approach based on the energy minimization theory and Boltzmann relation on magnetic domains. The magnetic domain behavior during the martensite variants rearrangement is captured to show a good agreement with the experimental observations.

  12. Fracture toughness master-curve analysis of the tempered martensitic steel Eurofer97

    NASA Astrophysics Data System (ADS)

    Mueller, Pablo; Spätig, P.; Bonadé, R.; Odette, G. R.; Gragg, D.

    2009-04-01

    We report fracture toughness data for the reduced activation tempered martensitic steel Eurofer97 in the lower to middle transition region. The fracture toughness was measured from tests carried out on 0.35 T and 0.87 T pre-cracked compact tension specimens. The data were first analyzed using the ASTM E1921 standard. The toughness-temperature behavior and scatter were shown to deviate from the ASTM E1921 standard predictions near the lower shelf. Using the method of maximum likelihood, the athermal component of the master-curve was calculated to better fit the data from the lower to the middle transition region. We showed that these master-curve adjustments are necessary to make the To values obtained near the lower shelf with 0.35 TC( T) specimens consistent with those obtained in the middle transition region with 0.87 TC( T) specimens.

  13. Lattice instability and martensitic transformation in LaAg predicted from first-principles theory.

    PubMed

    Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Kaul, S N

    2012-02-22

    The electronic structure, elastic constants and lattice dynamics of the B(2) type intermetallic compound LaAg are studied by means of density functional theory calculations with the generalized gradient approximation for exchange and correlation. The calculated equilibrium properties and elastic constants agree well with available experimental data. From the ratio between the bulk and shear moduli, LaAg is found to be ductile, which is unusual for B(2) type intermetallics. The computed band structure shows a dominant contribution from La 5d states near the Fermi level. The phonon dispersion relations, calculated using density functional perturbation theory, are in good agreement with available inelastic neutron scattering data. Under pressure, the phonon dispersions develop imaginary frequencies, starting at around 2.3 GPa, in good accordance with the martensitic instability observed above 3.4 GPa. By structural optimization the high pressure phase is identified as orthorhombic B(19).

  14. Induction of relaxor state in ordinary ferroelectrics by isovalent ion substitution: A pretransitional martensitic texture case

    NASA Astrophysics Data System (ADS)

    Lente, M. H.; Moreira, E. N.; Garcia, D.; Eiras, J. A.; Neves, P. P.; Doriguetto, A. C.; Mastelaro, V. R.; Mascarenhas, Y. P.

    2006-02-01

    The understanding of the structural origin of relaxor ferroelectrics has been doubtlessly a long-standing puzzle in the field of ferroelectricity. Thus, motivated by the interest in improving the comprehension of this important issue, it a framework is proposed for explaining the origin of the relaxor state in ordinary ferroelectrics induced via the isovalent-ion substitution. Based on the martensitic transformation concepts, it is proposed that the continuous addition of isovalent ions in a so-called normal ferroelectric decreases considerably the elastic strain energy. This results in a gradual transformation of ferroelectric domain patterns from a micrometer polydomain structure (twins), through single domains, to nanometer-polar-“tweed” structures with glasslike behavior, that are, in turn, strongly driven by point defects and surface effects. The electrical interaction between these weakly coupled polar-tweed structures leads to a wide spectrum of relaxation times, thus resulting in a dielectric relaxation process, the signature of relaxor ferroelectrics.

  15. Martensitic transformation thermodynamic calculation of ZrO2-MgO system

    NASA Astrophysics Data System (ADS)

    Li, Jing; Peng, Jinhui; Guo, Shenghui; Qv, Wenwen; Chen, Guo; Li, Wei; Zhang, Libo

    2012-11-01

    The phase transformation of different polymorphs in zirconia is very important for the processing and mechanical properties of zirconia ceramics. In this work, thermodynamic description of ZrO2-MgO system is investigated using the related thermodynamic parameters. Special attention is paid to the calculation of the Gibbs free energy change between tetragonal and monoclinic phases in ZrO2-MgO, namely t → m phase transformation driving force, as a function of composition and temperature. Furthermore, in 8.7 mol% MgO-ZrO2, the equilibrium temperature between tetragonal and monoclinic phases, T0, was obtained as 1107.8 K and martensitic transformation start temperature (Ms) for t → m of this ceramic with a mean grain size of 1.15 mm was also calculated to be as 737.7 K, which is in good agreement with experiment one of 689.5 K with 7.0% residual.

  16. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)

    SciTech Connect

    Zhao Fei; Qiao Jiansheng; Huang Yina; Wan Farong Ohnuki, Soumei

    2008-03-15

    CLAM is one composition of a Reduced Activation Ferritic/Martensitic steel (RAFM), which is being studied in a number of institutes and universities in China. The effect of electron-beam irradiation temperature on irradiation swelling of CLAM was investigated by using a 1250 kV High Voltage Electron Microscope (HVEM). In-situ microstructural observations indicated that voids formed at each experimental temperature - 723 K, 773 K and 823 K. The size and number density of voids increased with increasing irradiation dose at each temperature. The results show that CLAM has good swelling resistance. The maximum void swelling was produced at 723 K; the swelling was about 0.3% when the irradiation damage was 13.8 dpa.

  17. Improvement of High Temperature Mechanical Property by Precipitation Hardening of Reduced Activation Ferritic/Martensitic Steels

    SciTech Connect

    Sakasegawa, H.; Kohyama, A.; Katoh, Y.; Tamura, M.; Khono, Y.; Kimura, A.

    2003-07-15

    Reduced Activation Ferritic/Martensitic steels (RAFs) are leading candidates for blanket and first wall structures of the D-T fusion reactors. Recently, in order to achieve better efficiency of energy conversion by using RAFs in advanced blanket systems, improvement of high temperature mechanical property of RAFs is desired. In this work, experimental alloys, FETA-series (Fe-Ta-C or N) steels, were prepared to observe precipitation hardening mechanism by MX-type particles at elevated temperatures in detail. According to the results, innovative improvement of creep property can be achieved by applying of precipitation hardening by very fine TaX (X=C, N) particles. With increasing tantalum content, finer dispersion of MX-type particles, dislocation structures and sub-grain structures were observed by TEM (Transmission Electron Microscopy). These fine structures contributed to the improvement of creep property.

  18. TRIP effect in austenitic-martensitic VNS9-Sh steel at various strain rates

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.

    2016-10-01

    The mechanical properties of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) steel are studied at a static strain rate from 4.1 × 10-5 to 17 × 10-3 s-1 (0.05-20 mm/min). It is found that, as the strain rate increases, the ultimate tensile strength decreases and the physical yield strength remains unchanged (≈1400 MPa). As the strain rate increases, the yield plateau remains almost unchanged and the relative elongation decreases continuously. Because of high microplastic deformation, the conventional yield strength is lower than the physical yield strength over the entire strain rate range under study. The influence of the TRIP effect on the changes in the mechanical properties of VNS9-Sh steel at various strain rates is discussed.

  19. Study of tempering behavior of lath martensite using in situ neutron diffraction

    SciTech Connect

    Shi, Z.M.; Gong, W.; Tomota, Y.; Harjo, S.; Li, J.; Chi, B.; Pu, J.

    2015-09-15

    To elucidate changes in the density and substructure of dislocations during tempering of lath martensite steel, a convolutional multiple whole-profile fitting method was applied to in situ neutron diffraction profiles. With increasing tempering temperature, the dislocation density scarcely changed in the beginning and then decreased at temperatures above 473 K, whereas the dislocation arrangement drastically changed at temperatures above 673 K. The strength of the steel is speculated to depend on the density and arrangement of dislocations. - Highlights: • A convolutional multiple whole-profile fitting method was applied. • Dislocation density and dislocation arrangement changing with tempering were discussed. • Dislocation density scarcely changed in the beginning. • And then dislocation density decreased at temperatures above 473 K. • The dislocation arrangement drastically changed at temperatures above 673 K.

  20. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  1. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  2. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  3. Summary Report of Summer Work: High Purity Single Crystal Growth & Microstructure of Ferritic-Martensitic Steels

    SciTech Connect

    Pestovich, Kimberly Shay

    2015-08-18

    Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratory’s missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NE’s Fuel Cycle Research and Development program to close the nuclear fuel cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.

  4. Deformation of a Ti-Nb alloy containing a"-martensite and omega phases

    SciTech Connect

    Cai, S; Schaffer, J. E.; Ren, Yang

    2015-03-30

    Microscopic deformation of a Ti-17at. %Nb alloy with high fractions of alpha"-martensite and omega phases was studied by in-situ synchrotron X-ray diffraction. Textures, phase fractions, individual lattice strains, and peak intensities during deformation were studied. It is found that, to accommodate the external tensile strain, some of the alpha" and omega grains were first transformed to the beta-phase, which then continuously transformed to the alpha"-phase with chosen variants that effectively accommodate the deformation strain. A strong (010)(alpha") fiber texture was formed at the expense of the (001)(alpha") and (111)(alpha") fiber textures. Above 400 MPa applied stress, (110)(alpha") deformation twinning was triggered with a simultaneous stress relaxation in the (110)(alpha") family and a slight increase in its texture strength in the loading direction. (C) 2015 AIP Publishing LLC.

  5. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kohno, Y.; Kohyama, A.; Hirose, T.; Hamilton, M. L.; Narui, M.

    Mechanical property changes of Fe- XCr-2W-0.2V,Ta ( X: 2.25-12) low activation ferritic/martensitic steels including Japanese Low Activation Ferritic/martensitic (JLF) steels and F82H after neutron irradiation were investigated with emphasis on Charpy impact property, tensile property and irradiation creep properties. Dose dependence of ductile-to-brittle transition temperature (DBTT) in JLF-1 (9Cr steel) irradiated at 646-700 K increased with irradiation up to 20 dpa and then decreased with further irradiation showing highest DBTT of 260 K at 20 dpa. F82H showed similar dose dependence in DBTT to JLF-1 with higher transition temperature than that of JLF-1 at the same displacement damage. Yield strength in JLF steels and F82H showed similar dose dependence to that of DBTT. Yield strength increased with irradiation up to 15-20 dpa and then decreased to saturate above about 40 dpa. Irradiation hardening in 7-9%Cr steels (JLF-1, JLF-3, F82H) were observed to be smaller than those in steels with 2.25%Cr (JLF-4) or 12%Cr (JLF-5). Dependences of creep strain on applied hoop stress and neutron fluence were measured to be 1.5 and 1, respectively. Temperature dependence of creep coefficient showed a maximum at about 700 K which was caused by irradiation induced void formation or irradiation enhanced creep deformation. Creep coefficient of F82H was larger than those of JLF steels above 750 K. This was considered to be caused by the differences in N and Ta concentration between F82H and JLF steels.

  6. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-06-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab.

  7. Liquid metal embrittlement susceptibility of ferritic martensitic steel in liquid lead alloys

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Bosch, R. W.; Sapundjiev, D.; Almazouzi, A.

    2008-06-01

    The susceptibility of the ferritic-martensitic steels T91 and EUROFER97 to liquid metal embrittlement (LME) in lead alloys has been examined under various conditions. T91, which is currently the most promising candidate material for the high temperature components of the future accelerator driven system (ADS) was tested in liquid lead bismuth eutectic (LBE), whereas the reduced activation steel, EUROFER97 which is under consideration to be the structural steel for fusion reactors was tested in liquid lead lithium eutectic. These steels, similar in microstructure and mechanical properties in the unirradiated condition were tested for their susceptibility to LME as function of temperature (150-450 °C) and strain rate (1 × 10 -3-1 × 10 -6 s -1). Also, the influence of pre-exposure and surface stress concentrators was evaluated for both steels in, respectively, liquid PbBi and PbLi environment. To assess the LME effect, results of the tests in liquid metal environment are compared with tests in air or inert gas environment. Although both unirradiated and irradiated smooth ferritic-martensitic steels do not show any or little deterioration of mechanical properties in liquid lead alloy environment compared to their mechanical properties in gas as function of temperature and strain rate, pre-exposure or the presence of surface stress concentrators does lead to a significant decrease in total elongation for certain test conditions depending on the type of liquid metal environment. The results are discussed in terms of wetting enhanced by liquid metal corrosion or crack initiation processes.

  8. Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Liu, Lingbo; Xiang, Xin; Rao, Yongchu; Ye, Xiaoqiu; Chen, Chang An

    2016-03-01

    Reduced Activation Ferritic/Martensitic (RAFM) steels have been considered as the most promising candidate structure materials for a fusion reactor. In the recent decades, two new types of RAFM steels, called China Low Activation Martensitic (CLAM) steel and China Low-activation Ferritic (CLF-1) steel, have been developed. The gas evolution permeation technique has been used to investigate diffusive transport parameters of deuterium through CLAM and CLF-1 over the temperature range 623 ∼ 873 K at deuterium pressure of 105 Pa. The resultant transport parameters are: Φ (mol. m-1 s-1 Pa-1/2) = 5.40 × 10-8 exp (-46.8 (kJ. mol-1)/RT), D(m2 s-1) = 3.81 × 10-7 exp(-24.0(kJ. mol-1)/RT) and S (mol. m-3 Pa-1/2) = 1.42 × 10-1 exp(-22.8(kJ. mol-1)/RT) for CLAM; while Φ(mol m-1 s-1 Pa-1/2) = 1.76 × 10-8 exp(-43.9(kJ. mol-1)/RT), D(m2. s-1) = 1.02 × 10-7 exp(-16.9(kJ. mol-1)/RT) and S(mol. m-1 Pa-1/2) = 1.73 × 10-1 exp(-27.0(kJ. mol-1) /RT) for CLF-1. The results show that CLAM is more permeable than CLF-1, thus it is easier for hydrogen isotopes to transport and be removed.

  9. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  10. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding

    NASA Astrophysics Data System (ADS)

    Dubuisson, Philippe; Carlan, Yann de; Garat, Véronique; Blat, Martine

    2012-09-01

    The development of ODS materials for the cladding for Sodium Fast Reactors is a key issue to achieve the objectives required for the GEN IV reactors. CEA, AREVA and EDF have launched in 2007 an important program to determine the optimal fabrication parameters, and to measure and understand the microstructure and properties before, under and after irradiation of such cladding materials. The aim of this paper is to present the French program and the major results obtained recently at CEA on Fe-9/14/18Cr1WTiY2O3 ferritic/martensitic ODS materials. The first step of the program was to consolidate Fe-9/14/18Cr ODS materials as plates and bars to study the microstructure and the mechanical properties of the new alloys. The second step consists in producing tubes at a geometry representative of the cladding of new Sodium Fast Reactors. The optimization of the fabrication route at the laboratory scale is conducted and different tubes were produced. Their microstructure depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. To join the plug to the tube, the reference process is the welding resistance. A specific approach is developed to model the process and support the development of the welds performed within the "SOPRANO" facility. The development at CEA of Fe-9/14/18Cr new ODS materials for the cladding for GENIV Sodium Fast Reactors is in progress. The first microstructural and mechanical characterizations are very encouraging and the full assessment and qualification of this new alloys and products will pass through the irradiation of specimens, tubes, fuel pins and subassemblies up to high doses.

  11. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3 T M ( T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  12. Heat treatment of investment cast PH 13-8 Mo stainless steel; Part 2: Isothermal aging kinetics

    SciTech Connect

    Robino, C.V.; Cieslak, M.J. . Physical and Joining Metallurgy Dept.); Hochanadel, P.W.; Edwards, G.R. . Dept. of Metallurgical and Materials Engineering)

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 C to 593 C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 C, 538 C, 566 C, and 593 C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that [beta]-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the [beta]-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels.

  13. Irreversibility of the martensitic transformation in Ni-Mn-In single crystal studied by resistivity under pressure and in situ optical observations

    NASA Astrophysics Data System (ADS)

    Porcar, L.; Courtois, P.; Crouigneau, G.; Debray, J.; Bourgault, D.

    2014-10-01

    Optical observations under uniaxial pressure and in-situ resistivity measurements were undertaken in Ni-Mn-In single crystals as a function of temperature to study the thermal hysteresis of the martensitic transformation. The irreversibility of the isothermal transformation under pressure was clearly observed, and it was possible to stabilize the martensitic phase with large and coarsen variants by applying a pressure at a stable temperature Ms reached during cooling down (cooling branch of the hysteresis). When the uniaxial pressure is applied in the heating branch of the hysteresis, the martensitic transformation occurs in a complete reversible way as the hysteresis delimitates the metastability of the martensitic/austenitic phases and the energy barrier to overcome for the transformation. This procedure leads to a piezoresistance as large as 200%.

  14. Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Park, Min-Gu; Lee, Chang-Hoon; Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho; Kang, Namhyun; Chan Kim, Hyoung

    2017-03-01

    The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M23C6 carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20-100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M23C6 carbides at the ferrite grain boundaries, which makes crack initiation more difficult.

  15. Surface analysis of the Heusler Ni49.7Mn29.1Ga21.2 Alloy: The composition, phase transition, and twinned microstructure of martensite

    NASA Astrophysics Data System (ADS)

    Horáková, Kateřina; Cháb, Vladimír; Heczko, Oleg; Drchal, Václav; Fekete, Ladislav; Honolka, Jan; Kopeček, Jaromír; Kudrnovský, Josef; Polyak, Yaroslav; Sajdl, Petr; Vondráček, Martin; Lančok, Ján; Feyer, Vitaliy; Wiemann, Carsten; Schneider, Claus M.

    2016-09-01

    Surface analysis was used to study the dynamics of the martensitic transformation on macro- and mesoscopic scales. The chemical state, morphology, and magnetic and surface structure were monitored at particular stages of the phase transition. At room temperature, the martensitic phase of the Ni49.7Mn29.1Ga21.2 (100) single crystal exhibited macroscopic a/c twinning and a corresponding magnetic domain structure characterized by magnetization vector in and out of the surface plane. Induced by radiation heating, the transformation from martensite to austenite takes place separately at the surface and in the bulk. Its dynamics depend on the history of the sample treatment which affects the crystallographic orientation of twins and minor changes of the surface stoichiometry. The interfaces (twin planes) between twin variants in the martensitic phase were noticeable also in the austenitic phase, thanks to the shape memory effect of this material.

  16. Effect of martensitic transformation on magnetoelectric properties of Ni2MnGa/PbZr0.52Ti0.48O3 composite

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Chen, K.; Dai, Y. R.; Wan, J. G.; Zhu, J. S.

    2005-10-01

    The magnetoelectric (ME) coefficient was measured as a function of temperature, from room temperature to 100°C, in a bilayer composite of Ni2MnGa/PbZr0.52Ti0.48O3. A distinct peak of the ME coefficient was observed near the martensitic transformation temperature of the Ni2MnGa alloy. The effect of martensitic transition on the ME coefficient and the multiferroic properties were discussed.

  17. The effect of substitution of Mn by Fe and Cr on the martensitic transition in the Ni50Mn34In16 alloy.

    PubMed

    Sharma, V K; Chattopadhyay, M K; Nath, S K; Sokhey, K J S; Kumar, R; Tiwari, P; Roy, S B

    2010-12-08

    The potential shape memory alloy Ni(50)Mn(34)In(16) is studied with partial substitution of Mn with Fe and Cr to investigate the effect of such substitution on the martensitic transition in the Ni-Mn-In alloy system. The results of ac susceptibility, magnetization and electrical resistivity measurements show that while the substitution with Cr increases the martensitic transition temperature, the substitution with Fe decreases it. Possible reasons for this shift in martensitic transition are discussed. Evidence of kinetic arrest of the austenite to martensite phase transition in the Fe substituted alloys is also presented. Unlike the kinetic arrest of the austenite to martensite phase transition in the parent Ni(50)Mn(34)In(16) alloy which takes place in the presence of high external magnetic field, the kinetic arrest of the austenite to martensite phase transition in the Fe doped alloy occurs even in zero magnetic field. The Cr substituted alloys, on the other hand, show no signature of kinetic arrest of this phase transition.

  18. THE EFFECT OF REPEATED COMPRESSIVE DYNAMIC LOADING ON THE STRESS-INDUCED MARTENSITIC TRANSFORMATION IN NiTi SHAPE MEMORY ALLOYS

    SciTech Connect

    D. MILLER; W. THISSELL; ET AL

    2000-08-01

    It has been shown that quasi-static, cyclic, isothermal mechanical loading influences the mechanical response of the stress-induced martensitic transformation in fully annealed NiTi Shape Memory Alloys (SMAs). As the cycle number increases, hardening of the stress-strain response during the martensitic phase transformation is seen along with a decrease in the threshold stress for initiation of stress-induced martensite. Also, the amount of plastic strain and detwinned martensitic strain decreases as the cycle number increases. However, NiTi SMAs have not been experimentally explored under high compressive strain rates. This research explores the cyclic near-adiabatic stress-induced martensitic loading using a Split Hopkinskin Pressure Bar (SHPB). The results of the dynamic loading tests are presented with emphasis on the loading rate, stress-strain response, specimen temperature and post-test microstructural evaluation. The results from the high strain rate tests show similarities with the quasi-static results in the hardening of the stress-strain response and shifting of the threshold stress for initiation of stress-induced martensite.

  19. High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic transformations in multifunctional Ti-24Nb-4Zr-8Sn alloy

    SciTech Connect

    Liu, J. P.; Wang, Y. D.; Hao, Y. L.; Wang, H. L.; Wang, Y.; Nie, Z. H.; Su, R.; Wang, D.; Ren, Y.; Lu, Z. P.; Wang, J. G.; Hui, X. D.; Yang, R.

    2014-12-01

    Two main explanations exist for the deformation mechanisms in Ti-Nb-based gum metals, i.e. the formation of reversible nanodisturbance and reversible stress-induced martensitic transformation. In this work, we used the in situ synchrotron-based high-energy X-ray diffuse-scattering technique to reveal the existence of a specific deformation mechanism, i.e. deformation-induced spatially confined martensitic transformations, in Ti-24Nb-4Zr-8Sn-0.10O single crystals with cubic 13 parent phase, which explains well some anomalous mechanical properties of the alloy such as low elastic modulus and nonlinear superelasticity. Two kinds of nanosized martensites with different crystal structures were found during uniaxial tensile loading along the [11 0](beta) axis at room temperature and 190 K, respectively. The detailed changes in the martensitic phase transformation characteristics and the transformation kinetics were experimentally observed at different temperatures. The domain switch from non-modulated martensite to a modulated one occurred at 190 K, with its physical origin attributed to the heterogeneity of local phonon softening depending on temperature and inhomogeneous composition in the parent phase. An in-depth understanding of the formation of stress-induced spatially confined nanosized martensites with a large gradient in chemical composition may benefit designs of high-strength and high-ductility alloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Prokoshkin, S. D.; Korotitskiy, A. V.; Brailovski, V.; Inaekyan, K. E.; Dubinskiy, S. M.

    2011-08-01

    X-ray diffraction has been used to study shape-memory alloys of composition Ti-(49.73-51.05 at %) Ni subjected to quenching and thermomechanical treatment (TMT) by the scheme "cold deformation ( e = 0.3-1.9) + postdeformation annealing (200-500°C) to provide different defectness of the parent B2 austenite. For the quenched alloys, the concentration dependences of the lattice parameters of the B19' martensite, maximum lattice strain upon martensitic transformation, the crystallographic orientation of the lattice in single crystals, and the reserve of recoverable strain in polycrystals have been determined. The lattice parameters of martensite formed from polygonized, i.e., nanosubgranular, or from nanocrystalline austenite differ from the corresponding parameters of quenched martensite formed from recrystallized austenite, and their difference increases with increasing defectness of the parent-austenite lattice. An increase in the defectness of the austenite lattice is accompanied by a decrease in the reserve of recoverable strain. The deformation of the existing martensite or the formation of stress-assisted martensite under the anisotropic action of external stresses changes the interplanar spacing and the thermal expansion coefficient in different crystallographic directions but does not affect the averaged lattice parameters near the M s- M f interval and the reserve of recoverable strain.

  1. Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Marini, B.; Averty, X.; Wident, P.; Forget, P.; Barcelo, F.

    2015-10-01

    The hardening and the embrittlement under neutron irradiation of an A508 type RPV steel considering three different microstructures (bainite, bainite-martensite and martensite)have been investigated These microstructures were obtained by quenching after autenitization at 1100 °C. The irradiation induced hardening appears to depend on microstructure and is correlated to the yield stress before irradiation. The irradiation induced embrittlement shows a more complex dependence. Martensite bearing microstructures are more sensitive to non hardening embrittlement than pure bainite. This enhanced sensitivity is associated with the development of intergranular brittle facture after irradiation; the pure martensite being more affected than the bainite-martensite. It is of interest to note that this mixed microstructure appears to be more embrittled than the pure bainitic or martensitic phases in terms of temperature transition shift. This behaviour which could emerge from the synergy of the embrittlement mechanisms of the two phases needs further investigations. However, the role of microstructure on brittle intergranular fracture development appears to be qualitatively similar under neutron irradiation and thermal ageing.

  2. Effect of heat treatment and irradiation temperature on mechanical properties and structure of reduced-activation Cr-W-V steels of bainitic, martensitic, and martensitic-ferritic classes

    NASA Astrophysics Data System (ADS)

    Gorynin, I. V.; Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.; Nesterova, E. V.; Klepikov, E. Yu

    2000-12-01

    Effects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic-ferritic classes containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic steels were varied by changing the cooling rates from the austenitization temperature (from values typical for normalization up to V=3.3 × 10-2°C/s) and then tempering. The steels were irradiated to a fluence of 4×1023 n/m2 (⩾0.5 MeV) at 270°C and to fluences of 1.3×1023 and 1.2×1024 n/m2 (⩾0.5 MeV) at 70°C. The 2.5Cr-1.4WV and 8Cr-1.5WV steels have shown lower values of the shifts in ductile-brittle transition temperature (DBTT) under irradiation in comparison with corresponding Cr-Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest in bainitic 2.5Cr-1.4WV steel and martensitic-ferritic 11Cr-1.5WV steel. The positive effect of molybdenum replacement by tungsten at irradiation temperature ∼300°C is reversed at Tirr=70∘C.

  3. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    SciTech Connect

    Tang, Wei; Chen, Gaoqiang; Chen, Jian; Yu, Xinghua; Frederick, David Alan; Feng, Zhili

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  4. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phases under hydrostatic pressure, and compare to experiments and previous calculations.

  5. Curvature effect on the mechanical behaviour of a martensitic shape-memory-alloy wire for applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Tran, Hanh; Balandraud, Xavier; Destrebecq, Jean-François

    2015-02-01

    The mechanical response of a bent shape memory alloy (SMA) wire is a key point for the understanding of the process of the creation of confining effects in a wrapped concrete cylinder for example. The objective of the present study is to model the phenomena involved in the bending of a martensitic SMA wire. The mechanism of martensite reorientation is considered in the model, which also takes into account the asymmetry between tension and compression. For validation purposes, experiments were performed on Ni-Ti wires: measurement of residual curvatures after bending release and tensile tests on pre-bent wires. In particular, the analysis shows a variation in axial stiffness as a function of the preliminary curvature. This result shows the necessity of modelling the distributions of the state variables within the wire cross-section for the simulation of confinement processes using SMA wires. It also opens prospects to potential application to the bending of SMA fibres in smart textiles.

  6. Influence of quenching rate on the magnetic and martensitic properties of Ni-Fe-Ga melt-spun ribbons

    SciTech Connect

    Okumura, H.; Uemura, K.

    2010-08-15

    We have fabricated Ni-Fe-Ga {beta} single phase alloy ribbons with Ga content less than 25 at. %. Higher spinning rate of melt-spinning technique can produce {beta} single phase alloys without precipitation of {gamma} particles, whereas lower spinning rate results in the {beta}+{gamma} two phase structure. This higher quenching rate is found to be able to fully suppress the formation of {gamma} phase during fabrication. The martensitic and magnetic transition temperatures of {beta} phase ribbons are both above room temperature, and the ribbon show saturation magnetization as high as 56.5 emu/g at room temperature. These features are attractive for practical applications. The effects of quenching rate on microstructure, martensitic transformation, and magnetic properties are discussed.

  7. Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Mohtadi-Bonab, M. A.; Basu, R.; Nezakat, M.; Kermanpur, A.; Szpunar, J. A.; Nahar, S.; Baghpanah, A. H.

    2015-02-01

    The crystallographic orientation of cold-rolled 316L stainless steel is investigated during reversion of strain-induced ά-martensite to nano/ultrafine-grained austenite upon annealing at 750 °C for different holding times; 1, 5, 15, and 30 min. The texture of nanoscale reverted austenite reveals a Brass ({110}<112>) and a Goss ({110}<100>) textures after annealing for 1 min. No new texture component is appeared through the completion of martensite to austenite reversion for 5 min, but the intensity of Brass and Goss textures are increased. Further annealing for 30 min results in a stronger texture with higher intensity for Brass compared to Goss.

  8. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phasesmore » under hydrostatic pressure, and compare to experiments and previous calculations.« less

  9. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wang, Yangwei; Xu, Xin; Liu, Chengze

    2015-09-01

    Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha" martensite transformation occurs.

  10. Temperature-induced martensite in magnetic shape memory Fe{sub 2}MnGa observed by photoemission electron microscopy

    SciTech Connect

    Jenkins, Catherine; Scholl, Andreas; Kainuma, R.; Elmers, Hans-Joachim; Omori, Toshihiro

    2012-01-18

    The magnetic domain structure in single crystals of a Heusler shape memory compound near the composition Fe{sub 2}MnGa was observed during phase transition by photoelectron emission microscopy at Beamline 11.0.1.1 of the Advanced Light Source. The behavior is comparable with recent observations of an adaptive martensite phase in prototype Ni{sub 2}MnGa, although the pinning in the recent work is an epitaxial interface and in this work the e ective pinning plane is a boundary between martensitic variants that transform in a self-accommodating way from the single crystal austenite phase present at high temperatures. Temperature dependent observations of the twinning structure give information as to the coupling behavior between the magnetism and the structural evolution.

  11. Re-equilibration after quenches in athermal martensites: Conversion delays for vapor-to-liquid domain-wall phases

    NASA Astrophysics Data System (ADS)

    Shankaraiah, N.; Murthy, K. P. N.; Lookman, T.; Shenoy, S. R.

    2015-06-01

    Entropy barriers and aging states appear in martensitic structural-transition models, slowly re-equilibrating after temperature quenches, under Monte Carlo dynamics. Concepts from protein folding and aging harmonic oscillators turn out to be useful in understanding these nonequilibrium evolutions. We show how the athermal, nonactivated delay time for seeded parent-phase austenite to convert to product-phase martensite arises from an identified entropy barrier in Fourier space. In an aging state of low Monte Carlo acceptances, the strain structure factor makes constant-energy searches for rare pathways to enter a Brillouin zone "golf hole" enclosing negative-energy states, and to suddenly release entropically trapped stresses. In this context, a stress-dependent effective temperature can be defined, that re-equilibrates to the quenched bath temperature.

  12. Intragastric pH Monitoring,

    DTIC Science & Technology

    1993-10-01

    disposable sensor.. hnt Care 13. Peterson WL. GI bleeding. In: Sleisenger MH, Fordtran IS, Med 1988;14:232-5. ,. eds. Gastrointestinal disease: pathophysiology ... diagnosis and 27. Fimmel CL, Etienne A, Cilluffo T, et al. Long-term ambu- management, Vol I. 4th ed. Philadelphia: WB Saunders, latory gastric pH

  13. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  14. Martensitic transformation in a Cu-Zn-Al alloy studied by 63Cu and 27Al NMR

    NASA Astrophysics Data System (ADS)

    Rubini, S.; Dimitropoulos, C.; Gotthardt, R.; Borsa, F.

    1991-08-01

    27Al and 63Cu line shape, Knight shift, and relaxation rates over a wide range of temperature and external magnetic field are reported for a Cu-Zn-Al alloy displaying a martensitic phase transformation (MPT) at MS=152 K. Changes in line shape, linewidth, and T-12 at the MPT are detected for both nuclei, and are found to be consistent with the local atomic rearrangement occurring at the transformation. A double structure for the 27Al NMR line is observed in a small range of temperature below MS, and interpreted as the superposition of the signals arising from the two coexisting phases. It is shown that the growth of the martensitic phase during the cooling can be monitored by means of the deconvolution of the 27Al spectrum into the two components. From the analysis, it is inferred that a sudden formation of extensive regions in the martensitic phase occurs at the transition. The Knight shift and the Korringa term (T1T)-1 are slightly different in the two phases, indicating a small increase of the density of s electrons at the Fermi surface at the nuclear sites. The enhancement factors of the susceptibility and of the spin-lattice relaxation rate do not seem to be affected by the MPT but are different when measured at the Al or Cu site, indicating a local nonuniform charge-density distribution in the unit cell. A small enhancement of T-11 is observed for both nuclei in the temperature interval in which the growth of the martensite within the austenite is detected. The anomalous contribution to the relaxation is interpreted as due to strong local charge-density fluctuations caused by atomic motion at the interfaces between the two phases. No precursor effects were detected on the NMR parameters above MS, indicating the absence of a static or long-lived microstructure of the product phase and of a static short-wavelength modulation of the lattice.

  15. Atom probe tomography investigation of assisted precipitation of secondary hardening carbides in a medium carbon martensitic steels.

    PubMed

    Danoix, F; Danoix, R; Akre, J; Grellier, A; Delagnes, D

    2011-12-01

    A medium carbon martensitic steel containing nanometer scale secondary hardening carbides and intermetallic particles is investigated by field ion microscopy and atom probe tomography. The interaction between the concomitant precipitations of both types of particles is investigated. It is shown that the presence of the intermetallic phase affects the nucleation mechanism and the spatial distribution of the secondary hardening carbides, which shifts from heterogeneous on dislocations to heterogeneous on the intermetallic particles.

  16. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  17. Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn-Ni-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Suresh, K. G.

    2016-12-01

    In this report, effect of Fe substitution on martensitic transition, magnetic, magnetocaloric and exchange bias (EB) properties of Mn50Ni40-xFexSn10 (x=0, 0.5, 1, 1.5, 2 and 3) Heusler alloys series has been investigated systematically. Fe substitution has been found to affect the ferromagnetic/antiferromagnetic interactions significantly in both the martensite and austenite phases. Martensitic transition temperature decreases with increasing Fe content, which is attributed to the decrease in number of average valence electrons per atom (e/a ratio) of these alloys. Large magnetic entropy change (ΔSM) and refrigerant capacity (RC) have been observed in these alloys, as a maximum ΔSM of 12.6 J/kg. K is observed for composition x=0.5. Present alloys have also been found to show large exchange bias properties, as maximum exchange bias fields (HEB) of 890 Oe and 810 Oe are observed for x=0 and 0.5, respectively at 5 K. Composition and temperature dependencies of EB are associated with the change in exchange anisotropy at interfaces of competing magnetic phases. Study of minor loop and training effect also corroborates with the presence of EB in these alloys.

  18. On the (in)adequacy of the Charpy impact test to monitor irradiation effects of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Chaouadi, R.

    2007-02-01

    Irradiation embrittlement studies rely very often on Charpy impact data, in particular the ductile-to-brittle transition temperature (DBTT). However, while the DBTT-shift is equivalent to the increase of the fracture toughness transition temperature of ferritic steels, it is not the case for ferritic/martensitic steels. The aim of this study is to critically assess experimental data obtained on a 9%Cr-ferritic/martensitic steel, Eurofer-97, to better understand the underlying mechanisms involved during the fracture process. More specifically, a dedicated analysis using the load diagram approach allows to unambiguously reveal the actual effects of irradiation on physically rather than empirically based parameters. A comparison is made between a ferritic and ferritic/martensitic steel to better identify the possible similarities and differences. Tensile, Charpy impact and fracture toughness tests data are examined in a global approach to assess the actual rather than apparent irradiation effects. The adequacy or inadequacy of the Charpy impact test to monitor irradiation effects is extensively discussed.

  19. An atom probe study of carbon distribution in martensite in 2[1/4]Cr1Mo steel

    SciTech Connect

    Thomson, R.C. . Dept. of Materials Science and Metallurgy); Miller, M.K. . Metals and Ceramics Division)

    1995-01-15

    2[1/4]Cr1Mo steel is used widely for superheater tubing in power plants, and as a filler material for joining [1/2]Cr[1/2]Mo[1/4]V steam piping. Components in power plants can be massive and therefore differences in cooling rates can result in a mixed microstructure of allotriomorphic ferrite, bainite and martensite. The creep strength of the steel is critically dependent on the carbide distribution within the microstructure. The position and nature of carbides within the microstructure is itself a critical function of the movement of carbon through the microstructure during the early stages of tempering. In this paper, atom probe field ion microscopy has been used to examine carbon segregation to lath boundaries in martensite in 2[1/4]Cr1Mo steel. Significant carbon enrichment was observed at the lath boundaries. This enrichment is consistent with the observation of retained austenite films at the lath boundaries in the transmission electron microscope, and with carbon levels previously found in retained austenite in low alloy ferrous martensites.

  20. A uniaxial constitutive model for superelastic NiTi SMA including R-phase and martensite transformations and thermal effects

    NASA Astrophysics Data System (ADS)

    Helbert, Guillaume; Saint-Sulpice, Luc; Arbab Chirani, Shabnam; Dieng, Lamine; Lecompte, Thibaut; Calloch, Sylvain; Pilvin, Philippe

    2017-02-01

    The well-known martensitic transformation is not always the unique solid-solid phase change in NiTi shape memory alloys (SMA). For this material, R-phase can occur from both austenite and martensite. In some applications, macroscopic strain of the material can be limited to 2%. In these cases, R-phase contribution can not be neglected anymore when compared with martensite. Furthermore, different thermomechanical couplings have to be taken into account to carefully predict strain rate effects and to better describe application conditions. In this paper, a new model taking into account various phase transformations with thermomechanical couplings is presented. This model is based on several transformation criteria. In most applications, SMA are used as wires, submitted to tensile-tensile loadings, in the superelasticity working range. Consequently, a uniaxial reduction of the model is presented for its simplicity. A thermodynamic framework is proposed. It enables to describe the internal variables evolution laws. The simple and fast identification process of model parameters is briefly presented. To verify the validity of the proposed model, simulation results are compared with experimental ones. The influences of testing temperature and strain amplitude on the material behavior is discussed. The damping capacity is also studied, using an energy-based criterion.

  1. Prediction of precipitate evolution and martensite transformation in Ti-Ni-Cu shape memory alloys by computational thermodynamics

    NASA Astrophysics Data System (ADS)

    Povoden-Karadeniz, A.; Cirstea, D. C.; Kozeschnik, E.

    2016-04-01

    Ti-50Ni to Ti-55Ni (at.%) can be termed as the pioneer of shape memory alloys (SMA). Intermetallic precipitates play an important role for strengthening. Their influence on the start temperature of the martensitic transformation is a crucial property for the shape memory effect. Efforts for increasing the martensite start temperature include replacement of a part of Ni atoms by Cu. The influence of Cu-addition to Ti-Ni SMA on T0- temperatures and the character of the austenite-martensite transformation is evaluated using a new thermodynamic database for the Ti-Ni-system extended by Cu. Trends of precipitation of intermetallic phases are simulated by combining the assessed thermodynamics of the Ti-Ni-Cu system with assessed diffusion mobility data and kinetic models, as implemented in the solid-state transformation software MatCalc and are presented in the form of time-temperature-precipitation diagrams. Thermodynamic equilibrium considerations, complemented by predictive thermo-kinetic precipitation simulation, facilitates SMA alloy design and definition of optimized aging conditions.

  2. Effects of ternary additions on Young's modulus and the martensitic transformation of Nb/sub 3/Sn

    SciTech Connect

    Bussiere, J.F.; Faucher, B.; Snead, C.L. Jr.; Suenaga, M.

    1982-01-01

    Recent measurements on bronze-processed Nb/sub 3/Sn using a vibrating reed technique have shown that Young's modulus at low temperatures decreases to 0.4 of its room temperature value, and that the internal friction increases dramatically below 50 K, the martensitic transformation temperature. In this study, this technique was used to study softening and the occurrence of the martensitic transformation in bronze-processed Nb/sub 3/Sn samples which contained additions of Ta, Ti, and Zr. Sample preparations and characteristics of the compositions are given. Internal friction and dynamic Young's modulus were measured using electronics based on a phase-locked loop and frequency mode developed by Simpson and Sosin. Softening of Young's modulus and occurrence of the martensitic transformation were found to be strongly affected by the presence of relatively small amounts (0-4 at .%) of Ta, Ti, or Zr. Additions incorporating 2 at .% Ti in the Nb/sub 3/Sn increased Young's modulus by a factor of 2 at 10 K and also suppressed the transformation.

  3. Stability of crystalline solids—II: Application to temperature-induced martensitic phase transformations in a bi-atomic crystal

    NASA Astrophysics Data System (ADS)

    Elliott, Ryan S.; Shaw, John A.; Triantafyllidis, Nicolas

    2006-01-01

    This paper applies the stability theory of crystalline solids presented in the companion paper (Part I) to the study of martensitic transformations found in shape memory alloys (SMA's). The focus here is on temperature-induced martensitic transformations of bi-atomic crystals under stress-free loading conditions. A set of temperature-dependent atomic potentials and a multilattice description are employed to derive the energy density of a prototypical SMA ( B2 cubic austenite crystal). The bifurcation and stability behavior are then investigated with respect to two stability criteria (Cauchy-Born (CB) and phonon). Using a 4-lattice description five different equilibrium crystal structures are predicted: B2 cubic, L10 tetragonal, B19 orthorhombic, Cmmm orthorhombic, and B19' monoclinic. For our chosen model only the B2 and B19 equilibrium paths have stable segments which satisfy both the CB- and phonon-stability criteria. These stable segments overlap in temperature indicating the possibility of a hysteretic temperature-induced proper martensitic transformation. The B2 and B19 crystal structures are common in SMA's and therefore the simulated jump in the deformation gradient at a temperature for which both crystals are stable is compared to experimental values for NiTi, AuCd, and CuAlNi. Good agreement is found for the two SMA's which have cubic to orthorhombic transformations (AuCd and CuAlNi).

  4. A chemical-structural model for coherent martensite/parent interface in Mn-based antiferromagnetic shape memory alloys.

    PubMed

    Shi, S; Wan, J F; Zuo, X W; Chen, N L; Zhang, J H; Rong, Y H

    2016-11-21

    The martensite/parent coherent interface of Mn-based shape memory alloys (SMAs) is a significant part in the research of their martensitic transformation, reversible shape memory effect and magnetic shape memory effect. In the present work, a chemical-structural model was proposed to calculate the martensite/parent coherent interfacial energy of Mn-X (X = Cu, Fe) alloys. In this model, the coherent heterophase interfacial energy consists of chemical and structural parts. Resulting from the formation process of the heterophase interface, the chemical interfacial energy is expressed as the incremental value of bond energy, while the structural part is obtained by calculating the interfacial strain energy. The results show that the structural interfacial energy plays the chief role in the total interfacial energy, and the total interfacial energy decreases as the temperature rises when the alloy composition is fixed. In addition, the preferred orientation has noteworthy influence on the total interfacial energy. Using the proposed model, interfacial energy, interfacial entropy, interfacial enthalpy and interfacial heat capacity are found to be correlated with temperature and interface preferred orientation. Furthermore, the influences of alloy composition, modulus softening, and the index of the habit plane on the results were discussed.

  5. Phase field approach to martensitic phase transformations with large strains and interface stresses

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.

    2014-10-01

    Thermodynamically consistent phase field theory for multivariant martensitic transformations, which includes large strains and interface stresses, is developed. Theory is formulated in a way that some geometrically nonlinear terms do not disappear in the geometrically linear limit, which in particular allowed us to introduce the expression for the interface stresses consistent with the sharp interface approach. Namely, for the propagating nonequilibrium interface, a structural part of the interface Cauchy stresses reduces to a biaxial tension with the magnitude equal to the temperature-dependent interface energy. Additional elastic and viscous contributions to the interface stresses do not require separate constitutive equations and are determined by solution of the coupled system of phase field and mechanics equations. Ginzburg-Landau equations are derived for the evolution of the order parameters and temperature evolution equation. Boundary conditions for the order parameters include variation of the surface energy during phase transformation. Because elastic energy is defined per unit volume of unloaded (intermediate) configuration, additional contributions to the Ginzburg-Landau equations and the expression for entropy appear, which are important even for small strains. A complete system of equations for fifth- and sixth-degree polynomials in terms of the order parameters is presented in the reference and actual configurations. An analytical solution for the propagating interface and critical martensitic nucleus which includes distribution of components of interface stresses has been found for the sixth-degree polynomial. This required resolving a fundamental problem in the interface and surface science: how to define the Gibbsian dividing surface, i.e., the sharp interface equivalent to the finite-width interface. An unexpected, simple solution was found utilizing the principle of static equivalence. In fact, even two equations for determination of the

  6. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    NASA Astrophysics Data System (ADS)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  7. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  8. Using nonlinear ultrasound measurements to track thermal aging in modified 9%Cr ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Marino, Daniel; Kim, Jin-Yeon; Jacobs, Laurence J.; Ruiz, Alberto; Joo, Young-Sang

    2015-03-01

    This study investigates early thermal aging in 9%Cr ferritic martensitic (FM) steel, which is caused by the formation of second phases during high temperature exposure. This study employs a recently developed nonlinear ultrasonic technique to explore the sensitivity of the nonlinearity parameter. Experimental results show that the nonlinearity parameter is sensitive to certain changes in material's properties such as thermal embrittlement and hardness changes; therefore, it can be used as an indicator of the thermal damage. The specimens investigated are heat treated for different holding times ranging from 200h to 3000h at 650°C. Nonlinear ultrasonic experiments are conducted for each specimen using a wedge transducer to generate and an air-coupled transducer to detect Raleigh surface waves. The amplitudes of the first and second order harmonics are measured at different propagation distances and these amplitudes are used to obtain the relative nonlinearity parameter for each specimen with a different holding time. The nonlinear ultrasonic results are compared with independent mechanical measurements and metallographic images. This research proposes the nonlinear ultrasonic technique as a nondestructive evaluation tool not only to detect thermal damage in early stages, and also to qualitatively assess the stage of thermal damage.

  9. Charpy impact tests on martensitic/ferritic steels after irradiation in SINQ target-3

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Marmy, Pierre

    2005-08-01

    Charpy impact tests were performed on martensitic/ferritic (MF) steels T91, F82H, Optifer-V and Optimax-A/-C irradiated in SINQ Target-3 up to 7.5 dpa and 500 appm He in a temperature range of 120-195 °C. Results demonstrate that for all the four kinds of steels, the ductile-to-brittle transition temperature (DBTT) increases with irradiation dose. The difference in the DBTT shifts (ΔDBTT) of the different steels is not significant after irradiation in the SINQ target. The ΔDBTT data from the previous small punch (Δ DBTT SP) and the present Charpy impact (ΔDBTT CVN) tests can be correlated with the expression: Δ DBTT SP = 0.4ΔDBTT CVN. All the ΔDBTT data fall into a linear band when they are plotted versus helium concentration. The results indicate that helium effects on the embrittlement of MF steels are significant, particularly at higher concentrations. It suggests that MF steels may not be very suitable for applications at low temperatures in spallation irradiation environments where helium production is high.

  10. The microstructural stability and mechanical properties of two low activation martensitic steels

    SciTech Connect

    Victoria, M.; Marmy, P.; Batawi, E.; Peters, J.; Briguet, C.; Rezai-Aria, F.; Gavillet, D.

    1996-12-31

    A desirable feature of future magnetically confined fusion reactors is the prospect of producing low level radioactive waste. In order to minimize the volume of radioactive material, in particular from the first wall and blanket structures, reduced long term activation alloys are being developed. Here, a low activation composition of a martensitic 9% Cr steel has been studied, based on the DIN (Deutsches Inst. fuer Normung) 1.4914 composition (MANET) but replacing Ni, Mo and Nb by the low activation elements W, V and Ta. Two casts were produced from high purity components, in which the effects of controlled additions of Mn (0.58 and 0.055 wt. %) and N (7 and 290 wt. ppm) were studied, so that the final compositions resulted in one cast with high Mn and low N (steel A) and the other with the opposite conditions (steel B). The two steels were evaluated in terms of structural stability and mechanical properties under tensile, fatigue and fracture toughness tests. It has been found that both alloys have a DBTT below room temperature, which in the case of the steel A is 70 K below that of MANET. Although the tensile strength is somewhat below that of the parent steel, both steels have longer fatigue life.

  11. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Chen, Shenghu; Rong, Lijian

    2015-04-01

    The effect of Si in the range of 0.05-0.77 wt.% on the microstructure, tensile properties and impact toughness of reduced activation ferritic/martensitic (RAFM) steels has been investigated. An increase in Si content affected the prior austenite grain size resulting in an increase in the tensile strength at room temperature. The tensile strength of steels tested above 773 K did not change significantly with the addition of Si, which was due to the diminished carbide hardening effect and boundary strengthening effect. Detailed fractographic analysis revealed that tear fractures occurred in the samples tensile tested at room temperature, while cup and cone fractures were found in samples tensile tested at temperatures above 773 K, which were induced by the easing of dislocation pile-ups. The ductile-to-brittle transition temperature (DBTT) decreased when the Si content increased to 0.22 wt.%. However, the DBTT increased when the Si content reached 0.77 wt.% and this was due to the precipitation of Laves phase. The RAFM steel with approximately 0.22 wt.% Si content was found to possess an optimized combination of microstructure, tensile properties and impact toughness.

  12. Distribution of C Cr associates and mechanical stability of Cr martensitic steels

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Montanari, R.; Tata, M. E.

    1998-10-01

    Structural and mechanical stability of two martensitic steels with different Cr content (MANET and modified F82H) has been studied by means of internal friction (IF) and dynamic modulus ( Md) measurements, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) observations with EDS microanalysis and mechanical tests (hardness, Charpy). Following thermal treatments at 700°C, MANET samples cooled from the austenitic field at a rate of 150°C/min, exhibit Cr segregation both inside the grains and in the zones near grain boundaries. The Cr segregation induces internal stresses, which influence the mechanical properties, in particular the fracture mode, ductile-brittle transition temperature (DBTT) and upper shelf energy (USE). The material is not stable: DBTT changes depending on the time of the treatment and after 20 h at 700°C a mixed fracture mode (quasi-cleavage plus intercrystalline) is observed. Cr segregation is very weak in modified F82H steel submitted to the same treatments and a greater mechanical stability has been observed. The different behaviour of MANET and modified F82H is discussed on the basis of IF and Md results, which show that the stability of the distribution of C-Cr associates in as-quenched materials is a factor of great importance to avoid the Cr segregation.

  13. Microstructure property analysis of HFIR-irradiated reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Tanigawa, H.; Hashimoto, N.; Sakasegawa, H.; Klueh, R. L.; Sokolov, M. A.; Shiba, K.; Jitsukawa, S.; Kohyama, A.

    2004-08-01

    The effects of irradiation on the Charpy impact properties of reduced-activation ferritic/martensitic steels were investigated on a microstructural basis. It was previously reported that the ductile-brittle transition temperature (DBTT) of F82H-IEA and its heat treatment variant increased by about 130 K after irradiation at 573 K up to 5 dpa. Moreover, the shifts in ORNL9Cr-2WVTa and JLF-1 steels were much smaller, and the differences could not be interpreted as an effect of irradiation hardening. The precipitation behavior of the irradiated steels was examined by weight analysis and X-ray diffraction analysis on extraction residues, and SEM/EDS analysis was performed on extraction replica samples and fracture surfaces. These analyses suggested that the difference in the extent of DBTT shift could be explained by (1) smaller irradiation hardening at low test temperatures caused by irradiation-induced lath structure recovery (in JLF-1), and (2) the fracture stress increase caused by the irradiation-induced over-solution of Ta (in ORNL9Cr-2WVTa).

  14. A review of some effects of helium on charpy impact properties of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.; Hankin, G. L.; Hamilton, M. L.

    1998-10-01

    To evaluate the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of earlier tests performed by other researchers on specimens irradiated in reactors with very different neutron spectra, and evaluation of isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400°C to 100 dpa and 1000 appm He will result in a ductile-to-brittle transition temperature (DBTT) shift of over 500°C. However, it can be shown that the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in High Flux Isotope Reactor (HFIR). The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  15. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-02-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  16. Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR

    SciTech Connect

    Yamamoto, Takuya; Odette, George R.; Miao, Pifeng; Edwards, Danny J.; Kurtz, Richard J.

    2009-04-30

    Microstructural evolutions in tempered martensitic steels (TMS) under neutron-irradiation, at fusion relevant He/dpa ratios and dpa rates, were characterized using a novel in situ He-implanter technique. F82H-mod3 was irradiated at 500 C in HFIR to a nominal 9 dpa and 190 or 380 appm He in both in the as-tempered (AT) and 20% cold-worked (CW) conditions. In all cases, a high number density of 1-2 nm He-bubbles were observed, along with fewer but larger 10 nm void-like faceted cavities. The He-bubbles form preferentially on dislocations and various interfaces. A slightly larger number of smaller He bubbles were observed in the CW condition. The lower He/dpa ratio produced slightly smaller and fewer He-bubbles. Comparisons of these observations to the results in nano-structured ferritic alloy (NFA) MA957 provide additional evidence that TMS may be susceptible to He-embrittlement as well as void swelling at fusion relevant He concentrations, while NFA are much more resistant to these degradation phenomena.

  17. Neodymium-rich precipitate phases in a high-chromium ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Zhou, Xiaoling; Shang, Zhongxia

    2016-05-01

    Neodymium being considered as nitride forming element has been used in a design of advanced ferritic/martensitic (FM) steels for fossil fired power plants at service temperatures of 630 °C to 650 °C to effectively improve the creep strength of the steels. To fully understand the characteristics of neodymium precipitates in high-Cr FM steels, precipitate phases in an 11Cr FM steel with 0.03 wt% addition of Nd have been investigated by transmission electron microscopy. Three neodymium phases with a face-centered cubic crystal structure and different composition were observed in the steel. They consisted of neodymium carbonitride with an average lattice parameter of 1.0836 nm, Nd-rich carbonitride mainly containing Mn, and Nd-rich MN nitride mainly containing Mn and Co. Other three Nd-rich and Nd-containing phases, which appear to be Nd-Co-Cr/Nd-rich intermetallic compounds and Cr-Fe-rich nitride containing Nd, were also detected in the steel. Nd-relevant precipitates were found to be minor phases compared with M23C6 and Nb/V/Ta-rich MX phases in the steel. The content of Nd in other precipitate phases was very low. Most of added Nd is considered to be present as solid solution in the matrix of the steel.

  18. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  19. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  20. Thermal Stability Study of Ultrafine Grained 304L Stainless Steel Produced by Martensitic Process

    NASA Astrophysics Data System (ADS)

    Sabooni, S.; Karimzadeh, F.; Enayati, M. H.

    2014-05-01

    An ultrafine grain 304L stainless steel with average grain size of about 650 nm was produced by martensitic process. 10 mm as-received sheets were 80% cold rolled in the temperature of -15 °C and then annealed at 700 °C for 300 min to obtain ultrafine grained microstructure. The results showed that the ultrafine grained 304L steel has yield strength of 720 MPa, tensile strength of about 920 MPa, and total elongation of 47% which is about twice that of coarse grain structure. The effect of annealing temperature (750-900 °C) on the grain growth kinetics was modeled by isothermal kinetics equation which resulted in the grain growth exponent ( n) and activation energy for grain growth of 4.8 and 455 KJ/mol, respectively. This activation energy was also compared with those for other austenitic steels to better understanding of the nature of grain growth and atoms mobility during annealing. It was found that activation energy for grain growth is about twice higher than self-diffusion activation energy of austenite that is related to the Zener pinning effects of the second phase particles.

  1. Precipitate phases in normalized and tempered ferritic/martensitic steel P92

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Liu, Huan; Shang, Zhongxia; Xu, Zhiqiang

    2015-10-01

    Ferritic/martensitic steel P92 is a promising candidate for cladding and duct applications in Sodium-Cooled Fast Reactor. The precipitate phases of the P92 steel normalized at 1323 K (1050 °C) for 30 min and tempered at 1038 K (765 °C) for 1 h have been investigated using transmission electron microscopes. Four types of phases consisting of M23C6, MX, M2X and sigma-FeCr were identified in the steel. MX phases consist of Nb-rich M(C,N) carbonitride, Nb-rich MC carbide, V-rich M(C,N) carbonitride, V-rich MC carbide, V-rich MN nitride, and complex MC carbides with Nb-rich MC core and V-rich MC wings. M2X phases consist of Cr-rich M2(C,N) carbonitride, Cr-rich M2C carbide and M2N nitride. Sigma-FeCr has a simple tetragonal lattice and a typical chemical formula of Fe0.45Cr0.45W0.1. M23C6 and MX are the dominant phases, while the sigma-FeCr has the lowest content. The formation of sigma-FeCr and M2X phases in the steel is also discussed.

  2. Microstructural analysis of ferritic-martensitic steels irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Rowcliffe, A.F.; Wakai, E.

    1998-09-01

    Disk specimens of ferritic-martensitic steel, HT9 and F82H, irradiated to damage levels of {approximately}3 dpa at irradiation temperatures of either {approximately}90 C or {approximately}250 C have been investigated by using transmission electron microscopy. Before irradiation, tempered HT9 contained only M{sub 23}C{sub 6} carbide. Irradiation at 90 C and 250 C induced a dislocation loop density of 1 {times} 10{sup 22} m{sup {minus}3} and 8 {times} 10{sup 21} m{sup {minus}3}, respectively. in the HT9 irradiated at 250 C, a radiation-induced phase, tentatively identified as {alpha}{prime}, was observed with a number density of less than 1 {times} 10{sup 20} m{sup {minus}3}. On the other hand, the tempered F82H contained M{sub 23}C{sub 6} and a few MC carbides; irradiation at 250 C to 3 dpa caused minor changes in these precipitates and induced a dislocation loop density of 2 {times} 10{sup 22} m{sup {minus}3}. Difference in the radiation-induced phase and the loop microstructure may be related to differences in the post-yield deformation behavior of the two steels.

  3. High-strength economically alloyed corrosion-resistant steels with the structure of nitrogen martensite

    NASA Astrophysics Data System (ADS)

    Bannykh, O.; Blinov, V.; Lukin, E.

    2016-04-01

    The use of nitrogen as the main alloying element allowing one both to increase the corrosion resistance and mechanical properties of steels and to improve their processability is a new trend in physical metallurgy of high-strength corrosion resistant steels. The principles of alloying, which are developed for high-nitrogen steel in IMET RAS, ensure the formation of the structure, which contains predetermined amounts of martensite (70-80%) and austenite (20-30%) and is free from δ-ferrite, σ-phase, and Cr23C6 carbide. These principles were used as the base for the creation of new high-strength corrosion-resistant weldable and deformable 0Kh16AN5B, 06Kh16AN4FD, 08Kh14AN4MDB, 09Kh16AN3MF, 27Kh15AN3MD2, 40Kh13AN3M2, and 19Kh14AMB steels, which are operative at temperatures ranging from - 70 to 400°C. The developed nitrogen-containing steels compared with similar carbon steels are characterized by a higher resistance to pitting and crevice corrosion and are resistant to stress corrosion cracking. The new steels successfully passed trial tests as heavy duty articles.

  4. Corrosion behaviour of aluminized martensitic and austenitic steels in liquid Pb-Bi

    NASA Astrophysics Data System (ADS)

    Deloffre, Ph.; Balbaud-Célérier, F.; Terlain, A.

    2004-11-01

    The Pb-Bi liquid alloy is under consideration as a spallation target material in the hybrid systems due to its suitable nuclear and physical properties. In order to limit the risks of corrosion of the structural elements in contact with the liquid Pb-Bi, protection by means of aluminized coatings was investigated for 316L austenitic steel and T91 martensitic steel. For both steels, no damages were observed after immersions in static Pb-Bi up to 500 °C for low oxygen concentrations and long durations. However, at 600 °C in the same conditions, a non-uniform degradation of the coatings was observed. Only coated 316L was tested in dynamic conditions. The results were generally satisfying for temperatures from 350 to 600 °C and for fluid velocities up to 2.3 m s -1. However, in both the IPPE loops and the CICLAD device, some localized damage of the coatings, attributed to erosion, was observed.

  5. Microstructure control for high strength 9Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Tan, L.; Hoelzer, D. T.; Busby, J. T.; Sokolov, M. A.; Klueh, R. L.

    2012-03-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literature data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 °C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.

  6. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2000-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  7. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2001-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  8. The development of ferritic-martensitic steels with reduced long-term activation

    NASA Astrophysics Data System (ADS)

    Ehrlich, K.; Kelzenberg, S.; Röhrig, H.-D.; Schäfer, L.; Schirra, M.

    1994-09-01

    Ferritic-martensitic 9-12% CrMoVNb steels of MANET type possess a number of advantageous properties for fusion reactor application. Their optimization has led to improved creep and fracture-toughness properties. New 9-10% CrWVTa alloys have been developed by KfK/IMF in collaboration with the SAARSTAHL GmbH which have a reduced long-term activation and show in addition superior fracture toughness properties. The calculation of dose rate and other radiological parameters with the presently available FISPACT/EAF codes, extended by KfK files for sequential reactions has shown that the long-term dose-rate in these alloys is governed by the remaining 'impurity level' of Nb and the alloying elements W and Ta. Sequential reactions — though relevant for single alloying elements like Cr, Mn, V and N — provide only a second order effect in Fe-based alloys. A challenge for the future materials development is the production of alloys with the desired narrow specification of elements and impurities, which necessitates new ways of steelmaking.

  9. Crystallography of the Delta to Alpha Martensitic Transformation in Plutonium Alloys

    SciTech Connect

    Jin, Y; Wang, Y; Khachaturyan, A; Krenn, C; Schwartz, A

    2004-07-15

    A new stress-accommodating crystallographic mechanism of the {delta} {yields} {alpha} martensitic transformation in plutonium alloys is proposed. According to this mechanism, an orientation variant of the {alpha} phase is produced by a combination of a homogeneous strain and shuffling of the alternating close-packed (111){sub {delta}} planes. It is shown that the formation of stable transformation-induced twins whose twin plane orientations and twin shear directions do not depend on the small variations of the crystal lattice parameters is the preferred stress-accommodating mode. Only these stable twins have dislocation-free twin boundaries while the twin boundaries of all others are decorated by ultra-dense distribution of partial dislocations. The theory predicts a crystal lattice rearrangement mechanism involving the (205){sub {alpha}} ((01{bar 1}){sub {delta}}) stable twins. The corresponding Invariant Plane Strain solutions, with special emphasis on two simplest shuffling modes, the single and double elementary modes, are presented and compared with the existing experimental observations. It is shown that the habit plane orientation is highly sensitive to the input values of the crystal lattice parameters and especially to the accuracy of the measured volume change in the {delta}{yields}{alpha} transformation. An analysis of these effects on the habit plane orientation and orientation relations is also presented.

  10. Current status and recent research achievements in ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  11. Void swelling in high dose ion-irradiated reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Monterrosa, Anthony M.; Zhang, Feifei; Huang, Hao; Yan, Qingzhi; Jiao, Zhijie; Was, Gary S.; Wang, Lumin

    2015-07-01

    To determine the void swelling resistance of reduced-activation ferritic-martensitic steels CNS I and CNS II at high doses, ion irradiation was performed up to 188 dpa (4.6 × 1017 ion/cm2) at 460 °C using 5 MeV Fe++ ions. Helium was pre-implanted at levels of 10 and 100 appm at room temperature to investigate the role of helium on void swelling. Commercial FM steel T91 was also irradiated in this condition and the swelling results are of included in this paper as a reference. Voids were observed in all conditions. The 9Cr CNS I samples implanted with 10 appm helium exhibited lower swelling than 9Cr T91 irradiated at the same condition. The 12Cr CNS II with 10 and 100 appm helium showed significantly lower swelling than CNS I and T91. The swelling rate for CNS I and CNS II were determined to be 0.02%/dpa and 0.003%/dpa respectively. Increasing the helium content from 10 to 100 appm shortened the incubation region and increased the void density but had no effect on the swelling rates.

  12. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    NASA Astrophysics Data System (ADS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  13. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.

    2014-12-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.

  14. Microstructural investigation, using polarized neutron scattering, of a martensitic steel for fusion reactors

    SciTech Connect

    Coppola, R.; Kampmann, R.; Staron, P.; Magnani, M.

    1998-09-18

    Small- and wide-angle polarized neutron scattering has been used to investigate the microstructure of modified martensitic steel DIN 1.4914 (MANET-type) developed as a potential candidate for the first wall of future fusion reactors. The nuclear-magnetic interference term and the comparison of the size distribution functions, obtained from the nuclear and from the magnetic scattering components, show that for quench temperatures lower than 1200 C three kinds of microstructural inhomogeneities can be identified: (a) tiny C-Cr elementary aggregates (1 nm or less in size), (b) larger (1--25 nm) Fe-carbides, (c) much larger inhomogeneities arising either from M{sub 23}C{sub 6} precipitates or from fluctuations in the Cr distribution. The scattering data are also compared with those previously obtained on the same samples from a conventional SANS instrument and the influence of the available Q-range on the accuracy of the obtained size distribution functions is discussed.

  15. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  16. Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar

    2017-03-01

    In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.

  17. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  18. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Yavari, R.; Snipes, J. S.; Ramaswami, S.; Yen, C.-F.; Cheeseman, B. A.

    2014-06-01

    An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material constitutive models for Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material. The main effort was directed toward developing reliable material constitutive models for Carpenter Custom 465 and toward improving functional relations and parameterization of the workpiece/workpiece contact-interaction models. The LFW process model is then used to predict thermo-mechanical response of Carpenter Custom 465 during LFW. Specifically, temporal evolutions and spatial distribution of temperature within, and expulsion of the workpiece material from, the weld region are examined as a function of the basic LFW process parameters, i.e., (a) contact-pressure history, (b) reciprocation frequency, and (c) reciprocation amplitude. Examination of the results obtained clearly revealed the presence of three zones within the weld, i.e., (a) Contact-interface region, (b) Thermo-mechanically affected zone, and (c) heat-affected zone. While there are no publicly available reports related to Carpenter Custom 465 LFW behavior, to allow an experiment/computation comparison, these findings are consistent with the results of our ongoing companion experimental investigation.

  19. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  20. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Dong, Ziqiang; Liu, Zhe; Li, Ming; Luo, Jing-Li; Chen, Weixing; Zheng, Wenyue; Guzonas, Dave

    2015-02-01

    Ferritic-Martensitic (F/M) steels are important candidate alloys to be used in the next generation (Generation-IV) SCWRs. In this work, two F/M steels with the same Cr content of around 12 wt.% and varied Si content from 0.6 wt.% to 2.2 wt.% were evaluated in supercritical water (SCW) at 500 °C and 25 MPa for up to 1000 h. The effect of ultrasonic shot peening on the oxidation behavior of these F/M steels have been investigated. The results showed that the oxidation was affected by the Si content as well as the surface modification. The F/M steel with low Si concentration exhibited higher corrosion resistance than that of the alloy with high Si content. Shot peening, which could modify the microstructure at the surface, showed significantly beneficial effect to improving the oxidation resistance. A thin, uniform oxide layer formed on the peened sample could be attributed to the enhanced diffusion of Cr induced by the surface modification.

  1. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  2. Incorporation of plasticity into the Landau-Ginzburg theory of martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Gröger, Roman; Lookman, Turab

    2008-03-01

    The Landau-Ginzburg theory of martensitic phase transformations has been utilized to reproduce the evolution of elastic texture in defect-free materials undergoing structural phase transformations. Generalizations of this theory to phase transformations that are accompanied by significant plastic distortions (as in U6Nb) have been little studied. We propose a simple model that demonstrates how to incorporate plasticity into the Landau-Ginzburg theory. In the presence of topological defects such as dislocations, the usual Saint Venant compatibility constraint becomes an incompatibility constraint and this is represented by a tensor field ηij. In our case, the components of ηij are expressed as gradients of the components of the Nye tensor that represent the dislocation density. The presence of dislocations induces large internal stresses in certain regions of the material, and these act as initiation sites for plastic deformation. When the external loading is applied, dislocations moving from these regions cause strain hardening that is detectable in experimental uniaxial measurements. This model serves as a starting point for further development of the framework of three-dimensional rate-independent theory of plasticity within the Landau-Ginzburg formalism.

  3. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-11-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs-1, high temperature rise rate of 600 Kμs-1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength.

  4. Deformation twinning in Ni–Mn–Ga micropillars with 10M martensite

    PubMed Central

    Reinhold, M.; Kiener, D.; Knowlton, W. B.; Dehm, G.; Müllner, P.

    2009-01-01

    The maximum actuation frequency of magnetic shape-memory alloys (MSMAs) significantly increases with decreasing size of the transducer making MSMAs interesting candidates for small scale actuator applications. To study the mechanical properties of Ni–Mn–Ga single crystals on small length scales, two single-domain micropillars with dimensions of 10×15×30 μm3 were fabricated from a Ni–Mn–Ga monocrystal using dual beam focused ion beam machining. The pillars were oriented such that the crystallographic c direction was perpendicular to the loading direction. The pillars were compressed to maximum stresses of 350 and 50 MPa, respectively. Atomic force microscopy and magnetic force microscopy were performed prior to fabrication of the pillars and following the deformation experiments. Both micropillars were deformed by twinning as evidenced by the stress-strain curve. For one pillar, a permanent deformation of 3.6% was observed and ac twins (10M martensite) were identified after unloading. For the other pillar, only 0.7% remained upon unloading. No twins were found in this pillar after unloading. The recovery of deformation is discussed in the light of pseudoelastic twinning and twin-substrate interaction. The twinning stress was higher than in similar macroscopic material. However, further studies are needed to substantiate a size effect. PMID:19859577

  5. Interdiffusion Behavior of Al-Rich Oxidation Resistant Coatings on Ferritic-Martensitic Alloys

    SciTech Connect

    Velraj, S.; Zhang, Ying; Hawkins, W. E.; Pint, Bruce A.

    2012-06-21

    We investigated interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic–martensitic alloys in the temperature range of 650–700°C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H2O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. Moreover, the model was also applied to predict coating lifetime at 650–700°C based on a minimum Al content (Cb) required at the coating surface to re-form protective oxide scale. In addition to a Cb value established from the failure of a thin CVD coating at 700°C, values reported for slurry aluminide coatings were also included in lifetime predictions.

  6. Formation and Oxidation Performance of Low-Temperature Pack Aluminide Coatings on Ferritic-Martensitic Steels

    SciTech Connect

    Bates, Brian; Wang, Y. Q.; Zhang, Ying; Pint, Bruce A

    2009-01-01

    A pack cementation process was developed to coat commercial 9% Cr ferritic-martensitic steel T91 at temperatures below its normal tempering temperature to avoid any potential detrimental effect on the mechanical properties of the coated alloy. In order to prevent the formation of Fe{sub 2}Al{sub 5} coatings, the Al activity in the pack cementation process was reduced by substituting the pure Al masteralloy with binary Cr-Al masteralloys containing either 15 or 25 wt.% Al. When the Cr-25Al masteralloy was used, a duplex coating was formed at 700 C, consisting of a thin Fe{sub 2}Al{sub 5} outer layer and an inner layer of FeAl. With the Cr-15Al masteralloy, an FeAl coating of {approx} 12 {micro}m thick was achieved at 700 C. The pack aluminide coatings fabricated at 700 C are being evaluated in air + 10 vol.% H{sub 2}O at 650 C and 700 C to determine their long-term oxidation performance.

  7. In-beam fatigue of a ferritic-martensitic steel. First results

    NASA Astrophysics Data System (ADS)

    Marmy, P.

    1994-09-01

    Due to its pulsed operation mode, a fusion device will have to sustain thermal stresses and at the same time be exposed to a flux of 14 MeV neutrons. In order to simulate this irradiation condition, a new irradiation device has been developed, in which the specimen can be stress and strain-controlled during the irradiation. For the simulation of the fusion neutrons, a 590 MeV proton beam is used. This type of particle produces from spallation reactions the displacement damage and the helium typical of fusion neutrons in the material. The influence of the in situ deformation on the low cycle fatigue of a 12% Cr ferritic-martensitic steel (MANET II) has been investigated. The results are compared with results from non-irradiated specimens and from specimens tested after irradiation to the same end-of-life fluence. The effects of the different conditions are reported for a temperature TTest = TIrr = 573 K and a total imposed strain of 0.7%.

  8. High Strain Fatigue Properties of the F82H Ferritic-Martensitic Steel under Proton Irradiation.

    SciTech Connect

    Marmy, P; Oliver, Brian M. )

    2003-05-15

    During the up and down cycles of a fusion reactor, the first wall is exposed concomitantly to a flux of energetic neutrons that generates radiation defects and to a neutron thermal flux that induces thermal stresses. The resulting strains may exceed the elastic limit and induce a plastic deformation in the material. A similar situation occurs in the window of a spallation liquid source target and results in the same type of damage. This particular loading has been simulated in F82H martensitic ferritic steel, using a device allowing a fatigue test to be carried out during irradiation with 590 MeV protons. All fatigue tests were carried out at 300?C, in a strain controlled test at strain levels around 0.8%. Two different signals have been used: a fully symmetrical triangle wave signal (R=-1) and a triangle ramp with 2 min tension holds. The fatigue was investigated under three different conditions: unirradiated , irradiated and post irradiation tested, and finally in beam tested. The main result is that the in beam tested specimens have the lowest life as compared to the post irradiation tested specimens and unirradiated specimens. Hydrogen is suspected to be the main contributor to the observed embrittlement.

  9. High strain fatigue properties of F82H ferritic martensitic steel under proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Oliver, B. M.

    2003-05-01

    During the up and down cycles of a fusion reactor, the first wall is exposed concomitantly to a flux of energetic neutrons that generates radiation defects and to a thermal flux that induces thermal stresses. The resulting strains may exceed the elastic limit and induce plastic deformation in the material. A similar situation occurs in the window of a spallation liquid source target and results in the same type of damage. This particular loading has been simulated in F82H ferritic-martensitic steel, using a device allowing a fatigue test to be carried out during irradiation with 590 MeV protons. All fatigue tests were carried out in a strain controlled test at strain levels around 0.8% and at 300 °C. Two different signals have been used: a fully symmetrical triangle wave signal ( R=-1) and a triangle ramp with 2 min tension holds. The fatigue was investigated under three different conditions: unirradiated, irradiated and post-irradiation tested, and finally in-beam tested. The main result is that the in-beam tested specimens have the lowest life as compared to the post-irradiation tested specimen and unirradiated specimen. Hydrogen is suspected to be the main contributor to the observed embrittlement.

  10. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    PubMed Central

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-01-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs−1, high temperature rise rate of 600 Kμs−1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength. PMID:27892460

  11. Effect of Partitioning Treatment on the Mechanical Property of Fe-0.19C-1.47Mn-1.50Si Steel with Refined Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Yang, Jilan; Guo, Zhenghong; Chen, Shipu; Rong, Yonghua; Chen, Nailu

    2016-03-01

    In order to understand the effect of microstructural features on the mechanical property, quenching and partitioning (Q&P) and quenching and tempering (Q&T) treatments were carried out on a cold-rolled low-carbon Fe-0.19C-1.47Mn-1.50Si steel sheet. It has been shown that because of the rolling in advance, the grain size of prior austenite was dramatically reduced, which resulted in a great decrease in martensite packet/block size and an increase in dislocation density in martensite in the as-quenched state. However, there was no obvious change in average lath size. Different from Q&T treatment, Q&P not only stabilized a large amount of retained austenite, but also led to a serious carbon depletion in martensite as revealed by X-ray diffraction and three-dimensional-atom-probe analyses. In Q&T and Q&P samples, refining martensitic microstructure improves both the strength and impact toughness markedly but does not affect the elongation very much. Compared with Q&T sample, Q&P one is softer due to the existence of considerable amount of retained austenite and less carbon content in martensite, i.e., it has higher elongation and impact toughness but lower strength. Analyses indicated that the strength loss caused by carbon depletion in martensite is critical which has even completely covered up the strengthening effect of microstructural refinement. On the other hand, the carbon depletion in martensite is more essential in improving impact toughness, comparing the role of microstructural refinement and the existence of more retained austenite. Through a combination of rolling and Q&P processes, the refined Q&P microstructure was achieved for a greatly improved product of strength and elongation and a much lower ductile-to-brittle transition temperature.

  12. The fluorescence properties of the phenylated fullerenes C 70Ph 4, C 70Ph 6, C 70Ph 8, and C 70Ph 10 in room temperature solutions

    NASA Astrophysics Data System (ADS)

    Schwell, Martin; Gustavsson, Thomas; Marguet, Sylvie; Vaissière, Benoı̂t de La; Wachter, Norbert K.; Birkett, Paul R.; Mialocq, Jean-Claude; Leach, Sydney

    2001-12-01

    The emission and excitation spectra of four phenylated [70] fullerenes, C 70Ph 4, C 70Ph 6, C 70Ph 8, and C 70Ph 10 in cyclohexane and toluene solutions have been measured. The fluorescence spectra and related excited state properties are found to depend strongly on the number of attached phenyl groups, but with no systematic trends. Quantum yields and fluorescence lifetimes were measured for C 70Ph 6, C 70Ph 8, and C 70Ph 10, allowing the determination of S1 → S0 radiative transition rates kR. It is found that kR for C 70Ph 10 is about six times larger than for the other compounds. This is consistent with measured absorbtivities for these compounds. The particular character of C 70Ph 10 is also manifested by its higher intersystem crossing rate kISC.

  13. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  14. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    NASA Astrophysics Data System (ADS)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  15. A scanning Hall probe imaging study of the field induced martensite-austenite phase transition in Ni50Mn34In16 alloy.

    PubMed

    Sharma, V K; Moore, J D; Chattopadhyay, M K; Morrison, Kelly; Cohen, L F; Roy, S B

    2010-01-13

    The martensite to austenite phase transition in the off-stoichiometric Heusler alloy Ni(50)Mn(34)In(16) can be induced both by temperature change and by application of a magnetic field. We have used scanning Hall probe imaging to study the magnetic field induced martensite-austenite phase transition. The study provides clear visual evidence of the coexistence of the martensite and austenite phases across this field induced transition in both increasing and decreasing magnetic fields. Clear evidence of thermomagnetic history effects associated with the martensite-austenite phase transition is also obtained. Quantitative analysis of the magnetic field dependence of the volume fraction of the austenite phase in Ni(50)Mn(34)In(16) shows evidence of a nucleation and growth mechanism across the field induced martensite-austenite phase transition. The local M-H loops constructed from the Hall images indicate the presence of a landscape of the critical magnetic field (for the field induced transition) distributed over the sample volume and thus confirm the disorder influenced nature of this first-order magnetic phase transition.

  16. The pH of antiseptic cleansers

    PubMed Central

    Kulthanan, Kanokvalai; Varothai, Supenya; Nuchkull, Piyavadee

    2014-01-01

    Background Daily bathing with antiseptic cleansers are proposed by some physicians as an adjunctive management of atopic dermatitis (AD). As atopic skin is sensitive, selection of cleansing products becomes a topic of concern. Objective Our purpose is to evaluate the pH of various antiseptic body cleansers to give an overview for recommendation to patients with AD. Methods Commonly bar and liquid cleansers consisted of antiseptic agents were measured for pH using pH meter and pH-indicator strips. For comparison, mild cleansers and general body cleansers were also measured. Results All cleansing bars had pH 9.8-11.3 except syndet bar that had neutral pH. For liquid cleansers, three cleansing agents had pH close to pH of normal skin, one of antiseptic cleansers, one of mild cleansers and another one of general cleansers. The rest of antiseptic cleansers had pH 8.9-9.6 while mild cleansers had pH 6.9-7.5. Syndet liquid had pH 7 and general liquid cleansers had pH 9.6. Conclusion The pH of cleanser depends on composition of that cleanser. Adding antiseptic agents are not the only factor determining variation of pH. Moreover, benefit of antiseptic properties should be considered especially in cases of infected skin lesions in the selection of proper cleansers for patients with AD. PMID:24527408

  17. Microstructure and martensitic transformation in Si-coated TiNi powders prepared by ball milling

    SciTech Connect

    Kim, Jae-hyun; Cho, Gyu-bong; Im, Yeon-min; Chun, Byong-sun; Kim, Yeon-wook; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Amorphous Si-coated TiNi powders were prepared successfully by ball milling. • Ti{sub 4}Ni{sub 4}Si{sub 7} was formed at the interface between Si and TiNi after annealing. • Si-coated Ti–Ni powders displayed the R phase after annealing. - Abstract: Si was coated on the surface of Ti–49Ni (at%) alloy powders by ball milling in order to improve the electrochemical properties of the Si electrodes of secondary Li ion batteries and then the microstructure and martensitic transformation behavior were investigated by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Ti–Ni powders coated with Si were fabricated successfully by ball milling. As-milled powders consisted of highly deformed Ti–Ni powders with the B2 phase and amorphous Si layers. The thickness of the Si layer coated on the surface of the Ti–Ni powders increased from 3–5 μm to 10–15 μm by extending the milling time from 3 h to 48 h. However, severe contamination from the grinding media, ZrO{sub 2} occurred when the ball milling time was as long as 48 h. By heating as-milled powders to various temperatures in the range of 673–873 K, the highly deformed Ti–Ni powders were recovered and Ti{sub 4}Ni{sub 4}Si{sub 7} was formed. Two-stage B2–R–B19′ transformation occurred when as-milled Si-coated Ti–49Ni alloy powders were heated to temperatures below 873 K, above this temperature one-stage B2–B19′ transformation occurred.

  18. Influence of structural-phase state of ferritic-martensitic steels on the helium porosity development

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Staltsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu; Dzhumaev, P. S.; Emelyanova, O. V.; Drozhzhina, M. V.; Manukovsky, K. V.; Nikolaeva, I. D.

    2016-04-01

    Transmission electron microscopy (TEM) has been used to study the effect of the initial structural-phase state (SPhS) of ferritic-martensitic steels EK-181, EP-450 and EP-450- ODS (with 0.5 wt.% nanoparticles of Y2O3) on the of helium porosity formation and gas swelling. Different SPhS of steel EK-181 was produced by water quenching, annealing, normalizing plus tempered, intensive plastic deformation by torsion (HPDT). Irradiation was carried out by He+-40 keV ions at 923 K up to fluence of 5-1020 He+/m2. It is shown that the water quenching causes the formation of uniformly distributed small bubbles (d¯ ∼ 2 nm) of the highest density (ρ∼ 1025 m-3). After normalization followed by tempering as well as after annealing bubbles distribution is highly non-uniform both by volume and in size. Very large faceted bubbles (pre-equilibrium gas-filled voids) are formed in ferrite grains resulting in high level of gas swelling of the irradiated layer with S = 4,9 ± 1,2 and 3.8 ± 0.9% respectively. Nano- and microcrystalline structure created by HPDT completely degenerate at irradiation temperature and ion irradiation formed bubbles of the same parameters as in the annealed steel. Bubbles formed in EP-450-ODS steel are smaller in size and density, which led to a decrease of helium swelling by 4 times (S = 0.8 ± 0.2%) as compared to the swelling of the matrix steel EP-450 (S = 3.1 ± 0.7%).

  19. Effect of Long-Term Service on Microstructure and Mechanical Properties of Martensitic 9% Cr Steel

    NASA Astrophysics Data System (ADS)

    Golański, Grzegorz; Zielińska-Lipiec, Anna; Zieliński, Adam; Sroka, Marek

    2017-02-01

    The paper presents the results of research on the X10CrMoVNbN9-1 (T91) steel after long-term service. The material for testing was taken from a pipe section of a boiler superheater coil serviced for around 105,000 h at the temperature of 540 °C, at the pressure of 12.5 MPa. A quantitative analysis including the measurement of mean diameter of subgrains and precipitates as well as the density of dislocations of the examined steel was performed by means of TEM. The microscopic tests of T91 steel were complemented with the results of tests on mechanical properties which included also the short creep tests. After service, the investigated steel was characterized by a retained lath microstructure of tempered martensite with fine subgrain and quite large density of dislocations as well as numerous precipitates. In the microstructure, apart from the particles of M23C6 and MX (VX, NbC, V-wings), the precipitates of Laves phase and single particles of Z phase were revealed. It has been shown that the extent of degradation of the T91 steel microstructure was minor, which resulted from its low temperature of service. Performed tests of mechanical properties showed that these properties fulfilled the minimum requirements for this steel in the as-received condition. A favorable influence of fine precipitates of Laves phase on mechanical properties was observed. Moreover, an insignificant influence of single precipitates of Z phase on the creep resistance of the examined steel was stated.

  20. Martensitic transformation behaviors of rapidly solidified Ti–Ni–Mo powders

    SciTech Connect

    Kim, Yeon-wook

    2012-10-15

    For the fabrication of bulk near-net-shape shape memory alloys and porous metallic biomaterials, consolidation of Ti–Ni–Mo alloy powders is more useful than that of elemental powders of Ti, Ni and Mo. Ti{sub 50}Ni{sub 49.9}Mo{sub 0.1} shape memory alloy powders were prepared by gas atomization, and transformation temperatures and microstructures of those powders were investigated as a function of powder size. XRD analysis showed that the B2–R–B19 martensitic transformation occurred in powders smaller than 150 μm. According to DSC analysis of the as-atomized powders, the B2–R transformation temperature (T{sub R}) of the 25–50 μm powders was 18.4 °C. The T{sub R} decreased with increasing powder size, however, the difference in T{sub R} between 25–50 μm powders and 100–150 μm powders is only 1 °C. Evaluation of powder microstructures was based on SEM examination of the surface and the polished and etched powder cross sections and the typical images of the rapidly solidified powders showed cellular morphology. Porous cylindrical foams of 10 mm diameter and 1.5 mm length were fabricated by spark plasma sintering (SPS) at 800 °C and 5 MPa. Finally these porous TiNi alloy samples are heat-treated for 1 h at 850 °C, and then quenched in ice water. The bulk samples have 23% porosity and 4.6 g/cm{sup 3} density and their T{sub R} is 17.8 °C.