Science.gov

Sample records for 17-allylamino-17-demethoxygeldanamycin 17-aag tanespimycin

  1. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin

    SciTech Connect

    Noguchi, Miho; Yu, Dong; Hirayama, Ryoichi; Ninomiya, Yasuharu; Sekine, Emiko; Kubota, Nobuo; Ando, Koichi; Okayasu, Ryuichi . E-mail: rokayasu@nirs.go.jp

    2006-12-22

    In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing.

  2. A cremophor-free formulation for tanespimycin (17-AAG) using PEO-b-PDLLA micelles: characterization and pharmacokinetics in rats.

    PubMed

    Xiong, May P; Yáñez, Jaime A; Kwon, Glen S; Davies, Neal M; Forrest, M Laird

    2009-04-01

    Tanespimycin (17-allylamino-17-demethoxygeldanamycin or 17-AAG) is a promising heat shock protein 90 inhibitor currently undergoing clinical trials for the treatment of cancer. Despite its selective mechanism of action on cancer cells, 17-AAG faces challenging issues due to its poor aqueous solubility, requiring formulation with Cremophor EL (CrEL) or ethanol (EtOH). Therefore, a CrEL-free formulation of 17-AAG was prepared using amphiphilic diblock micelles of poly(ethylene oxide)-b-poly(D,L-lactide) (PEO-b-PDLLA). Dynamic light scattering revealed PEO-b-PDLLA (12:6 kDa) micelles with average sizes of 257 nm and critical micelle concentrations of 350 nM, solubilizing up to 1.5 mg/mL of 17-AAG. The area under the curve (AUC) of PEO-b-PDLLA micelles was 1.3-fold that of the standard formulation. The renal clearance (CL(renal)) increased and the hepatic clearance (CL(hepatic)) decreased with the micelle formulation, as compared to the standard vehicle. The micellar formulation showed a 1.3-fold increase in the half-life (t(1/2)) of the drug in serum and 1.2-fold increase in t(1/2) of urine. As expected, because it circulated longer in the blood, we also observed a 1.7-fold increase in the volume of distribution (V(d)) with this micelle formulation compared to the standard formulation. Overall, the new formulation of 17-AAG in PEO-b-PDLLA (12:6 kDa) micelles resulted in a favorable 150-fold increase in solubility over 17-AAG alone, while retaining similar properties to the standard formulation. Our data indicates that the nanocarrier system can retain the pharmacokinetic disposition of 17-AAG without the need for toxic agents such as CrEL and EtOH.

  3. Synergistic effect of heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin and X-rays, but not carbon-ion beams, on lethality in human oral squamous cell carcinoma cells.

    PubMed

    Musha, Atsushi; Yoshida, Yukari; Takahashi, Takeo; Ando, Koichi; Funayama, Tomoo; Kobayashi, Yasuhiko; Negishi, Akihide; Yokoo, Satoshi; Nakano, Takashi

    2012-07-01

    The purpose of this study is to clarify the effect of a heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in combination with X-rays or carbon-ion beams on cell killing in human oral squamous cell carcinoma LMF4 cells. Cell survival was measured by colony formation assay. Cell-cycle distribution was analyzed by flow cytometry. Expression of DNA repair-related proteins was investigated by western blotting. The results showed 17-AAG to have synergistic effects on cell lethality with X-rays, but not with carbon-ion beams. The 17-AAG decreased G(2)/M arrest induced by X-rays, but not by carbon-ion beams. Both X-ray and carbon-ion irradiation up-regulated expression of non-homologous end-joining-associated proteins, Ku70 and Ku80, but 17-AAG inhibited only X-ray-induced up-regulation of these proteins. These results show that 17-AAG with X-rays releases G(2)/M phase arrest; cells carrying misrepaired DNA damage then move on to the G(1) phase. We demonstrate, for the first time, that the radiosensitization effect of 17-AAG is not seen with carbon-ion beams because 17-AAG does not affect these changes.

  4. 17AAG-induced internalisation of HER2-specific Affibody molecules

    PubMed Central

    Göstring, Lovisa; Lindegren, Sture; Gedda, Lars

    2016-01-01

    The geldanamycin derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) is known to induce internalisation and degradation of the otherwise internalisation-resistant human epidermal growth factor receptor 2 (HER2) receptor. In the present study, 17-AAG was used to increase internalisation of the HER2-specific Affibody molecule ABY-025. The cellular redistribution of halogen-labelled 211At-ABY-025 and radiometal-labelled 111In-ABY-025 following treatment with 17-AAG was studied. 17-AAG treatment of SKOV-3 human ovarian carcinoma and SKBR-3 human breast carcinoma cells to some extent shifted the localisation of 111In-ABY-025 from the cell surface to intracellular compartments in the two cell lines. ABY-025 labelled with the high-linear energy transfer α emitter 211At was also internalised to a higher degree; however, due to its physiological properties, this nuclide was excreted faster. The results indicate that 17-AAG may be used to facilitate cell-specific intracellular localisation of a suitable cytotoxic or radioactive agent coupled to ABY-025 in HER2-overexpressing cells. PMID:27698830

  5. 17-AAG improves cognitive process and increases heat shock protein response in a model lesion with Aβ25-35.

    PubMed

    Ortega, Laura; Calvillo, Minerva; Luna, Félix; Pérez-Severiano, Francisca; Rubio-Osornio, Moisés; Guevara, Jorge; Limón, Ilhuicamina Daniel

    2014-08-01

    Molecular chaperones, or heat shock proteins (HSP), have been implicated in numerous neurodegenerative disorders characterized by the accumulation of protein aggregates, such as Alzheimer disease. The agglomeration of insoluble structures of Aβ is thought to be responsible for neuronal death, which in turn leads to the loss of cognitive functions. Recent findings have shown that the induction of HSP decreases the level of abnormal protein aggregates, as well as demonstrating that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an analogue of geldanamycin (GA), increases Aβ clearance through the induction of molecular chaperones in cell culture. In light of this discovery that HSP overexpression can be neuroprotective, the search for a way to pharmacologically induce the overexpression of HSP and other associated chaperones may lead to a promising approach for the treatment of neurodegenerative diseases. The aim of our study was to evaluate both the effect of 17-AAG on the cognitive process and the HSP response in rats injected with Aβ25-35 into the CA1 of the hippocampus. The results show that the injection of Aβ caused a significant increase in the expression of the HSP involved in the regulation of cellular proteostasis. While the HSP did not reverse excitotoxic damage, given that experimental subjects showed learning and memory deficits, the administration of 17-AAG prior to the injection of Aβ25-35 did show an improvement in the behavioral assessment that correlated with the upregulation of HSP70 in subjects injured with Aβ. Overall, our data shows that the pharmacological induction of HSP using 17-AAG may be an alternative treatment of neurodegenerative diseases.

  6. Assaying Pharmacodynamic Endpoints with Targeted Therapy: Flavopiridol and 17AAG Induced Dephosphorylation of Histone H1.5 in Acute Myeloid Leukemia

    PubMed Central

    Wang, Liwen; Harshman, Sean W.; Liu, Shujun; Ren, Chen; Xu, Hua; Sallans, Larry; Grever, Michael; Byrd, John C.; Marcucci, Guido; Freitas, Michael A.

    2011-01-01

    Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this report we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 Acute Myeloid Leukemia (AML) cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. Liquid chromatography mass spectrometry profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin dependent kinase inhibitor, flavopiridol, and the Hsp90 inhibitor, 17AAG (17-(Allylamino)-17-demethoxygeldanamycin). In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation. PMID:21110323

  7. Assaying pharmacodynamic endpoints with targeted therapy: flavopiridol and 17AAG induced dephosphorylation of histone H1.5 in acute myeloid leukemia.

    PubMed

    Wang, Liwen; Harshman, Sean W; Liu, Shujun; Ren, Chen; Xu, Hua; Sallans, Larry; Grever, Michael; Byrd, John C; Marcucci, Guido; Freitas, Michael A

    2010-12-01

    Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this study we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 acute myeloid leukemia cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. LC MS profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin-dependent kinase inhibitor, flavopiridol and the Heat Shock Protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin. In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation.

  8. Design and Evaluation of Micellar Nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG)

    EPA Science Inventory

    17-Allyamino-17-demethoxygeldanamycin (17-AAG) is a potent anticancer agent currently undergoing phases I and II clinical trials. However, the clinical development of 17-AAG has been hindered by its poor aqueous solubility and hepatotoxicity. This study aimed to devise novel mice...

  9. Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin.

    PubMed

    Pradhan, Roshan; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Poudel, Bijay Kumar; Tak, Jin Wook; Nukolova, Natalia; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-06-05

    Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy.

  10. Low intensity focused ultrasound (LOFU) modulates unfolded protein response and sensitizes prostate cancer to 17AAG

    PubMed Central

    Saha, Subhrajit; Bhanja, Payel; Partanen, Ari; Zhang, Wei; Liu, Laibin; Tomé, Wolfgang; Guha, Chandan

    2014-01-01

    The hypoxic tumor microenvironment generates oxidative Endoplasmic Reticulum (ER) stress, resulting in protein misfolding and unfolded protein response (UPR). UPR induces several molecular chaperones including heat-shock protein 90 (HSP90), which corrects protein misfolding and improves survival of cancer cells and resistance to tumoricidal therapy although prolonged activation of UPR induces cell death. The HSP90 inhibitor, 17AAG, has shown promise against various solid tumors, including prostate cancer (PC). However, therapeutic doses of 17AAG elicit systemic toxicity. In this manuscript, we describe a new paradigm where the combination therapy of a non-ablative and non-invasive low energy focused ultrasound (LOFU) and a non-toxic, low dose 17AAG causes synthetic lethality and significant tumoricidal effects in mouse and human PC xenografts. LOFU induces ER stress and UPR in tumor cells without inducing cell death. Treatment with a non-toxic dose of 17AAG further increased ER stress in LOFU treated PC and switch UPR from a cytoprotective to an apoptotic response in tumors resulting significant induction of apoptosis and tumor growth retardation. These observations suggest that LOFU-induced ER stress makes the ultrasound-treated tumors more susceptible to chemotherapeutic agents, such as 17AAG. Thus, a novel therapy of LOFU-induced chemosensitization may be designed for locally advanced and recurrent tumors. PMID:25594042

  11. Phase I study of tanespimycin in combination with bortezomib in patients with advanced solid malignancies

    PubMed Central

    Schenk, Erin; Wahner Hendrickson, Andrea E.; Northfelt, Donald; Toft, David O.; Ames, Matthew M.; Menefee, Michael; Satele, Daniel; Qin, Rui; Erlichman, Charles

    2014-01-01

    Summary Purpose To determine the maximum tolerated dose (MTD) and characterize the dose-limiting toxicities (DLT) of tanespimycin when given in combination with bortezomib. Experimental design Phase I dose-escalating trial using a standard cohort “3+3” design performed in patients with advanced solid tumors. Patients were given tanespimycin and bortezomib twice weekly for 2 weeks in a 3 week cycle (days 1, 4, 8, 11 every 21 days). Results Seventeen patients were enrolled in this study, fifteen were evaluable for toxicity, and nine patients were evaluable for tumor response. The MTD was 250 mg/m2 of tanespimycin and 1.0 mg/m2 of bortezomib when used in combination. DLTs of abdominal pain (13%), complete atrioventricular block (7%), fatigue (7%), encephalopathy (7%), anorexia (7%), hyponatremia (7%), hypoxia (7%), and acidosis (7%) were observed. There were no objective responses. One patient had stable disease. Conclusions The recommended phase II dose for twice weekly 17-AAG and PS341 are 250 mg/m2 and 1.0 mg/m2respectively, on days 1, 4, 8 and 11 of a 21 day cycle. PMID:23543109

  12. Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles

    PubMed Central

    Han, Yingchao; He, Zhijian; Schulz, Anita; Bronich, Tatiana K.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2012-01-01

    Many effective drugs for cancer treatment are poorly water-soluble. In combination chemotherapy, needed excipients in additive formulations are often toxic and restrict their applications in clinical intervention. Here, we report on amphiphilic poly(2-oxazoline)s (POx) micelles as a promising high capacity delivery platform for multi-drug cancer chemotherapy. A variety of binary and ternary drugs combinations of paclitaxel (PTX), docetaxel (DTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), etoposide (ETO) and bortezomib (BTZ) were solubilized in defined polymeric micelles achieving unprecedented high total loading capacities of up to 50 wt.% drug per final formulation. Multi-drug loaded POx micelles showed enhanced stability in comparison to single-drug loaded micelles. Drug ratio dependent synergistic cytotoxicity of micellar ETO/17-AAG was observed in MCF-7 cancer cells and of micellar BTZ/17-AAG in MCF-7, PC3, MDA-MB-231 and HepG2 cells. PMID:22681126

  13. Topically Applied Hsp90 Blocker 17AAG Inhibits Autoantibody-Mediated Blister-Inducing Cutaneous Inflammation.

    PubMed

    Tukaj, Stefan; Bieber, Katja; Kleszczyński, Konrad; Witte, Mareike; Cames, Rebecca; Kalies, Kathrin; Zillikens, Detlef; Ludwig, Ralf J; Fischer, Tobias W; Kasperkiewicz, Michael

    2017-02-01

    Cell stress-inducible Hsp90 has been recognized as key player in mediating inflammatory responses. Although its systemic blockade was successfully used to treat autoimmune diseases in preclinical models, efficacy of a topical route of Hsp90 inhibitor administration has so far not been evaluated in chronic inflammatory and autoimmune-mediated dermatoses. Here, effects of the Hsp90 blocker 17-allylamino-demethoxygeldanamycin (17AAG) applied topically to the skin were determined in experimental inflammatory epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-induced blistering skin disease. Topical 17AAG ameliorated clinical disease severity when given before or during the occurrence of skin lesions without causing cutaneous or systemic toxicity in mice with antibody transfer- and immunization-induced EBA. In both EBA models and in the setting of locally induced inflammation, topical 17AAG treatment was associated with (i) reduced neutrophilic infiltrates, (ii) decreased NF-κB activation, (iii) lowered expression of matrix metalloproteinases and Flii, and (iv) induction of anti-inflammatory Hsp70 in the skin. Our results suggest that topical delivery of Hsp90 antagonists, offering the benefit of a reduced risk of systemic adverse effects of Hsp90 inhibition, may be useful for the control of EBA and possibly other related inflammatory skin disorders.

  14. NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG

    PubMed Central

    Kasai, Shuya; Arakawa, Nobuyuki; Okubo, Ayaka; Shigeeda, Wataru; Yasuhira, Shinji; Masuda, Tomoyuki; Akasaka, Toshihide; Shibazaki, Masahiko; Maesawa, Chihaya

    2016-01-01

    The KEAP1-NRF2 pathway regulates cellular redox homeostasis by transcriptional induction of genes associated with antioxidant synthesis and detoxification in response to oxidative stress. Previously, we reported that KEAP1 mutation elicits constitutive NRF2 activation and resistance to cisplatin (CDDP) and dacarbazine (DTIC) in human melanomas. The present study was conducted to clarify whether an HSP90 inhibitor, 17-AAG, efficiently eliminates melanoma with KEAP1 mutation, as the NRF2 target gene, NQO1, is a key enzyme in 17-AAG bioactivation. In melanoma and non-small cell lung carcinoma cell lines with or without KEAP1 mutations, NQO1 expression and 17-AAG sensitivity are inversely correlated. NQO1 is highly expressed in normal melanocytes and in several melanoma cell lines despite the presence of wild-type KEAP1, and the NQO1 expression is dependent on NRF2 activation. Because either CDDP or DTIC produces reactive oxygen species that activate NRF2, we determined whether these agents would sensitize NQO1-low melanoma cells to 17-AAG. Synergistic cytotoxicity of the 17-AAG and CDDP combination was detected in four out of five NQO1-low cell lines, but not in the cell line with KEAP1 mutation. These data indicate that 17-AAG could be a potential chemotherapeutic agent for melanoma with KEAP1 mutation or NQO1 expression. PMID:27045471

  15. Lapatinib and 17AAG reduce 89Zr-trastuzumab-F(ab')2 uptake in SKBR3 tumor xenografts.

    PubMed

    Oude Munnink, Thijs H; de Vries, Elisabeth G E; Vedelaar, Silke R; Timmer-Bosscha, Hetty; Schröder, Carolina P; Brouwers, Adrienne H; Lub-de Hooge, Marjolijn N

    2012-11-05

    Human epidermal growth factor receptor-2 (HER2) directed therapy potentially can be improved by insight in drug effects on HER2 expression. This study evaluates the effects of the EGFR/HER2 tyrosine kinase inhibitor lapatinib, the heat shock protein-90 inhibitor 17AAG, and their combination, on HER2 expression with in vivo HER2-PET imaging. Lapatinib and 17AAG effects on EGFR and HER2 membrane expression were determined in vitro using flow cytometry of human SKBR3 tumor cells. Effect of lapatinib on HER2 internalization was studied in vitro by (89)Zr-trastuzumab-F(ab')(2) internalization. For in vivo evaluation, (89)Zr-trastuzumab-F(ab')(2) μPET imaging was performed two times with a 7 day interval. Lapatinib was administered for 6 days, starting 1 day after the baseline scan. 17AAG was given 1 day before the second (89)Zr-trastuzumab-F(ab')(2) injection. Imaging data were compared with ex vivo biodistribution analysis and HER2 immunohistochemical staining. 17AAG treatment lowered EGFR expression by 41% (P = 0.016) and HER2 by 76% (P = 0.022). EGFR/HER2 downregulation by 17AAG was inhibited by lapatinib pretreatment. Lapatinib reduced internalization of (89)Zr-trastuzumab-F(ab')(2) with 25% (P = 0.0022). (89)Zr-trastuzumab-F(ab')(2) tumor to blood ratio was lowered 32% by lapatinib (P = 0.00004), 34% by 17AAG (P = 0.0022) and even 53% by the combination (P = 0.011). Lapatinib inhibits HER2 internalization and 17AAG lowers HER2 membrane expression. Both drugs reduce (89)Zr-trastuzumab-F(ab')(2) tumor uptake. Based on our findings, supported by previous preclinical data indicating the antitumor potency of lapatinib in combination with HSP90 inhibition, combination of these drugs deserves further investigation.

  16. Synthesis of Reblastatin, Autolytimycin, Non-Benzoquinone Analogs: Potent Inhibitors of Heat Shock Protein 90 (Hsp90)

    PubMed Central

    Wrona, Iwona E.; Gozman, Alexander; Taldone, Tony; Chiosis, Gabriela; Panek, James S.

    2010-01-01

    A full account of an asymmetric synthesis of reblastatin (1), the first total synthesis of autolytimycin (2) and related structural compounds is described. The syntheses expand the utility of a highly regio-and diastereoselective hydrometalation aldehyde addition sequence to assemble the fully functionalized ansa chain of the natural products. Also documented is an intramolecular copper-mediated amidation reaction to close the 19-membered macrolactams. The amidation reaction was also employed for the generation of structural derivatives (6–9) of phenolic ansamycins. Ansamycin natural products and selected structural analogs were evaluated in a competitive binding assay to breast cancer cell lysate and a cytotoxicity assay. Both reblastatin (1) and autolytimycin (2) were shown to bind the Hsp90 protein with enhanced binding activity (~25 nM) than 17-allylamino-17-demethoxygeldanamycin (17-AAG, 4), a geldanamycin (3) derivative currently under evaluation for treatment of cancer (~100 nM). PMID:20392070

  17. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells.

    PubMed

    Wang, Bin; Chen, Linfeng; Ni, Zhenhong; Dai, Xufang; Qin, Liyan; Wu, Yaran; Li, Xinzhe; Xu, Liang; Lian, Jiqin; He, Fengtian

    2014-11-01

    Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells.

  18. 17AAG Treatment Accelerates Doxorubicin Induced Cellular Senescence: Hsp90 Interferes with Enforced Senescence of Tumor Cells

    PubMed Central

    Sarangi, Upasana; Paithankar, Khande Rao; Kumar, Jonnala Ujwal; Subramaniam, Vaidyanathan; Sreedhar, Amere Subbarao

    2012-01-01

    Hsp90 chaperone has been identified as an attractive pharmacological target to combat cancer. However, some metastatic tumors either fail to respond to Hsp90 inhibition or show recovery necessitating irreversible therapeutic strategies. In response to this enforced senescence has been proposed as an alternate strategy. Here, we demonstrate that inhibiting Hsp90 with 17AAG sensitizes human neuroblastoma to DNA damage response mediated cellular senescence. Among individual and combination drug treatments, 17AAG pre-treatment followed by doxorubicin treatment exhibited senescence-like characteristics such as increased nucleus to cytoplasm ratio, cell cycle arrest, SA-β-gal staining and the perpetual increase in SAHF. Doxorubicin induced senescence signaling was mediated by p53-p21CIP/WAF-1 and was accelerated in the absence of functional Hsp90. Sustained p16INK4a and H3K4me3 expressions correlating with unaffected telomerase activation annulled replicative senescence and appraised stress induced senescence. Despite increases in [(ROS)i] and [(Ca2+)i], a concomitant increase in cellular antioxidant defense system suggested oxidation independent senescence activation. Sustained activation of survival (Akt) and proliferative (ERK1/2) kinases fosters robustness of cells. Invigorating senescent cells with growth factor or snooping with mTOR or PI3 kinase inhibitors compromised cell survival but not senescence. Intriguingly, senescence-associated secretory factors from the senescence cells manifested established senescence in neuroblastoma, which offers clinical advantage to our approach. Our study discusses tumor selective functions of Hsp90 and discusses irrefutable strategies of Hsp90 inhibition in anticancer treatments. PMID:22915839

  19. Pharmacokinetics and Dose Escalation of the Heat Shock Protein Inhibitor 17-AAG in Combination with Bortezomib in Relapsed or Refractory Acute Myeloid Leukemia

    PubMed Central

    Walker, Alison R.; Klisovic, Rebecca; Johnston, Jeffrey S.; Jiang, Yao; Geyer, Susan; Kefauver, Cheryl; Binkley, Philip; Byrd, John C.; Grever, Michael R.; Garzon, Ramiro; Phelps, Mitch A.; Marcucci, Guido; Blum, Kristie A.; Blum, William

    2013-01-01

    This phase I study was conducted to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT) of the heat shock protein 90 (HSP90) inhibitor 17-allyamino-17-demethoxygeldanamycin (17-AAG) in combination with bortezomib, and to provide pharmacokinetic data in relapsed or refractory acute myeloid leukemia (AML). Eleven patients were enrolled. The MTD was 17-AAG 150mg/m2 and bortezomib 0.7mg/m2. Hepatic toxicity and cardiac toxicity were dose limiting. Co-administration on day 4 led to a decrease in clearance (p=0.005) and increase in AUC (p=.032) of 17-amino-17-demethoxygeldanamycin (17-AG) not observed when 17-AAG was administered alone. Pharmacokinetic parameters of patients who developed toxicities and those who did not were not different. The combination of 17-AAG and bortezomib led to toxicity without measurable response in patients with relapsed or refractory AML. Pharmacokinetic data provide insight for studies of related agents in AML; next generation HSP90 inhibitors are appealing for further development in this area. PMID:23256542

  20. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    PubMed Central

    Nayak, Tapas K.; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K.; Sahoo, Subhransu S.; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-01

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology. PMID:28067803

  1. Inhibition of Hsp90 function by ansamycins causes downregulation of cdc2 and cdc25c and G(2)/M arrest in glioblastoma cell lines.

    PubMed

    García-Morales, P; Carrasco-García, E; Ruiz-Rico, P; Martínez-Mira, R; Menéndez-Gutiérrez, M P; Ferragut, J A; Saceda, M; Martínez-Lacaci, I

    2007-11-08

    Ansamycins exert their effects by binding heat shock protein 90 (Hsp90) and targeting important signalling molecules for degradation via the proteasome pathway. We wanted to study the effect of geldanamycin (GA) and its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) on glioblastoma cell lines. We show that these cells are growth inhibited by ansamycins by being arrested in G(2)/M and, subsequently, cells undergo apoptosis. The protein levels of cell division cycle 2 (cdc2) kinase and cell division cycle 25c (cdc25c) were downregulated upon GA and 17-AAG treatment and cdc2 kinase activity was inhibited. However, other proteins involved in the G(2)/M checkpoint were not affected. The cdc2 and cdc25c mRNA levels did not show significant differences upon ansamycin treatment, but the stability of cdc2 protein was reduced. The association of cdc2 and cdc25c with p50(cdc37), an Hsp90 co-chaperone, decreased, but the interaction of cdc2 and cdc25c with the Hsp70 co-chaperone increased after ansamycin treatment. Proteasome inhibitors were able to rescue the cdc2 downregulation, but not the cdc25c reduction. However, calpain inhibitors were able to rescue the cdc25c downregulation, suggesting that cdc25c is proteolysed by calpains in the presence of ansamycins, and not by the proteasome. We conclude that ansamycins downregulate cdc2 and cdc25c by two different mechanisms.

  2. A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.

    PubMed

    Singh, Meetali; Shah, Varun; Tatu, Utpal

    2014-04-17

    Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with Kd values of 365.2 and 10.77 μM, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12×10(-4) min(-1) μM(-1). Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire.

  3. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models.

    PubMed

    Desale, Swapnil S; Raja, Srikumar M; Kim, Jong Oh; Mohapatra, Bhopal; Soni, Kruti S; Luan, Haitao; Williams, Stetson H; Bielecki, Timothy A; Feng, Dan; Storck, Matthew; Band, Vimla; Cohen, Samuel M; Band, Hamid; Bronich, Tatiana K

    2015-06-28

    ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full

  4. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs.

    PubMed

    Shin, Ho-Chul; Alani, Adam W G; Cho, Hyunah; Bae, Younsoo; Kolesar, Jill M; Kwon, Glen S

    2011-08-01

    Poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-b-PLA) micelles have a proven capacity for drug solubilization and have entered phase III clinical trials as a substitute for Cremophor EL in the delivery of paclitaxel in cancer therapy. PEG-b-PLA is less toxic than Cremophor EL, enabling a doubling of paclitaxel dose in clinical trials. We show that PEG-b-PLA micelles act as a 3-in-1 nanocontainer for paclitaxel, 17-allylamino-17-demethoxygeldanamycin (17-AAG), and rapamycin for multiple drug solubilization. 3-in-1 PEG-b-PLA micelles were ca. 40 nm in diameter; dissolved paclitaxel, 17-AAG, and rapamycin in water at 9.0 mg/mL; and were stable for 24 h at 25 °C. The half-life for in vitro drug release (t(1/2)) for 3-in-1 PEG-b-PLA micelles was 1-15 h under sink conditions and increased in the order of 17-AAG, paclitaxel, and rapamycin. The t(1/2) values correlated with log P(o/w) values, implicating a diffusion-controlled mechanism for drug release. The IC(50) value of 3-in-1 PEG-b-PLA micelles for MCF-7 and 4T1 breast cancer cell lines was 114 ± 10 and 25 ± 1 nM, respectively; combination index (CI) analysis showed that 3-in-1 PEG-b-PLA micelles exert strong synergy in MCF-7 and 4T1 breast cancer cell lines. Notably, concurrent intravenous (iv) injection of paclitaxel, 17-AAG, and rapamycin using 3-in-1 PEG-b-PLA micelles was well-tolerated by FVB albino mice. Collectively, these results suggest that PEG-b-PLA micelles carrying paclitaxel, 17-AAG, and rapamycin will provide a simple yet safe and efficacious 3-in-1 nanomedicine for cancer therapy.

  5. Identification of the Plant Compound Geraniin as a Novel Hsp90 Inhibitor

    PubMed Central

    Vassallo, Antonio; Vaccaro, Maria Carmela; De Tommasi, Nunziatina; Dal Piaz, Fabrizio; Leone, Antonella

    2013-01-01

    Besides its function in normal cellular growth, the molecular chaperone heat shock protein 90 (Hsp90) binds to a large number of client proteins required for promoting cancer cell growth and/or survival. In an effort to discover new small molecules able to inhibit the Hsp90 ATPase and chaperoning activities, we screened, by a surface plasmon resonance assay, a small library including different plant polyphenols. The ellagitannin geraniin, was identified as the most promising molecule, showing a binding affinity to Hsp90α similar to that of 17-(allylamino)-17-demethoxygeldanamycin (17AGG). Geraniin was able to inhibit in vitro the Hsp90α ATPase activity in a dose−dependent manner, with an inhibitory efficiency comparable to that measured for 17-AAG. In addition, this compound compromised the chaperone activity of Hsp90α, monitored by the citrate synthase thermal induced aggregation assay. Geraniin decreased the viability of HeLa and Jurkat cell lines and caused an arrest in G2/M phase. We also proved that following exposure to different concentrations of geraniin, the level of expression of the client proteins c-Raf, pAkt, and EGFR was strongly down−regulated in both the cell lines. These results, along with the finding that geraniin did not exert any appreciable cytotoxicity on normal cells, encourage further studies on this compound as a promising chemical scaffold for the design of new Hsp90 inhibitors. PMID:24066128

  6. Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β

    PubMed Central

    Peng, Yi-Jheng; Huang, Jing-Jia; Wu, Hao-Han; Hsieh, Hsin-Ying; Wu, Chia-Ying; Chen, Shu-Ching; Chen, Tsung-Yu; Tang, Chih-Yung

    2016-01-01

    Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation. PMID:27580824

  7. Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.

    PubMed

    Peng, Yi-Jheng; Huang, Jing-Jia; Wu, Hao-Han; Hsieh, Hsin-Ying; Wu, Chia-Ying; Chen, Shu-Ching; Chen, Tsung-Yu; Tang, Chih-Yung

    2016-09-01

    Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation.

  8. Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation.

    PubMed

    Yang, Baoxue; Zhao, Dan; Verkman, A S

    2009-02-01

    Mutations in aquaporin-2 (AQP2) that interfere with its cellular processing can produce autosomal recessive nephrogenic diabetes insipidus (NDI). Prior gene knock-in of the human NDI-causing AQP2 mutation T126M produced mutant mice that died by age 7 days. Here, we used a novel "conditional gene knock-in" strategy to generate adult, AQP2-T126M mutant mice. Mice separately heterozygous for floxed wild-type AQP2 and AQP2-T126M were bred to produce hemizygous mice, which following excision of the wild-type AQP2 gene by tamoxifen-induced Cre-recombinase gave AQP2(T126M/-) mice. AQP2(T126M/-) mice were polyuric (9-14 ml urine/day) compared to AQP2(+/+) mice (1.6 ml/day) and had reduced urine osmolality (400 vs. 1800 mosmol). Kidneys of AQP2(T126M/-) mice expressed core-glycosylated AQP2-T126M protein in an endoplasmic reticulum pattern. Screening of candidate protein folding "correctors" in AQP2-T126M-transfected kidney cells showed increased AQP2-T126M plasma membrane expression with the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). 17-AAG increased urine osmolality in AQP2(T126M/-) mice by >300 mosmol but had no effect in AQP2(-/-) mice. Kidneys of 17-AAG-treated AQP2(T126M/-) mice showed partial rescue of defective AQP2-T126M cellular processing. Our results establish an adult mouse model of NDI and demonstrate partial restoration of urinary concentration function by a compound currently in clinical trials for other indications.

  9. Molecular Markers for Novel Therapeutic Strategies in Pancreatic Endocrine Tumors

    PubMed Central

    Gilbert, Judith A.; Adhikari, Laura J.; Lloyd, Ricardo V.; Halfdanarson, Thorvardur R.; Muders, Michael H.; Ames, Matthew M.

    2012-01-01

    Objectives Pancreatic endocrine tumors (PETs) share numerous features with gastrointestinal neuroendocrine (carcinoid) tumors. Targets of novel therapeutic strategies previously assessed in carcinoid tumors were analyzed in PETs (44 cases). Methods Activating mutations in EGFR, KIT, and PDGFRA, and non-response mutations in KRAS, were evaluated. Copy number of EGFR and HER-2/neu was quantified by fluorescence in situ hybridization. Expression of EGFR, PDGFRA, VEGFR1, TGFBR1, Hsp90, SSTR2A, SSTR5, IGF1R, mTOR, and MGMT was measured immunohistochemically. Results Elevated EGFR copy number was found in 38% of cases, but no KRAS non-response mutations. VEGFR1, TGFBR1, PDGFRA, SSTR5, SSTR2A, and IGF1R exhibited the highest levels of expression in the largest percentages of PETs. Anticancer drugs BMS-754807 (selective for IGF1R/IR), 17-(allylamino)-17-demethoxygeldanamycin (17-AAG, targeting Hsp90), and axitinib (directed toward VEGFR1–3/PDGFRA-B/KIT) induced growth inhibition of human QGP-1 PET cells with IC50 values (nM) of 273, 723, and 743, respectively. At growth-inhibiting concentrations, BMS-754807 inhibited IGF1R phosphorylation; 17-AAG induced loss of EGFR, IGF1R, and VEGFR2; and axitinib increased p21Waf1/Cip1(CDKN1A) expression without inhibiting VEGFR2 phosphorylation. Conclusions Results encourage further research into multi-drug strategies incorporating inhibitors targeting IGF1R or Hsp90 and into studies of axitinib combined with conventional chemotherapeutics toxic to tumor cells in persistent growth arrest. PMID:23211371

  10. Paradoxically enhanced heart tolerance to ischaemia in type 1 diabetes and role of increased osmolarity.

    PubMed

    Chen, Hong; Shen, Wei-Li; Wang, Xu-Hui; Chen, Hong-Zhuan; Gu, Jian-Zhong; Fu, Jie; Ni, Ya-Feng; Gao, Ping-Jin; Zhu, Ding-Liang; Higashino, Hideaki

    2006-10-01

    There is considerable controversy regarding the tolerance of diabetic hearts to ischaemia and the underlying mechanisms responsible for the increased heart tolerance to ischamia remain uncertain. In the present study, we observed, in vitro, type 1 diabetic heart responses to ischaemia and reperfusion at different degrees of hyperglycaemia. In addition, the possible role of increased osmolarity in cardioprotection due to hyperglycaemia was evaluated. Hearts from 3 week streptozocin-induced diabetic rats were isolated and perfused in a Langendorff apparatus and subjected to 30 min ischaemia and 30 min reperfusion. Cardiac function and the electrocardiogram were recorded. Myocardial content of osmolarity associated heat shock protein (hsp) 90, heme oxygenase (HO)-1 and anti-oxidant enzymes were determined in diabetic or hyperosmotic solution-perfused hearts using western blot. The hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; 2 x 10(-7) mol/L) or the nitric oxide synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (1 x 10(-5) mol/L) was added to the perfusate to observe the effects of hsp90 inhibition and hsp90-associated endothelial NOS on ischaemic responses of diabetic hearts. Compared with normal control rats, diabetic hearts with severe hyperglycaemia (blood glucose > 20 mmol/L) showed markedly improved postischaemic heart function with fewer reperfusion arrhythmias. Mild hyperglycaemia (< 12 mmol/L) exhibited no significant cardioprotection. Elevated expression of hsp90 accompanied the enhanced resistance to ischaemia in diabetic hearts, which was abrogated by 17-AAG. In the presence of the NOS inhibitor, heart function was preserved, whereas reperfusion arrhythmias were increased in diabetes. Diabetic hearts also had markedly elevated HO-1 and catalase, with no significant change in superoxide dismutase. Hyperosmotic perfusion with glucose or mannitol also increased myocardial hsp90 and catalase. The present findings reveal that

  11. Up-regulation of Gadd45α after Exposure to Metal Nanoparticles: the Role of Hypoxia Inducible Factor 1α

    PubMed Central

    Feng, Lingfang; Zhang, Yue; Jiang, Mizu; Mo, Yiqun; Wan, Rong; Jia, Zhenyu; Tollerud, David J.; Zhang, Xing; Zhang, Qunwei

    2014-01-01

    The increased development and use of nanoparticles in various fields may lead to increased exposure, directly affecting human health. Our current knowledge of the health effects of metal nanoparticles such as Cobalt and Titanium dioxide (Nano-Co and Nano-TiO2) is limited but suggests that some metal nanoparticles may cause genotoxic effects including cell cycle arrest, DNA damage and apoptosis. The growth arrest and DNA damage-inducible 45α protein (Gadd45α) has been characterized as one of the key players in the cellular responses to a variety of DNA damaging agents. The aim of this study was to investigate the alteration of Gadd45α expression in mouse embryo fibroblasts (PW) exposed to metal nanoparticles and the possible mechanisms. Non-toxic doses of Nano-Co and Nano-TiO2 were selected to treat cells. Our results showed that Nano-Co caused a dose- and time-dependent increase in Gadd45α expression, but Nano-TiO2 did not. To investigate the potential pathways involved in Nano-Co-induced Gadd45α up-regulation, we measured the expression of hypoxia inducible factor 1α (HIF-1α) in PW cells exposed to Nano-Co and Nano-TiO2. Our results showed that exposure to Nano-Co caused HIF-1α accumulation in the nucleus. In addition, hypoxia inducible factor 1α knock-out cells [HIF-1α (−/−)] and its wild-type cells [HIF-1α (+/+)] were used. Our results demonstrated that Nano-Co caused a dose- and time-dependent increase in Gadd45α expression in wild-type HIF-1α (+/+) cells, but only a slight increase in HIF-1α (−/−) cells. Pre-treatment of PW cells with heat shock protein 90 (Hsp90) inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), prior to exposure to Nano-Co significantly abolished the Nano-Co-induced Gadd45α expression. These results suggest that HIF-1α accumulation may be partially involved in the increased Gadd45α expression in cells exposed to Nano-Co. These findings may have important implications for understanding the potential health

  12. [Cloning and analysis of geldanamycin partial biosynthetic gene cluster of Streptomyces hygroscopicus 17997].

    PubMed

    He, Wei-Qing; Wang, Yi-Guang

    2006-11-01

    A geldanamycin (GDM) producing strain, Streptomyces hygroscopicus 17997, was isolated from Yunnan China soil by our institute researchers. GDM is an ansamycin antibiotic, which has the ability to bind with Hsp90 (Heat Shock Protein 90) and alter its function. Hsp90 is a chaperone protein involved in the regulation of the cell cycle, cell growth, cell survival, apoptosis, and oncogenesis. So it plays a key role in regulating the physiology of cells exposed to environmental stress and in maintaining the malignant phenotype of tumor cells. As an inhibitor of Hsp90, GDM possesses potent antitumor and antivirus bioactivity, but the hypato-toxicity and poor solubility in water limits its clinical use. Two GDM derivatives, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) and 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG), both showing lesser hepato-toxicity, are now in Phase II and Phase I clinic trials. In order to accomplish the structure modification of GDM by genetic means, an attempt to obtain the biosynthetic gene cluster of GDM from S. hygroscopicus 17997 was made. In this study, a pair of primers was designed according to a conserved sequence of one of possible post-PKS (polyketides synthase) modification genes, the carbamoyltransferase (CT) gene (gdmN) in GDM biosynthesis. The 732 bp PCR product was obtained from the S. hygroscopicus 17997 genomic DNA. Through the colony-PCR Binary Search Method, using the CT gene primers, six positive cosmid clones, CT1-6, were identified from the S. hygroscopicus 17997 cosmid genomic library. The CT gene containing fragments were verified and localized by Southern blot. The CT-4 positive cosmid was then sub-cloned and sequenced. Approximately 28.356kb of foreign gene sequence from CT-4 cosmid and by further PCR extension reaction was obtained. Based on BLAST analysis, this sequence contains 13 possible ORFs and their deduced functions are believed to be involved in GDM production. The ORF1 encoding products

  13. Tanespimycin and tipifarnib exhibit synergism in inducing apoptosis in melanoma cell lines from later stages of tumor progression.

    PubMed

    Bentke, Anna; Małecki, Jędrzej; Ostrowska, Barbara; Krzykowska-Petitjean, Katarzyna; Laidler, Piotr

    2013-10-01

    Many anticancer strategies rely on efficient induction of apoptosis. The need for development of drug combinations with a strong pro-apoptotic activity is of particular interest in melanoma resistant to currently available chemotherapeutic regimes. We studied the pro-apoptotic properties of combination of tanespimycin+tipifarnib in five melanoma cell lines representing various stages of tumor progression. Our results show that in cells derived from vertical- and metastatic-phase the combination of tested drugs is strongly cytotoxic and efficient in inducing apoptosis, as evidenced by activation of caspase-9 and caspase-3 and enhanced fragmentation of DNA.

  14. Potent triazolothione inhibitor of heat-shock protein-90.

    PubMed

    Feldman, Richard I; Mintzer, Bob; Zhu, Daguang; Wu, James M; Biroc, Sandra L; Yuan, Shendong; Emayan, Kumar; Chang, Zheng; Chen, Deborah; Arnaiz, Damian O; Bryant, Judi; Ge, Xue Snow; Whitlow, Marc; Adler, Marc; Polokoff, Mark A; Li, Wei-Wei; Ferrer, Mike; Sato, Takashi; Gu, Jian-Ming; Shen, Jun; Tseng, Jih-Lie; Dinter, Harald; Buckman, Brad

    2009-07-01

    Heat-shock protein-90 is an attractive target for anticancer drugs, as heat-shock protein-90 blockers such as the ansamycin 17-(allylamino)-17-demethoxygeldanamycin greatly reduce the expression of many signaling molecules that are disregulated in cancer cells and are key drivers of tumor growth and metastasis. While 17-(allylamino)-17-demethoxygeldanamycin has shown promise in clinical trials, this compound class has significant template-related drawbacks. In this paper, we describe a new, potent non-ansamycin small-molecule inhibitor of heat-shock protein-90, BX-2819, containing resorcinol and triazolothione rings. Structural studies demonstrate binding of BX-2819 to the ADP/ATP-binding pocket of heat-shock protein-90. The compound blocked expression of heat-shock protein-90 client proteins in cancer cell lines and inhibited cell growth with a potency similar to 17-(allylamino)-17-demethoxygeldanamycin. In a panel of four cancer cell lines, BX-2819 blocked growth with an average IC(50) value of 32 nM (range of 7-72 nM). Efficacy studies demonstrated that treatment with BX-2819 significantly inhibited the growth of NCI-N87 and HT-29 tumors in nude mice, consistent with pharmacodynamic studies showing inhibition of heat-shock protein-90 client protein expression in tumors for greater than 16 h after dosing. These data support further studies to assess the potential of BX-2819 and related analogs for the treatment of cancer.

  15. A novel temperature-responsive micelle for enhancing combination therapy

    PubMed Central

    Peng, Cheng-Liang; Chen, Yuan-I; Liu, Hung-Jen; Lee, Pei-Chi; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2016-01-01

    A novel thermosensitive polymer p(N-isopropylacrylamide-co-poly[ethylene glycol] methyl ether acrylate)-block-poly(epsilon-caprolactone), p(NIPAAM-co-PEGMEA)-b-PCL, was synthesized and developed as nanomicelles. The hydrophobic heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin and the photosensitizer cyanine dye infrared-780 were loaded into the core of the micelles to achieve both chemotherapy and photothermal therapy simultaneously at the tumor site. The release of the drug could be controlled by varying the temperature due to the thermosensitive nature of the micelles. The micelles were less than 200 nm in size, and the drug encapsulation efficiency was >50%. The critical micelle concentrations were small enough to allow micelle stability upon dilution. Data from cell viability and animal experiments indicate that this combination treatment using photothermal therapy with chemotherapy had synergistic effects while decreasing side effects. PMID:27524894

  16. Prevention of chemotherapy-induced alopecia in rodent models

    PubMed Central

    Jimenez, Joaquin J.; Roberts, Stephen M.; Mejia, Jessica; Mauro, Lucia M.; Munson, John W.; Elgart, George W.; Connelly, Elizabeth Alvarez; Chen, Qingbin; Zou, Jiangying; Goldenberg, Carlos

    2008-01-01

    Alopecia (hair loss) is experienced by thousands of cancer patients every year. Substantial-to-severe alopecia is induced by anthracyclines (e.g., adriamycin), taxanes (e.g., taxol), alkylating compounds (e.g., cyclophosphamide), and the topisomerase inhibitor etoposide, agents that are widely used in the treatment of leukemias and breast, lung, ovarian, and bladder cancers. Currently, no treatment appears to be generally effective in reliably preventing this secondary effect of chemotherapy. We observed in experiments using different rodent models that localized administration of heat or subcutaneous/intradermal injection of geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin induced a stress protein response in hair follicles and effectively prevented alopecia from adriamycin, cyclophosphamide, taxol, and etoposide. Model tumor therapy experiments support the presumption that such localized hair-saving treatment does not negatively affect chemotherapy efficacy. PMID:18347939

  17. Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug.

    PubMed

    Pallavi, Rani; Roy, Nainita; Nageshan, Rishi Kumar; Talukdar, Pinaki; Pavithra, Soundara Raghavan; Reddy, Raghunath; Venketesh, S; Kumar, Rajender; Gupta, Ashok Kumar; Singh, Raj Kumar; Yadav, Suresh Chandra; Tatu, Utpal

    2010-12-03

    Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.

  18. Combining TRAIL with PI3 Kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling

    PubMed Central

    Saturno, Grazia; Valenti, Melanie; De Haven Brandon, Alexis; Thomas, George V.; Eccles, Suzanne; Clarke, Paul A.; Workman, Paul

    2013-01-01

    TRAIL has been shown to induce apoptosis in cancer cells, but in some cases they fail to respond to this ligand. We explored the ability of representative phosphatidylinositol-3-kinase (PI3 Kinase)/mTOR and HSP90 inhibitors to overcome TRAIL resistance by increasing apoptosis in colorectal cancer models. We determined the sensitivity of 27 human colorectal cancer and 2 non-transformed colon epithelial cell lines to TRAIL treatment. A subset of the cancer cell lines with a range of responses to TRAIL was selected from the panel for treatment with TRAIL combined with the PI3 Kinase/mTOR inhibitor PI-103 or the HSP90 inhibitor 17-AAG (tanespimycin). Two TRAIL-resistant cell lines were selected for in vivo combination studies with TRAIL and 17-AAG. We found that 13 colorectal cancer cell lines and the 2 non-transformed colon epithelial cell lines were resistant to TRAIL. We demonstrated that co-treatment of TRAIL and PI-103 or 17-AAG was synergistic or additive and significantly enhanced apoptosis in colorectal cancer cells. This was associated with decreased expression or activity of survival protein biomarkers such as ERBB2, AKT, IKKα and XIAP. In contrast, the effect of the combination treatments in non-transformed colon cells was minimal. We show here for the first time that co-treatment in vivo with TRAIL and 17-AAG in two TRAIL-resistant human colorectal cancer xenograft models resulted in significantly greater tumor growth inhibition compared to single treatments. We propose that combining TRAIL with PI3 Kinase/mTOR or HSP90 inhibitors has therapeutic potential in the treatment of TRAIL-resistant colorectal cancers. PMID:23852390

  19. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity.

    PubMed

    Xiong, Rui; Zhou, Wenbo; Siegel, David; Kitson, Russell R A; Freed, Curt R; Moody, Christopher J; Ross, David

    2015-12-01

    A potential cause of neurodegenerative diseases, including Parkinson's disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein.

  20. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity

    PubMed Central

    Xiong, Rui; Zhou, Wenbo; Siegel, David; Kitson, Russell R. A.; Freed, Curt R.; Moody, Christopher J.

    2015-01-01

    A potential cause of neurodegenerative diseases, including Parkinson’s disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein. PMID:26405178

  1. Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas

    ClinicalTrials.gov

    2014-02-21

    Adult Grade III Lymphomatoid Granulomatosis; AIDS-related Peripheral/Systemic Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  2. Tanespimycin in Treating Young Patients With Recurrent or Refractory Leukemia or Solid Tumors

    ClinicalTrials.gov

    2013-06-03

    Childhood Chronic Myelogenous Leukemia; Childhood Desmoplastic Small Round Cell Tumor; Disseminated Neuroblastoma; Metastatic Childhood Soft Tissue Sarcoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent Osteosarcoma

  3. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  4. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice

    PubMed Central

    Yang, Rui; Tang, Qiusha; Miao, Fengqin; An, Yanli; Li, Mengfei; Han, Yong; Wang, Xihui; Wang, Juan; Liu, Peidang; Chen, Rong

    2015-01-01

    Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90+ LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90+ LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90+ LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90+ LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90+ LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90+ LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo. PMID:26677324

  5. Degradable Cross-Linked Nanoassemblies as Drug Carriers for Heat Shock Protein 90 Inhibitor 17-N-Allylamino-17-demethoxy-geldanamycin.

    PubMed

    Ponta, Andrei; Akter, Shanjida; Bae, Younsoo

    2011-09-26

    Cross-linked nanoassemblies (CNAs) with a degradable core were prepared for sustained release of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a potent inhibitor of heat shock protein 90 (HSP90). The particle size of CNAs ranged between 100 and 250 nm, which changed depending on the cross-linking yields and drug entrapment method. CNAs with a 1% cross-linking yield entrapped 17-AAG in aqueous solutions, yet degraded in 3 hrs. CNAs entrapped 5.2 weight% of 17-AAG as the cross-linking yield increased to 10%, retaining more than 80% of particles for 24 hrs. CNAs with drugs entrapped after the cross-linking reactions were 100 nm and remained stable in both pH 7.4 and 5.0, corresponding to the physiological, tumoral, and intracellular environments. Drug was completely released from CNAs in 48 hrs, which would potentially maximize drug delivery and release efficiency within tumor tissues. Drug release patterns were not negatively affected by changing the cross-linking yields of CNAs. CNAs entrapping 17-AAG suppressed the growth of human non-small cell lung cancer A549 cells as equally effective as free drugs. The results demonstrated that CNAs would be a promising formulation that can be used in aqueous solutions for controlled delivery and release of 17-AAG.

  6. Inhibition of heat shock protein 90 improves pulmonary arteriole remodeling in pulmonary arterial hypertension

    PubMed Central

    Zhao, Zhi-Min; Liu, Su-Xuan; Zhang, Guan-Xin; Yang, Fan; Wang, Yang; Wu, Feng; Zhao, Xian-Xian; Xu, Zhi-Yun

    2016-01-01

    While the molecular chaperone heat shock protein 90 (HSP90) is involved in a multitude of physiological and pathological processes, its role relating to pulmonary arterial hypertension (PAH) remains unclear. In the present study, we investigated the effect in which HSP90 improves pulmonary arteriole remodeling, and explored the therapeutic utility of targeting HSP90 as therapeutic drug for PAH. By Elisa and immunohistochemistry, HSP90 was found to be increased in both plasma and membrane walls of pulmonary arterioles from PAH patients. Moreover, plasma HSP90 levels positively correlated with mean pulmonary arterial pressure and C-reactive protein. In a monocrotaline-induced rat model of PH, we found that 17-AAG, a HSP90-inhibitor, alleviated the progress of PH, demonstrated by lower pulmonary arterial pressure and absence of right ventricular hypertrophy. Immunohistochemical staining demonstrated that 17-AAG improved pulmonary arteriole remodeling on the basis of reduced wall thickness and wall area. The inflammatory response attributed to PH could be attenuated by 17-AAG through reduction of NF-κB signaling. Moreover, 17-AAG was found to suppress PDGF-stimulated proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through induction of cell cycle arrest in the G1 phase. In conclusion, HSP90 inhibitor 17-AAG could improve pulmonary arteriole remodeling via inhibiting the excessive proliferation of PASMCs, and inhibition of HSP90 may represent a therapeutic avenue for the treatment of PAH. PMID:27472464

  7. Geldanamycin and its analog induce cytotoxicity in cultured human retinal pigment epithelial cells.

    PubMed

    Wu, Wen-Chuan; Wu, Meng-Hsien; Chang, Yo-Chen; Hsieh, Ming-Chu; Wu, Horng-Jiun; Cheng, Kai-Chun; Lai, Yu-Hung; Kao, Ying-Hsien

    2010-08-01

    Geldanamycin (GA), a benzoquinone ansamycin, was originally isolated as a natural product with anti-fungal activity. GA and its analogs, including 17-allylamino-demethoxy geldanamycin (17-AAG), are also known to block the function of a molecular chaperone, heat shock protein 90 (Hsp90). In light of their anti-tumor properties through direct cytotoxicity and anti-angiogenicity, GA has been previously demonstrated to suppress hypoxia-induced VEGF production in retinal pigment epithelium (RPE) cells, implicating its applicability in treating intraocular neovascularization. This study aimed at investigating the effectiveness of Hsp90 inhibitor treatment in suppressing proliferation of cultured human RPE cells and elucidating its underlying mechanism. Cultured RPE cells were treated with GA or 17-AAG and subjected for cell proliferation assay and cell cycle analysis. Expression of apoptotic regulators and survival signaling activity were monitored by Western blotting. The results showed that both GA and 17-AAG significantly inhibited RPE cell proliferation at micromolar levels. Treatment with GA and 17-AAG led to growth arrests in G1 and S phases, increased sub-G1 hypodipoid cell population, induced apoptotic cell death, and upregulated P53 and P21 expression, although the drug-induced Bcl-2 upregulation cannot prevent cell death. Additionally, GA and 17-AAG significantly suppressed constitutive contents of phosphorylated ERK1/2 and total Akt proteins, and completely abrogated wortmannin-sensitized Akt phosphorylation. In conclusion, GA and 17-AAG inhibit RPE cell proliferation and induce cytotoxicity, possibly through downregulating Akt- and ERK1/2-mediated signaling activities. They might potentially constitute a therapeutic agent for ocular disorders with RPE over proliferation, such as proliferative vitreoretinopathy.

  8. KU135, a Novel Novobiocin-Derived C-Terminal Inhibitor of the 90-kDa Heat Shock Protein, Exerts Potent Antiproliferative Effects in Human Leukemic Cells

    PubMed Central

    Shelton, Shary N.; Shawgo, Mary E.; Matthews, Shawna B.; Lu, Yuanming; Donnelly, Alison C.; Szabla, Kristen; Tanol, Mehmet; Vielhauer, George A.; Rajewski, Roger A.; Matts, Robert L.; Blagg, Brian S. J.

    2009-01-01

    The 90-kDa heat shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Consequently, there is considerable interest in developing chemotherapeutic drugs that specifically disrupt the function of Hsp90. Here, we investigated the extent to which a novel novobiocin-derived C-terminal Hsp90 inhibitor, designated KU135, induced antiproliferative effects in Jurkat T-lymphocytes. The results indicated that KU135 bound directly to Hsp90, caused the degradation of known Hsp90 client proteins, and induced more potent antiproliferative effects than the established N-terminal Hsp90 inhibitor 17-allylamino-demethoxygeldanamycin (17-AAG). Closer examination of the cellular response to KU135 and 17-AAG revealed that only 17-AAG induced a strong up-regulation of Hsp70 and Hsp90. In addition, KU135 caused wild-type cells to undergo G2/M arrest, whereas cells treated with 17-AAG accumulated in G1. Furthermore, KU135 but not 17-AAG was found to be a potent inducer of mitochondria-mediated apoptosis as evidenced, in part, by the fact that cell death was inhibited to a similar extent by Bcl-2/Bcl-xL overexpression or the depletion of apoptotic protease-activating factor-1 (Apaf-1). Together, these data suggest that KU135 inhibits cell proliferation by regulating signaling pathways that are mechanistically different from those targeted by 17-AAG and as such represents a novel opportunity for Hsp90 inhibition. PMID:19741006

  9. Heat shock protein 90 and calcineurin pathway inhibitors enhance the efficacy of triazoles against Scedosporium prolificans via induction of apoptosis

    PubMed Central

    Shirazi, Fazal; Kontoyiannis, Dimitrios P.

    2014-01-01

    Scedosporium prolificans is a pathogenic mold resistant to current antifungals, and infection results in high mortality. Simultaneous targeting of both ergosterol biosynthesis and heat shock protein 90 (Hsp90) or the calcineurin pathway in S. prolificans may be an important strategy for enhancing the potency of antifungal agents. We hypothesized that the inactive triazoles posaconazole (PCZ) and itraconazole (ICZ) acquire fungicidal activity when combined with the calcineurin inhibitor tacrolimus (TCR) or Hsp90 inhibitor 17-demethoxy-17-(2-propenylamino) geldanamycin (17AAG). PCZ, ICZ, TCR and 17AAG alone were inactive in vitro against S. prolificans spores (MICs > 128 μg/ml). In contrast, MICs for PCZ or ICZ in combination with TCR or 17AAG (0.125-0.50 μg/ml) were much lower compared with drug alone. In addition PCZ and ICZ in combination with TCR or 17AAG became fungicidal. Because apoptosis is regulated by the calcineurin pathway in fungi and is under the control of Hsp90, we hypothesized that this synergistic fungicidal effect is mediated via apoptosis. This observed fungicidal activity was mediated by increased apoptosis of S. prolificans germlings, as evidenced by reactive oxygen species accumulation, decreased mitochondrial membrane potential, phosphatidylserine externalization, and DNA fragmentation. Furthermore, induction of caspase-like activity was correlated with TCR or 17AAG + PCZ/ICZ-induced cell death. In conclusion, we report for the first time that PCZ or ICZ in combination with TCR or 17AAG renders S. prolificans exquisitely sensitive to PCZ or ICZ via apoptosis. This finding may stimulate the development of new therapeutic strategies for patients infected with this recalcitrant fungus. PMID:28357242

  10. Encapsulation of poorly soluble drugs in polymer-drug conjugates: effect of dual-drug nanoformulations on cancer therapy

    PubMed Central

    Senanayake, Thulani H.; Lu, Yaman; Bohling, Anna; Raja, Srikumar; Band, Hamid; Vinogradov, Serguei V.

    2014-01-01

    Purpose Current cancer chemotherapy is gradually shifting to the application of drug combinations that prevent development of drug resistance. Many anticancer drugs have poor solubility and limited oral bioavailability. Using an innovative approach, we developed dual-drug nanoformulations of a polymeric nanogel conjugate with anticancer 5-FU nucleoside analog, floxuridine (FLOX), and the second anticancer drugs, paclitaxel (PCL), or a geldanamycin analog,17-AAG, for combination therapy. Methods PCL or17-AAG had been encapsulated in the cholesteryl-polyvinyl alcohol-floxuridine nanogel (CPVA-FLOX) by simple solution mixing and sonication. Dual nanodrugs formed particles with diameter 180 nm and either drug content (5–20%) that were stable and could be administered orally. Their cytotoxicity in human and mouse cancer cells was determined by MTT assay, and cellular target inhibition – by Western blot analysis. Tumor growth inhibition was evaluated using an orthotopic mouse mammary 4T1 cancer model. Results CPVA-FLOX was more potent than free drug in cancer models including drug-resistant ones; while dual nanodrugs demonstrated a significant synergy(CPVA-FLOX/PCL), or showed no significant synergy (CPVA-FLOX/17-AAG) compared to free drugs (PCL or 17-AAG). Dual nanodrug CPVA-FLOX/17-AAG effect on its cellular target (HSP70) was similar to 17-AAG alone. In animal model, however, both dual nanodrugs effectively inhibited tumor growth compared to CPVA-FLOX after oral administration. Conclusion Oral dual-drug nanoformulations of poorly-soluble drugs proved to be a highly efficient combination anticancer therapy in preclinical studies. PMID:24452808

  11. Radiosensitization of Human Vascular Endothelial Cells Through Hsp90 Inhibition With 17-N-Allilamino-17-Demethoxygeldanamycin

    SciTech Connect

    Kabakov, Alexander E. Makarova, Yulia M.; Malyutina, Yana V.

    2008-07-01

    Purpose: In addition to invasive tumor cells, endothelial cells (ECs) of the tumor vasculature are an important target for anticancer radiotherapy. The purpose of the present work is to investigate how 17-N-allilamino-17-demethoxygeldanamycin (17AAG), known as an anticancer drug inhibiting heat shock protein 90 (Hsp90), modifies radiation responses of human vascular ECs. Methods and Materials: The ECs cultured from human umbilical veins were exposed to {gamma}-irradiation, whereas some EC samples were pretreated with growth factors and/or 17AAG. Postirradiation cell death/survival and morphogenesis were assessed by means of terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate nick end labeling or annexin V staining and clonogenic and tube-formation assays. The 17AAG-affected expression and phosphorylation of radioresistance-related proteins were probed by means of immunoblotting. Dominant negative or constitutively activated Akt was transiently expressed in ECs to manipulate Akt activity. Results: It was found that nanomolar concentrations of 17AAG sensitize ECs to relatively low doses (2-6 Gy) of {gamma}-irradiation and abolish the radioprotective effects of vascular endothelial growth factor and basic fibroblast growth factor. The drug-induced radiosensitization of ECs seems to be caused by prevention of Hsp90-dependent phosphorylation (activation) of Akt that results in blocking the radioprotective phosphatidylinositol 3-kinase/Akt pathway. Conclusions: Clinically achievable concentrations of 17AAG can decrease the radioresistance intrinsic to vascular ECs and minimize the radioprotection conferred upon them by tumor-derived growth factors. These findings characterize 17AAG as a promising radiosensitizer for the tumor vasculature.

  12. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    PubMed

    Guo, Weiwei; Yan, Lichong; Yang, Ling; Liu, Xiaoyu; E, Qiukai; Gao, Peiye; Ye, Xiaofei; Liu, Wen; Zuo, Ji

    2014-01-01

    Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  13. A Gene Expression Profile of BRCAness that Predicts for Responsiveness to Platinum and PARP Inhibitors

    DTIC Science & Technology

    2014-08-01

    allylamino-17-demethoxygeldanamycin) downregulated HR, ATM and Fanconi Anemia pathways. In HR- proficient EOC cells, 17-AAG suppressed HR as assessed...downregulated HR (pɘ.005), ATM (p=0.015) and Fanconi Anemia (pɘ.005) pathways, and downregulated the expression levels of several genes of these

  14. Induction of heat shock protein HSPA6 (HSP70B') upon HSP90 inhibition in cancer cell lines.

    PubMed

    Kuballa, Petric; Baumann, Anna-Lena; Mayer, Klaus; Bär, Ute; Burtscher, Helmut; Brinkmann, Ulrich

    2015-06-04

    Genome-wide transcript profiling to elucidate responses to HSP90 inhibition revealed strong induction of HSPA6 in MCF-7 cells treated with 17-AAG. Time- and dose dependent induction of HSPA6 (confirmed by qPCR and Western Blots) occurred also upon treatment with Radicicol, another HSP90 inhibitor. HSPA6 was not detectable in untreated cells or cells treated with toxins that do not inhibit HSP90, or upon applying oxidative stress. Thus, HSPA6 induction is not a general response to cytotoxic insults. Modulation of HSPA6 levels by siRNA-mediated inhibition or recombinant expression did not influence 17-AAG mediated cell death. HSPA6 induction as a consequence of HSP90 inhibition occurs in various (but not all) cell lines and may be a more specific marker for HSP90 inhibition than induction of other HSP70 proteins.

  15. Why is this effective HSP90 inhibitor not being developed in HER2+ breast cancer?

    PubMed

    Arteaga, Carlos L

    2011-08-01

    Inhibition of the HSP90 chaperone leads to degradation of the HER2 receptor. The HSP90 inhibitor tanespimycin in combination with trastuzumab is active in patients with HER2-overexpressing metastatic breast cancer. This combination is one of several HER2-targeted therapies that will significantly improve the outcome of patients with this subtype of breast cancer.

  16. 17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2

    PubMed Central

    2010-01-01

    Introduction 17-allyamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is currently in clinical trials in breast cancer. However, 17-AAG treatment often results in inhibition of tumor growth rather than shrinkage, making detection of response a challenge. Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are noninvasive imaging methods than can be used to monitor metabolic biomarkers of drug-target modulation. This study set out to examine the MRS-detectable metabolic consequences of Hsp90 inhibition in a breast cancer model. Methods MCF-7 breast cancer cells were investigated, and MRS studies were performed both on live cells and on cell extracts. 31P and 1H MRS were used to determine total cellular metabolite concentrations and 13C MRS was used to probe the metabolism of [1,2-13C]-choline. To explain the MRS metabolic findings, microarray and RT-PCR were used to analyze gene expression, and in vitro activity assays were performed to determine changes in enzymatic activity following 17-AAG treatment. Results Treatment of MCF-7 cells with 17-AAG for 48 hours caused a significant increase in intracellular levels of choline (to 266 ± 18% of control, P = 0.05) and phosphocholine (PC; to 181 ± 10% of control, P = 0.001) associated with an increase in expression of choline transporter SLC44A1 and an elevation in the de novo synthesis of PC. We also detected an increase in intracellular levels of glycerophosphocholine (GPC; to 176 ± 38% of control, P = 0.03) associated with an increase in PLA2 expression and activity. Conclusions This study determined that in the MCF-7 breast cancer model inhibition of Hsp90 by 17-AAG results in a significant MRS-detectable increase in choline, PC and GPC, which is likely due to an increase in choline transport into the cell and phospholipase activation. 1H MRSI can be used in the clinical setting to detect levels of total choline-containing metabolite (t-Cho, composed of intracellular

  17. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    SciTech Connect

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-12-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  18. Evaluation of in vitro effects of various targeted drugs on plasma cells and putative neoplastic stem cells in patients with multiple myeloma

    PubMed Central

    Blatt, Katharina; Herrmann, Harald; Stefanzl, Gabriele; Sperr, Wolfgang R.; Valent, Peter

    2016-01-01

    Multiple myeloma (MM) is a malignancy characterized by monoclonal paraproteinemia and tissue plasmocytosis. In advanced MM cytopenia and osteopathy may occur. Although several effective treatment strategies have been developed in recent years, there is still a need to identify new drug targets and to develop more effective therapies for patients with advanced MM. We examined the effects of 15 targeted drugs on growth and survival of primary MM cells and 5 MM cell lines (MM.1S, NCI-H929, OPM-2, RPMI-8226, U-266). The PI3-kinase blocker BEZ235, the pan-BCL-2 inhibitor obatoclax, the Hsp90-targeting drug 17AAG, and the Polo-like kinase-1 inhibitor BI2536, were found to exert major growth-inhibitory effects in all 5 MM cell lines tested. Moreover, these drugs suppressed the in vitro proliferation of primary bone marrow-derived MM cells and induced apoptosis at pharmacologic drug concentrations. Apoptosis-inducing effects were not only seen in the bulk of MM cells but also in MM stem cell-containing CD138−/CD20+/CD27+ memory B-cell fractions. Synergistic growth-inhibitory effects were observed in MM cell lines using various drug combinations, including 17AAG+BI2536 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+BEZ235 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+obatoclax in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+BEZ235 in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+obatoclax in MM.1S, OPM-2 and RPMI-8226 cells, and BEZ235+obatoclax in MM.1S and RPMI-8226 cells. Together, our data show that various targeted drugs induce profound and often synergistic anti-neoplastic effects in MM cells which may have clinical implications and may contribute to the development of novel treatment strategies in advanced MM. PMID:27582537

  19. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    PubMed

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.

  20. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    SciTech Connect

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  1. Heat shock protein 90 is essential for replication of porcine circovirus type 2 in PK-15 cells.

    PubMed

    Liu, Jie; Zhang, Xuliang; Ma, Chang; You, Jinwei; Dong, Min; Yun, Shifeng; Jiang, Ping

    2016-09-15

    Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated disease (PCVAD). However, the mechanism of PCV2 replication has not been understood completely. Heat shock protein 90 (Hsp90) plays an important role in viral genome replication, viral genes expression, and viral particle packaging. In this study, we firstly found that inhibition of Hsp90 by pretreatment of host cells with 17-AAG, a specific inhibitor of Hsp90, or blocking Hsp90α/Hsp90β with siRNA, resulted in significantly reduced viral replication in PK-15 cells. But inhibition of Hsp90 by 17-AAG did not affect PCV2 entry into the host cells. Meanwhile, over-expression of Hsp90α/Hsp90β enhanced PCV2 genome replication and virion production. In addition, Hsp90β was enriched in the nuclear zone in the cells infected with PCV2. But it did not interact with the viral Cap/Rep proteins. It suggested that Hsp90 is required for PCV2 production in PK-15 cells culture. It should be helpful for further evaluating the mechanism of replication and pathogenesis of PCV2 and developing novel antiviral therapies.

  2. HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells.

    PubMed

    Schoof, Nils; von Bonin, Frederike; Trümper, Lorenz; Kube, Dieter

    2009-07-16

    In classical Hodgkin lymphoma (cHL) chemotherapeutic regimens are associated with stagnant rates of secondary malignancies requiring the development of new therapeutic strategies. We and others have shown that permanently activated Signal Transducer and Activator of Transcription (STAT) molecules are essential for cHL cells. Recently an overexpression of heat-shock protein 90 (HSP90) in cHL cells has been shown and inhibition of HSP90 seems to affect cHL cell survival. Here we analysed the effects of HSP90 inhibition by geldanamycin derivative 17-AAG or RNA interference (RNAi) on aberrant Jak-STAT signaling in cHL cells. Treatment of cHL cell lines with 17-AAG led to reduced cell proliferation and a complete inhibition of STAT1, -3, -5 and -6 tyrosine phosphorylation probably as a result of reduced protein expression of Janus kinases (Jaks). RNAi-mediated inhibition of HSP90 showed similar effects on Jak-STAT signaling in L428 cHL cells. These results suggest a central role of HSP90 in permanently activated Jak-STAT signaling in cHL cells. Therapeutics targeting HSP90 may be a promising strategy in cHL and other cancer entities associated with deregulated Jak-STAT pathway activation.

  3. High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry.

    PubMed

    Kessel, Sarah; Cribbes, Scott; Déry, Olivier; Kuksin, Dmitry; Sincoff, Eric; Qiu, Jean; Chan, Leo Li-Ying

    2016-06-01

    Oncologists have investigated the effect of protein or chemical-based compounds on cancer cells to identify potential drug candidates. Traditionally, the growth inhibitory and cytotoxic effects of the drugs are first measured in 2D in vitro models, and then further tested in 3D xenograft in vivo models. Although the drug candidates can demonstrate promising inhibitory or cytotoxicity results in a 2D environment, similar effects may not be observed under a 3D environment. In this work, we developed an image-based high-throughput screening method for 3D tumor spheroids using the Celigo image cytometer. First, optimal seeding density for tumor spheroid formation was determined by investigating the cell seeding density of U87MG, a human glioblastoma cell line. Next, the dose-response effects of 17-AAG with respect to spheroid size and viability were measured to determine the IC50 value. Finally, the developed high-throughput method was used to measure the dose response of four drugs (17-AAG, paclitaxel, TMZ, and doxorubicin) with respect to the spheroid size and viability. Each experiment was performed simultaneously in the 2D model for comparison. This detection method allowed for a more efficient process to identify highly qualified drug candidates, which may reduce the overall time required to bring a drug to clinical trial.

  4. Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent.

    PubMed

    Hanson, Britt Erika; Vesole, David H

    2009-09-01

    Heat shock proteins are vital to cell survival under conditions of stress. They bind client proteins to assist in protein stabilization, translocation of polypeptides across cell membranes and recovery of proteins from aggregates. Heat shock protein inhibitors are a diverse group of novel agents that have been demonstrated to have pro-apoptotic effects on malignant cells through inhibition of ATP binding on the ATP/ADP-binding pocket of the heat shock protein. Initial development of heat shock protein 90 inhibitors, geldanamycin and 17-AAG, were limited by hepatotoxicity and the need for solvent carrying agents. In contrast, retaspimycin, or IPI-504, a derivative of geldanamycin and 17-AAG, is highly soluble in water and generally well tolerated. In Phase I/II trials, retaspimycin has shown activity in NSCLC and gastrointestinal stromal tumor. The most promising activity was observed in gastrointestinal stromal tumors. Phase I/II trials are currently underway to evaluate the dosing schedules and activity of IPI-504 in breast cancer. Given the in vitro activity in diffuse large B-cell lymphoma, mantle cell lymphoma, melanoma, leukemia and pancreatic cancer, current and future trials are of clinical interest. This article reviews IPI-504 and its utility in a wide variety of cancer phenotypes.

  5. Hsp90 regulation of fibroblast activation in pulmonary fibrosis

    PubMed Central

    Sontake, Vishwaraj; Wang, Yunguan; Kasam, Rajesh K.; Sinner, Debora; Reddy, Geereddy B.; Naren, Anjaparavanda P.; McCormack, Francis X.; Jegga, Anil G.; Madala, Satish K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease. PMID:28239659

  6. Characterization of HSP90 isoforms in transformed bovine leukocytes infected with Theileria annulata.

    PubMed

    Kinnaird, Jane H; Singh, Meetali; Gillan, Victoria; Weir, William; Calder, Ewen D D; Hostettler, Isabel; Tatu, Utpal; Devaney, Eileen; Shiels, Brian R

    2017-03-01

    HSP90 chaperones are essential regulators of cellular function, as they ensure the appropriate conformation of multiple key client proteins. Four HSP90 isoforms were identified in the protozoan parasite Theileria annulata. Partial characterization was undertaken for three and localization confirmed for cytoplasmic (TA12105), endoplasmic reticulum (TA06470), and apicoplast (TA10720) forms. ATPase activity and binding to the HSP90 inhibitor geldanamycin were demonstrated for recombinant TA12105, and all three native forms could be isolated to varying extents by binding to geldanamycin beads. Because it is essential, HSP90 is considered a potential therapeutic drug target. Resistance to the only specific Theileriacidal drug is increasing, and one challenge for design of drugs that target the parasite is to limit the effect on the host. An in vitro cell culture system that allows comparison between uninfected bovine cells and the T. annulata-infected counterpart was utilized to test the effects of geldanamycin and the derivative 17-AAG. T. annulata-infected cells had greater tolerance to geldanamycin than uninfected cells yet exhibited significantly more sensitivity to 17-AAG. These findings suggest that parasite HSP90 isoform(s) can alter the drug sensitivity of infected host cells and that members of the Theileria HSP90 family are potential targets worthy of further investigation.

  7. Hsp90 inhibitors reduce influenza virus replication in cell culture

    SciTech Connect

    Chase, Geoffrey; Deng, Tao; Fodor, Ervin; Leung, B.W.; Mayer, Daniel; Schwemmle, Martin Brownlee, George

    2008-08-01

    The viral RNA polymerase complex of influenza A virus consists of three subunits PB1, PB2 and PA. Recently, the cellular chaperone Hsp90 was shown to play a role in nuclear import and assembly of the trimeric polymerase complex by binding to PB1 and PB2. Here we show that Hsp90 inhibitors, geldanamycin or its derivative 17-AAG, delay the growth of influenza virus in cell culture resulting in a 1-2 log reduction in viral titre early in infection. We suggest that this is caused by the reduced half-life of PB1 and PB2 and inhibition of nuclear import of PB1 and PA which lead to reduction in viral RNP assembly. Hsp90 inhibitors may represent a new class of antiviral compounds against influenza viruses.

  8. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation

    NASA Astrophysics Data System (ADS)

    Chang, Hsiang-Yu; Hou, Shin-Chen; Way, Tzong-Der; Wong, Chi-Huey; Wang, I.-Fan

    2013-11-01

    Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.

  9. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells.

    PubMed

    To, Kenneth K W; Yu, Le; Liu, Shuwen; Fu, Jianhua; Cho, Chi Hin

    2012-06-01

    Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that is generally not responding to chemotherapy. It is particularly predominant in China. Although ESCC is significantly associated with cigarette smoking, the relationship between its molecular pathogenesis and responsiveness to chemotherapy and cigarette smoke remains elusive. This study reported the constitutive activation of aryl hydrocarbon receptor (AhR), leading to ABCG2 upregulation and the multidrug resistance (MDR) phenotype, in ESCC cell lines with acquired cisplatin resistance. Reporter gene assay, chromatin immunoprecipitation analysis and specific gene knockdown confirmed that the enhanced AhR binding to a xenobiotic response element (XRE) within the ABCG2 promoter is responsible for ABCG2 overexpression. A HSP90 inhibitor (17-AAG) and two AhR antagonists (kaempferol and salicylamide) were shown to inhibit ABCG2 upregulation, thereby reversing the ABCG2-mediated MDR. Our data therefore advocate the use of these inhibitors as novel chemosensitizers for the treatment of esophageal cancer.

  10. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells.

    PubMed

    Chen, Chun; Zhuang, Yingting; Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-02-07

    Heat shock protein 90 (Hsp90) contains amino (N)-terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states.

  11. Fluorescent Protein–Labeled Glucocorticoid Receptor alpha Isoform Trafficking in Cultured Human Trabecular Meshwork Cells

    PubMed Central

    Dibas, Adnan; Jiang, Ming; Fudala, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Clark, Abbot F.; Yorio, Thomas

    2012-01-01

    Purpose. To characterize the roles of the cytoskeleton and heat shock protein 90 (HSP90) in steroid-induced glucocorticoid receptor alpha (GRα) translocation in cultured human trabecular meshwork cells. Methods. Stably transfected red fluorescent protein (RFP)-GRα NTM5 cell lines were developed. Nuclear localization of RFP-GRα in NTM5 cells treated with vehicle (ethanol), dexamethasone (DEX), or RU486 was measured in cytosolic and nuclear fractions by western blotting and laser confocal microscopy. Cytochalasin D, colchicine, and 17-demethoxygeldanamycin (17AAG, an HSP90 inhibitor), were tested for their abilities to affect GRα trafficking. Nuclear export of RFP-GRα was studied using confocal microscopy following DEX or RU486 removal. Results. NTM5 cells transfected with RFP-GRα showed a clear cytosolic localization of receptor that underwent nuclear localization after DEX treatment. RFP-GRα translocation was temperature sensitive, occurring at 37°C but not at room temperature. Neither cytochalasin D nor colchicine blocked DEX-induced or RU486-induced RFP-GRα nuclear translocation; however, 17AAG prevented DEX-induced RFP-GRα nuclear translocation. Both nuclear import and export of DEX-induced RFP-GRα were faster than RU-486–induced nuclear shuttling. Conclusions. RFP-GRα receptor behaves similarly to the wild-type GRα with its cytosolic localization and shuttling to nucleus after DEX or RU486 treatment. HSP90 is required for nuclear translocation, but the disruption of cytoskeleton had no effect on nuclear translocation of RFP-GRα. PMID:22447868

  12. The novel HSP90 inhibitor STA-9090 exhibits activity against Kit-dependent and -independent malignant mast cell tumors

    PubMed Central

    Lin, Tzu-Yin; Bear, Misty; Du, Zhenjian; Foley, Kevin P.; Ying, Weiwen; Barsoum, James; London, Cheryl

    2013-01-01

    Objective Mutations of the receptor tyrosine kinase Kit occur in several human and canine cancers. While Kit inhibitors have activity in the clinical setting, they possess variable efficacy against particular forms of mutant Kit and drug resistance often develops over time. Inhibitors of heat shock protein 90 (HSP90), a chaperone for which Kit is a client protein, have demonstrated activity against human cancers and evidence suggests they downregulate several mutated and imatinib-resistant forms of Kit. The purpose of this study was to evaluate a novel HSP90 inhibitor, STA-9090, against wild-type (WT) and mutant Kit in canine bone marrow–derived cultured mast cells (BMCMCs), malignant mast cell lines, and fresh malignant mast cells. Materials and Methods BMCMCs, cell lines, and fresh malignant mast cells were treated with STA-9090, 17-AAG, and SU11654 and evaluated for loss in cell viability, cell death, alterations in HSP90 and Kit expression/signaling, and Kit mutation. STA-9090 activity was tested in a canine mastocytoma xenograft model. Results Treatment of BMCMCs, cell lines, and fresh malignant cells with STA-9090 induced growth inhibition, apoptosis that was caspase-3/7–dependent, and downregulation of phospho/total Kit and Akt, but not extracellular signal-regulated kinase (ERK) or phosphoinositide-3 kinase (PI-3K). Loss of Kit cell-surface expression was also observed. Furthermore, STA-9090 exhibited superior activity to 17-AAG and SU11654, and was effective against malignant mast cells expressing either WT or mutant Kit. Lastly, STA-9090 inhibited tumor growth in a canine mastocytoma mouse xenograft model. Conclusions STA-9090 exhibits broad activity against mast cells expressing WT or mutant Kit, suggesting it may be an effective agent in the clinical setting against mast cell malignancies. PMID:18657349

  13. Co-targeting AR and HSP90 suppresses prostate cancer cell growth and prevents resistance mechanisms.

    PubMed

    Centenera, Margaret M; Carter, Sarah L; Gillis, Joanna L; Marrocco-Tallarigo, Deborah L; Grose, Randall H; Tilley, Wayne D; Butler, Lisa M

    2015-10-01

    Persistent androgen receptor (AR) signaling in castration resistant prostate cancer (CRPC) underpins the urgent need for therapeutic strategies that better target this pathway. Combining classes of agents that target different components of AR signaling has the potential to delay resistance and improve patient outcomes. Many oncoproteins, including the AR, rely on the molecular chaperone heat shock protein 90 (Hsp90) for functional maturation and stability. In this study, enhanced anti-proliferative activity of the Hsp90 inhibitors 17-allylamino-demethoxygeldanamycin (17-AAG) and AUY922 in androgen-sensitive and CRPC cells was achieved when the agents were used in combination with AR antagonists bicalutamide or enzalutamide. Moreover, significant caspase-dependent cell death was achieved using sub-optimal agent doses that individually have no effect. Expression profiling demonstrated regulation of a broadened set of AR target genes with combined 17-AAG and bicalutamide compared with the respective single agent treatments. This enhanced inhibition of AR signaling was accompanied by impaired chromatin binding and nuclear localization of the AR. Importantly, expression of the AR variant AR-V7 that is implicated in resistance to AR antagonists was not induced by combination treatment. Likewise, the heat shock response that is typically elicited with therapeutic doses of Hsp90 inhibitors, and is a potential mediator of resistance to these agents, was significantly reduced by combination treatment. In summary, the co-targeting strategy in this study more effectively inhibits AR signaling than targeting AR or HSP90 alone and prevents induction of key resistance mechanisms in prostate cancer cells. These findings merit further evaluation of this therapeutic strategy to prevent CRPC growth.

  14. A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines.

    PubMed

    Pimienta, Genaro; Herbert, Kristina M; Regan, Lynne

    2011-12-05

    The chaperone Hsp90 is required for the correct folding and maturation of certain "client proteins" within all cells. Hsp90-mediated folding is particularly important in cancer cells, because upregulated or mutant oncogenic proteins are often Hsp90 clients. Hsp90 inhibitors thus represent a route to anticancer agents that have the potential to be active against several different types of cancer. Currently, various Hsp90 inhibitors that bind to Hsp90 at its ATP-binding site are in preclinical and clinical trials. Some of the most promising Hsp90 ATP-binding site inhibitors are the well characterized geldanamycin derivative 17-AAG and the recently described compounds PU-H71 and NVP-AUY922. An undesirable characteristic of these compounds is the transcriptional upregulation of Hsp70 that has prosurvival effects. Here we characterize the activity of a new type of chaperone inhibitor, 1,6-dimethyl-3-propylpyrimido[5,4-e][1,2,4]triazine-5,7-dione (named C9 for simplicity). Using purified protein components in vitro, C9 prevents Hsp90 from interacting with the cochaperone HOP and is thus expected to impair the Hsp90-dependent folding pathway in vivo. We show that this compound is effective in killing various breast cancer cell lines including the highly metastatic MDA-MB-231. An important property of this compound is that it does not induce the transcriptional upregulation of Hsp70. Moreover, when cells are treated with a combination of C9 and either 17-AAG or NVP-AUY922, the overexpression of Hsp70 is counteracted considerably and C9's lethal-IC50 decreases compared to its value when added alone.

  15. Reversing drug resistance of cisplatin by hsp90 inhibitors in human ovarian cancer cells

    PubMed Central

    Zhang, Zhengmao; Xie, Zhen; Sun, Guangyu; Yang, Pingfang; Li, Jia; Yang, Hongfang; Xiao, Shuang; Liu, Yang; Qiu, Hongbing; Qin, Lijun; Zhang, Chao; Zhang, Fenghua; Shan, Baoen

    2015-01-01

    Objective: To investigate the mechanisms for reversing drug resistance of cisplatin (DDP) by Hsp90 inhibitors (geldanamycin (GA), 17-AAG, 17-DMAG) in human ovarian cancer. Methods: Cell proliferation rate in DDP resistant human ovarian cancer cell line SKOV3/DDP and its parent cell line SKOV3 after treatment with Hsp90 inhibitors and/or DDP were tested by MTT assay, and the reversing fold (RF) of DDP by Hsp90 inhibitors was calculated. Cell cycle and cell apoptosis status after treatment were analyzed by flow cytometry. The expression of multiple drug resistance related genes was analyzed by RT-PCR and Western-blot. Results: All three tested Hsp90 inhibitors synergistically inhibited the cell proliferation of SKOV3 with DDP and enhanced the sensitivity of SKOV3/DDP cells to DDP. The RF of DDP by Hsp90 inhibitors were all more than two fold. GA caused cell cycle arrest in G2/M phasein SKOV3 cells. 17-AAG increased cell apoptosis but did not change cell cycle in SKOV3/DDP cells. The mRNA and protein expression levels of various drug resistant related genes including LRP, GST-π, p53, bcl-2, survivin, ERCC1, XRCC1, BRCA1 and BRCA2 were more dramatically altered by Hsp90 inhibitors and DDP in combination compared to Hsp90 inhibitors or DDP treatment alone. Conclusions: Exposure of SKOV3/DDP cells to Hsp90 inhibitors and DDP in combination results in synergistic cytotoxic and pro-apoptotic effects. Hsp90 inhibitors reverse the drug resistance of SKOV3/DDP cells to DDP by modifying the expression of multiple drug resistance related genes. PMID:26221207

  16. A novel HSP90 inhibitor delays castrate resistant prostate cancer without altering serum PSA levels and inhibits osteoclastogenesis

    PubMed Central

    Lamoureux, Francois; Thomas, Christian; Yin, Min-Jean; Kuruma, Hidetoshi; Fazli, Ladan; Gleave, Martin E; Zoubeidi, Amina

    2015-01-01

    Purpose Prostate cancer responds initially to anti-androgen therapies, however, progression to castration resistant disease frequently occurs. Therefore there is an urgent need for novel therapeutic agents that can prevent the emergence of castration resistant prostate cancer (CRPC). Hsp90 is a molecular chaperone involved in the stability of many client proteins including Akt and androgen receptor (AR). 17-AAG have been reported to inhibit tumor growth in various cancers, however induces tumor progression in the bone microenvironment. Methods Cell growth, apoptosis, and AR transactivation were examined by crystal violet assay, flow cytometry and luciferase assays respectively. The consequence of HSP90 therapy in vivo was evaluated in LNCaP xenograft model. The consequence of PF-04928473 therapy on bone metastasis was studied using an osteoclastogenesis in vitro assay. Results PF-04928473 inhibits cell growth in a panel of prostate cancer cells, induces cell cycle arrest at sub-G1 and leads to apoptosis and increased caspase-3 activity. These biologic events were accompanied by decreased activation of Akt and Erk as well as decreased expression of Her2, and decreased AR expression and activation in vitro. In contrast to 17-AAG, PF-04928473 abrogates RANKL-induced osteoclast differentiation by affecting NF-kB activation and Src phosphorylation. Finally, PF-04929113 inhibited tumor growth and prolonged survival compared to controls. Surprisingly, PF-04929113 did not reduce serum PSA levels in vivo in parallel these decreases in tumor volume. Conclusion These data identify significant anti-cancer activity of PF-04929113 in CRPC but suggest that serum PSA may not prove useful as pharmaco-dynamic tool for this drug. PMID:21349995

  17. Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy.

    PubMed

    Tsou, Yueh-Liang; Lin, Yi-Wen; Chang, Hsuen-Wen; Lin, Hsiang-Yin; Shao, Hsiao-Yun; Yu, Shu-Ling; Liu, Chia-Chyi; Chitra, Ebenezer; Sia, Charles; Chow, Yen-Hung

    2013-01-01

    Although several factors participating in enterovirus 71 (EV71) entry and replication had been reported, the precise mechanisms associated with these events are far from clear. In the present study, we showed that heat shock protein 90 (HSP90) is a key element associated with EV71 entry and replication in a human rhabdomyosarcoma of RD cells. Inhibition of HSP90 by pretreating host cells with HSP90β siRNA or blocking HSP90 with a HSP90-specific antibody or geldanamycin (GA), a specific inhibitor of HSP90, as well as recombinant HSP90β resulted in inhibiting viral entry and subsequent viral replication. Co-immunprecipitation of EV71 with recombinant HSP90β and colocalization of EV71-HSP90 in the cells demonstrated that HSP90 was physically associated with EV71 particles. HSP90 seems to mediate EV71 replication by preventing proteosomal degradation of the newly synthesized capsid proteins, but does not facilitate viral gene expression at transcriptional level. This was evident by post-treatment of host cells with GA, which did not affect the expression of viral transcripts but accelerated the degradation of viral capsid proteins and interfered with the formation of assembled virions. In vivo studies were carried out using human SCARB2-transgenic mice to evaluate the protection conferred by HSP90 inhibitor, 17-allyamino-17-demethoxygeldanamycin (17-AAG), an analog of geldanamycin, that elicited similar activity but with less toxicity. The results showed that the administration of 17-AAG twice conferred the resistance to hSCARB2 mice challenged with C2, C4, and B4 genotypes of EV71. Our data supports HSP90 plays an important role in EV71 infection. Targeting of HSP90 with clinically available drugs might provide a feasible therapeutic approach to treat EV71 infection.

  18. 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition.

    PubMed

    Hertlein, Erin; Wagner, Amy J; Jones, Jeffrey; Lin, Thomas S; Maddocks, Kami J; Towns, William H; Goettl, Virginia M; Zhang, Xiaoli; Jarjoura, David; Raymond, Chelsey A; West, Derek A; Croce, Carlo M; Byrd, John C; Johnson, Amy J

    2010-07-08

    The HSP90 client chaperone interaction stabilizes several important enzymes and antiapoptotic proteins, and pharmacologic inhibition of HSP90 results in rapid client protein degradation. Therefore, HSP90 inhibition is an attractive therapeutic approach when this protein is active, a phenotype commonly observed in transformed but not normal cells. However, preclinical studies with HSP90 inhibitors such as 17-AAG demonstrated depletion of only a subset of client proteins and very modest tumor cytotoxicity in chronic lymphocytic leukemia (CLL) cells. Herein, we describe another HSP90 inhibitor, 17-DMAG, which is cytotoxic to CLL but not normal lymphocytes. Treatment with 17-DMAG leads to depletion of the HSP90 client protein IKK, resulting in diminished NF-kappaB p50/p65 DNA binding, decreased NF-kappaB target gene transcription, and caspase-dependent apoptosis. Furthermore, treatment with 17-DMAG significantly decreased the white blood cell count and prolonged the survival in a TCL1-SCID transplant mouse model. The ability of 17-DMAG to function as an NF-kappaB inhibitor is of great interest clinically, as few currently available CLL drugs target this transcription factor. Therefore, the effect of 17-DMAG on NF-kappaB signaling pathways represents a novel therapy warranting further clinical pursuit in this and other B-cell lymphoproliferative disorders.

  19. 17-DMAG targets the nuclear factor-κB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition

    PubMed Central

    Hertlein, Erin; Wagner, Amy J.; Jones, Jeffrey; Lin, Thomas S.; Maddocks, Kami J.; Towns, William H.; Goettl, Virginia M.; Zhang, Xiaoli; Jarjoura, David; Raymond, Chelsey A.; West, Derek A.; Croce, Carlo M.; Byrd, John C.

    2010-01-01

    The HSP90 client chaperone interaction stabilizes several important enzymes and antiapoptotic proteins, and pharmacologic inhibition of HSP90 results in rapid client protein degradation. Therefore, HSP90 inhibition is an attractive therapeutic approach when this protein is active, a phenotype commonly observed in transformed but not normal cells. However, preclinical studies with HSP90 inhibitors such as 17-AAG demonstrated depletion of only a subset of client proteins and very modest tumor cytotoxicity in chronic lymphocytic leukemia (CLL) cells. Herein, we describe another HSP90 inhibitor, 17-DMAG, which is cytotoxic to CLL but not normal lymphocytes. Treatment with 17-DMAG leads to depletion of the HSP90 client protein IKK, resulting in diminished NF-κB p50/p65 DNA binding, decreased NF-κB target gene transcription, and caspase-dependent apoptosis. Furthermore, treatment with 17-DMAG significantly decreased the white blood cell count and prolonged the survival in a TCL1-SCID transplant mouse model. The ability of 17-DMAG to function as an NF-κB inhibitor is of great interest clinically, as few currently available CLL drugs target this transcription factor. Therefore, the effect of 17-DMAG on NF-κB signaling pathways represents a novel therapy warranting further clinical pursuit in this and other B-cell lymphoproliferative disorders. PMID:20351313

  20. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  1. Protective effects of Araloside C against myocardial ischaemia/reperfusion injury: potential involvement of heat shock protein 90.

    PubMed

    Wang, Min; Tian, Yu; Du, Yu-Yang; Sun, Gui-Bo; Xu, Xu-Dong; Jiang, Hai; Xu, Hui-Bo; Meng, Xiang-Bao; Zhang, Jing-Yi; Ding, Shi-Lan; Zhang, Miao-di; Yang, Ming-Hua; Sun, Xiao-Bo

    2017-02-22

    The present study was designed to investigate whether Araloside C, one of the major triterpenoid compounds isolated from Aralia elata known to be cardioprotective, can improve heart function following ischaemia/reperfusion (I/R) injury and elucidate its underlying mechanisms. We observed that Araloside C concentration-dependently improved cardiac function and depressed oxidative stress induced by I/R. Similar protection was confirmed in isolated cardiomyocytes characterized by maintaining Ca(2+) transients and cell shortening against I/R. Moreover, the potential targets of Araloside C were predicted using the DDI-CPI server and Discovery Studio software. Molecular docking analysis revealed that Araloside C could be stably docked into the ATP/ADP-binding domain of the heat shock protein 90 (Hsp90) protein via the formation of hydrogen bonds. The binding affinity of Hsp90 to Araloside C was detected using nanopore optical interferometry and yielded KD values of 29 μM. Araloside C also up-regulated the expression levels of Hsp90 and improved cell viability in hypoxia/reoxygenation-treated H9c2 cardiomyocytes, whereas the addition of 17-AAG, a pharmacologic inhibitor of Hsp90, attenuated Araloside C-induced cardioprotective effect. These findings reveal that Araloside C can efficiently attenuate myocardial I/R injury by reducing I/R-induced oxidative stress and [Ca(2+) ]i overload, which was possibly related to its binding to the Hsp90 protein.

  2. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

  3. The potent activation of Ca(2+)-activated K(+) current by NVP-AUY922 in the human pancreatic duct cell line (PANC-1) possibly independent of heat shock protein 90 inhibition.

    PubMed

    Chiang, Nai-Jung; Wu, Sheng-Nan; Chen, Li-Tzong

    2015-04-01

    NVP-AUY922 (AUY) is a potent inhibitor of heat shock protein 90 (HSP90). Whether this compound can exert additional effects on membrane ion channels remains elusive. We investigated the effect of AUY on ion currents in human pancreatic duct epithelial cells (PDECs), including PANC-1 and MIA PaCa-2. AUY increased the amplitude of the K(+) current (IK) in PANC-1 cells shown by whole-cell configuration. Single-channel recordings revealed a large-conductance Ca(2+)-activated K(+) (BKCa) channel in PANC-1, but not in MIA PaCa-2. In cell-attached mode, AUY increased the probability of BKCa channel opening and also potentiated the activity of stretch-induced channels. However, other HSP inhibitors, 17-AAG or BIIB021 only slightly increased the activity of BKCa channels. In inside-out recordings, sodium hydrosulphide or caffeic acid phenethyl ester increased the activity of BKCa channels, but AUY did not. We further evaluated whether conductance of Ca(2+)-activated K(+) channels (IK(Ca)) influenced secretion of HCO3(-) and fluid in PDECs by using a modified Whitcomb-Ermentrout model. Simulation studies showed that an increase in IK(Ca) resulted in additional secretion of HCO3(-) and fluid by mimicking the effect of AUY in PDECs. Collectively, AUY can interact with the BKCa channel to largely increase IK(Ca) in PDECs.

  4. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.

    PubMed

    Raman, Swetha; Suguna, Kaza

    2015-06-01

    Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.

  5. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death

    PubMed Central

    Fritsch, Jürgen; Fickers, Ricarda; Klawitter, Jan; Särchen, Vinzenz; Zingler, Philipp; Adam, Dieter; Janssen, Ottmar; Krause, Eberhard; Schütze, Stefan

    2016-01-01

    During apoptosis induction by TNF, the extrinsic and intrinsic apoptosis pathways converge at the lysosomal-mitochondrial interface. Earlier studies showed that the lysosomal aspartic protease Cathepsin D (CtsD) cleaves Bid to tBid, resulting in the amplification of the initial apoptotic cascade via mitochondrial outer membrane permeabilization (MOMP). The goal of this study was to identify further targets for CtsD that might be involved in activation upon death receptor ligation. Using a proteomics screen, we identified the heat shock protein 90 (HSP90) to be cleaved by CtsD after stimulation of U937 or other cell lines with TNF, FasL and TRAIL. HSP90 cleavage corresponded to apoptosis sensitivity of the cell lines to the different stimuli. After mutation of the cleavage site, HSP90 partially prevented apoptosis induction in U937 and Jurkat cells. Overexpression of the cleavage fragments in U937 and Jurkat cells showed no effect on apoptosis, excluding a direct pro-apoptotic function of these fragments. Pharmacological inhibition of HSP90 with 17AAG boosted ligand mediated apoptosis by enhancing Bid cleavage and caspase-9 activation. Together, we demonstrated that HSP90 plays an anti-apoptotic role in death receptor signalling and that CtsD-mediated cleavage of HSP90 sensitizes cells for apoptosis. These findings identify HSP90 as a potential target for cancer therapy in combination with death ligands (e.g. TNF or TRAIL). PMID:27716614

  6. E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells

    PubMed Central

    Samant, Rahul S.; Clarke, Paul A.; Workman, Paul

    2014-01-01

    The molecular chaperone heat shock protein 90 (HSP90) is required for the activity and stability of its client proteins. Pharmacologic inhibition of HSP90 leads to the ubiquitin-mediated degradation of clients, particularly activated or mutant oncogenic protein kinases. Client ubiquitination occurs via the action of one or more E3 ubiquitin ligases. We sought to identify the role of Cullin-RING family E3 ubiquitin ligases in the cellular response to HSP90 inhibition. Through a focused siRNA screen of 28 Cullin-RING ligase family members, we found that CUL5 and RBX2 were required for degradation of several HSP90 clients upon treatment of human cancer cells with the clinical HSP90 inhibitor 17-AAG. Surprisingly, silencing Cullin-5 (CUL5) also delayed the earlier loss of HSP90 client protein activity at the same time as delaying cochaperone dissociation from inhibited HSP90–client complexes. Expression of a dominant-negative CUL5 showed that NEDD8 conjugation of CUL5 is required for client degradation but not for loss of client activity or recruitment of clients and HSP90 to CUL5. Silencing CUL5 reduced cellular sensitivity to three distinct HSP90 inhibitors, across four cancer types driven by different protein kinases. Our results reveal the importance of CUL5 in multiple aspects of the cellular response to HSP90 inhibition. PMID:24760825

  7. Inhibiting the HSP90 chaperone destabilizes macrophage migration inhibitory factor and thereby inhibits breast tumor progression

    PubMed Central

    Schulz, Ramona; Marchenko, Natalia D.; Holembowski, Lena; Fingerle-Rowson, Günter; Pesic, Marina; Zender, Lars; Dobbelstein, Matthias

    2012-01-01

    Intracellular macrophage migration inhibitory factor (MIF) often becomes stabilized in human cancer cells. MIF can promote tumor cell survival, and elevated MIF protein correlates with tumor aggressiveness and poor prognosis. However, the molecular mechanism facilitating MIF stabilization in tumors is not understood. We show that the tumor-activated HSP90 chaperone complex protects MIF from degradation. Pharmacological inhibition of HSP90 activity, or siRNA-mediated knockdown of HSP90 or HDAC6, destabilizes MIF in a variety of human cancer cells. The HSP90-associated E3 ubiquitin ligase CHIP mediates the ensuing proteasome-dependent MIF degradation. Cancer cells contain constitutive endogenous MIF–HSP90 complexes. siRNA-mediated MIF knockdown inhibits proliferation and triggers apoptosis of cultured human cancer cells, whereas HSP90 inhibitor-induced apoptosis is overridden by ectopic MIF expression. In the ErbB2 transgenic model of human HER2-positive breast cancer, genetic ablation of MIF delays tumor progression and prolongs overall survival of mice. Systemic treatment with the HSP90 inhibitor 17AAG reduces MIF expression and blocks growth of MIF-expressing, but not MIF-deficient, tumors. Together, these findings identify MIF as a novel HSP90 client and suggest that HSP90 inhibitors inhibit ErbB2-driven breast tumor growth at least in part by destabilizing MIF. PMID:22271573

  8. High-Content Positional Biosensor Screening Assay for Compounds to Prevent or Disrupt Androgen Receptor and Transcriptional Intermediary Factor 2 Protein–Protein Interactions

    PubMed Central

    Hua, Yun; Shun, Tong Ying; Strock, Christopher J.

    2014-01-01

    Abstract The androgen receptor–transcriptional intermediary factor 2 (AR-TIF2) positional protein–protein interaction (PPI) biosensor assay described herein combines physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information of AR and TIF2 functional domains along with intracellular targeting sequences and fluorescent reporters. Expression of the AR-red fluorescent protein (RFP) “prey” and TIF2-green fluorescent protein (GFP) “bait” components of the biosensor was directed by recombinant adenovirus constructs that expressed the ligand binding and activation function 2 surface domains of AR fused to RFP with nuclear localization and nuclear export sequences, and three α-helical LXXLL motifs from TIF2 fused to GFP and an HIV Rev nucleolar targeting sequence. In unstimulated cells, AR-RFP was localized predominantly to the cytoplasm and TIF2-GFP was localized to nucleoli. Dihydrotestosterone (DHT) treatment induced AR-RFP translocation into the nucleus where the PPIs between AR and TIF2 resulted in the colocalization of both biosensors within the nucleolus. We adapted the translocation enhanced image analysis module to quantify the colocalization of the AR-RFP and TIF2-GFP biosensors in images acquired on the ImageXpress platform. DHT induced a concentration-dependent AR-TIF2 colocalization and produced a characteristic condensed punctate AR-RFP PPI nucleolar distribution pattern. The heat-shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and antiandrogens flutamide and bicalutamide inhibited DHT-induced AR-TIF2 PPI formation with 50% inhibition concentrations (IC50s) of 88.5±12.5 nM, 7.6±2.4 μM, and 1.6±0.4 μM, respectively. Images of the AR-RFP distribution phenotype allowed us to distinguish between 17-AAG and flutamide, which prevented AR translocation, and bicalutamide, which blocked AR-TIF2 PPIs. We screened the Library of Pharmacologically Active

  9. Human enterovirus 71 protein interaction network prompts antiviral drug repositioning

    PubMed Central

    Han, Lu; Li, Kang; Jin, Chaozhi; Wang, Jian; Li, Qingjun; Zhang, Qiling; Cheng, Qiyue; Yang, Jing; Bo, Xiaochen; Wang, Shengqi

    2017-01-01

    As a predominant cause of human hand, foot, and mouth disease, enterovirus 71 (EV71) infection may lead to serious diseases and result in severe consequences that threaten public health and cause widespread panic. Although the systematic identification of physical interactions between viral proteins and host proteins provides initial information for the recognition of the cellular mechanism involved in viral infection and the development of new therapies, EV71-host protein interactions have not been explored. Here, we identified interactions between EV71 proteins and host cellular proteins and confirmed the functional relationships of EV71-interacting proteins (EIPs) with virus proliferation and infection by integrating a human protein interaction network and by functional annotation. We found that most EIPs had known interactions with other viruses. We also predicted ATP6V0C as a broad-spectrum essential host factor and validated its essentiality for EV71 infection in vitro. EIPs and their interacting proteins were more likely to be targets of anti-inflammatory and neurological drugs, indicating their potential to serve as host-oriented antiviral targets. Thus, we used a connectivity map to find drugs that inhibited EIP expression. We predicted tanespimycin as a candidate and demonstrated its antiviral efficiency in vitro. These findings provide the first systematic identification of EV71-host protein interactions, an analysis of EIP protein characteristics and a demonstration of their value in developing host-oriented antiviral therapies. PMID:28220872

  10. Human enterovirus 71 protein interaction network prompts antiviral drug repositioning.

    PubMed

    Han, Lu; Li, Kang; Jin, Chaozhi; Wang, Jian; Li, Qingjun; Zhang, Qiling; Cheng, Qiyue; Yang, Jing; Bo, Xiaochen; Wang, Shengqi

    2017-02-21

    As a predominant cause of human hand, foot, and mouth disease, enterovirus 71 (EV71) infection may lead to serious diseases and result in severe consequences that threaten public health and cause widespread panic. Although the systematic identification of physical interactions between viral proteins and host proteins provides initial information for the recognition of the cellular mechanism involved in viral infection and the development of new therapies, EV71-host protein interactions have not been explored. Here, we identified interactions between EV71 proteins and host cellular proteins and confirmed the functional relationships of EV71-interacting proteins (EIPs) with virus proliferation and infection by integrating a human protein interaction network and by functional annotation. We found that most EIPs had known interactions with other viruses. We also predicted ATP6V0C as a broad-spectrum essential host factor and validated its essentiality for EV71 infection in vitro. EIPs and their interacting proteins were more likely to be targets of anti-inflammatory and neurological drugs, indicating their potential to serve as host-oriented antiviral targets. Thus, we used a connectivity map to find drugs that inhibited EIP expression. We predicted tanespimycin as a candidate and demonstrated its antiviral efficiency in vitro. These findings provide the first systematic identification of EV71-host protein interactions, an analysis of EIP protein characteristics and a demonstration of their value in developing host-oriented antiviral therapies.

  11. Gateways to clinical trials.

    PubMed

    Tomillero, A; Moral, M A

    2010-09-01

    Aclidinium bromide, AE-37, Alemtuzumab, AMA1-C1/ISA 720, Amlodipine besylate/atorvastatin calcium, Arachidonic acid, Arbaclofen placarbil, Aripiprazole, ARQ-621, Azelnidipine, Azilsartan medoxomil potassium; Bevacizumab, Biphasic insulin aspart, Bortezomib; Choriogonadotropin alfa, CTS-1027; Dapagliflozin, Dasatinib, Deforolimus, Degarelix acetate, Denufosol tetrasodium, Desvenlafaxine succinate, Dronedarone hydrochloride, Duloxetine hydrochloride, Dutasteride; Enfuvirtide, Entecavir, Etaracizumab, Everolimus, Exenatide, Ezetimibe; Ferric carboxymaltose, Fludarabine, Foretinib; Gefitinib, GFT-505, GSK-256066; HPV-6/11/16/18, HuM195/rGel, HyperAcute-Lung cancer vaccine; I5NP, Imatinib mesylate, Imexon, Insulin detemir, Insulin glargine, Ivabradine hydrochloride; L2G7, Lacosamide, Lapatinib ditosylate, Lenalidomide, Lidocaine/prilocaine, Liposomal vincristine, Liraglutide, Lixivaptan; Meningococcal (groups A, C, Y and W-135) oligosaccharide diphtheria CRM197 conjugate vaccine, Methoxy polyethylene glycol-epoetin-β, Mirabegron, Morphine/oxycodone, MR Vaccine, MSC-1936369B, Mycophenolic acid sodium salt; Narlaprevir, N-Desmethylclozapine; Ocriplasmin, Olaparib, Olmesartan medoxomil, Olmesartan medoxomil/azelnidipine, ONO-5334, ONO-8539; Palifermin, Panitumumab, Pardoprunox hydrochloride, PCV7, Peginterferon alfa-2a, Peginterferon alfa-2b, Pemetrexed disodium, Pexelizumab, PF-337210, Pitavastatin calcium; Raltegravir potassium, Recombinant interleukin-7, Regadenoson, Reniale, Roflumilast, Rosuvastatin calcium; Safinamide mesilate, SB-1518, SCH-527123, Selumetinib, Sipuleucel-T, Solifenacin succinate, Sorafenib, Sunitinib malate; Tadalafil, Talaporfin sodium, Tanespimycin, Technosphere/Insulin, Telaprevir, Telatinib, Telcagepant, Telmisartan/hydrochlorothiazide, Teriparatide, Testosterone transdermal gel, TH-302, Tiotropium bromide, Tocilizumab, Trabedersen, Tremelimumab; Valsartan/amlodipine besylate, Vernakalant hydrochloride, Visilizumab, Voreloxin, Vorinostat.

  12. Antileukemic Scalarane Sesterterpenoids and Meroditerpenoid from Carteriospongia (Phyllospongia) sp., Induce Apoptosis via Dual Inhibitory Effects on Topoisomerase II and Hsp90

    PubMed Central

    Lai, Kuei-Hung; Liu, Yi-Chang; Su, Jui-Hsin; El-Shazly, Mohamed; Wu, Chih-Fung; Du, Ying-Chi; Hsu, Yu-Ming; Yang, Juan-Cheng; Weng, Ming-Kai; Chou, Chia-Hua; Chen, Guan-Yu; Chen, Yu-Cheng; Lu, Mei-Chin

    2016-01-01

    Two new scalarane sesterterpenoids, 12β-(3′β-hydroxybutanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (1) and 12β-(3′β-hydroxypentanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (2), along with one known tetraprenyltoluquinol-related metabolite (3), were isolated from the sponge Carteriospongia sp. In leukemia Molt 4 cells, 1 at 0.0625 μg/mL (125 nM) triggered mitochondrial membrane potential (MMP) disruption and apoptosis showing more potent effect than 2 and 3. The isolates inhibited topoisomerase IIα expression. The apoptotic-inducing effect of 3 was supported by the in vivo experiment through suppressing the volume of xenograft tumor growth (47.58%) compared with the control. Compound 1 apoptotic mechanism of action in Molt 4 cells was further elucidated through inducing ROS generation, calcium release and ER stress. Using the molecular docking analysis, 1 exhibited more binding affinity to N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. The expression of Hsp90 client proteins, Akt, p70S6k, NFκB, Raf-1, p-GSK3β, and XIAP, MDM 2 and Rb2, and CDK4 and Cyclin D3, HIF 1 and HSF1 were suppressed by the use of 1. However, the expression of Hsp70, acetylated tubulin, and activated caspase 3 were induced after 1 treatment. Our results suggested that the proapoptotic effect of the isolates is mediated through the inhibition of Hsp90 and topoisomerase activities. PMID:27796344

  13. Role of ARF6, Rab11 and External Hsp90 in the Trafficking and Recycling of Recombinant-Soluble Neisseria meningitidis Adhesin A (rNadA) in Human Epithelial Cells

    PubMed Central

    Montanari, Paolo; Benucci, Barbara; Biancucci, Marco; Nardi-Dei, Vincenzo; Caproni, Elena; Barrile, Riccardo; Picciani, Benedetta; Savino, Silvana; Aricò, Beatrice; Rappuoli, Rino; Pizza, Mariagrazia; Luini, Alberto; Sallese, Michele; Merola, Marcello

    2014-01-01

    Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells. PMID:25347845

  14. The HSP90 Inhibitor, AT13387, Is Effective against Imatinib-Sensitive and -Resistant Gastrointestinal Stromal Tumor Models

    PubMed Central

    Smyth, Tomoko; Van Looy, Thomas; Curry, Jayne E.; Rodriguez-Lopez, Ana M.; Wozniak, Agnieszka; Zhu, Meijun; Donsky, Rachel; Morgan, Jennifer G.; Mayeda, Mark; Fletcher, Jonathan A.; Schöffski, Patrick; Lyons, John; Thompson, Neil T.; Wallis, Nicola G.

    2013-01-01

    The majority of gastrointestinal stromal tumors (GIST) are characterized by activating mutations of KIT, an HSP90 client protein. Further secondary resistance mutations within KIT limit clinical responses to tyrosine kinase inhibitors, such as imatinib. The dependence of KIT and its mutated forms on HSP90 suggests that HSP90 inhibition might be a valuable treatment option for GIST, which would be equally effective on imatinib-sensitive and -resistant clones. We investigated the activity of AT13387, a potent HSP90 inhibitor currently being evaluated in clinical trials, in both in vitro and in vivo GIST models. AT13387 inhibited the proliferation of imatinib-sensitive (GIST882, GIST-T1) and -resistant (GIST430, GIST48) cell lines, including those resistant to the geldanamycin analogue HSP90 inhibitor, 17-AAG. Treatment with AT13387 resulted in depletion of HSP90 client proteins, KIT and AKT, along with their phospho-forms in imatinib-sensitive and -resistant cell lines, irrespective of KIT mutation. KIT signaling was ablated, whereas HSP70, a marker of HSP90 inhibition, was induced. In vivo, antitumor activity of AT13387 was showed in both the imatinib-sensitive, GIST-PSW, xenograft model and a newly characterized imatinib-resistant, GIST430, xenograft model. Induction of HSP70, depletion of phospho-KIT and inhibition of KIT signaling were seen in tumors from both models after treatment with AT13387. A combination of imatinib and AT13387 treatment in the imatinib-resistant GIST430 model significantly enhanced tumor growth inhibition over either of the monotherapies. Importantly, the combination of AT13387 and imatinib was well tolerated. These results suggest AT13387 is an excellent candidate for clinical testing in GIST in combination with imatinib. PMID:22714264

  15. Computational identification of multi-omic correlates of anticancer therapeutic response

    PubMed Central

    2014-01-01

    Background A challenge in precision medicine is the transformation of genomic data into knowledge that can be used to stratify patients into treatment groups based on predicted clinical response. Although clinical trials remain the only way to truly measure drug toxicities and effectiveness, as a scientific community we lack the resources to clinically assess all drugs presently under development. Therefore, an effective preclinical model system that enables prediction of anticancer drug response could significantly speed the broader adoption of personalized medicine. Results Three large-scale pharmacogenomic studies have screened anticancer compounds in greater than 1000 distinct human cancer cell lines. We combined these datasets to generate and validate multi-omic predictors of drug response. We compared drug response signatures built using a penalized linear regression model and two non-linear machine learning techniques, random forest and support vector machine. The precision and robustness of each drug response signature was assessed using cross-validation across three independent datasets. Fifteen drugs were common among the datasets. We validated prediction signatures for eleven out of fifteen tested drugs (17-AAG, AZD0530, AZD6244, Erlotinib, Lapatinib, Nultin-3, Paclitaxel, PD0325901, PD0332991, PF02341066, and PLX4720). Conclusions Multi-omic predictors of drug response can be generated and validated for many drugs. Specifically, the random forest algorithm generated more precise and robust prediction signatures when compared to support vector machines and the more commonly used elastic net regression. The resulting drug response signatures can be used to stratify patients into treatment groups based on their individual tumor biology, with two major benefits: speeding the process of bringing preclinical drugs to market, and the repurposing and repositioning of existing anticancer therapies. PMID:25573145

  16. CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signaling pathway in colorectal cancer

    PubMed Central

    Zhao, Yingying; Liang, Yanling; Xiang, Cheng; Zhou, Huanyu; Zhang, Hui; Zhang, Qiang; Qing, Haitao; Jiang, Bo; Xiong, Huabao; Peng, Liang

    2016-01-01

    CD24 is involved in tumor progression of various cancers, but the effects of CD24 on tumor angiogenesis in colorectal cancer are still unknown. We aimed to investigate the underlying mechanism and role of CD24 on colorectal cancer (CRC) angiogenesis. Our data showed that the microvessal density (MVD) was related to the expression of CD24 in primary and metastasis CRC. Silencing of CD24 could dramatically decrease human umbilical vein endothelial cell (HUVEC) migration, invasion and tubule formation, but trivially affected cell proliferation. We also mechanically showed that silencing CD24 could downregulate the expression of VEGF via inhibiting the phosphorylation and translocation of STAT3. Moreover, Hsp90 was identified as the down-interaction protein of CD24 with co-immunoprecipitation assay and systematic mass spectrometry. Immunofluorescence results showed Hsp90 partly co-localized with CD24 in CRC cell membrane and there was a positive correlation between CD24 and Hsp90 expression in CRC tissues. We gradually evidenced that Hsp90 modulated the stability and degradation of CD24 in a proteasome-depended manner, and transferred the signal transmission from CD24 to STAT3. 17-AAG, a specific Hsp90, could abrogate the CD24 induce- HUVEC migration, invasion and tubule formation in vitro and in vivo. Collectively, our results suggested that CD24 induced CRC angiogenesis in Hsp90-dependent manner and activated STAT3-mediated transcription of VEGF. We provided a new insight into the regulation mechanism of tumor angiogenesis by exploring the role of CD24 in angiogenesis. PMID:27494878

  17. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    PubMed Central

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  18. Current Understanding of HSP90 as a Novel Therapeutic Target: An Emerging Approach for the Treatment of Cancer.

    PubMed

    Haque, Absarul; Alam, Qamre; Alam, Mohammad Zubair; Azhar, Esam I; Sait, Khalid Hussain Wali; Anfinan, Nisrin; Mushtaq, Gohar; Kamal, Mohammad Amjad; Rasool, Mahmood

    2016-01-01

    Heat Shock Protein 90 (HSP90) is a ubiquitous molecular chaperone that is considered to be the most abundantly expressed protein in various human cancers such as breast, lung, colon, prostate, leukemia and skin. The master regulator, HSP90 plays a pivotal role in the conformational stabilization, maturation and activity of its various labile oncogenic client proteins such as p53, ErbB2, Bcr-Abl, Akt, Her-2, Cdk4, Cdk6, Raf-1 and v-Src in altered cells. Hence, making a guaranteed attempt to inhibit such a master regulator for cancer therapy appears to be a potential approach for combinatorial inhibition of numerous oncogenic signaling pathways simultaneously. Considerable efforts are being under way to develop novel molecular targets and its inhibitors that may block key signaling pathways involved in the process of tumorigenesis and metastasis. In this regards, HSP90 has acquired immense interest as a potent anticancer drug-target due to its key functional link with multiple signaling pathways involved in the process of cell proliferation and cell survival. Notably, geldanamycin and its derivatives (17-AAG, 17-DMAG) have shown quite encouraging results in inhibiting HSP90 function in several cancers and currently almost 17 drug candidates known to be target HSP90 are being under clinical trials either as single agents or combinatorial therapy. Hence, this review is an attempt to get new insight into novel drug target therapy by focusing on recent advances made in understanding HSP90 chaperone structure-function relationships, identification of new HSP90 client proteins and, more importantly, on the advancements of HSP90 targeted therapy based on various existing and emerging classical inhibitors.

  19. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  20. Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes

    SciTech Connect

    Vuong, Tram Thu; Berger, Christian; Bertelsen, Vibeke; Rødland, Marianne Skeie; Stang, Espen; Madshus, Inger Helene

    2013-02-01

    The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub{sub 4}) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub{sub 4} chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub{sub 4} was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub{sub 4} was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub{sub 4} was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis. -- Highlights: ► A chimera containing ErbB2 and a tetra-Ubiquitin chain internalizes constitutively. ► Receptor fragmentation is not required for endocytosis of ErbB2. ► Ubiquitination is sufficient to induce endocytosis and degradation of ErbB2. ► ErbB2-Ub4 is internalized clathrin-dependently.

  1. The co-chaperone p23 promotes prostate cancer motility and metastasis

    PubMed Central

    Querol Cano, Laia; Lavery, Derek N.; Sin, Soraya; Spanjaard, Emma; Brooke, Greg N.; Tilman, Jessica D.; Abroaf, Ahmed; Gaughan, Luke; Robson, Craig N.; Heer, Rakesh; Mauri, Francesco; de Rooij, Johan; Driouch, Keltouma; Bevan, Charlotte L.

    2015-01-01

    Prostate cancer is an androgen receptor (AR)-dependent malignancy at initiation and progression, therefore hormone therapy is the primary line of systemic treatment. Despite initial disease regression, tumours inevitably recur and progress to an advanced castration-resistant state a major feature of which is metastasis to the bone. Up-regulation of AR cofactors and chaperones that overcome low hormone conditions to maintain basal AR activity has been postulated as a mechanism of therapy relapse. p23, an essential component of the apo-AR complex, acts also after ligand binding to increase AR transcriptional activity and target gene expression, partly by increasing chromatin-loaded holo-receptor-complexes. Immunohistochemical studies have demonstrated increased p23 expression in advanced prostate cancer. Here, we further characterise p23 roles in AR signalling and show that it modulates cytosolic AR levels in the absence of hormone, confirming a chaperoning function in the aporeceptor complex and suggesting p23 upregulates AR signalling at multiple stages. Moreover, p23 protein levels significantly increased upon treatment with not only androgen but also clinically relevant anti-androgens. This was in contrast to the HSP90 inhibitor 17-AAG, which did not modulate expression of the cochaperone – important given the HSP90-independent roles we and others have previously described for p23. Further, we demonstrate p23 is implicated in prostate cancer cell motility and in acquisition of invasiveness capacity through the expression of specific genes known to participate in cancer progression. This may drive metastatic processes in vivo since analysis of prostate tumour biopsies revealed that high nuclear p23 significantly correlated with shorter survival times and with development of metastases in patients with lower grade tumours. We propose that increased p23 expression may allow cells to acquire a more aggressive phenotype, contributing to disease progression, and

  2. Gateways to clinical trials.

    PubMed

    Tomillero, A; Moral, M A

    2009-03-01

    ABT-869, Acadesine, Acetylsalicylic acid/omeprazole, Adefovir, Adefovir dipivoxil, AEG-35156, Agatolimod sodium, Albiglutide, Alemtuzumab, Alipogene tiparvovec, Alogliptin benzoate, AMG-386, Amrubicin hydrochloride, Apremilast, Aripiprazole, Asoprisnil, Atorvastatin/fenofibrate, AVN-944, Axitinib; Belinostat, Bevacizumab, BHT-3021, BI-2536, Biapenem, Bilastine, Biphasic insulin aspart, Blinatumomab, Bortezomib, Bosentan; Catumaxomab, CD-NP, Cediranib, Certolizumab pegol, Cetuximab, Choline fenofibrate, Ciclesonide, CK-1827452,Clevudine, Clofarabine, CSL-360, CYT-997; Dapagliflozin, Darinaparsin, Denosumab, Densiron 68, Desloratadine, Dulanermin; Edoxaban tosilate, Emtricitabine, Entecavir, Erlotinib hydrochloride, Everolimus, Exenatide, Ezetimibe, Ezetimibe/simvastatin; Fidaxomicintiacumiv, Fulvestrant; G-207, GCR-8015, Gefitinib, Ghrelin (human), Glufosfamide; HPV16L1E7CVLP; Ibutamoren mesilate, Imatinib mesylate, Insulin detemir, Insulin glargine, Iodine (I131) tositumomab, Istaroxime, ITMN-191, Ixabepilone; JZP-4, Lenalidomide; Levetiracetam, Linaclotide acetate, Liposomal cytarabine/daunorubicin, Liposomal doxorubicin, Liraglutide, LY-518674; Milatuzumab, MMR-V, Motesanib diphosphate, Mycophenolic acid sodium salt; Niacin/simvastatin; Obatoclax mesylate, Odanacatib; Paclitaxel nanoparticles, Paclitaxel-eluting stent, Pazufloxacin, PBT-2, Pegfilgrastim, Peginterferon alfa-2a, Peginterferon alfa-2b, Peginterferon alfa-2b/ribavirin, Pemetrexed disodium, Perampanel, PfCP2.9, Pitavastatin calcium, Poly I:CLC, Pomalidomide, Pralatrexate, Pramlintide acetate, Prucalopride; rhGAD65, Roflumilast; RTS,S/AS02D; SCH-530348, Semagacestat, Sirolimus-eluting coronary stent, Sirolimus-Eluting Stent, SIR-Spheres, Sivelestat sodium hydrate, Sorafenib, Sunitinib malate; Tadalafil, Tafluprost, Tanespimycin, Teduglutide, Telaprevir, Telbivudine, Tenofovir disoproxil fumarate, Tiotropium bromide, TMC-435350, Tositumomab/iodine (I131) tositumomab, Travoprost/timolol, Triciribine

  3. Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma.

    PubMed

    Chen, Ming-Huang; Yang, Wu-Lung R; Lin, Kuan-Ting; Liu, Chia-Hung; Liu, Yu-Wen; Huang, Kai-Wen; Chang, Peter Mu-Hsin; Lai, Jin-Mei; Hsu, Chun-Nan; Chao, Kun-Mao; Kao, Cheng-Yan; Huang, Chi-Ying F

    2011-01-01

    Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis. Currently, only sorafenib is approved by the FDA for advanced HCC treatment; therefore, there is an urgent need to discover candidate therapeutic drugs for HCC. We hypothesized that if a drug signature could reverse, at least in part, the gene expression signature of HCC, it might have the potential to inhibit HCC-related pathways and thereby treat HCC. To test this hypothesis, we first built an integrative platform, the "Encyclopedia of Hepatocellular Carcinoma genes Online 2", dubbed EHCO2, to systematically collect, organize and compare the publicly available data from HCC studies. The resulting collection includes a total of 4,020 genes. To systematically query the Connectivity Map (CMap), which includes 6,100 drug-mediated expression profiles, we further designed various gene signature selection and enrichment methods, including a randomization technique, majority vote, and clique analysis. Subsequently, 28 out of 50 prioritized drugs, including tanespimycin, trichostatin A, thioguanosine, and several anti-psychotic drugs with anti-tumor activities, were validated via MTT cell viability assays and clonogenic assays in HCC cell lines. To accelerate their future clinical use, possibly through drug-repurposing, we selected two well-established drugs to test in mice, chlorpromazine and trifluoperazine. Both drugs inhibited orthotopic liver tumor growth. In conclusion, we successfully discovered and validated existing drugs for potential HCC therapeutic use with the pipeline of Connectivity Map analysis and lab verification, thereby suggesting the usefulness of this procedure to accelerate drug repurposing for HCC treatment.

  4. Evaluation of sequencing approaches for high-throughput ...

    EPA Pesticide Factsheets

    Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. We present the evaluation of three toxicogenomics platforms for potential application to high-throughput screening: 1. TempO-Seq utilizing custom designed paired probes per gene; 2. Targeted sequencing (TSQ) utilizing Illumina’s TruSeq RNA Access Library Prep Kit containing tiled exon-specific probe sets; 3. Low coverage whole transcriptome sequencing (LSQ) using Illumina’s TruSeq Stranded mRNA Kit. Each platform was required to cover the ~20,000 genes of the full transcriptome, operate directly with cell lysates, and be automatable with 384-well plates. Technical reproducibility was assessed using MAQC control RNA samples A and B, while functional utility for chemical screening was evaluated using six treatments at a single concentration after 6 hr in MCF7 breast cancer cells: 10 µM chlorpromazine, 10 µM ciclopriox, 10 µM genistein, 100 nM sirolimus, 1 µM tanespimycin, and 1 µM trichostatin A. All RNA samples and chemical treatments were run with 5 technical replicates. The three platforms achieved different read depths, with the TempO-Seq having ~34M mapped reads per sample, while TSQ and LSQ averaged 20M and 11M aligned reads per sample, respectively. Inter-replicate correlation averaged ≥0.95 for raw log2 expression values i

  5. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data

    PubMed Central

    Nguyen, Linh; Dang, Cuong C; Ballester, Pedro J.

    2017-01-01

    Background: Selected gene mutations are routinely used to guide the selection of cancer drugs for a given patient tumour. Large pharmacogenomic data sets, such as those by Genomics of Drug Sensitivity in Cancer (GDSC) consortium, were introduced to discover more of these single-gene markers of drug sensitivity. Very recently, machine learning regression has been used to investigate how well cancer cell line sensitivity to drugs is predicted depending on the type of molecular profile. The latter has revealed that gene expression data is the most predictive profile in the pan-cancer setting. However, no study to date has exploited GDSC data to systematically compare the performance of machine learning models based on multi-gene expression data against that of widely-used single-gene markers based on genomics data. Methods: Here we present this systematic comparison using Random Forest (RF) classifiers exploiting the expression levels of 13,321 genes and an average of 501 tested cell lines per drug. To account for time-dependent batch effects in IC 50 measurements, we employ independent test sets generated with more recent GDSC data than that used to train the predictors and show that this is a more realistic validation than standard k-fold cross-validation. Results and Discussion: Across 127 GDSC drugs, our results show that the single-gene markers unveiled by the MANOVA analysis tend to achieve higher precision than these RF-based multi-gene models, at the cost of generally having a poor recall (i.e. correctly detecting only a small part of the cell lines sensitive to the drug). Regarding overall classification performance, about two thirds of the drugs are better predicted by the multi-gene RF classifiers. Among the drugs with the most predictive of these models, we found pyrimethamine, sunitinib and 17-AAG. Conclusions: Thanks to this unbiased validation, we now know that this type of models can predict in vitro tumour response to some of these drugs. These models

  6. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation

    PubMed Central

    2012-01-01

    Background There is overwhelming evidence that in vitro three-dimensional tumor cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional cell monolayers, not least with respect to gene expression profiles, signaling pathway activity and drug sensitivity. However, most currently available three-dimensional techniques are time consuming and/or lack reproducibility; thus standardized and rapid protocols are urgently needed. Results To address this requirement, we have developed a versatile toolkit of reproducible three-dimensional tumor spheroid models for dynamic, automated, quantitative imaging and analysis that are compatible with routine high-throughput preclinical studies. Not only do these microplate methods measure three-dimensional tumor growth, but they have also been significantly enhanced to facilitate a range of functional assays exemplifying additional key hallmarks of cancer, namely cell motility and matrix invasion. Moreover, mutual tissue invasion and angiogenesis is accommodated by coculturing tumor spheroids with murine embryoid bodies within which angiogenic differentiation occurs. Highly malignant human tumor cells were selected to exemplify therapeutic effects of three specific molecularly-targeted agents: PI-103 (phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor), 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) (heat shock protein 90 (HSP90) inhibitor) and CCT130234 (in-house phospholipase C (PLC)γ inhibitor). Fully automated analysis using a Celigo cytometer was validated for tumor spheroid growth and invasion against standard image analysis techniques, with excellent reproducibility and significantly increased throughput. In addition, we discovered key differential sensitivities to targeted agents between two-dimensional and three-dimensional cultures, and also demonstrated enhanced potency of some agents against cell migration/invasion compared with

  7. Induction of Hsp70 in tumor cells treated with inhibitors of the Hsp90 activity: A predictive marker and promising target for radiosensitization.

    PubMed

    Kudryavtsev, Vladimir A; Khokhlova, Anna V; Mosina, Vera A; Selivanova, Elena I; Kabakov, Alexander E

    2017-01-01

    We studied a role of the inducible heat shock protein 70 (Hsp70) in cellular response to radiosensitizing treatments with inhibitors of the heat shock protein 90 (Hsp90) chaperone activity. Cell lines derived from solid tumors of different origin were treated with the Hsp90 inhibitors (17AAG, geldanamycin, radicicol, NVP-AUY922) or/and γ-photon radiation. For comparison, human cells of the non-cancerous origin were subjected to the same treatments. We found that the Hsp90 inhibitors yielded considerable radiosensitization only when they cause early and pronounced Hsp70 induction; moreover, a magnitude of radiosensitization was positively correlated with the level of Hsp70 induction. The quantification of Hsp70 levels in Hsp90 inhibitor-treated normal and cancer cells enabled to predict which of them will be susceptible to any Hsp90-inhibiting radiosensitizer as well as what concentrations of the inhibitors ensure the preferential cytotoxicity in the irradiated tumors without aggravating radiation damage to adjacent normal tissues. Importantly, the Hsp70 induction in the Hsp90 inhibitor-treated cancer cells appears to be their protective response that alleviates the tumor-sensitizing effects of the Hsp90 inactivation. Combination of the Hsp70-inducing inhibitors of Hsp90 with known inhibitors of the Hsp induction such as quercetin, triptolide, KNK437, NZ28 prevented up-regulation of Hsp70 in the cancer cells thereby increasing their post-radiation apoptotic/necrotic death and decreasing their post-radiation viability/clonogenicity. Similarly, co-treatment with the two inhibitors conferred the enhanced radiosensitization of proliferating rather than quiescent human vascular endothelial cells which may be used for suppressing the tumor-stimulated angiogenesis. Thus, the easily immunodetectable Hsp70 induction can be a useful marker for predicting effects of Hsp90-inhibiting radiosensitizers on tumors and normal tissues exposed to ionizing radiation. Moreover

  8. Induction of Hsp70 in tumor cells treated with inhibitors of the Hsp90 activity: A predictive marker and promising target for radiosensitization

    PubMed Central

    Kudryavtsev, Vladimir A.; Khokhlova, Anna V.; Mosina, Vera A.; Selivanova, Elena I.

    2017-01-01

    We studied a role of the inducible heat shock protein 70 (Hsp70) in cellular response to radiosensitizing treatments with inhibitors of the heat shock protein 90 (Hsp90) chaperone activity. Cell lines derived from solid tumors of different origin were treated with the Hsp90 inhibitors (17AAG, geldanamycin, radicicol, NVP-AUY922) or/and γ-photon radiation. For comparison, human cells of the non-cancerous origin were subjected to the same treatments. We found that the Hsp90 inhibitors yielded considerable radiosensitization only when they cause early and pronounced Hsp70 induction; moreover, a magnitude of radiosensitization was positively correlated with the level of Hsp70 induction. The quantification of Hsp70 levels in Hsp90 inhibitor-treated normal and cancer cells enabled to predict which of them will be susceptible to any Hsp90-inhibiting radiosensitizer as well as what concentrations of the inhibitors ensure the preferential cytotoxicity in the irradiated tumors without aggravating radiation damage to adjacent normal tissues. Importantly, the Hsp70 induction in the Hsp90 inhibitor-treated cancer cells appears to be their protective response that alleviates the tumor-sensitizing effects of the Hsp90 inactivation. Combination of the Hsp70-inducing inhibitors of Hsp90 with known inhibitors of the Hsp induction such as quercetin, triptolide, KNK437, NZ28 prevented up-regulation of Hsp70 in the cancer cells thereby increasing their post-radiation apoptotic/necrotic death and decreasing their post-radiation viability/clonogenicity. Similarly, co-treatment with the two inhibitors conferred the enhanced radiosensitization of proliferating rather than quiescent human vascular endothelial cells which may be used for suppressing the tumor-stimulated angiogenesis. Thus, the easily immunodetectable Hsp70 induction can be a useful marker for predicting effects of Hsp90-inhibiting radiosensitizers on tumors and normal tissues exposed to ionizing radiation. Moreover

  9. Development and Validation of a High-Content Screening Assay to Identify Inhibitors of Cytoplasmic Dynein-Mediated Transport of Glucocorticoid Receptor to the Nucleus

    PubMed Central

    Shinde, Sunita N.; Hua, Yun; Shun, Tong Ying; Lazo, John S.; Day, Billy W.

    2012-01-01

    Abstract Rapid ligand-induced trafficking of glucocorticoid nuclear hormone receptor (GR) from the cytoplasm to the nucleus is an extensively studied model for intracellular retrograde cargo transport employed in constructive morphogenesis and many other cellular functions. Unfortunately, potent and selective small-molecule disruptors of this process are lacking, which has restricted pharmacological investigations. We describe here the development and validation of a 384-well high-content screening (HCS) assay to identify inhibitors of the rapid ligand-induced retrograde translocation of cytoplasmic glucocorticoid nuclear hormone receptor green fluorescent fusion protein (GR-GFP) into the nuclei of 3617.4 mouse mammary adenocarcinoma cells. We selected 3617.4 cells, because they express GR-GFP under the control of a tetracycline (Tet)-repressible promoter and are exceptionally amenable to image acquisition and analysis procedures. Initially, we investigated the time-dependent expression of GR-GFP in 3617.4 cells under Tet-on and Tet-off control to determine the optimal conditions to measure dexamethasone (Dex)-induced GR-GFP nuclear translocation on the ArrayScan-VTI automated imaging platform. We then miniaturized the assay into a 384-well format and validated the performance of the GR-GFP nuclear translocation HCS assay in our 3-day assay signal window and dimethylsulfoxide validation tests. The molecular chaperone heat shock protein 90 (Hsp90) plays an essential role in the regulation of GR steroid binding affinity and ligand-induced retrograde trafficking to the nucleus. We verified that the GR-GFP HCS assay captured the concentration-dependent inhibition of GR-GFP nuclear translocation by 17-AAG, a benzoquinone ansamycin that selectively blocks the binding and hydrolysis of ATP by Hsp90. We screened the 1280 compound library of pharmacologically active compounds set in the Dex-induced GR-GFP nuclear translocation assay and used the multi-parameter HCS data to

  10. Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis.

    PubMed

    Ravindranath, Aakash Chavan; Perualila-Tan, Nolen; Kasim, Adetayo; Drakakis, Georgios; Liggi, Sonia; Brewerton, Suzanne C; Mason, Daniel; Bodkin, Michael J; Evans, David A; Bhagwat, Aditya; Talloen, Willem; Göhlmann, Hinrich W H; Shkedy, Ziv; Bender, Andreas

    2015-01-01

    Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein-ligand binding. This paper spotlights the integration of gene expression data and target prediction scores, providing insight into mechanism of action (MoA). Compounds are clustered based upon the similarity of their predicted protein targets and each cluster is linked to gene sets using Linear Models for Microarray Data. MLP analysis is used to generate gene sets based upon their biological processes and a qualitative search is performed on the homogeneous target-based compound clusters to identify pathways. Genes and proteins were linked through pathways for 6 of the 8 MCF7 and 6 of the 11 PC3 clusters. Three compound clusters are studied; (i) the target-driven cluster involving HSP90 inhibitors, geldanamycin and tanespimycin induces differential expression for HSP90-related genes and overlap with pathway response to unfolded protein. Gene expression results are in agreement with target prediction and pathway annotations add information to enable understanding of MoA. (ii) The antipsychotic cluster shows differential expression for genes LDLR and INSIG-1 and is predicted to target CYP2D6. Pathway steroid metabolic process links the protein and respective genes, hypothesizing the MoA for antipsychotics. A sub-cluster (verepamil and dexverepamil), although sharing similar protein targets with the antipsychotic drug cluster, has a lower intensity of expression profile on related genes, indicating that this method distinguishes close sub-clusters and suggests differences in their MoA. Lastly, (iii) the thiazolidinediones drug cluster predicted peroxisome proliferator activated receptor (PPAR) PPAR-alpha, PPAR-gamma, acyl CoA desaturase and significant differential expression of genes ANGPTL4, FABP4 and PRKCD. The targets and genes are linked via PPAR signalling pathway and induction of apoptosis, generating a hypothesis for the MoA of