Science.gov

Sample records for 17-mer dna substrate

  1. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  2. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; hide

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  3. A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells.

    PubMed

    Monteiro, Claudia; Pinheiro, Marina; Fernandes, Mariana; Maia, Sílvia; Seabra, Catarina L; Ferreira-da-Silva, Frederico; Reis, Salette; Gomes, Paula; Martins, M Cristina L

    2015-08-03

    Antimicrobial peptides are widely recognized as an excellent alternative to conventional antibiotics. MSI-78, a highly effective and broad spectrum AMP, is one of the most promising AMPs for clinical application. In this study, we have designed shorter derivatives of MSI-78 with the aim of improving selectivity while maintaining antimicrobial activity. Shorter 17-mer derivatives were created by truncating MSI-78 at the N- and/or C-termini, while spanning MSI-78 sequence. Despite the truncations made, we found a 17-mer peptide, MSI-78(4-20) (KFLKKAKKFGKAFVKIL), which was demonstrated to be as effective as MSI-78 against the Gram-positive Staphylococcus strains tested and the Gram-negative Pseudomonas aeruginosa. This shorter derivative is more selective toward bacterial cells as it was less toxic to erythrocytes than MSI-78, representing an improved version of the lead peptide. Biophysical studies support a mechanism of action for MSI-78(4-20) based on the disruption of the bacterial membrane permeability barrier, which in turn leads to loss of membrane integrity and ultimately to cell death. These features point to a mechanism of action similar to the one described for the lead peptide MSI-78.

  4. Quantitative detection of single DNA molecules on DNA tetrahedron decorated substrates.

    PubMed

    Wang, Zhenguang; Xue, Qingwang; Tian, Wenzhi; Wang, Lei; Jiang, Wei

    2012-10-07

    A single DNA molecule detection method on DNA tetrahedron decorated substrates has been developed. DNA tetrahedra were introduced onto substrates for both preventing nonspecific adsorption and sensitive recognition of single DNA molecules.

  5. Organo-silane coated substrates for DNA purification

    NASA Astrophysics Data System (ADS)

    Pasquardini, L.; Lunelli, L.; Potrich, C.; Marocchi, L.; Fiorilli, S.; Vozzi, D.; Vanzetti, L.; Gasparini, P.; Anderle, M.; Pederzolli, C.

    2011-10-01

    The use of blood as DNA source to be employed in genetic analysis requires a purification process in order to remove proteins, lipids and any other contaminants, such as hemoglobin, which inhibit PCR. On the other hand, the increasing demand of miniaturized and automated biological tests able to reduce time and cost of analysis, requires the development and the characterization of materials aimed to perform the DNA purification processes in micro-devices. In this work we studied the interaction of DNA molecules with modified silicon based substrates, positively charged after deposition of a (3-aminopropyl)triethoxysilane (APTES) or 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEEA) interfacial layer. The evaluation of the DNA adsorption and elution capacity of different substrates (thermally grown silicon oxide, silicon oxide obtained by plasma enhanced chemical vapour deposition, and Pyrex ®) was studied taking into account the nature of the substrate and the effect of DNA length (in the 208-50,000 base pairs range). Main findings are that DNA elution capacity depends both on the utilized substrate and on the choice of the silanizing agent. Higher DNA recovery was obtained from AEEA-modified substrates, but the eluted DNA had different electrophoretic properties from native DNA. DNA with the same electrophoretic behaviour as genomic DNA was instead recovered from APTES-treated surfaces. Furthermore, the length of DNA present in the starting material strongly modulates the elution efficiency, longer DNA being released in a lesser amount, suggesting that opportunely modified surfaces could be used as systems for differential DNA separation.

  6. The influence of substrate on DNA transfer and extraction efficiency.

    PubMed

    Verdon, Timothy J; Mitchell, R John; van Oorschot, Roland A H

    2013-01-01

    The circumstances surrounding deposition of DNA profiles are increasingly becoming an issue in court proceedings, especially whether or not the deposit was made by primary transfer. In order to improve the currently problematic evaluation of transfer scenarios in court proceedings, we examined the influence a variety of nine substrate types (six varieties of fabric, plywood, tarpaulin, and plastic sheets) has on DNA transfer involving blood. DNA transfer percentages were significantly higher (p=0.03) when the primary substrate was of non-porous material (such as tarpaulin, plastic or, to a lesser degree, wood) and the secondary substrate porous (such as fabrics). These findings on transfer percentages confirm the results of previous studies. Fabric composition was also shown to have a significant (p=0.03) effect on DNA transfer; when experiments were performed with friction from a variety of fabrics to a specific weave of cotton, transfer percentages ranged from 4% (flannelette) to 94% (acetate). The propensity for the same nine substrates to impact upon the efficiency of DNA extraction procedures was also examined. Significant (p=0.03) differences were found among the extraction efficiencies from different materials. When 15μL of blood was deposited on each of the substrates, the lowest quantity of DNA was extracted from plastic (20ng) and the highest quantities extracted from calico and flannelette (650ng). Significant (p<0.05) differences also exist among the DNA extraction yield from different initial blood volumes from all substrates. Also, significantly greater (p<0.05) loss of DNA was seen during concentration of extracts with higher compared to lower initial quantities of DNA. These findings suggest that the efficiency of extraction and concentration impacts upon the final amount of DNA available for analysis and that consideration of these effects should not be ignored. The application of correction factors to adjust for any variation among extraction and

  7. Direct PCR Improves the Recovery of DNA from Various Substrates.

    PubMed

    Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Skuza, Pawel; Linacre, Adrian

    2015-11-01

    This study reports on the comparison of a standard extraction process with the direct PCR approach of processing low-level DNA swabs typical in forensic investigations. Varying concentrations of control DNA were deposited onto three commonly encountered substrates, brass, plastic, and glass, left to dry, and swabbed using premoistened DNA-free nylon FLOQswabs(™) . Swabs (n = 90) were either processed using the DNA IQ(™) kit or, for direct PCR, swab fibers (~2 mm(2) ) were added directly to the PCR with no prior extraction. A significant increase in the height of the alleles (p < 0.005) was observed when using the direct PCR approach over the extraction methodology when controlling for surface type and mass of DNA deposited. The findings indicate the potential use of direct PCR for increasing the PCR product obtained from low-template DNA samples in addition to minimizing contamination and saving resources.

  8. Novel Substrates as Sources of Ancient DNA: Prospects and Hurdles

    PubMed Central

    Green, Eleanor Joan

    2017-01-01

    Following the discovery in the late 1980s that hard tissues such as bones and teeth preserve genetic information, the field of ancient DNA analysis has typically concentrated upon these substrates. The onset of high-throughput sequencing, combined with optimized DNA recovery methods, has enabled the analysis of a myriad of ancient species and specimens worldwide, dating back to the Middle Pleistocene. Despite the growing sophistication of analytical techniques, the genetic analysis of substrates other than bone and dentine remain comparatively “novel”. Here, we review analyses of other biological substrates which offer great potential for elucidating phylogenetic relationships, paleoenvironments, and microbial ecosystems including (1) archaeological artifacts and ecofacts; (2) calcified and/or mineralized biological deposits; and (3) biological and cultural archives. We conclude that there is a pressing need for more refined models of DNA preservation and bespoke tools for DNA extraction and analysis to authenticate and maximize the utility of the data obtained. With such tools in place the potential for neglected or underexploited substrates to provide a unique insight into phylogenetics, microbial evolution and evolutionary processes will be realized. PMID:28703741

  9. Arrays of Individual DNA Molecules on Nanopatterned Substrates

    NASA Astrophysics Data System (ADS)

    Hager, Roland; Halilovic, Alma; Burns, Jonathan R.; Schäffler, Friedrich; Howorka, Stefan

    2017-02-01

    Arrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions. Here, we create single-molecule arrays by electrostatically adhering single-stranded DNA of gene-like length onto positively charged carbon nanoislands. The nanosites are so small that only one molecule can bind per island. Undesired adsorption of DNA to the surrounding non-target areas is prevented via a surface-passivating film. Of further relevance, the DNA arrays are of tunable dimensions, and fabricated on optically transparent substrates that enable singe-molecule detection with fluorescence microscopy. The arrays are hence compatible with a wide range of bioanalytical, biophysical, and cell biological studies where individual DNA strands are either examined in isolation, or interact with other molecules or cells.

  10. Arrays of Individual DNA Molecules on Nanopatterned Substrates

    PubMed Central

    Hager, Roland; Halilovic, Alma; Burns, Jonathan R.; Schäffler, Friedrich; Howorka, Stefan

    2017-01-01

    Arrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions. Here, we create single-molecule arrays by electrostatically adhering single-stranded DNA of gene-like length onto positively charged carbon nanoislands. The nanosites are so small that only one molecule can bind per island. Undesired adsorption of DNA to the surrounding non-target areas is prevented via a surface-passivating film. Of further relevance, the DNA arrays are of tunable dimensions, and fabricated on optically transparent substrates that enable singe-molecule detection with fluorescence microscopy. The arrays are hence compatible with a wide range of bioanalytical, biophysical, and cell biological studies where individual DNA strands are either examined in isolation, or interact with other molecules or cells. PMID:28198806

  11. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase

    PubMed Central

    Bauer, Robert J.; Evans, Thomas C.; Lohman, Gregory J. S.

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. PMID:26954034

  12. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

    PubMed

    Bauer, Robert J; Evans, Thomas C; Lohman, Gregory J S

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.

  13. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    PubMed

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  14. RNautophagy/DNautophagy possesses selectivity for RNA/DNA substrates.

    PubMed

    Hase, Katsunori; Fujiwara, Yuuki; Kikuchi, Hisae; Aizawa, Shu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Wada, Keiji; Kabuta, Tomohiro

    2015-07-27

    Lysosomes can degrade various biological macromolecules, including nucleic acids, proteins and lipids. Recently, we identified novel nucleic acid-degradation systems termed RNautophagy/DNautophagy (abbreviated as RDA), in which RNA and DNA are directly taken up by lysosomes in an ATP-dependent manner and degraded. We also found that a lysosomal membrane protein, LAMP2C, the cytoplasmic region of which binds to RNA and DNA, functions, at least in part, as an RNA/DNA receptor in the process of RDA. However, it has been unclear whether RDA possesses selectivity for RNA/DNA substrates and the RNA/DNA sequences that are recognized by LAMP2C have not been determined. In the present study, we found that the cytosolic region of LAMP2C binds to poly-G/dG, but not to poly-A/dA, poly-C/dC, poly-dT or poly-U. Consistent with this binding activity, poly-G/dG was transported into isolated lysosomes via RDA, while poly-A/dA, poly-C/dC, poly-dT and poly-U were not. GGGGGG or d(GGGG) sequences are essential for the interaction between poly-G/dG and LAMP2C. In addition to poly-G/dG, G/dG-rich sequences, such as a repeated GGGGCC sequence, interacted with the cytosolic region of LAMP2C. Our findings indicate that RDA does possess selectivity for RNA/DNA substrates and that at least some consecutive G/dG sequence(s) can mediate RDA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. RNautophagy/DNautophagy possesses selectivity for RNA/DNA substrates

    PubMed Central

    Hase, Katsunori; Fujiwara, Yuuki; Kikuchi, Hisae; Aizawa, Shu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Wada, Keiji; Kabuta, Tomohiro

    2015-01-01

    Lysosomes can degrade various biological macromolecules, including nucleic acids, proteins and lipids. Recently, we identified novel nucleic acid-degradation systems termed RNautophagy/DNautophagy (abbreviated as RDA), in which RNA and DNA are directly taken up by lysosomes in an ATP-dependent manner and degraded. We also found that a lysosomal membrane protein, LAMP2C, the cytoplasmic region of which binds to RNA and DNA, functions, at least in part, as an RNA/DNA receptor in the process of RDA. However, it has been unclear whether RDA possesses selectivity for RNA/DNA substrates and the RNA/DNA sequences that are recognized by LAMP2C have not been determined. In the present study, we found that the cytosolic region of LAMP2C binds to poly-G/dG, but not to poly-A/dA, poly-C/dC, poly-dT or poly-U. Consistent with this binding activity, poly-G/dG was transported into isolated lysosomes via RDA, while poly-A/dA, poly-C/dC, poly-dT and poly-U were not. GGGGGG or d(GGGG) sequences are essential for the interaction between poly-G/dG and LAMP2C. In addition to poly-G/dG, G/dG-rich sequences, such as a repeated GGGGCC sequence, interacted with the cytosolic region of LAMP2C. Our findings indicate that RDA does possess selectivity for RNA/DNA substrates and that at least some consecutive G/dG sequence(s) can mediate RDA. PMID:26038313

  16. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation

    PubMed Central

    Arab, Khelifa; Kienhöfer, Sabine; von Seggern, Annika; Niehrs, Christof

    2016-01-01

    DNA 5-methylcytosine is a dynamic epigenetic mark which plays important roles in development and disease. In the Tet-Tdg demethylation pathway, methylated cytosine is iteratively oxidized by Tet dioxygenases and unmodified cytosine is restored via thymine DNA glycosylase (Tdg). Here we show that human NEIL1 and NEIL2 DNA glycosylases coordinate abasic site processing during TET–TDG DNA demethylation. NEIL1 and NEIL2 cooperate with TDG during base excision: TDG occupies the abasic site and is displaced by NEILs, which further process the baseless sugar, thereby stimulating TDG substrate turnover. In early Xenopus embryos Neil2 cooperates with Tdg to remove oxidized methylcytosines and to specify neural crest development together with Tet3. Thus, Neils function as AP lyases in the coordinated AP site hand-over during oxidative DNA demethylation. PMID:26751644

  17. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    SciTech Connect

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A.; Lees-Miller, S.P.; Lintott, L.G.; Sakaguchi, Kazuyasu; Appella, E.

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  18. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.

    PubMed

    Dizdaroglu, Miral; Coskun, Erdem; Jaruga, Pawel

    Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy. Published by Elsevier B.V.

  19. Measurements of the binding of a large protein using a substrate density-controlled DNA chip.

    PubMed

    Nakano, Shu-ichi; Kanzaki, Takayuki; Nakano, Mariko; Miyoshi, Daisuke; Sugimoto, Naoki

    2011-08-15

    The DNA chip that immobilizes DNA oligonucleotides on a solid plate surface is used for many diagnostic applications. For maximizing the detection sensitivity and accuracy, it is important to control the DNA density on a chip surface and establish a convenient method for optimizing the density. Here, the binding of DNA mismatch-binding protein MutS to the DNA substrate on the chip was investigated, which can be applied for high-throughput single-nucleotide polymorphism analysis in a genome. We prepared the DNA chips where the DNA substrate density was changed simply by using a mixed DNA solution. The binding of MutS was significantly influenced by the amount of DNA substrate on the chip as a consequence of steric crowding, and the moderate density that gave the distance between the DNA substrates greater than the size of the protein was appropriate to obtain accurate kinetic parameters. The substrate density-controlled DNA chip prepared using the mixed DNA solution has distinctive advantages for maximizing the detection capability and kinetic analysis of the binding of MutS and probably also other large proteins.

  20. Simple method of DNA stretching on glass substrate for fluorescence image and spectroscopy

    NASA Astrophysics Data System (ADS)

    Neupane, Guru P.; Dhakal, Krishna P.; Lee, Hyunsoo; Guthold, Martin; Joseph, Vincent S.; Hong, Jong-Dal; Kim, Jeongyong

    2013-05-01

    Study of biological molecule DNA has contributed to developing many breaking thoughts and wide applications in multidisciplinary fields, such as genomic, medical, sensing and forensic fields. Stretching of DNA molecules is an important supportive tool for AFM or spectroscopic studies of DNA in a single molecular level. In this article, we established a simple method of DNA stretching (to its full length) that occurred on a rotating negatively-charged surface of glass substrate. The isolation of a single DNA molecule was attained by the two competitive forces on DNA molecules, that is, the electrostatic attraction developed between the positively charged YOYO-1 stained DNA and the negatively charged substrate, and the centrifugal force of the rotating substrate, which separates the DNA aggregates into the single molecule. Density of stretched DNA molecules was controlled by selecting the specific parameters such as spinning time and rates, loading volume of DNA-dye complex solution etc. The atomic force microscopy image exhibited a single DNA molecule on the negatively-charged substrate in an isolated state. Further, the photoluminescence spectra of a single DNA molecule stained with YOYO-1 were achieved using the method developed in the present study, which is strongly believed to effectively support the spectroscopic analysis of DNA in a single molecular level.

  1. Unique structural modulation of a non-native substrate by cochaperone DnaJ.

    PubMed

    Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli

    2013-02-12

    The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.

  2. Simple method of DNA stretching on glass substrate for fluorescence imaging and spectroscopy.

    PubMed

    Neupane, Guru P; Dhakal, Krishna P; Kim, Min Su; Lee, Hyunsoo; Guthold, Martin; Joseph, Vincent S; Hong, Jong-Dal; Kim, Jeongyong

    2014-05-01

    We demonstrate a simple method of stretching DNA to its full length, suitable for optical imaging and atomic force microscopy (AFM). Two competing forces on the DNA molecules, which are the electrostatic attraction between positively charged dye molecules (YOYO-1) intercalated into DNA and the negatively charged surface of glass substrate, and the centrifugal force of the rotating substrate, are mainly responsible for the effective stretching and the dispersion of single strands of DNA. The density of stretched DNA molecules could be controlled by the concentration of the dye-stained DNA solution. Stretching of single DNA molecules was confirmed by AFM imaging and the photoluminescence spectra of single DNA molecule stained with YOYO-1 were obtained, suggesting that our method is useful for spectroscopic analysis of DNA at the single molecule level.

  3. [Effect of supporting substrates on the structure of DNA and DNA-trivaline complexes studied by atomic force microscopy].

    PubMed

    Klinov, D V; Martynkina, L P; Iurchenko, V Iu; Demin, V V; Strel'tsov, S A; Gerasimov, Iu A; Vengerov, Iu Iu

    2003-01-01

    Linear DNA, circular DNA, and circular DNA complexes with trivaline (TV), a synthetic oligopeptide, were imaged by atomic force microscopy (AFM) using mica as a conventional supporting substrate and modified highly ordered pyrolytic graphite (HOPG) as an alternative substrate. A method of modifying the HOPG surface was developed that enabled the adsorption of DNA and DNA-TV complexes onto this surface. On mica, both purified DNA and DNA-TV complexes were shown to undergo significant structural distortions: DNA molecules decrease in height and DNA-TP displays substantial changes in the shape of its circular compact structures. Use of the HOPG support helps preserve the structural integrity of the complexes and increase the measured height of DNA molecules up to 2 nm. AFM with the HOPG support was shown to efficiently reveal the particular points of the complexes where, according to known models of their organization, a great number of bent DNA fibers meet. These results provide additional information on DNA organization in its complexes with TV and are also of methodological interest, since the use of the modified HOPG may widen the possibilities of AFM in studying DNA and its complexes with various ligands.

  4. Hydrolytic cleavage of DNA-model substrates promoted by polyoxovanadates.

    PubMed

    Steens, Nele; Ramadan, Ahmed M; Absillis, Gregory; Parac-Vogt, Tatjana N

    2010-01-14

    Hydrolysis of 4-nitrophenyl phosphate (NPP) and bis-4-nitrophenyl phosphate (BNPP), two commonly used DNA model substrates, was examined in vanadate solutions by means of (1)H, (31)P and (51)V NMR spectroscopy. The hydrolysis of the phosphoester bond in NPP at 50 degrees C and pH 5.0 proceeds with a rate constant of 1.74 x 10(-5) s(-1). The cleavage of the phosphoester bond in BNPP at 70 degrees C and pH 5.0 proceeds with a rate constant of 3.32 x 10(-6) s(-1), representing an acceleration of four orders of magnitude compared to the uncatalyzed cleavage. Inorganic phosphate and nitrophenol (NP) were the only products of hydrolysis. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of V(V) reduction to V(IV), indicating that the cleavage of the phosphoester bond is purely hydrolytic. The pH dependence of k(obs) revealed that the hydrolysis proceeds fastest in solutions of pH 5.5. Comparison of the rate profile with the concentration profile of polyoxovanadates shows a striking overlap of the k(obs) profile with the concentration of decavanadate (V(10)). Kinetic experiments at 37 degrees C using a fixed amount of NPP and increasing amounts of V(10) permitted the calculation of catalytic (k(c) = 5.67 x 10(-6) s(-1)) and formation constants for the NPP-V(10) complex (K(f) = 71.53 M(-1)). Variable temperature (31)P NMR spectra of a reaction mixture revealed broadening and shifting of the (31)P resonance upon addition of increasing amounts of decavanadate and upon increasing temperature, implying the dynamic exchange process between free and bound NPP at higher temperatures. The origin of the hydrolytic activity of V(10) is most likely due its high lability and its dissociation into smaller fragments which may allow the attachment of NPP and BNPP into the polyoxovanadate framework.

  5. Is the detection of aquatic environmental DNA influenced by substrate type?

    PubMed Central

    Groombridge, Jim J.; Griffiths, Richard A.

    2017-01-01

    The use of environmental DNA (eDNA) to assess the presence-absence of rare, cryptic or invasive species is hindered by a poor understanding of the factors that can remove DNA from the system. In aquatic systems, eDNA can be transported out either horizontally in water flows or vertically by incorporation into the sediment. Equally, eDNA may be broken down by various biotic and abiotic processes if the target organism leaves the system. We use occupancy modelling and a replicated mesocosm experiment to examine how detection probability of eDNA changes once the target species is no longer present. We hypothesise that detection probability falls faster with a sediment which has a large number of DNA binding sites such as topsoil or clay, over lower DNA binding capacity substrates such as sand. Water removed from ponds containing the target species (the great crested newt) initially showed high detection probabilities, but these fell to between 40% and 60% over the first 10 days and to between 10% and 22% by day 15: eDNA remained detectable at very low levels until day 22. Very little difference in detection was observed between the control group (no substrate) and the sand substrate. A small reduction in detection probability was observed between the control and clay substrates, but this was not significant. However, a highly significant reduction in detection probability was observed with a topsoil substrate. This result is likely to have stemmed from increased levels of PCR inhibition, suggesting that incorporation of DNA into the sentiment is of only limited importance. Surveys of aquatic species using eDNA clearly need to take account of substrate type as well as other environmental factors when collecting samples, analysing data and interpreting the results. PMID:28813525

  6. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition

    PubMed Central

    Newman, Matthew; Murray-Rust, Judith; Lally, John; Rudolf, Jana; Fadden, Andrew; Knowles, Philip P; White, Malcolm F; McDonald, Neil Q

    2005-01-01

    The XPF/Mus81 structure-specific endonucleases cleave double-stranded DNA (dsDNA) within asymmetric branched DNA substrates and play an essential role in nucleotide excision repair, recombination and genome integrity. We report the structure of an archaeal XPF homodimer alone and bound to dsDNA. Superposition of these structures reveals a large domain movement upon binding DNA, indicating how the (HhH)2 domain and the nuclease domain are coupled to allow the recognition of double-stranded/single-stranded DNA junctions. We identify two nonequivalent DNA-binding sites and propose a model in which XPF distorts the 3′ flap substrate in order to engage both binding sites and promote strand cleavage. The model rationalises published biochemical data and implies a novel role for the ERCC1 subunit of eukaryotic XPF complexes. PMID:15719018

  7. The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair.

    PubMed

    Toueille, Magali; El-Andaloussi, Nazim; Frouin, Isabelle; Freire, Raimundo; Funk, Dorothee; Shevelev, Igor; Friedrich-Heineken, Erica; Villani, Giuseppe; Hottiger, Michael O; Hübscher, Ulrich

    2004-01-01

    In eukaryotic cells, checkpoints are activated in response to DNA damage. This requires the action of DNA damage sensors such as the Rad family proteins. The three human proteins Rad9, Rad1 and Hus1 form a heterotrimeric complex (called the 9-1-1 complex) that is recruited onto DNA upon damage. DNA damage also triggers the recruitment of DNA repair proteins at the lesion, including specialized DNA polymerases. In this work, we showed that the 9-1-1 complex can physically interact with DNA polymerase beta in vitro. Functional analysis revealed that the 9-1-1 complex had a stimulatory effect on DNA polymerase beta activity. However, the presence of 9-1-1 complex neither affected DNA polymerase lambda, another X family DNA polymerase, nor the two replicative DNA polymerases alpha and delta. DNA polymerase beta stimulation resulted from an increase in its affinity for the primer-template and the interaction with the 9-1-1 complex stimulated deoxyribonucleotides misincorporation by DNA polymerase beta. In addition, the 9-1-1 complex enhanced DNA strand displacement synthesis by DNA polymerase beta on a 1 nt gap DNA substrate. Our data raise the possibility that the 9-1-1 complex might attract DNA polymerase beta to DNA damage sites, thus connecting directly checkpoints and DNA repair.

  8. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition

    PubMed Central

    Wienk, Hans; Slootweg, Jack C.; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2013-01-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition. PMID:23661679

  9. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition.

    PubMed

    Wienk, Hans; Slootweg, Jack C; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2013-07-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.

  10. Systematic study for DNA recovery and profiling from common IED substrates: From laboratory to casework.

    PubMed

    Phetpeng, Sukanya; Kitpipit, Thitika; Thanakiatkrai, Phuvadol

    2015-07-01

    Improvised explosive devices (IEDs) made from household items are encountered in terrorist attacks worldwide. Assembling an IED leaves trace DNA on its components, but deflagration degrades DNA. To maximize the amount of DNA recovered, a systematic evaluation of DNA collection methods was carried out and the most efficient methods were implemented with IED casework evidence as a validation exercise. Six swab types and six moistening agents were used to collect dried buffy coat stains on four common IED substrates. The most efficient swab/moistening agent combinations were then compared with tape-lifting using three brands of adhesive tape and also with direct DNA extraction from evidence. The most efficient collection methods for different IED substrates (post-study protocol) were then implemented for IED casework and compared with the pre-study protocol using 195 pieces of IED evidence. There was no single best swab type or moistening agent. Swab type had the largest effect on DNA recovery percentages, but moistening agents, substrates, and the interactions between factors all affected DNA recovery. The most efficient swab/moistening agent combinations performed equally well when compared with the best adhesive tape and direct extraction. The post-study protocol significantly improved STR profiles obtained from IED evidence. This paper outlines a comprehensive study of DNA collection methods for trace DNA and the validation of the most efficient collection methods with IED evidence. The findings from both parts of this study emphasize the need to continuously re-evaluate standard operating protocols with empirical studies.

  11. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    PubMed

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  12. Elongated unique DNA strand deposition on microstructured substrate by receding meniscus assembly and capillary force

    PubMed Central

    Charlot, B.; Bardin, F.; Sanchez, N.; Roux, P.; Teixeira, S.; Schwob, E.

    2014-01-01

    Ordered deposition of elongated DNA molecules was achieved by the forced dewetting of a DNA solution droplet over a microstructured substrate. This technique allows trapping, uncoiling, and deposition of DNA fragments without the need of a physicochemical anchoring of the molecule and results in the combing of double stranded DNA from the edge of microwells on a polydimethylsiloxane (PDMS) substrate. The technique involves scanning a droplet of DNA solution caught between a movable blade and a PDMS substrate containing an array of microwells. The deposition and elongation appears when the receding meniscus dewets microwells, the latter acting here as a perturbation in the dewetting line forcing the water film to break locally. Thus, DNA molecules can be deposited in an ordered manner and elongated conformation based solely on a physical phenomenon, allowing uncoiled DNA molecules to be observed in all their length. However, the exact mechanism that governs the deposition of DNA strands is not well understood. This paper is an analysis of the physical phenomenon occurring in the deposition process and is based on observations made with the use of high frame/second rate video microscopy. PMID:24753724

  13. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions).

  14. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation

    PubMed Central

    Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-01-01

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888

  15. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation.

    PubMed

    Pillers, Michelle A; Shute, Rebecca; Farchone, Adam; Linder, Keenan P; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-07-23

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described.

  16. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    SciTech Connect

    Lee, Seongmin; Verdine, Gregory L.

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.

  17. Label free detection of DNA on Au/ZnO/Ag hybrid structure based SERS substrate

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Mohan, D. Bharathi

    2016-04-01

    Au/ZnO/Ag based SERS substrate was fabricated for the label free detection of DNA of Escherichia Coli bacteria. The SERS substrate was fabricated by growing ZnO nanorod arrays on thermally evaporated ultrathin Ag film of 5 nm thickness using hydrothermal process. Non-spherical like Au nanoparticles were decorated on ZnO nanorod arrays by sputtering technique with sputtering time of 45 sec. The surface of Au/ZnO/Ag was observed to be nearly superhydrophobic exhibiting the contact angle of 144 °. A low volume (5 µl) of aqueous solution of DNA of laboratory strain Escherichia Coli with very low concentration was adsorbed on fabricated SERS substrate by drop casting. The SERS detection of DNA molecules was achieved up to lower concentration of 10-8 M due to strong local electric field enhancement at the nanometer gap among Au nanoparticles and superhydrophobic nature of Au/ZnO/Ag surface.

  18. A three-dimensional waveguide substrate for DNA-microarrays based on macroporous silicon

    NASA Astrophysics Data System (ADS)

    Dertinger, Stephan K.; Klühr, Marco; Sauermann, Alexander; Thein, Kerstin

    2005-06-01

    In this paper we present a three-dimensional waveguide structure with unique optical and fluidic properties and demonstrate its application as a substrate for DNA microarrays. The structure is fabricated by thermal oxidation of a macroporous silicon membrane with a periodic pattern of discrete microchannels running perpendicular through the substrate. Partial oxidation generates compartments with channel walls that are completely converted into SiO2 but leaves a rectangular grid of silicon walls separating the SiO2 compartments. We demonstrate that the SiO2 walls act as optical waveguides and the opaque silicon walls divide the substrate into optically isolated compartments. In DNA microarray experiments, we show that the silicon walls of the compartments prevent cross talk between adjacent DNA spots. The structure is compatible with all conventional read-out techniques such as fluorescence, chemiluminescence, and precipitation staining.

  19. In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate.

    PubMed

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Marchi, Alexandria N; LaBean, Thomas H; Tian, Jingdong

    2010-02-01

    Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.

  20. A DNA Sequence Recognition Loop on APOBEC3A Controls Substrate Specificity

    PubMed Central

    Dhuey, Erica; Zhang, Ruonan; Cao, Ping; Herate, Cecile; Chauveau, Lise; Hubbard, Stevan R.; Landau, Nathaniel R.

    2014-01-01

    APOBEC3A (A3A), one of the seven-member APOBEC3 family of cytidine deaminases, lacks strong antiviral activity against lentiviruses but is a potent inhibitor of adeno-associated virus and endogenous retroelements. In this report, we characterize the biochemical properties of mammalian cell-produced and catalytically active E. coli-produced A3A. The enzyme binds to single-stranded DNA with a Kd of 150 nM and forms dimeric and monomeric fractions. A3A, unlike APOBEC3G (A3G), deaminates DNA substrates nonprocessively. Using a panel of oligonucleotides that contained all possible trinucleotide contexts, we identified the preferred target sequence as TC (A/G). Based on a three-dimensional model of A3A, we identified a putative binding groove that contains residues with the potential to bind substrate DNA and to influence target sequence specificity. Taking advantage of the sequence similarity to the catalytic domain of A3G, we generated A3A/A3G chimeric proteins and analyzed their target site preference. We identified a recognition loop that altered A3A sequence specificity, broadening its target sequence preference. Mutation of amino acids in the predicted DNA binding groove prevented substrate binding, confirming the role of this groove in substrate binding. These findings shed light on how APOBEC3 proteins bind their substrate and determine which sites to deaminate. PMID:24827831

  1. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  2. DNA as a universal substrate for chemical kinetics.

    PubMed

    Soloveichik, David; Seelig, Georg; Winfree, Erik

    2010-03-23

    Molecular programming aims to systematically engineer molecular and chemical systems of autonomous function and ever-increasing complexity. A key goal is to develop embedded control circuitry within a chemical system to direct molecular events. Here we show that systems of DNA molecules can be constructed that closely approximate the dynamic behavior of arbitrary systems of coupled chemical reactions. By using strand displacement reactions as a primitive, we construct reaction cascades with effectively unimolecular and bimolecular kinetics. Our construction allows individual reactions to be coupled in arbitrary ways such that reactants can participate in multiple reactions simultaneously, reproducing the desired dynamical properties. Thus arbitrary systems of chemical equations can be compiled into real chemical systems. We illustrate our method on the Lotka-Volterra oscillator, a limit-cycle oscillator, a chaotic system, and systems implementing feedback digital logic and algorithmic behavior.

  3. DNA as a universal substrate for chemical kinetics

    PubMed Central

    Soloveichik, David; Seelig, Georg; Winfree, Erik

    2010-01-01

    Molecular programming aims to systematically engineer molecular and chemical systems of autonomous function and ever-increasing complexity. A key goal is to develop embedded control circuitry within a chemical system to direct molecular events. Here we show that systems of DNA molecules can be constructed that closely approximate the dynamic behavior of arbitrary systems of coupled chemical reactions. By using strand displacement reactions as a primitive, we construct reaction cascades with effectively unimolecular and bimolecular kinetics. Our construction allows individual reactions to be coupled in arbitrary ways such that reactants can participate in multiple reactions simultaneously, reproducing the desired dynamical properties. Thus arbitrary systems of chemical equations can be compiled into real chemical systems. We illustrate our method on the Lotka–Volterra oscillator, a limit-cycle oscillator, a chaotic system, and systems implementing feedback digital logic and algorithmic behavior. PMID:20203007

  4. Development of Long, Stiff DNA Tubes as Nanopatterned Substrates for Protein Binding

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Rothemund, Paul; Fygenson, Deborah

    2005-03-01

    We describe progress towards developing DNA Nanotubes into a tool for nano-patterning and assaying protein binding. DNA nanotubes are uniquely accessible equilibrium polymers made of motifs known as double- crossovers (DX units). They are typically 10 nm in diameter, up to 100 microns in length and correspondingly stiff (persistence length longer than 5 microns). We have predicted and thereby manipulated the tube-structure to selectively decorate the tubes along the interior or the exterior surface. This ability allows us to use DNA tubes as protein-binding substrates with unusually high density of binding-sites (around 500 within a micron), arrayed along the exterior of a tube in a regular lattice of 14.5 nm x 4 nm. We describe results showing the use of DNA Nanotubes as substrates for proteins such as ligase, restriction enzymes and regulatory proteins.

  5. Characterization of DNA Substrate Binding to the Phosphatase Domain of the DNA Repair Enzyme Polynucleotide Kinase/Phosphatase.

    PubMed

    Havali-Shahriari, Zahra; Weinfeld, Michael; Glover, J N Mark

    2017-03-28

    Polynucleotide kinase/phosphatase (PNKP) is a DNA strand break repair enzyme that uses separate 5' kinase and 3' phosphatase active sites to convert damaged 5'-hydroxyl/3'-phosphate strand termini to ligatable 5'-phosphate/3'-hydroxyl ends. The phosphatase active site has received particular attention as a target of inhibition in cancer therapy development. The phosphatase domain dephosphorylates a range of single- and double-stranded substrates; however, structural studies have shown that the phosphatase catalytic cleft can bind only single-stranded substrates. Here we use a catalytically inactive but structurally intact phosphatase mutant to probe interactions between PNKP and a variety of single- and double-stranded DNA substrates using an electrophoretic mobility shift assay. This work indicates that the phosphatase domain binds 3'-phosphorylated single-stranded DNAs in a manner that is highly dependent on the presence of the 3'-phosphate. Double-stranded substrate binding, in contrast, is not as dependent on the 3'-phosphate. Experiments comparing blunt-end, 3'-overhanging, and frayed-end substrates indicate that the predicted loss of energy due to base pair disruption upon binding of the phosphatase active site is likely balanced by favorable interactions between the liberated complementary strand and PNKP. Comparison of the effects on substrate binding of mutations within the phosphatase active site cleft with mutations in surrounding positively charged surfaces suggests that the surrounding surfaces are important for binding to double-stranded substrates. We further show that while fluorescence polarization methods can detect specific binding of single-stranded DNAs with the phosphatase domain, this method does not detect specific interactions between the PNKP phosphatase and double-stranded substrates.

  6. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates.

    PubMed

    Rosenblum, Sydney L; Weiden, Aurora G; Lewis, Eliza L; Ogonowsky, Alexie L; Chia, Hannah E; Barrett, Susanna E; Liu, Mira D; Leconte, Aaron M

    2017-04-18

    Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation.

    PubMed

    Wright, William Douglass; Heyer, Wolf-Dietrich

    2014-02-06

    The displacement loop (D loop) is the product of homology search and DNA strand invasion, constituting a central intermediate in homologous recombination (HR). In eukaryotes, the Rad51 DNA strand exchange protein is assisted in D loop formation by the Rad54 motor protein. Curiously, Rad54 also disrupts D loops. How these opposing activities are coordinated toward productive recombination is unknown. Moreover, a seemingly disparate function of Rad54 is removal of Rad51 from heteroduplex DNA (hDNA) to allow HR-associated DNA synthesis. Here, we uncover features of D loop formation/dissociation dynamics, employing Rad51 filaments formed on ssDNAs that mimic the physiological length and structure of in vivo substrates. The Rad54 motor is activated by Rad51 bound to synapsed DNAs and guided by a ssDNA-binding domain. We present a unified model wherein Rad54 acts as an hDNA pump that drives D loop formation while simultaneously removing Rad51 from hDNA, consolidating both ATP-dependent activities of Rad54 into a single mechanistic step.

  8. Is thymidine glycol containing DNA a substrate of E. coli DNA mismatch repair system?

    PubMed

    Perevozchikova, Svetlana A; Trikin, Roman M; Heinze, Roger J; Romanova, Elena A; Oretskaya, Tatiana S; Friedhoff, Peter; Kubareva, Elena A

    2014-01-01

    The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active "sliding clamp" conformation on Tg-DNA is problematic.

  9. RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase: evidence of discrimination between DNA and RNA substrates.

    PubMed

    Kerr, S G; Anderson, K S

    1997-11-18

    The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template-primer is employed as compared with the corresponding DNA/DNA template-primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (kpol) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s-1, respectively. The equilibrium dissociation constants (Kd) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 x 10(6) for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template-primer substrates, HIV-1 RT exhibits approximately a 10-60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation.

  10. TDAB-induced DNA plasmid condensation on the surface of a reconstructed boron doped silicon substrate

    NASA Astrophysics Data System (ADS)

    Mougin, Antoine; Babak, Valéry G.; Palmino, Frank; Bêche, Eric; Baros, Francis; Hunting, Darel J.; Sanche, Léon; Fromm, Michel

    Our study aims at a better control and understanding of the transfer of a complex [DNA supercoiled plasmid - dodecyltrimethylammonium surfactant] layer from a liquid-vapour water interface onto a silicon surface without any additional cross-linker. The production of the complexed layer and its transfer from the aqueous subphase to the substrate is achieved with a Langmuir-Blodgett device. The substrate consists of a reconstructed boron doped silicon substrate with a nanometer-scale roughness. Using X-ray photoelectron spectroscopy and atomic force microscopy measurements, it is shown that the DNA complexes are stretched in a disorderly manner throughout a 2-4 nm high net-like structure. This architecture is composed of tilted cationic surfactant molecules bound electrostatically to DNA, which exhibits a characteristic network arrangement with a measured average fiber diameter of about 45 ± 15 nm covering the entire surface. The mechanism of transfer of this layer onto the planar surface of the semi-conductor and the parameters of the process are analysed and illustrated by atomic force microscopy snapshots. The molecular layer exhibits the typical characteristics of a spinodal decomposition pattern or dewetting features. Plasmid molecules appear like long flattened fibers covering the surface, forming holes of various shapes and areas. The cluster-cluster aggregation of the complex structure gets very much denser on the substrate edge. The supercoiled DNA plasmids undergo conformational changes and a high degree of condensation and aggregation is observed. Perspectives and potential applications are considered.

  11. Nonhomologous DNA end joining of synthetic hairpin substrates in Xenopus laevis egg extracts.

    PubMed Central

    Beyert, N; Reichenberger, S; Peters, M; Hartung, M; Göttlich, B; Goedecke, W; Vielmetter, W; Pfeiffer, P

    1994-01-01

    Processes of DNA end joining are assumed to play a major role in the elimination of DNA double-strand breaks (DSB) in higher eucaryotic cells. Linear plasmid molecules terminated by nonhomologous restriction ends are the typical substrates used in the analysis of joining mechanisms. However, due to their limited structural variability, DSB ends generated by restriction cleavage cover probably only part of the total spectrum of naturally occurring DSB termini. We therefore devised novel DNA substrates consisting of synthetic hairpin-shaped oligonucleotides which permit the construction of blunt ends and 5'- or 3'-protruding single-strands (PSS) of arbitrary sequence and length. These substrates were tested in extracts of Xenopus laevis eggs known to efficiently join linear plasmids bearing nonhomologous restriction termini (Pfeiffer and Vielmetter, 1988). Sequences of hairpin junctions indicate that the short hairpins are joined by the same mechanisms as the plasmid substrates. However, the bimolecular DNA end joining reaction was only detectable when both hairpin partners had a minimal duplex stem length of 27bp and their PSS-tails did not exceed 10nt. Images PMID:8202366

  12. In Vitro Selection of Optimal DNA Substrates for Ligation by a Water-Soluble Carbodiimide

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1994-01-01

    We have used in vitro selection to investigate the sequence requirements for efficient template-directed ligation of oligonucleotides at 0 deg C using a water-soluble carbodiimide as condensing agent. We find that only 2 bp at each side of the ligation junction are needed. We also studied chemical ligation of substrate ensembles that we have previously selected as optimal by RNA ligase or by DNA ligase. As anticipated, we find that substrates selected with DNA ligase ligate efficiently with a chemical ligating agent, and vice versa. Substrates selected using RNA ligase are not ligated by the chemical condensing agent and vice versa. The implications of these results for prebiotic chemistry are discussed.

  13. In Vitro Selection of Optimal DNA Substrates for Ligation by a Water-Soluble Carbodiimide

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1994-01-01

    We have used in vitro selection to investigate the sequence requirements for efficient template-directed ligation of oligonucleotides at 0 deg C using a water-soluble carbodiimide as condensing agent. We find that only 2 bp at each side of the ligation junction are needed. We also studied chemical ligation of substrate ensembles that we have previously selected as optimal by RNA ligase or by DNA ligase. As anticipated, we find that substrates selected with DNA ligase ligate efficiently with a chemical ligating agent, and vice versa. Substrates selected using RNA ligase are not ligated by the chemical condensing agent and vice versa. The implications of these results for prebiotic chemistry are discussed.

  14. Caulobacter crescentus Cell Cycle-Regulated DNA Methyltransferase Uses a Novel Mechanism for Substrate Recognition.

    PubMed

    Woodcock, Clayton B; Yakubov, Aziz B; Reich, Norbert O

    2017-08-01

    Caulobacter crescentus relies on DNA methylation by the cell cycle-regulated methyltransferase (CcrM) in addition to key transcription factors to control the cell cycle and direct cellular differentiation. CcrM is shown here to efficiently methylate its cognate recognition site 5'-GANTC-3' in single-stranded and hemimethylated double-stranded DNA. We report the Km, kcat, kmethylation, and Kd for single-stranded and hemimethylated substrates, revealing discrimination of 10(7)-fold for noncognate sequences. The enzyme also shows a similar discrimination against single-stranded RNA. Two independent assays clearly show that CcrM is highly processive with single-stranded and hemimethylated DNA. Collectively, the data provide evidence that CcrM and other DNA-modifying enzymes may use a new mechanism to recognize DNA in a key epigenetic process.

  15. Precise Sequential DNA Ligation on A Solid Substrate: Solid-Based Rapid Sequential Ligation of Multiple DNA Molecules

    PubMed Central

    Takita, Eiji; Kohda, Katsunori; Tomatsu, Hajime; Hanano, Shigeru; Moriya, Kanami; Hosouchi, Tsutomu; Sakurai, Nozomu; Suzuki, Hideyuki; Shinmyo, Atsuhiko; Shibata, Daisuke

    2013-01-01

    Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation. PMID:23897972

  16. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    PubMed

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-08

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    PubMed Central

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  18. The Human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities.

    PubMed

    Popuri, Venkateswarlu; Bachrati, Csanád Z; Muzzolini, Laura; Mosedale, Georgina; Costantini, Silvia; Giacomini, Elisa; Hickson, Ian D; Vindigni, Alessandro

    2008-06-27

    RecQ helicases maintain chromosome stability by resolving a number of highly specific DNA structures that would otherwise impede the correct transmission of genetic information. Previous studies have shown that two human RecQ helicases, BLM and WRN, have very similar substrate specificities and preferentially unwind noncanonical DNA structures, such as synthetic Holliday junctions and G-quadruplex DNA. Here, we extend this analysis of BLM to include new substrates and have compared the substrate specificity of BLM with that of another human RecQ helicase, RECQ1. Our findings show that RECQ1 has a distinct substrate specificity compared with BLM. In particular, RECQ1 cannot unwind G-quadruplexes or RNA-DNA hybrid structures, even in the presence of the single-stranded binding protein, human replication protein A, that stimulates its DNA helicase activity. Moreover, RECQ1 cannot substitute for BLM in the regression of a model replication fork and is very inefficient in displacing plasmid D-loops lacking a 3'-tail. Conversely, RECQ1, but not BLM, is able to resolve immobile Holliday junction structures lacking an homologous core, even in the absence of human replication protein A. Mutagenesis studies show that the N-terminal region (residues 1-56) of RECQ1 is necessary both for protein oligomerization and for this Holliday junction disruption activity. These results suggest that the N-terminal domain or the higher order oligomer formation promoted by the N terminus is essential for the ability of RECQ1 to disrupt Holliday junctions. Collectively, our findings highlight several differences between the substrate specificities of RECQ1 and BLM (and by inference WRN) and suggest that these enzymes play nonoverlapping functions in cells.

  19. Detection of specific DNA using a microfluidic device featuring tethered poly(N-isopropylacrylamide) on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Jem-Kun; Li, Jun-Yan

    2010-08-01

    In this study, we grafted thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) onto a Si substrate as the medium in a microfluidic device to detect specific DNA molecules [human genomic DNA (hgDNA528), 528 bp] at extremely low concentrations (down to 2 ng/μl). After using the polymerase chain reaction to amplify the released human gDNA signal from the tethered PNIPAAm on the substrate, the amplified human gDNA molecules were characterized through agarose gel electrophoresis. The tethered PNIPAAm in the fluid device allowed the precise detection of the human gDNA.

  20. Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning.

    PubMed

    Myers, Benjamin D; Lin, Qing-Yuan; Wu, Huanxin; Luijten, Erik; Mirkin, Chad A; Dravid, Vinayak P

    2016-06-28

    The vision of nanoscale self-assembly research is the programmable synthesis of macroscale structures with controlled long and short-range order that exhibit a desired set of properties and functionality. However, strategies to reliably isolate and manipulate the nanoscale building blocks based on their size, shape, or chemistry are still in their infancy. Among the promising candidates, DNA-mediated self-assembly has enabled the programmable assembly of nanoparticles into complex architectures. In particular, two-dimensional assembly on substrates has potential for the development of integrated functional devices and analytical systems. Here, we combine the high-resolution patterning capabilities afforded by electron-beam lithography with the DNA-mediated assembly process to enable direct-write grayscale DNA density patterning. This method allows modulation of the functionally active DNA surface density to control the thermodynamics of interactions between nanoparticles and the substrate. We demonstrate that size-selective directed assembly of nanoparticle films from solutions containing a bimodal distribution of particles can be realized by exploiting the cooperativity of DNA binding in this system. To support this result, we study the temperature-dependence of nanoparticle assembly, analyze the DNA damage by X-ray photoelectron spectroscopy and fluorescence microscopy, and employ molecular dynamics simulations to explore the size-selection behavior.

  1. Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray.

    PubMed

    Bras, M; Dugas, V; Bessueille, F; Cloarec, J P; Martin, J R; Cabrera, M; Chauvet, J P; Souteyrand, E; Garrigues, M

    2004-11-01

    This paper presents a comprehensive theory and experimental characterisation of the modulation of the fluorescence intensity by the construction of optical interferences on oxidised silicon substrates used for DNA microarrays. The model predicts a 90-fold variation of the fluorescence signal depending on the oxide thickness. For a Cy3 dye, the signal is maximal for a 90 nm oxide thickness corresponding to a 7.5-fold enhancement with respect to a standard glass substrate. For experimental validation of the model, we have prepared Si/SiO2 substrates with different parallel steps of decreasing oxide thicknesses on the same sample using a buffered oxide etch (BOE) etching process after thermal oxidation. The SiO2 surface has been functionalized by a silane monolayer before in situ synthesis of L185 oligonucleotide probes. After hybridisation with complementary targets, the variations of the fluorescence intensity versus oxide thickness are in very good accordance with the theoretical model. The experimental comparison against a glass substrate shows a 10-fold enhancement of the detection sensitivity. Our results demonstrate that a Si/SiO2 substrate is an attractive alternative to standard glass slides for the realisation of fluorescence DNA microarrays whenever detection sensitivity is an important issue.

  2. The nitrosated bile acid DNA lesion O6-carboxymethylguanine is a substrate for the human DNA repair protein O6-methylguanine-DNA methyltransferase

    PubMed Central

    Senthong, Pattama; Millington, Christopher L.; Wilkinson, Oliver J.; Marriott, Andrew S.; Watson, Amanda J.; Reamtong, Onrapak; Eyers, Claire E.; Williams, David M.; Margison, Geoffrey P.; Povey, Andrew C.

    2013-01-01

    The consumption of red meat is a risk factor in human colorectal cancer (CRC). One hypothesis is that red meat facilitates the nitrosation of bile acid conjugates and amino acids, which rapidly convert to DNA-damaging carcinogens. Indeed, the toxic and mutagenic DNA adduct O6-carboxymethylguanine (O6-CMG) is frequently present in human DNA, increases in abundance in people with high levels of dietary red meat and may therefore be a causative factor in CRC. Previous reports suggested that O6-CMG is not a substrate for the human version of the DNA damage reversal protein O6-methylguanine-DNA methyltransferase (MGMT), which protects against the genotoxic effects of other O6-alkylguanine lesions by removing alkyl groups from the O6-position. We now show that synthetic oligodeoxyribonucleotides containing the known MGMT substrate O6-methylguanine (O6-MeG) or O6-CMG effectively inactivate MGMT in vitro (IC50 0.93 and 1.8 nM, respectively). Inactivation involves the removal of the O6-alkyl group and its transfer to the active-site cysteine residue of MGMT. O6-CMG is therefore an MGMT substrate, and hence MGMT is likely to be a protective factor in CRC under conditions where O6-CMG is a potential causative agent. PMID:23335782

  3. High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor.

    PubMed

    Yang, Zhiliu; Liu, Yichen; Lu, Wei; Yuan, Qingpan; Wang, Wei; Pu, Qiaosheng; Yao, Bo

    2016-05-15

    In the past decades, many efforts have been made to improve the sensitivity and specificity of electrochemical DNA biosensors. However, it is still strongly required to develop disposable and reliable DNA biosensors for wide and practical application. In this article, we reported superior electrochemical properties of an integrated plastic-gold electrode (PGE) fabricated in-house by chemical plating on polystyrene substrate. PGEs were found having extremely high capacity of DNA immobilization compared with gold electrodes fabricated by standard sputtering based photolithography. Unique nano-structured surface was observed on PGEs through morphology techniques, which would to some extend give an explanation to higher capacity of DNA immobilization on PGEs. A probable mechanism of carboxylic acid produced on polystyrene substrate after exposure to UV irradiation was proposed and discussed for the first time. This biosensor was applied to detection and manipulate of DNA hybridization. Detection limit of 7.2×10(-11) M and 1-500 nM of linearity range was obtained. Copyright © 2016. Published by Elsevier B.V.

  4. Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate.

    PubMed Central

    Shlyakhtenko, L S; Gall, A A; Weimer, J J; Hawn, D D; Lyubchenko, Y L

    1999-01-01

    A procedure for covalent binding of DNA to a functionalized mica substrate is described. The approach is based on photochemical cross-linking of DNA to immobilized psoralen derivatives. A tetrafluorphenyl (TFP) ester of trimethyl psoralen (trioxalen) was synthesized, and the procedure to immobilize it onto a functionalized aminopropyl mica surface (AP-mica) was developed. DNA molecules were cross-linked to trioxalen moieties by UV irradiation of complexes. The steps of the sample preparation procedure were analyzed with x-ray photoelectron spectroscopy (XPS). Results from XPS show that an AP-mica surface can be formed by vapor phase deposition of silane and that this surface can be derivatized with trioxalen. The derivatized surface is capable of binding of DNA molecules such that, after UV cross-linking, they withstand a thorough rinsing with SDS. Observations with atomic force microscopy showed that derivatized surfaces remain smooth, so DNA molecules are easily visualized. Linear and circular DNA molecules were photochemically immobilized on the surface. The molecules are distributed over the surface uniformly, indicating rather even modification of AP-mica with trioxalen. Generally, the shapes of supercoiled molecules electrostatically immobilized on AP-mica and those photocross-linked on trioxalen-functionalized surfaces remain quite similar. This suggests that UV cross-linking does not induce formation of a noticeable number of single-stranded breaks in DNA molecules. PMID:10388781

  5. A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-Molecular-Weight DNA Extraction.

    PubMed

    Zhang, Ye; Zhang, Yi; Burke, Jeffrey M; Gleitsman, Kristin; Friedrich, Sarah M; Liu, Kelvin J; Wang, Tza-Huei

    2016-12-01

    An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabricating a reversible and regenerable Raman-active substrate with a biomolecule-controlled DNA nanomachine.

    PubMed

    Zheng, Jing; Jiao, Anli; Yang, Ronghua; Li, Huimin; Li, Jishan; Shi, Muling; Ma, Cheng; Jiang, Ying; Deng, Li; Tan, Weihong

    2012-12-12

    A DNA configuration switch is designed to fabricate a reversible and regenerable Raman-active substrate. The substrate is composed of a Au film and a hairpin-shaped DNA strand (hot-spot-generation probes, HSGPs) labeled with dye-functionalized silver nanoparticles (AgNPs). Another ssDNA that recognizes a specific trigger is used as an antenna. The HSGPs are immobilized on the Au film to draw the dye-functionalized AgNPs close to the Au surface and create an intense electromagnetic field. Hybridization of HSGP with the two arm segments of the antenna forms a triplex-stem structure to separate the dye-functionalized AgNPs from the Au surface, quenching the Raman signal. Interaction with its trigger releases the antenna from the triplex-stem structure, and the hairpin structure of the HSGP is restored, creating an effective "off-on" Raman signal switch. Nucleic acid sequences associated with the HIV-1 U5 long terminal repeat sequences and ATP are used as the triggers. The substrate shows excellent reversibility, reproducibility, and controllability of surface-enhanced Raman scattering (SERS) effects, which are significant requirements for practical SERS sensor applications.

  7. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts

    PubMed Central

    Guo, Yin; Bandaru, Viswanath; Jaruga, Pawel; Zhao, Xiaobei; Burrows, Cynthia J.; Iwai, Shigenori; Dizdaroglu, Miral; Bond, Jeffrey P.; Wallace, Susan S.

    2010-01-01

    The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from γ-irradiated DNA. MtuFpg1 has a substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products

  8. The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates

    PubMed Central

    Basu, Uttiya; Meng, Fei-Long; Keim, Celia; Grinstein, Veronika; Pefanis, Evangelos; Eccleston, Jennifer; Zhang, Tingting; Myers, Darienne; Wesemann, Duane R.; Januszyk, Kurt; Gregory, Richard I.; Deng, Haiteng; Lima, Christopher D.; Alt, Frederick W.

    2011-01-01

    SUMMARY Activation Induced cytidine Deaminase (AID) initiates Immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) and Ig variable region somatic hypermutation (SHM) in B lymphocytes by deaminating cytidines on template and non-template strands of transcribed DNA substrates. However, the mechanism of AID access to the template DNA strand, particularly when hybridized to a nascent RNA transcript, has been an enigma. We now implicate the RNA exosome, a cellular RNA processing/degradation complex, in targeting AID to both DNA strands. In B-lineage cells activated for CSR, the RNA exosome associates with AID, accumulates on IgH switch regions in an AID-dependent fashion, and is required for optimal CSR. Moreover, both the cellular RNA exosome complex and a recombinant RNA exosome core complex impart robust AID- and transcription-dependent DNA deamination of both strands of transcribed SHM substrates in vitro. Our findings reveal a role for non-coding RNA surveillance machinery in generating antibody diversity. PMID:21255825

  9. Design and synthesis of fluorescent substrates for human tyrosyl-DNA phosphodiesterase I

    PubMed Central

    Rideout, Marc C.; Raymond, Amy C.; Burgin, Alex B.

    2004-01-01

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein–DNA covalent complexes. Tdp1 hydrolyzes 3′-phosphotyrosyl bonds to generate 3′-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds. Tdp1 has been shown to be involved in double-strand break repair in yeast, and Tdp1 has also been implicated in single-strand break repair in mammalian cells. Despite the biological importance of this enzyme and the possibility that Tdp1 may be a molecular target for new anti-cancer drugs, there are very few assays available for screening inhibitor libraries or for characterizing Tdp1 function, especially under pre-steady-state conditions. Here, we report the design and synthesis of a fluorescence-based assay using oligonucleotide and nucleotide substrates containing 3′-(4-methylumbelliferone)-phosphate. These substrates are efficiently cleaved by Tdp1, generating the fluorescent 4-methylumbelliferone reporter molecule. The kinetic characteristics determined for Tdp1 using this assay are in agreement with the previously published values, and this fluorescence-based assay is validated using the standard gel-based methods. This sensitive assay is ideal for kinetic analysis of Tdp1 function and for high-throughput screening of Tdp1 inhibitory molecules. PMID:15333697

  10. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm

    NASA Astrophysics Data System (ADS)

    Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao

    2014-07-01

    Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

  11. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates

    NASA Astrophysics Data System (ADS)

    Yang, Wensha; Auciello, Orlando; Butler, James E.; Cai, Wei; Carlisle, John A.; Gerbi, Jennifer E.; Gruen, Dieter M.; Knickerbocker, Tanya; Lasseter, Tami L.; Russell, John N.; Smith, Lloyd M.; Hamers, Robert J.

    2002-12-01

    Diamond, because of its electrical and chemical properties, may be a suitable material for integrated sensing and signal processing. But methods to control chemical or biological modifications on diamond surfaces have not been established. Here, we show that nanocrystalline diamond thin-films covalently modified with DNA oligonucleotides provide an extremely stable, highly selective platform in subsequent surface hybridization processes. We used a photochemical modification scheme to chemically modify clean, H-terminated nanocrystalline diamond surfaces grown on silicon substrates, producing a homogeneous layer of amine groups that serve as sites for DNA attachment. After linking DNA to the amine groups, hybridization reactions with fluorescently tagged complementary and non-complementary oligonucleotides showed no detectable non-specific adsorption, with extremely good selectivity between matched and mismatched sequences. Comparison of DNA-modified ultra-nanocrystalline diamond films with other commonly used surfaces for biological modification, such as gold, silicon, glass and glassy carbon, showed that diamond is unique in its ability to achieve very high stability and sensitivity while also being compatible with microelectronics processing technologies. These results suggest that diamond thin-films may be a nearly ideal substrate for integration of microelectronics with biological modification and sensing.

  12. Simulation of Epitaxial Growth of DNA-nanoparticle Superlattices on Pre-patterned Substrates

    NASA Astrophysics Data System (ADS)

    Pan, Saijie; Li, Ting; Olvera de La Cruz, Monica

    2015-03-01

    DNA self-assembly is a well-developed approach towards the construction of a great variety of nanoarchitectures. E-beam lithography is widely used for high-resolution nanoscale patterning. Recently, a new technique combining the two methods was developed to epitaxially grow DNA-mediated nanoparticle superlattices on a pre-patterned surface. Here we use multi-scale simulations to study and predict the formation and defects of the absorbed superlattice monolayer. We demonstrate that the epitaxial growth is enthalpy driven and show that the anisotropy of the DNA-mediated substrates leads to structure defects. We develop design rules to dramatically reduce defects of the attached layer. Ultimately, with the assist of our simulation, this technique will open the door for the construction of well-ordered, three-dimensional novel metamaterials. This work was supported by the the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) FA9550-11-1-0275.

  13. Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures

    PubMed Central

    Sagredo, Sandra; de la Cruz, Fernando; Moncalián, Gabriel

    2016-01-01

    During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures. PMID:27027740

  14. Conferring substrate specificity to DNA helicases: role of the RecQ HRDC domain.

    PubMed

    Bernstein, Douglas A; Keck, James L

    2005-08-01

    RecQ DNA helicases are multidomain enzymes that play pivotal roles in genome maintenance pathways. While the ATPase and helicase activities of these enzymes can be attributed to the conserved catalytic core domain, the role of the Helicase-and-RNase-D-C-terminal (HRDC) domain in RecQ function has yet to be elucidated. Here, we report the crystal structure of the E. coli RecQ HRDC domain, revealing a globular fold that resembles known DNA binding domains. We show that this domain preferentially binds single-stranded DNA and identify its DNA binding surface. HRDC domain mutations in full-length RecQ lead to surprising differences in its structure-specific DNA binding properties. These data support a model in which naturally occurring variations in DNA binding residues among diverse RecQ homologs serve to target these enzymes to distinct substrates and provide insight into a mechanism whereby RecQ enzymes have evolved distinct functions in organisms that encode multiple recQ genes.

  15. Approaches to enzyme and substrate design of the murine Dnmt3a DNA methyltransferase.

    PubMed

    Jurkowska, Renata Z; Siddique, Abu Nasar; Jurkowski, Tomasz P; Jeltsch, Albert

    2011-07-04

    Dnmt3a-C, the catalytic domain of the Dnmt3a DNA-(cytosine-C5)-methyltransferase, is active in an isolated form but, like the full-length Dnmt3a, shows only weak DNA methylation activity. To improve this activity by directed evolution, we set up a selection system in which Dnmt3a-C methylated its own expression plasmid in E. coli, and protected it from cleavage by methylation-sensitive restriction enzymes. However, despite screening about 400 clones that were selected in three rounds from a random mutagenesis library of 60 000 clones, we were not able to isolate a variant with improved activity, most likely because of a background of uncleaved plasmids and plasmids that had lost the restriction sites. To improve the catalytic activity of Dnmt3a-C by optimization of the sequence of the DNA substrate, we analyzed its flanking-sequence preference in detail by bisulfite DNA-methylation analysis and sequencing of individual clones. Based on the enrichment and depletion of certain bases in the positions flanking >1300 methylated CpG sites, we were able to define a sequence-preference profile for Dnmt3a-C from the -6 to the +6 position of the flanking sequence. This revealed preferences for T over a purine at position -2, A over G at -1, a pyrimidine at +1, and A and T over G at +3. We designed one "good" substrate optimized for methylation and one "bad" substrate designed not to be efficiently methylated, and showed that the optimized substrate is methylated >20 times more rapidly at its central CpG site. The optimized Dnmt3a-C substrate can be applied in enzymatic high-throughput assays with Dnmt3a-C (e.g., for inhibitor screening), because the increased activity provides an improved dynamic range and better signal/noise ratio. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of a Novel Cell Culture System Using DNA-Grafted Substrates and DNase.

    PubMed

    Mitomo, Hideyuki; Eguchi, Asumi; Suzuki, Yasunobu; Matsuo, Yasutaka; Niikura, Kenichi; Nakazawa, Kohji; Ijiro, Kuniharu

    2016-02-01

    In conventional cell culture systems, trypsin is generally used for cell harvesting. However, trypsin damages the cells due to the nonselective degradation of proteins on the cell surface. This is a critical issue for cell culture systems. Therefore, an alternative cell culture system with the lowest possible impact on cells is desired. In this paper, we have focused on DNA as a sacrificial layer and DNase as an alternate enzyme instead of trypsin. DNase ought not to result in damage to or stress on cells as it only hydrolyzes DNAs while the plasma membrane and extracellular matrices are basically composed of lipids, proteins, and glycosides. Therefore, we fabricated DNA-grafted substrates as cell culture dishes and evaluated this novel cell culture system. As a result, we were able to culture several types of mammalian cells on the DNA-grafted substrates, with the cells harvested using DNase with only little damage to the cells. This cell culture system could provide a breakthrough in cell culturing technology.

  17. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates.

    PubMed

    Opresko, Patricia L; Mason, Penelope A; Podell, Elaine R; Lei, Ming; Hickson, Ian D; Cech, Thomas R; Bohr, Vilhelm A

    2005-09-16

    Defects in human RecQ helicases WRN and BLM are responsible for the cancer-prone disorders Werner syndrome and Bloom syndrome. Cellular phenotypes of Werner syndrome and Bloom syndrome, including genomic instability and premature senescence, are consistent with telomere dysfunction. RecQ helicases are proposed to function in dissociating alternative DNA structures during recombination and/or replication at telomeric ends. Here we report that the telomeric single-strand DNA-binding protein, POT1, strongly stimulates WRN and BLM to unwind long telomeric forked duplexes and D-loop structures that are otherwise poor substrates for these helicases. This stimulation is dependent on the presence of telomeric sequence in the duplex regions of the substrates. In contrast, POT1 failed to stimulate a bacterial 3'-5'-helicase. We find that purified POT1 binds to WRN and BLM in vitro and that full-length POT1 (splice variant 1) precipitates a higher amount of endogenous WRN protein, compared with BLM, from the HeLa nuclear extract. We propose roles for the cooperation of POT1 with RecQ helicases WRN and BLM in resolving DNA structures at telomeric ends, in a manner that protects the telomeric 3' tail as it is exposed during unwinding.

  18. Employing double-stranded DNA probes on colloidal substrates for competitive hybridization events

    NASA Astrophysics Data System (ADS)

    Baker, Bryan Alexander

    DNA has found application beyond its biological function in the cell in a variety of materials assembly systems as well as nucleic acid-based detection devices. In the current research, double-stranded DNA probes are applied in both a colloidal particle assembly and fluorescent assay approach utilizing competitive hybridization interactions. The responsiveness of the double-stranded probes (dsProbes) was tuned by sequence design and tested against a variety of nucleic acid targets. Chapter 1 provides a review of the particle substrate used in the current research, colloidal particles, as well as examines previous applications of DNA in assembly and nucleic acid detection formats. Chapter 2 discusses the formation of fluorescent satellites, or similarly termed fluorescent micelles, via DNA hybridization. The effects of DNA duplex sequence, temperature at which assembly occurs, and oligonucleotide density are variables considered with preferential assembly observed for low oligonucleotide density particles. Chapter 3 demonstrates the controlled disassembly of these satellite structures via competitive hybridization with a soluble target strand. Chapter 4 examines DNA duplexes as fluorescent dsProbes and characterizes the kinetics of competitive hybridization between immobilized dsProbes and solution targets of interest. The sequence-based affinities of dsProbes as well as location of an embedded target sequence are both variables explored in this study. Based on the sequence design of the dsProbes, a range of kinetics responses are observed. Chapter 5 also examines the kinetics of competitive hybridization with dsProbes but with a focus on the specificity of competitive target by including mismatches within a short 15 base competitive target. Chapter 6 examines the effects of dsProbe orientation relative to the particle surface as well as substrate particle size. The kinetics of displacement of DNA targets with those of RNA targets of analogous sequence are also

  19. Screening of substrate peptide sequences for tissue-type transglutaminase (TGase 2) using T7 phage cDNA library.

    PubMed

    Sugimura, Yoshiaki; Yamashita, Hiroyuki; Hitomi, Kiyotaka

    2011-03-01

    Transglutaminase (TGase) is a family of enzymes that catalyzes cross-linking reaction between glutamine- and lysine residue of substrate proteins in several mammalian biological events. Substrate proteins for TGase and their physiological relevance have been still in research, continuously expanding. In this study, we have established a novel screening system that enables identification of cDNA sequence encoding favorable primary structure as a substrate for tissue-type transglutaminase (TGase 2), a multifunctional and ubiquitously expressing isozyme. By the screening, we identified several T7 phage clones that displayed substrate peptides for TGase 2 as a translated product from human brain cDNA library. Among the selected clones, the C-terminal region of IKAP, IkappaB kinase complex associated protein, appeared as a highly reactive substrate sequence for TGase 2. This system will open possibility of rapid identification of substrate sequences for transglutaminases at a genetic level.

  20. Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag).

    PubMed

    Lingaraju, Gondichatnahalli M; Kartalou, Maria; Meira, Lisiane B; Samson, Leona D

    2008-06-01

    DNA glycosylases initiate base excision repair by first binding, then excising aberrant DNA bases. Saccharomyces cerevisiae encodes a 3-methyladenine (3MeA) DNA glycosylase, Mag, that recognizes 3MeA and various other DNA lesions including 1,N6-ethenoadenine (epsilon A), hypoxanthine (Hx) and abasic (AP) sites. In the present study, we explore the relative substrate specificity of Mag for these lesions and in addition, show that Mag also recognizes cisplatin cross-linked adducts, but does not catalyze their excision. Through competition binding and activity studies, we show that in the context of a random DNA sequence Mag binds epsilon A and AP-sites the most tightly, followed by the cross-linked 1,2-d(ApG) cisplatin adduct. While epsilon A binding and excision by Mag was robust in this sequence context, binding and excision of Hx was extremely poor. We further studied the recognition of epsilon A and Hx by Mag, when these lesions are present at different positions within A:T and G:C tracts. Overall, epsilon A was slightly less well excised from each position within the A:T and G:C tracts compared to excision from the random sequence, whereas Hx excision was greatly increased in these sequence contexts (by up to 7-fold) compared to the random sequence. However, given most sequence contexts, Mag had a clear preference for epsilon A relative to Hx, except in the TTXTT (X=epsilon A or Hx) sequence context from which Mag removed both lesions with almost equal efficiency. We discuss how DNA sequence context affects base excision by various 3MeA DNA glycosylases.

  1. Oligodeoxynucleotides as substrates for O/sup 6/-alkylguanine-DNA alkyltransferase (AGT)

    SciTech Connect

    Scicchitano, D.; Jones, R.A.; Kuzmich, S.; Gaffney, B.; Lasko, D.; Essigmann, J.; Pegg, A.E.

    1986-05-01

    AGT is a DNA repair protein which is known to catalyze the transfer of alkyl groups from the O/sup 6/-position of guanine in alkylated DNA to a cysteine acceptor site contained within its own protein sequence. The authors have examined the ability of this protein isolated from both E. coli and mammalian cells to carry out this reaction using oligodeoxynucleotides containing O/sup 6/-methylguanine (m/sup 6/G). Dodecadeoxynucleotides of the sequence 5'-dCGBGAATTCm/sup 6/GCG-3' where B is any one of the normal 4 bases were all repaired very rapidly with 50% repair in less than 15 sec at 0/sup 0/C. The hexadeoxynucleotide 5'-dCGCm/sup 6/GCG-3' was repaired slightly more slowly with 50% removal requiring 7 min at 0/sup 0/C and 1.5 min at 37/sup 0/C. The tetradeoxynucleotide 5'-dTm/sup 6/GCA-3' was also a substrate for the protein but was repaired much more slowly requiring 45 min for 50% repair at 37/sup 0/C. These results indicate that (a) the AGT has a strong but not absolute preference for double stranded DNA substrates; (b) the repair of m/sup 6/G is independent of the base opposite the lesion; and (c) that very short oligodeoxynucleotides are substrates for repair by this protein. The latter property was used to set up a very sensitive assay procedure for the AGT. The 5' end of the 5'-dTm/sup 6/GCA-3' was labeled with /sup 32/P by use of polynucleotide kinase and the formation of (/sup 32/P)-5'-dTGACA-3' monitored by separating the methylated form from the unmethylated form by HPLC.

  2. DNA-embedded Au-Ag core-shell nanoparticles assembled on silicon slides as a reliable SERS substrate.

    PubMed

    Zhang, Zhong; Zhang, Sha; Lin, Mengshi

    2014-05-07

    This study aimed at developing a sensitive and reliable SERS substrate by assembling DNA-embedded Au-Ag core-shell nanoparticles (NPs) on silicon slides. First, a monolayer of well separated DNA-functionalized Au NPs (40 nm) was decorated on (3-aminopropyl)triethoxysilane modified silicon slides. The DNA-embedded Au-Ag core-shell NPs were assembled on the 40 nm Au-DNA NPs to form a core-satellite structure through DNA hybridization. Using 4-MBA as a Raman dye, the SERS performance of the substrates was evaluated after being cleaned by low oxygen and argon plasma. The Raman intensity of the assembly using DNA-embedded Au-Ag core-shell NPs was 8-10 times higher than the intensity of the assembly using Au NPs as satellites. In addition, the signal-to-noise ratio of the assembly was 2.6 times higher than that of a commercial substrate (Klarite™) when a 785 nm laser was used. The SERS enhancements of the assembled substrates were 2.2 to 2.8 times higher than the Klarite when an acquisition time of 5 s was used at an excitation wavelength of 633 nm. The assembled substrates also show a good spot-to-spot and substrate-to-substrate reproducibility at the excitation wavelengths of 633 and 785 nm. These results demonstrate that the fabrication process is simple and cost-effective for assembling DNA-embedded Au-Ag core-shell NPs on silicon slides that can be used as a reliable SERS substrate.

  3. Substrate Rescue of DNA Polymerase β Containing a Catastrophic L22P Mutation

    PubMed Central

    2015-01-01

    DNA polymerase (pol) β is a multidomain enzyme with two enzymatic activities that plays a central role in the overlapping base excision repair and single-strand break repair pathways. The high frequency of pol β variants identified in tumor-derived tissues suggests a possible role in the progression of cancer, making the determination of the functional consequences of these variants of interest. Pol β containing a proline substitution for leucine 22 in the lyase domain (LD), identified in gastric tumors, has been reported to exhibit severe impairment of both lyase and polymerase activities. Nuclear magnetic resonance (NMR) spectroscopic evaluations of both pol β and the isolated LD containing the L22P mutation demonstrate destabilization sufficient to result in LD-selective unfolding with minimal structural perturbations to the polymerase domain. Unexpectedly, addition of single-stranded or hairpin DNA resulted in partial refolding of the mutated lyase domain, both in isolation and for the full-length enzyme. Further, formation of an abortive ternary complex using Ca2+ and a complementary dNTP indicates that the fraction of pol β(L22P) containing the folded LD undergoes conformational activation similar to that of the wild-type enzyme. Kinetic characterization of the polymerase activity of L22P pol β indicates that the L22P mutation compromises DNA binding, but nearly wild-type catalytic rates can be observed at elevated substrate concentrations. The organic osmolyte trimethylamine N-oxide (TMAO) is similarly able to induce folding and kinetic activation of both polymerase and lyase activities of the mutant. Kinetic data indicate synergy between the TMAO cosolvent and substrate binding. NMR data indicate that the effect of the DNA results primarily from interaction with the folded LD(L22P), while the effect of the TMAO results primarily from destabilization of the unfolded LD(L22P). These studies illustrate that substrate-induced catalytic activation of pol

  4. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    SciTech Connect

    Adhikary, Suraj; Eichman, Brandt F.

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  5. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.

    PubMed

    Kim, Junghoon; Ha, Tai Hwan; Park, Sung Ha

    2015-08-07

    We present a simple route to circumvent kinetic traps which affect many types of DNA nanostructures in their self-assembly process. Using this method, a new 2D DNA lattice made up of short, single-stranded tile (SST) motifs was created. Previously, the growth of SST DNA assemblies was restricted to 1D (tubes and ribbons) or finite-sized 2D (molecular canvases). By utilizing the substrate-assisted growth method, sets of SSTs were designed as unit cells to self-assemble into periodic and aperiodic 2D lattices which continuously grow both along and orthogonal to the helical axis. Notably, large-scale (∼1 μm(2)) fully periodic 2D lattices were fabricated using a minimum of just 2 strand species. Furthermore, the ability to create 2D lattices from a few motifs enables certain rules to be encoded into these SSTs to carry out algorithmic self-assembly. A set of these motifs was designed to execute simple 1-input 1-output COPY and NOT algorithms, the space-time manifestations which were aperiodic 2D algorithmic SST lattices. The methodology presented here can be straightforwardly applied to other motifs which fall into this type of kinetic trap to create novel DNA crystals.

  6. Complementary and partially complementary DNA duplexes tethered to a functionalized substrate: a molecular dynamics approach to biosensing.

    PubMed

    Monti, Susanna; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo; Barone, Vincenzo

    2011-07-21

    Molecular dynamics simulations (90 ns) of different DNA complexes attached to a functionalized substrate in solution were performed in order to clarify the behavior of mismatched DNA sequences captured by a tethered DNA probe (biochip). Examination of the trajectories revealed that the substrate influence and a series of cooperative events, including recognition, reorientation and reorganization of the bases, could induce the formation of stable duplexes having non-canonical arrangements. Major adjustment of the structures was observed when the mutated base was located in the end region of the chain close to the surface. This journal is © the Owner Societies 2011

  7. A parallel synthesis scheme for generating libraries of DNA polymerase substrates and inhibitors.

    PubMed

    Strobel, Heike; Dugué, Laurence; Marlière, Philippe; Pochet, Sylvie

    2002-12-02

    We report a combinatorial approach aimed at producing in a single step a large family of nucleoside triphosphate derivatives that could be tested for their ability to be substrates for DNA polymerases. We propose as a unique triphosphate building block a nucleotide with a hydrazine function anchored to an imidazole ring. Condensation between the 5'-triphosphate derivative of 1-(2-deoxy-beta-D-erythro-pentofuranosyl)-imidazole-4-hydrazide (dY(NH(2))TP) and any aldehyde or ketone, followed by reduction of the intermediate hydrazones dXmTP, resulted in the corresponding hydrazides (dXnTP). Following this scheme, a series of aldehydes having various aromatic parts yielded a number of adducts dY(NHR)TP. Vent (exo-) DNA polymerase is found to be able to catalyse the single incorporation of these bulky triphosphate derivatives. Subsequent extensions of the modified pairs with canonical triphosphates resulted mainly in abortive elongations at primer+2, except after the incorporation of dY(NHben)TP and, to a lesser extent, dY(NHphe)TP opposite C. These results illustrate the potential of this parallel synthetic scheme for generating new substrates or inhibitors of replication in a single step.

  8. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis.

    PubMed

    Parsa, Jahan-Yar; Ramachandran, Shaliny; Zaheen, Ahmad; Nepal, Rajeev M; Kapelnikov, Anat; Belcheva, Antoaneta; Berru, Maribel; Ronai, Diana; Martin, Alberto

    2012-02-01

    Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates-which we found to be unique to actively transcribed genes-as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID.

  9. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.

  10. Interactions of the SAP Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Carra, Claudio; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku70/80 complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The SAP domain of Ku70 (residues 556-609), contains an a helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the SAP/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the SAP domain of Ku70 and a 10 base pairs DNA duplex. Large-scale conformational changes were observed and some putative binding modes were suggested based on energetic analysis. These modes are consistent with previous experimental investigations. In addition, the results indicate that cooperation of SAP with other domains of Ku70/80 is necessary to explain the high affinity of binding as observed in experiments.

  11. Plant DNA: A new substrate for carbon stable isotope analysis and a potential paleoenvironmental indicator

    NASA Astrophysics Data System (ADS)

    Jahren, H.; Petersen, G.; Seberg, O.

    2003-12-01

    The δ 13C value of fossil plant materials can be used to gain insight into the dominant photosynthetic pathway, as well as other environmental attributes, of ancient plant ecosystems. Nucleotide sequences from land-plant nucleic acids extracted from 400 ka sediments have been recognized as the oldest authenticated fossil DNA, making the inference of plant taxonomy possible in substrates devoid of plant macro- and microfossils. If the C isotope relationship between bulk plant tissue and associated plant nucleic acids were known, fossil plant nucleic acids could be analyzed for δ 13C values and used as land-plant isotopic substrates within mixed organic material. Toward this end, we present δ 13C analyses of nucleic acids isolated from 12 higher-plant species that span the full phylogenetic diversity of seed plants. Extracted nucleic acids were dominated by double-stranded DNA containing fragments of rbcL gene ˜ 350 base pairs in length. The C isotope compositions of plant nucleic acids were found to be enriched in 13C relative to bulk plant tissue by a constant value (1.39 ‰ ). This study represents the first comparison of the δ 13C value of nucleic acids to the δ 13C value of bulk tissue for multicellular organisms; our results contrasted with the minimal fractionations reported for microorganisms. Because the isotopic enrichment δ 13C is constant across tracheophytes, the δ 13C value of fossil plant DNA can be used as a paleoenvironmental indicator, eliminating the need for morphological recognition of fossil plant material in paleoenvironmental studies.

  12. Plant DNA: A new substrate for carbon stable isotope analysis and a potential paleoenvironmental indicator

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope; Petersen, Gitte; Seberg, Ole

    2004-03-01

    The δ13C value of fossil plant materials can be used to gain insight into the dominant photosynthetic pathway, as well as other environmental attributes, of ancient plant ecosystems. Nucleotide sequences from land plant nucleic acids extracted from 400 ka fossil sediments have been recognized as the oldest authenticated fossil deoxyribonucleic acid (DNA), making the inference of plant taxonomy possible in substrates devoid of plant macrofossils and microfossils. If the C isotope relationship between bulk plant tissue and associated plant nucleic acids were known, fossil plant nucleic acids could be analyzed for δ13C value and used as land plant isotopic substrates within mixed organic material. Toward this end, we present δ13C analyses of nucleic acids isolated from 12 higher plant species that span the full phylogenetic diversity of seed plants. Extracted nucleic acids were dominated by double-stranded DNA containing fragments of rbcL gene ˜350 base pairs in length. The C isotope compositions of plant nucleic acids were found to be enriched in 13C relative to bulk plant tissue by a constant value = 1.39‰. This study represents the first comparison of the δ13C value of nucleic acids to the δ13C value of bulk tissue for multicellular organisms; our results contrasted with the minimal fractionations reported for microorganisms. Because the isotopic enrichment is constant across tracheophytes, the δ13C value of fossil plant DNA can be used as a paleoenvironmental indicator, eliminating the need for morphological recognition of fossil plant material in paleoenvironmental studies.

  13. Detection of salmonellas by DNA hybridization with a fluorescent alkaline phosphatase substrate.

    PubMed

    Cano, R J; Torres, M J; Klem, R E; Palomares, J C; Casadesus, J

    1992-05-01

    This study evaluates a DNA hybridization assay for salmonella with AttoPhos (JBL Scientific, San Luis Obispo, CA), a fluorescent substrate for alkaline phosphatase. The probe used (50 ng/ml) was a biotinylated 600 bp fragment consisting of a tandem repeat of an insertion sequence (IS200) found in most Salmonella spp. evaluated. The hybridization was carried out at 65 degrees C for 2 h without prior prehybridization and hybrids were detected by the addition of a streptavidin-alkaline phosphatase conjugate. Circles (5 mm) were cut from the membrane and placed in a cuvette containing 1 ml of 1 mmol/l AttoPhos. The reaction was evaluated after 30 min at 37 degrees C with a fluorometer with an excitation wavelength of 440 nm and an emission wavelength of 550 nm. The sensitivity of the probe was estimated to be 10,000 copies of target DNA or 5 x 10(-20) mol of DNA. All 74 salmonella strains tested reacted with the probe but none of the 98 heterologous species tested gave positive results. The results of this study indicate that our assay method, which employs a biotinylated tandem repeat of IS200 and AttoPhos, is a specific and highly sensitive quantitative method for the detection of salmonellas.

  14. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    SciTech Connect

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-03-27

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  15. Influence of intra-molecular flexibility on the elastic property of double-stranded DNA film on a substrate

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Zheng; Meng, Wei-Lie; Tang, Heng-Song; Zhang, Neng-Hui

    2017-05-01

    DNA film self-assembled or nanografted on a substrate, as a kind of soft matter, consists of fixed DNA chains endowed with negative charges and an aqueous solution full of cations, anions and water molecules. Their thermal/electrical/mechanical properties are closely related to the complex biodetection signals in nano-/micro-scale biosensors and other new genome technologies. This makes it important to properly characterize these properties. In this paper, the effect of flexible micro-scale configurations on the elastic moduli of DNA films is investigated. First, illuminated by Qiu’s sphere model, an alternative bead-chain model in terms of the Yukawa potential is presented for flexible intra-DNA configurations to describe interactions between DNA fragments. The effective charges of coarse-grained DNA beads could be derived, in which the empirical parameters are identified by curve fitting with Qiu’s experimental data. Second, the updated mesoscopic bead-chain model and the thought experiment of a continuum compression bar are used to compare the elastic moduli of double-stranded DNA (dsDNA) films prepared by self-assembling and nanografting techniques. Configurational sampling is achieved via Monte Carlo simulation. Our predictions quantitatively or qualitatively agree well with the relevant experiments on the effective charge of dsDNA from low to moderate monovalent counterion concentration, immobilization deflection of single-stranded DNA (ssDNA) or dsDNA microcantilever with the variation of salt concentration, and elastic modulus of ssDNA film in the air. The results reveal that different solution environment stimulates the diverse mechanical properties of dsDNA film on a substrate, and the end effect (i.e. terminal group effect) makes self-assembling dsDNA film stiffer in the sense of the same average packing density.

  16. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle.

    PubMed

    Banerjee, Rupa; Jayaraj, Gopal Gunanathan; Peter, Joshua Jebakumar; Kumar, Vignesh; Mapa, Koyeli

    2016-08-01

    DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures.

  17. Photolytic cleavage of DNA by nitrobenzamido ligands linked to 9-aminoacridines gives DNA polymerase substrates in a wavelength-dependent reaction

    SciTech Connect

    Nielsen, P.E.; Egholm, M.; Koch, T.; Christensen, J.B.; Buchardt, O. )

    1991-01-01

    A series of reagents containing 3- or 4-nitrobenzamido ligands tethered to 9-aminoacridine via variable-length linkers have been prepared and their properties as photochemical DNA cleavers (photonucleases) examined. When irradiated with approximately 300-nm light, where the nitrobenzamido ligand can absorb, they cleave DNA in an oxygen-independent reaction presumably involving oxygen transfer from the nitro group to the deoxyribose units of the DNA backbone. This reaction is pH independent and only slightly affected by the linker length, and the DNA fragments are not substrates for DNA polymerase. When approximately 420-nm light is used, were only the 9-aminoacridinyl ligands absorb, the DNA cleavage is also oxygen-independent but pH dependent, requires DNA saturation with the reagent (base pair:reagent less than or equal to 2), and is most efficient with the longer linkers. The cleavage is specific for guanine residues and results in 5{prime}-phosphate termini and heterogeneous (more than four products) 3{prime}-termini. One of the products is presumably 3{prime}-hydroxy since DNA photocleaved with nitrobenzamido acridine reagents and 420-nm radiation are substrates for DNA polymerase in a nick translation assay as well as for the Klenow fragment. An electron-transfer mechanism is suggested.

  18. Vaccinia topoisomerase and Cre recombinase catalyze direct ligation of activated DNA substrates containing a 3'-para-nitrophenyl phosphate ester.

    PubMed

    Woodfield, G; Cheng, C; Shuman, S; Burgin, A B

    2000-09-01

    DNA topoisomerases and DNA site-specific recombinases are involved in a diverse set of cellular processes but both function by making transient breaks in DNA. Type IB topoisomerases and tyrosine recombinases cleave DNA by transesterification of an active site tyrosine to generate a DNA-3'-phosphotyrosyl-enzyme adduct and a free 5'-hydroxyl (5'-OH). Strand ligation results when the 5'-OH attacks the covalent complex and displaces the enzyme. We describe the synthesis of 3'-phospho-(para-nitrophenyl) oligonucleotides (3'-pNP DNAs), which mimic the natural 3'-phosphotyrosyl intermediate, and demonstrate that such pre-activated strands are substrates for DNA ligation by vaccinia topoisomerase and Cre recombinase. Ligation occurs by direct attack of a 5'-OH strand on the 3'-pNP DNA (i.e., without a covalent protein-DNA intermediate) and generates free para-nitrophenol as a product. The chromogenic DNA substrate allows ligation to be studied in real-time and in the absence of competing cleavage reactions and can be exploited for high-throughput screening of topoisomerase/recombinase inhibitors.

  19. Efficient synthesis of supercoiled M13 DNA molecule containing a site specifically placed psoralen adduct and its use as a substrate for DNA replication

    SciTech Connect

    Kodadek, T.; Gamper, H.

    1988-05-03

    The authors report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, they report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. They demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.

  20. Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING.

    PubMed

    Khan, Irfan; Crouch, Jack D; Bharti, Sanjay Kumar; Sommers, Joshua A; Carney, Sean M; Yakubovskaya, Elena; Garcia-Diaz, Miguel; Trakselis, Michael A; Brosh, Robert M

    2016-07-01

    Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  2. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  3. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    PubMed

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  4. Ricin A-chain substrate specificity in RNA, DNA, and hybrid stem-loop structures.

    PubMed

    Amukele, Tim K; Schramm, Vern L

    2004-05-04

    Ricin toxin A-chain (RTA) is the catalytic subunit of ricin, a heterodimeric toxin from castor beans. Its ribosomal inactivating activity arises from depurination of a single adenine from position A(4324) in a GAGA tetraloop from 28S ribosomal RNA. Minimal substrate requirements are the GAGA tetraloop and stem of two or more base pairs. Depurination activity also occurs on stem-loop DNA with the same sequence, but with the k(cat) reduced 200-fold. Systematic variation of RNA 5'-G(1)C(2)G(3)C(4)[G(5)A(6)G(7)A(8)]G(9)C(10)G(11)C(12)-3' 12mers via replacement of each nucleotide in the tetraloop with a deoxynucleotide showed a 16-fold increase in k(cat) for A(6) --> dA(6) but reduced k(cat) up to 300-fold for the other sites. Methylation of individual 2'-hydroxyls in a similar experiment reduced k(cat) by as much as 3 x 10(-3)-fold. In stem-loop DNA, replacement of d[G(5)A(6)G(7)A(8)] with individual ribonucleotides resulted in small kinetic changes, except for the dA(6) --> A(6) replacement for which k(cat) decreased 6-fold. Insertion of d[G(5)A(6)G(7)A(8)] into an RNA stem-loop or G(5)A(6)G(7)A(8) into a DNA stem-loop reduced k(cat) by 30- and 5-fold, respectively. Multiple substitutions of deoxyribonucleotides into RNA stem-loops in one case (dG(5),dG(7)) decreased k(cat)/K(m) by 10(5)-fold, while a second change (dG(5),dA(8)) decreased k(cat) by 100-fold. Mapping these interactions on the structure of GAGA stem-loop RNA suggests that all the loop 2'-hydroxyl groups play a significant role in the action of ricin A-chain. Improved binding of RNA-DNA stem-loop hybrids provides a scaffold for inhibitor design. Replacing the adenosine of the RTA depurination site with deoxyadenosine in a small RNA stem-loop increased k(cat) 20-fold to 1660 min(-1), a value similar to RTA's k(cat) on intact ribosomes.

  5. Aphidicolin resistance in herpes simplex virus type 1 appears to alter substrate specificity in the DNA polymerase

    SciTech Connect

    Hall, J.D.; Woodward, S.

    1989-06-01

    The authors describe novel mutants of herpes simplex virus which are resistant to aphidicolin. Their mutant phenotypes suggest that they encode DNA polymerases with altered substrate recognition. This conclusion is based on their abnormal sensitivity to polymerase inhibitors and to the abnormal mutation rates exhibited by two of the mutants.

  6. Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates.

    PubMed

    Li, Ju-Mei; Ma, Wan-Fu; You, Li-Jun; Guo, Jia; Hu, Jun; Wang, Chang-Chun

    2013-05-21

    A new approach for sensitive detection of a specific ssDNA (single-stranded DNA) sequence based on the surface enhanced Raman spectroscopy (SERS) liquid chip is demonstrated. In this method, the probe DNA (targeting to one part of target ssDNA) was attached to the nano-SERS-tags (poly(styrene-co-acrylic acid)/(silver nanoparticles)/silica composite nanospheres), and the capture DNA (targeting to the other part of target ssDNA) was attached to the Fe3O4/poly(acrylic acid) core/shell nanospheres. The nano-SERS-tags with probe DNA were first allowed to undergo hybridization with the target ssDNA in solution to achieve the best efficiency. Subsequently, the magnetic composite nanospheres with capture DNA were added as the capturing substrates of the target ssDNA combined with the nano-SERS-tags. Upon attraction with an external magnet, the nanospheres (including the nano-SERS-tags) were deposited together due to the hybridization, and the deposit sediment was then analyzed by SERS. Quantitative detection of target ssDNA was achieved based on the well-defined linear correlation between the SERS signal intensity and the target ssDNA quantity in the range of 10 nM to 10 pM, and the limit of detection was approximately 10 pM. Multiplexed detection of up to three different ssDNA targets in one sample was demonstrated using three different types of nano-SERS-tags under a single excitation laser. The experimental results indicated that the liquid-phase DNA sequencing method, thus named the SERS liquid chip (SLC) method, holds significant promises for specific detection of trace targets of organisms.

  7. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions.

    PubMed

    Zegeye, Ephrem Debebe; Balasingham, Seetha V; Laerdahl, Jon K; Homberset, Håvard; Tønjum, Tone

    2012-08-01

    The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecG(Mtb)) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecG(Mtb) preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecG(Mtb) helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg(2+), Mn(2+), Cu(2+) or Fe(2+). Like its Escherichia coli orthologue, RecG(Mtb) is also a strictly DNA-dependent ATPase.

  8. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions

    PubMed Central

    Zegeye, Ephrem Debebe; Balasingham, Seetha V.; Laerdahl, Jon K.; Homberset, Håvard

    2012-01-01

    The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase. PMID:22628485

  9. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.

    PubMed

    Garalde, Daniel R; Simon, Christopher A; Dahl, Joseph M; Wang, Hongyun; Akeson, Mark; Lieberman, Kate R

    2011-04-22

    During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.

  10. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-04-05

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  11. Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that may Discriminate Substrates During DNA Repair

    PubMed Central

    Das, Debanu; Moiani, Davide; Axelrod, Herbert L.; Miller, Mitchell D.; McMullan, Daniel; Jin, Kevin K.; Abdubek, Polat; Astakhova, Tamara; Burra, Prasad; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Tainer, John A.; Wilson, Ian A.

    2010-01-01

    Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks (DSBs). As x-ray structural information has only been available for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is the Mre11 endo/exonuclease from T. maritima (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only ∼20%. However, they differ substantially in their DNA specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA specificity domain are not. The structural differences likely affect how Mre11s from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on ssDNA and dsDNA substrates, respectively. PMID:20122942

  12. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization.

    PubMed

    Lenz, Stefan A P; Wetmore, Stacey D

    2016-02-09

    Human alkyladenine DNA glycosylase (AAG) functions as part of the base excision repair (BER) pathway by cleaving the N-glycosidic bond that connects nucleobases to the sugar-phosphate backbone in DNA. AAG targets a range of structurally diverse purine lesions using nonspecific DNA-protein π-π interactions. Nevertheless, the enzyme discriminates against the natural purines and is inhibited by pyrimidine lesions. This study uses molecular dynamics simulations and seven different neutral or charged substrates, inhibitors, or canonical purines to probe how the bound nucleotide affects the conformation of the AAG active site, and the role of active site residues in dictating substrate selectivity. The neutral substrates form a common DNA-protein hydrogen bond, which results in a consistent active site conformation that maximizes π-π interactions between the aromatic residues and the nucleobase required for catalysis. Nevertheless, subtle differences in DNA-enzyme contacts for different neutral substrates explain observed differential catalytic efficiencies. In contrast, the exocyclic amino groups of the natural purines clash with active site residues, which leads to catalytically incompetent DNA-enzyme complexes due to significant reorganization of active site water. Specifically, water resides between the A nucleobase and the active site aromatic amino acids required for catalysis, while a shift in the position of the general base (E125) repositions (potentially nucleophilic) water away from G. Despite sharing common amino groups, the methyl substituents in cationic purine lesions (3MeA and 7MeG) exhibit repulsion with active site residues, which repositions the damaged bases in the active site in a manner that promotes their excision. Overall, we provide a structural explanation for the diverse yet discriminatory substrate selectivity of AAG and rationalize key kinetic data available for the enzyme. Specifically, our results highlight the complex interplay of many

  13. Methylation-independent DNA Binding Modulates Specificity of Repressor of Silencing 1 (ROS1) and Facilitates Demethylation in Long Substrates*

    PubMed Central

    Ponferrada-Marín, María Isabel; Martínez-Macías, María Isabel; Morales-Ruiz, Teresa; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2010-01-01

    DNA cytosine methylation is an epigenetic mark that promotes gene silencing and performs critical roles during reproduction and development in both plants and animals. The genomic distribution of DNA methylation is the dynamic outcome of opposing methylation and demethylation processes. In plants, active demethylation occurs through a base excision repair pathway initiated by 5-methycytosine (5-meC) DNA glycosylases of the REPRESSOR OF SILENCING 1 (ROS1)/DEMETER (DME) family. To gain insight into the mechanism by which Arabidopsis ROS1 recognizes and excises 5-meC, we have identified those protein regions that are required for efficient DNA binding and catalysis. We have found that a short N-terminal lysine-rich domain conserved in members of the ROS1/DME family mediates strong methylation-independent binding of ROS1 to DNA and is required for efficient activity on 5-meC·G, but not for T·G processing. Removal of this domain does not significantly affect 5-meC excision from short molecules, but strongly decreases ROS1 activity on long DNA substrates. This region is not required for product binding and is not involved in the distributive behavior of the enzyme on substrates containing multiple 5-meC residues. Altogether, our results suggest that methylation-independent DNA binding allows ROS1 to perform a highly redundant search for efficient excision of a nondamaged, correctly paired base such as 5-meC in long stretches of DNA. These findings may have implications for understanding the evolution of structure and target specificity in DNA glycosylases. PMID:20489198

  14. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-04-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate.

  15. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed Central

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-01-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate. PMID:9545030

  16. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex.

    PubMed

    Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2017-02-17

    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.

  17. Enzymological and Structural Studies of the Mechanism of Promiscuous Substrate Recognition by the Oxidative DNA Repair Enzyme AlkB

    SciTech Connect

    Yu, B.; Hunt, J

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this 'kcat/Km compensation,' which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding.

  18. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

    PubMed Central

    Yu, Bomina; Hunt, John F.

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis–Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this “kcat/Km compensation,” which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding. PMID:19706517

  19. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  20. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity

    PubMed Central

    Chembazhi, Ullas Valiya; Patil, Vinod Vikas; Sah, Shivjee; Reeve, Wayne; Tiwari, Ravi P.

    2017-01-01

    Abstract Repair of uracils in DNA is initiated by uracil DNA glycosylases (UDGs). Family 1 UDGs (Ung) are the most efficient and ubiquitous proteins having an exquisite specificity for uracils in DNA. Ung are characterized by motifs A (GQDPY) and B (HPSPLS) sequences. We report a novel dimeric UDG, Blr0248 (BdiUng) from Bradyrhizobium diazoefficiens. Although BdiUng contains the motif A (GQDPA), it has low sequence identity to known UDGs. BdiUng prefers single stranded DNA and excises uracil, 5-hydroxymethyl-uracil or xanthine from it. BdiUng is impervious to inhibition by AP DNA, and Ugi protein that specifically inhibits family 1 UDGs. Crystal structure of BdiUng shows similarity with the family 4 UDGs in its overall fold but with family 1 UDGs in key active site residues. However, instead of a classical motif B, BdiUng has a uniquely extended protrusion explaining the lack of Ugi inhibition. Structural and mutational analyses of BdiUng have revealed the basis for the accommodation of diverse substrates into its substrate binding pocket. Phylogenetically, BdiUng belongs to a new UDG family. Bradyrhizobium diazoefficiens presents a unique scenario where the presence of at least four families of UDGs may compensate for the absence of an efficient family 1 homologue. PMID:28369586

  1. Hydrolysis of DNA model substrates catalyzed by metal-substituted Wells-Dawson polyoxometalates.

    PubMed

    Vanhaecht, Stef; Absillis, Gregory; Parac-Vogt, Tatjana N

    2012-09-07

    In this study we report the first example of phosphoester bond hydrolysis in 4-nitrophenyl phosphate (NPP) and bis-4-nitrophenyl phosphate (BNPP), two commonly used DNA model substrates, promoted by metal-substituted polyoxometalates (POMs). Different transition metal and lanthanide ions were incorporated into the Wells-Dawson polyoxometalate framework and subsequently screened for their hydrolytic activity towards the cleavage of the phosphoester bonds in NPP and BNPP. From these complexes, the Zr(iv)-substituted POM showed the highest reactivity. At pD 7.2 and 50 °C a NPP hydrolysis rate constant of 7.71 × 10(-4) min(-1) (t(1/2) = 15 h) was calculated, representing a rate enhancement of nearly two orders of magnitude in comparison with the spontaneous hydrolysis of NPP. The catalytic (k(c) = 1.73 × 10(-3) min(-1)) and formation constant (K(f) = 520.02 M(-1)) for the NPP-Zr(iv)-POM complex were determined from kinetic experiments. The reaction proceeded faster in acidic conditions and (31)P NMR experiments showed that faster hydrolysis is proportional to the presence of the 1 : 1 monosubstituted Zr(iv)-POM at acidic pD values. The strong interaction of the 1 : 1 monosubstituted Zr(iv)-POM with the P-O bond of NPP was evidenced by the large chemical shift and the line broadening of the (31)P nucleus in NPP observed upon addition of the metal complex. Significantly, a ten-fold excess of NPP was fully hydrolyzed in the presence of the Zr(iv)-POM, proving the principles of catalysis. The NMR spectra did not show sign of any paramagnetic species, excluding an oxidative cleavage mechanism and suggesting purely hydrolytic cleavage.

  2. Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL.

    PubMed

    Bhandari, Vaibhav; Houry, Walid A

    2015-01-01

    In the dense cellular environment, protein misfolding and inter-molecular protein aggregation compete with protein folding. Chaperones associate with proteins to prevent misfolding and to assist in folding to the native state. In Escherichia coli, the chaperones trigger factor, DnaK/DnaJ/GrpE, and GroEL/ES are the major chaperones responsible for insuring proper de novo protein folding. With multitudes of proteins produced by the bacterium, the chaperones have to be selective for their substrates. Yet, chaperone selectivity cannot be too specific. Recent biochemical and high-throughput studies have provided important insights highlighting the strategies used by chaperones in maintaining proteostasis in the cell. Here, we discuss the substrate networks and cooperation among these protein folding chaperones.

  3. Multiple Escherichia coli RecQ helicase monomers cooperate to unwind long DNA substrates: a fluorescence cross-correlation spectroscopy study.

    PubMed

    Li, Na; Henry, Etienne; Guiot, Elvire; Rigolet, Pascal; Brochon, Jean-Claude; Xi, Xu-Guang; Deprez, Eric

    2010-03-05

    The RecQ family helicases catalyze the DNA unwinding reaction in an ATP hydrolysis-dependent manner. We investigated the mechanism of DNA unwinding by the Escherichia coli RecQ helicase using a new sensitive helicase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. The FCCS-based assay can be used to measure the unwinding activity under both single and multiple turnover conditions with no limitation related to the size of the DNA strands constituting the DNA substrate. We found that the monomeric helicase was sufficient to perform the unwinding of short DNA substrates. However, a significant increase in the activity was observed using longer DNA substrates, under single turnover conditions, originating from the simultaneous binding of multiple helicase monomers to the same DNA molecule. This functional cooperativity was strongly dependent on several factors, including DNA substrate length, the number and size of single-stranded 3'-tails, and the temperature. Regarding the latter parameter, a strong cooperativity was observed at 37 degrees C, whereas only modest or no cooperativity was observed at 25 degrees C regardless of the nature of the DNA substrate. Consistently, the functional cooperativity was found to be tightly associated with a cooperative DNA binding mode. We also showed that the cooperative binding of helicase to the DNA substrate indirectly accounts for the sigmoidal dependence of unwinding activity on ATP concentration, which also occurs only at 37 degrees C but not at 25 degrees C. Finally, we further examined the influences of spontaneous DNA rehybridization (after helicase translocation) and the single-stranded DNA binding property of helicase on the unwinding activity as detected in the FCCS assay.

  4. Non-homologous DNA end joining repair in normal and leukemic cells depends on the substrate ends.

    PubMed

    Pastwa, Elzbieta; Poplawski, Tomasz; Czechowska, Agnieszka; Malinowski, Mariusz; Blasiak, Janusz

    2005-01-01

    Double-strand breaks (DSBs) are the most serious DNA damage which, if unrepaired or misrepaired, may lead to cell death, genomic instability or cancer transformation. In human cells they can be repaired mainly by non-homologous DNA end joining (NHEJ). The efficacy of NHEJ pathway was examined in normal human lymphocytes and K562 myeloid leukemic cells expressing the BCR/ABL oncogenic tyrosine kinase activity and lacking p53 tumor suppressor protein. In our studies we employed a simple and rapid in vitro DSB end joining assay based on fluorescent detection of repair products. Normal and cancer cells were able to repair DNA damage caused by restriction endonucleases, but the efficiency of the end joining was dependent on the type of cells and the structure of DNA ends. K562 cells displayed decreased NHEJ activity in comparison to normal cells for 5' complementary DNA overhang. For blunt-ended DNA there was no significant difference in end joining activity. Both kinds of cells were found about 10-fold more efficient for joining DNA substrates with compatible 5' overhangs than those with blunt ends. Our recent findings have shown that stimulation of DNA repair could be involved in the drug resistance of BCR/ABL-positive cells in anticancer therapy. For the first time the role of STI571 was investigated, a specific inhibitor of BCR/ABL oncogenic protein approved for leukemia treatment in the NHEJ pathway. Surprisingly, STI571 did not change the response of BCR/ABL-positive K562 cells in terms of NHEJ for both complementary and blunt ends. Our results suggest that the various responses of the cells to DNA damage via NHEJ can be correlated with the differences in the genetic constitution of human normal and cancer cells. However, the role of NHEJ in anticancer drug resistance in BCR/ABL-positive cells is questionable.

  5. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs.

    PubMed

    Alian, Akram; Griner, Sarah L; Chiang, Vicki; Tsiang, Manuel; Jones, Gregg; Birkus, Gabriel; Geleziunas, Romas; Leavitt, Andrew D; Stroud, Robert M

    2009-05-19

    HIV-1 integration into the host cell genome is a multistep process catalyzed by the virally-encoded integrase (IN) protein. In view of the difficulty of obtaining a stable DNA-bound IN at high concentration as required for structure determination, we selected IN-DNA complexes that form disulfide linkages between 5'-thiolated DNA and several single mutations to cysteine around the catalytic site of IN. Mild reducing conditions allowed for selection of the most thermodynamically-stable disulfide-linked species. The most stable complexes induce tetramer formation of IN, as happens during the physiological integration reaction, and are able to catalyze the strand transfer step of retroviral integration. One of these complexes also binds strand-transfer inhibitors of HIV antiviral drugs, making it uniquely valuable among the mutants of this set for understanding portions of the integration reaction. This novel complex may help define substrate interactions and delineate the mechanism of action of known integration inhibitors.

  6. Force-activated substrates for high-precision, high-throughput optical trapping assays of ssDNA motor proteins (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Okoniewski, Stephen; Perkins, Thomas T.

    2016-09-01

    Optical-trapping-based assays can measure individual proteins bind to and move along DNA with sub-nm resolution, and have yielded insight into a broad array of protein-DNA interactions. Unfortunately, collecting large numbers of high-resolution traces remains an ongoing challenge. Studying helicase motion along DNA exemplifies this challenge. One major difficulty is that helicase binding often requires a single stranded (ss)-double stranded (ds) DNA junction flanked by ssDNA with a minimum size and orientation. Historically, creating such DNA substrates is inefficient. More problematic is that data throughput is low in standard surface-based assays since all substrates are unwound upon introduction of ATP. The net result is 2-4 high-resolution traces on a good day. To improve throughput, we sought to turn-on or activate a substrate for a helicase one molecule at a time and thereby sequentially study many molecules on an individual microscope slide. As a first step towards this goal, we engineered a dsDNA that contains two site-specific nicks along the same strand of the dsDNA but no ssDNA. Upon overstretching the DNA (F = 65 pN), the strand between the two nicks was mechanically dissociated. We demonstrated this with two different substrates: one yielding an internal ssDNA region of 1100 nt and the other yielding a 20-bp long hairpin flanked by 30 nt of ssDNA. Unwinding a hairpin yields a 3-fold larger signal while the 30-nt ssDNA serves as the binding site for the helicase. We expect that these force-activated substrates to significantly accelerate high-resolution optical-trapping studies of DNA helicases.

  7. Nuclear GIT2 Is an ATM Substrate and Promotes DNA Repair

    PubMed Central

    Lu, Daoyuan; Cai, Huan; Park, Sung-Soo; Siddiqui, Sana; Premont, Richard T.; Schmalzigaug, Robert; Paramasivam, Manikandan; Seidman, Michael; Bodogai, Ionoa; Biragyn, Arya; Daimon, Caitlin M.; Martin, Bronwen

    2015-01-01

    Insults to nuclear DNA induce multiple response pathways to mitigate the deleterious effects of damage and mediate effective DNA repair. G-protein-coupled receptor kinase-interacting protein 2 (GIT2) regulates receptor internalization, focal adhesion dynamics, cell migration, and responses to oxidative stress. Here we demonstrate that GIT2 coordinates the levels of proteins in the DNA damage response (DDR). Cellular sensitivity to irradiation-induced DNA damage was highly associated with GIT2 expression levels. GIT2 is phosphorylated by ATM kinase and forms complexes with multiple DDR-associated factors in response to DNA damage. The targeting of GIT2 to DNA double-strand breaks was rapid and, in part, dependent upon the presence of H2AX, ATM, and MRE11 but was independent of MDC1 and RNF8. GIT2 likely promotes DNA repair through multiple mechanisms, including stabilization of BRCA1 in repair complexes; upregulation of repair proteins, including HMGN1 and RFC1; and regulation of poly(ADP-ribose) polymerase activity. Furthermore, GIT2-knockout mice demonstrated a greater susceptibility to DNA damage than their wild-type littermates. These results suggest that GIT2 plays an important role in MRE11/ATM/H2AX-mediated DNA damage responses. PMID:25605334

  8. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.

    PubMed

    Teschome, Bezu; Facsko, Stefan; Gothelf, Kurt V; Keller, Adrian

    2015-11-24

    DNA origami has become an established technique for designing well-defined nanostructures with any desired shape and for the controlled arrangement of functional nanostructures with few nanometer resolution. These unique features make DNA origami nanostructures promising candidates for use as scaffolds in nanoelectronics and nanophotonics device fabrication. Consequently, a number of studies have shown the precise organization of metallic nanoparticles on various DNA origami shapes. In this work, we fabricated large arrays of aligned DNA origami decorated with a high density of gold nanoparticles (AuNPs). To this end, we first demonstrate the high-yield assembly of high-density AuNP arrangements on DNA origami adsorbed to Si surfaces with few unbound background nanoparticles by carefully controlling the concentrations of MgCl2 and AuNPs in the hybridization buffer and the hybridization time. Then, we evaluate two methods, i.e., hybridization to prealigned DNA origami and molecular combing in a receding meniscus, with respect to their potential to yield large arrays of aligned AuNP-decorated DNA origami nanotubes. Because of the comparatively low MgCl2 concentration required for the efficient immobilization of the AuNPs, the prealigned DNA origami become mobile and displaced from their original positions, thereby decreasing the alignment yield. This increased mobility, on the other hand, makes the adsorbed origami susceptible to molecular combing, and a total alignment yield of 86% is obtained in this way.

  9. Grip it and rip it: structural mechanisms of DNA helicase substrate binding and unwinding.

    PubMed

    Bhattacharyya, Basudeb; Keck, James L

    2014-11-01

    Maintenance and faithful transmission of genomic information depends on the efficient execution of numerous DNA replication, recombination, and repair pathways. Many of the enzymes that catalyze steps within these pathways require access to sequence information that is buried in the interior of the DNA double helix, which makes DNA unwinding an essential cellular reaction. The unwinding process is mediated by specialized molecular motors called DNA helicases that couple the chemical energy derived from nucleoside triphosphate hydrolysis to the otherwise non-spontaneous unwinding reaction. An impressive number of high-resolution helicase structures are now available that, together with equally important mechanistic studies, have begun to define the features that allow this class of enzymes to function as molecular motors. In this review, we explore the structural features within DNA helicases that are used to bind and unwind DNA. We focus in particular on "aromatic-rich loops" that allow some helicases to couple single-stranded DNA binding to ATP hydrolysis and "wedge/pin" elements that provide mechanical tools for DNA strand separation when connected to translocating motor domains.

  10. DNA Ligase I is an In Vivo Substrate of DNA-Dependent Protein Kinase and is Activated by Phosphorylation in Response to DNA Double-Strand Breaks

    DTIC Science & Technology

    2006-01-01

    anlysis. to the procedure described by Malanga and Althaus (8). Gel Electrophoresis and A utoradiography. Immunopre- DNA Ligase and Protein Assays. DNA...by casein kinase 11, EMBO J. 11, 2925-2933. In conclusion, we have demonstrated that DNA ligase I 8. Malanga , M., and Althaus, F. R. (1994) Poly (ADP

  11. Detection of target DNA using photo-reactive protoporphyrin moeity on a nanocomposite substrate

    NASA Astrophysics Data System (ADS)

    Das, Sumana; Mishra, Madhusmita; Vasireddi, Ramakrishna; Roy Mahapatra, D.

    2014-03-01

    Detection of pathogens from infected biological samples through conventional process involves cell lysis and purification. The main objective of this work is to minimize the time and sample loss, as well as to increase the efficiency of detection of biomolecules. Electrical lysis of medical sample is performed in a closed microfluidic channel in a single integrated platform where the downstream analysis of the sample is possible. The device functions involve, in a sequence, flow of lysate from lysis chamber passed through a thermal denaturation counter where dsDNA is denatured to ssDNA, which is controlled by heater unit. A functionalized binding chamber of ssDNA is prepared by using ZnO nanorods as the matrix and functionalized with bifunctional carboxylic acid, 16-(2-pyridyldithiol) hexadecanoic acid (PDHA) which is further attached to a linker molecule 1-ethyl-3-(3-dimethylaminopropyl) (EDC). Linker moeity is then covalently bound to photoreactive protoporphyrin (PPP) molecule. The photolabile molecule protoporphyrin interacts with -NH2 labeled single stranded DNA (ssDNA) which thus acts as a probe to detect complimentary ssDNA from target organisms. Thereafter the bound DNA with protoporphyrin is exposed to an LED of particular wavelength for a definite period of time and DNA was eluted and analyzed. UV/Vis spectroscopic analysis at 260/280 nm wavelength confirms the purity and peak at 260 nm is reconfirmed for the elution of target DNA. Quantitative and qualitative data obtained from the current experiments show highly selective detection of biomolecule such as DNA which have large number of future applications in Point-of-Care devices.

  12. Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor.

    PubMed

    Zhang, Tingting; Li, He; Hou, Shengwei; Dong, Youqing; Pang, Guangsheng; Zhang, Yingwei

    2015-12-16

    We report the successful construction of plasmonic core-satellite nanostructured assemblies on two-dimensional substrates, based on a strategy of combining DNA-functionalized plasmonic nanoparticles (NPs) with the specific recognition ability toward target to enable satellite NPs to self-assemble around the core immobilized on substrates. A strongly coupled plasmonic resonance band was observed because of the close proximity between core and satellite NPs, which presented significant red-shift and enhanced extinction with respect to the local surface plasmon resonance (LSPR) band of individual core NPs on the substrate. The functionality of this core-satellite nanostructured assembly as a biosensor was further explored, and the changes in extinction intensity and the peak shift of the plasmonic coupling resonance band arising from the probe-target DNA binding event all proved to be useful criteria for target DNA detection. Moreover, high selectivity down to single-base mismatched DNA was achieved using this strongly coupled plasmonic core-satellite nanostructured assembly on a substrate. Such substrate-based detection was advantageous, and its reusability and high cycle stability were demonstrated after five cycles of disassembly and reassembly. Our work demonstrates the biosensing capacity of this DNA-functionalized plasmonic nanoassembly model system on two-dimensional substrate, which is also applicable to the detection of numerous DNA-recognized biomolecules. Likewise, the presented construction method can be extended to fabricate other compositional core-satellite nanoassemblies.

  13. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    PubMed

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  14. DNA Charge Transport over 34 nm

    PubMed Central

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-01-01

    Molecular wires show promise in nanoscale electronics but the synthesis of uniform, long conductive molecules is a significant challenge. DNA of precise length, by contrast, is easily synthesized, but its conductivity has not been explored over the distances required for nanoscale devices. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation that is accessible to protein binding. Similar electron transfer rates are measured through 100-mer and 17-mer monolayers, consistent with rate-limiting electron tunneling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses most reports of molecular wires. PMID:21336329

  15. Ferroplasma acidarmanus RPA2 facilitates efficient unwinding of forked DNA substrates by monomers of FacXPD helicase.

    PubMed

    Pugh, Robert A; Lin, Yuyen; Eller, Chelcie; Leesley, Haley; Cann, Isaac K O; Spies, Maria

    2008-11-28

    The strand-separation activity that is important for many cellular DNA processing machineries is provided by DNA helicases. In order to understand the physiological properties of a helicase acting in the context of its macromolecular machinery, it is imperative to identify the proteins that interact with the enzyme and to analyze how these proteins affect its helicase activities. The archaeal Rad3 helicase XPD (xeroderma pigmentosum group D protein) from Ferroplasma acidarmanus (FacXPD) is a superfamily II 5'-->3' DNA helicase. Similar to its mammalian homolog working as an integral part of the transcription factor IIH complex, FacXPD may play an important role in nucleotide excision repair (NER) and transcription initiation. Interaction between FacXPD and other archaeal NER proteins likely modulates their respective activities. Replication protein A (RPA), a single-stranded DNA (ssDNA)-binding protein, is one of the NER proteins that functionally interact with the human transcription factor IIH complex. There are two RPA proteins in F. acidarmanus: FacRPA1, a homodimer of two monomers consisting of two oligonucleotide/oligosaccharide binding folds, and FacRPA2, a monomer containing a single oligonucleotide/oligosaccharide binding fold. In this study, we analyzed the effect of these ssDNA-binding proteins on FacXPD helicase activity. We found that FacRPA2 stimulates DNA unwinding by FacXPD helicase through a novel mechanism by providing a helix-destabilizing function. In contrast, FacRPA1 fails to stimulate helicase activity to the same extent as FacRPA2 and competes with FacXPD for binding to the ssDNA-double-stranded DNA junction. We conclude that the FacRPA2-coated fork is a preferred and likely physiological substrate that a monomer of FacXPD can unwind with a processivity sufficient for expansion of the NER or transcription bubble. We also suggest that duplex melting by a cognate ssDNA-binding protein coordinated with translocation by a helicase may represent

  16. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.

  17. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.

  18. Interactions of the C-terminal Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku(sub 70/80) complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The C-terminal domain of Ku70 (Ku70c, residues 559-609), contains an helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the Ku70c/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the subunit Ku70c and a 14 base pairs DNA duplex, whose starting structures are designed to be variable so as to mimic their different binding modes. By analyzing conformational changes and energetic properties of the complex during MD simulations, we found that interactions are preferred at DNA ends, and within the major groove, which is consistent with previous experimental investigations. In addition, the results indicate that cooperation of Ku70c with other subunits of Ku(sub 70/80) is necessary to explain the high affinity of binding as observed in experiments.

  19. Interactions of the C-terminal Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku(sub 70/80) complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The C-terminal domain of Ku70 (Ku70c, residues 559-609), contains an helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the Ku70c/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the subunit Ku70c and a 14 base pairs DNA duplex, whose starting structures are designed to be variable so as to mimic their different binding modes. By analyzing conformational changes and energetic properties of the complex during MD simulations, we found that interactions are preferred at DNA ends, and within the major groove, which is consistent with previous experimental investigations. In addition, the results indicate that cooperation of Ku70c with other subunits of Ku(sub 70/80) is necessary to explain the high affinity of binding as observed in experiments.

  20. Products and substrate/template usage of vaccinia virus DNA primase

    SciTech Connect

    De Silva, Frank S.; Paran, Nir; Moss, Bernard

    2009-01-05

    Vaccinia virus encodes a 90-kDa protein conserved in all poxviruses, with DNA primase and nucleoside triphosphatase activities. DNA primase products, synthesized with a single stranded {phi}X174 DNA template, were resolved as dinucleotides and long RNAs on denaturing polyacrylamide and agarose gels. Following phosphatase treatment, the dinucleotides GpC and ApC in a 4:1 ratio were identified by nearest neighbor analysis in which {sup 32}P was transferred from [{alpha}-{sup 32}P]CTP to initiating purine nucleotides. Differences in the nucleotide binding sites for initiation and elongation were suggested by the absence of CpC and UpC dinucleotides as well as the inability of deoxynucleotides to mediate primer synthesis despite their incorporation into mixed RNA/DNA primers. Strong primase activity was detected with an oligo(dC) template. However, there was only weak activity with an oligo(dT) template and none with oligo(dA) or oligo(dG). The absence of stringent template specificity is consistent with a role for the enzyme in priming DNA synthesis at the replication fork.

  1. Activity of FEN1 endonuclease on nucleosome substrates is dependent upon DNA sequence but not flap orientation.

    PubMed

    Jagannathan, Indu; Pepenella, Sharon; Hayes, Jeffrey J

    2011-05-20

    We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.

  2. Saccharomyces cerevisiae Hrq1 requires a long 3 Prime -tailed DNA substrate for helicase activity

    SciTech Connect

    Kwon, Sung-Hun; Choi, Do-Hee; Lee, Rina; Bae, Sung-Ho

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Hrq1 has intrinsic 3 Prime -5 Prime helicase and DNA strand annealing activities. Black-Right-Pointing-Pointer Hrq1 requires a long 3 Prime -tail for efficient DNA unwinding. Black-Right-Pointing-Pointer Helicase activity of Hrq1 is stimulated by a fork structure. Black-Right-Pointing-Pointer Hrq1 is a moderately processive helicase. -- Abstract: RecQ helicases are well conserved proteins from bacteria to human and function in various DNA metabolism for maintenance of genome stability. Five RecQ helicases are found in humans, whereas only one RecQ helicase has been described in lower eukaryotes. However, recent studies predicted the presence of a second RecQ helicase, Hrq1, in fungal genomes and verified it as a functional gene in fission yeast. Here we show that 3 Prime -5 Prime helicase activity is intrinsically associated with Hrq1 of Saccharomyces cerevisiae. We also determined several biochemical properties of Hrq1 helicase distinguishable from those of other RecQ helicase members. Hrq1 is able to unwind relatively long duplex DNA up to 120-bp and is significantly stimulated by a preexisting fork structure. Further, the most striking feature of Hrq1 is its absolute requirement for a long 3 Prime -tail ( Greater-Than-Or-Slanted-Equal-To 70-nt) for efficient unwinding of duplex DNA. We also found that Hrq1 has potent DNA strand annealing activity. Our results indicate that Hrq1 has vigorous helicase activity that deserves further characterization to expand our understanding of RecQ helicases.

  3. Saccharomyces cerevisiae Hrq1 requires a long 3'-tailed DNA substrate for helicase activity.

    PubMed

    Kwon, Sung-Hun; Choi, Do-Hee; Lee, Rina; Bae, Sung-Ho

    2012-10-26

    RecQ helicases are well conserved proteins from bacteria to human and function in various DNA metabolism for maintenance of genome stability. Five RecQ helicases are found in humans, whereas only one RecQ helicase has been described in lower eukaryotes. However, recent studies predicted the presence of a second RecQ helicase, Hrq1, in fungal genomes and verified it as a functional gene in fission yeast. Here we show that 3'-5' helicase activity is intrinsically associated with Hrq1 of Saccharomyces cerevisiae. We also determined several biochemical properties of Hrq1 helicase distinguishable from those of other RecQ helicase members. Hrq1 is able to unwind relatively long duplex DNA up to 120-bp and is significantly stimulated by a preexisting fork structure. Further, the most striking feature of Hrq1 is its absolute requirement for a long 3'-tail (⩾70-nt) for efficient unwinding of duplex DNA. We also found that Hrq1 has potent DNA strand annealing activity. Our results indicate that Hrq1 has vigorous helicase activity that deserves further characterization to expand our understanding of RecQ helicases. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Selectivity of Hybridization Controlled by the Density of Solid Phase Synthesized DNA Probes on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Song, Fayi; Krull, Ulrich J.

    Optical biochip design based on varying the density of immobilized single-stranded DNA (ssDNA) oligonucleotide probes was examined. A method of immobilization was developed to yield various densities of probe molecules using photochemical activation of surfaces and in situ solid phase synthesis for DNA immobilization. High surface density of ssDNA probe (up to 1 × 1013 probes/cm2) was obtained using the immobilization method. The densities and extent of hybridization of nucleic acids were determined using confocal fluorescence microscopy. Selective hybridization of targets associated with spinal muscular atrophy containing single nucleotide polymorphisms (SNP), and their thermal denaturation profiles were investigated to examine the sensitivity and selectivity for SNP detection. The detection limit was less than 16 pM at room temperature. Single base mismatch discrimination was demonstrated based on control of melt temperature by selection of probe density, and temperature differences of 12-15°C could be achieved for SNP determination. Importantly, the results demonstrate that poor control of probe density can result in significant variability of selectivity, as seen by melt temperature shifts of up to 5°C in the density range that was investigated.

  5. In vitro selection of optimal DNA substrates for T4 RNA ligase

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 RNA ligase. We find that the ensemble of selected sequences ligated about 10 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly, the majority of the selected sequences approximated a well-defined consensus sequence.

  6. In vitro selection of optimal DNA substrates for T4 RNA ligase

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 RNA ligase. We find that the ensemble of selected sequences ligated about 10 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly, the majority of the selected sequences approximated a well-defined consensus sequence.

  7. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs

    PubMed Central

    Alian, Akram; Griner, Sarah L.; Chiang, Vicki; Tsiang, Manuel; Jones, Gregg; Birkus, Gabriel; Geleziunas, Romas; Leavitt, Andrew D.; Stroud, Robert M.

    2009-01-01

    HIV-1 integration into the host cell genome is a multistep process catalyzed by the virally-encoded integrase (IN) protein. In view of the difficulty of obtaining a stable DNA-bound IN at high concentration as required for structure determination, we selected IN–DNA complexes that form disulfide linkages between 5′-thiolated DNA and several single mutations to cysteine around the catalytic site of IN. Mild reducing conditions allowed for selection of the most thermodynamically-stable disulfide-linked species. The most stable complexes induce tetramer formation of IN, as happens during the physiological integration reaction, and are able to catalyze the strand transfer step of retroviral integration. One of these complexes also binds strand-transfer inhibitors of HIV antiviral drugs, making it uniquely valuable among the mutants of this set for understanding portions of the integration reaction. This novel complex may help define substrate interactions and delineate the mechanism of action of known integration inhibitors. PMID:19416821

  8. Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA.

    PubMed

    Torres-Nuñez, A; Faulds, K; Graham, D; Alvarez-Puebla, R A; Guerrini, L

    2016-08-15

    Ultrasensitive direct SERS analysis offers a powerful analytical tool for the structural characterization and classification of nucleic acids. However, acquisition of reliable spectral fingerprints of such complex biomolecules poses important challenges. In recent years, many efforts have been devoted to overcome these limitations, mainly implementing silver colloids as plasmonic substrates. However, a reliable cross-comparison of results reported in the recent literature is extremely hard to achieve, mostly due to the broad set of different surface properties of the plasmonic nanoparticles. Herein, we perform a thorough investigation of the role played by the metal/liquid interface composition of silver colloids in the direct label-free SERS analysis of DNA. Target molecules of increasing complexity, from short homopolymeric strands to long genomic duplexes, were used as probes. We demonstrate how apparently subtle changes in the colloidal surface chemistry can dramatically modify the affinity and the final SERS spectral profile of DNA. This has significant implications for the future design of new analytical strategies for the detection of DNA using SERS without labels.

  9. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.

    PubMed

    Porello, S L; Leyes, A E; David, S S

    1998-10-20

    The DNA repair enzyme MutY plays an important role in the prevention of DNA mutations resulting from the presence of the oxidatively damaged lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA by the removal of misincorporated adenine residues in OG:A mispairs. MutY also exhibits adenine glycosylase activity toward adenine in G:A and C:A mismatches, although the importance of this activity in vivo has not been established. We have investigated the kinetic properties of MutY's glycosylase activity with OG:A and G:A containing DNA duplexes. Our results indicate that MutY's processing of these two substrates is distinctly different. By using single-turnover experiments, the intrinsic rate for adenine removal by MutY from an OG:A substrate was found to be at least 6-fold faster than that from the corresponding G:A substrate. However, under conditions where [MutY] < [DNA], OG:A substrates are not quantitatively converted to product due to the inefficient turnover resulting from slow product release. In contrast, with a G:A substrate MutY's dissociation from the corresponding product is more facile, such that complete conversion of the substrate to product can be achieved under similar conditions. The kinetic results illustrate that the glycosylase reaction catalyzed by MutY has significant differences depending on the characteristics of the substrate. The lingering of MutY with the product of its reaction with OG:A mispairs may be biologically significant to prevent premature removal of OG. Thus, this approach is providing insight into factors that may be influencing the repair of damaged and mismatched DNA in vivo by base-excision repair glycosylases.

  10. Use of damaged DNA and dNTP substrates by the error-prone DNA polymerase X from African swine fever virus.

    PubMed

    Kumar, Sandeep; Lamarche, Brandon J; Tsai, Ming-Daw

    2007-03-27

    The structural specificity that translesion DNA polymerases often show for a particular class of lesions suggests that the predominant criterion of selection during their evolution has been the capacity for lesion tolerance and that the error-proneness they display when copying undamaged templates may simply be a byproduct of this adaptation. Regardless of selection criteria/evolutionary history, at present both of these properties coexist in these enzymes, and both properties confer a fitness advantage. The repair polymerase, Pol X, encoded by the African swine fever virus (ASFV) is one of the most error-prone polymerases known, leading us to previously hypothesize that it may work in tandem with the exceptionally error-tolerant ASFV DNA ligase to effect viral mutagenesis. Here, for the first time, we test whether the error-proneness of Pol X is coupled with a capacity for lesion tolerance by examining its ability to utilize the types of damaged DNA and dNTP substrates that are expected to be relevant to ASFV. We (i) test Pol X's ability to both incorporate opposite to and extend from ubiquitous oxidative purine (7,8-dihydro-8-oxoguanine), oxidative pyrimidine (5,6-dihydroxy-5,6-dihydrothymine), and noncoding (AP site) lesions, in addition to 5,6-dihydrothymine, (ii) determine the catalytic efficiency and dNTP specificity of Pol X when catalyzing incorporation opposite to, and when extending from, 7,8-dihydro-8-oxoguanine in a template/primer context, and (iii) quantitate Pol X-catalyzed incorporation of the damaged nucleotide 8-oxo-dGTP opposite to undamaged templates in the context of both template/primer and a single-nucleotide gap. Our findings are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.

  11. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications.

    PubMed

    Rockwood, Jananie; Mao, Dominic; Grogan, Dennis W

    2013-09-01

    Although homologous recombination (HR) is known to influence the structure, stability, and evolution of microbial genomes, few of its functional properties have been measured in cells of hyperthermophilic archaea. The present study manipulated various properties of the parental DNAs in high-resolution assays of Sulfolobus acidocaldarius transformation, and measured the impact on the efficiency and pattern of marker transfer to the recipient chromosome. The relative orientation of homologous sequences, the type and position of chromosomal mutation being replaced, and the length of DNA flanking the marked region all affected the efficiency, linkage, tract continuity, and other parameters of marker transfer. Effects predicted specifically by the classical reciprocal-exchange model of HR were not observed. One analysis observed only 90 % linkage between markers defined by adjacent bases; in another series of experiments, sequence divergence up to 4 % had no detectable impact on overall efficiency of HR or on the co-transfer of a distal non-selected marker. The effects of introducing DNA via conjugation, rather than transformation, were more difficult to assess, but appeared to increase co-transfer (i.e. linkage) of relatively distant non-selected markers. The results indicate that HR events between gene-sized duplex DNAs and the S. acidocaldarius chromosome typically involve neither crossing over nor interference from a mismatch-activated anti-recombination system. Instead, the donor DNA may anneal to a transient chromosomal gap, as in the mechanism proposed for oligonucleotide-mediated transformation of Sulfolobus and other micro-organisms.

  12. Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination

    PubMed Central

    Robertson, Adam B.; Robertson, Julia; Fusser, Markus; Klungland, Arne

    2014-01-01

    5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mouse liver extracts and demonstrate that the enzyme responsible for the cleavage of 5hmC-modified DNA is Endonuclease G (EndoG). We show that recombinant EndoG preferentially recognizes and cleaves a core sequence when one specific cytosine within that core sequence is hydroxymethylated. Additionally, we provide in vivo evidence that EndoG catalyzes the formation of double-stranded DNA breaks and that this cleavage is dependent upon the core sequence, EndoG and 5hmC. Finally, we demonstrate that the 5hmC modification can promote conservative recombination in an EndoG-dependent manner. PMID:25355512

  13. Fluorescence of quantum dots on e-beam patterned and DNA origami substrates

    NASA Astrophysics Data System (ADS)

    Corrigan, Timothy D.; Kessinger, Matthew; Kidd, Jesse; Neff, David; Rahman, Masudur; Norton, Michael L.

    2015-05-01

    Attachment of quantum dots or fluorescent molecules to gold nanoparticles has a variety of optical labeling and sensory applications. In this study, we use both e-beam lithography and DNA origami to examine the fluorescence enhancement of fluorescent molecules and quantum dots with a systematic approach to understanding the contribution of gold nanoparticle size and interparticle spacing. The unique design of our patterns allows us to study the effects of size and spacing of the gold nanoparticles on the enhancement of fluorescence in one quick study with constant conditions - removing undesirable effects such as differences in concentration of quantum dots or other chemistry differences that plague multiple experiments. We also discuss the fluorescence and bonding of CdSe/ZnS quantum dots to both gold as well as DNA for use in self assembled DNA constructs. Specifically, bioconjugated CdSe/ZnS core/shell quantum dots were synthesized and functionalized with MPA using both traditional ligand exchange as well as newly developed in situ functionalization techniques used to increase the quantum yield of the quantum dots. We will present fluorescent images showing results of optimal size and spacing for fluorescence as well as demonstrating attachment chemistry of the quantum dots.

  14. Substrate preference of Gen endonucleases highlights the importance of branched structures as DNA damage repair intermediates

    PubMed Central

    Bellendir, Stephanie P.; Rognstad, Danielle J.; Morris, Lydia P.; Zapotoczny, Grzegorz; Walton, William G.; Redinbo, Matthew R.; Ramsden, Dale A.

    2017-01-01

    Abstract Human GEN1 and yeast Yen1 are endonucleases with the ability to cleave Holliday junctions (HJs), which are proposed intermediates in recombination. In vivo, GEN1 and Yen1 function secondarily to Mus81, which has weak activity on intact HJs. We show that the genetic relationship is reversed in Drosophila, with Gen mutants having more severe defects than mus81 mutants. In vitro, DmGen, like HsGEN1, efficiently cleaves HJs, 5΄ flaps, splayed arms, and replication fork structures. We find that the cleavage rates for 5΄ flaps are significantly higher than those for HJs for both DmGen and HsGEN1, even in vast excess of enzyme over substrate. Kinetic studies suggest that the difference in cleavage rates results from a slow, rate-limiting conformational change prior to HJ cleavage: formation of a productive dimer on the HJ. Despite the stark difference in vivo that Drosophila uses Gen over Mus81 and humans use MUS81 over GEN1, we find the in vitro activities of DmGen and HsGEN1 to be strikingly similar. These findings suggest that simpler branched structures may be more important substrates for Gen orthologs in vivo, and highlight the utility of using the Drosophila model system to further understand these enzymes. PMID:28369583

  15. Substrate preference of Gen endonucleases highlights the importance of branched structures as DNA damage repair intermediates.

    PubMed

    Bellendir, Stephanie P; Rognstad, Danielle J; Morris, Lydia P; Zapotoczny, Grzegorz; Walton, William G; Redinbo, Matthew R; Ramsden, Dale A; Sekelsky, Jeff; Erie, Dorothy A

    2017-05-19

    Human GEN1 and yeast Yen1 are endonucleases with the ability to cleave Holliday junctions (HJs), which are proposed intermediates in recombination. In vivo, GEN1 and Yen1 function secondarily to Mus81, which has weak activity on intact HJs. We show that the genetic relationship is reversed in Drosophila, with Gen mutants having more severe defects than mus81 mutants. In vitro, DmGen, like HsGEN1, efficiently cleaves HJs, 5΄ flaps, splayed arms, and replication fork structures. We find that the cleavage rates for 5΄ flaps are significantly higher than those for HJs for both DmGen and HsGEN1, even in vast excess of enzyme over substrate. Kinetic studies suggest that the difference in cleavage rates results from a slow, rate-limiting conformational change prior to HJ cleavage: formation of a productive dimer on the HJ. Despite the stark difference in vivo that Drosophila uses Gen over Mus81 and humans use MUS81 over GEN1, we find the in vitro activities of DmGen and HsGEN1 to be strikingly similar. These findings suggest that simpler branched structures may be more important substrates for Gen orthologs in vivo, and highlight the utility of using the Drosophila model system to further understand these enzymes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Enzymatic Reaction with Unnatural Substrates: DNA Photolyase (Escherichia coli) Recognizes and Reverses Thymine [2+2] Dimers in the DNA Strand of a DNA/PNA Hybrid Duplex

    NASA Astrophysics Data System (ADS)

    Ramaiah, Danaboyina; Kan, Yongzhi; Koch, Troels; Orum, Henrik; Schuster, Gary B.

    1998-10-01

    Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson--Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.

  17. Selective DNA-Mediated Assembly of Gold Nanoparticles on Electroded Substrates

    DTIC Science & Technology

    2008-06-01

    nm Au NPs was determined using UV-visible spectroscopy by measuring the absorbance at 520 nm (surface plasmon peak) and an approximate extinction ...concentration as determined by DTT assay . (B) Average distance between DNAs on the surface as estimated from the surface density. Also shown is the... coefficient of 1 × 108L/(mol · cm).8 Typically, the as- prepared concentrations were ∼30-35 nM. Deprotection of ssDNA. Deprotection of the 5ThiolMC6-D

  18. Substrate promiscuity in DNA methyltransferase M.PvuII. A mechanistic insight.

    PubMed

    Aranda, Juan; Roca, Maite; Tuñón, Iñaki

    2012-07-28

    M.PvuII is a DNA methyltransferase from the bacterium Proteus vulgaris that catalyzes methylation of cytosine at the N4 position. This enzyme also displays promiscuous activity catalyzing methylation of adenine at the N6 position. In this work we use QM/MM methods to investigate the reaction mechanism of this promiscuous activity. We found that N6 methylation in M.PvuII takes place by means of a stepwise mechanism in which deprotonation of the exocyclic amino group is followed by the methyl transfer. Deprotonation involves two residues of the active site, Ser53 and Asp96, while methylation takes place directly from the AdoMet cofactor to the target nitrogen atom. The same reaction mechanism was described for cytosine methylation in the same enzyme, while the reversal timing, that is methylation followed by deprotonation, has been described in M.TaqI, an enzyme that catalyzes the N6-adenine DNA methylation from Thermus aquaticus. These mechanistic findings can be useful to understand the evolutionary paths followed by N-methyltransferases.

  19. Study of bacteriophage T4-encoded Dam DNA (adenine-N6)-methyltransferase binding with substrates by rapid laser UV cross-linking.

    PubMed

    Evdokimov, Alexey A; Sclavi, Bianca; Zinoviev, Victor V; Malygin, Ernst G; Hattman, Stanley; Buckle, Malcolm

    2007-09-07

    DNA methyltransferases of the Dam family (including bacteriophage T4-encoded Dam DNA (adenine-N(6))-methyltransferase (T4Dam)) catalyze methyl group transfer from S-adenosyl-L-methionine (AdoMet), producing S-adenosyl-L-homocysteine (AdoHcy) and methylated adenine residues in palindromic GATC sequences. In this study, we describe the application of direct (i.e. no exogenous cross-linking reagents) laser UV cross-linking as a universal non-perturbing approach for studying the characteristics of T4Dam binding with substrates in the equilibrium and transient modes of interaction. UV irradiation of the enzyme.substrate complexes using an Nd(3+):yttrium aluminum garnet laser at 266 nm resulted in up to 3 and >15% yields of direct T4Dam cross-linking to DNA and AdoMet, respectively. Consequently, we were able to measure equilibrium constants and dissociation rates for enzyme.substrate complexes. In particular, we demonstrate that both reaction substrates, specific DNA and AdoMet (or product AdoHcy), stabilized the ternary complex. The improved substrate affinity for the enzyme in the ternary complex significantly reduced dissociation rates (up to 2 orders of magnitude). Several of the parameters obtained (such as dissociation rate constants for the binary T4Dam.AdoMet complex and for enzyme complexes with a nonfluorescent hemimethylated DNA duplex) were previously inaccessible by other means. However, where possible, the results of laser UV cross-linking were compared with those of fluorescence analysis. Our study suggests that rapid laser UV cross-linking efficiently complements standard DNA methyltransferase-related tools and is a method of choice to probe enzyme-substrate interactions in cases in which data cannot be acquired by other means.

  20. Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics.

    PubMed

    Fernández-Sáiz, Vanesa; Moro, Fernando; Arizmendi, Jesus M; Acebrón, Sergio P; Muga, Arturo

    2006-03-17

    To gain further insight into the interactions involved in the allosteric transition of DnaK we have characterized wild-type (wt) protein and three mutants in which ionic interactions at the interface between the two subdomains of the substrate binding domain, and within the lid subdomain have been disrupted. Our data show that ionic contacts, most likely forming an electrically charged network, between the N-terminal region of helix B and an inner loop of the beta-sandwich are involved in maintaining the position of the lid relative to the beta-subdomain in the ADP state but not in the ATP state of the protein. Disruption of the ionic interactions between the C-terminal region of helix B and the outer loops of the beta-sandwich, known as the latch, does not have the same conformational consequences but results equally in an inactive protein. This indicates that a variety of mechanisms can inactivate this complex allosteric machine. Our results identify the ionic contacts at the subdomain and interdomain interfaces that are part of the hinge region involved in the ATP-induced allosteric displacement of the lid away from the peptide binding site. These interactions also stabilize peptide-Hsp70 complexes at physiological (37 degrees C) and stress (42 degrees C) temperatures, a requirement for productive substrate (re)folding.

  1. Evidence for a singlet intermediate in catalysis by Escherichia coli DNA photolyase and evaluation of substrate binding determinants

    SciTech Connect

    Jordan, S.P.; Jorns, M.S.

    1988-12-13

    Escherichia coli DNA photolyase contains 1,5-dihydro-FAD (FADH2) plus 5,10-methenyl-tetrahydrofolate (5,10-CH+-H4folate). Both chromophores are fluorescent, and either can function as a sensitizer in catalysis. At 77 K separate fluorescence emission bands are observed for FADH2 (lambda max = 505 nm, shoulder at 540 nm) and 5,10-CH+-H4folate (lambda max = 465, 440 nm) whereas at 5 degrees C only a shoulder at 505 nm is attributable to FADH2. Formation of an enzyme-substrate complex with various dimer-containing oligothymidylates (UV-oligo(dT)n) quenches the fluorescence due to FADH2 at 5 degrees C or 77 K and also stabilizes FADH2 against air oxidation. The fluorescence of 5,10-CH+-H4folate is unaffected by substrate. Reduction of the pterin chromophore eliminates the chromophore's fluorescence but does not affect catalytic activity or the ability of substrate to quench FADH2 fluorescence. Quenching of FADH2 fluorescence is fully reversible upon dimer repair. The results are consistent with the proposal that the singlet state of FADH2 functions as an intermediate in catalysis. Fluorometric titrations indicate that the enzyme has a similar affinity for dimers in UV-oligo(dT)4 (KD = 2.5 X 10(-7) M, delta G = 8.4 kcal/mol at 5 degrees C) or UV-oligo(dT)6, except for dimers located at the unphosphorylated 3' end of the oligomers where binding is considerably weaker.

  2. Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.

    PubMed

    Haruta, Miyoshi; Pedersen, Jens A.; Constabel, C. Peter

    2001-08-01

    The biochemical anti-herbivore defense of trembling aspen (Populus tremuloides Michx.) was investigated in a molecular analysis of polyphenol oxidase (PPO; EC 1.10.3.2). A PPO cDNA was isolated from a trembling aspen wounded leaf cDNA library and its nucleotide sequence determined. Southern analysis indicated the presence of two PPO genes in the trembling aspen genome. Expression of PPO was found to be induced after herbivory by forest tent caterpillar, by wounding, and by methyl jasmonate treatment. Wound induction was systemic, and occurred in unwounded leaves on wounded plants. This pattern of expression is consistent with a role of this enzyme in insect defense. A search for potential PPO substrates in ethanolic aspen leaf extracts using electron spin resonance (ESR) found no pre-existing diphenolic compounds. However, following a brief delay and several additions of oxygen, an ESR signal specific for catechol was detected. The source of this catechol was most likely the aspen phenolic glycosides tremulacin or salicortin which decomposed during ESR experiments. This was subsequently confirmed in experiments using pure salicortin.

  3. Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing.

    PubMed

    Grunenwald, A; Keyser, C; Sautereau, A M; Crubézy, E; Ludes, B; Drouet, C

    2014-07-01

    The extraction of DNA from skeletal remains is a major step in archeological or forensic contexts. However, diagenesis of mineralized tissues often compromises this task although bones and teeth may represent preservation niches allowing DNA to persist over a wide timescale. This exceptional persistence is not only explained on the basis of complex organo-mineral interactions through DNA adsorption on apatite crystals composing the mineral part of bones and teeth but is also linked to environmental factors such as low temperatures and/or a dry environment. The preservation of the apatite phase itself, as an adsorption substrate, is another crucial factor susceptible to significantly impact the retrieval of DNA. With the view to bring physicochemical evidence of the preservation or alteration of diagenetic biominerals, we developed here an analytical approach on various skeletal specimens (ranging from ancient archeological samples to recent forensic specimens), allowing us to highlight several diagenetic indices so as to better apprehend the complexity of bone diagenesis. Based on complementary techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), calcium and phosphate titrations, SEM-EDX, and gravimetry), we have identified specific indices that allow differentiating 11 biological samples, primarily according to the crystallinity and maturation state of the apatite phase. A good correlation was found between FTIR results from the analysis of the v3(PO4) and v4(PO4) vibrational domains and XRD-based crystallinity features. A maximal amount of information has been sought from this analytical approach, by way of optimized posttreatment of the data (spectral subtraction and enhancement of curve-fitting parameters). The good overall agreement found between all techniques leads to a rather complete picture of the diagenetic changes undergone by these 11 skeletal specimens. Although the heterogeneity and scarcity of the studied samples did not allow us

  4. Differential salt-induced dissociation of the p53 protein complexes with circular and linear plasmid DNA substrates suggest involvement of a sliding mechanism.

    PubMed

    Šebest, Peter; Brázdová, Marie; Fojta, Miroslav; Pivoňková, Hana

    2015-01-30

    A study of the effects of salt conditions on the association and dissociation of wild type p53 with different ~3 kbp long plasmid DNA substrates (supercoiled, relaxed circular and linear, containing or lacking a specific p53 binding site, p53CON) using immunoprecipitation at magnetic beads is presented. Salt concentrations above 200 mM strongly affected association of the p53 protein to any plasmid DNA substrate. Strikingly different behavior was observed when dissociation of pre-formed p53-DNA complexes in increased salt concentrations was studied. While contribution from the p53CON to the stability of the p53-DNA complexes was detected between 100 and 170 mM KCl, p53 complexes with circular DNAs (but not linear) exhibited considerable resistance towards salt treatment for KCl concentrations as high as 2 M provided that the p53 basic C-terminal DNA binding site (CTDBS) was available for DNA binding. On the contrary, when the CTDBS was blocked by antibody used for immunoprecipitation, all p53-DNA complexes were completely dissociated from the p53 protein in KCl concentrations≥200 mM under the same conditions. These observations suggest: (a) different ways for association and dissociation of the p53-DNA complexes in the presence of the CTDBS; and (b) a critical role for a sliding mechanism, mediated by the C-terminal domain, in the dissociation process.

  5. Repercussions of DNA tracking by the type IC restriction endonuclease EcoR124I on linear, circular and catenated substrates.

    PubMed

    Szczelkun, M D; Dillingham, M S; Janscak, P; Firman, K; Halford, S E

    1996-11-15

    Type I restriction endonucleases such as EcoR124I cleave DNA at undefined loci, distant from their recognition sequences, by a mechanism that involves the enzyme tracking along the DNA between recognition and cleavage sites. This mechanism was examined on plasmids that carried recognition sites for EcoR124I and recombination sites for resolvase, the latter to create DNA catenanes. Supercoiled substrates with either one or two restriction sites were linearized by EcoR124I at similar rates, although the two-site molecule underwent further cleavage more readily than the one-site DNA. The catenane from the plasmid with one EcoR124I site, carrying the site on the smaller of the two rings, was cleaved by EcoR124I exclusively in the small ring, and this underwent multiple cleavage akin to the two-site plasmid. Linear substrates derived from the plasmids were cleaved by EcoR124I at very slow rates. The communication between recognition and cleavage sites therefore cannot stem from random looping. Instead, it must follow the DNA contour between the sites. On a circular DNA, the translocation of non-specific DNA past the specifically bound protein should increase negative supercoiling in one domain and decrease it in the other. The ensuing topological barrier may be the trigger for DNA cleavage.

  6. Structural insights into the chaperone activity of the 40-kDa heat shock protein DnaJ: binding and remodeling of a native substrate.

    PubMed

    Cuéllar, Jorge; Perales-Calvo, Judit; Muga, Arturo; Valpuesta, José María; Moro, Fernando

    2013-05-24

    Hsp40 chaperones bind and transfer substrate proteins to Hsp70s and regulate their ATPase activity. The interaction of Hsp40s with native proteins modifies their structure and function. A good model for this function is DnaJ, the bacterial Hsp40 that interacts with RepE, the repressor/activator of plasmid F replication, and together with DnaK regulates its function. We characterize here the structure of the DnaJ-RepE complex by electron microscopy, the first described structure of a complex between an Hsp40 and a client protein. The comparison of the complexes of DnaJ with two RepE mutants reveals an intrinsic plasticity of the DnaJ dimer that allows the chaperone to adapt to different substrates. We also show that DnaJ induces conformational changes in dimeric RepE, which increase the intermonomeric distance and remodel both RepE domains enhancing its affinity for DNA.

  7. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.

    PubMed

    Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S

    2017-04-01

    Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, Tm, and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (Tm(F/T) < Tm(εA/T) < Tm(Hx/T) < Tm(A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.

  8. Substrate specificity of the Rad3 ATPase/DNA helicase of Saccharomyces cerevisiae and binding of Rad3 protein to nucleic acids.

    PubMed

    Naegeli, H; Bardwell, L; Harosh, I; Freidberg, E C

    1992-04-15

    Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase which catalyzes the unwinding of DNA.DNA duplexes. In the present studies we have demonstrated that the purified enzyme additionally catalyzes the displacement of RNA fragments annealed to complementary DNA. Quantitative comparisons using otherwise identical partially duplex DNA.DNA and DNA.RNA substrates indicate a significant preference for the latter. Competition for ATPase or DNA helicase activity by various homopolymers suggests that Rad3 protein does not discriminate between ribonucleotide and deoxyribonucleotide homopolymers with respect to binding. However, neither single-stranded RNA nor various ribonucleotide homopolymers supported the hydrolysis of nucleoside 5'-triphosphates. Additionally, Rad3 protein was unable to catalyze the displacement of oligo(dA) annealed to poly(U), suggesting that the catalytic domain of the enzyme is exquisitely sensitive to chemical and/or or conformational differences between DNA and RNA. Hence, it appears that Rad3 protein is not an RNA helicase.

  9. Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent HeLa cell extract.

    PubMed

    Petruseva, I O; Tikhanovich, I S; Maltseva, E A; Safronov, I V; Lavrik, O I

    2009-05-01

    Photoactivated DNA analogs of nucleotide excision repair (NER) substrates have been created that are 48-mer duplexes containing in internal positions pyrimidine nucleotides with bulky substituents imitating lesions. Fluorochloroazidopyridyl, anthracenyl, and pyrenyl groups introduced using spacer fragments at 4N and 5C positions of dCMP and dUMP were used as model damages. The gel retardation and photo-induced affinity modification techniques were used to study the interaction of modified DNA duplexes with proteins in HeLa cell extracts containing the main components of NER protein complexes. It is shown that the extract proteins selectively bind and form covalent adducts with the model DNA. The efficiency and selectivity of protein modification depend on the structure of used DNA duplex. Apparent molecular masses of extract proteins, undergoing modification, were estimated. Mutual influence of simultaneous presence of extract proteins and recombinant NER protein factors XPC-HR23B, XPA, and RPA on interaction with the model DNA was analyzed. The extract proteins and RPA competed for interaction with photoactive DNA, mutually decreasing the yield of modification products. In this case the presence of extract proteins at particular concentrations tripled the increase in yield of covalent adducts formed by XPC. It is supposed that the XPC subunit interaction with DNA is stimulated by endogenous HR23B present in the extract. Most likely, the mutual effect of XPA and extract proteins stimulating formation of covalent adducts with model DNA is due to the interaction of XPA with endogenous RPA of the extract. A technique based on the use of specific antibodies revealed that RPA present in the extract is a modification target for photoactive DNA imitating NER substrates.

  10. A novel virus-like particle based on hepatitis B core antigen and substrate-binding domain of bacterial molecular chaperone DnaK.

    PubMed

    Wang, Xue Jun; Gu, Kai; Xiong, Qi Yan; Shen, Liang; Cao, Rong Yue; Li, Ming Hui; Li, Tai Ming; Wu, Jie; Liu, Jing Jing

    2009-12-09

    Hepatitis B virus core (HBc) protein has been proved to be an attractive carrier for foreign epitopes, and can display green fluorescent protein (GFP) on its surface. The structure of substrate-binding domain of DnaK [DnaK (394-504 aa), DnaK SBD] is similar to GFP, we therefore reasoned that DnaK SBD might also be tolerated. Electron microscopic observations suggested that the chimeric proteins containing the truncated HBc (HBcDelta) and DnaK SBD could self-assemble into virus-like particle (VLP). Then the accessibility of DnaK SBD and the adjuvanticity of VLP HBcDelta-SBD were demonstrated by two recombinant peptide vaccines against gonadotropin-releasing hormone (GnRH), GhM and GhMNR. The latter carries in addition the peptide motif NRLLLTG which is known to bind to DnaK and DnaK SBD. The combination of VLP HBcDelta-SBD and GhMNR elicited stronger humoral responses and caused further testicular atrophy than the combinations of VLP HBcDelta and GhMNR or VLP HBcDelta-SBD and GhM in Balb/c mice. These findings indicate VLP HBcDelta-SBD might serve as an excellent carrier for GhMNR and some other peptide vaccines.

  11. Differential Incorporation of Carbon Substrates among Microbial Populations Identified by Field-Based, DNA Stable-Isotope Probing in South China Sea

    PubMed Central

    Xie, Xiabing; Jiao, Nianzhi

    2016-01-01

    To determine the adapted microbial populations to variant dissolved organic carbon (DOC) sources in the marine environment and improve the understanding of the interaction between microorganisms and marine DOC pool, field-based incubation experiments were carried out using supplemental 13C-labeled typical substrates D-glucose and D-glucosamine (D-Glc and D-GlcN, respectively), which are two important components in marine DOC pool in the South China Sea. 13C- and 12C-DNA were then fractionated by ultracentrifugation and the microbial community was analyzed by terminal-restriction fragment length polymorphism and 454 pyrosequencing of 16S rRNA gene. 12C-DNA-based communities showed relatively high similarities with their corresponding in situ communities, and their bacterial diversities were generally higher than 13C-DNA-based counterparts. Distinct differences in community composition were found between 13C- and 12C-DNA-based communities and between two substrate-supplemented 13C-DNA-based communities; these differences distinctly varied with depth and site. In most cases, there were more genera with relative abundances of >0.1% in D-Glc-incorporating communities than in D-GlcN-incorporating communities. The Roseobacter clade was one of the prominent actively substrate-incorporating bacterial populations in all 13C-DNA-based communities. Vibrio was another prominent actively D-GlcN-incorporating bacterial population in most incubations. However notably, different OTUs dominated this clade or genus in different treatments at different depths. Altogether, these results suggested that there were taxa-specific differences in DOC assimilations and, moreover, their differences varied among the typical water masses, which could have been caused by the variant compositions of original bacterial communities from different hydrological environments. This implies that ecologically, the levels of labile or recalcitrance of DOC can be maintained only in a specific environmental

  12. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.

    PubMed

    Li, Wei; Jiang, Wei; Ding, Yongshun; Wang, Lei

    2015-09-15

    MicroRNAs (miRNAs) play important roles in a variety of biological processes and have been regarded as tumor biomarkers in cancer diagnosis and prognosis. In this work, a single-molecule counting method for miRNA analysis was proposed based on toehold-mediated strand displacement reaction (SDR) and DNA tetrahedron substrate. Firstly, a specially designed DNA tetrahedron was assembled with a hairpin at one of the vertex, which has an overhanging toehold domain. Then, the DNA tetrahedron was immobilized on the epoxy-functional glass slide by epoxy-amine reaction, forming a DNA tetrahedron substrate. Next, the target miRNA perhybridized with the toehold domain and initiated a strand displacement reaction along with the unfolding of the hairpin, realizing the selective recognization of miRNA. Finally, a biotin labeled detection DNA was hybridized with the new emerging single strand and the streptavidin coated QDs were used as fluorescent probes. Fluorescent images were acquired via epi-fluorescence microscopy, the numbers of fluorescence dots were counted one by one for quantification. The detection limit is 5 fM, which displayed an excellent sensitivity. Moreover, the proposed method which can accurately be identified the target miRNA among its family members, demonstrated an admirable selectivity. Furthermore, miRNA analysis in total RNA samples from human lung tissues was performed, suggesting the feasibility of this method for quantitative detection of miRNA in biomedical research and early clinical diagnostics.

  13. DNA helicase activity in purified human RECQL4 protein.

    PubMed

    Suzuki, Takahiro; Kohno, Toshiyuki; Ishimi, Yukio

    2009-09-01

    Human RECQL4 protein was expressed in insect cells using a baculovirus protein expression system and it was purified to near homogeneity. The protein sedimented at a position between catalase (230 kDa) and ferritin (440 kDa) in glycerol gradient centrifugation, suggesting that it forms homo-multimers. Activity to displace annealed 17-mer oligonucleotide in the presence of ATP was co-sedimented with hRECQL4 protein. In ion-exchange chromatography, both DNA helicase activity and single-stranded DNA-dependent ATPase activity were co-eluted with hRECQL4 protein. The requirements of ATP and Mg for the helicase activity were different from those for the ATPase activity. The data suggest that the helicase migrates on single-stranded DNA in a 3'-5' direction. These results suggest that the hRECQL4 protein exhibits DNA helicase activity.

  14. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair.

    PubMed

    Alshykhly, Omar R; Fleming, Aaron M; Burrows, Cynthia J

    2015-09-21

    Guanine (G) is a target for oxidation by reactive oxygen species in DNA, RNA, and the nucleotide pool. Damage to DNA yields products with alternative properties toward DNA processing enzymes compared to those of the parent nucleotide. A new lesion, 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), bearing a stereocenter in the base was recently identified from the oxidation of G. DNA polymerase and base excision repair processing of this new lesion has now been evaluated. Single nucleotide insertion opposite (S)-2Ih and (R)-2Ih in the template strand catalyzed by the DNA polymerases Klenow fragment exo(-), DPO4, and Hemo KlenTaq demonstrates these lesions to cause point mutations. Specifically, they promote 3-fold more G·C → C·G transversion mutations than G·C → T·A, and (S)-2Ih was 2-fold more blocking for polymerase bypass than (R)-2Ih. Both diastereomer lesions were found to be substrates for the DNA glycosylases NEIL1 and Fpg, and poorly excised by endonuclease III (Nth). The activity was independent of the base pair partner. Thermal melting, CD spectroscopy, and density functional theory geometric optimization calculations were conducted to provide insight into these polymerase and DNA glycosylase studies. These results identify that formation of the 2Ih lesions in a cell would be mutagenic in the event that they were not properly repaired.

  15. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans

    PubMed Central

    Manhart, Carol M.; Ni, Xiaodan; White, Martin A.; Ortega, Joaquin; Surtees, Jennifer A.

    2017-01-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker’s yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA. PMID:28453523

  16. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.

    PubMed

    Kameshita, I; Matsuda, Z; Taniguchi, T; Shizuta, Y

    1984-04-25

    Poly(ADP-ribose) synthetase of Mr = 120,000 is cleaved by limited proteolysis with alpha-chymotrypsin into two fragments of Mr = 54,000 (54K) and Mr = 66,000 (66K). When the native enzyme is modified with 3-(bromoacetyl)pyridine, both portions of the enzyme are alkylated; however, alkylation of the 54K portions of the enzyme is protected by the addition of the substrate, NAD, or its analog, nicotinamide, suggesting that the substrate-binding site is localized in the 54K fragment. When the enzyme previously automodified with a low concentration of [adenine-U-14C] NAD is digested with alpha-chymotrypsin, the radioactivity is detected exclusively in the 66K fragment. The 66K fragment thus labeled is further cleaved with papain into two fragments of Mr = 46,000 and Mr = 22,000. With these two fragments, the label is detected only in the 22K fragment, but not in the 46K fragment. The 46K fragment binds to a DNA-cellulose column with the same affinity as that of the native enzyme, while the 22K fragment and the 54K fragment have little affinity for the DNA ligand. These results indicate that poly (ADP-ribose) synthetase contains three separable domains, the first possessing the site for binding of the substrate, NAD, the second containing the site for binding of DNA, and the third acting as the site(s) for accepting poly(ADP-ribose).

  17. N{sup 7}-cyanoborane-2{sup {prime}}-deoxyguanosine 5{sup {prime}}-triphosphate is a good substrate for DNA polymerase

    SciTech Connect

    Porter, K.W.; Tomasz, J.; Huang, F.

    1995-09-19

    The 5{sup {prime}}-triphosphate of the boronated nucleoside analog N{sup 7}-cyanoborane-w{sup 2}-deoxyguanosine ({sup 7b}dGTP) was synthesized, and a series of experiments was initiated to assess the potential of the compound to serve as a substrate for DNA polymerases. We show here that {sup 7b}dGTP can be incorporated into DNA by Sequenase. The resulting hemiboronated extension products are resistant to cleavage of treatment with either DMS and heat or a number of restriction enzymes. Further, in the polymerase chain reaction, {sup 7b}dGTP can be utilized as a substrate for Taq polymerase. Finally, by kinetic analysis, we have found that {sup 7b}dGTP is more efficient substrate for exonuclease-free Klenow than normal dGTP. Thus, the introduction of a cyanoborane moiety to the N{sup 7} position of dGTP results in a nucleotide that is accepted in lieu of normal dGTP by a number of DNA polymerases. 34 refs., 4 figs., 1 tab.

  18. Incorporation of fludarabine and 1-beta-D-arabinofuranosylcytosine 5'-triphosphates by DNA polymerase alpha: affinity, interaction, and consequences.

    PubMed

    Gandhi, V; Huang, P; Chapman, A J; Chen, F; Plunkett, W

    1997-08-01

    Fludarabine and 1-beta-D-arabinofuranosylcytosine (ara-C) are effective nucleoside analogues for the treatment of leukemias when used as single agents or together. Recent trials of the fludarabine and ara-C therapy with or without growth factors suggested an improved clinical response by combining fludarabine and ara-C. The activity of these antimetabolites depends on their phosphorylation to the respective triphosphates, F-ara-ATP and ara-CTP. The principal mechanism through which these triphosphates cause cytotoxicity is incorporation into DNA and inhibition of further DNA synthesis. A model system of DNA primer extension on a defined template sequence was used to quantitate the consequences of incorporation of one or two analogues by human DNA polymerase alpha (pol alpha). The template (31-mer) was designed so that DNA pol alpha incorporated six deoxynucleotides (alternately G and T) on the 17-mer primer, followed by insertion of an A and then a C. The primer was then elongated with G and T to the full-length product. The apparent Kms of DNA pol alpha to incorporate these analogues (0. 053 and 0.077 microM, respectively) were similar to the Km for dCTP (0.037 microM) and dATP (0.044 microM), suggesting that the enzyme recognized these analogues and incorporated them efficiently on the growing DNA primer. The velocity of extension (Vmax) of these primers ranged between 0.53 and 0.77%/min when normal nucleotides were present. Once inserted at the 3'-terminus, F-ara-AMP or ara-CMP were poor substrates for extension. However, in reactions lacking dCTP and dATP and with high concentrations of ara-CTP, ara-CMP was inserted by pol alpha after incorporation of the F-ara-AMP residue. This tandem incorporation of the two analogues resulted in almost complete inhibition (99.3%) of further extension of the primer. In the presence of competing deoxynucleotides, each analogue resulted in a dose-dependent inhibition of DNA synthesis. When present together, inhibition of the

  19. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.

    PubMed

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M; Bianco, Piero R; Surtees, Jennifer A

    2014-06-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.

  20. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by Mismatch and Double-strand Break Repair DNA substrates

    PubMed Central

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M.; Bianco, Piero R.; Surtees, Jennifer A.

    2014-01-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3′ non-homologous tail removal (3′NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3′ NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3′ NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3′ NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype. PMID:24746922

  1. The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1

    PubMed Central

    Herbert, Alan; Rich, Alexander

    2001-01-01

    RNA editing changes the read-out of genetic information, increasing the number of different protein products that can be made from a single gene. One form involves the deamination of adenosine to form inosine, which is subsequently translated as guanosine. The reaction requires a double-stranded RNA (dsRNA) substrate and is catalyzed by the adenosine deaminase that act on dsRNA (ADAR) family of enzymes. These enzymes possess dsRNA-binding domains (DRBM) and a catalytic domain. ADAR1 so far has been found only in vertebrates and is characterized by two Z-DNA-binding motifs, the biological function of which remains unknown. Here the role of the various functional domains of ADAR1 in determining the editing efficiency and specificity of ADAR1 is examined in cell-based assays. A variety of dsRNA substrates was tested. It was found that a 15-bp dsRNA stem with a single base mismatch was sufficient for editing. The particular adenosine modified could be varied by changing the position of the mismatch. Editing efficiency could be increased by placing multiple pyrimidines 5′ to the edited adenosine. With longer substrates, editing efficiency also increased and was partly due to the use of DRBMs. Additional editing sites were also observed that clustered on the complementary strand 11–15 bp from the first. An unexpected finding was that the DRBMs are not necessary for the editing of the shorter 15-bp substrates. However, mutation of the Z-DNA-binding domains of ADAR1 decreased the efficiency with which such a substrate was edited. PMID:11593027

  2. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints.

    PubMed

    Mu, Jung-Jung; Wang, Yi; Luo, Hao; Leng, Mei; Zhang, Jinglan; Yang, Tao; Besusso, Dario; Jung, Sung Yun; Qin, Jun

    2007-06-15

    ATM (ataxia telangiectasia-mutated) and ATR (ATM-Rad3-related) are proximal checkpoint kinases that regulate DNA damage response (DDR). Identification and characterization of ATM/ATR substrates hold the keys for the understanding of DDR. Few techniques are available to identify protein kinase substrates. Here, we screened for potential ATM/ATR substrates using phospho-specific antibodies against known ATM/ATR substrates. We identified proteins cross-reacting to phospho-specific antibodies in response to DNA damage by mass spectrometry. We validated a subset of the candidate substrates to be phosphorylated in an ATM/ATR-dependent manner in vivo. Combining with a functional checkpoint screen, we identified proteins that belong to the ubiquitin-proteasome system (UPS) to be required in mammalian DNA damage checkpoint control, particularly the G(1) cell cycle checkpoint, thus revealing protein ubiquitylation as an important regulatory mechanism downstream of ATM/ATR activation for checkpoint control.

  3. Mitochondrial DNA and retroviral RNA analyses of archival oral polio vaccine (OPV CHAT) materials: evidence of macaque nuclear sequences confirms substrate identity.

    PubMed

    Berry, Neil; Jenkins, Adrian; Martin, Javier; Davis, Clare; Wood, David; Schild, Geoffrey; Bottiger, Margareta; Holmes, Harvey; Minor, Philip; Almond, Neil

    2005-02-25

    Inoculation of live experimental oral poliovirus vaccines (OPV CHAT) during the 1950s in central Africa has been proposed to account for the introduction of HIV into human populations. For this to have occurred, it would have been necessary for chimpanzee rather than macaque kidney epithelial cells to have been included in the preparation of early OPV materials. Theoretically, this could have led to contamination with a progenitor of HIV-1 derived from a related simian immunodeficiency virus of chimpanzees (SIVCPZ). In this article we present further detailed analyses of two samples of OPV, CHAT 10A-11 and CHAT 6039/Yugo, which were used in early human trials of poliovirus vaccination. Recovery of poliovirus by culture techniques confirmed the biological viability of the vaccines and sequence analysis of poliovirus RNA specifically identified the presence of the CHAT strain. Independent nested sets of oligonucleotide primers specific for HIV-1/SIVCPZ and HIV-2/SIVMAC/SIVSM phylogenetic lineages, respectively, indicated no evidence of HIV/SIV RNA in either vaccine preparation, at a sensitivity of 100 RNA equivalents/ml. Analysis of cellular substrate by the amplification of two distinct regions of mitochondrial DNA (D-loop control region and 12S ribosomal sequences) revealed no evidence of chimpanzee cellular sequences. However, this approach positively identified rhesus and cynomolgus macaque DNA for the CHAT 10A-11 and CHAT 6039/Yugo vaccine preparations, respectively. Analysis of multiple clones of mtDNA 12S rDNA indicated a relatively high number of nuclear mitochondrial DNA sequences (numts) in the CHAT 10A-11 material, but confirmed the macaque origin of cellular substrate used in vaccine preparation. These data reinforce earlier findings on this topic providing no evidence to support the contention that poliovirus vaccination was responsible for the introduction of HIV into humans and sparking the AIDS pandemic.

  4. DNA Electrochemistry with Tethered Methylene Blue

    PubMed Central

    Pheeney, Catrina G.

    2012-01-01

    Methylene blue (MB′), covalently attached to DNA through a flexible C12 alkyl linker, provides a sensitive redox reporter in DNA electrochemistry measurements. Tethered, intercalated MB′ is reduced through DNA-mediated charge transport; the incorporation of a single base mismatch at position 3, 10, or 14 of a 17-mer causes an attenuation of the signal to 62 ± 3% of the well-matched DNA, irrespective of position in the duplex. The redox signal intensity for MB′–DNA is found to be least 3-fold larger than that of Nile blue (NB)–DNA, indicating that MB′ is even more strongly coupled to the π-stack. The signal attenuation due to an intervening mismatch does, however, depend on DNA film density and the backfilling agent used to passivate the surface. These results highlight two mechanisms for reduction of MB′ on the DNA-modified electrode: reduction mediated by the DNA base pair stack and direct surface reduction of MB′ at the electrode. These two mechanisms are distinguished by their rates of electron transfer that differ by 20-fold. The extent of direct reduction at the surface can be controlled by assembly and buffer conditions. PMID:22512327

  5. DNA Polymerase Fidelity: Comparing Direct Competition of Right and Wrong dNTP Substrates with Steady State and Presteady State Kinetics†

    PubMed Central

    Bertram, Jeffrey G.; Oertell, Keriann; Petruska, John; Goodman, Myron F.

    2009-01-01

    DNA polymerase fidelity is defined as the ratio of right (R) to wrong (W) nucleotide incorporations when dRTP and dWTP substrates compete at equal concentrations for primer extension at the same site in the polymerase-primer-template DNA complex. Typically, R incorporation is favored over W by 103 – 105, even in the absence of 3′-exonuclease proofreading. Straightforward in principal, a direct competition fidelity measurement is difficult to perform in practice because detection of a small amount of W is masked by a large amount of R. As an alternative, enzyme kinetics measurements to evaluate kcat/Km for R and W in separate reactions are widely used to measure polymerase fidelity indirectly, based on a steady-state derivation by Fersht. A systematic comparison between direct competition and kinetics has not been made until now. By separating R and W products using electrophoresis, we have successfully made accurate fidelity measurements for directly competing R and W dNTP substrates for 9 of the 12 natural base mispairs. We compare our direct competition results with steady state and presteady state kinetic measurements of fidelity at the same template site, using the proofreading-deficient mutant of Klenow Fragment (KF−) DNA polymerase. All the data are in quantitative agreement. PMID:20000359

  6. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates.

    PubMed Central

    Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G

    1995-01-01

    Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723

  7. OIP30, a RuvB-like DNA helicase 2, is a potential substrate for the pollen-predominant OsCPK25/26 in rice.

    PubMed

    Wang, Cheng-Wei; Chen, Wan-Chieh; Lin, Li-Jing; Lee, Chung-Tsai; Tseng, Tung-Hai; Leu, Wei-Ming

    2011-09-01

    Calcium ions are a well-known essential component for pollen germination and tube elongation. Several calcium-dependent protein kinases (CDPKs) are expressed predominantly in mature pollen grains and play a critical role in pollen. However, none of their interacting proteins or downstream substrates has been identified. Using yeast two-hybrid screening, we isolated OsCPK25/26-interacting protein 30 (OIP30), which is also predominantly expressed in pollen. OIP30 encodes a RuvB-like DNA helicase 2 (RuvBL2) that is well conserved in eukaryotic species from yeast to human. Yeast and Drosophila defective in RuvBL2 are non-viable. The interaction between OsCPK26 and OIP30 was confirmed by far-Western blot and pull-down experiments. OIP30 was phosphorylated in a calcium-dependent manner by OsCPK26 but not OsCPK2, which is highly similar to OsCPK26 in sequence and expression profile. OIP30 unwound partial duplex DNA with a 3' to 5' directionality by ATP hydrolysis. Concurrently, the ATPase activity of OIP30 depended on single-stranded DNA. OsCPK26 phosphorylated OIP30 and enhanced both its helicase and ATPase activity about 3-fold. OIP30 may be the potential downstream substrate for OsCPK25/26 in pollen. This report characterizes a RuvBL in plants and links its activities with its upstream regulator.

  8. G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates.

    PubMed

    Liu, Jia-quan; Chen, Chang-yue; Xue, Yong; Hao, Yu-hua; Tan, Zheng

    2010-08-04

    Sequences with the potential to form G-quadruplex structures are spread throughout genomic DNA. G-quadruplexes in promoter regions can play regulatory roles in gene expression. Expression of protein-encoding genes involves processing of DNA and RNA molecules at the level of transcription and translation, respectively. In order to examine how the G-quadruplex affects processing of nucleic acids, we established a real-time fluorescent assay and studied the unwinding of intramolecular G-quadruplex formed by the human telomere, ILPR and PSMA4 sequences by the BLM helicase. Through comparison with their corresponding duplex substrates, we found that the unwinding of intramolecular G-quadruplex structures was much less efficient than that of the duplexes. This result is in contrast to previous reports that multistranded intermolecular G-quadruplexes are far better substrates for the BLM and other RecQ family helicases. In addition, the unwinding efficiency varied significantly among the G-quadruplex structures, which correlated with the stability of the structures. These facts suggest that G-quadruplex has the capability to modulate the processing of DNA and RNA molecules in a stability-dependent manner and, as a consequence, may provide a mechanism to play regulatory roles in events such as gene expression.

  9. Mutation of a unique aspartate residue abolishes the catalytic activity but not substrate binding of the mouse N-methylpurine-DNA glycosylase (MPG).

    PubMed

    Roy, R; Biswas, T; Lee, J C; Mitra, S

    2000-02-11

    N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a variety of alkylated purine adducts. Although Asp was identified as the active site residue in various DNA glycosylases based on the crystal structure, Glu-125 in human MPG (Glu-145 in mouse MPG) was recently proposed to be the catalytic residue. Mutational analysis for all Asp residues in a truncated, fully active MPG protein showed that only Asp-152 (Asp-132 in the human protein), which is located near the active site, is essential for catalytic activity. However, the substrate binding was not affected in the inactive Glu-152, Asn-152, and Ala-152 mutants. Furthermore, mutation of Asp-152 did not significantly affect the intrinsic tryptophan fluorescence of the enzyme and the far UV CD spectra, although a small change in the near UV CD spectra of the mutants suggests localized conformational change in the aromatic residues. We propose that in addition to Glu-145 in mouse MPG, which functions as the activator of a water molecule for nucleophilic attack, Asp-152 plays an essential role either by donating a proton to the substrate base and, thus, facilitating its release or by stabilizing the steric configuration of the active site pocket.

  10. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates

    PubMed Central

    Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.

    2015-01-01

    APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853

  11. Display of amino groups on substrate surfaces by simple dip-coating of methacrylate-based polymers and its application to DNA immobilization.

    PubMed

    Shimomura, Ayane; Nishino, Takashi; Maruyama, Tatsuo

    2013-01-22

    The implementation of a reactive functional group onto a material surface is of great importance. Reactive functional groups (e.g., an amino group and a hydroxyl group) are usually hydrophilic, which makes it difficult to display them on a dry polymer surface. We here propose a novel method for displaying amino groups on the surfaces of polymeric substrates through dip-coating of a methacrylate-based copolymer. We synthesized copolymers composed of methyl methacrylate and 2-aminoethyl methacrylate with different protecting groups or ion-complexes on their amino groups, then dip-coated the copolymers onto a poly(methyl methacrylate) (PMMA) substrate. Evaluation using a cleavable fluorescent compound, which was synthesized in the present study to quantify a small amount (pmol/cm(2)) of amino groups on a solid surface, revealed that the protection of amino groups affected their surface segregation in the copolymer coating. p-Toluenesulfonate ion-complex and tert-butoxycarbonyl (Boc) protection of amino groups were found to effectively display amino groups on the surface (more than 70 pmol/cm(2)). The density of amino groups displayed on a surface can be easily controlled by mixing the copolymer and PMMA before dip-coating. Dip-coating of the copolymer with Boc protection on various polymeric substrates also successfully displayed amino groups on their surfaces. Finally, we demonstrated that the amino groups displayed can be utilized for the immobilization of a DNA oligonucleotide on a substrate surface.

  12. A major substrate for MPF: cDNA cloning and expression of polypeptide chain elongation factor 1 gamma from goldfish (Carassius auratus).

    PubMed

    Tokumoto, Mika; Nagahama, Yoshitaka; Tokumoto, Toshinobu

    2002-02-01

    One of the eukaryotic polypeptide chain elongation factors, EF-1 beta gamma delta complex, is involved in polypeptide chain elongation via the GDP/GTP exchange activity of EF-1 alpha. In the complex, EF-1 gamma has been reported to be a major substrate for maturation promoting factor (MPF). Here, we present the cloning, sequencing and expression analysis of goldfish, Carassius auratus, EF-1 gamma from the goldfish ovary. The cloned cDNA was 1490 bp in length and encoded 442 amino acids. The deduced amino acid sequence was highly homologous to EF-1 gamma from other species. Although, the phosphorylation site identified in Xenopus EF-1 gamma was not conserved in the goldfish homologue, phosphorylation analysis showed that the goldfish EF-1 gamma was phosphorylated by MPF. We concluded that EF-1 gamma is a substrate for MPF during oocyte maturation in goldfish.

  13. The structure and specificity of the type III secretion system effector NleC suggest a DNA mimicry mechanism of substrate recognition.

    PubMed

    Turco, Michelle Marian; Sousa, Marcelo Carlos

    2014-08-12

    Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn(2+) proteases beyond its conserved HExxH Zn(2+)-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation.

  14. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  15. Tracing the path of DNA substrates in active Tetrahymena telomerase holoenzyme complexes: mapping of DNA contact sites in the RNA subunit

    PubMed Central

    Goldin, Svetlana; Kertesz Rosenfeld, Karin; Manor, Haim

    2012-01-01

    Telomerase, the enzyme that extends single-stranded telomeric DNA, consists of an RNA subunit (TER) including a short template sequence, a catalytic protein (TERT) and accessory proteins. We used site-specific UV cross-linking to map the binding sites for DNA primers in TER within active Tetrahymena telomerase holoenzyme complexes. The mapping was performed at single-nucleotide resolution by a novel technique based on RNase H digestion of RNA–DNA hybrids made with overlapping complementary oligodeoxynucleotides. These data allowed tracing of the DNA path through the telomerase complexes from the template to the TERT binding element (TBE) region of TER. TBE is known to bind TERT and to be involved in the template 5′-boundary definition. Based on these findings, we propose that upstream sequences of each growing telomeric DNA chain are involved in regulation of its growth arrest at the 5′-end of the RNA template. The upstream DNA–TBE interaction may also function as an anchor for the subsequent realignment of the 3′-end of the DNA with the 3′-end of the template to enable initiation of synthesis of a new telomeric repeat. PMID:22584626

  16. Synthesis, crystallization and preliminary crystallographic analysis of a 52-nucleotide DNA/2'-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with a substrate.

    PubMed

    Dolot, Rafał; Sobczak, Milena; Mikołajczyk, Barbara; Nawrot, Barbara

    2017-03-21

    A 52-nucleotide DNA/2'-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with its substrate was synthesized, purified and crystallized by the hanging-drop method using 0.8 M sodium potassium tartrate as a precipitant. A data set to 1.21 Å resolution was collected from a monocrystal at 100 K using synchrotron radiation on a beamline BL14.1 at BESSY. The crystal belonged to the P21 group with unit-cell a = 49.42, b = 24.69, c = 50.23, β = 118.48.

  17. 2'-(R)-Fluorinated mC, hmC, fC and caC triphosphates are substrates for DNA polymerases and TET-enzymes.

    PubMed

    Schröder, A S; Parsa, E; Iwan, K; Traube, F R; Wallner, M; Serdjukow, S; Carell, T

    2016-12-13

    A deeper investigation of the chemistry that occurs on the newly discovered epigenetic DNA bases 5-hydroxymethyl-(hmdC), 5-formyl-(fdC), and 5-carboxy-deoxycytidine (cadC) requires chemical tool compounds, which are able to dissect the different potential reaction pathways in cells. Here we report that the 2'-(R)-fluorinated derivatives F-hmdC, F-fdC, and F-cadC, which are resistant to removal by base excision repair, are good substrates for DNA polymerases and TET enzymes. This result shows that the fluorinated compounds are ideal tool substances to investigate potential C-C-bond cleaving reactions in the context of active demethylation.

  18. Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms.

    PubMed

    Castagna, Rossella; Bertucci, Alessandro; Prasetyanto, Eko Adi; Monticelli, Marco; Conca, Dario Valter; Massetti, Matteo; Sharma, Parikshit Pratim; Damin, Francesco; Chiari, Marcella; De Cola, Luisa; Bertacco, Riccardo

    2016-04-05

    High-performing hybridization platforms fabricated by reactive microcontact printing of DNA probes are presented. Multishaped PDMS molds are used to covalently bind oligonucleotides over a functional copolymer (DMA-NAS-MAPS) surface. Printed structures with minimum width of about 1.5 μm, spaced by 10 μm, are demonstrated, with edge corrugation lower than 300 nm. The quantification of the immobilized surface probes via fluorescence imaging gives a remarkable concentration of 3.3 × 10(3) oligonucleotides/μm(2), almost totally active when used as probes in DNA-DNA hybridization assays. Indeed, fluorescence and atomic force microscopy show a 95% efficiency in target binding and uniform DNA hybridization over printed areas.

  19. A Review of Spectroscopic and Biophysical-Chemical Studies of the Complex of Cyclobutane Pyrimidine Dimer Photolyase and Cryptochrome DASH with Substrate DNA.

    PubMed

    Schelvis, Johannes P M; Gindt, Yvonne M

    2017-01-01

    Cyclobutane pyrimidine dimer (CPD) photolyase (PL) is a structure-specific DNA repair enzyme that uses blue light to repair CPD on DNA. Cryptochrome (CRY) DASH enzymes use blue light for the repair of CPD lesions on single-stranded (ss) DNA, although some may also repair these lesions on double-stranded (ds) DNA. In addition, CRY DASH may be involved in blue light signaling, similar to cryptochromes. The focus of this review is on spectroscopic and biophysical-chemical experiments of the enzyme-substrate complex that have contributed to a more detailed understanding of all the aspects of the CPD repair mechanism of CPD photolyase and CRY DASH. This will be performed in the backdrop of the available X-ray crystal structures of these enzymes bound to a CPD-like lesion. These structures helped to confirm conclusions that were drawn earlier from spectroscopic and biophysical-chemical experiments, and they have a critical function as a framework to design new experiments and to interpret new experimental data. This review will show the important synergy between X-ray crystallography and spectroscopic/biophysical-chemical investigations that is essential to obtain a sufficiently detailed picture of the overall mechanism of CPD photolyases and CRY DASH proteins. © 2016 The American Society of Photobiology.

  20. Synthesis of dihydrothymidine and thymidine glycol 5'-triphosphates and their ability to serve as substrates for Escherichia coli DNA polymerase I

    SciTech Connect

    Ide, H.; Melamede, R.J.; Wallace, S.S.

    1987-02-10

    5,6-Dihydrothymidine 5'-triphosphate (DHdTTP) was synthesized by catalytic hydrogenation of thymidine 5'-triphosphate (dTTP). Thymidine glycol 5'-triphosphate (dTTP-GLY) was prepared by bromination of dTTP followed by treatment with Ag/sub 2/O. The modified nucleotides were extensively purified by anion-exchange high-performance liquid chromatography (HPLC). Alkaline phosphatase digestion of DHdTTP and dTTP-GLY gave the expected products (5,6-dihydrothymidine and cis-thymidine glycol), the identities of which were confirmed by reverse-phase HPLC using authentic markers. HPLC analysis of the alkaline phosphatase digested DHdTTP revealed that DHdTTP was a mixture of C5 diastereoisomers ((5S)- and (5R)-DHdTTP). Despite the significant distortion of the pyrimidine ring in DHdTTP, it was incorporated in place of dTTP during primer elongation catalyzed by Escherichia coli DNA polymerase I Klenow fragment. The rate of incorporation of DHdTTP was about 10-25-fold lower than that of dTTP. On the other hand, dTTP-GLY, which also has a distorted pyrimidine ring, did not replace dTTP, and no elongation of the primer was observed. In order to study the preference of incorporation of the diastereoisomers of DHdTTP into DNA, salmon testes DNA, activated by exonuclease III, was used as a template for DNA polymerase I Klenow fragment in the presence of (/sup 3/H)DHdTTP (S and R mixture) and normal nucleotides. After enzymatic digestion of the DNA to nucleosides, the products were analyzed by HPLC. The result suggests that Escherichia coli DNA polymerase I uses both isomers of DHdTTP as substrates and that the overall efficiency of incorporation is primarily determined by the concentration of the isomers in the nucleotide pool.

  1. Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells.

    PubMed

    Zhu, Guangyu; Myint, MyatNoeZin; Ang, Wee Han; Song, Lina; Lippard, Stephen J

    2012-02-01

    To overcome drug resistance and reduce the side effects of cisplatin, a widely used antineoplastic agent, major efforts have been made to develop next generation platinum-based anticancer drugs. Because cisplatin-DNA adducts block RNA polymerase II unless removed by transcription-coupled excision repair, compounds that react similarly but elude repair are desirable. The monofunctional platinum agent pyriplatin displays antitumor activity in mice, a cytotoxicity profile in cell cultures distinct from that of cisplatin, and a unique in vitro transcription inhibition mechanism. In this study, we incorporated pyriplatin globally or site specifically into luciferase reporter vectors to examine its transcription inhibition profiles in live mammalian cells. Monofunctional pyriplatin reacted with plasmid DNA as efficiently as bifunctional cisplatin and inhibited transcription as strongly as cisplatin in various mammalian cells. Using repair-defective nucleotide excision repair (NER)-, mismatch repair-, and single-strand break repair-deficient cells, we show that NER is mainly responsible for removal of pyriplatin-DNA adducts. These findings reveal that the mechanism by which pyriplatin generates its antitumor activity is very similar to that of cisplatin, despite the chemically different nature of their DNA adducts, further supporting a role for monofunctional platinum anticancer agents in human cancer therapy. This information also provides support for the validity of the proposed mechanism of action of cisplatin and provides a rational basis for the design of more potent platinum anticancer drug candidates using a monofunctional DNA-damaging strategy. ©2011 AACR.

  2. Arbitrary single primer amplification of trace DNA substrates yields sequence content profiles that are discriminatory and reproducible.

    PubMed

    Waters, James M; Eariss, Graham; Yeadon, P Jane; Kirkbride, K Paul; Burgoyne, Leigh A; Catcheside, David E A

    2012-02-01

    Single primer amplification is shown to yield a DNA profile that is reproducible when based on the sequence content of the amplicons rather than on the pattern of length polymorphism. The sequence-based profile increases in reliability with increasing numbers of cycles of amplification. This process uses an arbitrarily chosen primer and a low initial annealing temperature in order to amplify sequences from the whole metagenome present in a sample that may contain only trace DNA, and a large number of cycles to select subsets of sequences based on variable amplification efficiency. Using arrays, we demonstrate the utility and limitations of this approach for profiling the large metagenomes typical of soils and the trace DNA present in drug seizures. We suggest that this type of profiling will be most effective once next-generation sequencing and advanced sequence analysis becomes routine.

  3. Spermine moiety attached to the C-5 position of deoxyuridine enhances the duplex stability of the phosphorothioate DNA/complementary DNA and shows the susceptibility of the substrate to RNase H.

    PubMed

    Moriguchi, Tomohisa; Sakai, Hideaki; Suzuki, Hideo; Shinozuka, Kazuo

    2008-09-01

    Novel phosphorothioate-modified oligodeoxynucleotides (S-ODNs) containing a deoxyuridine derivative bearing a spermine moiety at the C-5 position were synthesized. The study of the thermal stability and the thermodynamic stability showed that the modified S-ODNs have been able to form the stable duplexes with the complementary DNA. It was also found that the duplex composed of the modified S-ODN and its complementary RNA strand is the substrate for Escherichia coli RNase H, and the cleavage of the RNA strand by the enzyme was almost similar as in the case of the unmodified one.

  4. Structures of phi29 DNA Polymerase Complexed with Substrate: The Mechanism of Translocation in B-Family Polymerases

    SciTech Connect

    Berman,A.; Kamtekar, S.; Goodman, J.; Lazaro, J.; de Vega, M.; Blanco, L.; Salas, M.; Steitz, T.

    2007-01-01

    Replicative DNA polymerases (DNAPs) move along template DNA in a processive manner. The structural basis of the mechanism of translocation has been better studied in the A-family of polymerases than in the B-family of replicative polymerases. To address this issue, we have determined the X-ray crystal structures of phi29 DNAP, a member of the protein-primed subgroup of the B-family of polymerases, complexed with primer-template DNA in the presence or absence of the incoming nucleoside triphosphate, the pre- and post-translocated states, respectively. Comparison of these structures reveals a mechanism of translocation that appears to be facilitated by the coordinated movement of two conserved tyrosine residues into the insertion site. This differs from the mechanism employed by the A-family polymerases, in which a conserved tyrosine moves into the templating and insertion sites during the translocation step. Polymerases from the two families also interact with downstream single-stranded template DNA in very different ways.

  5. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination.

    PubMed

    Trojanek, Joanna; Ho, Thu; Del Valle, Luis; Nowicki, Michal; Wang, Jin Ying; Lassak, Adam; Peruzzi, Francesca; Khalili, Kamel; Skorski, Tomasz; Reiss, Krzysztof

    2003-11-01

    The receptor for insulin-like growth factor I (IGF-IR) controls normal and pathological growth of cells. DNA repair pathways represent an unexplored target through which the IGF-IR signaling system might support pathological growth leading to cellular transformation. However, this study demonstrates that IGF-I stimulation supports homologous recombination-directed DNA repair (HRR). This effect involves an interaction between Rad51 and the major IGF-IR signaling molecule, insulin receptor substrate 1 (IRS-1). The binding occurs within the cytoplasm, engages the N-terminal domain of IRS-1, and is attenuated by IGF-I-mediated IRS-1 tyrosine phosphorylation. In the absence of IGF-I stimulation, or if mutated IGF-IR fails to phosphorylate IRS-1, localization of Rad51 to the sites of damaged DNA is diminished. These results point to a direct role of IRS-1 in HRR and suggest a novel role for the IGF-IR/IRS-1 axis in supporting the stability of the genome.

  6. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  7. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  8. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  9. From nucleotides to DNA analysis by a SERS substrate of a self similar chain of silver nanospheres

    NASA Astrophysics Data System (ADS)

    Coluccio, M. L.; Gentile, F.; Das, G.; Perozziello, G.; Malara, N.; Alrasheed, S.; Candeloro, P.; Di Fabrizio, E.

    2015-11-01

    In this work we realized a device of silver nanostructures designed so that they have a great ability to sustain the surface-enhanced Raman scattering effect. The nanostructures were silver self-similar chains of three nanospheres, having constant ratios between their diameters and between their reciprocal distances. They were realized by electron beam lithography, to write the pattern, and by silver electroless deposition technique, to fill it with the metal. The obtained device showed the capability to increase the Raman signal coming from the gap between the two smallest nanospheres (whose size is around 10 nm) and so it allows the detection of biomolecules fallen into this hot spot. In particular, oligonucleotides with 6 DNA bases, deposited on these devices with a drop coating method, gave a Raman spectrum characterized by a clear fingerprint coming from the hot spot and, with the help of a fitting method, also oligonucleotides of 9 bases, which are less than 3 nm long, were resolved. In conclusion the silver nanolens results in a SERS device able to measure all the molecules, or part of them, held into the hot spot of the nanolenses, and thus it could be a future instrument with which to analyze DNA portions.

  10. Electrochemically directed synthesis of oligonucleotides for DNA microarray fabrication

    PubMed Central

    Egeland, Ryan D.; Southern, Edwin M.

    2005-01-01

    We demonstrate a new method for making oligonucleotide microarrays by synthesis in situ. The method uses conventional DNA synthesis chemistry with an electrochemical deblocking step. Acid is delivered to specific regions on a glass slide, thus allowing nucleotide addition only at chosen sites. The acid is produced by electrochemical oxidation controlled by an array of independent microelectrodes. Deblocking is complete in a few seconds, when competing side-product reactions are minimal. We demonstrate the successful synthesis of 17mers and discrimination of single base pair mismatched hybrids. Features generated in this study are 40 μm wide, with sharply defined edges. The synthetic technique may be applicable to fabrication of other molecular arrays. PMID:16085751

  11. A dual role for substrate S-adenosyl-L-methionine in the methylation reaction with bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase.

    PubMed

    Malygin, E G; Evdokimov, A A; Zinoviev, V V; Ovechkina, L G; Lindstrom, W M; Reich, N O; Schlagman, S L; Hattman, S

    2001-06-01

    The fluorescence of 2-aminopurine ((2)A)-substituted duplexes (contained in the GATC target site) was investigated by titration with T4 Dam DNA-(N6-adenine)-methyltransferase. With an unmethylated target ((2)A/A duplex) or its methylated derivative ((2)A/(m)A duplex), T4 Dam produced up to a 50-fold increase in fluorescence, consistent with (2)A being flipped out of the DNA helix. Though neither S-adenosyl-L-homocysteine nor sinefungin had any significant effect, addition of substrate S-adenosyl-L-methionine (AdoMet) sharply reduced the Dam-induced fluorescence with these complexes. In contrast, AdoMet had no effect on the fluorescence increase produced with an (2)A/(2)A double-substituted duplex. Since the (2)A/(m)A duplex cannot be methylated, the AdoMet-induced decrease in fluorescence cannot be due to methylation per se. We propose that T4 Dam alone randomly binds to the asymmetric (2)A/A and (2)A/(m)A duplexes, and that AdoMet induces an allosteric T4 Dam conformational change that promotes reorientation of the enzyme to the strand containing the native base. Thus, AdoMet increases enzyme binding-specificity, in addition to serving as the methyl donor. The results of pre-steady-state methylation kinetics are consistent with this model.

  12. A dual role for substrate S-adenosyl-l-methionine in the methylation reaction with bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase

    PubMed Central

    Malygin, Ernst G.; Evdokimov, Alexey A.; Zinoviev, Victor V.; Ovechkina, Lidiya G.; Lindstrom, William M.; Reich, Norbert O.; Schlagman, Samuel L.; Hattman, Stanley

    2001-01-01

    The fluorescence of 2-aminopurine (2A)-substituted duplexes (contained in the GATC target site) was investigated by titration with T4 Dam DNA-(N6-adenine)-methyltransferase. With an unmethylated target (2A/A duplex) or its methylated derivative (2A/mA duplex), T4 Dam produced up to a 50-fold increase in fluorescence, consistent with 2A being flipped out of the DNA helix. Though neither S-adenosyl-l-homocysteine nor sinefungin had any significant effect, addition of substrate S-adenosyl-l-methionine (AdoMet) sharply reduced the Dam-induced fluorescence with these complexes. In contrast, AdoMet had no effect on the fluorescence increase produced with an 2A/2A double-substituted duplex. Since the 2A/mA duplex cannot be methylated, the AdoMet-induced decrease in fluorescence cannot be due to methylation per se. We propose that T4 Dam alone randomly binds to the asymmetric 2A/A and 2A/mA duplexes, and that AdoMet induces an allosteric T4 Dam conformational change that promotes reorientation of the enzyme to the strand containing the native base. Thus, AdoMet increases enzyme binding-specificity, in addition to serving as the methyl donor. The results of pre-steady-state methylation kinetics are consistent with this model. PMID:11376154

  13. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.

    PubMed

    Moore, B M; Jalluri, R K; Doughty, M B

    1996-09-10

    The nucleotide photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate (1) was evaluated as a photoaffinity label of the DNA polymerase I Klenow fragment. Photolabel [3H]-1 covalently labeled the Klenow fragment with photolysis at 300 nm, reaching saturation at an approximate 1:1 mole ratio at 5.7 microM and with an EC50 (the effective concentration at 50% maximum photoincorporation) of about 0.74 microM. Saturating concentrations of poly(dA).(T)10 protect the Klenow fragment from [3H]-1 photoincorporation, and TTP at a concentration approximately equal to its KD for the free enzyme form shifts the dose-response curve for photoincorporation of [3H]-1 into the Klenow fragment by a factor of 2, indicating a competitive relationship between TTP and 1. Additionally, the photoincorporation of [3H]-1 into the Klenow fragment has an absolute requirement for magnesium, with no significant photoincorporation observed at concentrations of 1 up to 10 microM in the absence of magnesium. These results demonstrate that, as designed, photoprobe 1 binds to both the dNTP and a portion of the template-primer binding sites on the Klenow fragment. Photoaffinity labeling of the Klenow fragment by 1 yielded a single radiolabeled tryptic fragment which was isolated by HPLC; sequence analysis identified Asp732 in the peptide fragment Asp732-Ile733-His734-Arg735 as the site of covalent modification. Molecular modeling and complementary NMR analysis of the conformation of 1 indicated preferred C3'-exo and C2'-exo-C3'-endo symmetrical twist furanose ring puckers, with a high antibase conformation and a +sc C-5 torsional angle. Docking studies using Asp732 as an anchor point for the azide alpha-nitrogen on the photolabel indicate that the dNTP binding site is at the edge of the DNA binding cleft opposite the exonuclease site and that the template binding site includes helix O in the finger motif of the Klenow fragment.

  14. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques.

    PubMed

    Cardoso, Sergio; Valverde, Laura; Alfonso-Sánchez, Miguel A; Palencia-Madrid, Leire; Elcoroaristizabal, Xabier; Algorta, Jaime; Catarino, Susana; Arteta, David; Herrera, Rene J; Zarrabeitia, María Teresa; Peña, José A; de Pancorbo, Marian M

    2013-01-01

    The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ~10,000 years before present (YBP), with signals of expansions at ~3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈ 15%) of the Franco-Cantabrian maternal gene pool with a putative pre

  15. The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates

    PubMed Central

    Whitaker, Neal; Chen, Yuqing; Jakubowski, Simon J.; Sarkar, Mayukh K.; Li, Feng

    2015-01-01

    ABSTRACT Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are

  16. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  17. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  18. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  19. The Expanded mtDNA Phylogeny of the Franco-Cantabrian Region Upholds the Pre-Neolithic Genetic Substrate of Basques

    PubMed Central

    Cardoso, Sergio; Valverde, Laura; Alfonso-Sánchez, Miguel A.; Palencia-Madrid, Leire; Elcoroaristizabal, Xabier; Algorta, Jaime; Catarino, Susana; Arteta, David; Herrera, Rene J.; Zarrabeitia, María Teresa; Peña, José A.; de Pancorbo, Marian M.

    2013-01-01

    The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ∼10,000 years before present (YBP), with signals of expansions at ∼3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈15%) of the Franco-Cantabrian maternal gene pool with a putative pre

  20. Graphene: Substrate preparation and introduction.

    PubMed

    Pantelic, Radosav S; Suk, Ji Won; Magnuson, Carl W; Meyer, Jannik C; Wachsmuth, Philipp; Kaiser, Ute; Ruoff, Rodney S; Stahlberg, Henning

    2011-04-01

    This technical note describes the transfer of continuous, single-layer, pristine graphene to standard Quantifoil TEM grids. We compare the transmission properties of pristine graphene substrates to those of graphene oxide and thin amorphous carbon substrates. Positively stained DNA imaged across amorphous carbon is typically indiscernible and requires metal shadowing for sufficient contrast. However, in a practical illustration of the new substrates properties, positively stained DNA is imaged across pristine graphene in striking contrast without the need of metal shadowing. We go onto discuss technical considerations and the potential applications of pristine graphene substrates as well as their ongoing development.

  1. Questioning the paradigm of metal complex promoted phosphodiester hydrolysis: [Mo7O24](6-) polyoxometalate cluster as an unlikely catalyst for the hydrolysis of a DNA model substrate.

    PubMed

    Cartuyvels, Els; Absillis, Gregory; Parac-Vogt, Tatjana N

    2008-01-07

    The first example of a phosphodiester bond cleavage promoted by a highly negatively charged polyoxometalate cluster has been discovered: the hydrolysis of the phosphodiester bond in a DNA model substrate bis(p-nitrophenyl)phosphate (BNPP) is promoted by the heptamolybdate anion [Mo7O24](6-) with rates which represent an acceleration of nearly four orders of magnitude compared to the uncatalyzed cleavage.

  2. DNA nanostructure meets nanofabrication.

    PubMed

    Zhang, Guomei; Surwade, Sumedh P; Zhou, Feng; Liu, Haitao

    2013-04-07

    Recent advances in DNA nanotechnology have made it possible to construct DNA nanostructures of almost arbitrary shapes with 2-3 nm of precision in their dimensions. These DNA nanostructures are ideal templates for bottom-up nanofabrication. This review highlights the challenges and recent advances in three areas that are directly related to DNA-based nanofabrication: (1) fabrication of large scale DNA nanostructures; (2) pattern transfer from DNA nanostructure to an inorganic substrate; and (3) directed assembly of DNA nanostructures.

  3. Anatomic viral detection is automated: the application of a robotic molecular pathology system for the detection of DNA viruses in anatomic pathology substrates, using immunocytochemical and nucleic acid hybridization techniques.

    PubMed Central

    Montone, K. T.; Brigati, D. J.; Budgeon, L. R.

    1989-01-01

    This paper presents the first automated system for simultaneously detecting human papilloma, herpes simplex, adenovirus, or cytomegalovirus viral antigens and gene sequences in standard formalin-fixed, paraffin-embedded tissue substrates and tissue culture. These viruses can be detected by colorimetric in situ nucleic acid hybridization, using biotinylated DNA probes, or by indirect immunoperoxidase techniques, using polyclonal or monoclonal antibodies, in a 2.0-hour assay performed at a single automated robotic workstation. Images FIG. 1 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 FIG. 9 FIG. 10 FIG. 11 PMID:2773514

  4. Identification of a new motif required for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): the RRRY motif is necessary for the binding of single-stranded DNA substrate and the template strand of the mismatched duplex.

    PubMed

    Kukreti, Pinky; Singh, Kamalendra; Ketkar, Amit; Modak, Mukund J

    2008-06-27

    The Klenow fragment of Escherichia coli DNA polymerase I houses catalytic centers for both polymerase and 3'-5' exonuclease activities that are separated by about 35 A. Upon the incorporation of a mismatched nucleotide, the primer terminus is transferred from the polymerase site to an exonuclease site designed for excision of the mismatched nucleotides. The structural comparison of the binary complexes of DNA polymerases in the polymerase and the exonuclease modes, together with a molecular modeling of the template strand overhang in Klenow fragment, indicated its binding in the region spanning residues 821-824. Since these residues are conserved in the "A" family DNA polymerases, we have designated this region as the RRRY motif. The alanine substitution of individual amino acid residues of this motif did not change the polymerase activity; however, the 3'-5' exonuclease activity was reduced 2-29-fold, depending upon the site of mutation. The R821A and R822A/Y824A mutant enzymes showed maximum cleavage defect with single-stranded DNA, mainly due to a large decrease in the ssDNA binding affinity of these enzymes. Mismatch removal by these enzymes was only moderately affected. However, data from the exonuclease-polymerase balance assays with mismatched template-primer suggest that the mutant enzymes are defective in switching mismatched primer from the polymerase to the exonuclease site. Thus, the RRRY motif provides a binding track for substrate ssDNA and for nonsubstrate single-stranded template overhang, in a polarity-dependent manner. This binding then facilitates cleavage of the substrate at the exonuclease site.

  5. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine.

    PubMed

    Cheriyan, Manoj; Chan, Siu-Hong; Perler, Francine

    2014-12-12

    Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices. Copyright © 2014. Published by Elsevier Ltd.

  6. Desulfovibrio vulgaris bacterioferritin uses H(2)O(2) as a co-substrate for iron oxidation and reveals DPS-like DNA protection and binding activities.

    PubMed

    Timóteo, Cristina G; Guilherme, Márcia; Penas, Daniela; Folgosa, Filipe; Tavares, Pedro; Pereira, Alice S

    2012-08-15

    A gene encoding Bfr (bacterioferritin) was identified and isolated from the genome of Desulfovibrio vulgaris cells, and overexpressed in Escherichia coli. In vitro, H(2)O(2) oxidizes Fe(2+) ions at much higher reaction rates than O(2). The H(2)O(2) oxidation of two Fe(2+) ions was proven by Mössbauer spectroscopy of rapid freeze-quenched samples. On the basis of the Mössbauer parameters of the intermediate species we propose that D. vulgaris Bfr follows a mineralization mechanism similar to the one reported for vertebrate H-type ferritins subunits, in which a diferrous centre at the ferroxidase site is oxidized to diferric intermediate species, that are subsequently translocated into the inner nanocavity. D. vulgaris recombinant Bfr oxidizes and stores up to 600 iron atoms per protein. This Bfr is able to bind DNA and protect it against hydroxyl radical and DNase deleterious effects. The use of H(2)O(2) as an oxidant, combined with the DNA binding and protection activities, seems to indicate a DPS (DNA-binding protein from starved cells)-like role for D. vulgaris Bfr.

  7. Tetraploid cells produced by absence of substrate adhesion during cytokinesis are limited in their proliferation and enter senescence after DNA replication.

    PubMed

    De Santis Puzzonia, Marco; Gonzalez, Laetitia; Ascenzi, Sonia; Cundari, Enrico; Degrassi, Francesca

    2016-01-01

    Tetraploidy has been proposed as an intermediate state in neoplastic transformation due to the intrinsic chromosome instability of tetraploid cells. Despite the identification of p53 as a major factor in growth arrest of tetraploid cells, it is still unclear whether the p53-dependent mechanism for proliferation restriction is intrinsic to the tetraploid status or dependent on the origin of tetraploidy. Substrate adherence is fundamental for cytokinesis completion in adherent untransformed cells. Here we show that untransformed fibroblast cells undergoing mitosis in suspension produce binucleated tetraploid cells due to defective cleavage furrow constriction that leads to incomplete cell abscission. Binucleated cells obtained after loss of substrate adhesion maintain an inactive p53 status and are able to progress into G1 and S phase. However, binucleated cells arrest in G2, accumulate p53 and are not able to enter mitosis as no tetraploid metaphases were recorded after one cell cycle time. In contrast, tetraploid metaphases were found following pharmacological inhibition of Chk1 kinase, suggesting the involvement of the ATR/Chk1 pathway in the G2 arrest of binucleated cells. Interestingly, after persistence in the G2 phase of the cell cycle, a large fraction of binucleated cells become senescent. These findings identify a new pathway of proliferation restriction for tetraploid untransformed cells that seems to be specific for loss of adhesion-dependent cytokinesis failure. This involves Chk1 and p53 activation during G2. Inhibition of growth and entrance into senescence after cytokinesis in suspension may represent an important mechanism to control tumor growth. In fact, anchorage independent growth is a hallmark of cancer and it has been demonstrated that binucleated transformed cells can enter a cycle of anchorage independent growth.

  8. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases.

    PubMed Central

    Morvan, F; Rayner, B; Imbach, J L; Thenet, S; Bertrand, J R; Paoletti, J; Malvy, C; Paoletti, C

    1987-01-01

    This paper describes for the first time the synthesis of alpha-oligonucleotides containing the four usual bases. Two unnatural hexadeoxyribonucleotides: alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)], consisting only of alpha-anomeric nucleotide units, were obtained by an improved phosphotriester method, in solution. Starting material was the four base-protected alpha-deoxyribonucleosides 3a-d. Pyrimidine alpha-deoxynucleosides 3a and 3b were prepared by self-anomerization reactions followed by selective deprotection of sugar hydroxyles, while the two purine alpha-deoxynucleosides 3c and 3d were prepared by glycosylation reactions. In the case of guanine alpha-nucleoside derivative a supplementary base-protecting group: N,N-diphenylcarbamoyl was introduced on O6-position in order to avoid side-reactions during oligonucleotide assembling. The hexadeoxynucleotide alpha-[d(CpApTpGpCpG)] was tested as substrate of selected endo- and exonucleases. In conditions where the natural corresponding beta-hexamer was completely degradated by nuclease S1 and calf spleen phosphodiesterase, the alpha-oligonucleotide remained almost intact. PMID:3575096

  9. Thymine-rich single-stranded DNA activates Mcm4/6/7 helicase on Y-fork and bubble-like substrates

    PubMed Central

    You, Zhiying; Ishimi, Yukio; Mizuno, Takeshi; Sugasawa, Kaoru; Hanaoka, Fumio; Masai, Hisao

    2003-01-01

    The presence of multiple clusters of runs of asymmetric adenine or thymine is a feature commonly found in eukaryotic replication origins. Here we report that the helicase and ATPase activities of the mammalian Mcm4/6/7 complex are activated specifically by thymine stretches. The Mcm helicase is specifically activated by a synthetic bubble structure which mimics an activated replication origin, as well as by a Y-fork structure, provided that a single-stranded DNA region of sufficient length is present in the unwound segment or 3′ tail, respectively, and that it carries clusters of thymines. Sequences derived from the human lamin B2 origin can serve as a potent activator for the Mcm helicase, and substitution of its thymine clusters with guanine leads to loss of this activation. At the fork, Mcm displays marked processivity, expected for a replicative helicase. These findings lead us to propose that selective activation by stretches of thymine sequences of a fraction of Mcm helicases loaded onto chromatin may be the determinant for selection of initiation sites on mammalian genomes. PMID:14609960

  10. Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate

    PubMed Central

    2014-01-01

    Background Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates. Objective To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA. Methods Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared. Results Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the ‘classic’ assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay. Conclusions This large study did not reveal significant differences in AQP4-IgG detection rates between the ‘classic’ CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the ‘classic’ AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders. PMID:25074611

  11. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA.

    PubMed

    Padmanabhan, P; Padmanabhan, S; DeRito, C; Gray, A; Gannon, D; Snape, J R; Tsai, C S; Park, W; Jeon, C; Madsen, E L

    2003-03-01

    Our goal was to develop a field soil biodegradation assay using (13)C-labeled compounds and identify the active microorganisms by analyzing 16S rRNA genes in soil-derived (13)C-labeled DNA. Our biodegradation approach sought to minimize microbiological artifacts caused by physical and/or nutritional disturbance of soil associated with sampling and laboratory incubation. The new field-based assay involved the release of (13)C-labeled compounds (glucose, phenol, caffeine, and naphthalene) to soil plots, installation of open-bottom glass chambers that covered the soil, and analysis of samples of headspace gases for (13)CO(2) respiration by gas chromatography/mass spectrometry (GC/MS). We verified that the GC/MS procedure was capable of assessing respiration of the four substrates added (50 ppm) to 5 g of soil in sealed laboratory incubations. Next, we determined background levels of (13)CO(2) emitted from naturally occurring soil organic matter to chambers inserted into our field soil test plots. We found that the conservative tracer, SF(6), that was injected into the headspace rapidly diffused out of the soil chamber and thus would be of little value for computing the efficiency of retaining respired (13)CO(2). Field respiration assays using all four compounds were completed. Background respiration from soil organic matter interfered with the documentation of in situ respiration of the slowly metabolized (caffeine) and sparingly soluble (naphthalene) compounds. Nonetheless, transient peaks of (13)CO(2) released in excess of background were found in glucose- and phenol-treated soil within 8 h. Cesium-chloride separation of (13)C-labeled soil DNA was followed by PCR amplification and sequencing of 16S rRNA genes from microbial populations involved with (13)C-substrate metabolism. A total of 29 full sequences revealed that active populations included relatives of Arthrobacter, Pseudomonas, Acinetobacter, Massilia, Flavobacterium, and Pedobacter spp. for glucose

  12. Mechanistic insights into a novel chromone-appended Cu(II) anticancer drug entity: in vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells.

    PubMed

    Yousuf, Imtiyaz; Arjmand, Farukh; Tabassum, Sartaj; Toupet, Loic; Khan, Rais Ahmad; Siddiqui, Maqsood Ahmad

    2015-06-14

    A new chromone-appended Cu(ii) drug entity () was designed and synthesized as a potential anticancer chemotherapeutic agent. The structural elucidation was carried out thoroughly by elemental analysis, FT-IR, EPR, ESI-MS and single crystal X-ray crystallography. Complex resulted from the in situ methoxylation reaction of the 3-formylchromone ligand and its subsequent complexation with the copper nitrate salt in a 2 : 1 ratio, respectively. crystallized in the monoclinic P21/c space group possessing the lattice parameters, a = 8.75 Å, b = 5.07 Å, c = 26.22 Å, α = γ = 90°, β = 96.3° per unit cell. Furthermore, in vitro interaction studies of with ct-DNA and tRNA were carried out which suggested more avid binding propensity towards the RNA target via intercalative mode, which was reflected from its Kb, K and Ksv values. The gel electrophoretic mobility assay was carried out on the pBR322 plasmid DNA substrate, to ascertain the cleaving ability and the mechanistic pathway in the presence of additives, and the results revealed the efficient cleaving ability of via the oxidative pathway. In vitro cell growth inhibition via the MTT assay was carried out to evaluate the cytotoxicity of complex and IC50 values were found to be in the range of 5-10 μg mL(-1) in HepG2 and MCF-7 cancer cell lines, which were found to be much lower than the IC50 values of previously reported similar Cu(ii) complexes. Additionally, in the presence of , reactive oxygen species (ROS) and thiobarbituric acid reactive substance (TBARS) levels in the tested cancer cell lines increased significantly, coupled with reduced glutathione (GSH) levels. Thus, our results suggested that ROS plays an important role in cell apoptosis induced by the Cu(ii) complex and validates its potential to act as a robust anticancer drug entity.

  13. Identification of a cDNA clone for bovine tissue factor

    SciTech Connect

    Kittler, J.M.; Horton, R.D.; Bach, R.; Spicer, E.K.; Fitzgerald, M.J.; Nemerson, Y.; Konigsberg, W.H.

    1986-05-01

    Tissue factor is a membrane-bound glycoprotein of approx.43 Kd that is necessary for activation of the extrinsic pathway of blood coagulation. The amino terminal amino acid sequence of purified bovine tissues factor was used to design a synthetic 17-mer oligodeoxyribonucleotide probe. A lambda gtll bovine brain cortex cDNA expression library was screened using both the /sup 32/P-labeled oligodeoxynucleotide probe and polyclonal antibodies to bovine tissue factor. A recombinant phage was isolated which gave a positive reaction with both probes. Cells containing the lambda gtll phage clone produce the tissue factor fragment as a fusion protein with ..beta..-galactosidase. The isolated DNA fragment coding for part of the bovine tissue factor gene is estimated to be approximately 500 bases in length by agarose gel electrophoresis. The ..beta..-glactosidase - tissue factor fusion protein, subjected to Western immunoblotting, shows a protein product of approximately 130 Kd which is reactive to anti-tissue factor antibodies. This corresponds well to the 114 Kd ..beta..-galactosidase plus the predicted approx. 16 Kd fragment of tissue factor. Experiments are in progress to transfer the presumed tissue factor gene fragment into phage M13 for nucleotide sequence analysis.

  14. Nucleotide sequence of a cloned cDNA for proopiomelanocortin precursor of chum salmon, Onchorynchus keta.

    PubMed Central

    Soma, G I; Kitahara, N; Nishizawa, T; Nanami, H; Kotake, C; Okazaki, H; Andoh, T

    1984-01-01

    We have isolated a cDNA clone encoding salmon proopiomelanocortin precursor. Polyadenylated RNA was isolated from pituitary neurointermediate lobes and used to construct a cDNA library. The library was screened with 17 mer of oligodeoxyribonucleotides specific for the hexapeptide sequence in salmon beta-endorphin I, Phe-Met-Lys-Pro-Tyr-Thr at positions 4-9 excluding the third nucleotide. One positive clone, pSSM17 containing an insert of 1303 base pairs (bp) was characterized. Sequence determination revealed that it possessed sequences covering the entire regions encoding ACTH and beta-lipotropin and that the mRNA had the same overall organization as those of other mammalian species, i.e., the following peptide hormones were arranged in order from 5' upstream, ACTH including alpha-melanotropin and corticotropin-like intermediate lobe peptide, beta-lipotropin including gamma-lipotropin, beta-melanotropin and beta-endorphin. Amino acid sequences for putative salmon ACTH, beta-, and gamma-lipotropin were predicted. Comparison of the salmon mRNA sequence with those of mammals showed that the regions of alpha- and beta-MSH are relatively homologous, but other regions are much less so, especially in the 3' nontranslated region where it is much longer and completely heterologous. Images PMID:6095185

  15. DNAzymes in DNA Nanomachines and DNA Analysis

    NASA Astrophysics Data System (ADS)

    He, Yu; Tian, Ye; Chen, Yi; Mao, Chengde

    This chapter discusses our efforts in using DNAzymes in DNA nano-machines and DNA analysis systems. 10-23 DNAzymes can cleave specific phos-phodiester bonds in RNA. We use them to construct an autonomous DNA-RNA chimera nanomotor, which constantly extracts chemical energy from RNA substrates and transduces the energy into a mechanical motion: cycles of contraction and extension. The motor's motion can be reversibly turned on and off by a DNA analogue (brake) of the RNA substrate. Addition and removal of the brake stops and restarts, respectively, the motor's motion. Furthermore, when the RNA substrates are preorganized into a one-dimensional track, a DNAzyme can continuously move along the track so long as there are substrates available ahead. Based on a similar mechanism, a novel DNA detection system has been developed. A target DNA activates a DNAzyme to cleave RNA-containing molecular beacons (MB), which generates an enhanced fluorescence signal. A following work integrates two steps of signal amplifications: a rolling-circle amplification (RCA) to synthesize multiple copies of DNAzymes, and the DNAzymes catalyze a chemical reaction to generate a colorimetric signal. This method allows detection of DNA analytes whose concentration is as low as 1 pM.

  16. Incorporation of dA opposite N3-ethylthymidine terminates in vitro DNA synthesis

    SciTech Connect

    Bhanot, O.S.; Grevatt, P.C.; Donahue, J.M.; Gabrielides, C.N.; Solomon, J.J. )

    1990-11-01

    N3-Ethylthymidine (N3-Et-dT) was site specifically incorporated into a 17-nucleotide oligomer to investigate the significance of DNA ethylation at the central hydrogen-bonding site (N3) of thymine. The 5'-(dimethoxytrityl)-protected N3-Et-dT was converted to the corresponding 3'-phosphoramidite and used to incorporate N3-Et-dT at a single site in the oligonucleotide during synthesis by the phospite triester method. The purified N3-Et-dT-containing oligomer was ligated to a second 17-mer to yield a 34-nucleotide template with N3-Et-dT present at position 26 from the 3'-end. The template DNA, which corresponds to a specific sequence at gene G of bacteriophase {var phi}X174, was used to study the specificity of nucleotide incorporation opposite N3-Et-dT. At 10 {mu}M dNTP and 5 mM Mg{sup 2{plus}}, N3-Et-dT blocked DNA synthesis by Escherichia coli polymerase I (Klenow fragment): 96{percent} immediately 3' to N3-Et-dT and 4{percent} after incorporation of a nucleotide opposite N3-Et-dT (incorporation-dependent blocked product). DNA replication past the lesion (postlesion synthesis) was negligible. Incorporation opposite N3-Et-dT increased with increased dNTP concentrations, reaching 35{percent} at 200 {mu}M. Postlesion synthesis remained negligible. DNA sequencing of the incorporation-dependent blocked product revealed that dA is incorporated opposite N3-Et-dT consistent with the A rule in mutagenesis. Formation of the N3-Et-dT{center dot}dA base pair at the 3'-end of the growing chain terminated DNA synthesis. These results implicate N3-Et-dT as a potentially cytotoxic lesion produced by ethylating agents.

  17. DNA-cell conjugates

    DOEpatents

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  18. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  19. Mammalian DNA helicase.

    PubMed Central

    Hübscher, U; Stalder, H P

    1985-01-01

    A forked DNA was constructed to serve as a substrate for DNA helicases. It contains features closely resembling a natural replication fork. The DNA was prepared in large amounts and was used to assay displacement activity during isolation from calf thymus DNA polymerases alpha holoenzyme. One form of DNA polymerase alpha holoenzyme is possibly involved leading strand replication at the replication fork and possesses DNA dependent ATPase activity (Ottiger, H.-P. and Hübscher, U. (1984) Proc. Natl. Acad. Sci. USA 81, 3993-3997). The enzyme can be separated from DNA polymerase alpha by velocity sedimentation in conditions of very low ionic strength and then be purified by chromatography on Sephacryl S-200 and ATP-agarose. At all stages of purification, DNA dependent ATPase and displacement activity profiles were virtually superimposable. The DNA dependent ATPase can displace a hybridized DNA fragment with a short single-stranded tail at its 3'hydroxyl end only in the presence of ATP, and this displacement relies on ATP hydrolysis. Furthermore, homogeneous single-stranded binding proteins from calf thymus as well as from other tissues cannot perform this displacement reaction. By all this token the DNA dependent ATPase appears to be a DNA helicase. It is suggested that this DNA helicase might act in concert with DNA polymerase alpha at the leading strand, possibly pushing the replication fork ahead of the polymerase. Images PMID:3162158

  20. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.

    PubMed

    Lohman, Gregory J S; Zhang, Yinhua; Zhelkovsky, Alexander M; Cantor, Eric J; Evans, Thomas C

    2014-02-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10(-3) s(-1) and K(M) < 1 nM at 25 °C under conditions where T4 DNA ligase produced only 5'-adenylylated DNA with a 20-fold lower kcat and a K(M) ≈ 300 nM. The rate of ligation increased with addition of Mn(2+), but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5'-phosphorylated dC or dG residue on the 3' side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.

  1. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  2. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  3. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  4. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  5. Identification of the fire blight pathogen, Erwinia amylovora, by PCR assays with chromosomal DNA.

    PubMed Central

    Bereswill, S; Bugert, P; Bruchmüller, I; Geider, K

    1995-01-01

    Erwinia amylovora, the causative agent of fire blight, was identified independently from the common plasmid pEA29 by three different PCR assays with chromosomal DNA. PCR with two primers was performed with isolated DNA and with whole cells, which were directly added to the assay mixture. The oligonucleotide primers were derived from the ams region, and the PCR product comprised the amsB gene, which is involved in exopolysaccharide synthesis. The amplified fragment of 1.6 kb was analyzed, and the sequence was found to be identical for two E. amylovora strains. The identity of the PCR products was further confirmed by restriction analysis. The 1.6-kb signal was also used for detection of the fire blight pathogen in the presence of other plant-associated bacteria and in infected plant tissue. For further identification of isolated strains, the 16S rRNA gene of E. amylovora and other plant-associated bacteria was amplified and the products were digested with the restriction enzyme HaeIII. The pattern obtained for E. amylovora was different from that of other bacteria. The sequence of the 16S rRNA gene was determined from a cloned fragment and was found to be closely related to the sequences of Escherichia coli and other Erwinia species. Finally, arbitrarily primed PCR with a 17-mer oligonucleotide derived from the sequence of transposon Tn5 produced a unique banding pattern for all E. amylovora strains investigated. These methods expand identification methods for E. amylovora, which include DNA hybridization and a PCR technique based on plasmid pEA29. PMID:7618876

  6. Targeting DNA with "light-up" pyrimidine triple-helical forming oligonucleotides conjugated to stabilizing fluorophores (LU-TFOs).

    PubMed

    Renard, Brice-Loïc; Lartia, Rémy; Asseline, Ulysse

    2008-12-07

    The synthesis of triple-helix-forming oligonucleotides (TFOs) linked to a series of cyanine monomethines has been performed. Eight cyanines including one thiocyanine, four thiazole orange analogues, and three quinocyanines were attached to the 5'-end of 10-mer pyrimidine TFOs. The binding properties of these modified TFOs with their double-stranded DNA target were studied by absorption and steady-state fluorescence spectroscopy. The stability of the triplex structures depended on the cyanine structure and the linker size used to connect both entities. The most efficient cyanines able to stabilize the triplex structures, when attached at the 5'-end of the TFO, have been incorporated at both ends and provided triplex structures with increased stability. Fluorescence studies have shown that for the TFOs involving one cyanine, an important intensity increase (up to 37-fold) in the fluorescent signal was observed upon their hybridization with the double-stranded target, proving hybridization. The conjugates involving thiazole orange attached by the benzothiazole ring provided the most balanced properties in terms of triplex stabilization, fluorescence intensity and fluorescence enhancement upon hybridization with the double-stranded target. In order to test the influence of different parameters such as the TFO sequence and length, thiazole orange was used to label 17-mer TFOs. Hybridizations of these TFOs with different duplexes, designed to study the influence of mismatches at both internal and terminal positions on the triplex structures, confirmed the possibility of triplex formation without loss of specificity together with a strong fluorescence enhancement (up to 13-fold).

  7. Blowing DNA bubbles.

    PubMed

    Severin, N; Zhuang, W; Ecker, C; Kalachev, A A; Sokolov, I M; Rabe, J P

    2006-11-01

    We report here experimental observations which indicate that topologically or covalently formed polymer loops embedded in an ultrathin liquid film on a solid substrate can be "blown" into circular "bubbles" during scanning force microscopy (SFM) imaging. In particular, supercoiled vector DNA has been unraveled, moved, stretched, and overstretched to two times its B-form length and then torn apart. We attribute the blowing of the DNA bubbles to the interaction of the tapping SFM tip with the ultrathin liquid film.

  8. DNA nanomechanical devices for molecular biology and DNA nanotechnology

    NASA Astrophysics Data System (ADS)

    Gu, Hongzhou

    The aim of nanotechnology is to put specific atomic and molecular species where we want them, when we want them there. Achieving such a dynamic and functional control could lead to molecular programming. Structural DNA nanotechnology offers a powerful route to this goal by combining stable branched DNA motifs with cohesive ends to produce objects, programmed nanomechanical devices and fixed or modified patterned lattices. In Chapter II, a two-armed nanorobotic device is built based on a DNA origami substrate. The arms face each other, ready to capture different DNA nanostructures into distinguishable nanopatterns. Combining with a simple error-correction protocol, we are able to achieve this goal in a nearly flawless fashion. In Chapter III, a DNA-based programmable assembly line is developed by combining three PX/JX2 cassettes and a novel DNA walker on a DNA origami substrate. This programmable assembly line can generate eight products by switching the cassettes to PX (ON) or JX2 (OFF) state when the DNA walker passes by. DNA nanomechanical devices hold the promise of controlling structure and performing exquisitely fine measurements on the molecular scale. Several DNA nanomechanical devices based on different biochemistry phenomena have been reported before. In Chapter IV, a scissors-based DNA device is built to measure the work that can be done by a DNA-bending protein (MutS) when it binds to DNA.

  9. Improved methods for creating migratable Holliday junction substrates.

    PubMed

    Chen, Stefanie Hartman; Plank, Jody L; Willcox, Smaranda; Griffith, Jack D; Hsieh, Tao-shih

    2013-03-01

    Previously, we published a method for creating a novel DNA substrate, the double Holliday junction substrate. This substrate contains two Holliday junctions that are mobile, topologically constrained and separated by a distance comparable with conversion tract lengths. Although useful for studying late stage homologous recombination in vitro, construction of the substrate requires significant effort. In particular, there are three bottlenecks: (i) production of large quantities of single-stranded DNA; (ii) the loss of a significant portion of the DNA following the recombination step; and (iii) the loss of DNA owing to inefficient gel extraction. To address these limitations, we have made the following changes to the protocol: (i) use of a helper plasmid, rather than exogenous helper phage, to produce single-stranded DNA; (ii) use of the unidirectional C31 integrase system in place of the bidirectional Cre recombinase reaction; and (iii) gel extraction by DNA diffusion. Here, we describe the changes made to the materials and methods and characterize the substrates that can be produced, including migratable single Holliday junctions, hemicatenanes and a quadruple Holliday junction substrate.

  10. Structure-based domain assignment in Leishmania infantum EndoG: characterization of a pH-dependent regulatory switch and a C-terminal extension that largely dictates DNA substrate preferences.

    PubMed

    Oliva, Cristina; Sánchez-Murcia, Pedro A; Rico, Eva; Bravo, Ana; Menéndez, Margarita; Gago, Federico; Jiménez-Ruiz, Antonio

    2017-09-06

    Mitochondrial endonuclease G from Leishmania infantum (LiEndoG) participates in the degradation of double-stranded DNA (dsDNA) during parasite cell death and is catalytically inactive at a pH of 8.0 or above. The presence, in the primary sequence, of an acidic amino acid-rich insertion exclusive to trypanosomatids and its spatial position in a homology-built model of LiEndoG led us to postulate that this peptide stretch might act as a pH sensor for self-inhibition. We found that a LiEndoG variant lacking residues 145-180 is indeed far more active than its wild-type counterpart at pH values >7.0. In addition, we discovered that (i) LiEndoG exists as a homodimer, (ii) replacement of Ser211 in the active-site SRGH motif with the canonical aspartate from the DRGH motif of other nucleases leads to a catalytically deficient enzyme, (iii) the activity of the S211D variant can be restored upon the concomitant replacement of Ala247 with Arg and (iv) a C-terminal extension is responsible for the observed preferential cleavage of single-stranded DNA (ssDNA) and ssDNA-dsDNA junctions. Taken together, our results support the view that LiEndoG is a multidomain molecular machine whose nuclease activity can be subtly modulated or even abrogated through architectural changes brought about by environmental conditions and interaction with other binding partners. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Human DNA polymerase α in binary complex with a DNA:DNA template-primer.

    PubMed

    Coloma, Javier; Johnson, Robert E; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K

    2016-04-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually engages with a DNA:DNA helix during primer synthesis. We present here the first crystal structure of human Polα polymerase subunit in complex with a DNA:DNA helix. Unexpectedly, we find that portion of the DNA:DNA helix in contact with the polymerase is not in a B-form but in a hybrid A-B form. Almost all of the contacts observed previously with an RNA primer are preserved with a DNA primer--with the same set of polymerase residues tracking the sugar-phosphate backbone of the DNA or RNA primer. Thus, rather than loss of specific contacts, the free energy cost of distorting DNA from B- to hybrid A-B form may augur the termination of primer synthesis in eukaryotes.

  12. Structural destabilization of DNA duplexes containing single-base lesions investigated by nanopore measurements.

    PubMed

    Jin, Qian; Fleming, Aaron M; Ding, Yun; Burrows, Cynthia J; White, Henry S

    2013-11-12

    The influence of DNA duplex structural destabilization introduced by a single base-pair modification was investigated by nanopore measurements. A series of 11 modified base pairs were introduced into the context of an otherwise complementary DNA duplex formed by a 17-mer and a 65-mer such that the overhanging ends comprised poly(dT)23 tails, generating a representative set of duplexes that display a range of unzipping mechanistic behaviors and kinetic stabilities. The guanine oxidation products 8-oxo-7,8-dihydroguanine (OG), guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) were paired with either cytosine (C), adenine (A), or 2,6-diaminopurine (D) to form modified base pairs. The mechanism and kinetic rate constants of duplex dissociation were determined by threading either the 3' or 5' overhangs into an α-hemolysin (α-HL) channel under an electrical field and measuring the distributions of unzipping times at constant force. In order of decreasing thermodynamic stability (as measured by duplex melting points), the rate of duplex dissociation increases, and the mechanism evolves from a first-order reaction to two sequential first-order reactions. These measurements allow us to rank the kinetic stability of lesion-containing duplexes relative to the canonical G:C base pair in which the OG:C, Gh:C, and Sp:C base pairs are, respectively, 3-200 times less stable. The rate constants also depend on whether unzipping was initiated from the 3' versus 5' side of the duplex. The kinetic stability of these duplexes was interpreted in terms of the structural destabilization introduced by the single base-pair modification. Specifically, a large distortion of the duplex backbone introduced by the presence of the highly oxidized guanine products Sp and Gh leads to a rapid two-step unzipping. The number of hydrogen bonds in the modified base pair plays a lesser role in determining the kinetics of duplex dissociation.

  13. Structure-based domain assignment in Leishmania infantum EndoG: characterization of a pH-dependent regulatory switch and a C-terminal extension that largely dictates DNA substrate preferences

    PubMed Central

    Oliva, Cristina; Sánchez-Murcia, Pedro A.; Rico, Eva; Bravo, Ana; Menéndez, Margarita

    2017-01-01

    Abstract Mitochondrial endonuclease G from Leishmania infantum (LiEndoG) participates in the degradation of double-stranded DNA (dsDNA) during parasite cell death and is catalytically inactive at a pH of 8.0 or above. The presence, in the primary sequence, of an acidic amino acid-rich insertion exclusive to trypanosomatids and its spatial position in a homology-built model of LiEndoG led us to postulate that this peptide stretch might act as a pH sensor for self-inhibition. We found that a LiEndoG variant lacking residues 145–180 is indeed far more active than its wild-type counterpart at pH values >7.0. In addition, we discovered that (i) LiEndoG exists as a homodimer, (ii) replacement of Ser211 in the active-site SRGH motif with the canonical aspartate from the DRGH motif of other nucleases leads to a catalytically deficient enzyme, (iii) the activity of the S211D variant can be restored upon the concomitant replacement of Ala247 with Arg and (iv) a C-terminal extension is responsible for the observed preferential cleavage of single-stranded DNA (ssDNA) and ssDNA–dsDNA junctions. Taken together, our results support the view that LiEndoG is a multidomain molecular machine whose nuclease activity can be subtly modulated or even abrogated through architectural changes brought about by environmental conditions and interaction with other binding partners.

  14. New synthetic substrates of mammalian nucleotide excision repair system

    PubMed Central

    Evdokimov, Alexey; Petruseva, Irina; Tsidulko, Aleksandra; Koroleva, Ludmila; Serpokrylova, Inna; Silnikov, Vladimir; Lavrik, Olga

    2013-01-01

    DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA show good substrate properties in NER process. Modified extended linear nFlu– and nAntr–DNA are suitable for estimation of specific excision activity catalysed with mammalian whole-cell extracts. The following substrate activity range was revealed for the model 137-bp linear double-stranded DNA: nAnt–DNA ≈ nFlu–DNA > Chol–DNA (Chol–DNA—legitimate NER substrate that contains non-nucleoside fragment bearing cholesterol residue). In vitro assay shows that modified DNA can be a useful tool to study NER activity in whole-cell extracts. The developed approach should be of general use for the incorporation of NER-sensitive distortions into model DNAs. The new synthetic extended linear DNA containing bulky non-nucleoside modifications will be useful for NER mechanism study and for applications. PMID:23609543

  15. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Improvement of DNA adenylation using T4 DNA ligase with a template strand and a strategically mismatched acceptor strand

    PubMed Central

    Patel, Maha P.; Baum, Dana A.; Silverman, Scott K.

    2008-01-01

    DNA with a 5′-adenylpyrophosphoryl cap (5′-adenylated DNA; AppDNA) is an activated form of DNA that is the biochemical intermediate of the reactions catalyzed by DNA ligase, RNA ligase, polynucleotide kinase, and other nucleic acid modifying enzymes. 5′-Adenylated DNA is also useful for in vitro selection experiments. Efficient preparation of 5′-adenylated DNA is therefore desirable for several biochemical applications. Here we have developed a DNA adenylation procedure that uses T4 DNA ligase and is more reliable than a previously reported approach that used the 5′-phosphorylated donor DNA substrate to be adenylated, a DNA template, and ATP but no acceptor strand. Our improved DNA adenylation procedure uses the above components as well as an acceptor strand that has a strategically chosen C-T acceptor-template mismatch directly adjacent to the adenylation site. This mismatch permits adenylation of the donor DNA substrate but largely suppresses subsequent ligation of the donor with the acceptor, as assayed on nine different DNA substrates that collectively have all four DNA nucleotides represented at each of the first two positions. The new DNA adenylation procedure is successful using either laboratory-prepared or commercial T4 DNA ligase and works well on the preparative (2 nmol) scale for all nine of the test DNA substrates. PMID:18022669

  17. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  18. Effects of DNA-binding drugs on T4 DNA ligase.

    PubMed Central

    Montecucco, A; Pedrali-Noy, G; Spadari, S; Lestingi, M; Ciarrocchi, G

    1990-01-01

    A number of DNA intercalating and externally binding drugs have been found to inhibit nick sealing, cohesive and blunt end ligation, AMP-dependent DNA topoisomerization and EDTA-induced DNA nicking mediated by bacteriophage T4 DNA ligase. The inhibition seems to arise from drug-substrate interaction so that formation of active DNA-Mg2(+)-AMP-enzyme complex is impaired while assembled and active complexes are not disturbed by drug binding to the substrate. Images Fig. 2. Fig. 4. Fig. 5. PMID:2156493

  19. Characterization and cDNA cloning of phospholipase C-gamma, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase.

    PubMed Central

    Burgess, W H; Dionne, C A; Kaplow, J; Mudd, R; Friesel, R; Zilberstein, A; Schlessinger, J; Jaye, M

    1990-01-01

    Heparin-binding growth factors (HBGFs) bind to high-affinity cell surface receptors which possess intrinsic tyrosine kinase activity. A Mr 150,000 protein phosphorylated on tyrosine in response to class 1 HBGF (HBGF-1) was purified and partially sequenced. On the basis of this sequence, cDNA clones were isolated from a human endothelial cell library and identified as encoding phospholipase C-gamma. Phosphorylation of phospholipase C-gamma in intact cells treated with HBGF-1 was directly demonstrated by using antiphospholipase C-gamma antibodies. Thus, HBGF-1 joins epidermal growth factor and platelet-derived growth factor, whose receptor activation leads to tyrosine phosphorylation and probable activation of phospholipase C-gamma. Images PMID:2167438

  20. Substrate recognition by Escherichia coli MutY using substrate analogs.

    PubMed Central

    Chepanoske, C L; Porello, S L; Fujiwara, T; Sugiyama, H; David, S S

    1999-01-01

    The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2"-deoxyguanosine (OG):A and G:A mispairs in DNA. Our approach toward understanding recognition and processing of DNA damage by MutY has been to use substrate analogs that retain the recognition properties of the substrate mispair but are resistant to the glycosylase activity of MutY. This approach provides stable MutY-DNA complexes that are amenable to structural and biochemical characterization. In this work, the interaction of MutY with the 2"-deoxyadenosine analogs 2"-deoxy-2"-fluoroadenosine (FA), 2"-deoxyaristeromycin (R) and 2"-deoxyformycin A (F) was investigated. MutY binds to duplexes containing the FA, R or F analogs opposite G and OG within DNA with high affinity; however, no enzymatic processing of these duplexes is observed. The specific nature of the interaction of MutY with an OG:FA duplex was demonstrated by MPE-Fe(II) hydroxyl radical footprinting experiments which showed a nine base pair region of protection by MutY surrounding the mispair. DMS footprinting experiments with an OG:A duplex revealed that a specific G residue located on the OG-containing strand was protected from DMS in the presence of MutY. In contrast, a G residue flanking the substrate analogs R, F or FA was observed to be hypersensitive to DMS in the presence of MutY. These results suggest a major conformational change in the DNA helix upon binding of MutY that exposes the substrate analog-containing strand. This finding is consistent with a nucleotide flipping mechanism for damage recognition by MutY. This work demonstrates that duplex substrates for MutY containing FA, R or F instead of A are excellent substrate mimics that may be used to provide insight into the recognition by MutY of damaged and mismatched base pairs within DNA. PMID:10454618

  1. Regulation of DNA Repair Mechanisms: How the Chromatin Environment Regulates the DNA Damage Response.

    PubMed

    Stadler, Jens; Richly, Holger

    2017-08-05

    Cellular DNA is constantly challenged by damage-inducing factors derived from exogenous or endogenous sources. In order to maintain genome stability and integrity, cells have evolved a wide variety of DNA repair pathways which counteract different types of DNA lesions, also referred to as the DNA damage response (DDR). However, DNA in eukaryotes is highly organized and compacted into chromatin representing major constraints for all cellular pathways, including DNA repair pathways, which require DNA as their substrate. Therefore, the chromatin configuration surrounding the lesion site undergoes dramatic remodeling to facilitate access of DNA repair factors and subsequent removal of the DNA lesion. In this review, we focus on the question of how the cellular DNA repair pathways overcome the chromatin barrier, how the chromatin environment is rearranged to facilitate efficient DNA repair, which proteins mediate this re-organization process and, consequently, how the altered chromatin landscape is involved in the regulation of DNA damage responses.

  2. Optical, redox, and DNA-binding properties of phenanthridinium chromophores: elucidating the role of the phenyl substituent for fluorescence enhancement of ethidium in the presence of DNA.

    PubMed

    Prunkl, Christa; Pichlmaier, Markus; Winter, Rainer; Kharlanov, Vladimir; Rettig, Wolfgang; Wagenknecht, Hans-Achim

    2010-03-15

    The phenanthridinium chromophores 5-ethyl-6-phenylphenanthridinium (1), 5-ethyl-6-methylphenanthridinium (2), 3,8-diamino-5-ethyl-6-methylphenanthridinium (3), and 3,8-diamino-5-ethyl-6-(4-N,N-diethylaminophenyl)phenanthridinium (4) were characterized by their optical and redox properties. All dyes were applied in titration experiments with a random-sequence 17mer DNA duplex and their binding affinities were determined. The results were compared to well-known ethidium bromide (E). In general, this set of data allows the influence of substituents in positions 3, 6, and 8 on the optical properties of E to be elucidated. Especially, compound 4 was used to compare the weak electron-donating character of the phenyl substituent at position 6 of E with the more electron-donating 4-N,N-diethylaminophenyl group. Analysis of all of the measurements revealed two pairs of chromophores. The first pair, consisting of 1 and 2, lacks the amino groups in positions 3 and 8, and, as a result, these dyes exhibit clearly altered optical and electrochemical properties compared with E. In the presence of DNA, a significant fluorescence quenching was observed. Their binding affinity to DNA is reduced by nearly one order of magnitude. The electronic effect of the phenyl group in position 6 on this type of dye is rather small. The properties of the second set, 3 and 4, are similar to E due to the presence of the two strongly electron-donating amino groups in positions 3 and 8. However, in contrast to 1 and 2, the electron-donating character of the substituent in position 6 of 3 and 4 is critical. The binding, as well as the fluorescence enhancement, is clearly related to the electron-donating effect of this substituent. Accordingly, compound 4 shows the strongest binding affinity and the strongest fluorescence enhancement. Quantum chemical calculations reveal a general mechanism related to the twisted intramolecular charge transfer (TICT) model. Accordingly, an increase of the twist angle

  3. Streching of (DNA/functional molecules) complex between electrodes towards DNA molecular wire

    NASA Astrophysics Data System (ADS)

    Kobayashi, Norihisa; Nishizawa, Makoto; Inoue, Shintarou; Nakamura, Kazuki

    2009-08-01

    DNA/functional molecules such as (Ru(bpy)32+ complex, conducting polymer etc.) complex was prepared to study molecular structure and I-V characteristics towards DNA molecular wire. For example, Ru(bpy)32+ was associated with duplex of DNA by not only electrostatic interaction but also intercalation in the aqueous solution. Singlemolecular structure of DNA/Ru(bpy)32+ complex was analyzed with AFM. We found a network structure of DNA/Ru(bpy)32+ complex on the mica substrate, which is similar to native DNA. The height of DNA/Ru(bpy)32+ complex on the mica substrate was ranging from 0.8 to 1.6 nm, which was higher than the naked DNA (0.5-1.0 nm). This indicates that single-molecular DNA/Ru(bpy)32+ complex also connects to each other to form network structure on a mica substrate. In order to stretch DNA complex between electrodes, we employed high frequency and high electric field stretching method proposed by Washizu et al. We stretched and immobilized DNA single molecules between a pair of electrodes and its structures were analyzed with AFM technique. The I-V characteristics of DNA single molecules between electrodes were improved by the association of functional molecules with DNA. The molecular structure and I-V characteristics of DNA complex were discussed.

  4. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  5. Quantitive DNA Fiber Mapping

    SciTech Connect

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  6. Decontamination of metal substrates

    SciTech Connect

    Vincent, L.D.

    1998-12-31

    A brief look at the history of surface corrosion and contamination of steel is important for understanding the best approach to proper cleaning of substrates prior to surface preparation and application of coatings and linings, particularly in immersion conditions such as encountered in railroad hopper and tank cars. All contaminants contribute to reduction of the coating or lining`s capacity to either protect the substrate or prevent contamination of the liquid cargo. This paper will explore the types of tests available to determine the levels of contamination, particularly sulfides, sulfates and chlorides, along with suggested methods to reduce theses contaminants to acceptable levels.

  7. Biaxially textured composite substrates

    DOEpatents

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  8. Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus). cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation.

    PubMed

    Schulze-Muth, P; Irmler, S; Schröder, G; Schröder, J

    1996-10-25

    We characterize CrRLK1, a novel type of receptor-like kinase (RLK), from the plant Catharanthus roseus (Madagascar periwinkle). The protein (90.2 kDa) deduced from the complete genomic and cDNA sequences is a RLK by predicting a N-terminal signal peptide, a large extracytoplasmic domain, a membrane-spanning hydrophobic region followed by a transfer-stop signal, and a C-terminal cytoplasmic protein kinase with all 11 conserved subdomains. It is a novel RLK type because the predicted extracytoplasmic region shares no similarity with other RLKs. The autophosphorylation was investigated with affinity-purified proteins expressed in Escherichia coli. The activity was higher with Mn2+ than with Mg2+ and achieved half-maximal rates at 2-2.5 microM ATP. The phosphorylation was predominantly on Thr, less on Ser, and not on Tyr. In contrast to other plant RLK, the kinase used an intra- rather than an intermolecular phosphorylation mechanism. After protein cleavage with formic acid, most of the radioactivity was in a 14.1-kDa peptide located at the end of the kinase domain. Mutagenesis of the four Thr residues in this peptide identified Thr-720 in the subdomain XI as important for autophosphorylation and for phosphorylation of beta-casein. This Thr is conserved in other related kinases, suggesting a subfamily sharing common autophosphorylation mechanisms.

  9. Enamides: valuable organic substrates.

    PubMed

    Carbery, David R

    2008-10-07

    Enamides display a fine balance of stability and reactivity, which is now leading to their increasing use in organic synthesis. Enamides offer multiple opportunities for the inclusion of nitrogen based functionality into organic systems. Recent examples of these compounds as substrates are discussed in this article.

  10. Multiple alternative substrate kinetics.

    PubMed

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. Published by Elsevier B.V.

  11. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  12. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  13. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    PubMed Central

    Rashid, Fahad; Harris, Paul D; Zaher, Manal S; Sobhy, Mohamed A; Joudeh, Luay I; Yan, Chunli; Piwonski, Hubert; Tsutakawa, Susan E; Ivanov, Ivaylo; Tainer, John A; Habuchi, Satoshi; Hamdan, Samir M

    2017-01-01

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability. DOI: http://dx.doi.org/10.7554/eLife.21884.001 PMID:28230529

  14. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    DOE PAGES

    Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.; ...

    2017-02-23

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less

  15. Stability of non-Watson-Crick G-A/A-G base pair in synthetic DNA and RNA oligonucleotides.

    PubMed

    Ito, Yuko; Sone, Yumiko; Mizutani, Takaharu

    2004-03-01

    A non-Watson-Crick G-A/A-G base pair is found in SECIS (selenocysteine-insertion sequence) element in the 3'-untranslated region of Se-protein mRNAs and in the functional site of the hammerhead ribozyme. We studied the stability of G-A/A-G base pair (bold) in 17mer GT(U)GACGGAAACCGGAAC synthetic DNA and RNA oligonucleotides by thermal melting experiments and gel electrophoresis. The measured Tm value of DNA oligonucleotide having G-A/A-G pair showed an intermediate value (58 degrees C) between that of Watson-Crick G-C/C-G base pair (75 degrees C) and that of G-G/A-A of non-base-pair (40 degrees C). Similar thermal melting patterns were obtained with RNA oligonucleotides. This result indicates that the secondary structure of oligonucleotide having G-A/A-G base pair is looser than that of the G-C type Watson-Crick base pair. In the comparison between RNA and DNA having G-A/A-G base pair, the Tm value of the RNA oligonucleotide was 11 degrees C lower than that of DNA, indicating that DNA has a more rigid structure than RNA. The stained pattern of oligonucleotide on polyacrylamide gel clarified that the mobility of the DNA oligonucleotide G-A/A-G base pair changed according to the urea concentration from the rigid state (near the mobility of G-C/C-G oligonucleotide) in the absence of urea to the random state (near the mobility of G-G/A-A oligonucleotide) in 7 M urea. However, the RNA oligonucleotide with G-A/A-G pair moved at an intermediate mobility between that of oligonucleotide with G-C/C-G and of the oligonucleotide with G-G/A-A, and the mobility pattern did not depend on urea concentration. Thus, DNA and RNA oligonucleotides with the G-A/A-G base pair showed a pattern indicating an intermediate structure between the rigid Watson-Crick base pair and the random structure of non-base pair. RNA with G-A/A-G base pair has the intermediate structure not influenced by urea concentration. Finally, this study indicated that the intermediate rigidity imparted by Non

  16. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    PubMed Central

    Sharma, Nynne; Cai, Yujia; Bak, Rasmus O; Jakobsen, Martin R; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2013-01-01

    DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB) DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs) devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system. PMID:23443502

  17. Cooperative DNA Binding and Protein/DNA Fiber Formation Increases the Activity of the Dnmt3a DNA Methyltransferase*

    PubMed Central

    Emperle, Max; Rajavelu, Arumugam; Reinhardt, Richard; Jurkowska, Renata Z.; Jeltsch, Albert

    2014-01-01

    The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity. PMID:25147181

  18. DNA materials: bridging nanotechnology and biotechnology.

    PubMed

    Yang, Dayong; Hartman, Mark R; Derrien, Thomas L; Hamada, Shogo; An, Duo; Yancey, Kenneth G; Cheng, Ru; Ma, Minglin; Luo, Dan

    2014-06-17

    CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a

  19. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    PubMed Central

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  20. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates.

    PubMed

    Yang, Jing; Jiang, Shuoxing; Liu, Xiangrong; Pan, Linqiang; Zhang, Cheng

    2016-12-14

    In this study, an aptamer-substrate strategy is introduced to control programmable DNA origami pattern. Combined with DNA aptamer-substrate binding and DNAzyme-cutting, small DNA tiles were specifically controlled to fill into the predesigned DNA origami frame. Here, a set of DNA logic gates (OR, YES, and AND) are performed in response to the stimuli of adenosine triphosphate (ATP) and cocaine. The experimental results are confirmed by AFM imaging and time-dependent fluorescence changes, demonstrating that the geometric patterns are regulated in a controllable and programmable manner. Our approach provides a new platform for engineering programmable origami nanopatterns and constructing complex DNA nanodevices.

  1. Stereochemical control of DNA biosynthesis

    PubMed Central

    Sosunov, Vasily V.; Santamaria, Fanny; Victorova, Lyubov S.; Gosselin, Gilles; Rayner, Bernard; Krayevsky, Alexander A.

    2000-01-01

    Stereochemical control of DNA biosynthesis was studied using several DNA-synthesizing complexes containing, in each case, a single substitution of a 2′-deoxy-d-nucleotide residue by an enantiomeric l-nucleotide residue in a DNA chain (either in the primer or in the template) as well as 2′-deoxy-l-ribonucleoside 5′-triphosphates (l-dNTPs) as substrates. Three template-dependent DNA polymerases were tested, Escherichia coli DNA polymerase I Klenow fragment, Thermus aquaticus DNA polymerase and avian myeloblastosis virus reverse transcriptase, as well as template-independent calf-thymus terminal deoxynucleotidyl transferase. Very stringent control of stereoselectivity was demonstrated for template-dependent DNA polymerases, whereas terminal deoxynucleotidyl transferase was less selective. DNA polymerase I and reverse transcriptase catalyzed formation of dinucleoside 5′,5′-tetraphosphates when l-dTTP was used as substrate. Comparison between models of template–primer complexes, modified or not by a single l-nucleotide residue, revealed striking differences in their geometry. PMID:10666459

  2. DNA-PK assay

    DOEpatents

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  3. Comparison of fluorigenic peptide substrates PL50, SNAPTide, and BoTest A/E for BoNT/A detection and quantification: exosite binding confers high-assay sensitivity.

    PubMed

    Ouimet, Tanja; Duquesnoy, Sophie; Poras, Hervé; Fournié-Zaluski, Marie-Claude; Roques, Bernard P

    2013-07-01

    Detection and quantification of low doses of botulinum toxin serotype A (BoNT/A) in medicinal preparations require precise and sensitive methods. With mounting pressure from governmental authorities to replace the mouse LD50 assay, interest in alternative methods such as the endopeptidase assay, quantifying the toxin active moiety, is growing. Using internal collision-induced fluorescence quenching, Pharmaleads produced peptides encompassing the SNAP-25 cleavage site: a 17-mer (PL63) and a 48-mer (PL50) reaching the previously identified α-exosite, with PL50 showing higher apparent affinity for BoNT/A. Peptide mapping experiments revealed that this increased affinity is mainly due to a connecting peptide sequence between the N-terminus of PL63 and the α-exosite, identifying a new cooperative exosite on BoNT/A. Other endopeptidase substrates available, including SNAPTide and BoTest A/E, are both based on fluorescent resonance energy transfer (FRET) technology. To compare these assays, their limits of detection and quantification were determined using light chain or 150-kDa BoNT/A. Detection limits of PL50 and BoTest were over 100 times better than those using SNAPtide in standard conditions. Although the BoTest possessed a detection limit around 0.2 pM for either BoNT/A form, its quantification limit (9.7 pM) using purified BoNT/A was 12 times inferior to PL50, estimated at 0.8 pM, suitable for medicinal preparation quantification.

  4. Tunnelling microscopy of DNA

    NASA Astrophysics Data System (ADS)

    Selci, Stefano; Cricenti, Antonio

    1991-01-01

    Uncoated DNA molecules marked with an activated tris (1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with a high resolution Scanning Tunnelling Microscope (STM). The STM operated simultaneously in the constant-current and gap-modulated mode. Highly reproducible STM images have been obtained and interpreted in terms of expected DNA structure. The main periodicity, regularly presented in molecules several hundred Ångstrom long, ranges from 25 Å to 35 Å with an average diameter of 22 Å. Higher resolution images of the minor groove have revealed the phosphate groups along the DNA backbones. Constant-current images of TAPO deposited on gold show a crystalline structure of rows of molecules with a side-by-side spacing of 3 Å.

  5. Toward larger DNA origami.

    PubMed

    Marchi, Alexandria N; Saaem, Ishtiaq; Vogen, Briana N; Brown, Stanley; LaBean, Thomas H

    2014-10-08

    Structural DNA nanotechnology, and specifically scaffolded DNA origami, is rapidly developing as a versatile method for bottom-up fabrication of novel nanometer-scale materials and devices. However, lengths of conventional single-stranded scaffolds, for example, 7,249-nucleotide circular genomic DNA from the M13mp18 phage, limit the scales of these uniquely addressable structures. Additionally, increasing DNA origami size generates the cost burden of increased staple-strand synthesis. We addressed this 2-fold problem by developing the following methods: (1) production of the largest to-date biologically derived single-stranded scaffold using a λ/M13 hybrid virus to produce a 51 466-nucleotide DNA in a circular, single-stranded form and (2) inexpensive DNA synthesis via an inkjet-printing process on a chip embossed with functionalized micropillars made from cyclic olefin copolymer. We have experimentally demonstrated very efficient assembly of a 51-kilobasepair origami from the λ/M13 hybrid scaffold folded by chip-derived staple strands. In addition, we have demonstrated two-dimensional, asymmetric origami sheets with controlled global curvature such that they land on a substrate in predictable orientations that have been verified by atomic force microscopy.

  6. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities.

    PubMed

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K

    2014-08-01

    Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.

  7. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  8. Palladium on plastic substrates for plasmonic devices.

    PubMed

    Zuppella, Paola; Pasqualotto, Elisabetta; Zuccon, Sara; Gerlin, Francesca; Corso, Alain Jody; Scaramuzza, Matteo; De Toni, Alessandro; Paccagnella, Alessandro; Pelizzo, Maria Guglielmina

    2015-01-09

    Innovative chips based on palladium thin films deposited on plastic substrates have been tested in the Kretschmann surface plasmon resonance (SPR) configuration. The new chips combine the advantages of a plastic support that is interesting and commercially appealing and the physical properties of palladium, showing inverted surface plasmon resonance (ISPR). The detection of DNA chains has been selected as the target of the experiment, since it can be applied to several medical early diagnostic tools, such as different biomarkers of cancers or cystic fibrosis. The results are encouraging for the use of palladium in SPR-based sensors of interest for both the advancement of biodevices and the development of hydrogen sensors.

  9. Fossil avian eggshell preserves ancient DNA

    PubMed Central

    Oskam, Charlotte L.; Haile, James; McLay, Emma; Rigby, Paul; Allentoft, Morten E.; Olsen, Maia E.; Bengtsson, Camilla; Miller, Gifford H.; Schwenninger, Jean-Luc; Jacomb, Chris; Walter, Richard; Baynes, Alexander; Dortch, Joe; Parker-Pearson, Michael; Gilbert, M. Thomas P.; Holdaway, Richard N.; Willerslev, Eske; Bunce, Michael

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes. PMID:20219731

  10. Fossil avian eggshell preserves ancient DNA.

    PubMed

    Oskam, Charlotte L; Haile, James; McLay, Emma; Rigby, Paul; Allentoft, Morten E; Olsen, Maia E; Bengtsson, Camilla; Miller, Gifford H; Schwenninger, Jean-Luc; Jacomb, Chris; Walter, Richard; Baynes, Alexander; Dortch, Joe; Parker-Pearson, Michael; Gilbert, M Thomas P; Holdaway, Richard N; Willerslev, Eske; Bunce, Michael

    2010-07-07

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.

  11. ssDNA binding reveals the atomic structure of graphene.

    PubMed

    Husale, By Sudhir; Sahoo, Sangeeta; Radenovic, Aleksandra; Traversi, Floriano; Annibale, Paolo; Kis, Andras

    2010-12-07

    We used AFM to investigate the interaction of polyelectrolytes such as ssDNA and dsDNA molecules with graphene as a substrate. Graphene is an appropriate substrate due to its planarity, relatively large surfaces that are detectable via an optical microscope, and straightforward identification of the number of layers. We observe that in the absence of the screening ions deposited ssDNA will bind only to the graphene and not to the SiO(2) substrate, confirming that the binding energy is mainly due to the π-π stacking interaction. Furthermore, deposited ssDNA will map the graphene underlying structure. We also quantify the π-π stacking interaction by correlating the amount of deposited DNA with the graphene layer thickness. Our findings agree with reported electrostatic force microscopy (EFM) measurements. Finally, we inspected the suitability of using a graphene as a substrate for DNA origami-based nanostructures.

  12. Nucleosomes protect DNA from DNA methylation in vivo and in vitro

    PubMed Central

    Felle, Max; Hoffmeister, Helen; Rothammer, Julia; Fuchs, Andreas; Exler, Josef H.; Längst, Gernot

    2011-01-01

    Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo. PMID:21622955

  13. Repair-Resistant DNA Lesions

    PubMed Central

    2017-01-01

    The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166

  14. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  15. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    PubMed

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.

  16. Nitrification in a zeoponic substrate.

    PubMed

    McGilloway, R L; Weaver, R W; Ming, D W; Gruener, J E

    2003-10-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  17. Nitrification in a zeoponic substrate

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.

    2003-01-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  18. DNA Nanotechnology

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masateru; Kawai, Tomoji

    2002-11-01

    DNA is one candidate of promising molecules for molecular electronic devices, since it has the double helix structure with pi-electron bases for electron transport, the address at 0.4 nm intervals, and the self-assembly. Electrical conductivity and nanostructure of DNA and modified DNA molecules are investigated in order to research the application of DNA in nanoelectronic devices. It has been revealed that DNA is a wide-gap semiconductor in the absence of doping. The conductivity of DNA has been controlled by chemical doping, electric field doping, and photo-doping. It has found that Poly(dG)[middle dot]Poly(dC) has the best conductivity and can function as a conducting nanowire. The pattern of DNA network is controlled by changing the concentration of the DNA solution.

  19. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  20. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  1. In situ oligonucleotide synthesis on carbon materials: stable substrates for microarray fabrication

    PubMed Central

    Phillips, Margaret F.; Lockett, Matthew R.; Rodesch, Matthew J.; Shortreed, Michael R.; Cerrina, Franco; Smith, Lloyd M.

    2008-01-01

    Glass has become the standard substrate for the preparation of DNA arrays. Typically, glass is modified using silane chemistries to provide an appropriate functional group for nucleic acid synthesis or oligonucleotide immobilization. We have found substantial issues with the stability of these surfaces as manifested in the unwanted release of oligomers from the surface when incubated in aqueous buffers at moderate temperatures. To address this issue, we have explored the use of carbon-based substrates. Here, we demonstrate in situ synthesis of oligonucleotide probes on carbon-based substrates using light-directed photolithographic phosphoramidite chemistry and evaluate the stabilities of the resultant DNA arrays compared to those fabricated on silanized glass slides. DNA arrays on carbon-based substrates are substantially more stable than arrays prepared on glass. This superior stability enables the use of high-density DNA arrays for applications involving high temperatures, basic conditions, or where serial hybridization and dehybridization is desired. PMID:18084027

  2. Dewetting on microstructured substrates

    NASA Astrophysics Data System (ADS)

    Kim, Taehong; Kim, Wonjung

    2016-11-01

    A thin liquid film has an equilibrium thickness in such a way as to minimize the free energy. When a liquid film thickness is out of its equilibrium, the film seeks its equilibrium state, resulting in dynamics of liquid film, which are referred to as wetting and dewetting, depending on the flow direction. We here present a combined experimental and theoretical investigation of dewetting on a substrate with parallel microstructures. Our experiments show that residue may remain on the substrate after dewetting, and residue morphologies can be classified into three modes. Based on our experimental observations, we elucidate how the modes depend on the pattern morphology and contact angle, and develop a model for the contact line motion. Our results provide a basis for controlling the thickness film, which is important for many practical applications such as oil recovery, detergency, lithography, and cleaning. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  3. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  4. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  5. Tunable and regenerative DNA zipper based spring

    NASA Astrophysics Data System (ADS)

    Landon, Preston; Mo, Alexander; Ramachandran, Srinivasan; Lal, Ratnesh

    2012-02-01

    We report a DNA zipper based actuator device termed `DNA- spring' with tunable and repeated cycles of extension and contraction ability. DNA zipper is a double-stranded DNA system engineered to open upon its specific interaction with appropriately designed single strand DNA (ssDNA), opening of the zipper is driven by binding energy differences between the DNA strands. The zipper system is incorporated with defined modifications to function like a spring, capable of delivering approximately 9 pN force over a distance of approximately 13 nm, producing approximately 116 kJ/mol of work. Time-lapse fluorescence and fluorescent DNA gel electrophoresis analysis is utilized to evaluate and confirm the spring action. A second zipper incorporated into the spring provides the ability to couple/decouple to an object/substrate. Such devices would have wide application, including for conditionally triggered molecular delivery systems and as actuators in nano-devices. zippers.

  6. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.

    PubMed

    Çağlayan, Melike; Wilson, Samuel H

    2015-11-01

    DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER.

  7. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    Çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26596511

  8. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5′-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26466358

  9. Scanning probe and nanopore DNA sequencing: core techniques and possibilities.

    PubMed

    Lund, John; Parviz, Babak A

    2009-01-01

    We provide an overview of the current state of research towards DNA sequencing using nanopore and scanning probe techniques. Additionally, we provide methods for the creation of two key experimental platforms for studies relating to nanopore and scanning probe DNA studies: a synthetic nanopore apparatus and an atomically flat conductive substrate with stretched DNA molecules.

  10. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  11. A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability.

    PubMed

    De, Ananya; Campbell, Colin

    2007-02-15

    The data in the present study show that DNA polymerase gamma and DNA ligase III interact in mitochondrial protein extracts from cultured HT1080 cells. An interaction was also observed between the two recombinant proteins in vitro. Expression of catalytically inert versions of DNA ligase III that bind DNA polymerase gamma was associated with reduced mitochondrial DNA copy number and integrity. In contrast, overexpression of wild-type DNA ligase III had no effect on mitochondrial DNA copy number or integrity. Experiments revealed that wild-type DNA ligase III facilitates the interaction of DNA polymerase gamma with a nicked DNA substrate in vitro, and that the zinc finger domain of DNA ligase III is required for this activity. Mitochondrial protein extracts prepared from cells overexpressing a DNA ligase III protein that lacked the zinc finger domain had reduced base excision repair activity compared with extracts from cells overexpressing the wild-type protein. These data support the interpretation that the interaction of DNA ligase III and DNA polymerase gamma is required for proper maintenance of the mammalian mitochondrial genome.

  12. Comparison of preprocessing methods and storage times for touch DNA samples

    PubMed Central

    Dong, Hui; Wang, Jing; Zhang, Tao; Ge, Jian-ye; Dong, Ying-qiang; Sun, Qi-fan; Liu, Chao; Li, Cai-xia

    2017-01-01

    Aim To select appropriate preprocessing methods for different substrates by comparing the effects of four different preprocessing methods on touch DNA samples and to determine the effect of various storage times on the results of touch DNA sample analysis. Method Hand touch DNA samples were used to investigate the detection and inspection results of DNA on different substrates. Four preprocessing methods, including the direct cutting method, stubbing procedure, double swab technique, and vacuum cleaner method, were used in this study. DNA was extracted from mock samples with four different preprocessing methods. The best preprocess protocol determined from the study was further used to compare performance after various storage times. DNA extracted from all samples was quantified and amplified using standard procedures. Results The amounts of DNA and the number of alleles detected on the porous substrates were greater than those on the non-porous substrates. The performances of the four preprocessing methods varied with different substrates. The direct cutting method displayed advantages for porous substrates, and the vacuum cleaner method was advantageous for non-porous substrates. No significant degradation trend was observed as the storage times increased. Conclusion Different substrates require the use of different preprocessing method in order to obtain the highest DNA amount and allele number from touch DNA samples. This study provides a theoretical basis for explorations of touch DNA samples and may be used as a reference when dealing with touch DNA samples in case work. PMID:28252870

  13. Ku stimulation of DNA ligase IV-dependent ligation requires inward movement along the DNA molecule.

    PubMed

    Kysela, Boris; Doherty, Aidan J; Chovanec, Miroslav; Stiff, Thomas; Ameer-Beg, Simon M; Vojnovic, Borivoj; Girard, Pierre-Marie; Jeggo, Penny A

    2003-06-20

    The DNA ligase IV.XRCC4 complex (LX) functions in DNA non-homologous-end joining, the main pathway for double-strand break repair in mammalian cells. We show that, in contrast to ligation by T4 ligase, the efficiency of LX ligation of double-stranded (ds) ends is critically dependent upon the length of the DNA substrate. The effect is specific for ds ligation, and LX/DNA binding is not influenced by the substrate length. Ku stimulates LX ligation at concentrations resulting in 1-2 Ku molecules bound per substrate, whereas multiply Ku-bound DNA molecules inhibit ds ligation. The combined footprint of DNA with Ku and LX bound is the sum of each individual footprint suggesting that the two complexes are located in tandem at the DNA end. Inhibition of Ku translocation by the presence of cis-platinum adducts on the DNA substrate severely inhibits ligation by LX. Fluorescence resonance energy transfer analysis using fluorophore-labeled Ku and DNA molecules showed that, as expected, Ku makes close contact with the DNA end and that addition of LX can disrupt this close contact. Finally, we show that recruitment of LX by Ku is impaired in an adenylation-defective mutant providing further evidence that LX interacts directly with the DNA end, possibly via the 5'-phosphate as shown for prokaryotic ligases. Taken together, our results suggest that, when LX binds to a Ku-bound DNA molecule, it causes inward translocation of Ku and that freedom to move inward on the DNA is essential to Ku stimulation of LX activity.

  14. DNA Flexibility

    NASA Astrophysics Data System (ADS)

    Widom, Jonathan

    2005-03-01

    Classic experimental and theoretical analyses led to a unified view of DNA as a semiflexible polymer, characterized by a bending persistence length, P, ˜50 nm (˜150 bp). In this view, DNA lengths that are greater than P are, on average, spontaneously gently bent, and require relatively little force to bend significantly, while DNA lengths that are shorter than P are nearly straight, and require great force to bend significantly. Nevertheless, sharply bent DNA plays important roles in biology. We used the method of ligase catalyzed DNA cyclization to investigate the spontaneous looping of short DNAs. Remarkably, DNAs as short as 84 bp spontaneously bend into circles, and 94 bp DNA sequences cyclize up to 10^5 times more easily than predicted from classic theories of DNA bending. In subsequent studies we find that the twistability of sharply looped DNAs exceeds the prediction of classic theories by up to 400-fold. These results can only be understood by greatly enhanced DNA flexibility, not by permanent bends. Our results provide striking support for two new theories of DNA mechanics based on local melted or kinked regions, and they establish DNA as an active participant in the formation and function of looped regulatory complexes in vivo.

  15. Substrate effect on the enhanced biodegradation of carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Wu, Shian C.; Doong, Rueyan

    1993-03-01

    The effects of different substrates on the biotransformation of heavily chlorinated hydrocarbons under anaerobic conditions were investigated to evaluate the feasibility of in-situ bioremediation of the contaminated groundwaters by amending different substrates. The substrate-fed batches were anaerobically incubated with the addition of either acetate, glucose, methanol, or dissolved organic matter (DOM) with concentrations ranging from 10 to 30 mg/L. Experimental results demonstrated that the effect of the substrates on the dechlorination of the compounds varied. The removal efficiency was observed greatest for glucose- then methanol- and acetate-fed batches and least for DOM-fed batches. The sequence of the enhancement efficiency is consistent with the sequence of the reducing potentials of these substrates. Changing the substrate concentration could vary the dechlorination capability of the system. The viable counts of microorganisms determined by the direct epifluorescence counting technique showed that the batches with higher concentration of the supplemental substrate produced higher bacterial cell numbers. Moreover, from microscopic observations, different compositions of bacterial population were found. Small-sized bacteria with spheric shape were observed when culture bottles were amended with either acetate or DOM, whereas large-sized bacteria with rod-shape were predominant for bottles amended with glucose. Also, higher DNA contents were demonstrated for glucose-fed batches.

  16. DNA biochip using a phototransistor integrated circuit.

    PubMed

    Vo-Dinh, T; Alarie, J P; Isola, N; Landis, D; Wintenberg, A L; Ericson, M N

    1999-01-15

    This work describes the development of an integrated biosensor based on phototransistor integrated circuits (IC) for use in medical detection, DNA diagnostics, and gene mapping. The evaluation of various system components developed for an integrated biosensor microchip is discussed. Methods to develop a microarray of DNA probes on nitrocellulose substrate are discussed. The biochip device has sensors, amplifiers, discriminators, and logic circuitry on board. Integration of light-emitting diodes into the device is also possible. To achieve improved sensitivity, we have designed an IC system having each phototransistor sensing element composed of 220 phototransistor cells connected in parallel. Measurements of fluorescent-labeled DNA probe microarrays and hybridization experiments with a sequence-specific DNA probe for the human immunodeficiency virus 1 system on nitrocellulose substrates illustrate the usefulness and potential of the DNA biochip.

  17. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  18. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  19. The enigmatic thymine DNA glycosylase.

    PubMed

    Cortázar, Daniel; Kunz, Christophe; Saito, Yusuke; Steinacher, Roland; Schär, Primo

    2007-04-01

    When it was first isolated from extracts of HeLa cells in Josef Jiricny's laboratory, the thymine DNA glycosylase (TDG) attracted attention because of its ability to remove thymine, i.e. a normal DNA base, from G.T mispairs. This implicated a function of DNA base excision repair in the restoration of G.C base pairs following the deamination of a 5-methylcytosine. TDG turned out to be the founding member of a newly emerging family of mismatch-directed uracil-DNA glycosylases, the MUG proteins, that act on a comparably broad spectrum of base lesion including G.U as the common, most efficiently processed substrate. However, because of its apparent catalytic inefficiency, some have considered TDG a poor DNA repair enzyme without an important biological function. Others have reported 5-meC DNA glycosylase activity to be associated with TDG, thrusting the enzyme into limelight as a possible DNA demethylase. Yet others have found the glycosylase to interact with transcription factors, implicating a function in gene regulation, which appears to be critically important in developmental processes. This article reviews all these developments in view of possible biological functions of this multifaceted DNA glycosylase.

  20. Sealed substrate carrier for electroplating

    DOEpatents

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  1. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  2. Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles.

    PubMed

    Anderson, Breeana G; Stivers, James T

    2014-07-08

    Type IB topoisomerases unwind positive and negative DNA supercoils and play a key role in removing supercoils that would otherwise accumulate at replication and transcription forks. An interesting question is whether topoisomerase activity is regulated by the topological state of the DNA, thereby providing a mechanism for targeting the enzyme to highly supercoiled DNA domains in genomes. The type IB enzyme from variola virus (vTopo) has proven to be useful in addressing mechanistic questions about topoisomerase function because it forms a reversible 3'-phosphotyrosyl adduct with the DNA backbone at a specific target sequence (5'-CCCTT-3') from which DNA unwinding can proceed. We have synthesized supercoiled DNA minicircles (MCs) containing a single vTopo target site that provides highly defined substrates for exploring the effects of supercoil density on DNA binding, strand cleavage and ligation, and unwinding. We observed no topological dependence for binding of vTopo to these supercoiled MC DNAs, indicating that affinity-based targeting to supercoiled DNA regions by vTopo is unlikely. Similarly, the cleavage and religation rates of the MCs were not topologically dependent, but topoisomers with low superhelical densities were found to unwind more slowly than highly supercoiled topoisomers, suggesting that reduced torque at low superhelical densities leads to an increased number of cycles of cleavage and ligation before a successful unwinding event. The K271E charge reversal mutant has an impaired interaction with the rotating DNA segment that leads to an increase in the number of supercoils that were unwound per cleavage event. This result provides evidence that interactions of the enzyme with the rotating DNA segment can restrict the number of supercoils that are unwound. We infer that both superhelical density and transient contacts between vTopo and the rotating DNA determine the efficiency of supercoil unwinding. Such determinants are likely to be important in

  3. DNA Camouflage

    DTIC Science & Technology

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...Supplementary Figure 2 DNA shuffling does not comprise sequencing outside of DSDs. (a) Sequencing of 1 kb downstream of DSD-2[α] produces high quality

  4. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  5. Substrate Specificity of Human Protein Arginine Methyltransferase 7 (PRMT7)

    PubMed Central

    Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G.

    2014-01-01

    Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-NG-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. PMID:25294873

  6. Molecular Traffic Jams on DNA

    PubMed Central

    Finkelstein, Ilya J.; Greene, Eric C.

    2013-01-01

    All aspects of DNA metabolism—including transcription, replication, and repair—involve motor enzymes that move along genomic DNA. These processes must all take place on chromosomes that are occupied by a large number of other proteins. However, very little is known regarding how nucleic acid motor proteins move along the crowded DNA substrates that are likely to exist in physiological settings. This review summarizes recent progress in understanding how DNA-binding motor proteins respond to the presence of other proteins that lie in their paths. We highlight recent single-molecule biophysical experiments aimed at addressing this question, with an emphasis placed on analyzing the single-molecule, ensemble biochemical, and in vivo data from a mechanistic perspective. PMID:23451891

  7. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  8. Rapid Time Scale Analysis of T4 DNA Ligase-DNA Binding.

    PubMed

    Bauer, Robert J; Jurkiw, Thomas J; Evans, Thomas C; Lohman, Gregory J S

    2017-02-28

    DNA ligases, essential to both in vivo genome integrity and in vitro molecular biology, catalyze phosphodiester bond formation between adjacent 3'-OH and 5'-phosphorylated termini in dsDNA. This reaction requires enzyme self-adenylylation, using ATP or NAD(+) as a cofactor, and AMP release concomitant with phosphodiester bond formation. In this study, we present the first fast time scale binding kinetics of T4 DNA ligase to both nicked substrate DNA (nDNA) and product-equivalent non-nicked dsDNA, as well as binding and release kinetics of AMP. The described assays utilized a fluorescein-dT labeled DNA substrate as a reporter for ligase·DNA interactions via stopped-flow fluorescence spectroscopy. The analysis revealed that binding to nDNA by the active adenylylated ligase occurs in two steps, an initial rapid association equilibrium followed by a transition to a second bound state prior to catalysis. Furthermore, the ligase binds and dissociates from nicked and nonsubstrate dsDNA rapidly with initial association affinities on the order of 100 nM regardless of enzyme adenylylation state. DNA binding occurs through a two-step mechanism in all cases, confirming prior proposals of transient binding followed by a transition to a productive ligase·nDNA (Lig·nDNA) conformation but suggesting that weaker nonproductive "closed" complexes are formed as well. These observations demonstrate the mechanistic underpinnings of competitive inhibition by rapid binding of nonsubstrate DNA, and of substrate inhibition by blocking of the self-adenylylation reaction through nick binding by deadenylylated ligase. Our analysis further reveals that product release is not the rate-determining step in turnover.

  9. Sequence-Specific Molecular Lithography on Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Keren, Kinneret; Krueger, Michael; Gilad, Rachel; Ben-Yoseph, Gdalyahu; Sivan, Uri; Braun, Erez

    2002-07-01

    Recent advances in the realization of individual molecular-scale electronic devices emphasize the need for novel tools and concepts capable of assembling such devices into large-scale functional circuits. We demonstrated sequence-specific molecular lithography on substrate DNA molecules by harnessing homologous recombination by RecA protein. In a sequence-specific manner, we patterned the coating of DNA with metal, localized labeled molecular objects and grew metal islands on specific sites along the DNA substrate, and generated molecularly accurate stable DNA junctions for patterning the DNA substrate connectivity. In our molecular lithography, the information encoded in the DNA molecules replaces the masks used in conventional microelectronics, and the RecA protein serves as the resist. The molecular lithography works with high resolution over a broad range of length scales from nanometers to many micrometers.

  10. Preparation of Plasmid DNA by Alkaline Lysis with Sodium Dodecyl Sulfate: Minipreps.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2016-10-03

    In this protocol, plasmid DNA is isolated from small-scale (1-2 mL) bacterial cultures. Yields vary between 100 and 5 µg of DNA, depending on the copy number of the plasmid. Miniprep DNA is sufficiently pure for use as a substrate or template in many in vitro enzymatic reactions. However, further purification is required if the plasmid DNA is used as the substrate in sequencing reactions.

  11. DNA: Polymer and molecular code

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.

    1999-10-01

    gene expression a prime example of a biological code. We developed a novel method of making DNA micro- arrays, the so-called DNA chip. Using the optical tweezer concept, we were able to pattern biomolecules on a solid substrate, developing a new type of sub-micron laser lithography. A laser beam is focused onto a thin gold film on a glass substrate. Laser ablation of gold results in local aggregation of nanometer scale beads conjugated with small DNA oligonucleotides, with sub-micron resolution. This leads to specific detection of cDNA and RNA molecules. We built a simple micro-array fabrication and detection in the laboratory, based on this method, to probe addressable pools (genes, proteins or antibodies). We have lately used molecular beacons (single stranded DNA with a stem-loop structure containing a fluorophore and quencher), for the direct detection of unlabelled mRNA. As a first step towards a study of the dynamics of the biological code, we have begun to examine the patterns of gene expression during virus (T7 phage) infection of E-coli bacteria.

  12. Preparation and optical characterization of DNA-riboflavin thin films

    NASA Astrophysics Data System (ADS)

    Paulson, Bjorn; Shin, Inchul; Kong, Byungjoo; Sauer, Gregor; Dugasani, Sreekantha Reddy; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Oh, Kyunghwan

    2016-09-01

    Thin films of DNA biopolymer thin film are fabricated by a drop casting process on glass and silicon substrates, as well as freestanding. The refractive index is measured by elliposmetry and in bulk DNA film the refractive index is shown to be increased in the 600 to 900 nm DNA transparency window by doping with riboflavin. Further analysis with FT-IR, Raman, and XRD are used to determine whether binding between riboflavin and DNA occurs.

  13. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  14. Substrate With Low Secondary Emissions

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)

    2000-01-01

    The present invention is directed to a method and apparatus for producing a highly -textured surface on a copper substrate -with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.

  15. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids.

    PubMed

    Goubet, Astrid; Chardon, Antoine; Kumar, Pawan; Sharma, Pawan K; Veedu, Rakesh N

    2013-02-01

    C5-Ethynylbenzenesulfonamide-modified nucleotide (EBNA) was investigated as substrate of various DNA polymerases. The experiments revealed that KOD, Phusion and Klenow DNA polymerases successfully accepted EBNA-T nucleotide as a substrate and yielded the fully extended DNA. KOD DNA polymerase was found to be the most efficient enzyme to furnish EBNA-T containing DNA in good yields. Phusion DNA polymerase efficiently amplified the template containing EBNA-T nucleotides by PCR.

  16. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  17. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  18. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  19. DNA ligases.

    PubMed

    Tabor, S

    2001-05-01

    DNA ligases catalyze the formation of phosphodiester bonds between juxtaposed 5' phosphate and a 3'-hydroxyl terminus in duplex DNA. This activity can repair single-stranded nicks in duplex DNA and join duplex DNA restriction fragments having either blunt ends or homologous cohesive ends. Two ligases are used for nucleic acid research and their reaction conditions and applications are described in this unit: E. coli ligase and T4 ligase. These enzymes differ in two important properties. One is the source of energy: T4 ligase uses ATP, while E. coli ligase uses NAD. Another important difference is their ability to ligate blunt ends; under normal reaction conditions, only T4 DNA ligase will ligate blunt ends.

  20. Human Rev1 polymerase disrupts G-quadruplex DNA

    PubMed Central

    Eddy, Sarah; Ketkar, Amit; Zafar, Maroof K.; Maddukuri, Leena; Choi, Jeong-Yun; Eoff, Robert L.

    2014-01-01

    The Y-family DNA polymerase Rev1 is required for successful replication of G-quadruplex DNA (G4 DNA) in higher eukaryotes. Here we show that human Rev1 (hRev1) disrupts G4 DNA structures and prevents refolding in vitro. Nucleotidyl transfer by hRev1 is not necessary for mechanical unfolding to occur. hRev1 binds G4 DNA substrates with Kd,DNA values that are 4–15-fold lower than those of non-G4 DNA substrates. The pre-steady-state rate constant of deoxycytidine monophosphate (dCMP) insertion opposite the first tetrad-guanine by hRev1 is ∼56% as fast as that observed for non-G4 DNA substrates. Thus, hRev1 can promote fork progression by either dislodging tetrad guanines to unfold the G4 DNA, which could assist in extension by other DNA polymerases, or hRev1 can prevent refolding of G4 DNA structures. The hRev1 mechanism of action against G-quadruplexes helps explain why replication progress is impeded at G4 DNA sites in Rev1-deficient cells and illustrates another unique feature of this enzyme with important implications for genome maintenance. PMID:24366879

  1. Methods for immobilizing nucleic acids on a gel substrate

    DOEpatents

    Mirzabekov, Andrei Darievich; Proudnikov, Dimitri Y.; Timofeev, Edward N.; Kochetkova, Svetlana V.; Florentiev, Vladimir L.; Shick, Valentine V.

    1999-01-01

    A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.

  2. Methods for immobilizing nucleic acids on a gel substrate

    SciTech Connect

    Mirzabekov, A.D.; Proudnikov, D.Y.; Timofeev, E.N.; Kochetkova, S.V.; Florentiev, V.L.; Shick, V.V.

    1999-11-09

    A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.

  3. The DnaE polymerase from Deinococcus radiodurans features RecA-dependent DNA polymerase activity

    PubMed Central

    Randi, Lorenzo; Perrone, Alessandro; Maturi, Mirko; Dal Piaz, Fabrizio; Camerani, Michela; Hochkoeppler, Alejandro

    2016-01-01

    We report in the present study on the catalytic properties of the Deinococcus radiodurans DNA polymerase III α subunit (αDr). The αDr enzyme was overexpressed in Escherichia coli, both in soluble form and as inclusion bodies. When purified from soluble protein extracts, αDr was found to be tightly associated with E. coli RNA polymerase, from which αDr could not be dissociated. On the contrary, when refolded from inclusion bodies, αDr was devoid of E. coli RNA polymerase and was purified to homogeneity. When assayed with different DNA substrates, αDr featured slower DNA extension rates when compared with the corresponding enzyme from E. coli (E. coli DNA Pol III, αEc), unless under high ionic strength conditions or in the presence of manganese. Further assays were performed using a ssDNA and a dsDNA, whose recombination yields a DNA substrate. Surprisingly, αDr was found to be incapable of recombination-dependent DNA polymerase activity, whereas αEc was competent in this action. However, in the presence of the RecA recombinase, αDr was able to efficiently extend the DNA substrate produced by recombination. Upon comparing the rates of RecA-dependent and RecA-independent DNA polymerase activities, we detected a significant activation of αDr by the recombinase. Conversely, the activity of αEc was found maximal under non-recombination conditions. Overall, our observations indicate a sharp contrast between the catalytic actions of αDr and αEc, with αDr more performing under recombination conditions, and αEc preferring DNA substrates whose extension does not require recombination events. PMID:27789781

  4. Catalytic editing properties of DNA polymerases.

    PubMed Central

    Canard, B; Cardona, B; Sarfati, R S

    1995-01-01

    Enzymatic incorporation of 2',3'-dideoxynucleotides into DNA results in chain termination. We report that 3'-esterified 2'-deoxynucleoside 5'-triphosphates (dNTPs) are false chain-terminator substrates since DNA polymerases, including human immunodeficiency virus reverse transcriptase, can incorporate them into DNA and, subsequently, use this new 3' end to insert the next correctly paired dNTP. Likewise, a DNA substrate with a primer chemically esterified at the 3' position can be extended efficiently upon incubation with dNTPs and T7 DNA polymerase lacking 3'-to-5' exonuclease activity. This enzyme is also able to use dTTP-bearing reporter groups in the 3' position conjugated through amide or thiourea bonds and cleave them to restore a DNA chain terminated by an amino group at the 3' end. Hence, a number of DNA polymerases exhibit wide catalytic versatility at the 3' end of the nascent DNA strand. As part of the polymerization mechanism, these capabilities extend the number of enzymatic activities associated with these enzymes and also the study of interactions between DNA polymerases and nucleotide analogues. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479898

  5. Characterization of recombinant malarial RecQ DNA helicase.

    PubMed

    Suntornthiticharoen, Pattra; Srila, Witsanu; Chavalitshewinkoon-Petmitr, Porntip; Limudomporn, Paviga; Yamabhai, Montarop

    2014-08-01

    RecQ DNA gene of multi-drug resistant Plasmodium falciparum K1 (PfRecQ1) was cloned, and the recombinant C-terminal-decahistidine-tagged PfRecQ1 was expressed in Escherichia coli. The purified enzyme could efficiently unwind partial duplex DNA substrate in a 3' to 5' direction. The malarial RecQ1 could not unwind substrates with both 5' and 3' overhangs, those with a 5' overhang, or blunt-ended DNA duplexes. Unwinding of DNA helicase activity was driven by the hydrolysis of ATP. The drug inhibitory effects of six compounds indicated that only doxorubicin and daunorubicin could inhibit the unwinding activity.

  6. Palladium on Plastic Substrates for Plasmonic Devices

    PubMed Central

    Zuppella, Paola; Pasqualotto, Elisabetta; Zuccon, Sara; Gerlin, Francesca; Corso, Alain Jody; Scaramuzza, Matteo; De Toni, Alessandro; Paccagnella, Alessandro; Pelizzo, Maria Guglielmina

    2015-01-01

    Innovative chips based on palladium thin films deposited on plastic substrates have been tested in the Kretschmann surface plasmon resonance (SPR) configuration. The new chips combine the advantages of a plastic support that is interesting and commercially appealing and the physical properties of palladium, showing inverted surface plasmon resonance (ISPR). The detection of DNA chains has been selected as the target of the experiment, since it can be applied to several medical early diagnostic tools, such as different biomarkers of cancers or cystic fibrosis. The results are encouraging for the use of palladium in SPR-based sensors of interest for both the advancement of biodevices and the development of hydrogen sensors. PMID:25585102

  7. Genomic approaches to DNA repair and mutagenesis.

    PubMed

    Wyrick, John J; Roberts, Steven A

    2015-12-01

    DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genomic Approaches to DNA repair and Mutagenesis

    PubMed Central

    Wyrick, John J.; Roberts, Steven A.

    2015-01-01

    DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways. PMID:26411877

  9. Mechanisms of DNA Motor Proteins (Helicases)

    NASA Astrophysics Data System (ADS)

    Lohman, Timothy M.

    1996-03-01

    DNA helicases are ubiquitous motor proteins that couple the binding and hydrolysis of NTP to the unwinding of duplex (ds) DNA to form the single stranded (ss) DNA intermediates that are required for replication, recombination and repair. We are studying the DNA unwinding mechanisms catalyzed by two helicases from E. coli: Rep and Helicase II (UvrD) by examining the linkage of DNA binding, protein dimerization and nucleotide binding using both thermodynamic and kinetic approaches. A dimer of the Rep protein is the active form of the helicase; however, the dimer forms only upon binding either ss or ds DNA. There are significant cooperative interactions between the two DNA binding sites on the dimer and nucleotides (ATP, ADP) allosterically control the stabilities of the DNA ligation states of the Rep dimer. Based on these studies we have proposed an "active, rolling" mechanism for the Rep dimer unwinding of duplex DNA. An essential intermediate is a complex, in which ss- and ds-DNA bind simultaneously to each subunit of a Rep dimer. This model predicts that Rep helicase translocation along DNA is coupled to ATP binding, whereas ATP hydrolysis drives unwinding of multiple DNA base pairs for each catalytic event. Rapid chemical quench-flow and stopped-flow fluorescence studies of Rep and UvrD- catalyzed DNA unwinding of a series of non-natural DNA substrates support the "active, rolling" mechanism and rule out a strictly "passive" mechanism of unwinding. Kinetic studies of DNA and nucleotide binding and ATP hydrolysis by wild type and mutant Rep proteins will be discussed that bear on the coupling of ATP binding and hydrolysis to translocation along DNA and DNA unwinding.

  10. Growth patterns of two marine isolates: adaptations to substrate patchiness?

    PubMed

    Pernthaler, A; Pernthaler, J; Eilers, H; Amann, R

    2001-09-01

    During bottle incubations of heterotrophic marine picoplankton, some bacterial groups are conspicuously favored. In an earlier investigation bacteria of the genus Pseudoalteromonas rapidly multiplied in substrate-amended North Sea water, whereas the densities of Oceanospirillum changed little (H. Eilers, J. Pernthaler, and R. Amann, Appl. Environ. Microbiol. 66:4634-4640, 2000). We therefore studied the growth patterns of two isolates affiliating with Pseudoalteromonas and Oceanospirillum in batch culture. Upon substrate resupply, Oceanospirillum lagged threefold longer than Pseudoalteromonas but reached more than fivefold-higher final cell density and biomass. A second, mobile morphotype was present in the starved Oceanospirillum populations with distinctly greater cell size, DNA and protein content, and 16S rRNA concentration. Contrasting cellular ribosome concentrations during stationary phase suggested basic differences in the growth responses of the two strains to a patchy environment. Therefore, we exposed the strains to different modes of substrate addition. During cocultivation on a single batch of substrates, the final cell densities of Oceanospirillum were reduced three times as much as those Pseudoalteromonas, compared to growth yields in pure cultures. In contrast, the gradual addition of substrates to stationary-phase cocultures was clearly disadvantageous for the Pseudoalteromonas population. Different growth responses to substrate gradients could thus be another facet affecting the competition between marine bacteria and may help to explain community shifts observed during enrichments.

  11. MTH1 Substrate Recognition--An Example of Specific Promiscuity.

    PubMed

    Nissink, J Willem M; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1.

  12. MTH1 Substrate Recognition—An Example of Specific Promiscuity

    PubMed Central

    Nissink, J. Willem M.; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J.

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1. PMID:26999531

  13. Safety assessment of Madin Darby canine kidney cells as vaccine substrate.

    PubMed

    Medema, J K; Meijer, J; Kersten, A J; Horton, R

    2006-01-01

    Conventional influenza vaccines are manufactured using embryonated chicken eggs, a substrate with little flexibility and vulnerable to extraneous agents. Solvay Pharmaceuticals developed a production technology based on the continuous cell line Madin Darby Canine Kidney (MDCK) as vaccine cell substrate. A risk-based safety assessment of MDCK, with respect to tumorigenicity of intact cells and oncogenicity of cellular components, cellular DNA and adventitious agents, shows that this substrate is as safe as other substrates and therefore without increased risk to the vaccine recipient.

  14. Ultrasensitive electrochemical DNA assay based on counting of single magnetic nanobeads by a combination of DNA amplification and enzyme amplification.

    PubMed

    Zhang, Xiaoli; Li, Linlin; Li, Lu; Chen, Jia; Zou, Guizheng; Si, Zhikun; Jin, Wenrui

    2009-03-01

    An ultrasensitive electrochemical method for determination of DNA is developed based on counting of single magnetic nanobeads (MNBs) corresponding to single DNA sequences combined with a double amplification (DNA amplification and enzyme amplification). In this method, target DNA (t-DNA) is captured on a streptavidin-coated substrate via biotinylated capture DNA. Then, MNBs functionalized with first-probe DNAs (p1-DNA-MNBs) are conjugated to t-DNA sequences with a ratio of 1:1. Subsequently, the p1-DNA-MNBs are released from the substrate via dehybridization. The released p1-DNA-MNBs are labeled with alkaline phosphatase (AP) using biotinylated second-probe DNAs (p2-DNAs) and streptavidin-AP conjugates. The resultant AP-p2-DNA-p1-DNA-MNBs with enzyme substrate disodium phenyl phosphate (DPP) are continuously introduced through a capillary as the microsampler and microreactor at 40 degrees C. AP on the AP-p2-DNA-p1-DNA-MNBs converts a huge number of DPP into its product phenol, and phenol zones are produced around each moving AP-p2-DNA-p1-DNA-MNB. The phenol zones are continuously delivered to the capillary outlet and detected by a carbon fiber disk bundle electrode at 1.05 V. An elution curve with peaks is obtained. Each peak is corresponding to a phenol zone relative to single t-DNA sequence. The peaks on the elution curve are counted for quantification. The number of the peaks is proportional to the concentration of t-DNA in a range of 5.0 x 10(-16) to 1.0 x 10(-13) mol/L.

  15. Substrate Discrimination by ClpB and Hsp104

    PubMed Central

    Johnston, Danielle M.; Miot, Marika; Hoskins, Joel R.; Wickner, Sue; Doyle, Shannon M.

    2017-01-01

    ClpB of E. coli and yeast Hsp104 are homologous molecular chaperones and members of the AAA+ (ATPases Associated with various cellular Activities) superfamily of ATPases. They are required for thermotolerance and function in disaggregation and reactivation of aggregated proteins that form during severe stress conditions. ClpB and Hsp104 collaborate with the DnaK or Hsp70 chaperone system, respectively, to dissolve protein aggregates both in vivo and in vitro. In yeast, the propagation of prions depends upon Hsp104. Since protein aggregation and amyloid formation are associated with many diseases, including neurodegenerative diseases and cancer, understanding how disaggregases function is important. In this study, we have explored the innate substrate preferences of ClpB and Hsp104 in the absence of the DnaK and Hsp70 chaperone system. The results suggest that substrate specificity is determined by nucleotide binding domain-1. PMID:28611991

  16. Sizing up soft substrate laminates

    NASA Astrophysics Data System (ADS)

    Woermbke, J. D.; Derencz, R. J.

    1985-02-01

    The basic performance parameters of several soft substrates for microwave and RF circuitry were evaluated experimentally with some custom built resonators. The trials were run with high and low dielectric constant substrates to quantify their variability over a wide range of operating temperatures. The low dielectric constant substrates were made of polytetrafluoroethylene (PTFE) loaded with either chopped or microfiber glass filler. The material was hot-pressed between a thin copper foil sheet and thick Al ground sheet. The high dielectric constant substrates were impregnated with a TiO2 ceramic powder. Tests measured insertion losses in 50 ohm lines from 1-18 GHz and the Q and dielectric constant at 3 GHz with half-wave resonators. The resonators were formed on the substrates with various conditioning treatments and were also examined for adhesion strength. The adhesion did not degrade until heated past 150 C. The substrate properties remained intact after numerous thermal cycles up to 250 C. High dielectric constant soft substrates did maintain good contact with the Cu foil up to 250 C.

  17. Patenting DNA.

    PubMed

    Bobrow, Martin; Thomas, Sandy

    2002-12-01

    The protection of inventions based on human DNA sequences has been achieved mainly through application of the patent system. Over the past decade, there has been continuing debate about whether this use of intellectual property rights is acceptable. Companies and universities have been active during this period in filing thousands of patent applications. Although many have argued that to claim a DNA sequence in a patent is to claim a discovery, patent law allows discoveries that are useful to be claimed as part of an invention. As the technology to isolate DNA sequences has advanced, the criterion for inventiveness, necessary for any invention to be eligible for filing, has become more difficult to justify in the case of claims to DNA sequences. Moreover, the discovery that a gene is associated with a particular disease is, it is argued, to discover a fact about the world and undeserving of the status of an invention. Careful examination of the grounds for allowing the patenting of DNA sequences as research tools suggests such rewards will rarely be justified. The patenting of DNA sequences as chemical intermediates necessary for the manufacture of therapeutic proteins is, however, reasonable given that the information within the sequence is applied to produce a tangible substance which has application as a medicine. Despite the legal, technical and political complexities of applying the flexibilities with the current law, it is argued that much could be achieved in the area of patenting DNA by raising the thresholds for patentability.

  18. [DNA computing].

    PubMed

    Błasiak, Janusz; Krasiński, Tadeusz; Popławski, Tomasz; Sakowski, Sebastian

    2011-01-01

    Biocomputers can be an alternative for traditional "silicon-based" computers, which continuous development may be limited due to further miniaturization (imposed by the Heisenberg Uncertainty Principle) and increasing the amount of information between the central processing unit and the main memory (von Neuman bottleneck). The idea of DNA computing came true for the first time in 1994, when Adleman solved the Hamiltonian Path Problem using short DNA oligomers and DNA ligase. In the early 2000s a series of biocomputer models was presented with a seminal work of Shapiro and his colleguas who presented molecular 2 state finite automaton, in which the restriction enzyme, FokI, constituted hardware and short DNA oligomers were software as well as input/output signals. DNA molecules provided also energy for this machine. DNA computing can be exploited in many applications, from study on the gene expression pattern to diagnosis and therapy of cancer. The idea of DNA computing is still in progress in research both in vitro and in vivo and at least promising results of these research allow to have a hope for a breakthrough in the computer science.

  19. Laser-Induced Heating for DNA Replication in a Microfluidics

    NASA Astrophysics Data System (ADS)

    Hung, Min-Sheng; Chen, Chin-Pin

    In this study, we integrated microfluidics and a laser to develop a microfluidic system that performs target DNA replication. To achieve replication of targeted position of DNA, DNA fibers are stretched and both ends immobilized onto an electrode through dielectrophoresis. During the process, 2 designed primers, as well as DNA polymerase and its substrates, are fed into the microfluidics, and a focused infrared laser is used to irradiate the center of the DNA strand. An on-off switching mechanism is used to create thermal cycling. A polymerase chain reaction is then used to confirm the successfully replicated DNA.

  20. Method of processing a substrate

    DOEpatents

    Babayan, Steven E.; Hicks, Robert F.

    2008-02-12

    The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.

  1. Human DNA polymerase η accommodates RNA for strand extension.

    PubMed

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2017-09-26

    Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase alpha, telomerase, and the mitochondrial DNA polymerase hpol gamma have been shown to tolerate an entire RNA strand. Y-family DNA polymerase eta] (hpol eta) is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer (CPD) and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol eta is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol eta--as well as another Y-family DNA polymerase, hpol kappa--accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions such as 8-oxo-2'-deoxyguanosine or CPD, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA accommodating ability of hpol eta redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol eta in vivo. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  2. DNA Labeling Using DNA Methyltransferases.

    PubMed

    Tomkuvienė, Miglė; Kriukienė, Edita; Klimašauskas, Saulius

    2016-01-01

    DNA methyltransferases (MTases) uniquely combine the ability to recognize and covalently modify specific target sequences in DNA using the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet). Although DNA methylation plays important roles in biological signaling, the transferred methyl group is a poor reporter and is highly inert to further biocompatible derivatization. To unlock the biotechnological power of these enzymes, two major types of cofactor AdoMet analogs were developed that permit targeted MTase-directed attachment of larger moieties containing functional or reporter groups onto DNA. One such approach (named sequence-specific methyltransferase-induced labeling, SMILing) uses reactive aziridine or N-mustard mimics of the cofactor AdoMet, which render targeted coupling of a whole cofactor molecule to the target DNA. The second approach (methyltransferase-directed transfer of activated groups, mTAG) uses AdoMet analogs with a sulfonium-bound extended side chain replacing the methyl group, which permits MTase-directed covalent transfer of the activated side chain alone. As the enlarged cofactors are not always compatible with the active sites of native MTases, steric engineering of the active site has been employed to optimize their alkyltransferase activity. In addition to the described cofactor analogs, recently discovered atypical reactions of DNA cytosine-5 MTases involving non-cofactor-like compounds can also be exploited for targeted derivatization and labeling of DNA. Altogether, these approaches offer new powerful tools for sequence-specific covalent DNA labeling, which not only pave the way to developing a variety of useful techniques in DNA research, diagnostics, and nanotechnologies but have already proven practical utility for optical DNA mapping and epigenome studies.

  3. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  4. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  5. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  6. Method for imaging informational biological molecules on a semiconductor substrate

    NASA Technical Reports Server (NTRS)

    Coles, L. Stephen (Inventor)

    1994-01-01

    Imaging biological molecules such as DNA at rates several times faster than conventional imaging techniques is carried out using a patterned silicon wafer having nano-machined grooves which hold individual molecular strands and periodically spaced unique bar codes permitting repeatably locating all images. The strands are coaxed into the grooves preferably using gravity and pulsed electric fields which induce electric charge attraction to the molecular strands in the bottom surfaces of the grooves. Differential imaging removes substrate artifacts.

  7. RAG-1 and RAG-2-dependent assembly of functional complexes with V(D)J recombination substrates in solution.

    PubMed Central

    Li, W; Swanson, P; Desiderio, S

    1997-01-01

    V(D)J recombination is initiated by RAG-1 and RAG-2, which introduce double-strand DNA breaks at recombination signal sequences (RSSs) of antigen receptor gene segments to produce signal ends, terminating in blunt, double-strand breaks, and coding ends, terminating in DNA hairpins. While the formation of RAG-RSS complexes has been documented, observations regarding the individual contributions of RAG-1 and RAG-2 to RSS recognition are in conflict. Here we describe an assay for formation and maintenance of functional RAG-RSS complexes in the course of the DNA cleavage reaction. Under conditions of in vitro cleavage, the RAG proteins sequester intact substrate DNA in a stable complex which is formed prior to strand scission. The cleavage reaction subsequently proceeds through nicking and hairpin formation without dissociation of substrate. Notably, the presence of both RAG-1 and RAG-2 is essential for formation of stable, functional complexes with substrate DNA under conditions of the sequestration assay. Two classes of substrate mutation are distinguished by their effects on RAG-mediated DNA cleavage in vitro. A mutation of the first class, residing within the RSS nonamer and associated with coordinate impairment of nicking and hairpin formation, greatly reduces the stability of RAG association with intact substrate DNA. In contrast, a mutation of the second class, lying within the RSS heptamer and associated with selective abolition of hairpin formation, has little or no effect on the half-life of the RAG-substrate complex. PMID:9372925

  8. The geometry of DNA supercoils modulates the DNA cleavage activity of human topoisomerase I

    PubMed Central

    Gentry, Amanda C.; Juul, Sissel; Veigaard, Christopher; Knudsen, Birgitta R.; Osheroff, Neil

    2011-01-01

    Human topoisomerase I plays an important role in removing positive DNA supercoils that accumulate ahead of replication forks. It also is the target for camptothecin-based anticancer drugs that act by increasing levels of topoisomerase I-mediated DNA scission. Evidence suggests that cleavage events most likely to generate permanent genomic damage are those that occur ahead of DNA tracking systems. Therefore, it is important to characterize the ability of topoisomerase I to cleave positively supercoiled DNA. Results confirm that the human enzyme maintains higher levels of cleavage with positively as opposed to negatively supercoiled substrates in the absence or presence of anticancer drugs. Enhanced drug efficacy on positively supercoiled DNA is due primarily to an increase in baseline levels of cleavage. Sites of topoisomerase I-mediated DNA cleavage do not appear to be affected by supercoil geometry. However, rates of ligation are slower with positively supercoiled substrates. Finally, intercalators enhance topoisomerase I-mediated cleavage of negatively supercoiled substrates but not positively supercoiled or linear DNA. We suggest that these compounds act by altering the perceived topological state of the double helix, making underwound DNA appear to be overwound to the enzyme, and propose that these compounds be referred to as ‘topological poisons of topoisomerase I’. PMID:20855291

  9. Systematic approaches to identify E3 ligase substrates

    PubMed Central

    Iconomou, Mary; Saunders, Darren N.

    2016-01-01

    Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes. PMID:27834739

  10. Dancing DNA.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)

  11. DNA Dynamics.

    ERIC Educational Resources Information Center

    Warren, Michael D.

    1997-01-01

    Explains a method to enable students to understand DNA and protein synthesis using model-building and role-playing. Acquaints students with the triplet code and transcription. Includes copies of the charts used in this technique. (DDR)

  12. Dancing DNA.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)

  13. Structural Studies of E. coli Topoisomerase III-DNA Complexes Reveal a Novel Type IA Topoisomerase-DNA Conformational Intermediate

    SciTech Connect

    Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso

    2010-03-05

    Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.

  14. Bitumen production and substrate stimulation

    SciTech Connect

    Mims, D. S.

    1985-04-16

    A well completion, having an injection end and a recovery end, and method for recovering heavy hydrocarbons or bitumen from a subterranean formation. The completion includes a well liner which lies in a generally horizontal disposition within a hydrocarbon holding substrate. Means for carrying a stream of a hot stimulating fluid from the well's injection end such that said fluid will migrate into the substrate surrounding the liner. A fluid impervious barrier is movably positioned within the well liner between the injection end and the production end thereof, and prompts establishment of a pressure differential across the said barrier. The barrier urges pressurized stimulating agent outwardly into the substrate, thereby creating a heated path along which the bitumen emulsion flows toward the well's lower pressure production end. The barrier is adapted to be repositioned within the liner to adjust the bitumen flow path through the substrate.

  15. Film Growth on Nanoporous Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James; Zhao, Chenwei; Xu, J. M.; Valles, James

    Self-ordered nanoporous anodic aluminum oxide (AAO) provides an easy way to fabricate nano structured material, such as nano wires and nano particles. We employ AAO as substrates and focus on the thermally evaporated film growth on the surface of the substrate. With various materials deposited onto the substrate, we find the films show different structures, e,g. ordered array of nano particles for Lead and nanohoneycomb structure for Silver. We relate the differing behaviors to the difference of surface energy and diffusion constant. To verify this, the effect of substrate temperature on the film growth has been explored and the structure of the film has been successfully changed through the process. We are grateful for the support of NSF Grants No. DMR-1307290.

  16. DNA detection using origami paper analytical devices

    PubMed Central

    Ellington, Andrew D.; Crooks, Richard M.

    2013-01-01

    We demonstrate the hybridization-induced fluorescence detection of DNA on an origami-based paper analytical device (oPAD). The paper substrate was patterned by wax printing and controlled heating to construct hydrophilic channels and hydrophobic barriers in a three-dimensional fashion. A competitive assay was developed where the analyte, a single-stranded DNA (ssDNA), and a quencher-labeled ssDNA competed for hybridization with a fluorophore-labeled ssDNA probe. Upon hybridization of the analyte with the fluorophore-labeled ssDNA, a linear response of fluorescence vs. analyte concentration was observed with an extrapolated limit of detection < 5 nM and a sensitivity relative standard deviation as low as 3%. The oPAD setup was also tested against OR/AND logic gates, proving to be successful in both detection systems. PMID:24070108

  17. DNA strand patterns on aluminium thin films.

    PubMed

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Majid, Wan Haliza Abd; Rahman, Saadah Abdul; Shahhosseini, Fatemeh

    2011-01-01

    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.

  18. DNA detection using origami paper analytical devices.

    PubMed

    Scida, Karen; Li, Bingling; Ellington, Andrew D; Crooks, Richard M

    2013-10-15

    We demonstrate the hybridization-induced fluorescence detection of DNA on an origami-based paper analytical device (oPAD). The paper substrate was patterned by wax printing and controlled heating to construct hydrophilic channels and hydrophobic barriers in a three-dimensional fashion. A competitive assay was developed where the analyte, a single-stranded DNA (ssDNA), and a quencher-labeled ssDNA competed for hybridization with a fluorophore-labeled ssDNA probe. Upon hybridization of the analyte with the fluorophore-labeled ssDNA, a linear response of fluorescence vs analyte concentration was observed with an extrapolated limit of detection <5 nM and a sensitivity relative standard deviation as low as 3%. The oPAD setup was also tested against OR/AND logic gates, proving to be successful in both detection systems.

  19. Unravelling DNA

    NASA Astrophysics Data System (ADS)

    Conroy, Rs; Danilowicz, C.

    2004-04-01

    The forces involved in the biology of life are carefully balanced between stopping thermal fluctuations ripping our DNA apart and having bonds weak enough to allow enzymes to function. The application of recently developed techniques for measuring piconewton forces and imaging at the nanometre scale on a molecule-by-molecule basis has dramatically increased the impact of single-molecule biophysics. This article describes the most commonly used techniques for imaging and manipulating single biomolecules. Using these techniques, the mechanical properties of DNA can be investigated, for example through measurements of the forces required to stretch and unzip the DNA double helix. These properties determine the ease with which DNA can be folded into the cell nucleus and the size and complexity of the accompanying cellular machinery. Part of this cellular machinery is enzymes, which manipulate, repair and transcribe the DNA helix. Enzymatic function is increasingly being investigated at the single molecule level to give better understanding of the forces and processes involved in the genetic cycle. One of the challenges is to transfer this understanding of single molecules into living systems. Already there have been some notable successes, such as the development of techniques for gene expression through the application of mechanical forces to cells, and the imaging and control of viral infection of a cell. This understanding and control of DNA has also been used to design molecules, which can self-assemble into a range of structures.

  20. DNA adductomics.

    PubMed

    Balbo, Silvia; Turesky, Robert J; Villalta, Peter W

    2014-03-17

    Systems toxicology is a broad-based approach to describe many of the toxicological features that occur within a living system under stress or subjected to exogenous or endogenous exposures. The ultimate goal is to capture an overview of all exposures and the ensuing biological responses of the body. The term exposome has been employed to refer to the totality of all exposures, and systems toxicology investigates how the exposome influences health effects and consequences of exposures over a lifetime. The tools to advance systems toxicology include high-throughput transcriptomics, proteomics, metabolomics, and adductomics, which is still in its infancy. A well-established methodology for the comprehensive measurement of DNA damage resulting from every day exposures is not fully developed. During the past several decades, the (32)P-postlabeling technique has been employed to screen the damage to DNA induced by multiple classes of genotoxicants; however, more robust, specific, and quantitative methods have been sought to identify and quantify DNA adducts. Although triple quadrupole and ion trap mass spectrometry, particularly when using multistage scanning (LC-MS(n)), have shown promise in the field of DNA adductomics, it is anticipated that high-resolution and accurate-mass LC-MS(n) instrumentation will play a major role in assessing global DNA damage. Targeted adductomics should also benefit greatly from improved triple quadrupole technology. Once the analytical MS methods are fully mature, DNA adductomics along with other -omics tools will contribute greatly to the field of systems toxicology.

  1. Effects of Tilt Angle, DNA Concentration, and Surface Potential on Directed Alignment of DNA Molecule for the Application to Nanodevices

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Hong, Byungyou

    2013-03-01

    This paper reports an efficient approach to control both the density and direction of highly aligned DNA molecules and thus DNA-templated gold nanowires (AuNWs) on Si chips. We utilized tilting method to prepare stretched DNA structures on SiO2/Si substrate and found important parameters in the alignment process that tilt angle, DNA concentration, and surface potential are controlled the density and structure of DNA aligned on the surface. In additional, we also can be directly connected DNA-templated AuNWs between two terminal electrodes on Si chips. This method also describes a simple way to form singled, bundled and networked DNA arrays on Si substrates.

  2. Substrate channeling in proline metabolism

    PubMed Central

    Arentson, Benjamin W.; Sanyal, Nikhilesh; Becker, Donald F.

    2012-01-01

    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism. PMID:22201749

  3. Microstrip antenna on tunable substrate

    NASA Astrophysics Data System (ADS)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  4. Phage P4 DNA replication in vitro.

    PubMed Central

    Díaz Orejas, R; Ziegelin, G; Lurz, R; Lanka, E

    1994-01-01

    Phage P4 DNA is replicated in cell-free extracts of Escherichia coli in the presence of partially purified P4 alpha protein [Krevolin and Calendar (1985), J. Mol. Biol. 182, 507-517]. Using a modified in vitro replication assay, we have further characterized this process. Analysis by agarose gel electrophoresis and autoradiography of in vitro replicated molecules demonstrates that the system yields supercoiled monomeric DNA as the main product. Electron microscopic analysis of in vitro generated intermediates indicates that DNA synthesis initiates in vitro mainly at ori, the origin of replication used in vivo. Replication proceeds from this origin bidirectionally, resulting in theta-type molecules. In contrast to the in vivo situation, no extensive single-stranded regions were found in these intermediates. The initiation proteins of the host, DnaB and DnaG, and the chaperones DnaJ and DnaK are not required for P4 replication, because polyclonal antibodies against those polypeptides do not inhibit the process. The reaction is inhibited by antibodies against the SSB protein, and by ara-CTP, a specific inhibitor of DNA polymerase III holoenzyme. Consistent with previous reports, P4 in vitro replication is independent of transcription by host RNA polymerase. Novobiocin, a DNA gyrase inhibitor, strongly inhibits P4 DNA synthesis, indicating that form I DNA is the required substrate. Images PMID:8029013

  5. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.

    PubMed Central

    Jankowsky, E; Strunk, G; Schwenzer, B

    1997-01-01

    Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013

  6. Environmental DNA mapping of Zebra Mussel populations

    USGS Publications Warehouse

    Amberg, Jon; Merkes, Christopher

    2016-01-01

    Environmental DNA (eDNA) has become a popular tool for detecting aquatic invasive species, but advancements have made it possible to potentially answer other questions like reproduction, movement, and abundance of the targeted organism. In this study we developed a Zebra Mussel (Dreissena polymorpha) eDNA protocol. We then determined if this assay could be used to help determine Zebra Mussel biomass in a lake with a well-established population of Zebra Mussels and a lake with an emerging population of mussels. Our eDNA assay detected DNA of Zebra Mussels but not DNA from more than 20 other species of fish and mussels, many commonly found in Minnesota waters. Our assay did not predict biomass. We did find that DNA from Zebra Mussels accumulated in softer substrates in both lakes, even though the mussels were predominately on the harder substrates. Therefore, we concluded that eDNA may be useful to detect the presence of Zebra Mussels in these lakes but our assay/approach could not predict biomass.

  7. Accelerating peroxidase mimicking nanozymes using DNA

    NASA Astrophysics Data System (ADS)

    Liu, Biwu; Liu, Juewen

    2015-08-01

    DNA-capped iron oxide nanoparticles are nearly 10-fold more active as a peroxidase mimic for TMB oxidation than naked nanoparticles. To understand the mechanism, the effect of DNA length and sequence is systematically studied, and other types of polymers are also compared. This rate enhancement is more obvious with longer DNA and, in particular, poly-cytosine. Among the various polymer coatings tested, DNA offers the highest rate enhancement. A similar acceleration is also observed for nanoceria. On the other hand, when the positively charged TMB substrate is replaced by the negatively charged ABTS, DNA inhibits oxidation. Therefore, the negatively charged phosphate backbone and bases of DNA can increase TMB binding by the iron oxide nanoparticles, thus facilitating the oxidation reaction in the presence of hydrogen peroxide.DNA-capped iron oxide nanoparticles are nearly 10-fold more active as a peroxidase mimic for TMB oxidation than naked nanoparticles. To understand the mechanism, the effect of DNA length and sequence is systematically studied, and other types of polymers are also compared. This rate enhancement is more obvious with longer DNA and, in particular, poly-cytosine. Among the various polymer coatings tested, DNA offers the highest rate enhancement. A similar acceleration is also observed for nanoceria. On the other hand, when the positively charged TMB substrate is replaced by the negatively charged ABTS, DNA inhibits oxidation. Therefore, the negatively charged phosphate backbone and bases of DNA can increase TMB binding by the iron oxide nanoparticles, thus facilitating the oxidation reaction in the presence of hydrogen peroxide. Electronic supplementary information (ESI) available: Methods, TEM, UV-vis and DLS data. See DOI: 10.1039/c5nr04176g

  8. PREFACE: Cell-substrate interactions Cell-substrate interactions

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  9. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  10. Dynamics of DNA Mismatch Repair

    NASA Astrophysics Data System (ADS)

    Coats, Julie; Lin, Yuyen; Rasnik, Ivan

    2009-11-01

    DNA mismatch repair protects the genome from spontaneous mutations by recognizing errors, excising damage, and re-synthesizing DNA in a pathway that is highly conserved. Mismatch recognition is accomplished by the MutS family of proteins which are weak ATPases that bind specifically to damaged DNA, but the specific molecular mechanisms by which these proteins recognize damage and initiate excision are not known. Previous structural investigations have implied that protein-induced conformational changes are central to mismatch recognition. Because damage detection is a highly dynamic process in which conformational changes of the protein-DNA complexes occur on a time scale of a few seconds, it is difficult to obtain meaningful kinetic information with traditional ensemble techniques. In this work, we use single molecule fluorescence resonance energy transfer (smFRET) to study the conformational dynamics of fluorescently labeled DNA substrates in the presence of the mismatch repair protein MutS from E. coli and its human homolog MSH2/MSH6. Our studies allow us to obtain quantitative kinetic information about the rates of binding and dissociation and to determine the conformational states for each protein-DNA complex.

  11. Mapping protease substrates using a biotinylated phage substrate library.

    SciTech Connect

    Scholle, M. D.; Kriplani, U.; Pabon, A.; Sishtla, K.; Glucksman, M. J.; Kay, B. K.; Biosciences Division; Chicago Medical School

    2005-05-05

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  12. Mapping protease substrates by using a biotinylated phage substrate library.

    PubMed

    Scholle, Michael D; Kriplani, Ushma; Pabon, Amanda; Sishtla, Kamakshi; Glucksman, Marc J; Kay, Brian K

    2006-05-01

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  13. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  14. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  15. DNA molecules sticking on a vicinal Si(111) surface observed by noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arai, Toyoko; Tomitori, Masahiko; Saito, Masato; Tamiya, Eiichi

    2002-03-01

    The DNA molecules on a vicinal Si(111) substrate with steps of single and double bi-atomic layers are imaged by noncontact atomic force microscopy (nc-AFM) in ultrahigh vacuum. The water solution containing pBR322 plasmid DNA molecules digested by Cla I is dropped on the substrate in a pure nitrogen atmosphere in a glove box, which is connected to the introduction chamber of the AFM. The ends of DNA molecules are frequently folded and pinned at the steps on the substrate, and the DNA strings often lie along the step. The chemical and dipole interactions between the DNA and the semiconductor substrate seem to play an important role in folding, pinning and sticking on the Si(111) substrate.

  16. Substrate curvature regulates cell migration

    NASA Astrophysics Data System (ADS)

    He, Xiuxiu; Jiang, Yi

    2017-06-01

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  17. Substrate curvature regulates cell migration.

    PubMed

    He, Xiuxiu; Jiang, Yi

    2017-05-23

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  18. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I.

    PubMed

    Buguliskis, Jeffrey S; Casta, Louis J; Butz, Charles E; Matsumoto, Yoshihiro; Taraschi, Theodore F

    2007-10-01

    We report that Plasmodium falciparum (Pf) encodes a 912 amino acid ATP-dependent DNA ligase. Protein sequence analysis of Pf DNA ligase I indicates a strong sequence similarity, particularly in the C-terminal region, to DNA ligase I homologues. The activity of recombinant Pf DNA ligase I (PfLigI) was investigated using protein expressed in HEK293 cells. The PfLigI gene product is approximately 94kDa and catalyzes phosphodiester bond formation on a singly nicked DNA substrate. The enzyme is most active at alkaline pH (8.5) and with Mg(2+) or Mn(2+) and ATP as cofactors. Kinetic studies of PfLigI revealed that the enzyme has similar substrate affinity (K(m) 2.6nM) as compared to human DNA ligase I and k(cat) (2.3x10(-3)s(-1)) and k(cat)/K(m) (8.8x10(5)M(-1)s(-1)) which are similar to other ATP-dependent DNA ligases. PfLigI was able to join RNA-DNA substrates only when the RNA sequence was upstream of the nick, confirming that it is DNA ligase I and has no associated DNA ligase III like activity.

  19. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    SciTech Connect

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  20. The bacterial DnaC helicase loader is a DnaB ring breaker

    PubMed Central

    Arias-Palomo, Ernesto; O’Shea, Valerie L.; Hood, Iris V.; Berger, James M.

    2013-01-01

    Summary Dedicated AAA+ ATPases help deposit hexameric ring-shaped helicases onto DNA to promote replication in cellular organisms. To understand how loading occurs, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the ATP-bound structure of the intact E. coli DnaB•DnaC helicase/loader complex. The 480 kDa dodecamer forms a three-tiered assembly, in which DnaC adopts a spiral configuration that remodels N-terminal scaffolding and C-terminal motor regions of DnaB to produce a clear break in the helicase ring. Surprisingly, DnaC’s AAA+ fold is dispensable for ring remodeling, as the isolated helicase-binding domain of DnaC can both load DnaB onto DNA and increase the efficiency by which the helicase acts on substrates in vitro. Our data demonstrate that DnaC opens DnaB by a mechanism akin to that of polymerase clamp loaders, and indicate that bacterial replicative helicases, like their eukaryotic counterparts, possess auto-regulatory elements that influence how the hexameric motor domains are loaded onto and unwind DNA. PMID:23562643

  1. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport.

    PubMed

    O'Brien, Elizabeth; Holt, Marilyn E; Thompson, Matthew K; Salay, Lauren E; Ehlinger, Aaron C; Chazin, Walter J; Barton, Jacqueline K

    2017-02-24

    DNA charge transport chemistry offers a means of long-range, rapid redox signaling. We demonstrate that the [4Fe4S] cluster in human DNA primase can make use of this chemistry to coordinate the first steps of DNA synthesis. Using DNA electrochemistry, we found that a change in oxidation state of the [4Fe4S] cluster acts as a switch for DNA binding. Single-atom mutations that inhibit this charge transfer hinder primase initiation without affecting primase structure or polymerization. Generating a single base mismatch in the growing primer duplex, which attenuates DNA charge transport, inhibits primer truncation. Thus, redox signaling by [4Fe4S] clusters using DNA charge transport regulates primase binding to DNA and illustrates chemistry that may efficiently drive substrate handoff between polymerases during DNA replication. Copyright © 2017, American Association for the Advancement of Science.

  2. Coatings on reflective mask substrates

    SciTech Connect

    Tong, William Man-Wai; Taylor, John S.; Hector, Scott D.; Mangat, Pawitter J. S.; Stivers, Alan R.; Kofron, Patrick G.; Thompson, Matthew A.

    2002-01-01

    A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.

  3. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  4. Probing DNA by 2-OG-dependent dioxygenase

    PubMed Central

    Tsai, Chi-Lin; Tainer, John A.

    2014-01-01

    TET-mediated 5-methyl cytosine (5mC) oxidation acts in epigenetic regulation, stem cell development, and cancer. Hu et al. now determine the crystal structure of the TET2 catalytic domain bound to DNA, shedding light on 5mC-DNA substrate recognition and the catalytic mechanism of 5mC oxidation. PMID:24360270

  5. DNA codes

    SciTech Connect

    Torney, D. C.

    2001-01-01

    We have begun to characterize a variety of codes, motivated by potential implementation as (quaternary) DNA n-sequences, with letters denoted A, C The first codes we studied are the most reminiscent of conventional group codes. For these codes, Hamming similarity was generalized so that the score for matched letters takes more than one value, depending upon which letters are matched [2]. These codes consist of n-sequences satisfying an upper bound on the similarities, summed over the letter positions, of distinct codewords. We chose similarity 2 for matches of letters A and T and 3 for matches of the letters C and G, providing a rough approximation to double-strand bond energies in DNA. An inherent novelty of DNA codes is 'reverse complementation'. The latter may be defined, as follows, not only for alphabets of size four, but, more generally, for any even-size alphabet. All that is required is a matching of the letters of the alphabet: a partition into pairs. Then, the reverse complement of a codeword is obtained by reversing the order of its letters and replacing each letter by its match. For DNA, the matching is AT/CG because these are the Watson-Crick bonding pairs. Reversal arises because two DNA sequences form a double strand with opposite relative orientations. Thus, as will be described in detail, because in vitro decoding involves the formation of double-stranded DNA from two codewords, it is reasonable to assume - for universal applicability - that the reverse complement of any codeword is also a codeword. In particular, self-reverse complementary codewords are expressly forbidden in reverse-complement codes. Thus, an appropriate distance between all pairs of codewords must, when large, effectively prohibit binding between the respective codewords: to form a double strand. Only reverse-complement pairs of codewords should be able to bind. For most applications, a DNA code is to be bi-partitioned, such that the reverse-complementary pairs are separated

  6. Fungal Diversity Is Not Determined by Mineral and Chemical Differences in Serpentine Substrates

    PubMed Central

    Daghino, Stefania; Murat, Claude; Sizzano, Elisa; Girlanda, Mariangela; Perotto, Silvia

    2012-01-01

    The physico-chemical properties of serpentine soils lead to strong selection of plant species. Whereas many studies have described the serpentine flora, little information is available on the fungal communities dwelling in these sites. Asbestos minerals, often associated with serpentine rocks, can be weathered by serpentine-isolated fungi, suggesting an adaptation to this substrate. In this study, we have investigated whether serpentine substrates characterized by the presence of rocks with distinct mineral composition could select for different fungal communities. Both fungal isolation and 454 pyrosequencing of amplicons obtained from serpentine samples following direct DNA extraction revealed some fungal taxa shared by the four ophiolitic substrates, but also highlighted several substrate-specific taxa. Bootstrap analysis of 454 OTU abundances indicated weak clustering of fungal assemblages from the different substrates, which did not match substrate classification based on exchangeable macronutrients and metals. Intra-substrate variability, as assessed by DGGE profiles, was similar across the four serpentine substrates, and comparable to inter-substrate variability. These findings indicate the absence of a correlation between the substrate (mineral composition and available cations) and the diversity of the fungal community. Comparison of culture-based and culture-independent methods supports the higher taxonomic precision of the former, as complementation of the better performance of the latter. PMID:23028507

  7. Fungal diversity is not determined by mineral and chemical differences in serpentine substrates.

    PubMed

    Daghino, Stefania; Murat, Claude; Sizzano, Elisa; Girlanda, Mariangela; Perotto, Silvia

    2012-01-01

    The physico-chemical properties of serpentine soils lead to strong selection of plant species. Whereas many studies have described the serpentine flora, little information is available on the fungal communities dwelling in these sites. Asbestos minerals, often associated with serpentine rocks, can be weathered by serpentine-isolated fungi, suggesting an adaptation to this substrate. In this study, we have investigated whether serpentine substrates characterized by the presence of rocks with distinct mineral composition could select for different fungal communities. Both fungal isolation and 454 pyrosequencing of amplicons obtained from serpentine samples following direct DNA extraction revealed some fungal taxa shared by the four ophiolitic substrates, but also highlighted several substrate-specific taxa. Bootstrap analysis of 454 OTU abundances indicated weak clustering of fungal assemblages from the different substrates, which did not match substrate classification based on exchangeable macronutrients and metals. Intra-substrate variability, as assessed by DGGE profiles, was similar across the four serpentine substrates, and comparable to inter-substrate variability. These findings indicate the absence of a correlation between the substrate (mineral composition and available cations) and the diversity of the fungal community. Comparison of culture-based and culture-independent methods supports the higher taxonomic precision of the former, as complementation of the better performance of the latter.

  8. Role of DNA polymerase gamma in adenovirus DNA replication. Mechanism of inhibition by 2',3'-dideoxynucleoside 5'-triphosphates.

    PubMed

    van der Vliet, P C; Kwant, M M

    1981-04-28

    In contrast to cellular or SV40 DNA replication, adenovirus type 5 (Ad5) or type 2 (Ad2) DNA synthesis in isolated nuclei is strongly inhibited by low concentrations of 2',3'-dideoxythymidine 5'-triphosphate (ddTTP). On the basis of differential sensitivity of cellular DNA polymerases, a role of DNA polymerase gamma in adenovirus DNA replication has been proposed. We have investigated the mechanism of inhibition of adenovirus DNA synthesis, using [alpha-32P]ddTTP and other dNTP analogues. Both ddATP and ddGTP were as inhibitory as ddTTP, while ddCTP had an even stronger effect on adenovirus DNA replication. DNA polymerase alpha was resistant to all four ddNTP's, while DNA polymerase gamma was very sensitive. The inhibition by ddTTP in isolated infected nuclei was slowly reversible. [alpha-32P]ddTTP was incorporated into Ad5 DNA as a chain-terminating nucleotide, and the analogue could be used as a substrate by DNA polymerase gamma. Under similar conditions, incorporation in cellular DNA or using DNA polymerase alpha was not observed. The nucleoside analogues ddA and ddC suppressed adenovirus. DNA replication in intact cells and reduced plaque formation. These results provide further evidence for a function of DNA polymerase gamma in adenovirus DNA synthesis.

  9. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  10. Replicated CdTe Substrates.

    DTIC Science & Technology

    1983-09-01

    2423/01/72 Watertown, MA 02172 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Materials Lab (AFWAL/I4LPO) Sept. 1983 Wright Patterson APB...unsuccessful. Using the same technique utilized at Lincoln Labs i.e., baking the resist coated substrates in air at elevated temperatures, carbonization was...the effect of substrate orientation on the lateral to vertical growth rate of the films. Previous work at Lincoln Labs using GaAs and InP had shown a

  11. DNA origami nanopores for controlling DNA translocation.

    PubMed

    Hernández-Ainsa, Silvia; Bell, Nicholas A W; Thacker, Vivek V; Göpfrich, Kerstin; Misiunas, Karolis; Fuentes-Perez, Maria Eugenia; Moreno-Herrero, Fernando; Keyser, Ulrich F

    2013-07-23

    We combine DNA origami structures with glass nanocapillaries to reversibly form hybrid DNA origami nanopores. Trapping of the DNA origami onto the nanocapillary is proven by imaging fluorescently labeled DNA origami structures and simultaneous ionic current measurements of the trapping events. We then show two applications highlighting the versatility of these DNA origami nanopores. First, by tuning the pore size we can control the folding of dsDNA molecules ("physical control"). Second, we show that the specific introduction of binding sites in the DNA origami nanopore allows selective detection of ssDNA as a function of the DNA sequence ("chemical control").

  12. Mechanisms of Enhanced Catalysis in Enzyme-DNA Nanostructures Revealed through Molecular Simulations and Experimental Analysis.

    PubMed

    Gao, Yingning; Roberts, Christopher C; Toop, Aaron; Chang, Chia-En A; Wheeldon, Ian

    2016-08-03

    Understanding and controlling the molecular interactions between enzyme substrates and DNA nanostructures has important implications in the advancement of enzyme-DNA technologies as solutions in biocatalysis. Such hybrid nanostructures can be used to create enzyme systems with enhanced catalysis by controlling the local chemical and physical environments and the spatial organization of enzymes. Here we have used molecular simulations with corresponding experiments to describe a mechanism of enhanced catalysis due to locally increased substrate concentrations. With a series of DNA nanostructures conjugated to horseradish peroxidase, we show that binding interactions between substrates and the DNA structures can increase local substrate concentrations. Increased local substrate concentrations in HRP(DNA) nanostructures resulted in 2.9- and 2.4-fold decreases in the apparent Michaelis constants of tetramethylbenzidine and 4-aminophenol, substrates of HRP with tunable binding interactions to DNA nanostructures with dissociation constants in the micromolar range. Molecular simulations and kinetic analysis also revealed that increased local substrate concentrations enhanced the rates of substrate association. Identification of the mechanism of increased local concentration of substrates in close proximity to enzymes and their active sites adds to our understanding of nanostructured biocatalysis from which we can develop guidelines for enhancing catalysis in rationally designed systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  14. DNA Music.

    ERIC Educational Resources Information Center

    Miner, Carol; della Villa, Paula

    1997-01-01

    Describes an activity in which students reverse-translate proteins from their amino acid sequences back to their DNA sequences then assign musical notes to represent the adenine, guanine, cytosine, and thymine bases. Data is obtained from the National Institutes of Health (NIH) on the Internet. (DDR)

  15. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  16. DNA Music.

    ERIC Educational Resources Information Center

    Miner, Carol; della Villa, Paula

    1997-01-01

    Describes an activity in which students reverse-translate proteins from their amino acid sequences back to their DNA sequences then assign musical notes to represent the adenine, guanine, cytosine, and thymine bases. Data is obtained from the National Institutes of Health (NIH) on the Internet. (DDR)

  17. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  18. Mechanism of DNA loading by the DNA repair helicase XPD

    PubMed Central

    Constantinescu-Aruxandei, Diana; Petrovic-Stojanovska, Biljana; Penedo, J. Carlos; White, Malcolm F.; Naismith, James H.

    2016-01-01

    The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5′ to 3′ helicase with an essential iron–sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD. PMID:26896802

  19. Development of an optical biosensor based on surface-enhanced Raman scattering for DNA analysis

    NASA Astrophysics Data System (ADS)

    Yigit, Tugce; Akdogan, Ebru; Karagoz, Isık. Didem; Kahraman, Mehmet

    2016-03-01

    Rapid, accurate and sensitive DNA analysis is critically important for the diagnostic of genetic diseases. The most common method preferred in practice is fluorescence based microarrays to analyze the DNA. However, there exist some disadvantages related to the above-mentioned method such as the overlapping of the fluorescence emission wavelengths that can diminish in the performance of multiplexing, needed to obtain fluorescence spectra from each dye and photo degradation. In this study, a novel SERS based DNA analysis approach, which is Raman active dye-free and independent of SERS substrate properties, is developed. First, the single strand DNA probe is attached to the SERS substrate and half of the complimentary DNA is attached to gold nanoparticles, as well. We hypothesize that in the presence of target DNA, the complimentary DNA coupled colloids will bind to the SERS substrate surface via hybridization of single strand target DNA. To test this hypothesis, we used UV/Vis spectroscopy, atomic for microscopy (AFM) and dynamic light scattering (DLS). DNA analysis is demonstrated by a peak shift of the certain peak of the small molecules attached to the SERS substrate surface instead of SERS spectrum obtained in the presence of target DNA from the Raman reporter molecules. The degree of peak shifting will be used for the quantification of the target DNA in the sample. Plasmonic properties of SERS substrates and reproducibility issues will not be considerable due to the use of peak shifting instead of peak intensity for the qualitative analysis.

  20. Programmable DNA-Mediated Multitasking Processor.

    PubMed

    Shu, Jian-Jun; Wang, Qi-Wen; Yong, Kian-Yan; Shao, Fangwei; Lee, Kee Jin

    2015-04-30

    Because of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems. The novel programmable DNA-mediated processor has several advantages over the existing silicon-mediated methods, such as conducting massive data storage and simultaneous processing via much fewer materials than conventional silicon devices.

  1. Cation exchange capacity of pine bark substrates

    USDA-ARS?s Scientific Manuscript database

    Cation exchange capacity (CEC) is an important soil and substrate chemical property. It describes a substrate's ability to retain cation nutrients. Higher CEC values for a substrate generally result in greater amounts of nutrients retained in the substrate and available for plant uptake, and great...

  2. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  3. Substrate for thin silicon solar cells

    DOEpatents

    Ciszek, Theodore F.

    1998-01-01

    A substrate for a photovoltaic device wherein the substrate is the base upon which photosensitive material is to be grown and the substrate comprises an alloy having boron in a range from 0.1 atomic % of the alloy to 1.3 atomic % of the alloy and the substrate has a resistivity less than 3.times.10.sup.-3 ohm-cm.

  4. A new structural framework for integrating replication protein A into DNA processing machinery

    SciTech Connect

    Brosey, Chris; Yan, Chunli; Tsutakawa, Susan; Heller, William; Rambo, Robert; Tainer, John; Ivanov, Ivaylo; Chazin, Walter

    2013-01-17

    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.

  5. Isolation of Discrete Nanoparticle-DNA Conjugates for Plasmonic Applications

    SciTech Connect

    Alivisatos, Paul; Claridge, Shelley A.; Liang, Huiyang W.; Basu, Sourav Roger; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-04-11

    Discrete DNA-gold nanoparticle conjugates with DNA lengths as short as 15 bases for both 5 nm and 20 nm gold particles have been purified by anion-exchange HPLC. Conjugates comprising short DNA (<40 bases) and large gold particles (>_ 20 nm) are difficult to purify by other means, and are potential substrates for plasmon coupling experiments. Conjugate purity is demonstrated by hybridizing complementary conjugates to form discrete structures, which are visualized by TEM.

  6. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  7. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

    PubMed Central

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.

    2016-01-01

    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  8. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, E.R.; Mitchell, A.R.; Pearson, K.W.; Smith, R.E.

    1983-06-14

    Synthetic substrates are provided which may be represented as A-D. The A moiety includes an amino acid, polypeptide, or derivative. The D moiety includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons. No Drawings

  9. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  10. Enzymatic reactions on immobilised substrates.

    PubMed

    Gray, Christopher J; Weissenborn, Martin J; Eyers, Claire E; Flitsch, Sabine L

    2013-08-07

    This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.

  11. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  12. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, Eugene R.; Mitchell, Alexander R.; Pearson, Karen W.; Smith, Robert E.

    1983-01-01

    Synthetic substrates are provided which may be represented as A-D. The A moiety thereof includes an amino acid, polypeptide, or derivative thereof. The D moiety thereof includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons.

  13. Cellulosic Substrates and Challenges Ahead

    USDA-ARS?s Scientific Manuscript database

    The cost of production of butanol (acetone-butanol-ethanol; or ABE) is determined by feedstock prices, fermentation, recovery, by-product credits and the waste water treatment. Along these lines, we have an intensive research program on the use of various agricultural substrates, fermentation strate...

  14. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    PubMed

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants.

  15. Kinetic mechanism for DNA unwinding by multiple molecules of Dda helicase aligned on DNA.

    PubMed

    Eoff, Robert L; Raney, Kevin D

    2010-06-01

    Helicases catalyze the separation of double-stranded nucleic acids to form single-stranded intermediates. Using transient state kinetic methods, we have determined the kinetic properties of DNA unwinding under conditions that favor a monomeric form of the Dda helicase as well as conditions that allow multiple molecules to function on the same substrate. Multiple helicase molecules can align like a train on the DNA track. The number of base pairs unwound in a single binding event for Dda is increased from approximately 19 bp for the monomeric form to approximately 64 bp when as many as four Dda molecules are aligned on the same substrate, while the kinetic step size (3.2 +/- 0.7 bp) and unwinding rate (242 +/- 25 bp/s) appear to be independent of the number of Dda molecules present on a given substrate. The data support a model in which the helicase molecules bound to the same substrate move along the DNA track independently during DNA unwinding. The observed increase in processivity arises from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. These results are in contrast to previous reports in which multiple Dda molecules on the same track greatly enhanced the rate and amplitude for displacement of protein blocks on the track. Therefore, only when the progress of the lead molecule in the train is impeded by some type of block, such as a protein bound to DNA, do the trailing molecules interact with the lead molecule to overcome the block. The fact that trailing helicase molecules have little impact on the lead molecule in the train during routine DNA unwinding suggests that the trailing molecules are moving at rates similar to that of the lead molecule. This result implicates a step in the translocation mechanism as contributing greatly to the overall rate-limiting step for unwinding of duplex DNA.

  16. Directed evolution of the substrate specificity of biotin ligase.

    PubMed

    Lu, Wei-Cheng; Levy, Matthew; Kincaid, Rodney; Ellington, Andrew D

    2014-06-01

    We have developed selection scheme for directing the evolution of Escherichia coli biotin protein ligase (BPL) via in vitro compartmentalization, and have used this scheme to alter the substrate specificity of the ligase towards the utilization of the biotin analogue desthiobiotin. In this scheme, a peptide substrate (BAP) was conjugated to a DNA library encoding BirA, emulsified such that there was a single template per compartment, and protein variants were transcribed and translated in vitro. Those variants that could efficiently desthiobiotinylate their corresponding peptide:DNA conjugate were subsequently captured and amplified. Following just six rounds of selection and amplification several variants that demonstrated higher activity with desthiobiotin were identified. The best variants from Round 6, BirA6-40 and BirA6-47 , showed 17-fold and 10-fold higher activity, respectively, their abilities to use desthiobiotin as a substrate. While selected enzymes contained a number of substitutions, a single mutation, M157T, proved sufficient to provide much greater activity with desthiobiotin. Further characterization of BirA6-40 and the single substitution variant BirAM157T revealed that they had twoto threefold higher kcat values for desthiobiotin. These variants had also lost much of their ability to utilize biotin, resulting in orthogonal enzymes that in conjunction with streptavidin variants that can utilize desthiobiotin may prove to be of great use in developing additional, robust conjugation handles for a variety of biological and biotechnological applications.

  17. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE

    PubMed Central

    Sen, Doyel; Patel, Gayatri; Patel, Smita S.

    2016-01-01

    A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE—a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding substrate and a homologous single-stranded DNA. Using various biochemical experiments, we demonstrate that the mechanism of strand-exchange involves active coupling of unwinding and annealing reactions by the TWINKLE. Unlike strand-annealing, the strand-exchange reaction requires nucleotide hydrolysis and greatly stimulated by short region of homology between the recombining DNA strands that promote joint molecule formation to initiate strand-exchange. Furthermore, we show that TWINKLE catalyzes branch migration by resolving homologous four-way junction DNA. These four DNA modifying activities of TWINKLE: strand-separation, strand-annealing, strand-exchange and branch migration suggest a dual role of TWINKLE in mitochondrial DNA maintenance. In addition to playing a major role in fork progression during leading strand DNA synthesis, we propose that TWINKLE is involved in recombinational repair of the human mitochondrial DNA. PMID:26887820

  18. DNA-PKcs Regulates a Single-stranded DNA Endonuclease Activity of Artemis

    PubMed Central

    Gu, Jiafeng; Li, Sicong; Zhang, Xiaoshan; Wang, Ling-Chi; Niewolik, Doris; Schwarz, Klaus; Legerski, Randy J.; Zandi, Ebrahim; Lieber, Michael R.

    2010-01-01

    Human nuclease Artemis belongs to the metallo-beta-lactamase protein family. It acquires double-stranded DNA endonuclease activity in the presence of DNA-PKcs. This double-stranded DNA endonuclease activity is critical for opening DNA hairpins in V(D)J recombination and is thought to be important for processing overhangs during the nonhomologous DNA end joining (NHEJ) process. Here we show that purified human Artemis exhibits single-stranded DNA endonuclease activity. This activity is proportional to the amount of highly purified Artemis from a gel filtration column. The activity is stimulated by DNA-PKcs and modulated by purified antibodies raised against Artemis. Moreover, the divalent cation-dependence and sequence-dependence of this single-stranded endonuclease activity is the same as the double-stranded DNA endonuclease activity of Artemis:DNA-PKcs. These findings further expand the range of DNA substrates upon which Artemis and Artemis:DNA-PKcs can act. The findings are discussed in the context of NHEJ. PMID:20117966

  19. DNA-PKcs regulates a single-stranded DNA endonuclease activity of Artemis.

    PubMed

    Gu, Jiafeng; Li, Sicong; Zhang, Xiaoshan; Wang, Ling-Chi; Niewolik, Doris; Schwarz, Klaus; Legerski, Randy J; Zandi, Ebrahim; Lieber, Michael R

    2010-04-04

    Human nuclease Artemis belongs to the metallo-beta-lactamase protein family. It acquires double-stranded DNA endonuclease activity in the presence of DNA-PKcs. This double-stranded DNA endonuclease activity is critical for opening DNA hairpins in V(D)J recombination and is thought to be important for processing overhangs during the nonhomologous DNA end joining (NHEJ) process. Here we show that purified human Artemis exhibits single-stranded DNA endonuclease activity. This activity is proportional to the amount of highly purified Artemis from a gel filtration column. The activity is stimulated by DNA-PKcs and modulated by purified antibodies raised against Artemis. Moreover, the divalent cation-dependence and sequence-dependence of this single-stranded endonuclease activity is the same as the double-stranded DNA endonuclease activity of Artemis:DNA-PKcs. These findings further expand the range of DNA substrates upon which Artemis and Artemis:DNA-PKcs can act. The findings are discussed in the context of NHEJ. 2010 Elsevier B.V. All rights reserved.

  20. Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases

    PubMed Central

    Popuri, Venkateswarlu; Croteau, Deborah L.; Bohr, Vilhelm A.

    2010-01-01

    NEIL1, the mammalian homolog of Escherichia coli endonuclease VIII, is a DNA glycosylase that repairs ring-fragmented purines, saturated pyrimidines and several oxidative lesions like 5-hydroxyuracil, 5-hydroxycytosine etc. Previous studies from our laboratory have shown that Werner Syndrome protein (WRN), one of the five human RecQ helicases, stimulates NEIL1 DNA glycosylase activity on oxidative DNA lesions. The goal of this study was to extend this observation and analyze the interaction between NEIL1 and all five human RecQ helicases. The DNA substrate specificity of the interaction between WRN and NEIL1 was also analyzed. The results indicate that WRN is the only human RecQ helicase that stimulates NEIL1 DNA glycosylase activity, and that this stimulation requires a double-stranded DNA substrate. PMID:20346739

  1. DNA and RNA ligases: structural variations and shared mechanisms.

    PubMed

    Pascal, John M

    2008-02-01

    DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.

  2. Quantitative determination of binding of ISWI to nucleosomes and DNA shows allosteric regulation of DNA binding by nucleotides.

    PubMed

    Al-Ani, Gada; Briggs, Koan; Malik, Shuja Shafi; Conner, Michael; Azuma, Yoshiaki; Fischer, Christopher J

    2014-07-15

    The regulation of chromatin structure is controlled by a family of molecular motors called chromatin remodelers. The ability of these enzymes to remodel chromatin structure is dependent on their ability to couple ATP binding and hydrolysis into the mechanical work that drives nucleosome repositioning. The necessary first step in determining how these essential enzymes perform this function is to characterize both how they bind nucleosomes and how this interaction is regulated by ATP binding and hydrolysis. With this goal in mind, we monitored the interaction of the chromatin remodeler ISWI with fluorophore-labeled nucleosomes and DNA through associated changes in fluorescence anisotropy of the fluorophore upon binding of ISWI to these substrates. We determined that one ISWI molecule binds to a 20 bp double-stranded DNA substrate with an affinity of 18 ± 2 nM. In contrast, two ISWI molecules can bind to the core nucleosome with short linker DNA with stoichiometric macroscopic equilibrium constants: 1/β1 = 1.3 ± 0.6 nM, and 1/β2 = 13 ± 7 nM(2). Furthermore, to improve our understanding of the mechanism of DNA translocation by ISWI, and hence nucleosome repositioning, we determined the effect of nucleotide analogues on substrate binding by ISWI. While the affinity of ISWI for the nucleosome substrate with short lengths of flanking DNA was not affected by the presence of nucleotides, the affinity of ISWI for the DNA substrate is weakened in the presence of nonhydrolyzable ATP analogues but not by ADP.

  3. Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases.

    PubMed

    Welter, Moritz; Verga, Daniela; Marx, Andreas

    2016-08-16

    DNA polymerases select the right nucleotide for the growing polynucleotide chain based on the shape and geometry of the nascent nucleotide pairs and thereby ensure high DNA replication selectivity. High-fidelity DNA polymerases are believed to possess tight active sites that allow little deviation from the canonical structures. However, DNA polymerases are known to use nucleotides with small modifications as substrates, which is key for numerous core biotechnology applications. We show that even high-fidelity DNA polymerases are capable of efficiently using nucleotide chimera modified with a large protein like horseradish peroxidase as substrates for template-dependent DNA synthesis, despite this "cargo" being more than 100-fold larger than the natural substrates. We exploited this capability for the development of systems that enable naked-eye detection of DNA and RNA at single nucleotide resolution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of DNA adsorption on mica surfaces using a surface force apparatus

    NASA Astrophysics Data System (ADS)

    Kan, Yajing; Tan, Qiyan; Wu, Gensheng; Si, Wei; Chen, Yunfei

    2015-02-01

    We report our studies on the adsorption properties of double-stranded DNA molecules on mica surfaces in a confined environment using a surface force apparatus. Specifically, we studied the influence of cation species and concentrations on DNA adsorption properties. Our results indicated that divalent cations (Mg2+ and Co2+) preferred to form uniform and moderately dense DNA layers on a mica substrate. By measuring the interactions between DNA-coated mica and bare mica in an aqueous solution, obvious adhesion was observed in a cobalt chloride solution, possibly due to the ion-correlation attraction between negatively charged DNA and the mica surface. Furthermore, the interaction differences that were observed with MgCl2 and CoCl2 solutions reveal that the specific adsorption behaviors of DNA molecules on a mica substrate were mediated by these two salts. Our results are helpful to elucidate the dynamics of DNA binding on a solid substrate.

  5. Structure-Specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex

    PubMed Central

    Chang, Howard H.Y.; Lieber, Michael R.

    2016-01-01

    Artemis is a vertebrate nuclease with both endo- and exonuclease activities that acts on a wide range of nucleic acid substrates. It is the main nuclease in the non-homologous DNA end-joining pathway (NHEJ). Not only is Artemis important for the repair of DNA double-strand breaks (DSBs) in NHEJ, it is essential in opening the DNA hairpin intermediates that are formed during V(D)J recombination. Thus, humans with Artemis deficiencies do not have T- or B-lymphocytes and are diagnosed with severe combined immunodeficiency (SCID). While Artemis is the only vertebrate nuclease capable of opening DNA hairpins, it has also been found to act on other DNA substrates that share common structural features. Here, we discuss the key structural features that all Artemis DNA substrates have in common, thus providing a basis for understanding how this structure-specific nuclease recognizes its DNA targets. PMID:27198222

  6. Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system.

    PubMed

    Han, W; Christen, P

    2001-05-18

    Hsp70s assist the folding of proteins in an ATP-dependent manner. DnaK, the Hsp70 of Escherichia coli, acts in concert with its co-chaperones DnaJ and GrpE. Amino acid substitutions (D388R and L391S/L392G) in the linker region between the ATPase and substrate-binding domain did not affect the functional domain coupling and oligomerization of DnaK. The intrinsic ATPase activity was enhanced up to 10-fold. However, the ATPase activity of DnaK L391S/L392G, if stimulated by DnaJ plus protein substrate, was five times lower than that of wild-type DnaK and DnaK D388R. This defect correlated with the complete loss of chaperone action in luciferase refolding. Apparently, the conserved leucine residues in the linker mediate the synergistic effects of DnaJ and protein substrate on ATPase activity, a function which might be essential for chaperone action.

  7. Multiplexed Electrochemistry of DNA-bound Metalloproteins

    PubMed Central

    Pheeney, Catrina G.; Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.

    2013-01-01

    Here we describe a multiplexed electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins containing redox cofactors, and multiplexing offers a means to probe different complex samples and substrates in parallel to elucidate this chemistry. Multiplexed analysis of EndonucleaseIII (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, shows subtle differences in the electrochemical behavior as a function of DNA morphology. The peak splitting, signal broadness, sensitivity to π-stack perturbations, and kinetics were all characterized for the DNA-bound reduction of EndoIII on both closely and loosely packed DNA films. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction; closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. Multiplexing furthermore permits the comparison of the electrochemistry of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. Based on the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster. PMID:23899026

  8. Coordinated DNA dynamics during the human telomerase catalytic cycle

    NASA Astrophysics Data System (ADS)

    Parks, Joseph W.; Stone, Michael D.

    2014-06-01

    The human telomerase reverse transcriptase (hTERT) utilizes a template within the integral RNA subunit (hTR) to direct extension of telomeres. Telomerase exhibits repeat addition processivity (RAP) and must therefore translocate the nascent DNA product into a new RNA:DNA hybrid register to prime each round of telomere repeat synthesis. Here, we use single-molecule FRET and nuclease protection assays to monitor telomere DNA structure and dynamics during the telomerase catalytic cycle. DNA translocation during RAP proceeds through a previously uncharacterized kinetic substep during which the 3‧-end of the DNA substrate base pairs downstream within the hTR template. The rate constant for DNA primer realignment reveals this step is not rate limiting for RAP, suggesting a second slow conformational change repositions the RNA:DNA hybrid into the telomerase active site and drives the extrusion of the 5‧-end of the DNA primer out of the enzyme complex.

  9. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  10. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  11. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum

    PubMed Central

    Margaryan, Ashot; Stenderup, Jesper; Lynnerup, Niels; Willerslev, Eske; Allentoft, Morten E.

    2017-01-01

    Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (<10% endogenous DNA). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements. PMID:28129388

  12. Essential role for DNA-PKcs in DNA double strand break repair and apoptosis in ATM deficient lymphocytes

    PubMed Central

    Callén, Elsa; Jankovic, Mila; Wong, Nancy; Zha, Shan; Chen, Hua-Tang; Difilippantonio, Simone; Di Virgilio, Michela; Heidkamp, Gordon; Alt, Frederick W.; Nussenzweig, André; Nussenzweig, Michel

    2009-01-01

    SUMMARY The DNA double strand break (DSB) repair protein DNA-PKcs and the signal transducer ATM are both activated by DNA breaks and phosphorylate similar substrates in vitro, yet appear to have distinct functions in vivo. Here we show that ATM and DNA-PKcs have overlapping functions in lymphocytes. Ablation of both kinase activities in cells undergoing immunoglobulin class switch recombination leads to a compound defect in switching, and a synergistic increase in chromosomal fragmentation, DNA insertions and translocations due to aberrant processing of DSBs. These abnormalities are attributed to a compound deficiency in phosphorylation of key proteins required for DNA repair, class switching and cell death. Notably, both kinases are required for normal levels of p53 phosphorylation in B and T cells and p53 dependent apoptosis. Our experiments reveal a DNA-PKcs-dependent pathway that regulates DNA repair and activation of p53 in the absence of ATM. PMID:19450527

  13. Prokaryotic DNA ligases unwind superhelical DNA.

    PubMed

    Ivanchenko, M; van Holde, K; Zlatanova, J

    1996-09-13

    We have studied the effect on DNA topology of binding of prokaryotic DNA ligases (T4 and E. coli) to superhelical or nicked circular DNA. Performing topoisomerase I-mediated relaxation in the presence of increasing amounts of T4 ligase led to a shift in the topoisomer distribution to increasingly more negative values. This result suggested that T4 ligase unwound the DNA and was further substantiated by ligation of nicked circular molecules by E. coli DNA ligase in the presence of increasing amounts of T4 ligase. Such an experiment was possible since the two DNA ligases require different cofactors for enzymatic activity. Performing a similar experiment with reverse partners, using E. coli DNA ligase as ligand, and T4 ligase as sealing agent, we observed that the E. coli enzyme also unwound the DNA. Thus, prokaryotic DNA ligases can be added to an ever-growing list of DNA-binding proteins that unwind the DNA upon binding.

  14. APOBEC3A damages the cellular genome during DNA replication.

    PubMed

    Green, Abby M; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C; Shalhout, Sophia; Bhagwat, Ashok S; Weitzman, Matthew D

    2016-01-01

    The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.

  15. APOBEC3A damages the cellular genome during DNA replication

    PubMed Central

    Green, Abby M.; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C.; Shalhout, Sophia; Bhagwat, Ashok S.; Weitzman, Matthew D.

    2016-01-01

    ABSTRACT The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors. PMID:26918916

  16. Molecular chaperones DnaK and DnaJ share predicted binding sites on most proteins in the E. coli proteome.

    PubMed

    Srinivasan, Sharan R; Gillies, Anne T; Chang, Lyra; Thompson, Andrea D; Gestwicki, Jason E

    2012-09-01

    In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and they also bind to each other. Together, this system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.

  17. Substrate Specificity of Chlorophyllase 12

    PubMed Central

    McFeeters, Roger F.

    1975-01-01

    Apparent Km and Vmax values were obtained for hydrolysis of methyl and ethyl chlorophyllides a, methyl and ethyl pheophorbide a, and 9-hydroxymethyl pheophorbide a by chlorophyllase from Ailanthus altissima. Analysis of substrate specificity data for chlorophyllase indicates that the presence of a 9-keto group and a methyl alcohol group esterified at the 7-position in chlorophyll derivatives results in maximum binding affinity for substrates. Data on maximum reaction rates indicate that the rate-controlling step of hydrolysis occurs after release of the alcohol from the ester. Probable high affinity chlorophyllase inhibitors can be predicted on the basis of these specificity studies. An improved method for purification of chlorophyllase has been developed. PMID:16659086

  18. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  19. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  20. Neurobiological Substrates of Tourette's Disorder

    PubMed Central

    Bloch, Michael H.; Smith, Megan E.; Larabi, Daouia; Hampson, Michelle

    2010-01-01

    Abstract Objective This article reviews the available scientific literature concerning the neurobiological substrates of Tourette's disorder (TD). Methods The electronic databases of PubMed, ScienceDirect, and PsycINFO were searched for relevant studies using relevant search terms. Results Neuropathological as well as structural and functional neuroimaging studies of TD implicate not only the sensorimotor corticostriatal circuit, but also the limbic and associative circuits as well. Preliminary evidence also points to abnormalities in the frontoparietal network that is thought to maintain adaptive online control. Evidence supporting abnormalities in dopaminergic and noradrenergic neurotransmission remains strong, although the precise mechanisms remain the subject of speculation. Conclusion Structural and functional abnormalities in multiple parallel corticostriatal circuits may underlie the behavioral manifestations of TD and related neuropsychiatric disorders over the course of development. Further longitudinal research is needed to elucidate these neurobiological substrates. PMID:20807062

  1. Electrostatic Interaction of Long DNA Molecules with Solid State Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Bingquan; Samuilov, Vladimir; Sokolov, Jonathan; Rafailovich, Miriam; Chu, Ben

    2004-03-01

    At low buffer concentration the electric charge of DNA molecules creates a strong electrostatic interaction and, as a result, a number of phenomena, such as the electro-hydrodynamic instability, partial adsorption at the buffer-semiconductor interface and stretching of DNA with the electric field. Long DNA molecules at the silicon substrate?buffer solution interface are very interesting objects for the electrical transport [1,2] and the mechanical properties, like entropic elasticity, studies. The system (DNA-substrate-electric field in the buffer solution) is very complicated. Due to the strong electrostatic interaction of DNA with the substrate, the image charge is generated, and the physical adsorption takes place. We have studied the S. Pombe genomic DNA of the order of 5 Mbp. Within a surface DNA is entropically partially recoiled due to electrostatic adsorption at a few points. While varying the direction of the low electric field the direction of the electroosmotic flow is changing and stretching the parts of DNA between the adsorption points. If the electric field is high enough, DNA is de-trapped and forms a compact coil. This behavior could be considered as an inverse mechanism of entropy trapping due to confined constrictions. In the case of the surface, DNA is recoiled and trapped in the stretched configuration in the deep energetic barrier by Si surface due to the strong electrostatic interaction. If the energy of the field is enough to overcome the barrier, DNA is detached. The Si surface could be considered as an analog of the entropic recoiling nanostructure. [1]. N. Pernodet, V. Samuilov, K. Shin, J. Sokolov, M.H. Rafailovich, D. Gersappe, B. Chu. DNA Electrophoresis on a Flat Surface, Physical Review Letters, 85 (2000) 5651-5654. [2] Y.-S. Seo, V.A. Samuilov, J. Sokolov, M. Rafailovich, B. Tinland, J. Kim, B. Chu. DNA separation at a liquid-solid interface, Electrophoresis, 23 (2002) 2618-2625.

  2. Detection of thermoactinomyces species in selected agricultural substrates from Queensland.

    PubMed

    Brinkmann, C M; Neuman, C; Katouli, M; Kurtböke, D I

    2014-05-01

    Selected overheated substrates commercially available for public use in sub-tropical Queensland, Australia were screened for the presence of Thermoactinomyces species using an air sampler. All substrates with the exception of tea tree mulch were found to contain Thermoactinomyces species. Subsequent 16S rDNA oligonucleotide sequencing of the selected eight isolates indicated that some of these species were closely related to previously reported allergenic Thermoactinomyces vulgaris and Laceyella sacchari. In view of this, the isolates were tested to determine their adhesion ability and cytotoxicity to human lung cells (calu-3 cells). The results indicated that all eight isolates were highly adherent and showed cytotoxicity to this cell line. These findings might indicate that the presence of such species in overheated agricultural materials may constitute a public health risk if storage and handling conditions are not optimal and do not meet criteria defined for sub-tropical climates.

  3. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  4. Cuprate superconductors on titanium substrates

    NASA Astrophysics Data System (ADS)

    Mitterbauer, Christina; Gritzner, Gerhard

    2007-09-01

    The applicability of titanium as substrate material for coated conductors was investigated. Titanium metal was rolled to a thickness of 1 mm and mechanically polished. The titanium sheets were oxidized in air at 1000 °C for 1 h. A dense oxide layer was formed. YBCO superconducting layers were applied to the oxidized titanium surface via screen printing from a suspension in acetone-terpineol. The YBCO layers were characterized by X-ray diffraction and by scanning electron microscopy.

  5. Substrate for silicon solar cells

    SciTech Connect

    Thomas, D.E.

    1982-08-10

    A substrate is made for silicon solar cells by heating a sheet of large-grained silicon steel at a temperature of at least about 1300* C. In an atmosphere of hydrogen and tungsten hexafluo (Or hexachloride) at a partial pressure ratio of hydrogen to tungsten hexafluoride of about 3 to about 6 to deposit an epitaxial layer of tungsten on said sheet of silicon steel. Epitaxial silicon can then be deposited in a conventional manner on the layer of epitaxial tungsten.

  6. Substrate binding modelling in barnase

    NASA Astrophysics Data System (ADS)

    Gordon-Beresford, R.; Coulombeau, C.; Wodak, S.

    1991-10-01

    The mechanism describing the guanine specific hydrolysis by the different microbial endoribonucleases which has been proposed cannot account in barnase (B. amyloliquefaciens) in the case of GpN dinucleotide hydrolysis, the observed preference for N being A≳G≳C≳U. Similarly the much higher activity toward long RNA molecules as compared to dinucleotides is not understood. A possible explanation for these observations is the existence in barnase of secondary substrate binding sites.

  7. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  8. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair.

    PubMed

    Malewicz, Michal; Kadkhodaei, Banafsheh; Kee, Nigel; Volakakis, Nikolaos; Hellman, Ulf; Viktorsson, Kristina; Leung, Chuen Yan; Chen, Benjamin; Lewensohn, Rolf; van Gent, Dik C; Chen, David J; Perlmann, Thomas

    2011-10-01

    DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK catalytic subunit and, upon exposure to DNA damage, translocate to DSB foci by a mechanism requiring the activity of poly(ADP-ribose) polymerase-1 (PARP-1). At DNA repair foci, NR4A is phosphorylated by DNA-PK and promotes DSB repair. Notably, NR4A transcriptional activity is entirely dispensable in this function, and core components of the DNA repair machinery are not transcriptionally regulated by NR4A. Instead, NR4A functions directly at DNA repair sites by a process that requires phosphorylation by DNA-PK. Furthermore, a severe combined immunodeficiency (SCID)-causing mutation in the human gene encoding the DNA-PK catalytic subunit impairs the interaction and phosphorylation of NR4A at DSBs. Thus, NR4As represent an entirely novel component of DNA damage response and are substrates of DNA-PK in the process of DSB repair.

  9. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity.

    PubMed

    Sanders, Cyril M

    2010-08-15

    Pif1 proteins are helicases that in yeast are implicated in the maintenance of genome stability. One activity of Saccharomyces cerevisiae Pif1 is to stabilize DNA sequences that could otherwise form deleterious G4 (G-quadruplex) structures by acting as a G4 resolvase. The present study shows that human Pif1 (hPif1, nuclear form) is a G4 DNA-binding and resolvase protein and that these activities are properties of the conserved helicase domain (amino acids 206-620 of 641, hPifHD). hPif1 preferentially bound synthetic G4 DNA relative to ssDNA (single-stranded DNA), dsDNA (double-stranded DNA) and a partially single-stranded duplex DNA helicase substrate. G4 DNA unwinding, but not binding, required an extended (>10 nucleotide) 5' ssDNA tail, and in competition assays, G4 DNA was an ineffective suppressor of helicase activity compared with ssDNA. These results suggest a distinction between the determinants of G4 DNA binding and the ssDNA interactions required for helicase action and that hPif1 may act on G4 substrates by binding alone or as a resolvase. Human Pif1 could therefore have a role in processing G4 structures that arise in the single-stranded nucleic acid intermediates formed during DNA replication and gene expression.

  10. Kinetic analysis of the cleavage of natural and synthetic substrates by the Serratia nuclease.

    PubMed

    Friedhoff, P; Meiss, G; Kolmes, B; Pieper, U; Gimadutdinow, O; Urbanke, C; Pingoud, A

    1996-10-15

    The extracellular nuclease from Serratia marcescens is a non-specific endonuclease that hydrolyzes double-stranded and single-stranded DNA and RNA with high specific activity. Steady-state and presteady-state kinetic cleavage experiments were performed with natural and synthetic DNA and RNA substrates to understand the mechanism of action of the Serratia nuclease. Most of the natural substrates are cleaved with similar Kcat and K(m) values, the Kcat/K(m) ratios being comparable to that of staphylococcal nuclease. Substrates with extreme structural features, like poly(dA).poly(dT) or poly(dG).poly(dC), are cleaved by the Serratia nuclease with a 50 times higher or 10 times lower K(m), respectively, as salmon testis DNA. Neither with natural DNA or RNA nor synthetic oligodeoxynucleotide substrates did we observe substrate inhibition for the Serratia nuclease as reported recently. Experiments with short oligodeoxynucleotides confirmed previous results that for moderately good cleavage activity the substrate should contain at least five phosphate residues. Shorter substrates are still cleaved by the Serratia nuclease, albeit at a rate reduced by a factor of more than 100. Cleavage experiments with oligodeoxynucleotides substituted by a single phosphorothioate group showed that the negative charge of the pro-Rp-oxygen of the phosphate group 3' adjacent to the scissile phosphodiester bond is essential for cleavage, as only the Rp-phosphorothioate supports cleavage at the 5' adjacent phosphodiester bond. Furthermore, the modified bond itself is only cleaved in the Rp-diastereomer, albeit 1000 times more slowly than the corresponding unmodified phosphodiester bond, which offers the possibility to determine the stereochemical outcome of cleavage. Pre-steady-state cleavage experiments demonstrate that it is not dissociation of products but association of enzyme and substrate or the cleavage of the phosphodiester bond that is the rate-limiting step of the reaction. Finally

  11. A ribozyme with DNA in the hybridising arms displays enhanced cleavage ability.

    PubMed Central

    Hendry, P; McCall, M J; Santiago, F S; Jennings, P A

    1992-01-01

    Hammerhead ribozymes cleave RNA substrates containing the UX sequence, where X = U, C or A, embedded within sequences which are complementary to the hybridising 'arms' of the ribozyme. In this study we have replaced the RNA in the hybridising arms of the ribozyme with DNA, and the resulting ribozyme is many times more active than its precursor. In turnover-kinetics experiments with a 13-mer RNA substrate, the kcat/Km ratios are 10 and 150 microM-1min-1 for the RNA- and DNA-armed ribozymes, respectively. The effect is due mainly to differences in kcat. In independent experiments where the cleavage step is rate-limiting, the DNA-armed ribozyme cleaves the substrate with a rate constant more than 3 times greater than the all-RNA ribozyme. DNA substrates containing a ribocytidine at the cleavage site have been shown to be cleaved less efficiently than their all-RNA analogues; again however, the DNA-armed ribozyme is more effective than the all-RNA ribozyme against such DNA substrates. These results demonstrate that there are no 2'-hydroxyl groups in the arms of the ribozyme that are required for cleavage; and that the structure of the complex formed by the DNA-armed ribozyme with its substrate is more favourable for cleavage than that formed by the all-RNA ribozyme and its substrate. PMID:1280808

  12. Method and apparatus for synthesis of arrays of DNA probes

    DOEpatents

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  13. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  14. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases

    PubMed Central

    Pinto, Cosimo; Kasaciunaite, Kristina; Seidel, Ralf; Cejka, Petr

    2016-01-01

    Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI: http://dx.doi.org/10.7554/eLife.18574.001 PMID:27612385

  15. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases.

    PubMed

    Pinto, Cosimo; Kasaciunaite, Kristina; Seidel, Ralf; Cejka, Petr

    2016-09-09

    Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA.

  16. Stimulation of the DNA unwinding activity of human DNA helicase II/Ku by phosphorylation.

    PubMed

    Ochem, Alexander E; Rechreche, Hocine; Skopac, Doris; Falaschi, Arturo

    2008-02-01

    The Ku autoantigen is a heterodimeric protein of 70- and 83-kDa subunits, endowed with duplex DNA end-binding capacity and DNA helicase activity (Human DNA Helicase II, HDH II). HDH II/Ku is well established as the DNA binding component, the regulatory subunit as well as a substrate for the DNA-dependent protein kinase DNA-PK, a complex involved in the repair of DNA double-strand breaks and in V(D)J recombination in eukaryotes. The effects of phosphorylation by this kinase on the helicase activity of Escherichia coli-produced HDH II/Ku were studied. The rate of DNA unwinding by recombinant HDH II/Ku heterodimer is stimulated at least fivefold upon phosphorylation by DNA-PK(cs). This stimulation is due to the effective transfer of phosphate residues to the helicase rather than the mere presence of the complex. In vitro dephosphorylation of HeLa cellular HDH II/Ku caused a significant decrease in the DNA helicase activity of this enzyme.

  17. Aligned deposition and electrical measurements on single DNA molecules

    NASA Astrophysics Data System (ADS)

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin; Gurevich, Leonid

    2015-11-01

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)-poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg2+ ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin-DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin-DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity.

  18. DNA-specific autoantibody cleaves DNA by hydrolysis of phosphodiester and glycosidic bond.

    PubMed

    Nguyen, Hang Thi Thu; Jang, Young-Ju; Jeong, Sunjoo; Yu, Jaehoon

    2003-11-21

    The DNA-recognizing autoantibodies were prepared in milligram scale and their catalytic activities were investigated using various standard substrates for hydrolysis of natural biomolecules such as DNA, carbohydrates, and proteins. Only phosphatase and glycosidase activity was found and no peptidase, sulfatase, or esterase activity was detected in most of anti-DNA monoclonal autoantibodies we tested. Antibody G1-2 showed the highest catalytic activities and its enzymatic characteristics were further investigated. The antibody showed phosphatase activity with sub-millimolar substrate specificity and 10(4)-10(5) rate enhancements. However, Ab G1-2 showed low micro-molar specificity with p-nitrophenyl-beta-D-N-acetylglucosamide with 10(4)-10(5) rate enhancements. Both of the catalytic activities showed pH maximum at 4-5, suggesting that the carboxylate(s) in antigen-binding site is involved in the catalytic mechanism. Chemical protection of carboxylate(s) with diazoacetamide showed much reduced activity of the Ab, confirming that the catalytic activity comes from carboxylate(s) in the Ag-binding region. The activities of phosphatase and glycosidase were thoroughly inhibited by DNA with almost identical K(i) values. These data suggest that DNA-binding site(s) is the enzymatic active site of the catalytic Abs. Capabilities of the DNA recognition might make it possible to confer the Ab the catalytic activity of phosphate and glycosidic bond hydrolysis, which can be the main cause of DNA cleavage.

  19. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems.

  20. Single-quantum-dot-based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yang; Yeh, Hsin-Chih; Kuroki, Marcos T.; Wang, Tza-Huei

    2005-11-01

    Rapid and highly sensitive detection of DNA is critical in diagnosing genetic diseases. Conventional approaches often rely on cumbersome, semi-quantitative amplification of target DNA to improve detection sensitivity. In addition, most DNA detection systems (microarrays, for example), regardless of their need for target amplification, require separation of unhybridized DNA strands from hybridized stands immobilized on a solid substrate, and are thereby complicated by solution-surface binding kinetics. Here, we report an ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) capable of detecting low concentrations of DNA in a separation-free format. This system uses quantum dots (QDs) linked to DNA probes to capture DNA targets. The target strand binds to a dye-labelled reporter strand thus forming a FRET donor-acceptor ensemble. The QD also functions as a concentrator that amplifies the target signal by confining several targets in a nanoscale domain. Unbound nanosensors produce near-zero background fluorescence, but on binding to even a small amount of target DNA (~50 copies or less) they generate a very distinct FRET signal. A nanosensor-based oligonucleotide ligation assay has been demonstrated to successfully detect a point mutation typical of some ovarian tumours in clinical samples.