Science.gov

Sample records for 17-mer dna substrate

  1. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  2. A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells.

    PubMed

    Monteiro, Claudia; Pinheiro, Marina; Fernandes, Mariana; Maia, Sílvia; Seabra, Catarina L; Ferreira-da-Silva, Frederico; Reis, Salette; Gomes, Paula; Martins, M Cristina L

    2015-08-03

    Antimicrobial peptides are widely recognized as an excellent alternative to conventional antibiotics. MSI-78, a highly effective and broad spectrum AMP, is one of the most promising AMPs for clinical application. In this study, we have designed shorter derivatives of MSI-78 with the aim of improving selectivity while maintaining antimicrobial activity. Shorter 17-mer derivatives were created by truncating MSI-78 at the N- and/or C-termini, while spanning MSI-78 sequence. Despite the truncations made, we found a 17-mer peptide, MSI-78(4-20) (KFLKKAKKFGKAFVKIL), which was demonstrated to be as effective as MSI-78 against the Gram-positive Staphylococcus strains tested and the Gram-negative Pseudomonas aeruginosa. This shorter derivative is more selective toward bacterial cells as it was less toxic to erythrocytes than MSI-78, representing an improved version of the lead peptide. Biophysical studies support a mechanism of action for MSI-78(4-20) based on the disruption of the bacterial membrane permeability barrier, which in turn leads to loss of membrane integrity and ultimately to cell death. These features point to a mechanism of action similar to the one described for the lead peptide MSI-78.

  3. Quantitative detection of single DNA molecules on DNA tetrahedron decorated substrates.

    PubMed

    Wang, Zhenguang; Xue, Qingwang; Tian, Wenzhi; Wang, Lei; Jiang, Wei

    2012-10-07

    A single DNA molecule detection method on DNA tetrahedron decorated substrates has been developed. DNA tetrahedra were introduced onto substrates for both preventing nonspecific adsorption and sensitive recognition of single DNA molecules.

  4. Organo-silane coated substrates for DNA purification

    NASA Astrophysics Data System (ADS)

    Pasquardini, L.; Lunelli, L.; Potrich, C.; Marocchi, L.; Fiorilli, S.; Vozzi, D.; Vanzetti, L.; Gasparini, P.; Anderle, M.; Pederzolli, C.

    2011-10-01

    The use of blood as DNA source to be employed in genetic analysis requires a purification process in order to remove proteins, lipids and any other contaminants, such as hemoglobin, which inhibit PCR. On the other hand, the increasing demand of miniaturized and automated biological tests able to reduce time and cost of analysis, requires the development and the characterization of materials aimed to perform the DNA purification processes in micro-devices. In this work we studied the interaction of DNA molecules with modified silicon based substrates, positively charged after deposition of a (3-aminopropyl)triethoxysilane (APTES) or 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEEA) interfacial layer. The evaluation of the DNA adsorption and elution capacity of different substrates (thermally grown silicon oxide, silicon oxide obtained by plasma enhanced chemical vapour deposition, and Pyrex ®) was studied taking into account the nature of the substrate and the effect of DNA length (in the 208-50,000 base pairs range). Main findings are that DNA elution capacity depends both on the utilized substrate and on the choice of the silanizing agent. Higher DNA recovery was obtained from AEEA-modified substrates, but the eluted DNA had different electrophoretic properties from native DNA. DNA with the same electrophoretic behaviour as genomic DNA was instead recovered from APTES-treated surfaces. Furthermore, the length of DNA present in the starting material strongly modulates the elution efficiency, longer DNA being released in a lesser amount, suggesting that opportunely modified surfaces could be used as systems for differential DNA separation.

  5. The influence of substrate on DNA transfer and extraction efficiency.

    PubMed

    Verdon, Timothy J; Mitchell, R John; van Oorschot, Roland A H

    2013-01-01

    The circumstances surrounding deposition of DNA profiles are increasingly becoming an issue in court proceedings, especially whether or not the deposit was made by primary transfer. In order to improve the currently problematic evaluation of transfer scenarios in court proceedings, we examined the influence a variety of nine substrate types (six varieties of fabric, plywood, tarpaulin, and plastic sheets) has on DNA transfer involving blood. DNA transfer percentages were significantly higher (p=0.03) when the primary substrate was of non-porous material (such as tarpaulin, plastic or, to a lesser degree, wood) and the secondary substrate porous (such as fabrics). These findings on transfer percentages confirm the results of previous studies. Fabric composition was also shown to have a significant (p=0.03) effect on DNA transfer; when experiments were performed with friction from a variety of fabrics to a specific weave of cotton, transfer percentages ranged from 4% (flannelette) to 94% (acetate). The propensity for the same nine substrates to impact upon the efficiency of DNA extraction procedures was also examined. Significant (p=0.03) differences were found among the extraction efficiencies from different materials. When 15μL of blood was deposited on each of the substrates, the lowest quantity of DNA was extracted from plastic (20ng) and the highest quantities extracted from calico and flannelette (650ng). Significant (p<0.05) differences also exist among the DNA extraction yield from different initial blood volumes from all substrates. Also, significantly greater (p<0.05) loss of DNA was seen during concentration of extracts with higher compared to lower initial quantities of DNA. These findings suggest that the efficiency of extraction and concentration impacts upon the final amount of DNA available for analysis and that consideration of these effects should not be ignored. The application of correction factors to adjust for any variation among extraction and

  6. Direct PCR Improves the Recovery of DNA from Various Substrates.

    PubMed

    Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Skuza, Pawel; Linacre, Adrian

    2015-11-01

    This study reports on the comparison of a standard extraction process with the direct PCR approach of processing low-level DNA swabs typical in forensic investigations. Varying concentrations of control DNA were deposited onto three commonly encountered substrates, brass, plastic, and glass, left to dry, and swabbed using premoistened DNA-free nylon FLOQswabs(™) . Swabs (n = 90) were either processed using the DNA IQ(™) kit or, for direct PCR, swab fibers (~2 mm(2) ) were added directly to the PCR with no prior extraction. A significant increase in the height of the alleles (p < 0.005) was observed when using the direct PCR approach over the extraction methodology when controlling for surface type and mass of DNA deposited. The findings indicate the potential use of direct PCR for increasing the PCR product obtained from low-template DNA samples in addition to minimizing contamination and saving resources.

  7. Arrays of Individual DNA Molecules on Nanopatterned Substrates

    PubMed Central

    Hager, Roland; Halilovic, Alma; Burns, Jonathan R.; Schäffler, Friedrich; Howorka, Stefan

    2017-01-01

    Arrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions. Here, we create single-molecule arrays by electrostatically adhering single-stranded DNA of gene-like length onto positively charged carbon nanoislands. The nanosites are so small that only one molecule can bind per island. Undesired adsorption of DNA to the surrounding non-target areas is prevented via a surface-passivating film. Of further relevance, the DNA arrays are of tunable dimensions, and fabricated on optically transparent substrates that enable singe-molecule detection with fluorescence microscopy. The arrays are hence compatible with a wide range of bioanalytical, biophysical, and cell biological studies where individual DNA strands are either examined in isolation, or interact with other molecules or cells. PMID:28198806

  8. Arrays of Individual DNA Molecules on Nanopatterned Substrates

    NASA Astrophysics Data System (ADS)

    Hager, Roland; Halilovic, Alma; Burns, Jonathan R.; Schäffler, Friedrich; Howorka, Stefan

    2017-02-01

    Arrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions. Here, we create single-molecule arrays by electrostatically adhering single-stranded DNA of gene-like length onto positively charged carbon nanoislands. The nanosites are so small that only one molecule can bind per island. Undesired adsorption of DNA to the surrounding non-target areas is prevented via a surface-passivating film. Of further relevance, the DNA arrays are of tunable dimensions, and fabricated on optically transparent substrates that enable singe-molecule detection with fluorescence microscopy. The arrays are hence compatible with a wide range of bioanalytical, biophysical, and cell biological studies where individual DNA strands are either examined in isolation, or interact with other molecules or cells.

  9. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

    PubMed

    Bauer, Robert J; Evans, Thomas C; Lohman, Gregory J S

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.

  10. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase

    PubMed Central

    Bauer, Robert J.; Evans, Thomas C.; Lohman, Gregory J. S.

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. PMID:26954034

  11. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation

    PubMed Central

    Arab, Khelifa; Kienhöfer, Sabine; von Seggern, Annika; Niehrs, Christof

    2016-01-01

    DNA 5-methylcytosine is a dynamic epigenetic mark which plays important roles in development and disease. In the Tet-Tdg demethylation pathway, methylated cytosine is iteratively oxidized by Tet dioxygenases and unmodified cytosine is restored via thymine DNA glycosylase (Tdg). Here we show that human NEIL1 and NEIL2 DNA glycosylases coordinate abasic site processing during TET–TDG DNA demethylation. NEIL1 and NEIL2 cooperate with TDG during base excision: TDG occupies the abasic site and is displaced by NEILs, which further process the baseless sugar, thereby stimulating TDG substrate turnover. In early Xenopus embryos Neil2 cooperates with Tdg to remove oxidized methylcytosines and to specify neural crest development together with Tet3. Thus, Neils function as AP lyases in the coordinated AP site hand-over during oxidative DNA demethylation. PMID:26751644

  12. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    SciTech Connect

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A.; Lees-Miller, S.P.; Lintott, L.G.; Sakaguchi, Kazuyasu; Appella, E.

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  13. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.

    PubMed

    Dizdaroglu, Miral; Coskun, Erdem; Jaruga, Pawel

    Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.

  14. Simple method of DNA stretching on glass substrate for fluorescence image and spectroscopy

    NASA Astrophysics Data System (ADS)

    Neupane, Guru P.; Dhakal, Krishna P.; Lee, Hyunsoo; Guthold, Martin; Joseph, Vincent S.; Hong, Jong-Dal; Kim, Jeongyong

    2013-05-01

    Study of biological molecule DNA has contributed to developing many breaking thoughts and wide applications in multidisciplinary fields, such as genomic, medical, sensing and forensic fields. Stretching of DNA molecules is an important supportive tool for AFM or spectroscopic studies of DNA in a single molecular level. In this article, we established a simple method of DNA stretching (to its full length) that occurred on a rotating negatively-charged surface of glass substrate. The isolation of a single DNA molecule was attained by the two competitive forces on DNA molecules, that is, the electrostatic attraction developed between the positively charged YOYO-1 stained DNA and the negatively charged substrate, and the centrifugal force of the rotating substrate, which separates the DNA aggregates into the single molecule. Density of stretched DNA molecules was controlled by selecting the specific parameters such as spinning time and rates, loading volume of DNA-dye complex solution etc. The atomic force microscopy image exhibited a single DNA molecule on the negatively-charged substrate in an isolated state. Further, the photoluminescence spectra of a single DNA molecule stained with YOYO-1 were achieved using the method developed in the present study, which is strongly believed to effectively support the spectroscopic analysis of DNA in a single molecular level.

  15. Unique structural modulation of a non-native substrate by cochaperone DnaJ.

    PubMed

    Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli

    2013-02-12

    The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.

  16. [Effect of supporting substrates on the structure of DNA and DNA-trivaline complexes studied by atomic force microscopy].

    PubMed

    Klinov, D V; Martynkina, L P; Iurchenko, V Iu; Demin, V V; Strel'tsov, S A; Gerasimov, Iu A; Vengerov, Iu Iu

    2003-01-01

    Linear DNA, circular DNA, and circular DNA complexes with trivaline (TV), a synthetic oligopeptide, were imaged by atomic force microscopy (AFM) using mica as a conventional supporting substrate and modified highly ordered pyrolytic graphite (HOPG) as an alternative substrate. A method of modifying the HOPG surface was developed that enabled the adsorption of DNA and DNA-TV complexes onto this surface. On mica, both purified DNA and DNA-TV complexes were shown to undergo significant structural distortions: DNA molecules decrease in height and DNA-TP displays substantial changes in the shape of its circular compact structures. Use of the HOPG support helps preserve the structural integrity of the complexes and increase the measured height of DNA molecules up to 2 nm. AFM with the HOPG support was shown to efficiently reveal the particular points of the complexes where, according to known models of their organization, a great number of bent DNA fibers meet. These results provide additional information on DNA organization in its complexes with TV and are also of methodological interest, since the use of the modified HOPG may widen the possibilities of AFM in studying DNA and its complexes with various ligands.

  17. Hydrolytic cleavage of DNA-model substrates promoted by polyoxovanadates.

    PubMed

    Steens, Nele; Ramadan, Ahmed M; Absillis, Gregory; Parac-Vogt, Tatjana N

    2010-01-14

    Hydrolysis of 4-nitrophenyl phosphate (NPP) and bis-4-nitrophenyl phosphate (BNPP), two commonly used DNA model substrates, was examined in vanadate solutions by means of (1)H, (31)P and (51)V NMR spectroscopy. The hydrolysis of the phosphoester bond in NPP at 50 degrees C and pH 5.0 proceeds with a rate constant of 1.74 x 10(-5) s(-1). The cleavage of the phosphoester bond in BNPP at 70 degrees C and pH 5.0 proceeds with a rate constant of 3.32 x 10(-6) s(-1), representing an acceleration of four orders of magnitude compared to the uncatalyzed cleavage. Inorganic phosphate and nitrophenol (NP) were the only products of hydrolysis. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of V(V) reduction to V(IV), indicating that the cleavage of the phosphoester bond is purely hydrolytic. The pH dependence of k(obs) revealed that the hydrolysis proceeds fastest in solutions of pH 5.5. Comparison of the rate profile with the concentration profile of polyoxovanadates shows a striking overlap of the k(obs) profile with the concentration of decavanadate (V(10)). Kinetic experiments at 37 degrees C using a fixed amount of NPP and increasing amounts of V(10) permitted the calculation of catalytic (k(c) = 5.67 x 10(-6) s(-1)) and formation constants for the NPP-V(10) complex (K(f) = 71.53 M(-1)). Variable temperature (31)P NMR spectra of a reaction mixture revealed broadening and shifting of the (31)P resonance upon addition of increasing amounts of decavanadate and upon increasing temperature, implying the dynamic exchange process between free and bound NPP at higher temperatures. The origin of the hydrolytic activity of V(10) is most likely due its high lability and its dissociation into smaller fragments which may allow the attachment of NPP and BNPP into the polyoxovanadate framework.

  18. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition.

    PubMed

    Wienk, Hans; Slootweg, Jack C; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2013-07-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.

  19. Systematic study for DNA recovery and profiling from common IED substrates: From laboratory to casework.

    PubMed

    Phetpeng, Sukanya; Kitpipit, Thitika; Thanakiatkrai, Phuvadol

    2015-07-01

    Improvised explosive devices (IEDs) made from household items are encountered in terrorist attacks worldwide. Assembling an IED leaves trace DNA on its components, but deflagration degrades DNA. To maximize the amount of DNA recovered, a systematic evaluation of DNA collection methods was carried out and the most efficient methods were implemented with IED casework evidence as a validation exercise. Six swab types and six moistening agents were used to collect dried buffy coat stains on four common IED substrates. The most efficient swab/moistening agent combinations were then compared with tape-lifting using three brands of adhesive tape and also with direct DNA extraction from evidence. The most efficient collection methods for different IED substrates (post-study protocol) were then implemented for IED casework and compared with the pre-study protocol using 195 pieces of IED evidence. There was no single best swab type or moistening agent. Swab type had the largest effect on DNA recovery percentages, but moistening agents, substrates, and the interactions between factors all affected DNA recovery. The most efficient swab/moistening agent combinations performed equally well when compared with the best adhesive tape and direct extraction. The post-study protocol significantly improved STR profiles obtained from IED evidence. This paper outlines a comprehensive study of DNA collection methods for trace DNA and the validation of the most efficient collection methods with IED evidence. The findings from both parts of this study emphasize the need to continuously re-evaluate standard operating protocols with empirical studies.

  20. Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging.

    PubMed

    Gorman, Jason; Fazio, Teresa; Wang, Feng; Wind, Shalom; Greene, Eric C

    2010-01-19

    Single-molecule studies of biological macromolecules can benefit from new experimental platforms that facilitate experimental design and data acquisition. Here we develop new strategies to construct curtains of DNA in which the molecules are aligned with respect to one another and maintained in an extended configuration by anchoring both ends of the DNA to the surface of a microfluidic sample chamber that is otherwise coated with an inert lipid bilayer. This "double-tethered" DNA substrate configuration is established through the use of nanofabricated rack patterns comprised of two distinct functional elements: linear barriers to lipid diffusion that align DNA molecules anchored by one end to the bilayer and antibody-coated pentagons that provide immobile anchor points for the opposite ends of the DNA. These devices enable the alignment and anchoring of thousands of individual DNA molecules, which can then be visualized using total internal reflection fluorescence microscopy under conditions that do not require continuous application of buffer flow to stretch the DNA. This unique strategy offers the potential for studying protein-DNA interactions on large DNA substrates without compromising measurements through application of hydrodynamic force. We provide a proof-of-principle demonstration that double-tethered DNA curtains made with nanofabricated rack patterns can be used in a one-dimensional diffusion assay that monitors the motion of quantum dot-tagged proteins along DNA.

  1. Elongated unique DNA strand deposition on microstructured substrate by receding meniscus assembly and capillary force

    PubMed Central

    Charlot, B.; Bardin, F.; Sanchez, N.; Roux, P.; Teixeira, S.; Schwob, E.

    2014-01-01

    Ordered deposition of elongated DNA molecules was achieved by the forced dewetting of a DNA solution droplet over a microstructured substrate. This technique allows trapping, uncoiling, and deposition of DNA fragments without the need of a physicochemical anchoring of the molecule and results in the combing of double stranded DNA from the edge of microwells on a polydimethylsiloxane (PDMS) substrate. The technique involves scanning a droplet of DNA solution caught between a movable blade and a PDMS substrate containing an array of microwells. The deposition and elongation appears when the receding meniscus dewets microwells, the latter acting here as a perturbation in the dewetting line forcing the water film to break locally. Thus, DNA molecules can be deposited in an ordered manner and elongated conformation based solely on a physical phenomenon, allowing uncoiled DNA molecules to be observed in all their length. However, the exact mechanism that governs the deposition of DNA strands is not well understood. This paper is an analysis of the physical phenomenon occurring in the deposition process and is based on observations made with the use of high frame/second rate video microscopy. PMID:24753724

  2. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions).

  3. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation.

    PubMed

    Pillers, Michelle A; Shute, Rebecca; Farchone, Adam; Linder, Keenan P; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-07-23

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described.

  4. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    SciTech Connect

    Lee, Seongmin; Verdine, Gregory L.

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.

  5. Label free detection of DNA on Au/ZnO/Ag hybrid structure based SERS substrate

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Mohan, D. Bharathi

    2016-04-01

    Au/ZnO/Ag based SERS substrate was fabricated for the label free detection of DNA of Escherichia Coli bacteria. The SERS substrate was fabricated by growing ZnO nanorod arrays on thermally evaporated ultrathin Ag film of 5 nm thickness using hydrothermal process. Non-spherical like Au nanoparticles were decorated on ZnO nanorod arrays by sputtering technique with sputtering time of 45 sec. The surface of Au/ZnO/Ag was observed to be nearly superhydrophobic exhibiting the contact angle of 144 °. A low volume (5 µl) of aqueous solution of DNA of laboratory strain Escherichia Coli with very low concentration was adsorbed on fabricated SERS substrate by drop casting. The SERS detection of DNA molecules was achieved up to lower concentration of 10-8 M due to strong local electric field enhancement at the nanometer gap among Au nanoparticles and superhydrophobic nature of Au/ZnO/Ag surface.

  6. A three-dimensional waveguide substrate for DNA-microarrays based on macroporous silicon

    NASA Astrophysics Data System (ADS)

    Dertinger, Stephan K.; Klühr, Marco; Sauermann, Alexander; Thein, Kerstin

    2005-06-01

    In this paper we present a three-dimensional waveguide structure with unique optical and fluidic properties and demonstrate its application as a substrate for DNA microarrays. The structure is fabricated by thermal oxidation of a macroporous silicon membrane with a periodic pattern of discrete microchannels running perpendicular through the substrate. Partial oxidation generates compartments with channel walls that are completely converted into SiO2 but leaves a rectangular grid of silicon walls separating the SiO2 compartments. We demonstrate that the SiO2 walls act as optical waveguides and the opaque silicon walls divide the substrate into optically isolated compartments. In DNA microarray experiments, we show that the silicon walls of the compartments prevent cross talk between adjacent DNA spots. The structure is compatible with all conventional read-out techniques such as fluorescence, chemiluminescence, and precipitation staining.

  7. In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate.

    PubMed

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Marchi, Alexandria N; LaBean, Thomas H; Tian, Jingdong

    2010-02-01

    Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.

  8. A DNA Sequence Recognition Loop on APOBEC3A Controls Substrate Specificity

    PubMed Central

    Dhuey, Erica; Zhang, Ruonan; Cao, Ping; Herate, Cecile; Chauveau, Lise; Hubbard, Stevan R.; Landau, Nathaniel R.

    2014-01-01

    APOBEC3A (A3A), one of the seven-member APOBEC3 family of cytidine deaminases, lacks strong antiviral activity against lentiviruses but is a potent inhibitor of adeno-associated virus and endogenous retroelements. In this report, we characterize the biochemical properties of mammalian cell-produced and catalytically active E. coli-produced A3A. The enzyme binds to single-stranded DNA with a Kd of 150 nM and forms dimeric and monomeric fractions. A3A, unlike APOBEC3G (A3G), deaminates DNA substrates nonprocessively. Using a panel of oligonucleotides that contained all possible trinucleotide contexts, we identified the preferred target sequence as TC (A/G). Based on a three-dimensional model of A3A, we identified a putative binding groove that contains residues with the potential to bind substrate DNA and to influence target sequence specificity. Taking advantage of the sequence similarity to the catalytic domain of A3G, we generated A3A/A3G chimeric proteins and analyzed their target site preference. We identified a recognition loop that altered A3A sequence specificity, broadening its target sequence preference. Mutation of amino acids in the predicted DNA binding groove prevented substrate binding, confirming the role of this groove in substrate binding. These findings shed light on how APOBEC3 proteins bind their substrate and determine which sites to deaminate. PMID:24827831

  9. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  10. Design and discovery of new combinations of mutant DNA polymerases and modified DNA substrates.

    PubMed

    Rosenblum, Sydney L; Weiden, Aurora G; Lewis, Eliza L; Ogonowsky, Alexie L; Chia, Hannah E; Barrett, Susanna E; Liu, Mira D; Leconte, Aaron Morgan

    2017-02-03

    Chemical modifications can enhance the properties of DNA by imparting nuclease resistance or generating more diverse physical structures. However, native DNA polymerases genearlly cannot synthesize any length of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2' modified DNAs; however, it is limited by the length of the products that it can synthesize. Here, we have rationally designed and characterized ten mutants of SFM19. From this library of ten mutant polymerases, we identifed enzymes with substantially improved activity relative to SFM19 for synthesis of 2'F, 2'OH, 2'OMe, and 3'OMe modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and show that they are also capable of an expanded array of modified DNA synthesis. Collectively, this work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.

  11. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation.

    PubMed

    Wright, William Douglass; Heyer, Wolf-Dietrich

    2014-02-06

    The displacement loop (D loop) is the product of homology search and DNA strand invasion, constituting a central intermediate in homologous recombination (HR). In eukaryotes, the Rad51 DNA strand exchange protein is assisted in D loop formation by the Rad54 motor protein. Curiously, Rad54 also disrupts D loops. How these opposing activities are coordinated toward productive recombination is unknown. Moreover, a seemingly disparate function of Rad54 is removal of Rad51 from heteroduplex DNA (hDNA) to allow HR-associated DNA synthesis. Here, we uncover features of D loop formation/dissociation dynamics, employing Rad51 filaments formed on ssDNAs that mimic the physiological length and structure of in vivo substrates. The Rad54 motor is activated by Rad51 bound to synapsed DNAs and guided by a ssDNA-binding domain. We present a unified model wherein Rad54 acts as an hDNA pump that drives D loop formation while simultaneously removing Rad51 from hDNA, consolidating both ATP-dependent activities of Rad54 into a single mechanistic step.

  12. Is thymidine glycol containing DNA a substrate of E. coli DNA mismatch repair system?

    PubMed

    Perevozchikova, Svetlana A; Trikin, Roman M; Heinze, Roger J; Romanova, Elena A; Oretskaya, Tatiana S; Friedhoff, Peter; Kubareva, Elena A

    2014-01-01

    The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active "sliding clamp" conformation on Tg-DNA is problematic.

  13. RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase: evidence of discrimination between DNA and RNA substrates.

    PubMed

    Kerr, S G; Anderson, K S

    1997-11-18

    The RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase has been investigated using pre-steady-state kinetics under single turnover conditions. In contrast to previous estimates of low replication fidelity of HIV-1 reverse transcriptase, the present study finds the enzyme to be more highly discriminating when an RNA/DNA template-primer is employed as compared with the corresponding DNA/DNA template-primer. The basis of this selectivity is due to extremely slow polymerization kinetics for incorporation of an incorrect deoxynucleotide. The maximum rates for misincorporation (kpol) of dGTP, dCTP, and dTTP opposite a template uridine were 0.2, 0.03, and 0.003 s-1, respectively. The equilibrium dissociation constants (Kd) for the incorrect nucleotide opposite a template uridine were 1.0, 1.1, and 0.7 mM for dGTP, dCTP, and dTTP, respectively. These kinetic values provide fidelity estimates of 26 000 for discrimination against dGTP, 176 000 for dCTP, and 1 x 10(6) for dTTP misincorporation at this position. Similar observations were obtained when incorrect nucleotide misincorporation was examined opposite a template adenine. Thus in a direct comparison of RNA/DNA and DNA/DNA template-primer substrates, HIV-1 RT exhibits approximately a 10-60-fold increase in fidelity. This study augments our current understanding of the similarities and differences of catalytic activity of HIV-1 reverse transcriptase using RNA and DNA substrates. Moreover, these studies lend further support for a model for nucleotide incorporation by HIV-1 reverse transcriptase involving a two-step binding mechanism governed by a rate-limiting conformational change for correct incorporation.

  14. Nonhomologous DNA end joining of synthetic hairpin substrates in Xenopus laevis egg extracts.

    PubMed Central

    Beyert, N; Reichenberger, S; Peters, M; Hartung, M; Göttlich, B; Goedecke, W; Vielmetter, W; Pfeiffer, P

    1994-01-01

    Processes of DNA end joining are assumed to play a major role in the elimination of DNA double-strand breaks (DSB) in higher eucaryotic cells. Linear plasmid molecules terminated by nonhomologous restriction ends are the typical substrates used in the analysis of joining mechanisms. However, due to their limited structural variability, DSB ends generated by restriction cleavage cover probably only part of the total spectrum of naturally occurring DSB termini. We therefore devised novel DNA substrates consisting of synthetic hairpin-shaped oligonucleotides which permit the construction of blunt ends and 5'- or 3'-protruding single-strands (PSS) of arbitrary sequence and length. These substrates were tested in extracts of Xenopus laevis eggs known to efficiently join linear plasmids bearing nonhomologous restriction termini (Pfeiffer and Vielmetter, 1988). Sequences of hairpin junctions indicate that the short hairpins are joined by the same mechanisms as the plasmid substrates. However, the bimolecular DNA end joining reaction was only detectable when both hairpin partners had a minimal duplex stem length of 27bp and their PSS-tails did not exceed 10nt. Images PMID:8202366

  15. In Vitro Selection of Optimal DNA Substrates for Ligation by a Water-Soluble Carbodiimide

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1994-01-01

    We have used in vitro selection to investigate the sequence requirements for efficient template-directed ligation of oligonucleotides at 0 deg C using a water-soluble carbodiimide as condensing agent. We find that only 2 bp at each side of the ligation junction are needed. We also studied chemical ligation of substrate ensembles that we have previously selected as optimal by RNA ligase or by DNA ligase. As anticipated, we find that substrates selected with DNA ligase ligate efficiently with a chemical ligating agent, and vice versa. Substrates selected using RNA ligase are not ligated by the chemical condensing agent and vice versa. The implications of these results for prebiotic chemistry are discussed.

  16. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction.

    PubMed

    Algasaier, Sana I; Exell, Jack C; Bennet, Ian A; Thompson, Mark J; Gotham, Victoria J B; Shaw, Steven J; Craggs, Timothy D; Finger, L David; Grasby, Jane A

    2016-04-08

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5'-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5'-terminiin vivo Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5'-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5'-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr(40), Asp(181), and Arg(100)and a reacting duplex 5'-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5'-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage.

  17. The Human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities.

    PubMed

    Popuri, Venkateswarlu; Bachrati, Csanád Z; Muzzolini, Laura; Mosedale, Georgina; Costantini, Silvia; Giacomini, Elisa; Hickson, Ian D; Vindigni, Alessandro

    2008-06-27

    RecQ helicases maintain chromosome stability by resolving a number of highly specific DNA structures that would otherwise impede the correct transmission of genetic information. Previous studies have shown that two human RecQ helicases, BLM and WRN, have very similar substrate specificities and preferentially unwind noncanonical DNA structures, such as synthetic Holliday junctions and G-quadruplex DNA. Here, we extend this analysis of BLM to include new substrates and have compared the substrate specificity of BLM with that of another human RecQ helicase, RECQ1. Our findings show that RECQ1 has a distinct substrate specificity compared with BLM. In particular, RECQ1 cannot unwind G-quadruplexes or RNA-DNA hybrid structures, even in the presence of the single-stranded binding protein, human replication protein A, that stimulates its DNA helicase activity. Moreover, RECQ1 cannot substitute for BLM in the regression of a model replication fork and is very inefficient in displacing plasmid D-loops lacking a 3'-tail. Conversely, RECQ1, but not BLM, is able to resolve immobile Holliday junction structures lacking an homologous core, even in the absence of human replication protein A. Mutagenesis studies show that the N-terminal region (residues 1-56) of RECQ1 is necessary both for protein oligomerization and for this Holliday junction disruption activity. These results suggest that the N-terminal domain or the higher order oligomer formation promoted by the N terminus is essential for the ability of RECQ1 to disrupt Holliday junctions. Collectively, our findings highlight several differences between the substrate specificities of RECQ1 and BLM (and by inference WRN) and suggest that these enzymes play nonoverlapping functions in cells.

  18. Detection of specific DNA using a microfluidic device featuring tethered poly(N-isopropylacrylamide) on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Jem-Kun; Li, Jun-Yan

    2010-08-01

    In this study, we grafted thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) onto a Si substrate as the medium in a microfluidic device to detect specific DNA molecules [human genomic DNA (hgDNA528), 528 bp] at extremely low concentrations (down to 2 ng/μl). After using the polymerase chain reaction to amplify the released human gDNA signal from the tethered PNIPAAm on the substrate, the amplified human gDNA molecules were characterized through agarose gel electrophoresis. The tethered PNIPAAm in the fluid device allowed the precise detection of the human gDNA.

  19. Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning.

    PubMed

    Myers, Benjamin D; Lin, Qing-Yuan; Wu, Huanxin; Luijten, Erik; Mirkin, Chad A; Dravid, Vinayak P

    2016-06-28

    The vision of nanoscale self-assembly research is the programmable synthesis of macroscale structures with controlled long and short-range order that exhibit a desired set of properties and functionality. However, strategies to reliably isolate and manipulate the nanoscale building blocks based on their size, shape, or chemistry are still in their infancy. Among the promising candidates, DNA-mediated self-assembly has enabled the programmable assembly of nanoparticles into complex architectures. In particular, two-dimensional assembly on substrates has potential for the development of integrated functional devices and analytical systems. Here, we combine the high-resolution patterning capabilities afforded by electron-beam lithography with the DNA-mediated assembly process to enable direct-write grayscale DNA density patterning. This method allows modulation of the functionally active DNA surface density to control the thermodynamics of interactions between nanoparticles and the substrate. We demonstrate that size-selective directed assembly of nanoparticle films from solutions containing a bimodal distribution of particles can be realized by exploiting the cooperativity of DNA binding in this system. To support this result, we study the temperature-dependence of nanoparticle assembly, analyze the DNA damage by X-ray photoelectron spectroscopy and fluorescence microscopy, and employ molecular dynamics simulations to explore the size-selection behavior.

  20. Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray.

    PubMed

    Bras, M; Dugas, V; Bessueille, F; Cloarec, J P; Martin, J R; Cabrera, M; Chauvet, J P; Souteyrand, E; Garrigues, M

    2004-11-01

    This paper presents a comprehensive theory and experimental characterisation of the modulation of the fluorescence intensity by the construction of optical interferences on oxidised silicon substrates used for DNA microarrays. The model predicts a 90-fold variation of the fluorescence signal depending on the oxide thickness. For a Cy3 dye, the signal is maximal for a 90 nm oxide thickness corresponding to a 7.5-fold enhancement with respect to a standard glass substrate. For experimental validation of the model, we have prepared Si/SiO2 substrates with different parallel steps of decreasing oxide thicknesses on the same sample using a buffered oxide etch (BOE) etching process after thermal oxidation. The SiO2 surface has been functionalized by a silane monolayer before in situ synthesis of L185 oligonucleotide probes. After hybridisation with complementary targets, the variations of the fluorescence intensity versus oxide thickness are in very good accordance with the theoretical model. The experimental comparison against a glass substrate shows a 10-fold enhancement of the detection sensitivity. Our results demonstrate that a Si/SiO2 substrate is an attractive alternative to standard glass slides for the realisation of fluorescence DNA microarrays whenever detection sensitivity is an important issue.

  1. The nitrosated bile acid DNA lesion O6-carboxymethylguanine is a substrate for the human DNA repair protein O6-methylguanine-DNA methyltransferase

    PubMed Central

    Senthong, Pattama; Millington, Christopher L.; Wilkinson, Oliver J.; Marriott, Andrew S.; Watson, Amanda J.; Reamtong, Onrapak; Eyers, Claire E.; Williams, David M.; Margison, Geoffrey P.; Povey, Andrew C.

    2013-01-01

    The consumption of red meat is a risk factor in human colorectal cancer (CRC). One hypothesis is that red meat facilitates the nitrosation of bile acid conjugates and amino acids, which rapidly convert to DNA-damaging carcinogens. Indeed, the toxic and mutagenic DNA adduct O6-carboxymethylguanine (O6-CMG) is frequently present in human DNA, increases in abundance in people with high levels of dietary red meat and may therefore be a causative factor in CRC. Previous reports suggested that O6-CMG is not a substrate for the human version of the DNA damage reversal protein O6-methylguanine-DNA methyltransferase (MGMT), which protects against the genotoxic effects of other O6-alkylguanine lesions by removing alkyl groups from the O6-position. We now show that synthetic oligodeoxyribonucleotides containing the known MGMT substrate O6-methylguanine (O6-MeG) or O6-CMG effectively inactivate MGMT in vitro (IC50 0.93 and 1.8 nM, respectively). Inactivation involves the removal of the O6-alkyl group and its transfer to the active-site cysteine residue of MGMT. O6-CMG is therefore an MGMT substrate, and hence MGMT is likely to be a protective factor in CRC under conditions where O6-CMG is a potential causative agent. PMID:23335782

  2. High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor.

    PubMed

    Yang, Zhiliu; Liu, Yichen; Lu, Wei; Yuan, Qingpan; Wang, Wei; Pu, Qiaosheng; Yao, Bo

    2016-05-15

    In the past decades, many efforts have been made to improve the sensitivity and specificity of electrochemical DNA biosensors. However, it is still strongly required to develop disposable and reliable DNA biosensors for wide and practical application. In this article, we reported superior electrochemical properties of an integrated plastic-gold electrode (PGE) fabricated in-house by chemical plating on polystyrene substrate. PGEs were found having extremely high capacity of DNA immobilization compared with gold electrodes fabricated by standard sputtering based photolithography. Unique nano-structured surface was observed on PGEs through morphology techniques, which would to some extend give an explanation to higher capacity of DNA immobilization on PGEs. A probable mechanism of carboxylic acid produced on polystyrene substrate after exposure to UV irradiation was proposed and discussed for the first time. This biosensor was applied to detection and manipulate of DNA hybridization. Detection limit of 7.2×10(-11) M and 1-500 nM of linearity range was obtained.

  3. Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate.

    PubMed Central

    Shlyakhtenko, L S; Gall, A A; Weimer, J J; Hawn, D D; Lyubchenko, Y L

    1999-01-01

    A procedure for covalent binding of DNA to a functionalized mica substrate is described. The approach is based on photochemical cross-linking of DNA to immobilized psoralen derivatives. A tetrafluorphenyl (TFP) ester of trimethyl psoralen (trioxalen) was synthesized, and the procedure to immobilize it onto a functionalized aminopropyl mica surface (AP-mica) was developed. DNA molecules were cross-linked to trioxalen moieties by UV irradiation of complexes. The steps of the sample preparation procedure were analyzed with x-ray photoelectron spectroscopy (XPS). Results from XPS show that an AP-mica surface can be formed by vapor phase deposition of silane and that this surface can be derivatized with trioxalen. The derivatized surface is capable of binding of DNA molecules such that, after UV cross-linking, they withstand a thorough rinsing with SDS. Observations with atomic force microscopy showed that derivatized surfaces remain smooth, so DNA molecules are easily visualized. Linear and circular DNA molecules were photochemically immobilized on the surface. The molecules are distributed over the surface uniformly, indicating rather even modification of AP-mica with trioxalen. Generally, the shapes of supercoiled molecules electrostatically immobilized on AP-mica and those photocross-linked on trioxalen-functionalized surfaces remain quite similar. This suggests that UV cross-linking does not induce formation of a noticeable number of single-stranded breaks in DNA molecules. PMID:10388781

  4. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts

    PubMed Central

    Guo, Yin; Bandaru, Viswanath; Jaruga, Pawel; Zhao, Xiaobei; Burrows, Cynthia J.; Iwai, Shigenori; Dizdaroglu, Miral; Bond, Jeffrey P.; Wallace, Susan S.

    2010-01-01

    The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from γ-irradiated DNA. MtuFpg1 has a substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products

  5. Design and synthesis of fluorescent substrates for human tyrosyl-DNA phosphodiesterase I

    PubMed Central

    Rideout, Marc C.; Raymond, Amy C.; Burgin, Alex B.

    2004-01-01

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein–DNA covalent complexes. Tdp1 hydrolyzes 3′-phosphotyrosyl bonds to generate 3′-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds. Tdp1 has been shown to be involved in double-strand break repair in yeast, and Tdp1 has also been implicated in single-strand break repair in mammalian cells. Despite the biological importance of this enzyme and the possibility that Tdp1 may be a molecular target for new anti-cancer drugs, there are very few assays available for screening inhibitor libraries or for characterizing Tdp1 function, especially under pre-steady-state conditions. Here, we report the design and synthesis of a fluorescence-based assay using oligonucleotide and nucleotide substrates containing 3′-(4-methylumbelliferone)-phosphate. These substrates are efficiently cleaved by Tdp1, generating the fluorescent 4-methylumbelliferone reporter molecule. The kinetic characteristics determined for Tdp1 using this assay are in agreement with the previously published values, and this fluorescence-based assay is validated using the standard gel-based methods. This sensitive assay is ideal for kinetic analysis of Tdp1 function and for high-throughput screening of Tdp1 inhibitory molecules. PMID:15333697

  6. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates

    NASA Astrophysics Data System (ADS)

    Yang, Wensha; Auciello, Orlando; Butler, James E.; Cai, Wei; Carlisle, John A.; Gerbi, Jennifer E.; Gruen, Dieter M.; Knickerbocker, Tanya; Lasseter, Tami L.; Russell, John N.; Smith, Lloyd M.; Hamers, Robert J.

    2002-12-01

    Diamond, because of its electrical and chemical properties, may be a suitable material for integrated sensing and signal processing. But methods to control chemical or biological modifications on diamond surfaces have not been established. Here, we show that nanocrystalline diamond thin-films covalently modified with DNA oligonucleotides provide an extremely stable, highly selective platform in subsequent surface hybridization processes. We used a photochemical modification scheme to chemically modify clean, H-terminated nanocrystalline diamond surfaces grown on silicon substrates, producing a homogeneous layer of amine groups that serve as sites for DNA attachment. After linking DNA to the amine groups, hybridization reactions with fluorescently tagged complementary and non-complementary oligonucleotides showed no detectable non-specific adsorption, with extremely good selectivity between matched and mismatched sequences. Comparison of DNA-modified ultra-nanocrystalline diamond films with other commonly used surfaces for biological modification, such as gold, silicon, glass and glassy carbon, showed that diamond is unique in its ability to achieve very high stability and sensitivity while also being compatible with microelectronics processing technologies. These results suggest that diamond thin-films may be a nearly ideal substrate for integration of microelectronics with biological modification and sensing.

  7. Conferring substrate specificity to DNA helicases: role of the RecQ HRDC domain.

    PubMed

    Bernstein, Douglas A; Keck, James L

    2005-08-01

    RecQ DNA helicases are multidomain enzymes that play pivotal roles in genome maintenance pathways. While the ATPase and helicase activities of these enzymes can be attributed to the conserved catalytic core domain, the role of the Helicase-and-RNase-D-C-terminal (HRDC) domain in RecQ function has yet to be elucidated. Here, we report the crystal structure of the E. coli RecQ HRDC domain, revealing a globular fold that resembles known DNA binding domains. We show that this domain preferentially binds single-stranded DNA and identify its DNA binding surface. HRDC domain mutations in full-length RecQ lead to surprising differences in its structure-specific DNA binding properties. These data support a model in which naturally occurring variations in DNA binding residues among diverse RecQ homologs serve to target these enzymes to distinct substrates and provide insight into a mechanism whereby RecQ enzymes have evolved distinct functions in organisms that encode multiple recQ genes.

  8. Fabrication of a Novel Cell Culture System Using DNA-Grafted Substrates and DNase.

    PubMed

    Mitomo, Hideyuki; Eguchi, Asumi; Suzuki, Yasunobu; Matsuo, Yasutaka; Niikura, Kenichi; Nakazawa, Kohji; Ijiro, Kuniharu

    2016-02-01

    In conventional cell culture systems, trypsin is generally used for cell harvesting. However, trypsin damages the cells due to the nonselective degradation of proteins on the cell surface. This is a critical issue for cell culture systems. Therefore, an alternative cell culture system with the lowest possible impact on cells is desired. In this paper, we have focused on DNA as a sacrificial layer and DNase as an alternate enzyme instead of trypsin. DNase ought not to result in damage to or stress on cells as it only hydrolyzes DNAs while the plasma membrane and extracellular matrices are basically composed of lipids, proteins, and glycosides. Therefore, we fabricated DNA-grafted substrates as cell culture dishes and evaluated this novel cell culture system. As a result, we were able to culture several types of mammalian cells on the DNA-grafted substrates, with the cells harvested using DNase with only little damage to the cells. This cell culture system could provide a breakthrough in cell culturing technology.

  9. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates.

    PubMed

    Opresko, Patricia L; Mason, Penelope A; Podell, Elaine R; Lei, Ming; Hickson, Ian D; Cech, Thomas R; Bohr, Vilhelm A

    2005-09-16

    Defects in human RecQ helicases WRN and BLM are responsible for the cancer-prone disorders Werner syndrome and Bloom syndrome. Cellular phenotypes of Werner syndrome and Bloom syndrome, including genomic instability and premature senescence, are consistent with telomere dysfunction. RecQ helicases are proposed to function in dissociating alternative DNA structures during recombination and/or replication at telomeric ends. Here we report that the telomeric single-strand DNA-binding protein, POT1, strongly stimulates WRN and BLM to unwind long telomeric forked duplexes and D-loop structures that are otherwise poor substrates for these helicases. This stimulation is dependent on the presence of telomeric sequence in the duplex regions of the substrates. In contrast, POT1 failed to stimulate a bacterial 3'-5'-helicase. We find that purified POT1 binds to WRN and BLM in vitro and that full-length POT1 (splice variant 1) precipitates a higher amount of endogenous WRN protein, compared with BLM, from the HeLa nuclear extract. We propose roles for the cooperation of POT1 with RecQ helicases WRN and BLM in resolving DNA structures at telomeric ends, in a manner that protects the telomeric 3' tail as it is exposed during unwinding.

  10. Employing double-stranded DNA probes on colloidal substrates for competitive hybridization events

    NASA Astrophysics Data System (ADS)

    Baker, Bryan Alexander

    DNA has found application beyond its biological function in the cell in a variety of materials assembly systems as well as nucleic acid-based detection devices. In the current research, double-stranded DNA probes are applied in both a colloidal particle assembly and fluorescent assay approach utilizing competitive hybridization interactions. The responsiveness of the double-stranded probes (dsProbes) was tuned by sequence design and tested against a variety of nucleic acid targets. Chapter 1 provides a review of the particle substrate used in the current research, colloidal particles, as well as examines previous applications of DNA in assembly and nucleic acid detection formats. Chapter 2 discusses the formation of fluorescent satellites, or similarly termed fluorescent micelles, via DNA hybridization. The effects of DNA duplex sequence, temperature at which assembly occurs, and oligonucleotide density are variables considered with preferential assembly observed for low oligonucleotide density particles. Chapter 3 demonstrates the controlled disassembly of these satellite structures via competitive hybridization with a soluble target strand. Chapter 4 examines DNA duplexes as fluorescent dsProbes and characterizes the kinetics of competitive hybridization between immobilized dsProbes and solution targets of interest. The sequence-based affinities of dsProbes as well as location of an embedded target sequence are both variables explored in this study. Based on the sequence design of the dsProbes, a range of kinetics responses are observed. Chapter 5 also examines the kinetics of competitive hybridization with dsProbes but with a focus on the specificity of competitive target by including mismatches within a short 15 base competitive target. Chapter 6 examines the effects of dsProbe orientation relative to the particle surface as well as substrate particle size. The kinetics of displacement of DNA targets with those of RNA targets of analogous sequence are also

  11. Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag).

    PubMed

    Lingaraju, Gondichatnahalli M; Kartalou, Maria; Meira, Lisiane B; Samson, Leona D

    2008-06-01

    DNA glycosylases initiate base excision repair by first binding, then excising aberrant DNA bases. Saccharomyces cerevisiae encodes a 3-methyladenine (3MeA) DNA glycosylase, Mag, that recognizes 3MeA and various other DNA lesions including 1,N6-ethenoadenine (epsilon A), hypoxanthine (Hx) and abasic (AP) sites. In the present study, we explore the relative substrate specificity of Mag for these lesions and in addition, show that Mag also recognizes cisplatin cross-linked adducts, but does not catalyze their excision. Through competition binding and activity studies, we show that in the context of a random DNA sequence Mag binds epsilon A and AP-sites the most tightly, followed by the cross-linked 1,2-d(ApG) cisplatin adduct. While epsilon A binding and excision by Mag was robust in this sequence context, binding and excision of Hx was extremely poor. We further studied the recognition of epsilon A and Hx by Mag, when these lesions are present at different positions within A:T and G:C tracts. Overall, epsilon A was slightly less well excised from each position within the A:T and G:C tracts compared to excision from the random sequence, whereas Hx excision was greatly increased in these sequence contexts (by up to 7-fold) compared to the random sequence. However, given most sequence contexts, Mag had a clear preference for epsilon A relative to Hx, except in the TTXTT (X=epsilon A or Hx) sequence context from which Mag removed both lesions with almost equal efficiency. We discuss how DNA sequence context affects base excision by various 3MeA DNA glycosylases.

  12. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.

  13. DNA-embedded Au-Ag core-shell nanoparticles assembled on silicon slides as a reliable SERS substrate.

    PubMed

    Zhang, Zhong; Zhang, Sha; Lin, Mengshi

    2014-05-07

    This study aimed at developing a sensitive and reliable SERS substrate by assembling DNA-embedded Au-Ag core-shell nanoparticles (NPs) on silicon slides. First, a monolayer of well separated DNA-functionalized Au NPs (40 nm) was decorated on (3-aminopropyl)triethoxysilane modified silicon slides. The DNA-embedded Au-Ag core-shell NPs were assembled on the 40 nm Au-DNA NPs to form a core-satellite structure through DNA hybridization. Using 4-MBA as a Raman dye, the SERS performance of the substrates was evaluated after being cleaned by low oxygen and argon plasma. The Raman intensity of the assembly using DNA-embedded Au-Ag core-shell NPs was 8-10 times higher than the intensity of the assembly using Au NPs as satellites. In addition, the signal-to-noise ratio of the assembly was 2.6 times higher than that of a commercial substrate (Klarite™) when a 785 nm laser was used. The SERS enhancements of the assembled substrates were 2.2 to 2.8 times higher than the Klarite when an acquisition time of 5 s was used at an excitation wavelength of 633 nm. The assembled substrates also show a good spot-to-spot and substrate-to-substrate reproducibility at the excitation wavelengths of 633 and 785 nm. These results demonstrate that the fabrication process is simple and cost-effective for assembling DNA-embedded Au-Ag core-shell NPs on silicon slides that can be used as a reliable SERS substrate.

  14. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.

    PubMed

    Kim, Junghoon; Ha, Tai Hwan; Park, Sung Ha

    2015-08-07

    We present a simple route to circumvent kinetic traps which affect many types of DNA nanostructures in their self-assembly process. Using this method, a new 2D DNA lattice made up of short, single-stranded tile (SST) motifs was created. Previously, the growth of SST DNA assemblies was restricted to 1D (tubes and ribbons) or finite-sized 2D (molecular canvases). By utilizing the substrate-assisted growth method, sets of SSTs were designed as unit cells to self-assemble into periodic and aperiodic 2D lattices which continuously grow both along and orthogonal to the helical axis. Notably, large-scale (∼1 μm(2)) fully periodic 2D lattices were fabricated using a minimum of just 2 strand species. Furthermore, the ability to create 2D lattices from a few motifs enables certain rules to be encoded into these SSTs to carry out algorithmic self-assembly. A set of these motifs was designed to execute simple 1-input 1-output COPY and NOT algorithms, the space-time manifestations which were aperiodic 2D algorithmic SST lattices. The methodology presented here can be straightforwardly applied to other motifs which fall into this type of kinetic trap to create novel DNA crystals.

  15. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    SciTech Connect

    Adhikary, Suraj; Eichman, Brandt F.

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  16. A parallel synthesis scheme for generating libraries of DNA polymerase substrates and inhibitors.

    PubMed

    Strobel, Heike; Dugué, Laurence; Marlière, Philippe; Pochet, Sylvie

    2002-12-02

    We report a combinatorial approach aimed at producing in a single step a large family of nucleoside triphosphate derivatives that could be tested for their ability to be substrates for DNA polymerases. We propose as a unique triphosphate building block a nucleotide with a hydrazine function anchored to an imidazole ring. Condensation between the 5'-triphosphate derivative of 1-(2-deoxy-beta-D-erythro-pentofuranosyl)-imidazole-4-hydrazide (dY(NH(2))TP) and any aldehyde or ketone, followed by reduction of the intermediate hydrazones dXmTP, resulted in the corresponding hydrazides (dXnTP). Following this scheme, a series of aldehydes having various aromatic parts yielded a number of adducts dY(NHR)TP. Vent (exo-) DNA polymerase is found to be able to catalyse the single incorporation of these bulky triphosphate derivatives. Subsequent extensions of the modified pairs with canonical triphosphates resulted mainly in abortive elongations at primer+2, except after the incorporation of dY(NHben)TP and, to a lesser extent, dY(NHphe)TP opposite C. These results illustrate the potential of this parallel synthetic scheme for generating new substrates or inhibitors of replication in a single step.

  17. Interactions of the SAP Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Carra, Claudio; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku70/80 complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The SAP domain of Ku70 (residues 556-609), contains an a helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the SAP/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the SAP domain of Ku70 and a 10 base pairs DNA duplex. Large-scale conformational changes were observed and some putative binding modes were suggested based on energetic analysis. These modes are consistent with previous experimental investigations. In addition, the results indicate that cooperation of SAP with other domains of Ku70/80 is necessary to explain the high affinity of binding as observed in experiments.

  18. Plant DNA: A new substrate for carbon stable isotope analysis and a potential paleoenvironmental indicator

    NASA Astrophysics Data System (ADS)

    Jahren, H.; Petersen, G.; Seberg, O.

    2003-12-01

    The δ 13C value of fossil plant materials can be used to gain insight into the dominant photosynthetic pathway, as well as other environmental attributes, of ancient plant ecosystems. Nucleotide sequences from land-plant nucleic acids extracted from 400 ka sediments have been recognized as the oldest authenticated fossil DNA, making the inference of plant taxonomy possible in substrates devoid of plant macro- and microfossils. If the C isotope relationship between bulk plant tissue and associated plant nucleic acids were known, fossil plant nucleic acids could be analyzed for δ 13C values and used as land-plant isotopic substrates within mixed organic material. Toward this end, we present δ 13C analyses of nucleic acids isolated from 12 higher-plant species that span the full phylogenetic diversity of seed plants. Extracted nucleic acids were dominated by double-stranded DNA containing fragments of rbcL gene ˜ 350 base pairs in length. The C isotope compositions of plant nucleic acids were found to be enriched in 13C relative to bulk plant tissue by a constant value (1.39 ‰ ). This study represents the first comparison of the δ 13C value of nucleic acids to the δ 13C value of bulk tissue for multicellular organisms; our results contrasted with the minimal fractionations reported for microorganisms. Because the isotopic enrichment δ 13C is constant across tracheophytes, the δ 13C value of fossil plant DNA can be used as a paleoenvironmental indicator, eliminating the need for morphological recognition of fossil plant material in paleoenvironmental studies.

  19. Plant DNA: A new substrate for carbon stable isotope analysis and a potential paleoenvironmental indicator

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope; Petersen, Gitte; Seberg, Ole

    2004-03-01

    The δ13C value of fossil plant materials can be used to gain insight into the dominant photosynthetic pathway, as well as other environmental attributes, of ancient plant ecosystems. Nucleotide sequences from land plant nucleic acids extracted from 400 ka fossil sediments have been recognized as the oldest authenticated fossil deoxyribonucleic acid (DNA), making the inference of plant taxonomy possible in substrates devoid of plant macrofossils and microfossils. If the C isotope relationship between bulk plant tissue and associated plant nucleic acids were known, fossil plant nucleic acids could be analyzed for δ13C value and used as land plant isotopic substrates within mixed organic material. Toward this end, we present δ13C analyses of nucleic acids isolated from 12 higher plant species that span the full phylogenetic diversity of seed plants. Extracted nucleic acids were dominated by double-stranded DNA containing fragments of rbcL gene ˜350 base pairs in length. The C isotope compositions of plant nucleic acids were found to be enriched in 13C relative to bulk plant tissue by a constant value = 1.39‰. This study represents the first comparison of the δ13C value of nucleic acids to the δ13C value of bulk tissue for multicellular organisms; our results contrasted with the minimal fractionations reported for microorganisms. Because the isotopic enrichment is constant across tracheophytes, the δ13C value of fossil plant DNA can be used as a paleoenvironmental indicator, eliminating the need for morphological recognition of fossil plant material in paleoenvironmental studies.

  20. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    SciTech Connect

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-03-27

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  1. Detection of salmonellas by DNA hybridization with a fluorescent alkaline phosphatase substrate.

    PubMed

    Cano, R J; Torres, M J; Klem, R E; Palomares, J C; Casadesus, J

    1992-05-01

    This study evaluates a DNA hybridization assay for salmonella with AttoPhos (JBL Scientific, San Luis Obispo, CA), a fluorescent substrate for alkaline phosphatase. The probe used (50 ng/ml) was a biotinylated 600 bp fragment consisting of a tandem repeat of an insertion sequence (IS200) found in most Salmonella spp. evaluated. The hybridization was carried out at 65 degrees C for 2 h without prior prehybridization and hybrids were detected by the addition of a streptavidin-alkaline phosphatase conjugate. Circles (5 mm) were cut from the membrane and placed in a cuvette containing 1 ml of 1 mmol/l AttoPhos. The reaction was evaluated after 30 min at 37 degrees C with a fluorometer with an excitation wavelength of 440 nm and an emission wavelength of 550 nm. The sensitivity of the probe was estimated to be 10,000 copies of target DNA or 5 x 10(-20) mol of DNA. All 74 salmonella strains tested reacted with the probe but none of the 98 heterologous species tested gave positive results. The results of this study indicate that our assay method, which employs a biotinylated tandem repeat of IS200 and AttoPhos, is a specific and highly sensitive quantitative method for the detection of salmonellas.

  2. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle.

    PubMed

    Banerjee, Rupa; Jayaraj, Gopal Gunanathan; Peter, Joshua Jebakumar; Kumar, Vignesh; Mapa, Koyeli

    2016-08-01

    DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures.

  3. Vaccinia topoisomerase and Cre recombinase catalyze direct ligation of activated DNA substrates containing a 3'-para-nitrophenyl phosphate ester.

    PubMed

    Woodfield, G; Cheng, C; Shuman, S; Burgin, A B

    2000-09-01

    DNA topoisomerases and DNA site-specific recombinases are involved in a diverse set of cellular processes but both function by making transient breaks in DNA. Type IB topoisomerases and tyrosine recombinases cleave DNA by transesterification of an active site tyrosine to generate a DNA-3'-phosphotyrosyl-enzyme adduct and a free 5'-hydroxyl (5'-OH). Strand ligation results when the 5'-OH attacks the covalent complex and displaces the enzyme. We describe the synthesis of 3'-phospho-(para-nitrophenyl) oligonucleotides (3'-pNP DNAs), which mimic the natural 3'-phosphotyrosyl intermediate, and demonstrate that such pre-activated strands are substrates for DNA ligation by vaccinia topoisomerase and Cre recombinase. Ligation occurs by direct attack of a 5'-OH strand on the 3'-pNP DNA (i.e., without a covalent protein-DNA intermediate) and generates free para-nitrophenol as a product. The chromogenic DNA substrate allows ligation to be studied in real-time and in the absence of competing cleavage reactions and can be exploited for high-throughput screening of topoisomerase/recombinase inhibitors.

  4. Efficient synthesis of supercoiled M13 DNA molecule containing a site specifically placed psoralen adduct and its use as a substrate for DNA replication

    SciTech Connect

    Kodadek, T.; Gamper, H.

    1988-05-03

    The authors report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, they report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. They demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.

  5. Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING.

    PubMed

    Khan, Irfan; Crouch, Jack D; Bharti, Sanjay Kumar; Sommers, Joshua A; Carney, Sean M; Yakubovskaya, Elena; Garcia-Diaz, Miguel; Trakselis, Michael A; Brosh, Robert M

    2016-07-01

    Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.

  6. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  7. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    PubMed

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  8. Ricin A-chain substrate specificity in RNA, DNA, and hybrid stem-loop structures.

    PubMed

    Amukele, Tim K; Schramm, Vern L

    2004-05-04

    Ricin toxin A-chain (RTA) is the catalytic subunit of ricin, a heterodimeric toxin from castor beans. Its ribosomal inactivating activity arises from depurination of a single adenine from position A(4324) in a GAGA tetraloop from 28S ribosomal RNA. Minimal substrate requirements are the GAGA tetraloop and stem of two or more base pairs. Depurination activity also occurs on stem-loop DNA with the same sequence, but with the k(cat) reduced 200-fold. Systematic variation of RNA 5'-G(1)C(2)G(3)C(4)[G(5)A(6)G(7)A(8)]G(9)C(10)G(11)C(12)-3' 12mers via replacement of each nucleotide in the tetraloop with a deoxynucleotide showed a 16-fold increase in k(cat) for A(6) --> dA(6) but reduced k(cat) up to 300-fold for the other sites. Methylation of individual 2'-hydroxyls in a similar experiment reduced k(cat) by as much as 3 x 10(-3)-fold. In stem-loop DNA, replacement of d[G(5)A(6)G(7)A(8)] with individual ribonucleotides resulted in small kinetic changes, except for the dA(6) --> A(6) replacement for which k(cat) decreased 6-fold. Insertion of d[G(5)A(6)G(7)A(8)] into an RNA stem-loop or G(5)A(6)G(7)A(8) into a DNA stem-loop reduced k(cat) by 30- and 5-fold, respectively. Multiple substitutions of deoxyribonucleotides into RNA stem-loops in one case (dG(5),dG(7)) decreased k(cat)/K(m) by 10(5)-fold, while a second change (dG(5),dA(8)) decreased k(cat) by 100-fold. Mapping these interactions on the structure of GAGA stem-loop RNA suggests that all the loop 2'-hydroxyl groups play a significant role in the action of ricin A-chain. Improved binding of RNA-DNA stem-loop hybrids provides a scaffold for inhibitor design. Replacing the adenosine of the RTA depurination site with deoxyadenosine in a small RNA stem-loop increased k(cat) 20-fold to 1660 min(-1), a value similar to RTA's k(cat) on intact ribosomes.

  9. Aphidicolin resistance in herpes simplex virus type 1 appears to alter substrate specificity in the DNA polymerase

    SciTech Connect

    Hall, J.D.; Woodward, S.

    1989-06-01

    The authors describe novel mutants of herpes simplex virus which are resistant to aphidicolin. Their mutant phenotypes suggest that they encode DNA polymerases with altered substrate recognition. This conclusion is based on their abnormal sensitivity to polymerase inhibitors and to the abnormal mutation rates exhibited by two of the mutants.

  10. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions

    PubMed Central

    Zegeye, Ephrem Debebe; Balasingham, Seetha V.; Laerdahl, Jon K.; Homberset, Håvard

    2012-01-01

    The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase. PMID:22628485

  11. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-03-17

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  12. Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that may Discriminate Substrates During DNA Repair

    PubMed Central

    Das, Debanu; Moiani, Davide; Axelrod, Herbert L.; Miller, Mitchell D.; McMullan, Daniel; Jin, Kevin K.; Abdubek, Polat; Astakhova, Tamara; Burra, Prasad; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Tainer, John A.; Wilson, Ian A.

    2010-01-01

    Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks (DSBs). As x-ray structural information has only been available for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is the Mre11 endo/exonuclease from T. maritima (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only ∼20%. However, they differ substantially in their DNA specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA specificity domain are not. The structural differences likely affect how Mre11s from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on ssDNA and dsDNA substrates, respectively. PMID:20122942

  13. Methylation-independent DNA Binding Modulates Specificity of Repressor of Silencing 1 (ROS1) and Facilitates Demethylation in Long Substrates*

    PubMed Central

    Ponferrada-Marín, María Isabel; Martínez-Macías, María Isabel; Morales-Ruiz, Teresa; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2010-01-01

    DNA cytosine methylation is an epigenetic mark that promotes gene silencing and performs critical roles during reproduction and development in both plants and animals. The genomic distribution of DNA methylation is the dynamic outcome of opposing methylation and demethylation processes. In plants, active demethylation occurs through a base excision repair pathway initiated by 5-methycytosine (5-meC) DNA glycosylases of the REPRESSOR OF SILENCING 1 (ROS1)/DEMETER (DME) family. To gain insight into the mechanism by which Arabidopsis ROS1 recognizes and excises 5-meC, we have identified those protein regions that are required for efficient DNA binding and catalysis. We have found that a short N-terminal lysine-rich domain conserved in members of the ROS1/DME family mediates strong methylation-independent binding of ROS1 to DNA and is required for efficient activity on 5-meC·G, but not for T·G processing. Removal of this domain does not significantly affect 5-meC excision from short molecules, but strongly decreases ROS1 activity on long DNA substrates. This region is not required for product binding and is not involved in the distributive behavior of the enzyme on substrates containing multiple 5-meC residues. Altogether, our results suggest that methylation-independent DNA binding allows ROS1 to perform a highly redundant search for efficient excision of a nondamaged, correctly paired base such as 5-meC in long stretches of DNA. These findings may have implications for understanding the evolution of structure and target specificity in DNA glycosylases. PMID:20489198

  14. Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation.

    PubMed

    Dixit, Aparna Banerjee; Ray, Krishanu; Black, Lindsay W

    2012-12-11

    Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.

  15. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-04-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate.

  16. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed Central

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-01-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate. PMID:9545030

  17. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex.

    PubMed

    Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2017-02-17

    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.

  18. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

    PubMed Central

    Yu, Bomina; Hunt, John F.

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis–Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this “kcat/Km compensation,” which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding. PMID:19706517

  19. Enzymological and Structural Studies of the Mechanism of Promiscuous Substrate Recognition by the Oxidative DNA Repair Enzyme AlkB

    SciTech Connect

    Yu, B.; Hunt, J

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this 'kcat/Km compensation,' which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding.

  20. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  1. Hydrolysis of DNA model substrates catalyzed by metal-substituted Wells-Dawson polyoxometalates.

    PubMed

    Vanhaecht, Stef; Absillis, Gregory; Parac-Vogt, Tatjana N

    2012-09-07

    In this study we report the first example of phosphoester bond hydrolysis in 4-nitrophenyl phosphate (NPP) and bis-4-nitrophenyl phosphate (BNPP), two commonly used DNA model substrates, promoted by metal-substituted polyoxometalates (POMs). Different transition metal and lanthanide ions were incorporated into the Wells-Dawson polyoxometalate framework and subsequently screened for their hydrolytic activity towards the cleavage of the phosphoester bonds in NPP and BNPP. From these complexes, the Zr(iv)-substituted POM showed the highest reactivity. At pD 7.2 and 50 °C a NPP hydrolysis rate constant of 7.71 × 10(-4) min(-1) (t(1/2) = 15 h) was calculated, representing a rate enhancement of nearly two orders of magnitude in comparison with the spontaneous hydrolysis of NPP. The catalytic (k(c) = 1.73 × 10(-3) min(-1)) and formation constant (K(f) = 520.02 M(-1)) for the NPP-Zr(iv)-POM complex were determined from kinetic experiments. The reaction proceeded faster in acidic conditions and (31)P NMR experiments showed that faster hydrolysis is proportional to the presence of the 1 : 1 monosubstituted Zr(iv)-POM at acidic pD values. The strong interaction of the 1 : 1 monosubstituted Zr(iv)-POM with the P-O bond of NPP was evidenced by the large chemical shift and the line broadening of the (31)P nucleus in NPP observed upon addition of the metal complex. Significantly, a ten-fold excess of NPP was fully hydrolyzed in the presence of the Zr(iv)-POM, proving the principles of catalysis. The NMR spectra did not show sign of any paramagnetic species, excluding an oxidative cleavage mechanism and suggesting purely hydrolytic cleavage.

  2. Multiple Escherichia coli RecQ helicase monomers cooperate to unwind long DNA substrates: a fluorescence cross-correlation spectroscopy study.

    PubMed

    Li, Na; Henry, Etienne; Guiot, Elvire; Rigolet, Pascal; Brochon, Jean-Claude; Xi, Xu-Guang; Deprez, Eric

    2010-03-05

    The RecQ family helicases catalyze the DNA unwinding reaction in an ATP hydrolysis-dependent manner. We investigated the mechanism of DNA unwinding by the Escherichia coli RecQ helicase using a new sensitive helicase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. The FCCS-based assay can be used to measure the unwinding activity under both single and multiple turnover conditions with no limitation related to the size of the DNA strands constituting the DNA substrate. We found that the monomeric helicase was sufficient to perform the unwinding of short DNA substrates. However, a significant increase in the activity was observed using longer DNA substrates, under single turnover conditions, originating from the simultaneous binding of multiple helicase monomers to the same DNA molecule. This functional cooperativity was strongly dependent on several factors, including DNA substrate length, the number and size of single-stranded 3'-tails, and the temperature. Regarding the latter parameter, a strong cooperativity was observed at 37 degrees C, whereas only modest or no cooperativity was observed at 25 degrees C regardless of the nature of the DNA substrate. Consistently, the functional cooperativity was found to be tightly associated with a cooperative DNA binding mode. We also showed that the cooperative binding of helicase to the DNA substrate indirectly accounts for the sigmoidal dependence of unwinding activity on ATP concentration, which also occurs only at 37 degrees C but not at 25 degrees C. Finally, we further examined the influences of spontaneous DNA rehybridization (after helicase translocation) and the single-stranded DNA binding property of helicase on the unwinding activity as detected in the FCCS assay.

  3. Non-homologous DNA end joining repair in normal and leukemic cells depends on the substrate ends.

    PubMed

    Pastwa, Elzbieta; Poplawski, Tomasz; Czechowska, Agnieszka; Malinowski, Mariusz; Blasiak, Janusz

    2005-01-01

    Double-strand breaks (DSBs) are the most serious DNA damage which, if unrepaired or misrepaired, may lead to cell death, genomic instability or cancer transformation. In human cells they can be repaired mainly by non-homologous DNA end joining (NHEJ). The efficacy of NHEJ pathway was examined in normal human lymphocytes and K562 myeloid leukemic cells expressing the BCR/ABL oncogenic tyrosine kinase activity and lacking p53 tumor suppressor protein. In our studies we employed a simple and rapid in vitro DSB end joining assay based on fluorescent detection of repair products. Normal and cancer cells were able to repair DNA damage caused by restriction endonucleases, but the efficiency of the end joining was dependent on the type of cells and the structure of DNA ends. K562 cells displayed decreased NHEJ activity in comparison to normal cells for 5' complementary DNA overhang. For blunt-ended DNA there was no significant difference in end joining activity. Both kinds of cells were found about 10-fold more efficient for joining DNA substrates with compatible 5' overhangs than those with blunt ends. Our recent findings have shown that stimulation of DNA repair could be involved in the drug resistance of BCR/ABL-positive cells in anticancer therapy. For the first time the role of STI571 was investigated, a specific inhibitor of BCR/ABL oncogenic protein approved for leukemia treatment in the NHEJ pathway. Surprisingly, STI571 did not change the response of BCR/ABL-positive K562 cells in terms of NHEJ for both complementary and blunt ends. Our results suggest that the various responses of the cells to DNA damage via NHEJ can be correlated with the differences in the genetic constitution of human normal and cancer cells. However, the role of NHEJ in anticancer drug resistance in BCR/ABL-positive cells is questionable.

  4. Force-activated substrates for high-precision, high-throughput optical trapping assays of ssDNA motor proteins (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Okoniewski, Stephen; Perkins, Thomas T.

    2016-09-01

    Optical-trapping-based assays can measure individual proteins bind to and move along DNA with sub-nm resolution, and have yielded insight into a broad array of protein-DNA interactions. Unfortunately, collecting large numbers of high-resolution traces remains an ongoing challenge. Studying helicase motion along DNA exemplifies this challenge. One major difficulty is that helicase binding often requires a single stranded (ss)-double stranded (ds) DNA junction flanked by ssDNA with a minimum size and orientation. Historically, creating such DNA substrates is inefficient. More problematic is that data throughput is low in standard surface-based assays since all substrates are unwound upon introduction of ATP. The net result is 2-4 high-resolution traces on a good day. To improve throughput, we sought to turn-on or activate a substrate for a helicase one molecule at a time and thereby sequentially study many molecules on an individual microscope slide. As a first step towards this goal, we engineered a dsDNA that contains two site-specific nicks along the same strand of the dsDNA but no ssDNA. Upon overstretching the DNA (F = 65 pN), the strand between the two nicks was mechanically dissociated. We demonstrated this with two different substrates: one yielding an internal ssDNA region of 1100 nt and the other yielding a 20-bp long hairpin flanked by 30 nt of ssDNA. Unwinding a hairpin yields a 3-fold larger signal while the 30-nt ssDNA serves as the binding site for the helicase. We expect that these force-activated substrates to significantly accelerate high-resolution optical-trapping studies of DNA helicases.

  5. DNA Charge Transport over 34 nm

    PubMed Central

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-01-01

    Molecular wires show promise in nanoscale electronics but the synthesis of uniform, long conductive molecules is a significant challenge. DNA of precise length, by contrast, is easily synthesized, but its conductivity has not been explored over the distances required for nanoscale devices. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation that is accessible to protein binding. Similar electron transfer rates are measured through 100-mer and 17-mer monolayers, consistent with rate-limiting electron tunneling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses most reports of molecular wires. PMID:21336329

  6. DNA Ligase I is an In Vivo Substrate of DNA-Dependent Protein Kinase and is Activated by Phosphorylation in Response to DNA Double-Strand Breaks

    DTIC Science & Technology

    2006-01-01

    anlysis. to the procedure described by Malanga and Althaus (8). Gel Electrophoresis and A utoradiography. Immunopre- DNA Ligase and Protein Assays. DNA...by casein kinase 11, EMBO J. 11, 2925-2933. In conclusion, we have demonstrated that DNA ligase I 8. Malanga , M., and Althaus, F. R. (1994) Poly (ADP

  7. Grip it and rip it: structural mechanisms of DNA helicase substrate binding and unwinding.

    PubMed

    Bhattacharyya, Basudeb; Keck, James L

    2014-11-01

    Maintenance and faithful transmission of genomic information depends on the efficient execution of numerous DNA replication, recombination, and repair pathways. Many of the enzymes that catalyze steps within these pathways require access to sequence information that is buried in the interior of the DNA double helix, which makes DNA unwinding an essential cellular reaction. The unwinding process is mediated by specialized molecular motors called DNA helicases that couple the chemical energy derived from nucleoside triphosphate hydrolysis to the otherwise non-spontaneous unwinding reaction. An impressive number of high-resolution helicase structures are now available that, together with equally important mechanistic studies, have begun to define the features that allow this class of enzymes to function as molecular motors. In this review, we explore the structural features within DNA helicases that are used to bind and unwind DNA. We focus in particular on "aromatic-rich loops" that allow some helicases to couple single-stranded DNA binding to ATP hydrolysis and "wedge/pin" elements that provide mechanical tools for DNA strand separation when connected to translocating motor domains.

  8. Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor.

    PubMed

    Zhang, Tingting; Li, He; Hou, Shengwei; Dong, Youqing; Pang, Guangsheng; Zhang, Yingwei

    2015-12-16

    We report the successful construction of plasmonic core-satellite nanostructured assemblies on two-dimensional substrates, based on a strategy of combining DNA-functionalized plasmonic nanoparticles (NPs) with the specific recognition ability toward target to enable satellite NPs to self-assemble around the core immobilized on substrates. A strongly coupled plasmonic resonance band was observed because of the close proximity between core and satellite NPs, which presented significant red-shift and enhanced extinction with respect to the local surface plasmon resonance (LSPR) band of individual core NPs on the substrate. The functionality of this core-satellite nanostructured assembly as a biosensor was further explored, and the changes in extinction intensity and the peak shift of the plasmonic coupling resonance band arising from the probe-target DNA binding event all proved to be useful criteria for target DNA detection. Moreover, high selectivity down to single-base mismatched DNA was achieved using this strongly coupled plasmonic core-satellite nanostructured assembly on a substrate. Such substrate-based detection was advantageous, and its reusability and high cycle stability were demonstrated after five cycles of disassembly and reassembly. Our work demonstrates the biosensing capacity of this DNA-functionalized plasmonic nanoassembly model system on two-dimensional substrate, which is also applicable to the detection of numerous DNA-recognized biomolecules. Likewise, the presented construction method can be extended to fabricate other compositional core-satellite nanoassemblies.

  9. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    PubMed

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  10. Ferroplasma acidarmanus RPA2 facilitates efficient unwinding of forked DNA substrates by monomers of FacXPD helicase.

    PubMed

    Pugh, Robert A; Lin, Yuyen; Eller, Chelcie; Leesley, Haley; Cann, Isaac K O; Spies, Maria

    2008-11-28

    The strand-separation activity that is important for many cellular DNA processing machineries is provided by DNA helicases. In order to understand the physiological properties of a helicase acting in the context of its macromolecular machinery, it is imperative to identify the proteins that interact with the enzyme and to analyze how these proteins affect its helicase activities. The archaeal Rad3 helicase XPD (xeroderma pigmentosum group D protein) from Ferroplasma acidarmanus (FacXPD) is a superfamily II 5'-->3' DNA helicase. Similar to its mammalian homolog working as an integral part of the transcription factor IIH complex, FacXPD may play an important role in nucleotide excision repair (NER) and transcription initiation. Interaction between FacXPD and other archaeal NER proteins likely modulates their respective activities. Replication protein A (RPA), a single-stranded DNA (ssDNA)-binding protein, is one of the NER proteins that functionally interact with the human transcription factor IIH complex. There are two RPA proteins in F. acidarmanus: FacRPA1, a homodimer of two monomers consisting of two oligonucleotide/oligosaccharide binding folds, and FacRPA2, a monomer containing a single oligonucleotide/oligosaccharide binding fold. In this study, we analyzed the effect of these ssDNA-binding proteins on FacXPD helicase activity. We found that FacRPA2 stimulates DNA unwinding by FacXPD helicase through a novel mechanism by providing a helix-destabilizing function. In contrast, FacRPA1 fails to stimulate helicase activity to the same extent as FacRPA2 and competes with FacXPD for binding to the ssDNA-double-stranded DNA junction. We conclude that the FacRPA2-coated fork is a preferred and likely physiological substrate that a monomer of FacXPD can unwind with a processivity sufficient for expansion of the NER or transcription bubble. We also suggest that duplex melting by a cognate ssDNA-binding protein coordinated with translocation by a helicase may represent

  11. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.

  12. Interactions of the C-terminal Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku(sub 70/80) complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The C-terminal domain of Ku70 (Ku70c, residues 559-609), contains an helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the Ku70c/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the subunit Ku70c and a 14 base pairs DNA duplex, whose starting structures are designed to be variable so as to mimic their different binding modes. By analyzing conformational changes and energetic properties of the complex during MD simulations, we found that interactions are preferred at DNA ends, and within the major groove, which is consistent with previous experimental investigations. In addition, the results indicate that cooperation of Ku70c with other subunits of Ku(sub 70/80) is necessary to explain the high affinity of binding as observed in experiments.

  13. Products and substrate/template usage of vaccinia virus DNA primase

    SciTech Connect

    De Silva, Frank S.; Paran, Nir; Moss, Bernard

    2009-01-05

    Vaccinia virus encodes a 90-kDa protein conserved in all poxviruses, with DNA primase and nucleoside triphosphatase activities. DNA primase products, synthesized with a single stranded {phi}X174 DNA template, were resolved as dinucleotides and long RNAs on denaturing polyacrylamide and agarose gels. Following phosphatase treatment, the dinucleotides GpC and ApC in a 4:1 ratio were identified by nearest neighbor analysis in which {sup 32}P was transferred from [{alpha}-{sup 32}P]CTP to initiating purine nucleotides. Differences in the nucleotide binding sites for initiation and elongation were suggested by the absence of CpC and UpC dinucleotides as well as the inability of deoxynucleotides to mediate primer synthesis despite their incorporation into mixed RNA/DNA primers. Strong primase activity was detected with an oligo(dC) template. However, there was only weak activity with an oligo(dT) template and none with oligo(dA) or oligo(dG). The absence of stringent template specificity is consistent with a role for the enzyme in priming DNA synthesis at the replication fork.

  14. Activity of FEN1 endonuclease on nucleosome substrates is dependent upon DNA sequence but not flap orientation.

    PubMed

    Jagannathan, Indu; Pepenella, Sharon; Hayes, Jeffrey J

    2011-05-20

    We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.

  15. Saccharomyces cerevisiae Hrq1 requires a long 3 Prime -tailed DNA substrate for helicase activity

    SciTech Connect

    Kwon, Sung-Hun; Choi, Do-Hee; Lee, Rina; Bae, Sung-Ho

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Hrq1 has intrinsic 3 Prime -5 Prime helicase and DNA strand annealing activities. Black-Right-Pointing-Pointer Hrq1 requires a long 3 Prime -tail for efficient DNA unwinding. Black-Right-Pointing-Pointer Helicase activity of Hrq1 is stimulated by a fork structure. Black-Right-Pointing-Pointer Hrq1 is a moderately processive helicase. -- Abstract: RecQ helicases are well conserved proteins from bacteria to human and function in various DNA metabolism for maintenance of genome stability. Five RecQ helicases are found in humans, whereas only one RecQ helicase has been described in lower eukaryotes. However, recent studies predicted the presence of a second RecQ helicase, Hrq1, in fungal genomes and verified it as a functional gene in fission yeast. Here we show that 3 Prime -5 Prime helicase activity is intrinsically associated with Hrq1 of Saccharomyces cerevisiae. We also determined several biochemical properties of Hrq1 helicase distinguishable from those of other RecQ helicase members. Hrq1 is able to unwind relatively long duplex DNA up to 120-bp and is significantly stimulated by a preexisting fork structure. Further, the most striking feature of Hrq1 is its absolute requirement for a long 3 Prime -tail ( Greater-Than-Or-Slanted-Equal-To 70-nt) for efficient unwinding of duplex DNA. We also found that Hrq1 has potent DNA strand annealing activity. Our results indicate that Hrq1 has vigorous helicase activity that deserves further characterization to expand our understanding of RecQ helicases.

  16. In vitro selection of optimal DNA substrates for T4 RNA ligase

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 RNA ligase. We find that the ensemble of selected sequences ligated about 10 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly, the majority of the selected sequences approximated a well-defined consensus sequence.

  17. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.

    PubMed

    Porello, S L; Leyes, A E; David, S S

    1998-10-20

    The DNA repair enzyme MutY plays an important role in the prevention of DNA mutations resulting from the presence of the oxidatively damaged lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA by the removal of misincorporated adenine residues in OG:A mispairs. MutY also exhibits adenine glycosylase activity toward adenine in G:A and C:A mismatches, although the importance of this activity in vivo has not been established. We have investigated the kinetic properties of MutY's glycosylase activity with OG:A and G:A containing DNA duplexes. Our results indicate that MutY's processing of these two substrates is distinctly different. By using single-turnover experiments, the intrinsic rate for adenine removal by MutY from an OG:A substrate was found to be at least 6-fold faster than that from the corresponding G:A substrate. However, under conditions where [MutY] < [DNA], OG:A substrates are not quantitatively converted to product due to the inefficient turnover resulting from slow product release. In contrast, with a G:A substrate MutY's dissociation from the corresponding product is more facile, such that complete conversion of the substrate to product can be achieved under similar conditions. The kinetic results illustrate that the glycosylase reaction catalyzed by MutY has significant differences depending on the characteristics of the substrate. The lingering of MutY with the product of its reaction with OG:A mispairs may be biologically significant to prevent premature removal of OG. Thus, this approach is providing insight into factors that may be influencing the repair of damaged and mismatched DNA in vivo by base-excision repair glycosylases.

  18. Use of damaged DNA and dNTP substrates by the error-prone DNA polymerase X from African swine fever virus.

    PubMed

    Kumar, Sandeep; Lamarche, Brandon J; Tsai, Ming-Daw

    2007-03-27

    The structural specificity that translesion DNA polymerases often show for a particular class of lesions suggests that the predominant criterion of selection during their evolution has been the capacity for lesion tolerance and that the error-proneness they display when copying undamaged templates may simply be a byproduct of this adaptation. Regardless of selection criteria/evolutionary history, at present both of these properties coexist in these enzymes, and both properties confer a fitness advantage. The repair polymerase, Pol X, encoded by the African swine fever virus (ASFV) is one of the most error-prone polymerases known, leading us to previously hypothesize that it may work in tandem with the exceptionally error-tolerant ASFV DNA ligase to effect viral mutagenesis. Here, for the first time, we test whether the error-proneness of Pol X is coupled with a capacity for lesion tolerance by examining its ability to utilize the types of damaged DNA and dNTP substrates that are expected to be relevant to ASFV. We (i) test Pol X's ability to both incorporate opposite to and extend from ubiquitous oxidative purine (7,8-dihydro-8-oxoguanine), oxidative pyrimidine (5,6-dihydroxy-5,6-dihydrothymine), and noncoding (AP site) lesions, in addition to 5,6-dihydrothymine, (ii) determine the catalytic efficiency and dNTP specificity of Pol X when catalyzing incorporation opposite to, and when extending from, 7,8-dihydro-8-oxoguanine in a template/primer context, and (iii) quantitate Pol X-catalyzed incorporation of the damaged nucleotide 8-oxo-dGTP opposite to undamaged templates in the context of both template/primer and a single-nucleotide gap. Our findings are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.

  19. Fluorescence of quantum dots on e-beam patterned and DNA origami substrates

    NASA Astrophysics Data System (ADS)

    Corrigan, Timothy D.; Kessinger, Matthew; Kidd, Jesse; Neff, David; Rahman, Masudur; Norton, Michael L.

    2015-05-01

    Attachment of quantum dots or fluorescent molecules to gold nanoparticles has a variety of optical labeling and sensory applications. In this study, we use both e-beam lithography and DNA origami to examine the fluorescence enhancement of fluorescent molecules and quantum dots with a systematic approach to understanding the contribution of gold nanoparticle size and interparticle spacing. The unique design of our patterns allows us to study the effects of size and spacing of the gold nanoparticles on the enhancement of fluorescence in one quick study with constant conditions - removing undesirable effects such as differences in concentration of quantum dots or other chemistry differences that plague multiple experiments. We also discuss the fluorescence and bonding of CdSe/ZnS quantum dots to both gold as well as DNA for use in self assembled DNA constructs. Specifically, bioconjugated CdSe/ZnS core/shell quantum dots were synthesized and functionalized with MPA using both traditional ligand exchange as well as newly developed in situ functionalization techniques used to increase the quantum yield of the quantum dots. We will present fluorescent images showing results of optimal size and spacing for fluorescence as well as demonstrating attachment chemistry of the quantum dots.

  20. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications.

    PubMed

    Rockwood, Jananie; Mao, Dominic; Grogan, Dennis W

    2013-09-01

    Although homologous recombination (HR) is known to influence the structure, stability, and evolution of microbial genomes, few of its functional properties have been measured in cells of hyperthermophilic archaea. The present study manipulated various properties of the parental DNAs in high-resolution assays of Sulfolobus acidocaldarius transformation, and measured the impact on the efficiency and pattern of marker transfer to the recipient chromosome. The relative orientation of homologous sequences, the type and position of chromosomal mutation being replaced, and the length of DNA flanking the marked region all affected the efficiency, linkage, tract continuity, and other parameters of marker transfer. Effects predicted specifically by the classical reciprocal-exchange model of HR were not observed. One analysis observed only 90 % linkage between markers defined by adjacent bases; in another series of experiments, sequence divergence up to 4 % had no detectable impact on overall efficiency of HR or on the co-transfer of a distal non-selected marker. The effects of introducing DNA via conjugation, rather than transformation, were more difficult to assess, but appeared to increase co-transfer (i.e. linkage) of relatively distant non-selected markers. The results indicate that HR events between gene-sized duplex DNAs and the S. acidocaldarius chromosome typically involve neither crossing over nor interference from a mismatch-activated anti-recombination system. Instead, the donor DNA may anneal to a transient chromosomal gap, as in the mechanism proposed for oligonucleotide-mediated transformation of Sulfolobus and other micro-organisms.

  1. Selective DNA-Mediated Assembly of Gold Nanoparticles on Electroded Substrates

    DTIC Science & Technology

    2008-06-01

    nm Au NPs was determined using UV-visible spectroscopy by measuring the absorbance at 520 nm (surface plasmon peak) and an approximate extinction ...concentration as determined by DTT assay . (B) Average distance between DNAs on the surface as estimated from the surface density. Also shown is the... coefficient of 1 × 108L/(mol · cm).8 Typically, the as- prepared concentrations were ∼30-35 nM. Deprotection of ssDNA. Deprotection of the 5ThiolMC6-D

  2. Substrate promiscuity in DNA methyltransferase M.PvuII. A mechanistic insight.

    PubMed

    Aranda, Juan; Roca, Maite; Tuñón, Iñaki

    2012-07-28

    M.PvuII is a DNA methyltransferase from the bacterium Proteus vulgaris that catalyzes methylation of cytosine at the N4 position. This enzyme also displays promiscuous activity catalyzing methylation of adenine at the N6 position. In this work we use QM/MM methods to investigate the reaction mechanism of this promiscuous activity. We found that N6 methylation in M.PvuII takes place by means of a stepwise mechanism in which deprotonation of the exocyclic amino group is followed by the methyl transfer. Deprotonation involves two residues of the active site, Ser53 and Asp96, while methylation takes place directly from the AdoMet cofactor to the target nitrogen atom. The same reaction mechanism was described for cytosine methylation in the same enzyme, while the reversal timing, that is methylation followed by deprotonation, has been described in M.TaqI, an enzyme that catalyzes the N6-adenine DNA methylation from Thermus aquaticus. These mechanistic findings can be useful to understand the evolutionary paths followed by N-methyltransferases.

  3. Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics.

    PubMed

    Fernández-Sáiz, Vanesa; Moro, Fernando; Arizmendi, Jesus M; Acebrón, Sergio P; Muga, Arturo

    2006-03-17

    To gain further insight into the interactions involved in the allosteric transition of DnaK we have characterized wild-type (wt) protein and three mutants in which ionic interactions at the interface between the two subdomains of the substrate binding domain, and within the lid subdomain have been disrupted. Our data show that ionic contacts, most likely forming an electrically charged network, between the N-terminal region of helix B and an inner loop of the beta-sandwich are involved in maintaining the position of the lid relative to the beta-subdomain in the ADP state but not in the ATP state of the protein. Disruption of the ionic interactions between the C-terminal region of helix B and the outer loops of the beta-sandwich, known as the latch, does not have the same conformational consequences but results equally in an inactive protein. This indicates that a variety of mechanisms can inactivate this complex allosteric machine. Our results identify the ionic contacts at the subdomain and interdomain interfaces that are part of the hinge region involved in the ATP-induced allosteric displacement of the lid away from the peptide binding site. These interactions also stabilize peptide-Hsp70 complexes at physiological (37 degrees C) and stress (42 degrees C) temperatures, a requirement for productive substrate (re)folding.

  4. Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.

    PubMed

    Haruta, Miyoshi; Pedersen, Jens A.; Constabel, C. Peter

    2001-08-01

    The biochemical anti-herbivore defense of trembling aspen (Populus tremuloides Michx.) was investigated in a molecular analysis of polyphenol oxidase (PPO; EC 1.10.3.2). A PPO cDNA was isolated from a trembling aspen wounded leaf cDNA library and its nucleotide sequence determined. Southern analysis indicated the presence of two PPO genes in the trembling aspen genome. Expression of PPO was found to be induced after herbivory by forest tent caterpillar, by wounding, and by methyl jasmonate treatment. Wound induction was systemic, and occurred in unwounded leaves on wounded plants. This pattern of expression is consistent with a role of this enzyme in insect defense. A search for potential PPO substrates in ethanolic aspen leaf extracts using electron spin resonance (ESR) found no pre-existing diphenolic compounds. However, following a brief delay and several additions of oxygen, an ESR signal specific for catechol was detected. The source of this catechol was most likely the aspen phenolic glycosides tremulacin or salicortin which decomposed during ESR experiments. This was subsequently confirmed in experiments using pure salicortin.

  5. Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing.

    PubMed

    Grunenwald, A; Keyser, C; Sautereau, A M; Crubézy, E; Ludes, B; Drouet, C

    2014-07-01

    The extraction of DNA from skeletal remains is a major step in archeological or forensic contexts. However, diagenesis of mineralized tissues often compromises this task although bones and teeth may represent preservation niches allowing DNA to persist over a wide timescale. This exceptional persistence is not only explained on the basis of complex organo-mineral interactions through DNA adsorption on apatite crystals composing the mineral part of bones and teeth but is also linked to environmental factors such as low temperatures and/or a dry environment. The preservation of the apatite phase itself, as an adsorption substrate, is another crucial factor susceptible to significantly impact the retrieval of DNA. With the view to bring physicochemical evidence of the preservation or alteration of diagenetic biominerals, we developed here an analytical approach on various skeletal specimens (ranging from ancient archeological samples to recent forensic specimens), allowing us to highlight several diagenetic indices so as to better apprehend the complexity of bone diagenesis. Based on complementary techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), calcium and phosphate titrations, SEM-EDX, and gravimetry), we have identified specific indices that allow differentiating 11 biological samples, primarily according to the crystallinity and maturation state of the apatite phase. A good correlation was found between FTIR results from the analysis of the v3(PO4) and v4(PO4) vibrational domains and XRD-based crystallinity features. A maximal amount of information has been sought from this analytical approach, by way of optimized posttreatment of the data (spectral subtraction and enhancement of curve-fitting parameters). The good overall agreement found between all techniques leads to a rather complete picture of the diagenetic changes undergone by these 11 skeletal specimens. Although the heterogeneity and scarcity of the studied samples did not allow us

  6. Differential salt-induced dissociation of the p53 protein complexes with circular and linear plasmid DNA substrates suggest involvement of a sliding mechanism.

    PubMed

    Šebest, Peter; Brázdová, Marie; Fojta, Miroslav; Pivoňková, Hana

    2015-01-30

    A study of the effects of salt conditions on the association and dissociation of wild type p53 with different ~3 kbp long plasmid DNA substrates (supercoiled, relaxed circular and linear, containing or lacking a specific p53 binding site, p53CON) using immunoprecipitation at magnetic beads is presented. Salt concentrations above 200 mM strongly affected association of the p53 protein to any plasmid DNA substrate. Strikingly different behavior was observed when dissociation of pre-formed p53-DNA complexes in increased salt concentrations was studied. While contribution from the p53CON to the stability of the p53-DNA complexes was detected between 100 and 170 mM KCl, p53 complexes with circular DNAs (but not linear) exhibited considerable resistance towards salt treatment for KCl concentrations as high as 2 M provided that the p53 basic C-terminal DNA binding site (CTDBS) was available for DNA binding. On the contrary, when the CTDBS was blocked by antibody used for immunoprecipitation, all p53-DNA complexes were completely dissociated from the p53 protein in KCl concentrations≥200 mM under the same conditions. These observations suggest: (a) different ways for association and dissociation of the p53-DNA complexes in the presence of the CTDBS; and (b) a critical role for a sliding mechanism, mediated by the C-terminal domain, in the dissociation process.

  7. Substrate specificity of the Rad3 ATPase/DNA helicase of Saccharomyces cerevisiae and binding of Rad3 protein to nucleic acids.

    PubMed

    Naegeli, H; Bardwell, L; Harosh, I; Freidberg, E C

    1992-04-15

    Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase which catalyzes the unwinding of DNA.DNA duplexes. In the present studies we have demonstrated that the purified enzyme additionally catalyzes the displacement of RNA fragments annealed to complementary DNA. Quantitative comparisons using otherwise identical partially duplex DNA.DNA and DNA.RNA substrates indicate a significant preference for the latter. Competition for ATPase or DNA helicase activity by various homopolymers suggests that Rad3 protein does not discriminate between ribonucleotide and deoxyribonucleotide homopolymers with respect to binding. However, neither single-stranded RNA nor various ribonucleotide homopolymers supported the hydrolysis of nucleoside 5'-triphosphates. Additionally, Rad3 protein was unable to catalyze the displacement of oligo(dA) annealed to poly(U), suggesting that the catalytic domain of the enzyme is exquisitely sensitive to chemical and/or or conformational differences between DNA and RNA. Hence, it appears that Rad3 protein is not an RNA helicase.

  8. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.

    PubMed

    Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S

    2017-04-01

    Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, Tm, and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (Tm(F/T) < Tm(εA/T) < Tm(Hx/T) < Tm(A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.

  9. DNA helicase activity in purified human RECQL4 protein.

    PubMed

    Suzuki, Takahiro; Kohno, Toshiyuki; Ishimi, Yukio

    2009-09-01

    Human RECQL4 protein was expressed in insect cells using a baculovirus protein expression system and it was purified to near homogeneity. The protein sedimented at a position between catalase (230 kDa) and ferritin (440 kDa) in glycerol gradient centrifugation, suggesting that it forms homo-multimers. Activity to displace annealed 17-mer oligonucleotide in the presence of ATP was co-sedimented with hRECQL4 protein. In ion-exchange chromatography, both DNA helicase activity and single-stranded DNA-dependent ATPase activity were co-eluted with hRECQL4 protein. The requirements of ATP and Mg for the helicase activity were different from those for the ATPase activity. The data suggest that the helicase migrates on single-stranded DNA in a 3'-5' direction. These results suggest that the hRECQL4 protein exhibits DNA helicase activity.

  10. Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent HeLa cell extract.

    PubMed

    Petruseva, I O; Tikhanovich, I S; Maltseva, E A; Safronov, I V; Lavrik, O I

    2009-05-01

    Photoactivated DNA analogs of nucleotide excision repair (NER) substrates have been created that are 48-mer duplexes containing in internal positions pyrimidine nucleotides with bulky substituents imitating lesions. Fluorochloroazidopyridyl, anthracenyl, and pyrenyl groups introduced using spacer fragments at 4N and 5C positions of dCMP and dUMP were used as model damages. The gel retardation and photo-induced affinity modification techniques were used to study the interaction of modified DNA duplexes with proteins in HeLa cell extracts containing the main components of NER protein complexes. It is shown that the extract proteins selectively bind and form covalent adducts with the model DNA. The efficiency and selectivity of protein modification depend on the structure of used DNA duplex. Apparent molecular masses of extract proteins, undergoing modification, were estimated. Mutual influence of simultaneous presence of extract proteins and recombinant NER protein factors XPC-HR23B, XPA, and RPA on interaction with the model DNA was analyzed. The extract proteins and RPA competed for interaction with photoactive DNA, mutually decreasing the yield of modification products. In this case the presence of extract proteins at particular concentrations tripled the increase in yield of covalent adducts formed by XPC. It is supposed that the XPC subunit interaction with DNA is stimulated by endogenous HR23B present in the extract. Most likely, the mutual effect of XPA and extract proteins stimulating formation of covalent adducts with model DNA is due to the interaction of XPA with endogenous RPA of the extract. A technique based on the use of specific antibodies revealed that RPA present in the extract is a modification target for photoactive DNA imitating NER substrates.

  11. A novel virus-like particle based on hepatitis B core antigen and substrate-binding domain of bacterial molecular chaperone DnaK.

    PubMed

    Wang, Xue Jun; Gu, Kai; Xiong, Qi Yan; Shen, Liang; Cao, Rong Yue; Li, Ming Hui; Li, Tai Ming; Wu, Jie; Liu, Jing Jing

    2009-12-09

    Hepatitis B virus core (HBc) protein has been proved to be an attractive carrier for foreign epitopes, and can display green fluorescent protein (GFP) on its surface. The structure of substrate-binding domain of DnaK [DnaK (394-504 aa), DnaK SBD] is similar to GFP, we therefore reasoned that DnaK SBD might also be tolerated. Electron microscopic observations suggested that the chimeric proteins containing the truncated HBc (HBcDelta) and DnaK SBD could self-assemble into virus-like particle (VLP). Then the accessibility of DnaK SBD and the adjuvanticity of VLP HBcDelta-SBD were demonstrated by two recombinant peptide vaccines against gonadotropin-releasing hormone (GnRH), GhM and GhMNR. The latter carries in addition the peptide motif NRLLLTG which is known to bind to DnaK and DnaK SBD. The combination of VLP HBcDelta-SBD and GhMNR elicited stronger humoral responses and caused further testicular atrophy than the combinations of VLP HBcDelta and GhMNR or VLP HBcDelta-SBD and GhM in Balb/c mice. These findings indicate VLP HBcDelta-SBD might serve as an excellent carrier for GhMNR and some other peptide vaccines.

  12. Incorporation of fludarabine and 1-beta-D-arabinofuranosylcytosine 5'-triphosphates by DNA polymerase alpha: affinity, interaction, and consequences.

    PubMed

    Gandhi, V; Huang, P; Chapman, A J; Chen, F; Plunkett, W

    1997-08-01

    Fludarabine and 1-beta-D-arabinofuranosylcytosine (ara-C) are effective nucleoside analogues for the treatment of leukemias when used as single agents or together. Recent trials of the fludarabine and ara-C therapy with or without growth factors suggested an improved clinical response by combining fludarabine and ara-C. The activity of these antimetabolites depends on their phosphorylation to the respective triphosphates, F-ara-ATP and ara-CTP. The principal mechanism through which these triphosphates cause cytotoxicity is incorporation into DNA and inhibition of further DNA synthesis. A model system of DNA primer extension on a defined template sequence was used to quantitate the consequences of incorporation of one or two analogues by human DNA polymerase alpha (pol alpha). The template (31-mer) was designed so that DNA pol alpha incorporated six deoxynucleotides (alternately G and T) on the 17-mer primer, followed by insertion of an A and then a C. The primer was then elongated with G and T to the full-length product. The apparent Kms of DNA pol alpha to incorporate these analogues (0. 053 and 0.077 microM, respectively) were similar to the Km for dCTP (0.037 microM) and dATP (0.044 microM), suggesting that the enzyme recognized these analogues and incorporated them efficiently on the growing DNA primer. The velocity of extension (Vmax) of these primers ranged between 0.53 and 0.77%/min when normal nucleotides were present. Once inserted at the 3'-terminus, F-ara-AMP or ara-CMP were poor substrates for extension. However, in reactions lacking dCTP and dATP and with high concentrations of ara-CTP, ara-CMP was inserted by pol alpha after incorporation of the F-ara-AMP residue. This tandem incorporation of the two analogues resulted in almost complete inhibition (99.3%) of further extension of the primer. In the presence of competing deoxynucleotides, each analogue resulted in a dose-dependent inhibition of DNA synthesis. When present together, inhibition of the

  13. Differential Incorporation of Carbon Substrates among Microbial Populations Identified by Field-Based, DNA Stable-Isotope Probing in South China Sea

    PubMed Central

    Xie, Xiabing; Jiao, Nianzhi

    2016-01-01

    To determine the adapted microbial populations to variant dissolved organic carbon (DOC) sources in the marine environment and improve the understanding of the interaction between microorganisms and marine DOC pool, field-based incubation experiments were carried out using supplemental 13C-labeled typical substrates D-glucose and D-glucosamine (D-Glc and D-GlcN, respectively), which are two important components in marine DOC pool in the South China Sea. 13C- and 12C-DNA were then fractionated by ultracentrifugation and the microbial community was analyzed by terminal-restriction fragment length polymorphism and 454 pyrosequencing of 16S rRNA gene. 12C-DNA-based communities showed relatively high similarities with their corresponding in situ communities, and their bacterial diversities were generally higher than 13C-DNA-based counterparts. Distinct differences in community composition were found between 13C- and 12C-DNA-based communities and between two substrate-supplemented 13C-DNA-based communities; these differences distinctly varied with depth and site. In most cases, there were more genera with relative abundances of >0.1% in D-Glc-incorporating communities than in D-GlcN-incorporating communities. The Roseobacter clade was one of the prominent actively substrate-incorporating bacterial populations in all 13C-DNA-based communities. Vibrio was another prominent actively D-GlcN-incorporating bacterial population in most incubations. However notably, different OTUs dominated this clade or genus in different treatments at different depths. Altogether, these results suggested that there were taxa-specific differences in DOC assimilations and, moreover, their differences varied among the typical water masses, which could have been caused by the variant compositions of original bacterial communities from different hydrological environments. This implies that ecologically, the levels of labile or recalcitrance of DOC can be maintained only in a specific environmental

  14. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.

    PubMed

    Li, Wei; Jiang, Wei; Ding, Yongshun; Wang, Lei

    2015-09-15

    MicroRNAs (miRNAs) play important roles in a variety of biological processes and have been regarded as tumor biomarkers in cancer diagnosis and prognosis. In this work, a single-molecule counting method for miRNA analysis was proposed based on toehold-mediated strand displacement reaction (SDR) and DNA tetrahedron substrate. Firstly, a specially designed DNA tetrahedron was assembled with a hairpin at one of the vertex, which has an overhanging toehold domain. Then, the DNA tetrahedron was immobilized on the epoxy-functional glass slide by epoxy-amine reaction, forming a DNA tetrahedron substrate. Next, the target miRNA perhybridized with the toehold domain and initiated a strand displacement reaction along with the unfolding of the hairpin, realizing the selective recognization of miRNA. Finally, a biotin labeled detection DNA was hybridized with the new emerging single strand and the streptavidin coated QDs were used as fluorescent probes. Fluorescent images were acquired via epi-fluorescence microscopy, the numbers of fluorescence dots were counted one by one for quantification. The detection limit is 5 fM, which displayed an excellent sensitivity. Moreover, the proposed method which can accurately be identified the target miRNA among its family members, demonstrated an admirable selectivity. Furthermore, miRNA analysis in total RNA samples from human lung tissues was performed, suggesting the feasibility of this method for quantitative detection of miRNA in biomedical research and early clinical diagnostics.

  15. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair.

    PubMed

    Alshykhly, Omar R; Fleming, Aaron M; Burrows, Cynthia J

    2015-09-21

    Guanine (G) is a target for oxidation by reactive oxygen species in DNA, RNA, and the nucleotide pool. Damage to DNA yields products with alternative properties toward DNA processing enzymes compared to those of the parent nucleotide. A new lesion, 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), bearing a stereocenter in the base was recently identified from the oxidation of G. DNA polymerase and base excision repair processing of this new lesion has now been evaluated. Single nucleotide insertion opposite (S)-2Ih and (R)-2Ih in the template strand catalyzed by the DNA polymerases Klenow fragment exo(-), DPO4, and Hemo KlenTaq demonstrates these lesions to cause point mutations. Specifically, they promote 3-fold more G·C → C·G transversion mutations than G·C → T·A, and (S)-2Ih was 2-fold more blocking for polymerase bypass than (R)-2Ih. Both diastereomer lesions were found to be substrates for the DNA glycosylases NEIL1 and Fpg, and poorly excised by endonuclease III (Nth). The activity was independent of the base pair partner. Thermal melting, CD spectroscopy, and density functional theory geometric optimization calculations were conducted to provide insight into these polymerase and DNA glycosylase studies. These results identify that formation of the 2Ih lesions in a cell would be mutagenic in the event that they were not properly repaired.

  16. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.

    PubMed

    Kameshita, I; Matsuda, Z; Taniguchi, T; Shizuta, Y

    1984-04-25

    Poly(ADP-ribose) synthetase of Mr = 120,000 is cleaved by limited proteolysis with alpha-chymotrypsin into two fragments of Mr = 54,000 (54K) and Mr = 66,000 (66K). When the native enzyme is modified with 3-(bromoacetyl)pyridine, both portions of the enzyme are alkylated; however, alkylation of the 54K portions of the enzyme is protected by the addition of the substrate, NAD, or its analog, nicotinamide, suggesting that the substrate-binding site is localized in the 54K fragment. When the enzyme previously automodified with a low concentration of [adenine-U-14C] NAD is digested with alpha-chymotrypsin, the radioactivity is detected exclusively in the 66K fragment. The 66K fragment thus labeled is further cleaved with papain into two fragments of Mr = 46,000 and Mr = 22,000. With these two fragments, the label is detected only in the 22K fragment, but not in the 46K fragment. The 46K fragment binds to a DNA-cellulose column with the same affinity as that of the native enzyme, while the 22K fragment and the 54K fragment have little affinity for the DNA ligand. These results indicate that poly (ADP-ribose) synthetase contains three separable domains, the first possessing the site for binding of the substrate, NAD, the second containing the site for binding of DNA, and the third acting as the site(s) for accepting poly(ADP-ribose).

  17. DNA Electrochemistry with Tethered Methylene Blue

    PubMed Central

    Pheeney, Catrina G.

    2012-01-01

    Methylene blue (MB′), covalently attached to DNA through a flexible C12 alkyl linker, provides a sensitive redox reporter in DNA electrochemistry measurements. Tethered, intercalated MB′ is reduced through DNA-mediated charge transport; the incorporation of a single base mismatch at position 3, 10, or 14 of a 17-mer causes an attenuation of the signal to 62 ± 3% of the well-matched DNA, irrespective of position in the duplex. The redox signal intensity for MB′–DNA is found to be least 3-fold larger than that of Nile blue (NB)–DNA, indicating that MB′ is even more strongly coupled to the π-stack. The signal attenuation due to an intervening mismatch does, however, depend on DNA film density and the backfilling agent used to passivate the surface. These results highlight two mechanisms for reduction of MB′ on the DNA-modified electrode: reduction mediated by the DNA base pair stack and direct surface reduction of MB′ at the electrode. These two mechanisms are distinguished by their rates of electron transfer that differ by 20-fold. The extent of direct reduction at the surface can be controlled by assembly and buffer conditions. PMID:22512327

  18. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.

    PubMed

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M; Bianco, Piero R; Surtees, Jennifer A

    2014-06-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.

  19. The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1

    PubMed Central

    Herbert, Alan; Rich, Alexander

    2001-01-01

    RNA editing changes the read-out of genetic information, increasing the number of different protein products that can be made from a single gene. One form involves the deamination of adenosine to form inosine, which is subsequently translated as guanosine. The reaction requires a double-stranded RNA (dsRNA) substrate and is catalyzed by the adenosine deaminase that act on dsRNA (ADAR) family of enzymes. These enzymes possess dsRNA-binding domains (DRBM) and a catalytic domain. ADAR1 so far has been found only in vertebrates and is characterized by two Z-DNA-binding motifs, the biological function of which remains unknown. Here the role of the various functional domains of ADAR1 in determining the editing efficiency and specificity of ADAR1 is examined in cell-based assays. A variety of dsRNA substrates was tested. It was found that a 15-bp dsRNA stem with a single base mismatch was sufficient for editing. The particular adenosine modified could be varied by changing the position of the mismatch. Editing efficiency could be increased by placing multiple pyrimidines 5′ to the edited adenosine. With longer substrates, editing efficiency also increased and was partly due to the use of DRBMs. Additional editing sites were also observed that clustered on the complementary strand 11–15 bp from the first. An unexpected finding was that the DRBMs are not necessary for the editing of the shorter 15-bp substrates. However, mutation of the Z-DNA-binding domains of ADAR1 decreased the efficiency with which such a substrate was edited. PMID:11593027

  20. Mitochondrial DNA and retroviral RNA analyses of archival oral polio vaccine (OPV CHAT) materials: evidence of macaque nuclear sequences confirms substrate identity.

    PubMed

    Berry, Neil; Jenkins, Adrian; Martin, Javier; Davis, Clare; Wood, David; Schild, Geoffrey; Bottiger, Margareta; Holmes, Harvey; Minor, Philip; Almond, Neil

    2005-02-25

    Inoculation of live experimental oral poliovirus vaccines (OPV CHAT) during the 1950s in central Africa has been proposed to account for the introduction of HIV into human populations. For this to have occurred, it would have been necessary for chimpanzee rather than macaque kidney epithelial cells to have been included in the preparation of early OPV materials. Theoretically, this could have led to contamination with a progenitor of HIV-1 derived from a related simian immunodeficiency virus of chimpanzees (SIVCPZ). In this article we present further detailed analyses of two samples of OPV, CHAT 10A-11 and CHAT 6039/Yugo, which were used in early human trials of poliovirus vaccination. Recovery of poliovirus by culture techniques confirmed the biological viability of the vaccines and sequence analysis of poliovirus RNA specifically identified the presence of the CHAT strain. Independent nested sets of oligonucleotide primers specific for HIV-1/SIVCPZ and HIV-2/SIVMAC/SIVSM phylogenetic lineages, respectively, indicated no evidence of HIV/SIV RNA in either vaccine preparation, at a sensitivity of 100 RNA equivalents/ml. Analysis of cellular substrate by the amplification of two distinct regions of mitochondrial DNA (D-loop control region and 12S ribosomal sequences) revealed no evidence of chimpanzee cellular sequences. However, this approach positively identified rhesus and cynomolgus macaque DNA for the CHAT 10A-11 and CHAT 6039/Yugo vaccine preparations, respectively. Analysis of multiple clones of mtDNA 12S rDNA indicated a relatively high number of nuclear mitochondrial DNA sequences (numts) in the CHAT 10A-11 material, but confirmed the macaque origin of cellular substrate used in vaccine preparation. These data reinforce earlier findings on this topic providing no evidence to support the contention that poliovirus vaccination was responsible for the introduction of HIV into humans and sparking the AIDS pandemic.

  1. G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates.

    PubMed

    Liu, Jia-quan; Chen, Chang-yue; Xue, Yong; Hao, Yu-hua; Tan, Zheng

    2010-08-04

    Sequences with the potential to form G-quadruplex structures are spread throughout genomic DNA. G-quadruplexes in promoter regions can play regulatory roles in gene expression. Expression of protein-encoding genes involves processing of DNA and RNA molecules at the level of transcription and translation, respectively. In order to examine how the G-quadruplex affects processing of nucleic acids, we established a real-time fluorescent assay and studied the unwinding of intramolecular G-quadruplex formed by the human telomere, ILPR and PSMA4 sequences by the BLM helicase. Through comparison with their corresponding duplex substrates, we found that the unwinding of intramolecular G-quadruplex structures was much less efficient than that of the duplexes. This result is in contrast to previous reports that multistranded intermolecular G-quadruplexes are far better substrates for the BLM and other RecQ family helicases. In addition, the unwinding efficiency varied significantly among the G-quadruplex structures, which correlated with the stability of the structures. These facts suggest that G-quadruplex has the capability to modulate the processing of DNA and RNA molecules in a stability-dependent manner and, as a consequence, may provide a mechanism to play regulatory roles in events such as gene expression.

  2. OIP30, a RuvB-like DNA helicase 2, is a potential substrate for the pollen-predominant OsCPK25/26 in rice.

    PubMed

    Wang, Cheng-Wei; Chen, Wan-Chieh; Lin, Li-Jing; Lee, Chung-Tsai; Tseng, Tung-Hai; Leu, Wei-Ming

    2011-09-01

    Calcium ions are a well-known essential component for pollen germination and tube elongation. Several calcium-dependent protein kinases (CDPKs) are expressed predominantly in mature pollen grains and play a critical role in pollen. However, none of their interacting proteins or downstream substrates has been identified. Using yeast two-hybrid screening, we isolated OsCPK25/26-interacting protein 30 (OIP30), which is also predominantly expressed in pollen. OIP30 encodes a RuvB-like DNA helicase 2 (RuvBL2) that is well conserved in eukaryotic species from yeast to human. Yeast and Drosophila defective in RuvBL2 are non-viable. The interaction between OsCPK26 and OIP30 was confirmed by far-Western blot and pull-down experiments. OIP30 was phosphorylated in a calcium-dependent manner by OsCPK26 but not OsCPK2, which is highly similar to OsCPK26 in sequence and expression profile. OIP30 unwound partial duplex DNA with a 3' to 5' directionality by ATP hydrolysis. Concurrently, the ATPase activity of OIP30 depended on single-stranded DNA. OsCPK26 phosphorylated OIP30 and enhanced both its helicase and ATPase activity about 3-fold. OIP30 may be the potential downstream substrate for OsCPK25/26 in pollen. This report characterizes a RuvBL in plants and links its activities with its upstream regulator.

  3. Display of amino groups on substrate surfaces by simple dip-coating of methacrylate-based polymers and its application to DNA immobilization.

    PubMed

    Shimomura, Ayane; Nishino, Takashi; Maruyama, Tatsuo

    2013-01-22

    The implementation of a reactive functional group onto a material surface is of great importance. Reactive functional groups (e.g., an amino group and a hydroxyl group) are usually hydrophilic, which makes it difficult to display them on a dry polymer surface. We here propose a novel method for displaying amino groups on the surfaces of polymeric substrates through dip-coating of a methacrylate-based copolymer. We synthesized copolymers composed of methyl methacrylate and 2-aminoethyl methacrylate with different protecting groups or ion-complexes on their amino groups, then dip-coated the copolymers onto a poly(methyl methacrylate) (PMMA) substrate. Evaluation using a cleavable fluorescent compound, which was synthesized in the present study to quantify a small amount (pmol/cm(2)) of amino groups on a solid surface, revealed that the protection of amino groups affected their surface segregation in the copolymer coating. p-Toluenesulfonate ion-complex and tert-butoxycarbonyl (Boc) protection of amino groups were found to effectively display amino groups on the surface (more than 70 pmol/cm(2)). The density of amino groups displayed on a surface can be easily controlled by mixing the copolymer and PMMA before dip-coating. Dip-coating of the copolymer with Boc protection on various polymeric substrates also successfully displayed amino groups on their surfaces. Finally, we demonstrated that the amino groups displayed can be utilized for the immobilization of a DNA oligonucleotide on a substrate surface.

  4. A major substrate for MPF: cDNA cloning and expression of polypeptide chain elongation factor 1 gamma from goldfish (Carassius auratus).

    PubMed

    Tokumoto, Mika; Nagahama, Yoshitaka; Tokumoto, Toshinobu

    2002-02-01

    One of the eukaryotic polypeptide chain elongation factors, EF-1 beta gamma delta complex, is involved in polypeptide chain elongation via the GDP/GTP exchange activity of EF-1 alpha. In the complex, EF-1 gamma has been reported to be a major substrate for maturation promoting factor (MPF). Here, we present the cloning, sequencing and expression analysis of goldfish, Carassius auratus, EF-1 gamma from the goldfish ovary. The cloned cDNA was 1490 bp in length and encoded 442 amino acids. The deduced amino acid sequence was highly homologous to EF-1 gamma from other species. Although, the phosphorylation site identified in Xenopus EF-1 gamma was not conserved in the goldfish homologue, phosphorylation analysis showed that the goldfish EF-1 gamma was phosphorylated by MPF. We concluded that EF-1 gamma is a substrate for MPF during oocyte maturation in goldfish.

  5. Synthesis, crystallization and preliminary crystallographic analysis of a 52-nucleotide DNA/2'-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with a substrate.

    PubMed

    Dolot, Rafał; Sobczak, Milena; Mikołajczyk, Barbara; Nawrot, Barbara

    2017-03-21

    A 52-nucleotide DNA/2'-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with its substrate was synthesized, purified and crystallized by the hanging-drop method using 0.8 M sodium potassium tartrate as a precipitant. A data set to 1.21 Å resolution was collected from a monocrystal at 100 K using synchrotron radiation on a beamline BL14.1 at BESSY. The crystal belonged to the P21 group with unit-cell a = 49.42, b = 24.69, c = 50.23, β = 118.48.

  6. Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms.

    PubMed

    Castagna, Rossella; Bertucci, Alessandro; Prasetyanto, Eko Adi; Monticelli, Marco; Conca, Dario Valter; Massetti, Matteo; Sharma, Parikshit Pratim; Damin, Francesco; Chiari, Marcella; De Cola, Luisa; Bertacco, Riccardo

    2016-04-05

    High-performing hybridization platforms fabricated by reactive microcontact printing of DNA probes are presented. Multishaped PDMS molds are used to covalently bind oligonucleotides over a functional copolymer (DMA-NAS-MAPS) surface. Printed structures with minimum width of about 1.5 μm, spaced by 10 μm, are demonstrated, with edge corrugation lower than 300 nm. The quantification of the immobilized surface probes via fluorescence imaging gives a remarkable concentration of 3.3 × 10(3) oligonucleotides/μm(2), almost totally active when used as probes in DNA-DNA hybridization assays. Indeed, fluorescence and atomic force microscopy show a 95% efficiency in target binding and uniform DNA hybridization over printed areas.

  7. 2'-(R)-Fluorinated mC, hmC, fC and caC triphosphates are substrates for DNA polymerases and TET-enzymes.

    PubMed

    Schröder, A S; Parsa, E; Iwan, K; Traube, F R; Wallner, M; Serdjukow, S; Carell, T

    2016-12-13

    A deeper investigation of the chemistry that occurs on the newly discovered epigenetic DNA bases 5-hydroxymethyl-(hmdC), 5-formyl-(fdC), and 5-carboxy-deoxycytidine (cadC) requires chemical tool compounds, which are able to dissect the different potential reaction pathways in cells. Here we report that the 2'-(R)-fluorinated derivatives F-hmdC, F-fdC, and F-cadC, which are resistant to removal by base excision repair, are good substrates for DNA polymerases and TET enzymes. This result shows that the fluorinated compounds are ideal tool substances to investigate potential C-C-bond cleaving reactions in the context of active demethylation.

  8. Arbitrary single primer amplification of trace DNA substrates yields sequence content profiles that are discriminatory and reproducible.

    PubMed

    Waters, James M; Eariss, Graham; Yeadon, P Jane; Kirkbride, K Paul; Burgoyne, Leigh A; Catcheside, David E A

    2012-02-01

    Single primer amplification is shown to yield a DNA profile that is reproducible when based on the sequence content of the amplicons rather than on the pattern of length polymorphism. The sequence-based profile increases in reliability with increasing numbers of cycles of amplification. This process uses an arbitrarily chosen primer and a low initial annealing temperature in order to amplify sequences from the whole metagenome present in a sample that may contain only trace DNA, and a large number of cycles to select subsets of sequences based on variable amplification efficiency. Using arrays, we demonstrate the utility and limitations of this approach for profiling the large metagenomes typical of soils and the trace DNA present in drug seizures. We suggest that this type of profiling will be most effective once next-generation sequencing and advanced sequence analysis becomes routine.

  9. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  10. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination.

    PubMed

    Trojanek, Joanna; Ho, Thu; Del Valle, Luis; Nowicki, Michal; Wang, Jin Ying; Lassak, Adam; Peruzzi, Francesca; Khalili, Kamel; Skorski, Tomasz; Reiss, Krzysztof

    2003-11-01

    The receptor for insulin-like growth factor I (IGF-IR) controls normal and pathological growth of cells. DNA repair pathways represent an unexplored target through which the IGF-IR signaling system might support pathological growth leading to cellular transformation. However, this study demonstrates that IGF-I stimulation supports homologous recombination-directed DNA repair (HRR). This effect involves an interaction between Rad51 and the major IGF-IR signaling molecule, insulin receptor substrate 1 (IRS-1). The binding occurs within the cytoplasm, engages the N-terminal domain of IRS-1, and is attenuated by IGF-I-mediated IRS-1 tyrosine phosphorylation. In the absence of IGF-I stimulation, or if mutated IGF-IR fails to phosphorylate IRS-1, localization of Rad51 to the sites of damaged DNA is diminished. These results point to a direct role of IRS-1 in HRR and suggest a novel role for the IGF-IR/IRS-1 axis in supporting the stability of the genome.

  11. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  12. From nucleotides to DNA analysis by a SERS substrate of a self similar chain of silver nanospheres

    NASA Astrophysics Data System (ADS)

    Coluccio, M. L.; Gentile, F.; Das, G.; Perozziello, G.; Malara, N.; Alrasheed, S.; Candeloro, P.; Di Fabrizio, E.

    2015-11-01

    In this work we realized a device of silver nanostructures designed so that they have a great ability to sustain the surface-enhanced Raman scattering effect. The nanostructures were silver self-similar chains of three nanospheres, having constant ratios between their diameters and between their reciprocal distances. They were realized by electron beam lithography, to write the pattern, and by silver electroless deposition technique, to fill it with the metal. The obtained device showed the capability to increase the Raman signal coming from the gap between the two smallest nanospheres (whose size is around 10 nm) and so it allows the detection of biomolecules fallen into this hot spot. In particular, oligonucleotides with 6 DNA bases, deposited on these devices with a drop coating method, gave a Raman spectrum characterized by a clear fingerprint coming from the hot spot and, with the help of a fitting method, also oligonucleotides of 9 bases, which are less than 3 nm long, were resolved. In conclusion the silver nanolens results in a SERS device able to measure all the molecules, or part of them, held into the hot spot of the nanolenses, and thus it could be a future instrument with which to analyze DNA portions.

  13. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques.

    PubMed

    Cardoso, Sergio; Valverde, Laura; Alfonso-Sánchez, Miguel A; Palencia-Madrid, Leire; Elcoroaristizabal, Xabier; Algorta, Jaime; Catarino, Susana; Arteta, David; Herrera, Rene J; Zarrabeitia, María Teresa; Peña, José A; de Pancorbo, Marian M

    2013-01-01

    The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ~10,000 years before present (YBP), with signals of expansions at ~3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈ 15%) of the Franco-Cantabrian maternal gene pool with a putative pre

  14. The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates

    PubMed Central

    Whitaker, Neal; Chen, Yuqing; Jakubowski, Simon J.; Sarkar, Mayukh K.; Li, Feng

    2015-01-01

    ABSTRACT Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are

  15. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.

  16. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  17. The Expanded mtDNA Phylogeny of the Franco-Cantabrian Region Upholds the Pre-Neolithic Genetic Substrate of Basques

    PubMed Central

    Cardoso, Sergio; Valverde, Laura; Alfonso-Sánchez, Miguel A.; Palencia-Madrid, Leire; Elcoroaristizabal, Xabier; Algorta, Jaime; Catarino, Susana; Arteta, David; Herrera, Rene J.; Zarrabeitia, María Teresa; Peña, José A.; de Pancorbo, Marian M.

    2013-01-01

    The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ∼10,000 years before present (YBP), with signals of expansions at ∼3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈15%) of the Franco-Cantabrian maternal gene pool with a putative pre

  18. Graphene: Substrate preparation and introduction.

    PubMed

    Pantelic, Radosav S; Suk, Ji Won; Magnuson, Carl W; Meyer, Jannik C; Wachsmuth, Philipp; Kaiser, Ute; Ruoff, Rodney S; Stahlberg, Henning

    2011-04-01

    This technical note describes the transfer of continuous, single-layer, pristine graphene to standard Quantifoil TEM grids. We compare the transmission properties of pristine graphene substrates to those of graphene oxide and thin amorphous carbon substrates. Positively stained DNA imaged across amorphous carbon is typically indiscernible and requires metal shadowing for sufficient contrast. However, in a practical illustration of the new substrates properties, positively stained DNA is imaged across pristine graphene in striking contrast without the need of metal shadowing. We go onto discuss technical considerations and the potential applications of pristine graphene substrates as well as their ongoing development.

  19. DNA nanostructure meets nanofabrication.

    PubMed

    Zhang, Guomei; Surwade, Sumedh P; Zhou, Feng; Liu, Haitao

    2013-04-07

    Recent advances in DNA nanotechnology have made it possible to construct DNA nanostructures of almost arbitrary shapes with 2-3 nm of precision in their dimensions. These DNA nanostructures are ideal templates for bottom-up nanofabrication. This review highlights the challenges and recent advances in three areas that are directly related to DNA-based nanofabrication: (1) fabrication of large scale DNA nanostructures; (2) pattern transfer from DNA nanostructure to an inorganic substrate; and (3) directed assembly of DNA nanostructures.

  20. Desulfovibrio vulgaris bacterioferritin uses H(2)O(2) as a co-substrate for iron oxidation and reveals DPS-like DNA protection and binding activities.

    PubMed

    Timóteo, Cristina G; Guilherme, Márcia; Penas, Daniela; Folgosa, Filipe; Tavares, Pedro; Pereira, Alice S

    2012-08-15

    A gene encoding Bfr (bacterioferritin) was identified and isolated from the genome of Desulfovibrio vulgaris cells, and overexpressed in Escherichia coli. In vitro, H(2)O(2) oxidizes Fe(2+) ions at much higher reaction rates than O(2). The H(2)O(2) oxidation of two Fe(2+) ions was proven by Mössbauer spectroscopy of rapid freeze-quenched samples. On the basis of the Mössbauer parameters of the intermediate species we propose that D. vulgaris Bfr follows a mineralization mechanism similar to the one reported for vertebrate H-type ferritins subunits, in which a diferrous centre at the ferroxidase site is oxidized to diferric intermediate species, that are subsequently translocated into the inner nanocavity. D. vulgaris recombinant Bfr oxidizes and stores up to 600 iron atoms per protein. This Bfr is able to bind DNA and protect it against hydroxyl radical and DNase deleterious effects. The use of H(2)O(2) as an oxidant, combined with the DNA binding and protection activities, seems to indicate a DPS (DNA-binding protein from starved cells)-like role for D. vulgaris Bfr.

  1. Tetraploid cells produced by absence of substrate adhesion during cytokinesis are limited in their proliferation and enter senescence after DNA replication.

    PubMed

    De Santis Puzzonia, Marco; Gonzalez, Laetitia; Ascenzi, Sonia; Cundari, Enrico; Degrassi, Francesca

    2016-01-01

    Tetraploidy has been proposed as an intermediate state in neoplastic transformation due to the intrinsic chromosome instability of tetraploid cells. Despite the identification of p53 as a major factor in growth arrest of tetraploid cells, it is still unclear whether the p53-dependent mechanism for proliferation restriction is intrinsic to the tetraploid status or dependent on the origin of tetraploidy. Substrate adherence is fundamental for cytokinesis completion in adherent untransformed cells. Here we show that untransformed fibroblast cells undergoing mitosis in suspension produce binucleated tetraploid cells due to defective cleavage furrow constriction that leads to incomplete cell abscission. Binucleated cells obtained after loss of substrate adhesion maintain an inactive p53 status and are able to progress into G1 and S phase. However, binucleated cells arrest in G2, accumulate p53 and are not able to enter mitosis as no tetraploid metaphases were recorded after one cell cycle time. In contrast, tetraploid metaphases were found following pharmacological inhibition of Chk1 kinase, suggesting the involvement of the ATR/Chk1 pathway in the G2 arrest of binucleated cells. Interestingly, after persistence in the G2 phase of the cell cycle, a large fraction of binucleated cells become senescent. These findings identify a new pathway of proliferation restriction for tetraploid untransformed cells that seems to be specific for loss of adhesion-dependent cytokinesis failure. This involves Chk1 and p53 activation during G2. Inhibition of growth and entrance into senescence after cytokinesis in suspension may represent an important mechanism to control tumor growth. In fact, anchorage independent growth is a hallmark of cancer and it has been demonstrated that binucleated transformed cells can enter a cycle of anchorage independent growth.

  2. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases.

    PubMed Central

    Morvan, F; Rayner, B; Imbach, J L; Thenet, S; Bertrand, J R; Paoletti, J; Malvy, C; Paoletti, C

    1987-01-01

    This paper describes for the first time the synthesis of alpha-oligonucleotides containing the four usual bases. Two unnatural hexadeoxyribonucleotides: alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)], consisting only of alpha-anomeric nucleotide units, were obtained by an improved phosphotriester method, in solution. Starting material was the four base-protected alpha-deoxyribonucleosides 3a-d. Pyrimidine alpha-deoxynucleosides 3a and 3b were prepared by self-anomerization reactions followed by selective deprotection of sugar hydroxyles, while the two purine alpha-deoxynucleosides 3c and 3d were prepared by glycosylation reactions. In the case of guanine alpha-nucleoside derivative a supplementary base-protecting group: N,N-diphenylcarbamoyl was introduced on O6-position in order to avoid side-reactions during oligonucleotide assembling. The hexadeoxynucleotide alpha-[d(CpApTpGpCpG)] was tested as substrate of selected endo- and exonucleases. In conditions where the natural corresponding beta-hexamer was completely degradated by nuclease S1 and calf spleen phosphodiesterase, the alpha-oligonucleotide remained almost intact. PMID:3575096

  3. Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate

    PubMed Central

    2014-01-01

    Background Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates. Objective To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA. Methods Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared. Results Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the ‘classic’ assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay. Conclusions This large study did not reveal significant differences in AQP4-IgG detection rates between the ‘classic’ CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the ‘classic’ AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders. PMID:25074611

  4. DNA-cell conjugates

    DOEpatents

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  5. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  6. Mammalian DNA helicase.

    PubMed Central

    Hübscher, U; Stalder, H P

    1985-01-01

    A forked DNA was constructed to serve as a substrate for DNA helicases. It contains features closely resembling a natural replication fork. The DNA was prepared in large amounts and was used to assay displacement activity during isolation from calf thymus DNA polymerases alpha holoenzyme. One form of DNA polymerase alpha holoenzyme is possibly involved leading strand replication at the replication fork and possesses DNA dependent ATPase activity (Ottiger, H.-P. and Hübscher, U. (1984) Proc. Natl. Acad. Sci. USA 81, 3993-3997). The enzyme can be separated from DNA polymerase alpha by velocity sedimentation in conditions of very low ionic strength and then be purified by chromatography on Sephacryl S-200 and ATP-agarose. At all stages of purification, DNA dependent ATPase and displacement activity profiles were virtually superimposable. The DNA dependent ATPase can displace a hybridized DNA fragment with a short single-stranded tail at its 3'hydroxyl end only in the presence of ATP, and this displacement relies on ATP hydrolysis. Furthermore, homogeneous single-stranded binding proteins from calf thymus as well as from other tissues cannot perform this displacement reaction. By all this token the DNA dependent ATPase appears to be a DNA helicase. It is suggested that this DNA helicase might act in concert with DNA polymerase alpha at the leading strand, possibly pushing the replication fork ahead of the polymerase. Images PMID:3162158

  7. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.

    PubMed

    Lohman, Gregory J S; Zhang, Yinhua; Zhelkovsky, Alexander M; Cantor, Eric J; Evans, Thomas C

    2014-02-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10(-3) s(-1) and K(M) < 1 nM at 25 °C under conditions where T4 DNA ligase produced only 5'-adenylylated DNA with a 20-fold lower kcat and a K(M) ≈ 300 nM. The rate of ligation increased with addition of Mn(2+), but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5'-phosphorylated dC or dG residue on the 3' side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.

  8. Identification of the fire blight pathogen, Erwinia amylovora, by PCR assays with chromosomal DNA.

    PubMed Central

    Bereswill, S; Bugert, P; Bruchmüller, I; Geider, K

    1995-01-01

    Erwinia amylovora, the causative agent of fire blight, was identified independently from the common plasmid pEA29 by three different PCR assays with chromosomal DNA. PCR with two primers was performed with isolated DNA and with whole cells, which were directly added to the assay mixture. The oligonucleotide primers were derived from the ams region, and the PCR product comprised the amsB gene, which is involved in exopolysaccharide synthesis. The amplified fragment of 1.6 kb was analyzed, and the sequence was found to be identical for two E. amylovora strains. The identity of the PCR products was further confirmed by restriction analysis. The 1.6-kb signal was also used for detection of the fire blight pathogen in the presence of other plant-associated bacteria and in infected plant tissue. For further identification of isolated strains, the 16S rRNA gene of E. amylovora and other plant-associated bacteria was amplified and the products were digested with the restriction enzyme HaeIII. The pattern obtained for E. amylovora was different from that of other bacteria. The sequence of the 16S rRNA gene was determined from a cloned fragment and was found to be closely related to the sequences of Escherichia coli and other Erwinia species. Finally, arbitrarily primed PCR with a 17-mer oligonucleotide derived from the sequence of transposon Tn5 produced a unique banding pattern for all E. amylovora strains investigated. These methods expand identification methods for E. amylovora, which include DNA hybridization and a PCR technique based on plasmid pEA29. PMID:7618876

  9. Targeting DNA with "light-up" pyrimidine triple-helical forming oligonucleotides conjugated to stabilizing fluorophores (LU-TFOs).

    PubMed

    Renard, Brice-Loïc; Lartia, Rémy; Asseline, Ulysse

    2008-12-07

    The synthesis of triple-helix-forming oligonucleotides (TFOs) linked to a series of cyanine monomethines has been performed. Eight cyanines including one thiocyanine, four thiazole orange analogues, and three quinocyanines were attached to the 5'-end of 10-mer pyrimidine TFOs. The binding properties of these modified TFOs with their double-stranded DNA target were studied by absorption and steady-state fluorescence spectroscopy. The stability of the triplex structures depended on the cyanine structure and the linker size used to connect both entities. The most efficient cyanines able to stabilize the triplex structures, when attached at the 5'-end of the TFO, have been incorporated at both ends and provided triplex structures with increased stability. Fluorescence studies have shown that for the TFOs involving one cyanine, an important intensity increase (up to 37-fold) in the fluorescent signal was observed upon their hybridization with the double-stranded target, proving hybridization. The conjugates involving thiazole orange attached by the benzothiazole ring provided the most balanced properties in terms of triplex stabilization, fluorescence intensity and fluorescence enhancement upon hybridization with the double-stranded target. In order to test the influence of different parameters such as the TFO sequence and length, thiazole orange was used to label 17-mer TFOs. Hybridizations of these TFOs with different duplexes, designed to study the influence of mismatches at both internal and terminal positions on the triplex structures, confirmed the possibility of triplex formation without loss of specificity together with a strong fluorescence enhancement (up to 13-fold).

  10. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  11. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  12. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  13. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  14. Blowing DNA bubbles.

    PubMed

    Severin, N; Zhuang, W; Ecker, C; Kalachev, A A; Sokolov, I M; Rabe, J P

    2006-11-01

    We report here experimental observations which indicate that topologically or covalently formed polymer loops embedded in an ultrathin liquid film on a solid substrate can be "blown" into circular "bubbles" during scanning force microscopy (SFM) imaging. In particular, supercoiled vector DNA has been unraveled, moved, stretched, and overstretched to two times its B-form length and then torn apart. We attribute the blowing of the DNA bubbles to the interaction of the tapping SFM tip with the ultrathin liquid film.

  15. DNA nanomechanical devices for molecular biology and DNA nanotechnology

    NASA Astrophysics Data System (ADS)

    Gu, Hongzhou

    The aim of nanotechnology is to put specific atomic and molecular species where we want them, when we want them there. Achieving such a dynamic and functional control could lead to molecular programming. Structural DNA nanotechnology offers a powerful route to this goal by combining stable branched DNA motifs with cohesive ends to produce objects, programmed nanomechanical devices and fixed or modified patterned lattices. In Chapter II, a two-armed nanorobotic device is built based on a DNA origami substrate. The arms face each other, ready to capture different DNA nanostructures into distinguishable nanopatterns. Combining with a simple error-correction protocol, we are able to achieve this goal in a nearly flawless fashion. In Chapter III, a DNA-based programmable assembly line is developed by combining three PX/JX2 cassettes and a novel DNA walker on a DNA origami substrate. This programmable assembly line can generate eight products by switching the cassettes to PX (ON) or JX2 (OFF) state when the DNA walker passes by. DNA nanomechanical devices hold the promise of controlling structure and performing exquisitely fine measurements on the molecular scale. Several DNA nanomechanical devices based on different biochemistry phenomena have been reported before. In Chapter IV, a scissors-based DNA device is built to measure the work that can be done by a DNA-bending protein (MutS) when it binds to DNA.

  16. Structural destabilization of DNA duplexes containing single-base lesions investigated by nanopore measurements.

    PubMed

    Jin, Qian; Fleming, Aaron M; Ding, Yun; Burrows, Cynthia J; White, Henry S

    2013-11-12

    The influence of DNA duplex structural destabilization introduced by a single base-pair modification was investigated by nanopore measurements. A series of 11 modified base pairs were introduced into the context of an otherwise complementary DNA duplex formed by a 17-mer and a 65-mer such that the overhanging ends comprised poly(dT)23 tails, generating a representative set of duplexes that display a range of unzipping mechanistic behaviors and kinetic stabilities. The guanine oxidation products 8-oxo-7,8-dihydroguanine (OG), guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) were paired with either cytosine (C), adenine (A), or 2,6-diaminopurine (D) to form modified base pairs. The mechanism and kinetic rate constants of duplex dissociation were determined by threading either the 3' or 5' overhangs into an α-hemolysin (α-HL) channel under an electrical field and measuring the distributions of unzipping times at constant force. In order of decreasing thermodynamic stability (as measured by duplex melting points), the rate of duplex dissociation increases, and the mechanism evolves from a first-order reaction to two sequential first-order reactions. These measurements allow us to rank the kinetic stability of lesion-containing duplexes relative to the canonical G:C base pair in which the OG:C, Gh:C, and Sp:C base pairs are, respectively, 3-200 times less stable. The rate constants also depend on whether unzipping was initiated from the 3' versus 5' side of the duplex. The kinetic stability of these duplexes was interpreted in terms of the structural destabilization introduced by the single base-pair modification. Specifically, a large distortion of the duplex backbone introduced by the presence of the highly oxidized guanine products Sp and Gh leads to a rapid two-step unzipping. The number of hydrogen bonds in the modified base pair plays a lesser role in determining the kinetics of duplex dissociation.

  17. Human DNA polymerase α in binary complex with a DNA:DNA template-primer.

    PubMed

    Coloma, Javier; Johnson, Robert E; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K

    2016-04-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually engages with a DNA:DNA helix during primer synthesis. We present here the first crystal structure of human Polα polymerase subunit in complex with a DNA:DNA helix. Unexpectedly, we find that portion of the DNA:DNA helix in contact with the polymerase is not in a B-form but in a hybrid A-B form. Almost all of the contacts observed previously with an RNA primer are preserved with a DNA primer--with the same set of polymerase residues tracking the sugar-phosphate backbone of the DNA or RNA primer. Thus, rather than loss of specific contacts, the free energy cost of distorting DNA from B- to hybrid A-B form may augur the termination of primer synthesis in eukaryotes.

  18. New synthetic substrates of mammalian nucleotide excision repair system

    PubMed Central

    Evdokimov, Alexey; Petruseva, Irina; Tsidulko, Aleksandra; Koroleva, Ludmila; Serpokrylova, Inna; Silnikov, Vladimir; Lavrik, Olga

    2013-01-01

    DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA show good substrate properties in NER process. Modified extended linear nFlu– and nAntr–DNA are suitable for estimation of specific excision activity catalysed with mammalian whole-cell extracts. The following substrate activity range was revealed for the model 137-bp linear double-stranded DNA: nAnt–DNA ≈ nFlu–DNA > Chol–DNA (Chol–DNA—legitimate NER substrate that contains non-nucleoside fragment bearing cholesterol residue). In vitro assay shows that modified DNA can be a useful tool to study NER activity in whole-cell extracts. The developed approach should be of general use for the incorporation of NER-sensitive distortions into model DNAs. The new synthetic extended linear DNA containing bulky non-nucleoside modifications will be useful for NER mechanism study and for applications. PMID:23609543

  19. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  20. Effects of DNA-binding drugs on T4 DNA ligase.

    PubMed Central

    Montecucco, A; Pedrali-Noy, G; Spadari, S; Lestingi, M; Ciarrocchi, G

    1990-01-01

    A number of DNA intercalating and externally binding drugs have been found to inhibit nick sealing, cohesive and blunt end ligation, AMP-dependent DNA topoisomerization and EDTA-induced DNA nicking mediated by bacteriophage T4 DNA ligase. The inhibition seems to arise from drug-substrate interaction so that formation of active DNA-Mg2(+)-AMP-enzyme complex is impaired while assembled and active complexes are not disturbed by drug binding to the substrate. Images Fig. 2. Fig. 4. Fig. 5. PMID:2156493

  1. Characterization and cDNA cloning of phospholipase C-gamma, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase.

    PubMed Central

    Burgess, W H; Dionne, C A; Kaplow, J; Mudd, R; Friesel, R; Zilberstein, A; Schlessinger, J; Jaye, M

    1990-01-01

    Heparin-binding growth factors (HBGFs) bind to high-affinity cell surface receptors which possess intrinsic tyrosine kinase activity. A Mr 150,000 protein phosphorylated on tyrosine in response to class 1 HBGF (HBGF-1) was purified and partially sequenced. On the basis of this sequence, cDNA clones were isolated from a human endothelial cell library and identified as encoding phospholipase C-gamma. Phosphorylation of phospholipase C-gamma in intact cells treated with HBGF-1 was directly demonstrated by using antiphospholipase C-gamma antibodies. Thus, HBGF-1 joins epidermal growth factor and platelet-derived growth factor, whose receptor activation leads to tyrosine phosphorylation and probable activation of phospholipase C-gamma. Images PMID:2167438

  2. Stability of non-Watson-Crick G-A/A-G base pair in synthetic DNA and RNA oligonucleotides.

    PubMed

    Ito, Yuko; Sone, Yumiko; Mizutani, Takaharu

    2004-03-01

    A non-Watson-Crick G-A/A-G base pair is found in SECIS (selenocysteine-insertion sequence) element in the 3'-untranslated region of Se-protein mRNAs and in the functional site of the hammerhead ribozyme. We studied the stability of G-A/A-G base pair (bold) in 17mer GT(U)GACGGAAACCGGAAC synthetic DNA and RNA oligonucleotides by thermal melting experiments and gel electrophoresis. The measured Tm value of DNA oligonucleotide having G-A/A-G pair showed an intermediate value (58 degrees C) between that of Watson-Crick G-C/C-G base pair (75 degrees C) and that of G-G/A-A of non-base-pair (40 degrees C). Similar thermal melting patterns were obtained with RNA oligonucleotides. This result indicates that the secondary structure of oligonucleotide having G-A/A-G base pair is looser than that of the G-C type Watson-Crick base pair. In the comparison between RNA and DNA having G-A/A-G base pair, the Tm value of the RNA oligonucleotide was 11 degrees C lower than that of DNA, indicating that DNA has a more rigid structure than RNA. The stained pattern of oligonucleotide on polyacrylamide gel clarified that the mobility of the DNA oligonucleotide G-A/A-G base pair changed according to the urea concentration from the rigid state (near the mobility of G-C/C-G oligonucleotide) in the absence of urea to the random state (near the mobility of G-G/A-A oligonucleotide) in 7 M urea. However, the RNA oligonucleotide with G-A/A-G pair moved at an intermediate mobility between that of oligonucleotide with G-C/C-G and of the oligonucleotide with G-G/A-A, and the mobility pattern did not depend on urea concentration. Thus, DNA and RNA oligonucleotides with the G-A/A-G base pair showed a pattern indicating an intermediate structure between the rigid Watson-Crick base pair and the random structure of non-base pair. RNA with G-A/A-G base pair has the intermediate structure not influenced by urea concentration. Finally, this study indicated that the intermediate rigidity imparted by Non

  3. Streching of (DNA/functional molecules) complex between electrodes towards DNA molecular wire

    NASA Astrophysics Data System (ADS)

    Kobayashi, Norihisa; Nishizawa, Makoto; Inoue, Shintarou; Nakamura, Kazuki

    2009-08-01

    DNA/functional molecules such as (Ru(bpy)32+ complex, conducting polymer etc.) complex was prepared to study molecular structure and I-V characteristics towards DNA molecular wire. For example, Ru(bpy)32+ was associated with duplex of DNA by not only electrostatic interaction but also intercalation in the aqueous solution. Singlemolecular structure of DNA/Ru(bpy)32+ complex was analyzed with AFM. We found a network structure of DNA/Ru(bpy)32+ complex on the mica substrate, which is similar to native DNA. The height of DNA/Ru(bpy)32+ complex on the mica substrate was ranging from 0.8 to 1.6 nm, which was higher than the naked DNA (0.5-1.0 nm). This indicates that single-molecular DNA/Ru(bpy)32+ complex also connects to each other to form network structure on a mica substrate. In order to stretch DNA complex between electrodes, we employed high frequency and high electric field stretching method proposed by Washizu et al. We stretched and immobilized DNA single molecules between a pair of electrodes and its structures were analyzed with AFM technique. The I-V characteristics of DNA single molecules between electrodes were improved by the association of functional molecules with DNA. The molecular structure and I-V characteristics of DNA complex were discussed.

  4. Quantitive DNA Fiber Mapping

    SciTech Connect

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  5. Substrate recognition by Escherichia coli MutY using substrate analogs.

    PubMed Central

    Chepanoske, C L; Porello, S L; Fujiwara, T; Sugiyama, H; David, S S

    1999-01-01

    The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2"-deoxyguanosine (OG):A and G:A mispairs in DNA. Our approach toward understanding recognition and processing of DNA damage by MutY has been to use substrate analogs that retain the recognition properties of the substrate mispair but are resistant to the glycosylase activity of MutY. This approach provides stable MutY-DNA complexes that are amenable to structural and biochemical characterization. In this work, the interaction of MutY with the 2"-deoxyadenosine analogs 2"-deoxy-2"-fluoroadenosine (FA), 2"-deoxyaristeromycin (R) and 2"-deoxyformycin A (F) was investigated. MutY binds to duplexes containing the FA, R or F analogs opposite G and OG within DNA with high affinity; however, no enzymatic processing of these duplexes is observed. The specific nature of the interaction of MutY with an OG:FA duplex was demonstrated by MPE-Fe(II) hydroxyl radical footprinting experiments which showed a nine base pair region of protection by MutY surrounding the mispair. DMS footprinting experiments with an OG:A duplex revealed that a specific G residue located on the OG-containing strand was protected from DMS in the presence of MutY. In contrast, a G residue flanking the substrate analogs R, F or FA was observed to be hypersensitive to DMS in the presence of MutY. These results suggest a major conformational change in the DNA helix upon binding of MutY that exposes the substrate analog-containing strand. This finding is consistent with a nucleotide flipping mechanism for damage recognition by MutY. This work demonstrates that duplex substrates for MutY containing FA, R or F instead of A are excellent substrate mimics that may be used to provide insight into the recognition by MutY of damaged and mismatched base pairs within DNA. PMID:10454618

  6. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  7. Comparison of fluorigenic peptide substrates PL50, SNAPTide, and BoTest A/E for BoNT/A detection and quantification: exosite binding confers high-assay sensitivity.

    PubMed

    Ouimet, Tanja; Duquesnoy, Sophie; Poras, Hervé; Fournié-Zaluski, Marie-Claude; Roques, Bernard P

    2013-07-01

    Detection and quantification of low doses of botulinum toxin serotype A (BoNT/A) in medicinal preparations require precise and sensitive methods. With mounting pressure from governmental authorities to replace the mouse LD50 assay, interest in alternative methods such as the endopeptidase assay, quantifying the toxin active moiety, is growing. Using internal collision-induced fluorescence quenching, Pharmaleads produced peptides encompassing the SNAP-25 cleavage site: a 17-mer (PL63) and a 48-mer (PL50) reaching the previously identified α-exosite, with PL50 showing higher apparent affinity for BoNT/A. Peptide mapping experiments revealed that this increased affinity is mainly due to a connecting peptide sequence between the N-terminus of PL63 and the α-exosite, identifying a new cooperative exosite on BoNT/A. Other endopeptidase substrates available, including SNAPTide and BoTest A/E, are both based on fluorescent resonance energy transfer (FRET) technology. To compare these assays, their limits of detection and quantification were determined using light chain or 150-kDa BoNT/A. Detection limits of PL50 and BoTest were over 100 times better than those using SNAPtide in standard conditions. Although the BoTest possessed a detection limit around 0.2 pM for either BoNT/A form, its quantification limit (9.7 pM) using purified BoNT/A was 12 times inferior to PL50, estimated at 0.8 pM, suitable for medicinal preparation quantification.

  8. Biaxially textured composite substrates

    DOEpatents

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  9. Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus). cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation.

    PubMed

    Schulze-Muth, P; Irmler, S; Schröder, G; Schröder, J

    1996-10-25

    We characterize CrRLK1, a novel type of receptor-like kinase (RLK), from the plant Catharanthus roseus (Madagascar periwinkle). The protein (90.2 kDa) deduced from the complete genomic and cDNA sequences is a RLK by predicting a N-terminal signal peptide, a large extracytoplasmic domain, a membrane-spanning hydrophobic region followed by a transfer-stop signal, and a C-terminal cytoplasmic protein kinase with all 11 conserved subdomains. It is a novel RLK type because the predicted extracytoplasmic region shares no similarity with other RLKs. The autophosphorylation was investigated with affinity-purified proteins expressed in Escherichia coli. The activity was higher with Mn2+ than with Mg2+ and achieved half-maximal rates at 2-2.5 microM ATP. The phosphorylation was predominantly on Thr, less on Ser, and not on Tyr. In contrast to other plant RLK, the kinase used an intra- rather than an intermolecular phosphorylation mechanism. After protein cleavage with formic acid, most of the radioactivity was in a 14.1-kDa peptide located at the end of the kinase domain. Mutagenesis of the four Thr residues in this peptide identified Thr-720 in the subdomain XI as important for autophosphorylation and for phosphorylation of beta-casein. This Thr is conserved in other related kinases, suggesting a subfamily sharing common autophosphorylation mechanisms.

  10. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates.

    PubMed

    Yang, Jing; Jiang, Shuoxing; Liu, Xiangrong; Pan, Linqiang; Zhang, Cheng

    2016-12-14

    In this study, an aptamer-substrate strategy is introduced to control programmable DNA origami pattern. Combined with DNA aptamer-substrate binding and DNAzyme-cutting, small DNA tiles were specifically controlled to fill into the predesigned DNA origami frame. Here, a set of DNA logic gates (OR, YES, and AND) are performed in response to the stimuli of adenosine triphosphate (ATP) and cocaine. The experimental results are confirmed by AFM imaging and time-dependent fluorescence changes, demonstrating that the geometric patterns are regulated in a controllable and programmable manner. Our approach provides a new platform for engineering programmable origami nanopatterns and constructing complex DNA nanodevices.

  11. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    PubMed Central

    Rashid, Fahad; Harris, Paul D; Zaher, Manal S; Sobhy, Mohamed A; Joudeh, Luay I; Yan, Chunli; Piwonski, Hubert; Tsutakawa, Susan E; Ivanov, Ivaylo; Tainer, John A; Habuchi, Satoshi; Hamdan, Samir M

    2017-01-01

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability. DOI: http://dx.doi.org/10.7554/eLife.21884.001 PMID:28230529

  12. Stereochemical control of DNA biosynthesis

    PubMed Central

    Sosunov, Vasily V.; Santamaria, Fanny; Victorova, Lyubov S.; Gosselin, Gilles; Rayner, Bernard; Krayevsky, Alexander A.

    2000-01-01

    Stereochemical control of DNA biosynthesis was studied using several DNA-synthesizing complexes containing, in each case, a single substitution of a 2′-deoxy-d-nucleotide residue by an enantiomeric l-nucleotide residue in a DNA chain (either in the primer or in the template) as well as 2′-deoxy-l-ribonucleoside 5′-triphosphates (l-dNTPs) as substrates. Three template-dependent DNA polymerases were tested, Escherichia coli DNA polymerase I Klenow fragment, Thermus aquaticus DNA polymerase and avian myeloblastosis virus reverse transcriptase, as well as template-independent calf-thymus terminal deoxynucleotidyl transferase. Very stringent control of stereoselectivity was demonstrated for template-dependent DNA polymerases, whereas terminal deoxynucleotidyl transferase was less selective. DNA polymerase I and reverse transcriptase catalyzed formation of dinucleoside 5′,5′-tetraphosphates when l-dTTP was used as substrate. Comparison between models of template–primer complexes, modified or not by a single l-nucleotide residue, revealed striking differences in their geometry. PMID:10666459

  13. DNA-PK assay

    DOEpatents

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  14. Multiple alternative substrate kinetics.

    PubMed

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  15. Enamides: valuable organic substrates.

    PubMed

    Carbery, David R

    2008-10-07

    Enamides display a fine balance of stability and reactivity, which is now leading to their increasing use in organic synthesis. Enamides offer multiple opportunities for the inclusion of nitrogen based functionality into organic systems. Recent examples of these compounds as substrates are discussed in this article.

  16. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  17. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  18. Tunnelling microscopy of DNA

    NASA Astrophysics Data System (ADS)

    Selci, Stefano; Cricenti, Antonio

    1991-01-01

    Uncoated DNA molecules marked with an activated tris (1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with a high resolution Scanning Tunnelling Microscope (STM). The STM operated simultaneously in the constant-current and gap-modulated mode. Highly reproducible STM images have been obtained and interpreted in terms of expected DNA structure. The main periodicity, regularly presented in molecules several hundred Ångstrom long, ranges from 25 Å to 35 Å with an average diameter of 22 Å. Higher resolution images of the minor groove have revealed the phosphate groups along the DNA backbones. Constant-current images of TAPO deposited on gold show a crystalline structure of rows of molecules with a side-by-side spacing of 3 Å.

  19. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  20. Fossil avian eggshell preserves ancient DNA.

    PubMed

    Oskam, Charlotte L; Haile, James; McLay, Emma; Rigby, Paul; Allentoft, Morten E; Olsen, Maia E; Bengtsson, Camilla; Miller, Gifford H; Schwenninger, Jean-Luc; Jacomb, Chris; Walter, Richard; Baynes, Alexander; Dortch, Joe; Parker-Pearson, Michael; Gilbert, M Thomas P; Holdaway, Richard N; Willerslev, Eske; Bunce, Michael

    2010-07-07

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.

  1. ssDNA binding reveals the atomic structure of graphene.

    PubMed

    Husale, By Sudhir; Sahoo, Sangeeta; Radenovic, Aleksandra; Traversi, Floriano; Annibale, Paolo; Kis, Andras

    2010-12-07

    We used AFM to investigate the interaction of polyelectrolytes such as ssDNA and dsDNA molecules with graphene as a substrate. Graphene is an appropriate substrate due to its planarity, relatively large surfaces that are detectable via an optical microscope, and straightforward identification of the number of layers. We observe that in the absence of the screening ions deposited ssDNA will bind only to the graphene and not to the SiO(2) substrate, confirming that the binding energy is mainly due to the π-π stacking interaction. Furthermore, deposited ssDNA will map the graphene underlying structure. We also quantify the π-π stacking interaction by correlating the amount of deposited DNA with the graphene layer thickness. Our findings agree with reported electrostatic force microscopy (EFM) measurements. Finally, we inspected the suitability of using a graphene as a substrate for DNA origami-based nanostructures.

  2. Palladium on plastic substrates for plasmonic devices.

    PubMed

    Zuppella, Paola; Pasqualotto, Elisabetta; Zuccon, Sara; Gerlin, Francesca; Corso, Alain Jody; Scaramuzza, Matteo; De Toni, Alessandro; Paccagnella, Alessandro; Pelizzo, Maria Guglielmina

    2015-01-09

    Innovative chips based on palladium thin films deposited on plastic substrates have been tested in the Kretschmann surface plasmon resonance (SPR) configuration. The new chips combine the advantages of a plastic support that is interesting and commercially appealing and the physical properties of palladium, showing inverted surface plasmon resonance (ISPR). The detection of DNA chains has been selected as the target of the experiment, since it can be applied to several medical early diagnostic tools, such as different biomarkers of cancers or cystic fibrosis. The results are encouraging for the use of palladium in SPR-based sensors of interest for both the advancement of biodevices and the development of hydrogen sensors.

  3. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  4. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    PubMed

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.

  5. DNA Nanotechnology

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masateru; Kawai, Tomoji

    2002-11-01

    DNA is one candidate of promising molecules for molecular electronic devices, since it has the double helix structure with pi-electron bases for electron transport, the address at 0.4 nm intervals, and the self-assembly. Electrical conductivity and nanostructure of DNA and modified DNA molecules are investigated in order to research the application of DNA in nanoelectronic devices. It has been revealed that DNA is a wide-gap semiconductor in the absence of doping. The conductivity of DNA has been controlled by chemical doping, electric field doping, and photo-doping. It has found that Poly(dG)[middle dot]Poly(dC) has the best conductivity and can function as a conducting nanowire. The pattern of DNA network is controlled by changing the concentration of the DNA solution.

  6. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  7. Tunable and regenerative DNA zipper based spring

    NASA Astrophysics Data System (ADS)

    Landon, Preston; Mo, Alexander; Ramachandran, Srinivasan; Lal, Ratnesh

    2012-02-01

    We report a DNA zipper based actuator device termed `DNA- spring' with tunable and repeated cycles of extension and contraction ability. DNA zipper is a double-stranded DNA system engineered to open upon its specific interaction with appropriately designed single strand DNA (ssDNA), opening of the zipper is driven by binding energy differences between the DNA strands. The zipper system is incorporated with defined modifications to function like a spring, capable of delivering approximately 9 pN force over a distance of approximately 13 nm, producing approximately 116 kJ/mol of work. Time-lapse fluorescence and fluorescent DNA gel electrophoresis analysis is utilized to evaluate and confirm the spring action. A second zipper incorporated into the spring provides the ability to couple/decouple to an object/substrate. Such devices would have wide application, including for conditionally triggered molecular delivery systems and as actuators in nano-devices. zippers.

  8. Nitrification in a zeoponic substrate.

    PubMed

    McGilloway, R L; Weaver, R W; Ming, D W; Gruener, J E

    2003-10-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  9. Nitrification in a zeoponic substrate

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.

    2003-01-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  10. In situ oligonucleotide synthesis on carbon materials: stable substrates for microarray fabrication

    PubMed Central

    Phillips, Margaret F.; Lockett, Matthew R.; Rodesch, Matthew J.; Shortreed, Michael R.; Cerrina, Franco; Smith, Lloyd M.

    2008-01-01

    Glass has become the standard substrate for the preparation of DNA arrays. Typically, glass is modified using silane chemistries to provide an appropriate functional group for nucleic acid synthesis or oligonucleotide immobilization. We have found substantial issues with the stability of these surfaces as manifested in the unwanted release of oligomers from the surface when incubated in aqueous buffers at moderate temperatures. To address this issue, we have explored the use of carbon-based substrates. Here, we demonstrate in situ synthesis of oligonucleotide probes on carbon-based substrates using light-directed photolithographic phosphoramidite chemistry and evaluate the stabilities of the resultant DNA arrays compared to those fabricated on silanized glass slides. DNA arrays on carbon-based substrates are substantially more stable than arrays prepared on glass. This superior stability enables the use of high-density DNA arrays for applications involving high temperatures, basic conditions, or where serial hybridization and dehybridization is desired. PMID:18084027

  11. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  12. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    Çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26596511

  13. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

    PubMed Central

    çağlayan, Melike; Wilson, Samuel H.

    2015-01-01

    DNA lesions arise from many endogenous and environmental agents, and they promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5′-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26466358

  14. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.

    PubMed

    Çağlayan, Melike; Wilson, Samuel H

    2015-11-01

    DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER.

  15. A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability.

    PubMed

    De, Ananya; Campbell, Colin

    2007-02-15

    The data in the present study show that DNA polymerase gamma and DNA ligase III interact in mitochondrial protein extracts from cultured HT1080 cells. An interaction was also observed between the two recombinant proteins in vitro. Expression of catalytically inert versions of DNA ligase III that bind DNA polymerase gamma was associated with reduced mitochondrial DNA copy number and integrity. In contrast, overexpression of wild-type DNA ligase III had no effect on mitochondrial DNA copy number or integrity. Experiments revealed that wild-type DNA ligase III facilitates the interaction of DNA polymerase gamma with a nicked DNA substrate in vitro, and that the zinc finger domain of DNA ligase III is required for this activity. Mitochondrial protein extracts prepared from cells overexpressing a DNA ligase III protein that lacked the zinc finger domain had reduced base excision repair activity compared with extracts from cells overexpressing the wild-type protein. These data support the interpretation that the interaction of DNA ligase III and DNA polymerase gamma is required for proper maintenance of the mammalian mitochondrial genome.

  16. Scanning probe and nanopore DNA sequencing: core techniques and possibilities.

    PubMed

    Lund, John; Parviz, Babak A

    2009-01-01

    We provide an overview of the current state of research towards DNA sequencing using nanopore and scanning probe techniques. Additionally, we provide methods for the creation of two key experimental platforms for studies relating to nanopore and scanning probe DNA studies: a synthetic nanopore apparatus and an atomically flat conductive substrate with stretched DNA molecules.

  17. Dewetting on microstructured substrates

    NASA Astrophysics Data System (ADS)

    Kim, Taehong; Kim, Wonjung

    2016-11-01

    A thin liquid film has an equilibrium thickness in such a way as to minimize the free energy. When a liquid film thickness is out of its equilibrium, the film seeks its equilibrium state, resulting in dynamics of liquid film, which are referred to as wetting and dewetting, depending on the flow direction. We here present a combined experimental and theoretical investigation of dewetting on a substrate with parallel microstructures. Our experiments show that residue may remain on the substrate after dewetting, and residue morphologies can be classified into three modes. Based on our experimental observations, we elucidate how the modes depend on the pattern morphology and contact angle, and develop a model for the contact line motion. Our results provide a basis for controlling the thickness film, which is important for many practical applications such as oil recovery, detergency, lithography, and cleaning. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  18. Comparison of preprocessing methods and storage times for touch DNA samples

    PubMed Central

    Dong, Hui; Wang, Jing; Zhang, Tao; Ge, Jian-ye; Dong, Ying-qiang; Sun, Qi-fan; Liu, Chao; Li, Cai-xia

    2017-01-01

    Aim To select appropriate preprocessing methods for different substrates by comparing the effects of four different preprocessing methods on touch DNA samples and to determine the effect of various storage times on the results of touch DNA sample analysis. Method Hand touch DNA samples were used to investigate the detection and inspection results of DNA on different substrates. Four preprocessing methods, including the direct cutting method, stubbing procedure, double swab technique, and vacuum cleaner method, were used in this study. DNA was extracted from mock samples with four different preprocessing methods. The best preprocess protocol determined from the study was further used to compare performance after various storage times. DNA extracted from all samples was quantified and amplified using standard procedures. Results The amounts of DNA and the number of alleles detected on the porous substrates were greater than those on the non-porous substrates. The performances of the four preprocessing methods varied with different substrates. The direct cutting method displayed advantages for porous substrates, and the vacuum cleaner method was advantageous for non-porous substrates. No significant degradation trend was observed as the storage times increased. Conclusion Different substrates require the use of different preprocessing method in order to obtain the highest DNA amount and allele number from touch DNA samples. This study provides a theoretical basis for explorations of touch DNA samples and may be used as a reference when dealing with touch DNA samples in case work. PMID:28252870

  19. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  20. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  1. Ku stimulation of DNA ligase IV-dependent ligation requires inward movement along the DNA molecule.

    PubMed

    Kysela, Boris; Doherty, Aidan J; Chovanec, Miroslav; Stiff, Thomas; Ameer-Beg, Simon M; Vojnovic, Borivoj; Girard, Pierre-Marie; Jeggo, Penny A

    2003-06-20

    The DNA ligase IV.XRCC4 complex (LX) functions in DNA non-homologous-end joining, the main pathway for double-strand break repair in mammalian cells. We show that, in contrast to ligation by T4 ligase, the efficiency of LX ligation of double-stranded (ds) ends is critically dependent upon the length of the DNA substrate. The effect is specific for ds ligation, and LX/DNA binding is not influenced by the substrate length. Ku stimulates LX ligation at concentrations resulting in 1-2 Ku molecules bound per substrate, whereas multiply Ku-bound DNA molecules inhibit ds ligation. The combined footprint of DNA with Ku and LX bound is the sum of each individual footprint suggesting that the two complexes are located in tandem at the DNA end. Inhibition of Ku translocation by the presence of cis-platinum adducts on the DNA substrate severely inhibits ligation by LX. Fluorescence resonance energy transfer analysis using fluorophore-labeled Ku and DNA molecules showed that, as expected, Ku makes close contact with the DNA end and that addition of LX can disrupt this close contact. Finally, we show that recruitment of LX by Ku is impaired in an adenylation-defective mutant providing further evidence that LX interacts directly with the DNA end, possibly via the 5'-phosphate as shown for prokaryotic ligases. Taken together, our results suggest that, when LX binds to a Ku-bound DNA molecule, it causes inward translocation of Ku and that freedom to move inward on the DNA is essential to Ku stimulation of LX activity.

  2. Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles.

    PubMed

    Anderson, Breeana G; Stivers, James T

    2014-07-08

    Type IB topoisomerases unwind positive and negative DNA supercoils and play a key role in removing supercoils that would otherwise accumulate at replication and transcription forks. An interesting question is whether topoisomerase activity is regulated by the topological state of the DNA, thereby providing a mechanism for targeting the enzyme to highly supercoiled DNA domains in genomes. The type IB enzyme from variola virus (vTopo) has proven to be useful in addressing mechanistic questions about topoisomerase function because it forms a reversible 3'-phosphotyrosyl adduct with the DNA backbone at a specific target sequence (5'-CCCTT-3') from which DNA unwinding can proceed. We have synthesized supercoiled DNA minicircles (MCs) containing a single vTopo target site that provides highly defined substrates for exploring the effects of supercoil density on DNA binding, strand cleavage and ligation, and unwinding. We observed no topological dependence for binding of vTopo to these supercoiled MC DNAs, indicating that affinity-based targeting to supercoiled DNA regions by vTopo is unlikely. Similarly, the cleavage and religation rates of the MCs were not topologically dependent, but topoisomers with low superhelical densities were found to unwind more slowly than highly supercoiled topoisomers, suggesting that reduced torque at low superhelical densities leads to an increased number of cycles of cleavage and ligation before a successful unwinding event. The K271E charge reversal mutant has an impaired interaction with the rotating DNA segment that leads to an increase in the number of supercoils that were unwound per cleavage event. This result provides evidence that interactions of the enzyme with the rotating DNA segment can restrict the number of supercoils that are unwound. We infer that both superhelical density and transient contacts between vTopo and the rotating DNA determine the efficiency of supercoil unwinding. Such determinants are likely to be important in

  3. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  4. Substrate effect on the enhanced biodegradation of carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Wu, Shian C.; Doong, Rueyan

    1993-03-01

    The effects of different substrates on the biotransformation of heavily chlorinated hydrocarbons under anaerobic conditions were investigated to evaluate the feasibility of in-situ bioremediation of the contaminated groundwaters by amending different substrates. The substrate-fed batches were anaerobically incubated with the addition of either acetate, glucose, methanol, or dissolved organic matter (DOM) with concentrations ranging from 10 to 30 mg/L. Experimental results demonstrated that the effect of the substrates on the dechlorination of the compounds varied. The removal efficiency was observed greatest for glucose- then methanol- and acetate-fed batches and least for DOM-fed batches. The sequence of the enhancement efficiency is consistent with the sequence of the reducing potentials of these substrates. Changing the substrate concentration could vary the dechlorination capability of the system. The viable counts of microorganisms determined by the direct epifluorescence counting technique showed that the batches with higher concentration of the supplemental substrate produced higher bacterial cell numbers. Moreover, from microscopic observations, different compositions of bacterial population were found. Small-sized bacteria with spheric shape were observed when culture bottles were amended with either acetate or DOM, whereas large-sized bacteria with rod-shape were predominant for bottles amended with glucose. Also, higher DNA contents were demonstrated for glucose-fed batches.

  5. Sequence-Specific Molecular Lithography on Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Keren, Kinneret; Krueger, Michael; Gilad, Rachel; Ben-Yoseph, Gdalyahu; Sivan, Uri; Braun, Erez

    2002-07-01

    Recent advances in the realization of individual molecular-scale electronic devices emphasize the need for novel tools and concepts capable of assembling such devices into large-scale functional circuits. We demonstrated sequence-specific molecular lithography on substrate DNA molecules by harnessing homologous recombination by RecA protein. In a sequence-specific manner, we patterned the coating of DNA with metal, localized labeled molecular objects and grew metal islands on specific sites along the DNA substrate, and generated molecularly accurate stable DNA junctions for patterning the DNA substrate connectivity. In our molecular lithography, the information encoded in the DNA molecules replaces the masks used in conventional microelectronics, and the RecA protein serves as the resist. The molecular lithography works with high resolution over a broad range of length scales from nanometers to many micrometers.

  6. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  7. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  8. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  9. Sealed substrate carrier for electroplating

    DOEpatents

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  10. DNA: Polymer and molecular code

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.

    1999-10-01

    gene expression a prime example of a biological code. We developed a novel method of making DNA micro- arrays, the so-called DNA chip. Using the optical tweezer concept, we were able to pattern biomolecules on a solid substrate, developing a new type of sub-micron laser lithography. A laser beam is focused onto a thin gold film on a glass substrate. Laser ablation of gold results in local aggregation of nanometer scale beads conjugated with small DNA oligonucleotides, with sub-micron resolution. This leads to specific detection of cDNA and RNA molecules. We built a simple micro-array fabrication and detection in the laboratory, based on this method, to probe addressable pools (genes, proteins or antibodies). We have lately used molecular beacons (single stranded DNA with a stem-loop structure containing a fluorophore and quencher), for the direct detection of unlabelled mRNA. As a first step towards a study of the dynamics of the biological code, we have begun to examine the patterns of gene expression during virus (T7 phage) infection of E-coli bacteria.

  11. Preparation of Plasmid DNA by Alkaline Lysis with Sodium Dodecyl Sulfate: Minipreps.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2016-10-03

    In this protocol, plasmid DNA is isolated from small-scale (1-2 mL) bacterial cultures. Yields vary between 100 and 5 µg of DNA, depending on the copy number of the plasmid. Miniprep DNA is sufficiently pure for use as a substrate or template in many in vitro enzymatic reactions. However, further purification is required if the plasmid DNA is used as the substrate in sequencing reactions.

  12. DNA ligases.

    PubMed

    Tabor, S

    2001-05-01

    DNA ligases catalyze the formation of phosphodiester bonds between juxtaposed 5' phosphate and a 3'-hydroxyl terminus in duplex DNA. This activity can repair single-stranded nicks in duplex DNA and join duplex DNA restriction fragments having either blunt ends or homologous cohesive ends. Two ligases are used for nucleic acid research and their reaction conditions and applications are described in this unit: E. coli ligase and T4 ligase. These enzymes differ in two important properties. One is the source of energy: T4 ligase uses ATP, while E. coli ligase uses NAD. Another important difference is their ability to ligate blunt ends; under normal reaction conditions, only T4 DNA ligase will ligate blunt ends.

  13. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids.

    PubMed

    Goubet, Astrid; Chardon, Antoine; Kumar, Pawan; Sharma, Pawan K; Veedu, Rakesh N

    2013-02-01

    C5-Ethynylbenzenesulfonamide-modified nucleotide (EBNA) was investigated as substrate of various DNA polymerases. The experiments revealed that KOD, Phusion and Klenow DNA polymerases successfully accepted EBNA-T nucleotide as a substrate and yielded the fully extended DNA. KOD DNA polymerase was found to be the most efficient enzyme to furnish EBNA-T containing DNA in good yields. Phusion DNA polymerase efficiently amplified the template containing EBNA-T nucleotides by PCR.

  14. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  15. The DnaE polymerase from Deinococcus radiodurans features RecA-dependent DNA polymerase activity

    PubMed Central

    Randi, Lorenzo; Perrone, Alessandro; Maturi, Mirko; Dal Piaz, Fabrizio; Camerani, Michela; Hochkoeppler, Alejandro

    2016-01-01

    We report in the present study on the catalytic properties of the Deinococcus radiodurans DNA polymerase III α subunit (αDr). The αDr enzyme was overexpressed in Escherichia coli, both in soluble form and as inclusion bodies. When purified from soluble protein extracts, αDr was found to be tightly associated with E. coli RNA polymerase, from which αDr could not be dissociated. On the contrary, when refolded from inclusion bodies, αDr was devoid of E. coli RNA polymerase and was purified to homogeneity. When assayed with different DNA substrates, αDr featured slower DNA extension rates when compared with the corresponding enzyme from E. coli (E. coli DNA Pol III, αEc), unless under high ionic strength conditions or in the presence of manganese. Further assays were performed using a ssDNA and a dsDNA, whose recombination yields a DNA substrate. Surprisingly, αDr was found to be incapable of recombination-dependent DNA polymerase activity, whereas αEc was competent in this action. However, in the presence of the RecA recombinase, αDr was able to efficiently extend the DNA substrate produced by recombination. Upon comparing the rates of RecA-dependent and RecA-independent DNA polymerase activities, we detected a significant activation of αDr by the recombinase. Conversely, the activity of αEc was found maximal under non-recombination conditions. Overall, our observations indicate a sharp contrast between the catalytic actions of αDr and αEc, with αDr more performing under recombination conditions, and αEc preferring DNA substrates whose extension does not require recombination events. PMID:27789781

  16. Catalytic editing properties of DNA polymerases.

    PubMed Central

    Canard, B; Cardona, B; Sarfati, R S

    1995-01-01

    Enzymatic incorporation of 2',3'-dideoxynucleotides into DNA results in chain termination. We report that 3'-esterified 2'-deoxynucleoside 5'-triphosphates (dNTPs) are false chain-terminator substrates since DNA polymerases, including human immunodeficiency virus reverse transcriptase, can incorporate them into DNA and, subsequently, use this new 3' end to insert the next correctly paired dNTP. Likewise, a DNA substrate with a primer chemically esterified at the 3' position can be extended efficiently upon incubation with dNTPs and T7 DNA polymerase lacking 3'-to-5' exonuclease activity. This enzyme is also able to use dTTP-bearing reporter groups in the 3' position conjugated through amide or thiourea bonds and cleave them to restore a DNA chain terminated by an amino group at the 3' end. Hence, a number of DNA polymerases exhibit wide catalytic versatility at the 3' end of the nascent DNA strand. As part of the polymerization mechanism, these capabilities extend the number of enzymatic activities associated with these enzymes and also the study of interactions between DNA polymerases and nucleotide analogues. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479898

  17. Mechanisms of DNA Motor Proteins (Helicases)

    NASA Astrophysics Data System (ADS)

    Lohman, Timothy M.

    1996-03-01

    DNA helicases are ubiquitous motor proteins that couple the binding and hydrolysis of NTP to the unwinding of duplex (ds) DNA to form the single stranded (ss) DNA intermediates that are required for replication, recombination and repair. We are studying the DNA unwinding mechanisms catalyzed by two helicases from E. coli: Rep and Helicase II (UvrD) by examining the linkage of DNA binding, protein dimerization and nucleotide binding using both thermodynamic and kinetic approaches. A dimer of the Rep protein is the active form of the helicase; however, the dimer forms only upon binding either ss or ds DNA. There are significant cooperative interactions between the two DNA binding sites on the dimer and nucleotides (ATP, ADP) allosterically control the stabilities of the DNA ligation states of the Rep dimer. Based on these studies we have proposed an "active, rolling" mechanism for the Rep dimer unwinding of duplex DNA. An essential intermediate is a complex, in which ss- and ds-DNA bind simultaneously to each subunit of a Rep dimer. This model predicts that Rep helicase translocation along DNA is coupled to ATP binding, whereas ATP hydrolysis drives unwinding of multiple DNA base pairs for each catalytic event. Rapid chemical quench-flow and stopped-flow fluorescence studies of Rep and UvrD- catalyzed DNA unwinding of a series of non-natural DNA substrates support the "active, rolling" mechanism and rule out a strictly "passive" mechanism of unwinding. Kinetic studies of DNA and nucleotide binding and ATP hydrolysis by wild type and mutant Rep proteins will be discussed that bear on the coupling of ATP binding and hydrolysis to translocation along DNA and DNA unwinding.

  18. Characterization of recombinant malarial RecQ DNA helicase.

    PubMed

    Suntornthiticharoen, Pattra; Srila, Witsanu; Chavalitshewinkoon-Petmitr, Porntip; Limudomporn, Paviga; Yamabhai, Montarop

    2014-08-01

    RecQ DNA gene of multi-drug resistant Plasmodium falciparum K1 (PfRecQ1) was cloned, and the recombinant C-terminal-decahistidine-tagged PfRecQ1 was expressed in Escherichia coli. The purified enzyme could efficiently unwind partial duplex DNA substrate in a 3' to 5' direction. The malarial RecQ1 could not unwind substrates with both 5' and 3' overhangs, those with a 5' overhang, or blunt-ended DNA duplexes. Unwinding of DNA helicase activity was driven by the hydrolysis of ATP. The drug inhibitory effects of six compounds indicated that only doxorubicin and daunorubicin could inhibit the unwinding activity.

  19. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  20. Substrate With Low Secondary Emissions

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)

    2000-01-01

    The present invention is directed to a method and apparatus for producing a highly -textured surface on a copper substrate -with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.

  1. Patenting DNA.

    PubMed

    Bobrow, Martin; Thomas, Sandy

    2002-12-01

    The protection of inventions based on human DNA sequences has been achieved mainly through application of the patent system. Over the past decade, there has been continuing debate about whether this use of intellectual property rights is acceptable. Companies and universities have been active during this period in filing thousands of patent applications. Although many have argued that to claim a DNA sequence in a patent is to claim a discovery, patent law allows discoveries that are useful to be claimed as part of an invention. As the technology to isolate DNA sequences has advanced, the criterion for inventiveness, necessary for any invention to be eligible for filing, has become more difficult to justify in the case of claims to DNA sequences. Moreover, the discovery that a gene is associated with a particular disease is, it is argued, to discover a fact about the world and undeserving of the status of an invention. Careful examination of the grounds for allowing the patenting of DNA sequences as research tools suggests such rewards will rarely be justified. The patenting of DNA sequences as chemical intermediates necessary for the manufacture of therapeutic proteins is, however, reasonable given that the information within the sequence is applied to produce a tangible substance which has application as a medicine. Despite the legal, technical and political complexities of applying the flexibilities with the current law, it is argued that much could be achieved in the area of patenting DNA by raising the thresholds for patentability.

  2. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  3. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  4. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  5. Laser-Induced Heating for DNA Replication in a Microfluidics

    NASA Astrophysics Data System (ADS)

    Hung, Min-Sheng; Chen, Chin-Pin

    In this study, we integrated microfluidics and a laser to develop a microfluidic system that performs target DNA replication. To achieve replication of targeted position of DNA, DNA fibers are stretched and both ends immobilized onto an electrode through dielectrophoresis. During the process, 2 designed primers, as well as DNA polymerase and its substrates, are fed into the microfluidics, and a focused infrared laser is used to irradiate the center of the DNA strand. An on-off switching mechanism is used to create thermal cycling. A polymerase chain reaction is then used to confirm the successfully replicated DNA.

  6. Methods for immobilizing nucleic acids on a gel substrate

    SciTech Connect

    Mirzabekov, A.D.; Proudnikov, D.Y.; Timofeev, E.N.; Kochetkova, S.V.; Florentiev, V.L.; Shick, V.V.

    1999-11-09

    A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.

  7. Methods for immobilizing nucleic acids on a gel substrate

    DOEpatents

    Mirzabekov, Andrei Darievich; Proudnikov, Dimitri Y.; Timofeev, Edward N.; Kochetkova, Svetlana V.; Florentiev, Vladimir L.; Shick, Valentine V.

    1999-01-01

    A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.

  8. MTH1 Substrate Recognition—An Example of Specific Promiscuity

    PubMed Central

    Nissink, J. Willem M.; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J.

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1. PMID:26999531

  9. MTH1 Substrate Recognition--An Example of Specific Promiscuity.

    PubMed

    Nissink, J Willem M; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1.

  10. Growth patterns of two marine isolates: adaptations to substrate patchiness?

    PubMed

    Pernthaler, A; Pernthaler, J; Eilers, H; Amann, R

    2001-09-01

    During bottle incubations of heterotrophic marine picoplankton, some bacterial groups are conspicuously favored. In an earlier investigation bacteria of the genus Pseudoalteromonas rapidly multiplied in substrate-amended North Sea water, whereas the densities of Oceanospirillum changed little (H. Eilers, J. Pernthaler, and R. Amann, Appl. Environ. Microbiol. 66:4634-4640, 2000). We therefore studied the growth patterns of two isolates affiliating with Pseudoalteromonas and Oceanospirillum in batch culture. Upon substrate resupply, Oceanospirillum lagged threefold longer than Pseudoalteromonas but reached more than fivefold-higher final cell density and biomass. A second, mobile morphotype was present in the starved Oceanospirillum populations with distinctly greater cell size, DNA and protein content, and 16S rRNA concentration. Contrasting cellular ribosome concentrations during stationary phase suggested basic differences in the growth responses of the two strains to a patchy environment. Therefore, we exposed the strains to different modes of substrate addition. During cocultivation on a single batch of substrates, the final cell densities of Oceanospirillum were reduced three times as much as those Pseudoalteromonas, compared to growth yields in pure cultures. In contrast, the gradual addition of substrates to stationary-phase cocultures was clearly disadvantageous for the Pseudoalteromonas population. Different growth responses to substrate gradients could thus be another facet affecting the competition between marine bacteria and may help to explain community shifts observed during enrichments.

  11. Dancing DNA.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)

  12. Structural Studies of E. coli Topoisomerase III-DNA Complexes Reveal a Novel Type IA Topoisomerase-DNA Conformational Intermediate

    SciTech Connect

    Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso

    2010-03-05

    Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.

  13. DNA adductomics.

    PubMed

    Balbo, Silvia; Turesky, Robert J; Villalta, Peter W

    2014-03-17

    Systems toxicology is a broad-based approach to describe many of the toxicological features that occur within a living system under stress or subjected to exogenous or endogenous exposures. The ultimate goal is to capture an overview of all exposures and the ensuing biological responses of the body. The term exposome has been employed to refer to the totality of all exposures, and systems toxicology investigates how the exposome influences health effects and consequences of exposures over a lifetime. The tools to advance systems toxicology include high-throughput transcriptomics, proteomics, metabolomics, and adductomics, which is still in its infancy. A well-established methodology for the comprehensive measurement of DNA damage resulting from every day exposures is not fully developed. During the past several decades, the (32)P-postlabeling technique has been employed to screen the damage to DNA induced by multiple classes of genotoxicants; however, more robust, specific, and quantitative methods have been sought to identify and quantify DNA adducts. Although triple quadrupole and ion trap mass spectrometry, particularly when using multistage scanning (LC-MS(n)), have shown promise in the field of DNA adductomics, it is anticipated that high-resolution and accurate-mass LC-MS(n) instrumentation will play a major role in assessing global DNA damage. Targeted adductomics should also benefit greatly from improved triple quadrupole technology. Once the analytical MS methods are fully mature, DNA adductomics along with other -omics tools will contribute greatly to the field of systems toxicology.

  14. Sizing up soft substrate laminates

    NASA Astrophysics Data System (ADS)

    Woermbke, J. D.; Derencz, R. J.

    1985-02-01

    The basic performance parameters of several soft substrates for microwave and RF circuitry were evaluated experimentally with some custom built resonators. The trials were run with high and low dielectric constant substrates to quantify their variability over a wide range of operating temperatures. The low dielectric constant substrates were made of polytetrafluoroethylene (PTFE) loaded with either chopped or microfiber glass filler. The material was hot-pressed between a thin copper foil sheet and thick Al ground sheet. The high dielectric constant substrates were impregnated with a TiO2 ceramic powder. Tests measured insertion losses in 50 ohm lines from 1-18 GHz and the Q and dielectric constant at 3 GHz with half-wave resonators. The resonators were formed on the substrates with various conditioning treatments and were also examined for adhesion strength. The adhesion did not degrade until heated past 150 C. The substrate properties remained intact after numerous thermal cycles up to 250 C. High dielectric constant soft substrates did maintain good contact with the Cu foil up to 250 C.

  15. DNA strand patterns on aluminium thin films.

    PubMed

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Majid, Wan Haliza Abd; Rahman, Saadah Abdul; Shahhosseini, Fatemeh

    2011-01-01

    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.

  16. DNA detection using origami paper analytical devices

    PubMed Central

    Ellington, Andrew D.; Crooks, Richard M.

    2013-01-01

    We demonstrate the hybridization-induced fluorescence detection of DNA on an origami-based paper analytical device (oPAD). The paper substrate was patterned by wax printing and controlled heating to construct hydrophilic channels and hydrophobic barriers in a three-dimensional fashion. A competitive assay was developed where the analyte, a single-stranded DNA (ssDNA), and a quencher-labeled ssDNA competed for hybridization with a fluorophore-labeled ssDNA probe. Upon hybridization of the analyte with the fluorophore-labeled ssDNA, a linear response of fluorescence vs. analyte concentration was observed with an extrapolated limit of detection < 5 nM and a sensitivity relative standard deviation as low as 3%. The oPAD setup was also tested against OR/AND logic gates, proving to be successful in both detection systems. PMID:24070108

  17. DNA detection using origami paper analytical devices.

    PubMed

    Scida, Karen; Li, Bingling; Ellington, Andrew D; Crooks, Richard M

    2013-10-15

    We demonstrate the hybridization-induced fluorescence detection of DNA on an origami-based paper analytical device (oPAD). The paper substrate was patterned by wax printing and controlled heating to construct hydrophilic channels and hydrophobic barriers in a three-dimensional fashion. A competitive assay was developed where the analyte, a single-stranded DNA (ssDNA), and a quencher-labeled ssDNA competed for hybridization with a fluorophore-labeled ssDNA probe. Upon hybridization of the analyte with the fluorophore-labeled ssDNA, a linear response of fluorescence vs analyte concentration was observed with an extrapolated limit of detection <5 nM and a sensitivity relative standard deviation as low as 3%. The oPAD setup was also tested against OR/AND logic gates, proving to be successful in both detection systems.

  18. Method of processing a substrate

    DOEpatents

    Babayan, Steven E.; Hicks, Robert F.

    2008-02-12

    The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.

  19. RAG-1 and RAG-2-dependent assembly of functional complexes with V(D)J recombination substrates in solution.

    PubMed Central

    Li, W; Swanson, P; Desiderio, S

    1997-01-01

    V(D)J recombination is initiated by RAG-1 and RAG-2, which introduce double-strand DNA breaks at recombination signal sequences (RSSs) of antigen receptor gene segments to produce signal ends, terminating in blunt, double-strand breaks, and coding ends, terminating in DNA hairpins. While the formation of RAG-RSS complexes has been documented, observations regarding the individual contributions of RAG-1 and RAG-2 to RSS recognition are in conflict. Here we describe an assay for formation and maintenance of functional RAG-RSS complexes in the course of the DNA cleavage reaction. Under conditions of in vitro cleavage, the RAG proteins sequester intact substrate DNA in a stable complex which is formed prior to strand scission. The cleavage reaction subsequently proceeds through nicking and hairpin formation without dissociation of substrate. Notably, the presence of both RAG-1 and RAG-2 is essential for formation of stable, functional complexes with substrate DNA under conditions of the sequestration assay. Two classes of substrate mutation are distinguished by their effects on RAG-mediated DNA cleavage in vitro. A mutation of the first class, residing within the RSS nonamer and associated with coordinate impairment of nicking and hairpin formation, greatly reduces the stability of RAG association with intact substrate DNA. In contrast, a mutation of the second class, lying within the RSS heptamer and associated with selective abolition of hairpin formation, has little or no effect on the half-life of the RAG-substrate complex. PMID:9372925

  20. Method for imaging informational biological molecules on a semiconductor substrate

    NASA Technical Reports Server (NTRS)

    Coles, L. Stephen (Inventor)

    1994-01-01

    Imaging biological molecules such as DNA at rates several times faster than conventional imaging techniques is carried out using a patterned silicon wafer having nano-machined grooves which hold individual molecular strands and periodically spaced unique bar codes permitting repeatably locating all images. The strands are coaxed into the grooves preferably using gravity and pulsed electric fields which induce electric charge attraction to the molecular strands in the bottom surfaces of the grooves. Differential imaging removes substrate artifacts.

  1. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  2. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  3. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. Effects of Tilt Angle, DNA Concentration, and Surface Potential on Directed Alignment of DNA Molecule for the Application to Nanodevices

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Hong, Byungyou

    2013-03-01

    This paper reports an efficient approach to control both the density and direction of highly aligned DNA molecules and thus DNA-templated gold nanowires (AuNWs) on Si chips. We utilized tilting method to prepare stretched DNA structures on SiO2/Si substrate and found important parameters in the alignment process that tilt angle, DNA concentration, and surface potential are controlled the density and structure of DNA aligned on the surface. In additional, we also can be directly connected DNA-templated AuNWs between two terminal electrodes on Si chips. This method also describes a simple way to form singled, bundled and networked DNA arrays on Si substrates.

  5. Phage P4 DNA replication in vitro.

    PubMed Central

    Díaz Orejas, R; Ziegelin, G; Lurz, R; Lanka, E

    1994-01-01

    Phage P4 DNA is replicated in cell-free extracts of Escherichia coli in the presence of partially purified P4 alpha protein [Krevolin and Calendar (1985), J. Mol. Biol. 182, 507-517]. Using a modified in vitro replication assay, we have further characterized this process. Analysis by agarose gel electrophoresis and autoradiography of in vitro replicated molecules demonstrates that the system yields supercoiled monomeric DNA as the main product. Electron microscopic analysis of in vitro generated intermediates indicates that DNA synthesis initiates in vitro mainly at ori, the origin of replication used in vivo. Replication proceeds from this origin bidirectionally, resulting in theta-type molecules. In contrast to the in vivo situation, no extensive single-stranded regions were found in these intermediates. The initiation proteins of the host, DnaB and DnaG, and the chaperones DnaJ and DnaK are not required for P4 replication, because polyclonal antibodies against those polypeptides do not inhibit the process. The reaction is inhibited by antibodies against the SSB protein, and by ara-CTP, a specific inhibitor of DNA polymerase III holoenzyme. Consistent with previous reports, P4 in vitro replication is independent of transcription by host RNA polymerase. Novobiocin, a DNA gyrase inhibitor, strongly inhibits P4 DNA synthesis, indicating that form I DNA is the required substrate. Images PMID:8029013

  6. Systematic approaches to identify E3 ligase substrates

    PubMed Central

    Iconomou, Mary; Saunders, Darren N.

    2016-01-01

    Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes. PMID:27834739

  7. Environmental DNA mapping of Zebra Mussel populations

    USGS Publications Warehouse

    Amberg, Jon; Merkes, Christopher

    2016-01-01

    Environmental DNA (eDNA) has become a popular tool for detecting aquatic invasive species, but advancements have made it possible to potentially answer other questions like reproduction, movement, and abundance of the targeted organism. In this study we developed a Zebra Mussel (Dreissena polymorpha) eDNA protocol. We then determined if this assay could be used to help determine Zebra Mussel biomass in a lake with a well-established population of Zebra Mussels and a lake with an emerging population of mussels. Our eDNA assay detected DNA of Zebra Mussels but not DNA from more than 20 other species of fish and mussels, many commonly found in Minnesota waters. Our assay did not predict biomass. We did find that DNA from Zebra Mussels accumulated in softer substrates in both lakes, even though the mussels were predominately on the harder substrates. Therefore, we concluded that eDNA may be useful to detect the presence of Zebra Mussels in these lakes but our assay/approach could not predict biomass.

  8. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  9. Film Growth on Nanoporous Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James; Zhao, Chenwei; Xu, J. M.; Valles, James

    Self-ordered nanoporous anodic aluminum oxide (AAO) provides an easy way to fabricate nano structured material, such as nano wires and nano particles. We employ AAO as substrates and focus on the thermally evaporated film growth on the surface of the substrate. With various materials deposited onto the substrate, we find the films show different structures, e,g. ordered array of nano particles for Lead and nanohoneycomb structure for Silver. We relate the differing behaviors to the difference of surface energy and diffusion constant. To verify this, the effect of substrate temperature on the film growth has been explored and the structure of the film has been successfully changed through the process. We are grateful for the support of NSF Grants No. DMR-1307290.

  10. Dynamics of DNA Mismatch Repair

    NASA Astrophysics Data System (ADS)

    Coats, Julie; Lin, Yuyen; Rasnik, Ivan

    2009-11-01

    DNA mismatch repair protects the genome from spontaneous mutations by recognizing errors, excising damage, and re-synthesizing DNA in a pathway that is highly conserved. Mismatch recognition is accomplished by the MutS family of proteins which are weak ATPases that bind specifically to damaged DNA, but the specific molecular mechanisms by which these proteins recognize damage and initiate excision are not known. Previous structural investigations have implied that protein-induced conformational changes are central to mismatch recognition. Because damage detection is a highly dynamic process in which conformational changes of the protein-DNA complexes occur on a time scale of a few seconds, it is difficult to obtain meaningful kinetic information with traditional ensemble techniques. In this work, we use single molecule fluorescence resonance energy transfer (smFRET) to study the conformational dynamics of fluorescently labeled DNA substrates in the presence of the mismatch repair protein MutS from E. coli and its human homolog MSH2/MSH6. Our studies allow us to obtain quantitative kinetic information about the rates of binding and dissociation and to determine the conformational states for each protein-DNA complex.

  11. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  12. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  13. Microstrip antenna on tunable substrate

    NASA Astrophysics Data System (ADS)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  14. Substrate channeling in proline metabolism

    PubMed Central

    Arentson, Benjamin W.; Sanyal, Nikhilesh; Becker, Donald F.

    2012-01-01

    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism. PMID:22201749

  15. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.

    PubMed Central

    Jankowsky, E; Strunk, G; Schwenzer, B

    1997-01-01

    Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013

  16. PREFACE: Cell-substrate interactions Cell-substrate interactions

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  17. DNA molecules sticking on a vicinal Si(111) surface observed by noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arai, Toyoko; Tomitori, Masahiko; Saito, Masato; Tamiya, Eiichi

    2002-03-01

    The DNA molecules on a vicinal Si(111) substrate with steps of single and double bi-atomic layers are imaged by noncontact atomic force microscopy (nc-AFM) in ultrahigh vacuum. The water solution containing pBR322 plasmid DNA molecules digested by Cla I is dropped on the substrate in a pure nitrogen atmosphere in a glove box, which is connected to the introduction chamber of the AFM. The ends of DNA molecules are frequently folded and pinned at the steps on the substrate, and the DNA strings often lie along the step. The chemical and dipole interactions between the DNA and the semiconductor substrate seem to play an important role in folding, pinning and sticking on the Si(111) substrate.

  18. The bacterial DnaC helicase loader is a DnaB ring breaker

    PubMed Central

    Arias-Palomo, Ernesto; O’Shea, Valerie L.; Hood, Iris V.; Berger, James M.

    2013-01-01

    Summary Dedicated AAA+ ATPases help deposit hexameric ring-shaped helicases onto DNA to promote replication in cellular organisms. To understand how loading occurs, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the ATP-bound structure of the intact E. coli DnaB•DnaC helicase/loader complex. The 480 kDa dodecamer forms a three-tiered assembly, in which DnaC adopts a spiral configuration that remodels N-terminal scaffolding and C-terminal motor regions of DnaB to produce a clear break in the helicase ring. Surprisingly, DnaC’s AAA+ fold is dispensable for ring remodeling, as the isolated helicase-binding domain of DnaC can both load DnaB onto DNA and increase the efficiency by which the helicase acts on substrates in vitro. Our data demonstrate that DnaC opens DnaB by a mechanism akin to that of polymerase clamp loaders, and indicate that bacterial replicative helicases, like their eukaryotic counterparts, possess auto-regulatory elements that influence how the hexameric motor domains are loaded onto and unwind DNA. PMID:23562643

  19. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I.

    PubMed

    Buguliskis, Jeffrey S; Casta, Louis J; Butz, Charles E; Matsumoto, Yoshihiro; Taraschi, Theodore F

    2007-10-01

    We report that Plasmodium falciparum (Pf) encodes a 912 amino acid ATP-dependent DNA ligase. Protein sequence analysis of Pf DNA ligase I indicates a strong sequence similarity, particularly in the C-terminal region, to DNA ligase I homologues. The activity of recombinant Pf DNA ligase I (PfLigI) was investigated using protein expressed in HEK293 cells. The PfLigI gene product is approximately 94kDa and catalyzes phosphodiester bond formation on a singly nicked DNA substrate. The enzyme is most active at alkaline pH (8.5) and with Mg(2+) or Mn(2+) and ATP as cofactors. Kinetic studies of PfLigI revealed that the enzyme has similar substrate affinity (K(m) 2.6nM) as compared to human DNA ligase I and k(cat) (2.3x10(-3)s(-1)) and k(cat)/K(m) (8.8x10(5)M(-1)s(-1)) which are similar to other ATP-dependent DNA ligases. PfLigI was able to join RNA-DNA substrates only when the RNA sequence was upstream of the nick, confirming that it is DNA ligase I and has no associated DNA ligase III like activity.

  20. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport.

    PubMed

    O'Brien, Elizabeth; Holt, Marilyn E; Thompson, Matthew K; Salay, Lauren E; Ehlinger, Aaron C; Chazin, Walter J; Barton, Jacqueline K

    2017-02-24

    DNA charge transport chemistry offers a means of long-range, rapid redox signaling. We demonstrate that the [4Fe4S] cluster in human DNA primase can make use of this chemistry to coordinate the first steps of DNA synthesis. Using DNA electrochemistry, we found that a change in oxidation state of the [4Fe4S] cluster acts as a switch for DNA binding. Single-atom mutations that inhibit this charge transfer hinder primase initiation without affecting primase structure or polymerization. Generating a single base mismatch in the growing primer duplex, which attenuates DNA charge transport, inhibits primer truncation. Thus, redox signaling by [4Fe4S] clusters using DNA charge transport regulates primase binding to DNA and illustrates chemistry that may efficiently drive substrate handoff between polymerases during DNA replication.

  1. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    SciTech Connect

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  2. Mapping protease substrates by using a biotinylated phage substrate library.

    PubMed

    Scholle, Michael D; Kriplani, Ushma; Pabon, Amanda; Sishtla, Kamakshi; Glucksman, Marc J; Kay, Brian K

    2006-05-01

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  3. Mapping protease substrates using a biotinylated phage substrate library.

    SciTech Connect

    Scholle, M. D.; Kriplani, U.; Pabon, A.; Sishtla, K.; Glucksman, M. J.; Kay, B. K.; Biosciences Division; Chicago Medical School

    2005-05-05

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  4. Probing DNA by 2-OG-dependent dioxygenase

    PubMed Central

    Tsai, Chi-Lin; Tainer, John A.

    2014-01-01

    TET-mediated 5-methyl cytosine (5mC) oxidation acts in epigenetic regulation, stem cell development, and cancer. Hu et al. now determine the crystal structure of the TET2 catalytic domain bound to DNA, shedding light on 5mC-DNA substrate recognition and the catalytic mechanism of 5mC oxidation. PMID:24360270

  5. Role of DNA polymerase gamma in adenovirus DNA replication. Mechanism of inhibition by 2',3'-dideoxynucleoside 5'-triphosphates.

    PubMed

    van der Vliet, P C; Kwant, M M

    1981-04-28

    In contrast to cellular or SV40 DNA replication, adenovirus type 5 (Ad5) or type 2 (Ad2) DNA synthesis in isolated nuclei is strongly inhibited by low concentrations of 2',3'-dideoxythymidine 5'-triphosphate (ddTTP). On the basis of differential sensitivity of cellular DNA polymerases, a role of DNA polymerase gamma in adenovirus DNA replication has been proposed. We have investigated the mechanism of inhibition of adenovirus DNA synthesis, using [alpha-32P]ddTTP and other dNTP analogues. Both ddATP and ddGTP were as inhibitory as ddTTP, while ddCTP had an even stronger effect on adenovirus DNA replication. DNA polymerase alpha was resistant to all four ddNTP's, while DNA polymerase gamma was very sensitive. The inhibition by ddTTP in isolated infected nuclei was slowly reversible. [alpha-32P]ddTTP was incorporated into Ad5 DNA as a chain-terminating nucleotide, and the analogue could be used as a substrate by DNA polymerase gamma. Under similar conditions, incorporation in cellular DNA or using DNA polymerase alpha was not observed. The nucleoside analogues ddA and ddC suppressed adenovirus. DNA replication in intact cells and reduced plaque formation. These results provide further evidence for a function of DNA polymerase gamma in adenovirus DNA synthesis.

  6. DNA Music.

    ERIC Educational Resources Information Center

    Miner, Carol; della Villa, Paula

    1997-01-01

    Describes an activity in which students reverse-translate proteins from their amino acid sequences back to their DNA sequences then assign musical notes to represent the adenine, guanine, cytosine, and thymine bases. Data is obtained from the National Institutes of Health (NIH) on the Internet. (DDR)

  7. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  8. Synthetic DNA

    PubMed Central

    O’ Driscoll, Aisling; Sleator, Roy D.

    2013-01-01

    With world wide data predicted to exceed 40 trillion gigabytes by 2020, big data storage is a very real and escalating problem. Herein, we discuss the utility of synthetic DNA as a robust and eco-friendly archival data storage solution of the future. PMID:23514938

  9. Mechanism of DNA loading by the DNA repair helicase XPD

    PubMed Central

    Constantinescu-Aruxandei, Diana; Petrovic-Stojanovska, Biljana; Penedo, J. Carlos; White, Malcolm F.; Naismith, James H.

    2016-01-01

    The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5′ to 3′ helicase with an essential iron–sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD. PMID:26896802

  10. Development of an optical biosensor based on surface-enhanced Raman scattering for DNA analysis

    NASA Astrophysics Data System (ADS)

    Yigit, Tugce; Akdogan, Ebru; Karagoz, Isık. Didem; Kahraman, Mehmet

    2016-03-01

    Rapid, accurate and sensitive DNA analysis is critically important for the diagnostic of genetic diseases. The most common method preferred in practice is fluorescence based microarrays to analyze the DNA. However, there exist some disadvantages related to the above-mentioned method such as the overlapping of the fluorescence emission wavelengths that can diminish in the performance of multiplexing, needed to obtain fluorescence spectra from each dye and photo degradation. In this study, a novel SERS based DNA analysis approach, which is Raman active dye-free and independent of SERS substrate properties, is developed. First, the single strand DNA probe is attached to the SERS substrate and half of the complimentary DNA is attached to gold nanoparticles, as well. We hypothesize that in the presence of target DNA, the complimentary DNA coupled colloids will bind to the SERS substrate surface via hybridization of single strand target DNA. To test this hypothesis, we used UV/Vis spectroscopy, atomic for microscopy (AFM) and dynamic light scattering (DLS). DNA analysis is demonstrated by a peak shift of the certain peak of the small molecules attached to the SERS substrate surface instead of SERS spectrum obtained in the presence of target DNA from the Raman reporter molecules. The degree of peak shifting will be used for the quantification of the target DNA in the sample. Plasmonic properties of SERS substrates and reproducibility issues will not be considerable due to the use of peak shifting instead of peak intensity for the qualitative analysis.

  11. Programmable DNA-Mediated Multitasking Processor.

    PubMed

    Shu, Jian-Jun; Wang, Qi-Wen; Yong, Kian-Yan; Shao, Fangwei; Lee, Kee Jin

    2015-04-30

    Because of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems. The novel programmable DNA-mediated processor has several advantages over the existing silicon-mediated methods, such as conducting massive data storage and simultaneous processing via much fewer materials than conventional silicon devices.

  12. Coatings on reflective mask substrates

    SciTech Connect

    Tong, William Man-Wai; Taylor, John S.; Hector, Scott D.; Mangat, Pawitter J. S.; Stivers, Alan R.; Kofron, Patrick G.; Thompson, Matthew A.

    2002-01-01

    A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.

  13. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  14. A new structural framework for integrating replication protein A into DNA processing machinery

    SciTech Connect

    Brosey, Chris; Yan, Chunli; Tsutakawa, Susan; Heller, William; Rambo, Robert; Tainer, John; Ivanov, Ivaylo; Chazin, Walter

    2013-01-17

    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.

  15. Isolation of Discrete Nanoparticle-DNA Conjugates for Plasmonic Applications

    SciTech Connect

    Alivisatos, Paul; Claridge, Shelley A.; Liang, Huiyang W.; Basu, Sourav Roger; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-04-11

    Discrete DNA-gold nanoparticle conjugates with DNA lengths as short as 15 bases for both 5 nm and 20 nm gold particles have been purified by anion-exchange HPLC. Conjugates comprising short DNA (<40 bases) and large gold particles (>_ 20 nm) are difficult to purify by other means, and are potential substrates for plasmon coupling experiments. Conjugate purity is demonstrated by hybridizing complementary conjugates to form discrete structures, which are visualized by TEM.

  16. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  17. Fungal diversity is not determined by mineral and chemical differences in serpentine substrates.

    PubMed

    Daghino, Stefania; Murat, Claude; Sizzano, Elisa; Girlanda, Mariangela; Perotto, Silvia

    2012-01-01

    The physico-chemical properties of serpentine soils lead to strong selection of plant species. Whereas many studies have described the serpentine flora, little information is available on the fungal communities dwelling in these sites. Asbestos minerals, often associated with serpentine rocks, can be weathered by serpentine-isolated fungi, suggesting an adaptation to this substrate. In this study, we have investigated whether serpentine substrates characterized by the presence of rocks with distinct mineral composition could select for different fungal communities. Both fungal isolation and 454 pyrosequencing of amplicons obtained from serpentine samples following direct DNA extraction revealed some fungal taxa shared by the four ophiolitic substrates, but also highlighted several substrate-specific taxa. Bootstrap analysis of 454 OTU abundances indicated weak clustering of fungal assemblages from the different substrates, which did not match substrate classification based on exchangeable macronutrients and metals. Intra-substrate variability, as assessed by DGGE profiles, was similar across the four serpentine substrates, and comparable to inter-substrate variability. These findings indicate the absence of a correlation between the substrate (mineral composition and available cations) and the diversity of the fungal community. Comparison of culture-based and culture-independent methods supports the higher taxonomic precision of the former, as complementation of the better performance of the latter.

  18. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  19. Replicated CdTe Substrates.

    DTIC Science & Technology

    1983-09-01

    2423/01/72 Watertown, MA 02172 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Materials Lab (AFWAL/I4LPO) Sept. 1983 Wright Patterson APB...unsuccessful. Using the same technique utilized at Lincoln Labs i.e., baking the resist coated substrates in air at elevated temperatures, carbonization was...the effect of substrate orientation on the lateral to vertical growth rate of the films. Previous work at Lincoln Labs using GaAs and InP had shown a

  20. Kinetic mechanism for DNA unwinding by multiple molecules of Dda helicase aligned on DNA.

    PubMed

    Eoff, Robert L; Raney, Kevin D

    2010-06-01

    Helicases catalyze the separation of double-stranded nucleic acids to form single-stranded intermediates. Using transient state kinetic methods, we have determined the kinetic properties of DNA unwinding under conditions that favor a monomeric form of the Dda helicase as well as conditions that allow multiple molecules to function on the same substrate. Multiple helicase molecules can align like a train on the DNA track. The number of base pairs unwound in a single binding event for Dda is increased from approximately 19 bp for the monomeric form to approximately 64 bp when as many as four Dda molecules are aligned on the same substrate, while the kinetic step size (3.2 +/- 0.7 bp) and unwinding rate (242 +/- 25 bp/s) appear to be independent of the number of Dda molecules present on a given substrate. The data support a model in which the helicase molecules bound to the same substrate move along the DNA track independently during DNA unwinding. The observed increase in processivity arises from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. These results are in contrast to previous reports in which multiple Dda molecules on the same track greatly enhanced the rate and amplitude for displacement of protein blocks on the track. Therefore, only when the progress of the lead molecule in the train is impeded by some type of block, such as a protein bound to DNA, do the trailing molecules interact with the lead molecule to overcome the block. The fact that trailing helicase molecules have little impact on the lead molecule in the train during routine DNA unwinding suggests that the trailing molecules are moving at rates similar to that of the lead molecule. This result implicates a step in the translocation mechanism as contributing greatly to the overall rate-limiting step for unwinding of duplex DNA.

  1. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE

    PubMed Central

    Sen, Doyel; Patel, Gayatri; Patel, Smita S.

    2016-01-01

    A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE—a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding substrate and a homologous single-stranded DNA. Using various biochemical experiments, we demonstrate that the mechanism of strand-exchange involves active coupling of unwinding and annealing reactions by the TWINKLE. Unlike strand-annealing, the strand-exchange reaction requires nucleotide hydrolysis and greatly stimulated by short region of homology between the recombining DNA strands that promote joint molecule formation to initiate strand-exchange. Furthermore, we show that TWINKLE catalyzes branch migration by resolving homologous four-way junction DNA. These four DNA modifying activities of TWINKLE: strand-separation, strand-annealing, strand-exchange and branch migration suggest a dual role of TWINKLE in mitochondrial DNA maintenance. In addition to playing a major role in fork progression during leading strand DNA synthesis, we propose that TWINKLE is involved in recombinational repair of the human mitochondrial DNA. PMID:26887820

  2. DNA nanostructure immobilization to lithographic DNA arrays

    NASA Astrophysics Data System (ADS)

    Negrete, Omar D.

    Although DNA is well known for its genetic role in biology, DNA has also been sought-after as a material for the self-assembly of biological and electronic devices. Examples of DNA nanostructure construction include DNA tiled self-assembly and DNA Origami, where by controlling the sequence and concentration of DNA molecules, the rational design of geometric DNA nanostructures is possible. The assembly of DNA nanostructures takes place in solution and thus they are in disorder and require further organization to construct circuitry or devices. Hence, it is essential for future applications of this technology to develop methods to direct the placement of DNA nanostructures on a surface. To address this challenge my research examines the use of DNA microarrays to capture DNA nanostructures via DNA hybridization. Modern DNA arrays offer a high-density of sequence-specific molecular recognition sites where the addressable placement of DNA nanostructures can be achieved. Using Maskless Array Synthesizer (MAS) technology, I have characterized photolithographic DNA arrays for the hybridization of DNA complexes like large DNA molecules (> 1 kb), DNA-gold nanoparticle conjugates, and DNA Origami. Although modern photolithographic DNA arrays can possess a high-density of sequence (106/cm2), the printed DNA areas are on the order of tens of microns. Thus, I have also developed a method to reduce the DNA array spot size to nanoscale dimensions through the combined use of electron beam lithography with photolithographic DNA synthesis. This work addresses the key elements towards developing a surface patterning technology that takes advantage of DNA base-pairing for both molecular sub-assembly and surface patterning.

  3. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    PubMed

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants.

  4. DNA and RNA ligases: structural variations and shared mechanisms.

    PubMed

    Pascal, John M

    2008-02-01

    DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.

  5. Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system.

    PubMed

    Han, W; Christen, P

    2001-05-18

    Hsp70s assist the folding of proteins in an ATP-dependent manner. DnaK, the Hsp70 of Escherichia coli, acts in concert with its co-chaperones DnaJ and GrpE. Amino acid substitutions (D388R and L391S/L392G) in the linker region between the ATPase and substrate-binding domain did not affect the functional domain coupling and oligomerization of DnaK. The intrinsic ATPase activity was enhanced up to 10-fold. However, the ATPase activity of DnaK L391S/L392G, if stimulated by DnaJ plus protein substrate, was five times lower than that of wild-type DnaK and DnaK D388R. This defect correlated with the complete loss of chaperone action in luciferase refolding. Apparently, the conserved leucine residues in the linker mediate the synergistic effects of DnaJ and protein substrate on ATPase activity, a function which might be essential for chaperone action.

  6. Coordinated DNA dynamics during the human telomerase catalytic cycle

    NASA Astrophysics Data System (ADS)

    Parks, Joseph W.; Stone, Michael D.

    2014-06-01

    The human telomerase reverse transcriptase (hTERT) utilizes a template within the integral RNA subunit (hTR) to direct extension of telomeres. Telomerase exhibits repeat addition processivity (RAP) and must therefore translocate the nascent DNA product into a new RNA:DNA hybrid register to prime each round of telomere repeat synthesis. Here, we use single-molecule FRET and nuclease protection assays to monitor telomere DNA structure and dynamics during the telomerase catalytic cycle. DNA translocation during RAP proceeds through a previously uncharacterized kinetic substep during which the 3‧-end of the DNA substrate base pairs downstream within the hTR template. The rate constant for DNA primer realignment reveals this step is not rate limiting for RAP, suggesting a second slow conformational change repositions the RNA:DNA hybrid into the telomerase active site and drives the extrusion of the 5‧-end of the DNA primer out of the enzyme complex.

  7. Study of DNA adsorption on mica surfaces using a surface force apparatus

    NASA Astrophysics Data System (ADS)

    Kan, Yajing; Tan, Qiyan; Wu, Gensheng; Si, Wei; Chen, Yunfei

    2015-02-01

    We report our studies on the adsorption properties of double-stranded DNA molecules on mica surfaces in a confined environment using a surface force apparatus. Specifically, we studied the influence of cation species and concentrations on DNA adsorption properties. Our results indicated that divalent cations (Mg2+ and Co2+) preferred to form uniform and moderately dense DNA layers on a mica substrate. By measuring the interactions between DNA-coated mica and bare mica in an aqueous solution, obvious adhesion was observed in a cobalt chloride solution, possibly due to the ion-correlation attraction between negatively charged DNA and the mica surface. Furthermore, the interaction differences that were observed with MgCl2 and CoCl2 solutions reveal that the specific adsorption behaviors of DNA molecules on a mica substrate were mediated by these two salts. Our results are helpful to elucidate the dynamics of DNA binding on a solid substrate.

  8. Substrate for thin silicon solar cells

    DOEpatents

    Ciszek, Theodore F.

    1998-01-01

    A substrate for a photovoltaic device wherein the substrate is the base upon which photosensitive material is to be grown and the substrate comprises an alloy having boron in a range from 0.1 atomic % of the alloy to 1.3 atomic % of the alloy and the substrate has a resistivity less than 3.times.10.sup.-3 ohm-cm.

  9. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  10. Cation exchange capacity of pine bark substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cation exchange capacity (CEC) is an important soil and substrate chemical property. It describes a substrate's ability to retain cation nutrients. Higher CEC values for a substrate generally result in greater amounts of nutrients retained in the substrate and available for plant uptake, and great...

  11. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, Eugene R.; Mitchell, Alexander R.; Pearson, Karen W.; Smith, Robert E.

    1983-01-01

    Synthetic substrates are provided which may be represented as A-D. The A moiety thereof includes an amino acid, polypeptide, or derivative thereof. The D moiety thereof includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons.

  12. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  13. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, E.R.; Mitchell, A.R.; Pearson, K.W.; Smith, R.E.

    1983-06-14

    Synthetic substrates are provided which may be represented as A-D. The A moiety includes an amino acid, polypeptide, or derivative. The D moiety includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons. No Drawings

  14. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  15. Enzymatic reactions on immobilised substrates.

    PubMed

    Gray, Christopher J; Weissenborn, Martin J; Eyers, Claire E; Flitsch, Sabine L

    2013-08-07

    This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.

  16. Cellulosic Substrates and Challenges Ahead

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of production of butanol (acetone-butanol-ethanol; or ABE) is determined by feedstock prices, fermentation, recovery, by-product credits and the waste water treatment. Along these lines, we have an intensive research program on the use of various agricultural substrates, fermentation strate...

  17. Directed evolution of the substrate specificity of biotin ligase.

    PubMed

    Lu, Wei-Cheng; Levy, Matthew; Kincaid, Rodney; Ellington, Andrew D

    2014-06-01

    We have developed selection scheme for directing the evolution of Escherichia coli biotin protein ligase (BPL) via in vitro compartmentalization, and have used this scheme to alter the substrate specificity of the ligase towards the utilization of the biotin analogue desthiobiotin. In this scheme, a peptide substrate (BAP) was conjugated to a DNA library encoding BirA, emulsified such that there was a single template per compartment, and protein variants were transcribed and translated in vitro. Those variants that could efficiently desthiobiotinylate their corresponding peptide:DNA conjugate were subsequently captured and amplified. Following just six rounds of selection and amplification several variants that demonstrated higher activity with desthiobiotin were identified. The best variants from Round 6, BirA6-40 and BirA6-47 , showed 17-fold and 10-fold higher activity, respectively, their abilities to use desthiobiotin as a substrate. While selected enzymes contained a number of substitutions, a single mutation, M157T, proved sufficient to provide much greater activity with desthiobiotin. Further characterization of BirA6-40 and the single substitution variant BirAM157T revealed that they had twoto threefold higher kcat values for desthiobiotin. These variants had also lost much of their ability to utilize biotin, resulting in orthogonal enzymes that in conjunction with streptavidin variants that can utilize desthiobiotin may prove to be of great use in developing additional, robust conjugation handles for a variety of biological and biotechnological applications.

  18. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  19. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  20. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum

    PubMed Central

    Margaryan, Ashot; Stenderup, Jesper; Lynnerup, Niels; Willerslev, Eske; Allentoft, Morten E.

    2017-01-01

    Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (<10% endogenous DNA). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements. PMID:28129388

  1. Prokaryotic DNA ligases unwind superhelical DNA.

    PubMed

    Ivanchenko, M; van Holde, K; Zlatanova, J

    1996-09-13

    We have studied the effect on DNA topology of binding of prokaryotic DNA ligases (T4 and E. coli) to superhelical or nicked circular DNA. Performing topoisomerase I-mediated relaxation in the presence of increasing amounts of T4 ligase led to a shift in the topoisomer distribution to increasingly more negative values. This result suggested that T4 ligase unwound the DNA and was further substantiated by ligation of nicked circular molecules by E. coli DNA ligase in the presence of increasing amounts of T4 ligase. Such an experiment was possible since the two DNA ligases require different cofactors for enzymatic activity. Performing a similar experiment with reverse partners, using E. coli DNA ligase as ligand, and T4 ligase as sealing agent, we observed that the E. coli enzyme also unwound the DNA. Thus, prokaryotic DNA ligases can be added to an ever-growing list of DNA-binding proteins that unwind the DNA upon binding.

  2. APOBEC3A damages the cellular genome during DNA replication

    PubMed Central

    Green, Abby M.; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C.; Shalhout, Sophia; Bhagwat, Ashok S.; Weitzman, Matthew D.

    2016-01-01

    ABSTRACT The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors. PMID:26918916

  3. APOBEC3A damages the cellular genome during DNA replication.

    PubMed

    Green, Abby M; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C; Shalhout, Sophia; Bhagwat, Ashok S; Weitzman, Matthew D

    2016-01-01

    The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.

  4. Electrostatic Interaction of Long DNA Molecules with Solid State Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Bingquan; Samuilov, Vladimir; Sokolov, Jonathan; Rafailovich, Miriam; Chu, Ben

    2004-03-01

    At low buffer concentration the electric charge of DNA molecules creates a strong electrostatic interaction and, as a result, a number of phenomena, such as the electro-hydrodynamic instability, partial adsorption at the buffer-semiconductor interface and stretching of DNA with the electric field. Long DNA molecules at the silicon substrate?buffer solution interface are very interesting objects for the electrical transport [1,2] and the mechanical properties, like entropic elasticity, studies. The system (DNA-substrate-electric field in the buffer solution) is very complicated. Due to the strong electrostatic interaction of DNA with the substrate, the image charge is generated, and the physical adsorption takes place. We have studied the S. Pombe genomic DNA of the order of 5 Mbp. Within a surface DNA is entropically partially recoiled due to electrostatic adsorption at a few points. While varying the direction of the low electric field the direction of the electroosmotic flow is changing and stretching the parts of DNA between the adsorption points. If the electric field is high enough, DNA is de-trapped and forms a compact coil. This behavior could be considered as an inverse mechanism of entropy trapping due to confined constrictions. In the case of the surface, DNA is recoiled and trapped in the stretched configuration in the deep energetic barrier by Si surface due to the strong electrostatic interaction. If the energy of the field is enough to overcome the barrier, DNA is detached. The Si surface could be considered as an analog of the entropic recoiling nanostructure. [1]. N. Pernodet, V. Samuilov, K. Shin, J. Sokolov, M.H. Rafailovich, D. Gersappe, B. Chu. DNA Electrophoresis on a Flat Surface, Physical Review Letters, 85 (2000) 5651-5654. [2] Y.-S. Seo, V.A. Samuilov, J. Sokolov, M. Rafailovich, B. Tinland, J. Kim, B. Chu. DNA separation at a liquid-solid interface, Electrophoresis, 23 (2002) 2618-2625.

  5. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity.

    PubMed

    Sanders, Cyril M

    2010-08-15

    Pif1 proteins are helicases that in yeast are implicated in the maintenance of genome stability. One activity of Saccharomyces cerevisiae Pif1 is to stabilize DNA sequences that could otherwise form deleterious G4 (G-quadruplex) structures by acting as a G4 resolvase. The present study shows that human Pif1 (hPif1, nuclear form) is a G4 DNA-binding and resolvase protein and that these activities are properties of the conserved helicase domain (amino acids 206-620 of 641, hPifHD). hPif1 preferentially bound synthetic G4 DNA relative to ssDNA (single-stranded DNA), dsDNA (double-stranded DNA) and a partially single-stranded duplex DNA helicase substrate. G4 DNA unwinding, but not binding, required an extended (>10 nucleotide) 5' ssDNA tail, and in competition assays, G4 DNA was an ineffective suppressor of helicase activity compared with ssDNA. These results suggest a distinction between the determinants of G4 DNA binding and the ssDNA interactions required for helicase action and that hPif1 may act on G4 substrates by binding alone or as a resolvase. Human Pif1 could therefore have a role in processing G4 structures that arise in the single-stranded nucleic acid intermediates formed during DNA replication and gene expression.

  6. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair.

    PubMed

    Malewicz, Michal; Kadkhodaei, Banafsheh; Kee, Nigel; Volakakis, Nikolaos; Hellman, Ulf; Viktorsson, Kristina; Leung, Chuen Yan; Chen, Benjamin; Lewensohn, Rolf; van Gent, Dik C; Chen, David J; Perlmann, Thomas

    2011-10-01

    DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK catalytic subunit and, upon exposure to DNA damage, translocate to DSB foci by a mechanism requiring the activity of poly(ADP-ribose) polymerase-1 (PARP-1). At DNA repair foci, NR4A is phosphorylated by DNA-PK and promotes DSB repair. Notably, NR4A transcriptional activity is entirely dispensable in this function, and core components of the DNA repair machinery are not transcriptionally regulated by NR4A. Instead, NR4A functions directly at DNA repair sites by a process that requires phosphorylation by DNA-PK. Furthermore, a severe combined immunodeficiency (SCID)-causing mutation in the human gene encoding the DNA-PK catalytic subunit impairs the interaction and phosphorylation of NR4A at DSBs. Thus, NR4As represent an entirely novel component of DNA damage response and are substrates of DNA-PK in the process of DSB repair.

  7. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases.

    PubMed

    Pinto, Cosimo; Kasaciunaite, Kristina; Seidel, Ralf; Cejka, Petr

    2016-09-09

    Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA.

  8. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases

    PubMed Central

    Pinto, Cosimo; Kasaciunaite, Kristina; Seidel, Ralf; Cejka, Petr

    2016-01-01

    Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI: http://dx.doi.org/10.7554/eLife.18574.001 PMID:27612385

  9. A ribozyme with DNA in the hybridising arms displays enhanced cleavage ability.

    PubMed Central

    Hendry, P; McCall, M J; Santiago, F S; Jennings, P A

    1992-01-01

    Hammerhead ribozymes cleave RNA substrates containing the UX sequence, where X = U, C or A, embedded within sequences which are complementary to the hybridising 'arms' of the ribozyme. In this study we have replaced the RNA in the hybridising arms of the ribozyme with DNA, and the resulting ribozyme is many times more active than its precursor. In turnover-kinetics experiments with a 13-mer RNA substrate, the kcat/Km ratios are 10 and 150 microM-1min-1 for the RNA- and DNA-armed ribozymes, respectively. The effect is due mainly to differences in kcat. In independent experiments where the cleavage step is rate-limiting, the DNA-armed ribozyme cleaves the substrate with a rate constant more than 3 times greater than the all-RNA ribozyme. DNA substrates containing a ribocytidine at the cleavage site have been shown to be cleaved less efficiently than their all-RNA analogues; again however, the DNA-armed ribozyme is more effective than the all-RNA ribozyme against such DNA substrates. These results demonstrate that there are no 2'-hydroxyl groups in the arms of the ribozyme that are required for cleavage; and that the structure of the complex formed by the DNA-armed ribozyme with its substrate is more favourable for cleavage than that formed by the all-RNA ribozyme and its substrate. PMID:1280808

  10. Stimulation of the DNA unwinding activity of human DNA helicase II/Ku by phosphorylation.

    PubMed

    Ochem, Alexander E; Rechreche, Hocine; Skopac, Doris; Falaschi, Arturo

    2008-02-01

    The Ku autoantigen is a heterodimeric protein of 70- and 83-kDa subunits, endowed with duplex DNA end-binding capacity and DNA helicase activity (Human DNA Helicase II, HDH II). HDH II/Ku is well established as the DNA binding component, the regulatory subunit as well as a substrate for the DNA-dependent protein kinase DNA-PK, a complex involved in the repair of DNA double-strand breaks and in V(D)J recombination in eukaryotes. The effects of phosphorylation by this kinase on the helicase activity of Escherichia coli-produced HDH II/Ku were studied. The rate of DNA unwinding by recombinant HDH II/Ku heterodimer is stimulated at least fivefold upon phosphorylation by DNA-PK(cs). This stimulation is due to the effective transfer of phosphate residues to the helicase rather than the mere presence of the complex. In vitro dephosphorylation of HeLa cellular HDH II/Ku caused a significant decrease in the DNA helicase activity of this enzyme.

  11. Method and apparatus for synthesis of arrays of DNA probes

    DOEpatents

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  12. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  13. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  14. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  15. Kinetic analysis of the cleavage of natural and synthetic substrates by the Serratia nuclease.

    PubMed

    Friedhoff, P; Meiss, G; Kolmes, B; Pieper, U; Gimadutdinow, O; Urbanke, C; Pingoud, A

    1996-10-15

    The extracellular nuclease from Serratia marcescens is a non-specific endonuclease that hydrolyzes double-stranded and single-stranded DNA and RNA with high specific activity. Steady-state and presteady-state kinetic cleavage experiments were performed with natural and synthetic DNA and RNA substrates to understand the mechanism of action of the Serratia nuclease. Most of the natural substrates are cleaved with similar Kcat and K(m) values, the Kcat/K(m) ratios being comparable to that of staphylococcal nuclease. Substrates with extreme structural features, like poly(dA).poly(dT) or poly(dG).poly(dC), are cleaved by the Serratia nuclease with a 50 times higher or 10 times lower K(m), respectively, as salmon testis DNA. Neither with natural DNA or RNA nor synthetic oligodeoxynucleotide substrates did we observe substrate inhibition for the Serratia nuclease as reported recently. Experiments with short oligodeoxynucleotides confirmed previous results that for moderately good cleavage activity the substrate should contain at least five phosphate residues. Shorter substrates are still cleaved by the Serratia nuclease, albeit at a rate reduced by a factor of more than 100. Cleavage experiments with oligodeoxynucleotides substituted by a single phosphorothioate group showed that the negative charge of the pro-Rp-oxygen of the phosphate group 3' adjacent to the scissile phosphodiester bond is essential for cleavage, as only the Rp-phosphorothioate supports cleavage at the 5' adjacent phosphodiester bond. Furthermore, the modified bond itself is only cleaved in the Rp-diastereomer, albeit 1000 times more slowly than the corresponding unmodified phosphodiester bond, which offers the possibility to determine the stereochemical outcome of cleavage. Pre-steady-state cleavage experiments demonstrate that it is not dissociation of products but association of enzyme and substrate or the cleavage of the phosphodiester bond that is the rate-limiting step of the reaction. Finally

  16. Substrate for silicon solar cells

    SciTech Connect

    Thomas, D.E.

    1982-08-10

    A substrate is made for silicon solar cells by heating a sheet of large-grained silicon steel at a temperature of at least about 1300* C. In an atmosphere of hydrogen and tungsten hexafluo (Or hexachloride) at a partial pressure ratio of hydrogen to tungsten hexafluoride of about 3 to about 6 to deposit an epitaxial layer of tungsten on said sheet of silicon steel. Epitaxial silicon can then be deposited in a conventional manner on the layer of epitaxial tungsten.

  17. Cuprate superconductors on titanium substrates

    NASA Astrophysics Data System (ADS)

    Mitterbauer, Christina; Gritzner, Gerhard

    2007-09-01

    The applicability of titanium as substrate material for coated conductors was investigated. Titanium metal was rolled to a thickness of 1 mm and mechanically polished. The titanium sheets were oxidized in air at 1000 °C for 1 h. A dense oxide layer was formed. YBCO superconducting layers were applied to the oxidized titanium surface via screen printing from a suspension in acetone-terpineol. The YBCO layers were characterized by X-ray diffraction and by scanning electron microscopy.

  18. DNA-specific autoantibody cleaves DNA by hydrolysis of phosphodiester and glycosidic bond.

    PubMed

    Nguyen, Hang Thi Thu; Jang, Young-Ju; Jeong, Sunjoo; Yu, Jaehoon

    2003-11-21

    The DNA-recognizing autoantibodies were prepared in milligram scale and their catalytic activities were investigated using various standard substrates for hydrolysis of natural biomolecules such as DNA, carbohydrates, and proteins. Only phosphatase and glycosidase activity was found and no peptidase, sulfatase, or esterase activity was detected in most of anti-DNA monoclonal autoantibodies we tested. Antibody G1-2 showed the highest catalytic activities and its enzymatic characteristics were further investigated. The antibody showed phosphatase activity with sub-millimolar substrate specificity and 10(4)-10(5) rate enhancements. However, Ab G1-2 showed low micro-molar specificity with p-nitrophenyl-beta-D-N-acetylglucosamide with 10(4)-10(5) rate enhancements. Both of the catalytic activities showed pH maximum at 4-5, suggesting that the carboxylate(s) in antigen-binding site is involved in the catalytic mechanism. Chemical protection of carboxylate(s) with diazoacetamide showed much reduced activity of the Ab, confirming that the catalytic activity comes from carboxylate(s) in the Ag-binding region. The activities of phosphatase and glycosidase were thoroughly inhibited by DNA with almost identical K(i) values. These data suggest that DNA-binding site(s) is the enzymatic active site of the catalytic Abs. Capabilities of the DNA recognition might make it possible to confer the Ab the catalytic activity of phosphate and glycosidic bond hydrolysis, which can be the main cause of DNA cleavage.

  19. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  20. Single-quantum-dot-based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yang; Yeh, Hsin-Chih; Kuroki, Marcos T.; Wang, Tza-Huei

    2005-11-01

    Rapid and highly sensitive detection of DNA is critical in diagnosing genetic diseases. Conventional approaches often rely on cumbersome, semi-quantitative amplification of target DNA to improve detection sensitivity. In addition, most DNA detection systems (microarrays, for example), regardless of their need for target amplification, require separation of unhybridized DNA strands from hybridized stands immobilized on a solid substrate, and are thereby complicated by solution-surface binding kinetics. Here, we report an ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) capable of detecting low concentrations of DNA in a separation-free format. This system uses quantum dots (QDs) linked to DNA probes to capture DNA targets. The target strand binds to a dye-labelled reporter strand thus forming a FRET donor-acceptor ensemble. The QD also functions as a concentrator that amplifies the target signal by confining several targets in a nanoscale domain. Unbound nanosensors produce near-zero background fluorescence, but on binding to even a small amount of target DNA (~50 copies or less) they generate a very distinct FRET signal. A nanosensor-based oligonucleotide ligation assay has been demonstrated to successfully detect a point mutation typical of some ovarian tumours in clinical samples.

  1. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems.

  2. Switching from single-stranded to double-stranded DNA limits the unwinding processivity of ring-shaped T7 DNA helicase.

    PubMed

    Jeong, Yong-Joo; Rajagopal, Vaishnavi; Patel, Smita S

    2013-04-01

    Phage T7 helicase unwinds double-stranded DNA (dsDNA) by encircling one strand while excluding the complementary strand from its central channel. When T7 helicase translocates on single-stranded DNA (ssDNA), it has kilobase processivity; yet, it is unable to processively unwind linear dsDNA, even 60 base-pairs long. Particularly, the GC-rich dsDNAs are unwound with lower amplitudes under single-turnover conditions. Here, we provide evidence that T7 helicase switches from ssDNA to dsDNA during DNA unwinding. The switching propensity is higher when dsDNA is GC-rich or when the 3'-overhang of forked DNA is <15 bases. Once helicase encircles dsDNA, it travels along dsDNA and dissociates from the end of linear DNA without strand separation, which explains the low unwinding amplitude of these substrates. Trapping the displaced strand with ssDNA binding protein or changing its composition to morpholino oligomer that does not interact with helicase increases the unwinding amplitude. We conclude that the displaced strand must be continuously excluded and kept away from the central channel for processive DNA unwinding. The finding that T7 helicase can switch from ssDNA to dsDNA binding mode during unwinding provides new insights into ways of limiting DNA unwinding and triggering fork regression when stalled forks need to be restarted.

  3. Calf thymus DNA helicase F, a replication protein A copurifying enzyme.

    PubMed Central

    Georgaki, A; Tuteja, N; Sturzenegger, B; Hübscher, U

    1994-01-01

    A DNA helicase from calf thymus, called DNA helicase F, copurified with replication protein A through several steps of purification including DEAE-Sephacel, hydroxyapatite and single stranded DNA cellulose. It is finally separated from replication protein A on FPLC Mono Q where the DNA helicase elutes after replication protein A. Characterization of the DNA helicase F by affinity labeling with [alpha 32P]ATP indicated that the enzyme has a catalytic subunit of 72 kDa. Gel filtration experiments suggested that DNA helicase F can exist both in a monomeric and an oligomeric form. The enzyme unwinds DNA in the 5'-->3' direction in relation to the strand it binds. All eight deoxyribonucleoside- and ribonucleosidetriphosphates could serve as an energy source. Testing a variety of DNA/DNA substrates demonstrated that the DNA helicase F preferentially unwinds very short substrates and is slightly stimulated by a single stranded 3'-tail. However, replication protein A allowed the DNA helicase to unwind much longer DNA substrates of up to 400 bases, indicating that the copurification of replication protein A with the DNA helicase F might be of functional relevance. Images PMID:8165124

  4. pH- and salt-dependent molecular combing of DNA: experiments and phenomenological model.

    PubMed

    Benke, Annegret; Mertig, Michael; Pompe, Wolfgang

    2011-01-21

    λ-DNA as well as plasmids can be successfully deposited by molecular combing on hydrophobic surfaces, for pH values ranging from 4 to 10. On polydimethylsiloxane (PDMS) substrates, the deposited DNA molecules are overstretched by about 60-100%. There is a significant influence of sodium ions (NaCl) on the surface density of the deposited DNA, with a maximum near to 100 mM NaCl for a DNA solution (28 ng µl(-1)) at pH 8. The combing process can be described by a micromechanical model including: (i) the adsorption of free moving coiled DNA at the substrate; (ii) the stretching of the coiled DNA by the preceding meniscus; (iii) the relaxation of the deposited DNA to the final length. The sticky ends of λ-DNA cause an adhesion force in the range of about 400 pN which allows a stable overstretching of the DNA by the preceding meniscus. The exposing of hidden hydrophobic bonds of the overstretched DNA leads to a stable deposition on the hydrophobic substrate. The pH-dependent density of deposited DNA as well as the observed influence of sodium ions can be explained by their screening of the negatively charged DNA backbone and sticky ends, respectively. The final DNA length can be derived from a balance of the stored elastic energy of the overstretched molecules and the energy of adhesion.

  5. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    PubMed Central

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  6. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    PubMed

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  7. Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples.

    PubMed Central

    Sayler, G S; Shields, M S; Tedford, E T; Breen, A; Hooper, S W; Sirotkin, K M; Davis, J W

    1985-01-01

    The application of preexisting DNA hybridization techniques was investigated for potential in determining populations of specific gene sequences in environmental samples. Cross-hybridizations among two degradative plasmids, TOL and NAH, and two cloning vehicles, pLAFR1 and RSF1010, were determined. The detection limits for the TOL plasmid against a nonhomologous plasmid-bearing bacterial background was ascertained. The colony hybridization technique allowed detection of one colony containing TOL plasmid among 10(6) Escherichia coli colonies of nonhomologous DNA. Comparisons between population estimates derived from growth on selective substrates and from hybridizations were examined. Findings indicated that standard sole carbon source enumeration procedures for degradative populations lead to overestimations due to nonspecific growth of other bacteria on the microcontaminant carbon sources present in the media. Population estimates based on the selective growth of a microcosm population on two aromatic substrates (toluene and naphthalene) and estimates derived from DNA-DNA colony hybridizations, using the TOL or NAH plasmid as a probe, corresponded with estimates of substrate mineralization rates and past exposure to environmental contaminants. The applications of such techniques are hoped to eventually allow enumeration of any specific gene sequences in the environment, including both anabolic and catabolic genes. In addition, this procedure should prove useful in monitoring recombinant DNA clones released into environmental situations. Images PMID:4004244

  8. Exonuclease processivity of archaeal replicative DNA polymerase in association with PCNA is expedited by mismatches in DNA

    PubMed Central

    Yoda, Takuya; Tanabe, Maiko; Tsuji, Toshiyuki; Yoda, Takao; Ishino, Sonoko; Shirai, Tsuyoshi; Ishino, Yoshizumi; Takeyama, Haruko; Nishida, Hirokazu

    2017-01-01

    Family B DNA polymerases comprise polymerase and 3′ −>5′ exonuclease domains, and detect a mismatch in a newly synthesized strand to remove it in cooperation with Proliferating cell nuclear antigen (PCNA), which encircles the DNA to provide a molecular platform for efficient protein–protein and protein–DNA interactions during DNA replication and repair. Once the repair is completed, the enzyme must stop the exonucleolytic process and switch to the polymerase mode. However, the cue to stop the degradation is unclear. We constructed several PCNA mutants and found that the exonuclease reaction was enhanced in the mutants lacking the conserved basic patch, located on the inside surface of PCNA. These mutants may mimic the Pol/PCNA complex processing the mismatched DNA, in which PCNA cannot interact rigidly with the irregularly distributed phosphate groups outside the dsDNA. Indeed, the exonuclease reaction with the wild type PCNA was facilitated by mismatched DNA substrates. PCNA may suppress the exonuclease reaction after the removal of the mismatched nucleotide. PCNA seems to act as a “brake” that stops the exonuclease mode of the DNA polymerase after the removal of a mismatched nucleotide from the substrate DNA, for the prompt switch to the DNA polymerase mode. PMID:28300173

  9. Is Ciprofloxacin a Substrate of P-glycoprotein?

    PubMed Central

    Park, Miki Susanto; Okochi, Hideaki; Benet, Leslie Z

    2011-01-01

    Introduction Studies using MDCKII and LLC-PK1 cells transfected with MDR1 cDNA indicate that ciprofloxacin is not a substrate of P-glycoprotein. However, our data has shown that transport studies done using different P-gp overexpressing cell lines (MDCKI-MDR1, MDCKII-MDR1 and L-MDR1), could lead to contradictory conclusion on whether a compound is a substrate of P-gp. The aim of our study was to determine if ciprofloxacin is indeed not a P-glycoprotein substrate using MDCKI cells transfected with human MDR1 cDNA. Methods Semi-quantitative RT-PCR was used to determine the mRNA level of MDR1 while Western blot was performed to determine the protein expression level of P-gp, MRP1 and MRP2 in various cells. Ciprofloxacin bidirectional transport studies were performed in MDCKI, MDCKI-MDR1, MDCKII, MDCKII-MDR1, MDCKII-MRP2, LLC-PK1, L-MRP1 and L-MDR1 cells. Results Ciprofloxacin showed net secretion in MDCKI-MDR1 but net absorption in MDCKI cells. Various P-gp inhibitors decreased the B to A and increased the A to B transport of ciprofloxacin in MDCKI-MDR1 cells while having no effect in MDCKI cells. The B to A transport of ciprofloxacin in MDCKI-MDR1 cells was not affected by non-P-gp inhibitors. In the presence of indomethacin, ciprofloxacin showed net secretion instead of net absorption in MDCKI cells while in the presence of probenecid and sulfinpyrazone, there was no net secretion and absorption. There was no difference in ciprofloxacin transport between MDCKII and MDCKII-MDR1, LLC-PK1 and L-MDR1, LLC-PK1 and L-MRP1 and MDCKII and MDCKII-MRP2. Conclusions Transport data in MDCKI and MDCKI-MDR1 cells indicate that ciprofloxacin is a substrate of P-gp but data from MDCKII, MDCKII-MDR1, LLC-PK1 and L-MDR1 cells indicate that ciprofloxacin is not a substrate of P-gp. Vinblastine, a well-known P-gp substrate, also did not show differences between LLC-PK1 and L-MDR1 cells. Further studies need to be performed to characterize these P-gp overexpressing cell lines and the

  10. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    PubMed

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  11. Fungal Taxa Target Different Carbon Substrates in Harvard Forest Soils

    NASA Astrophysics Data System (ADS)

    Hanson, C. A.; Allison, S. D.; Wallenstein, M. D.; Mellilo, J. M.; Treseder, K. K.

    2006-12-01

    The mineralization of soil organic carbon is a major component of the global carbon cycle and is largely controlled by soil microbial communities. However, little is known about the functional roles of soil microbes or whether different microbial taxa target different carbon substrates under natural conditions. To examine this possibility, we assessed the community composition of active fungi by using a novel nucleotide analog technique in soils from the Harvard Forest. We hypothesized that fungal community composition would shift in response to the addition of different substrates and that specific fungal taxa would respond differentially to particular carbon sources. To test this hypothesis, we added a nucleotide analog probe directly to soils in conjunction with one of five carbon compounds of increasing recalcitrance: glycine, sucrose, cellulose, tannin-protein complex, and lignin. During 48 hour incubations, the nucleotide analog was incorporated into newly replicated DNA of soil organisms that proliferated following the addition of the substrates. In this way, we labeled the DNA of microbes that respond to a particular carbon source. Labeled DNA was isolated and fungal Internal Transcribed Spacer (ITS) regions of ribosomal DNA (rDNA) were sequenced and analyzed to identify active fungi to near-species resolution. Diversity analyses at the ≥97% sequence similarity level indicated that taxonomic richness was greater under cellulose (Shannon Index: 3.23 ± 0.11 with ± 95% CI) and lignin (2.87 ± 0.15) additions than the other treatments (2.34 ± 0.16 to 2.64 ± 0.13). In addition, community composition of active fungi shifted under glycine, sucrose, and cellulose additions. Specifically, the community under glycine was significantly different from communities under control, cellulose, and tannin-protein (P<0.05). Additionally, the sucrose and cellulose communities were marginally different from the control community (P = 0.059 and 0.054, respectively) and

  12. 40 CFR 230.20 - Substrate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Chemical Characteristics of the Aquatic Ecosystem § 230.20 Substrate. (a) The substrate of the aquatic ecosystem underlies open waters of the United States and constitutes the surface of wetlands. It consists...

  13. Carbon Nanotube Patterning on a Metal Substrate

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor)

    2016-01-01

    A CNT electron source, a method of manufacturing a CNT electron source, and a solar cell utilizing a CNT patterned sculptured substrate are disclosed. Embodiments utilize a metal substrate which enables CNTs to be grown directly from the substrate. An inhibitor may be applied to the metal substrate to inhibit growth of CNTs from the metal substrate. The inhibitor may be precisely applied to the metal substrate in any pattern, thereby enabling the positioning of the CNT groupings to be more precisely controlled. The surface roughness of the metal substrate may be varied to control the density of the CNTs within each CNT grouping. Further, an absorber layer and an acceptor layer may be applied to the CNT electron source to form a solar cell, where a voltage potential may be generated between the acceptor layer and the metal substrate in response to sunlight exposure.

  14. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate

    NASA Astrophysics Data System (ADS)

    Abid Ali, Ferdos; Renault, Ludovic; Gannon, Julian; Gahlon, Hailey L.; Kotecha, Abhay; Zhou, Jin Chuan; Rueda, David; Costa, Alessandro

    2016-02-01

    The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.

  15. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate

    PubMed Central

    Abid Ali, Ferdos; Renault, Ludovic; Gannon, Julian; Gahlon, Hailey L.; Kotecha, Abhay; Zhou, Jin Chuan; Rueda, David; Costa, Alessandro

    2016-01-01

    The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA. PMID:26888060

  16. Repair of DNA treated with. gamma. -irradiation and chemical carcinogens. Progress report, 1980-1983

    SciTech Connect

    Goldthwait, D.A.

    1984-02-01

    We have studied in vitro DNA repair with the isolation and characterization of DNA glycosylases active in the removable of 3-methyladenine and the problem of repair of DNA in chromatin. The second area of focus has been on transposable elements and carcinogen action. The work on DNA adducts with ..beta..-propiolactone was done to define potential new substrates useful in a search for new glycosylases.

  17. DNA-SMART: Biopatterned Polymer Film Microchannels for Selective Immobilization of Proteins and Cells.

    PubMed

    Schneider, Ann-Kathrin; Nikolov, Pavel M; Giselbrecht, Stefan; Niemeyer, Christof M

    2017-02-22

    A novel SMART module, dubbed "DNA-SMART" (DNA substrate modification and replication by thermoforming) is reported, where polymer films are premodified with single-stranded DNA capture strands, microthermoformed into 3D structures, and postmodified with complementary DNA-protein conjugates to realize complex biologically active surfaces within microfluidic devices. As a proof of feasibility, it is demonstrated that microchannels presenting three different proteins on their inner curvilinear surface can be used for selective capture of cells under flow conditions.

  18. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    PubMed Central

    Rahman, Masudur; Neff, David; Green, Nathaniel; Norton, Michael L.

    2016-01-01

    Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material.

  19. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  20. Substrate for silicon solar cells

    SciTech Connect

    Thomas, D.E.

    1983-09-06

    A substrate is made for silicon solar cells by heating a sheet of large-grained silicon steel at a temperature of at least about 1300/sup 0/ C. in an atmosphere of hydrogen and tungsten hexafluoride (or hexachloride) at a partial pressure ratio of hydrogen to tungsten hexafluoride of about 3 to about 6 to deposit an epitaxial layer of tungsten on said sheet of silicon steel. Epitaxial silicon can then be deposited in a conventional manner on the layer of epitaxial tungsten.

  1. DNA ligase I, the replicative DNA ligase.

    PubMed

    Howes, Timothy R L; Tomkinson, Alan E

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

  2. A new lime material for container substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary component in greenhouse potting substrates is sphagnum peatmoss. Substrate solution pH of non-amended peatmoss ranges from 4.0 to 4.5. Ideal pH for most greenhouse floriculture crops ranges from 5.8 to 6.2. Dolomitic lime is most often used to elevate substrate pH in peatmoss-based me...

  3. Combined plasma/liquid cleaning of substrates

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars

    2003-04-15

    Apparatus and method for cleaning substrates. A substrate is held and rotated by a chuck and an atmospheric pressure plasma jet places a plasma onto predetermined areas of the substrate. Subsequently liquid rinse is sprayed onto the predetermined areas. In one embodiment, a nozzle sprays a gas onto the predetermined areas to assist in drying the predetermined areas when needed.

  4. Synthetic surfaces as models for biomineralization substrates

    SciTech Connect

    Rieke, P.C.; Tarasevich, B.J.; Bentjen, S.B.; Autrey, T.S.; Nelson, D.A.

    1990-01-01

    Polyethylene and oxide substrates were derivatized with functional groups commonly associated with biomineralization substrates. These groups include carboxylate, phosphate, hydroxy, sulfonate, thiol, and amine. Fourier transform infrared spectroscopy and contact angle wetting were used to identify and characterize the products at each step. The efficacy of these groups toward inducing mineralization will be compared with naturally occurring substrates. 10 refs., 5 figs.

  5. Amending pine bark with alternative substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to a number of factors, pine bark supplies have significantly decreased over the past few years. While alternative substrates are being evaluated, many growers are asking if these alternative substrates can be used to stretch existing PB supplies. In this study, two alternative substrates, “Cl...

  6. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  7. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    PubMed

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  8. SUMO-mediated regulation of DNA damage repair and responses

    PubMed Central

    Sarangi, Prabha; Zhao, Xiaolan

    2015-01-01

    Sumoylation plays important roles during DNA damage repair and responses. Recent broad-scope and substrate-based studies have shed light on the regulation and significance of sumoylation during these processes. An emerging paradigm is that sumoylation of many DNA metabolism proteins is controlled by DNA engagement. Such “on-site modification” can explain low substrate modification levels and has important implications in sumoylation mechanisms and effects. New studies also suggest that sumoylation can regulate a process through an ensemble effect or via major substrates. Additionally, we describe new trends in the functional effects of sumoylation, such as bi-directional changes in biomolecule binding and multi-level coordination with other modifications. These emerging themes and models will stimulate our thinking and research in sumoylation and genome maintenance. PMID:25778614

  9. DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes.

    PubMed Central

    Janscak, P; MacWilliams, M P; Sandmeier, U; Nagaraja, V; Bickle, T A

    1999-01-01

    Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process. PMID:10228175

  10. DNA modifications: Another stable base in DNA

    NASA Astrophysics Data System (ADS)

    Brazauskas, Pijus; Kriaucionis, Skirmantas

    2014-12-01

    Oxidation of 5-methylcytosine has been proposed to mediate active and passive DNA demethylation. Tracking the history of DNA modifications has now provided the first solid evidence that 5-hydroxymethylcytosine is a stable epigenetic modification.

  11. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.

    PubMed

    Wijaya, I M Mahaputra; Zhang, Yu; Iwata, Tatsuya; Yamamoto, Junpei; Hitomi, Kenichi; Iwai, Shigenori; Getzoff, Elizabeth D; Kandori, Hideki

    2013-02-12

    Photolyases (PHRs) utilize near-ultraviolet (UV)-blue light to specifically repair the major photoproducts (PPs) of UV-induced damaged DNA. The cyclobutane pyrimidine dimer PHR (CPD-PHR) from Escherichia coli binds flavin adenine dinucleotide (FAD) as a cofactor and 5,10-methenyltetrahydrofolate as a light-harvesting pigment and specifically repairs CPD lesions. By comparison, a second photolyase known as (6-4) PHR, present in a range of higher organisms, uniquely repairs (6-4) PPs. To understand the repair mechanism and the substrate specificity that distinguish CPD-PHR from (6-4) PHR, we applied Fourier transform infrared (FTIR) spectroscopy to bacterial CPD-PHR in the presence or absence of a well-defined DNA substrate, as we have studied previously for vertebrate (6-4) PHR. PHRs show light-induced reduction of FAD, and photorepair by CPD-PHR involves the transfer of an electron from the photoexcited reduced FAD to the damaged DNA for cleaving the dimers to maintain the DNA's integrity. Here, we measured and analyzed difference FTIR spectra for the photoactivation and DNA photorepair processes of CPD-PHR. We identified light-dependent signals only in the presence of substrate. The signals, presumably arising from a protonated carboxylic acid or the DNA substrate, implicate conformational rearrangements of the protein and substrate during the repair process. Deuterium exchange FTIR measurements of CPD-PHR highlight potential differences in the photoactivation and photorepair mechanisms in comparison to those of (6-4) PHR. Although CPD-PHR and (6-4) PHR appear to exhibit similar overall structures, our studies indicate that distinct conformational rearrangements, especially in the α-helices, are initiated within these enzymes upon binding of their respective DNA substrates.

  12. Small droplets on superhydrophobic substrates.

    PubMed

    Gross, Markus; Varnik, Fathollah; Raabe, Dierk; Steinbach, Ingo

    2010-05-01

    We investigate the wetting behavior of liquid droplets on rough hydrophobic substrates for the case of droplets that are of comparable size to the surface asperities. Using a simple three-dimensional analytical free-energy model, we have shown in a recent letter [M. Gross, F. Varnik, and D. Raabe, EPL 88, 26002 (2009)] that, in addition to the well-known Cassie-Baxter and Wenzel states, there exists a further metastable wetting state where the droplet is immersed into the texture to a finite depth, yet not touching the bottom of the substrate. Due to this new state, a quasistatically evaporating droplet can be saved from going over to the Wenzel state and instead remains close to the top of the surface. In the present paper, we give an in-depth account of the droplet behavior based on the results of extensive computer simulations and an improved theoretical model. In particular, we show that releasing the assumption that the droplet is pinned at the outer edges of the pillars improves the analytical results for larger droplets. Interestingly, all qualitative aspects, such as the existence of an intermediate minimum and the "reentrant transition," remain unchanged. We also give a detailed description of the evaporation process for droplets of varying sizes. Our results point out the role of droplet size for superhydrophobicity and give hints for achieving the desired wetting properties of technically produced materials.

  13. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  14. An improved measurement of dsDNA elasticity using AFM

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Huong; Lee, Sang-Myung; Na, Kyounghwan; Yang, Sungwook; Kim, Jinseok; Yoon, Eui-Sung

    2010-02-01

    The mechanical properties of a small fragment (30 bp) of an individual double-stranded deoxyribonucleic acid (dsDNA) in water have been investigated by atomic force microscopy (AFM). We have stretched three systems including ssDNA, double-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, this was reversed for the other complementary strand) and single-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, whereas the other complementary strand was biotinylated at only the 5'-end). The achieved thiolation and biotinylation were to bind ds- or ssDNA to the gold surface and streptavidin-coated AFM tip, respectively. Analysis of the force versus displacement (F-D) curves from tip-DNA-substrate systems shows that the pull-off length (Lo) and stretch length (δ) from the double-fixed system were shorter than those observed in the ssDNA and the single-fixed system. The obtained stretch force (Fst) from the single-fixed dsDNA was much greater than that from the ssDNA even though it was about 10 pN greater than the one obtained in the double-fixed system. As a result, the Young's modulus of the double-fixed dsDNA was greater than that of the single-fixed dsDNA and the ssDNA. A more reliable stiffness of the dsDNA was observed via the double-fixed system, since there is no effect of the unpaired molecules during stretching, which always occurred in the single-fixed system. The unpaired molecules were also observed by comparing the stiffness of ssDNA and single-fixed dsDNA in which the end of one strand was left free.

  15. Scanning Electrochemical Microscopy of DNA Monolayers Modified with Nile Blue

    PubMed Central

    Gorodetsky, Alon A.; Hammond, William J.; Hill, Michael G.; Slowinski, Krzysztof; Barton, Jacqueline K.

    2009-01-01

    Scanning electrochemical microscopy (SECM) is used to probe long-range charge transport (CT) through DNA monolayers containing the redox-active Nile Blue (NB) intercalator covalently affixed at a specific location in the DNA film. At substrate potentials negative of the formal potential of covalently attached NB, the electrocatalytic reduction of Fe(CN)63− generated at the SECM tip is observed only when NB is located at the DNA/solution interface; for DNA films containing NB in close proximity to the DNA/electrode interface, the electrocatalytic effect is absent. This behavior is consistent with both rapid DNA-mediated CT between the NB intercalator and the gold electrode as well as a rate-limiting electron transfer between NB and the solution phase Fe(CN)63−. The DNA-mediated nature of the catalytic cycle is confirmed through sequence-specific and localized detection of attomoles of TATA-binding protein, a transcription factor that severely distorts DNA upon binding. Importantly, the strategy outlined here is general and allows for the local investigation of the surface characteristics of DNA monolayers both in the absence and in the presence of DNA binding proteins. These experiments highlight the utility of DNA-modified electrodes as versatile platforms for SECM detection schemes that take advantage of CT mediated by the DNA base pair stack. PMID:19053641

  16. TopBP1-mediated DNA processing during mitosis.

    PubMed

    Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H

    2016-01-01

    Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.

  17. Structure of DNA-Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Manohar, Suresh; Jagota, Anand; Tu, Xiaomin; Zheng, Ming

    2010-03-01

    Hybrids of single-stranded DNA (ssDNA) and carbon nanotubes (CNT) render the latter water-dispersable and have allowed their separation by chirality. ssDNA adsorbs on the CNT through π stacking while the negatively charged DNA backbone stabilizes the hybrid in solution. DNA-CNT hybrids have many potential applications in medicine and materials science. These include their use for imaging and as probes inside the cell, for thermal ablation to destroy cancer cells, and the sorting and patterned placement of CNTs. We have recently reported that sorting of CNTs occurs by recognition of individual chirality semiconducting CNTs by special ssDNA sequences. As the basis of this recognition we have proposed a novel ordered form for DNA analogous to the protein β-sheet and β-barrel structures. Using molecular dynamics simulations, we show that this structure is stabilized by interactions with the CNT substrate. We present experimental evidence supporting the existence of hydrogen-bond based ordering in special sequences, and discuss the structure and topology of these new secondary structures.

  18. Alternative nucleophilic substrates for the endonuclease activities of human immunodeficiency virus type 1 integrase

    SciTech Connect

    Ealy, Julie B.; Sudol, Malgorzata; Krzeminski, Jacek; Amin, Shantu; Katzman, Michael

    2012-11-10

    Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase.

  19. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  20. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  1. Textured substrate tape and devices thereof

    DOEpatents

    Goyal, Amit

    2006-08-08

    A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.

  2. Phonon scattering in graphene over substrate steps

    SciTech Connect

    Sevinçli, H.; Brandbyge, M.

    2014-10-13

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.

  3. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.

  4. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  5. DNA systematics. Volume II

    SciTech Connect

    Dutta, S.K.

    1986-01-01

    This book discusses the following topics: PLANTS: PLANT DNA: Contents and Systematics. Repeated DNA Sequences and Polyploidy in Cereal Crops. Homology of Nonrepeated DNA Sequences in Phylogeny of Fungal Species. Chloropast DNA and Phylogenetic Relationships. rDNA: Evolution Over a Billion Years. 23S rRNA-derived Small Ribosomal RNAs: Their Structure and Evolution with Reference to Plant Phylogeny. Molecular Analysis of Plant DNA Genomes: Conserved and Diverged DNA Sequences. A Critical Review of Some Terminologies Used for Additional DNA in Plant Chromosomes and Index.

  6. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication

    PubMed Central

    Uhler, Jay P.; Thörn, Christian; Nicholls, Thomas J.; Matic, Stanka; Milenkovic, Dusanka; Gustafsson, Claes M.; Falkenberg, Maria

    2016-01-01

    Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstituted systems. We show that MGME1 can cleave flaps to enable efficient ligation of newly replicated DNA strands in combination with POLγ. MGME1 generates a pool of imprecisely cut products (short flaps, nicks and gaps) that are converted to ligatable nicks by POLγ through extension or excision of the 3′-end strand. This is dependent on the 3′-5′ exonuclease activity of POLγ which limits strand displacement activity and enables POLγ to back up to the nick by 3′-5′ degradation. We also demonstrate that POLγ-driven strand displacement is sufficient to generate DNA- but not RNA-flap substrates suitable for MGME1 cleavage and ligation during replication. Our findings have implications for RNA primer removal models, the 5′-end processing of nascent DNA at OriH, and DNA repair. PMID:27220468

  7. Case study: ancient sloth DNA recovered from hairs preserved in paleofeces.

    PubMed

    Clack, Andrew A; Macphee, Ross D E; Poinar, Hendrik N

    2012-01-01

    Ancient hair, which has proved to be an excellent source of well-preserved ancient DNA, is often preserved in paleofeces. Here, we separate and wash hair shafts preserved in a paleofecal specimen believed to be from a Darwin's ground sloth, Mylodon darwinii. After extracting DNA from the recovered and cleaned hair using a protocol optimized for DNA extraction from keratinous substrates, we amplify 12S and 16S rDNA sequences from the DNA extract. As expected, the recovered sequences most closely match previously published sequences of M. darwinii. Our results demonstrate that hair preserved in paleofeces, even from temperate cave environments, is an effective source of ancient DNA.

  8. Automated cassette-to-cassette substrate handling system

    SciTech Connect

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  9. Role of Single-Stranded DNA Binding Activity of T Antigen in Simian Virus 40 DNA Replication

    PubMed Central

    Wu, Chunxiao; Roy, Rupa; Simmons, Daniel T.

    2001-01-01

    We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication. PMID:11222709

  10. Stiff substrates enhance cultured neuronal network activity.

    PubMed

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  11. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  12. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  13. A microchannel electrophoresis DNA sequencing system

    SciTech Connect

    Madabhushi, R S; Warth, T; Balch, J W; Bass, M; Brewer, L R; Copeland, A C; Davidson, J C; Fitch, J P; Kegelmeyer, L M; Kimbrough, J R; McCready, P; Nelson, D; Pastrone, R L; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-01

    In order to increase the DNA sequencing throughput of the Joint Genome Institute, we have developed a microchannel electrophoresis system. The critical new and unique elements of this system include 1) a process for the production of arrays of 96 and 384 microchannels on bonded glass substrates up to 14 x 58 cm and 2) new sieving media for high resolution and high speed separations. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 micrometers deep x 180 micrometers wide by 46 cm long. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved in roughly half the time of conventional sequencers. In February 1999, we begin a pre-production evaluation protocol for the microchannel and for three glass capillary electrophoresis systems (two from industry and one developed by Lawrence Berkeley National Laboratory for the Joint Genome Institute). In order to utilize these instruments for DNA production sequencing, we have been evaluating and implementing software to convert raw electropherograms into called DNA bases with an associated probability of error. Our original intent was to utilize the DNA base calling software known as Plan and Phred developed by the University of Washington. This software has been outstanding for our slab gel electrophoresis systems currently in the production facility. In our tests and evaluations of this software applied to microchannel data, we observed that the electropherograms are of a different statistical and underlying signal structure compared to slab gels. Even with substantial modifications to the software, base calling performance was not satisfactory for the microchannel data. In this paper, we will present o The

  14. Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms

    PubMed Central

    Arora, Karunesh; Beard, William A.; Wilson, Samuel H.

    2012-01-01

    In recent papers, there has been a lively exchange concerning theories for enzyme catalysis, especially the role of protein dynamics/pre-chemistry conformational changes in the catalytic cycle of enzymes. Of particular interest is the notion that substrate-induced conformational changes that assemble the polymerase active site prior to chemistry are required for DNA synthesis and impact fidelity (i.e., substrate specificity). High-resolution crystal structures of DNA polymerase β representing intermediates of substrate complexes prior to the chemical step are available. These structures indicate that conformational adjustments in both the protein and substrates must occur to achieve the requisite geometry of the reactive participants for catalysis. We discuss computational and kinetic methods to examine possible conformational change pathways that lead from the observed crystal structure intermediates to the final structures poised for chemistry. The results, as well as kinetic data from site-directed mutagenesis studies, are consistent with models requiring pre-chemistry conformational adjustments in order to achieve high fidelity DNA synthesis. Thus, substrate-induced conformational changes that assemble the polymerase active site prior to chemistry contribute to DNA synthesis even when they do not represent actual rate-determining steps for chemistry. PMID:23459563

  15. Computational Study of the Force Dependence of Phosphoryl Transfer during DNA Synthesis by a High Fidelity Polymerase

    NASA Astrophysics Data System (ADS)

    Venkatramani, Ravindra; Radhakrishnan, Ravi

    2008-02-01

    High fidelity polymerases are efficient catalysts of phosphodiester bond formation during DNA replication or repair. We interpret molecular dynamics simulations of a polymerase bound to its substrate DNA and incoming nucleotide using a quasiharmonic model to study the effect of external forces applied to the bound DNA on the kinetics of phosphoryl transfer. The origin of the force dependence is shown to be an intriguing coupling between slow, delocalized polymerase-DNA modes and fast catalytic site motions. Using noncognate DNA substrates we show that the force dependence is context specific.

  16. Expression in Escherichia coli of the flavin-containing monooxygenase D (form II) from adult human liver: determination of a distinct tertiary amine substrate specificity.

    PubMed

    Lomri, N; Yang, Z; Cashman, J R

    1993-01-01

    The cDNA for a major component of the family of flavin-containing monooxygenases (FMOs) present in adult human liver (i.e., HLFMO-D) has been cloned and expressed in a prokaryotic system. Escherichia coli strain NM522 was transformed with pTrcHLFMO-D, and the HLFMO-D cDNA was expressed under the control of the Trc promoter. A variety of tertiary amine substrates [i.e., chlorpromazine and 10-[(N,N-dimethylamino)alkyl]- 2-(trifluoromethyl)phenothiazines] were efficiently oxygenated by HLFMO-D cDNA expressed in E. coli or by adult human liver microsomes. Approximate dimensions of the substrate binding channel for both adult human liver microsomal FMO and cDNA-expressed HLFMO-D were apparent from an examination of the N-oxygenation of a series of 10-[(N,N-dimethylamino)alkyl]-2-(trifluoromethyl)phenothiazines. The substrate regioselectivity studies suggest that adult human liver FMO form D possesses a distinct substrate specificity compared with form A FMO from animal hepatic sources. It is likely that the substrate specificity observed for cDNA-expressed adult human liver FMO-D may have consequences for the metabolism and distribution of tertiary amines and phosphorus- and sulfur-containing drugs in humans and may provide insight into the physiologic substrate(s) for adult human liver FMO.

  17. Substrate Effects in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Steel, Stephen Chris

    1990-01-01

    The self emptying beaker technique was used to study the superfluid properties of ^3He confined in the van der Waals film adsorbed on the surface of a metal beaker. The experimental cell was designed to minimize thermal gradients along the ^3 He film. In contrast to the results of an earlier experiment by Sachrajda et al, which suggested that film flow occurred at temperatures as high as 3.5 mK (SACH-85), no flow was observed above the bulk transition temperature T_sp{rm c}{rm B} = 0.93 mK. The transition temperatures measured using round rim beakers agreed with theory, giving the predicted normal-superfluid phase boundary 2 delta/xi(T) = pi, where delta is the film thickness and xi(T) is the temperature dependent coherence length. The ^3He film thickness was inferred from Atkins' oscillation measurements of ^4He films on the same substrate. When a ^4He monolayer was adsorbed on the surface of a copper beaker, it suppressed the diffuse scattering of ^3He quasiparticles at the copper wall, an effect first observed by Freeman et al using a mylar substrate (FRMN-88). With the ^4He monolayer in place, there was no measurable suppression of the transition temperature, even for films as thin as 100 nm. This suggests that the ^3 He quasiparticle scattering at the free liquid surface as well as the ^4He covered substrate was specular. This is the first evidence of the nature of the scattering at the free surface. After the ^3He level in the beaker had dropped between 15 and 85 mu m, the flow rate abruptly dropped by a factor to ten or more. This may be associated with the transition between the superfluid B-phase, expected in thick films, and the superfluid A-phase, expected in thin films. The observed critical currents are roughly an order of magnitude smaller than predicted by the pair breaking limit, suggesting some other dissipation mechanism is responsible for limiting the current.

  18. Molecular DNA switches and DNA chips

    NASA Astrophysics Data System (ADS)

    Sabanayagam, Chandran R.; Berkey, Cristin; Lavi, Uri; Cantor, Charles R.; Smith, Cassandra L.

    1999-06-01

    We present an assay to detect single-nucleotide polymorphisms on a chip using molecular DNA switches and isothermal rolling- circle amplification. The basic principle behind the switch is an allele-specific oligonucleotide circularization, mediated by DNA ligase. A DNA switch is closed when perfect hybridization between the probe oligonucleotide and target DNA allows ligase to covalently circularize the probe. Mismatches around the ligation site prevent probe circularization, resulting in an open switch. DNA polymerase is then used to preferentially amplify the closed switches, via rolling-circle amplification. The stringency of the molecular switches yields 102 - 103 fold discrimination between matched and mismatched sequences.

  19. Substrate Activation in Flavin-Dependent Thymidylate Synthase

    PubMed Central

    2015-01-01

    Thymidylate is a critical DNA nucleotide that has to be synthesized in cells de novo by all organisms. Flavin-dependent thymidylate synthase (FDTS) catalyzes the final step in this de novo production of thymidylate in many human pathogens, but it is absent from humans. The FDTS reaction proceeds via a chemical route that is different from its human enzyme analogue, making FDTS a potential antimicrobial target. The chemical mechanism of FDTS is still not understood, and the two most recently proposed mechanisms involve reaction intermediates that are unusual in pyrimidine biosynthesis and biology in general. These mechanisms differ in the relative timing of the reaction of the flavin with the substrate. The consequence of this difference is significant: the intermediates are cationic in one case and neutral in the other, an important consideration in the construction of mechanism-based enzyme inhibitors. Here we test these mechanisms via chemical trapping of reaction intermediates, stopped-flow, and substrate hydrogen isotope exchange techniques. Our findings suggest that an initial activation of the pyrimidine substrate by reduced flavin is required for catalysis, and a revised mechanism is proposed on the basis of previous and new data. These findings and the newly proposed mechanism add an important piece to the puzzle of the mechanism of FDTS and suggest a new class of intermediates that, in the future, may serve as targets for mechanism-based design of FDTS-specific inhibitors. PMID:25025487

  20. Mosaic of Commemorative Microscope Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Written by electron beam lithography in the Microdevices Laboratory of NASA's Jet Propulsion Laboratory, this Optical Microscope substrate helps the Phoenix Mars Mission science team learn how to assemble individual microscope images into a mosaic by aligning rows of text.

    Each line is about 0.1 millimeter tall, the average thickness of a human hair. Except for the Mogensen twins, the names are of babies born and team members lost during the original development of MECA (the Microscopy, Electrochemistry and Conductivity Analyzer) for the canceled 2001 Mars lander mission. The plaque also acknowledges the MECA 2001 principal investigator, now retired.

    This image was taken by the MECA Optical Microscope on Sol 111, or the 111th day of the Phoenix mission (Sept. 16, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  1. Superhydrophobicity enhancement through substrate flexibility.

    PubMed

    Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas M; Poulikakos, Dimos

    2016-11-22

    Inspired by manifestations in nature, microengineering and nanoengineering of synthetic materials to achieve superhydrophobicity has been the focus of much work. Generally, hydrophobicity is enhanced through the combined effects of surface texturing and chemistry; being durable, rigid materials are the norm. However, many natural and technical surfaces are flexible, and the resulting effect on hydrophobicity has been largely ignored. Here, we show that the rational tuning of flexibility can work synergistically with the surface microtexture or nanotexture to enhance liquid repellency performance, characterized by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate areal density and stiffness imparts immediate acceleration and intrinsic responsiveness to impacting droplets (∼350 × g), mitigating the collision and lowering the impalement probability by ∼60% without the need for active actuation. Furthermore, we exemplify the above discoveries with materials ranging from man-made (thin steel or polymer sheets) to nature-made (butterfly wings).

  2. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  3. DNA Nanotechnology-- Architectures Designed with DNA

    NASA Astrophysics Data System (ADS)

    Han, Dongran

    As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.

  4. DNA vaccines: a simple DNA sensing matter?

    PubMed

    Coban, Cevayir; Kobiyama, Kouji; Jounai, Nao; Tozuka, Miyuki; Ishii, Ken J

    2013-10-01

    Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.

  5. DNA Repair by Reversal of DNA Damage

    PubMed Central

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology. PMID:23284047

  6. Substrate effect in chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mori, Shigeyasu; Watanabe, Takeo; Adachi, Kouichirou; Fukushima, Takashi; Uda, Keichiro; Sato, Yuichi

    1996-06-01

    SiN substrate effect in chemically amplified (CA) resist has been investigated by surface analysis and evaluating the pattern profile of CA negative tone resist. Fine profile can be replicated on SiN substrate treated with oxygen plasma optimized condition. Undercut profile can be affected by adsorbed materials on SiN substrate from thermal desorption spectroscopy (TDS) analysis results. From the results of electron spectroscopy for chemical analysis (ESCA), it is found that Si-N bonding is replaced to Si-O bonding while SiN substrate is treated with oxygen plasma. Relations between footing length and oxygen plasma treatment condition suggest that undercut profile due to the concentration of nitrogen on the surface of SiN substrate. At the interface between the SiN substrate and the CA resist, the SiN substrate works as base existing water, and quenches photo-generated-acids. The mechanism of substrate effect of SiN is clarified. Reducing the SiN-substrate effect by treating the surface with oxygen plasma, fine resist pattern without undercut and footing is formed on SiN substrate.

  7. The human oxidative DNA glycosylase NEIL1 excises psoralen-induced interstrand DNA cross-links in a three-stranded DNA structure.

    PubMed

    Couvé, Sophie; Macé-Aimé, Gaëtane; Rosselli, Filippo; Saparbaev, Murat K

    2009-05-01

    Previously, we have demonstrated that human oxidative DNA glycosylase NEIL1 excises photoactivated psoralen-induced monoadducts but not genuine interstrand cross-links (ICLs) in duplex DNA. It has been postulated that the repair of ICLs in mammalian cells is mainly linked to DNA replication and proceeds via dual incisions in one DNA strand that bracket the cross-linked site. This process, known as "unhooking," enables strand separation and translesion DNA synthesis through the gap, yielding a three-stranded DNA repair intermediate composed of a short unhooked oligomer covalently bound to the duplex. At present, the detailed molecular mechanism of ICL repair in mammalian cells remains unclear. Here, we constructed and characterized three-stranded DNA structures containing a single ICL as substrates for the base excision repair proteins. We show that NEIL1 excises with high efficiency the unhooked ICL fragment within a three-stranded DNA structure. Complete reconstitution of the repair of unhooked ICL shows that it can be processed in a short patch base excision repair pathway. The new substrate specificity of NEIL1 points to a preferential involvement in the replication-associated repair of ICLs. Based on these data, we propose a model for the mechanism of ICL repair in mammalian cells that implicates the DNA glycosylase activity of NEIL1 downstream of Xeroderma Pigmentosum group F/Excision Repair Cross-Complementing 1 endonuclease complex (XPF/ERCC1) and translesion DNA synthesis repair steps. Finally, our data demonstrate that Nei-like proteins from Escherichia coli to human cells can excise bulky unhooked psoralen-induced ICLs via hydrolysis of glycosidic bond between cross-linked base and deoxyribose sugar, thus providing an alternative heuristic solution for the removal of complex DNA lesions.

  8. Molecular structure of DNA by scanning tunneling microscopy.

    PubMed

    Cricenti, A; Selci, S; Felici, A C; Generosi, R; Gori, E; Djaczenko, W; Chiarotti, G

    1989-09-15

    Uncoated DNA molecules marked with an activated tris(l-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 to 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.

  9. Molecular Structure of DNA by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cricenti, A.; Selci, S.; Felici, A. C.; Generosi, R.; Gori, E.; Djaczenko, W.; Chiarotti, G.

    1989-09-01

    Uncoated DNA molecules marked with an activated tris(1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 and 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.

  10. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA

    PubMed Central

    Hayner, Jaclyn N.; Douma, Lauren G.; Bloom, Linda B.

    2014-01-01

    Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3′OH (3′DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3′DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5′phosphate (5′P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5′DNA). The 5′P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3′DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5′DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3′DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role. PMID:25159615

  11. FEN1 participates in repair of the 5'-phosphotyrosyl terminus of DNA single-strand breaks.

    PubMed

    Kametani, Yukiko; Takahata, Chiaki; Narita, Takashi; Tanaka, Kiyoji; Iwai, Shigenori; Kuraoka, Isao

    2016-01-01

    Etoposide is a widely used anticancer drug and a DNA topoisomerase II (Top2) inhibitor. Etoposide produces Top2-attached single-strand breaks (Top2-SSB complex) and double-strand breaks (Top2-DSB complex) that are thought to induce cell death in tumor cells. The Top2-SSB complex is more abundant than the Top2-DSB complex. Human tyrosyl-DNA phosphodiesterase 2 (TDP2) is required for efficient repair of Top2-DSB complexes. However, the identities of the proteins involved in the repair of Top2-SSB complexes are unknown, although yeast genetic data indicate that 5' to 3' structure-specific DNA endonuclease activity is required for alternative repair of Top2 DNA damage. In this study, we purified a flap endonuclease 1 (FEN1) and xeroderma pigmentosum group G protein (XPG) in the 5' to 3' structure-specific DNA endonuclease family and synthesized single-strand break DNA substrates containing a 5'-phoshotyrosyl bond, mimicking the Top2-SSB complex. We found that FEN1 and XPG did not remove the 5'-phoshotyrosyl bond-containing DSB substrates but removed the 5'-phoshotyrosyl bond-containing SSB substrates. Under DNA repair conditions, FEN1 efficiently repaired the 5'-phoshotyrosyl bond-containing SSB substrates in the presence of DNA ligase and DNA polymerase. Therefore, FEN1 may play an important role in the repair of Top2-SSB complexes in etoposide-treated cells.

  12. Analysis of DNA-protein complexes induced by chemical carcinogens

    SciTech Connect

    Costa, M. )

    1990-11-01

    DNA-protein complexes induced in intact cells by chromate have been isolated and compared with those formed by other agents such as cis-platinum. Actin has been identified as one of the major proteins that is complexed to the DNA by chromate based upon a number of criteria including, a molecular weight and isoelectric point identical to actin, positive reaction with actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of very similar molecular weight and isoelectric points and these complexes can be disrupted by exposure to chelating or reducing agents. These results suggest that the metal itself is participating in rather than catalyzing the formation of a DNA-protein complex. An antiserum which was raised to chromate-induced DNA-protein complexes reacted primarily with a 97,000 protein that could not be detected by silver staining. Western blots and slot blots were utilized to detect p97 DNA-protein complexes formed by cis-platinum, UV, formaldehyde, and chromate. Other work in this area, involving studying whether DNA-protein complexes are formed in actively transcribed DNA compared with genetically inactive DNA, is discussed. Methods to detect DNA-protein complexes, the stability and repair of these lesions, and characterization of DNA-protein complexes are reviewed. Nuclear matrix proteins have been identified as a major substrate for the formation of DNA-protein complexes and these findings are also reviewed.

  13. Bacterial natural transformation by highly fragmented and damaged DNA.

    PubMed

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A A; Mayar, J Victor Moreno; Rasmussen, Simon; Dahl, Tais W; Rosing, Minik T; Poole, Anthony M; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-12-03

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥ 20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old.

  14. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  15. Positively charged surfaces increase the flexibility of DNA.

    PubMed

    Podestà, Alessandro; Indrieri, Marco; Brogioli, Doriano; Manning, Gerald S; Milani, Paolo; Guerra, Rosalinda; Finzi, Laura; Dunlap, David

    2005-10-01

    Many proteins "bind" DNA through positively charged amino acids on their surfaces. However, to overcome significant energetic and topological obstacles, proteins that bend or package DNA might also modulate the stiffness that is generated by repulsions between phosphates within DNA. Much previous work describes how ions change the flexibility of DNA in solution, but when considering macromolecules such as chromatin in which the DNA contacts the nucleosome core each turn of the double helix, it may be more appropriate to assess the flexibility of DNA on charged surfaces. Mica coated with positively charged molecules is a convenient substrate upon which the flexibility of DNA may be directly measured with a scanning force microscope. In the experiments described below, the flexibility of DNA increased as much as fivefold depending on the concentration and type of polyamine used to coat mica. Using theory that relates charge neutralization to flexibility, we predict that phosphate repulsions were attenuated by approximately 50% in the most flexible DNA observed. This simple method is an important tool for investigating the physiochemical causes and molecular biological effects of DNA flexibility, which affects DNA biochemistry ranging from chromatin stability to viral encapsulation.

  16. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  17. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  18. Single-molecule studies reveal reciprocating of WRN helicase core along ssDNA during DNA unwinding.

    PubMed

    Wu, Wen-Qiang; Hou, Xi-Miao; Zhang, Bo; Fossé, Philippe; René, Brigitte; Mauffret, Olivier; Li, Ming; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-03-07

    Werner syndrome is caused by mutations in the WRN gene encoding WRN helicase. A knowledge of WRN helicase's DNA unwinding mechanism in vitro is helpful for predicting its behaviors in vivo, and then understanding their biological functions. In the present study, for deeply understanding the DNA unwinding mechanism of WRN, we comprehensively characterized the DNA unwinding properties of chicken WRN helicase core in details, by taking advantages of single-molecule fluorescence resonance energy transfer (smFRET) method. We showed that WRN exhibits repetitive DNA unwinding and translocation behaviors on different DNA structures, including forked, overhanging and G-quadruplex-containing DNAs with an apparently limited unwinding processivity. It was further revealed that the repetitive behaviors were caused by reciprocating of WRN along the same ssDNA, rather than by complete dissociation from and rebinding to substrates or by strand switching. The present study sheds new light on the mechanism for WRN functioning.

  19. Single-molecule studies reveal reciprocating of WRN helicase core along ssDNA during DNA unwinding

    PubMed Central

    Wu, Wen-Qiang; Hou, Xi-Miao; Zhang, Bo; Fossé, Philippe; René, Brigitte; Mauffret, Olivier; Li, Ming; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-01-01

    Werner syndrome is caused by mutations in the WRN gene encoding WRN helicase. A knowledge of WRN helicase’s DNA unwinding mechanism in vitro is helpful for predicting its behaviors in vivo, and then understanding their biological functions. In the present study, for deeply understanding the DNA unwinding mechanism of WRN, we comprehensively characterized the DNA unwinding properties of chicken WRN helicase core in details, by taking advantages of single-molecule fluorescence resonance energy transfer (smFRET) method. We showed that WRN exhibits repetitive DNA unwinding and translocation behaviors on different DNA structures, including forked, overhanging and G-quadruplex-containing DNAs with an apparently limited unwinding processivity. It was further revealed that the repetitive behaviors were caused by reciprocating of WRN along the same ssDNA, rather than by complete dissociation from and rebinding to substrates or by strand switching. The present study sheds new light on the mechanism for WRN functioning. PMID:28266653

  20. High-speed detection of DNA translocation in nanopipettes

    NASA Astrophysics Data System (ADS)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  1. Trace evidence characteristics of DNA: A preliminary investigation of the persistence of DNA at crime scenes.

    PubMed

    Raymond, Jennifer J; van Oorschot, Roland A H; Gunn, Peter R; Walsh, Simon J; Roux, Claude

    2009-12-01

    The successful recovery of trace or contact DNA is highly variable. It is seemingly dependent on a wide range of factors, from the characteristics of the donor, substrate and environment, to the delay between contact and recovery. There is limited research on the extent of the effect these factors have on trace DNA analysis. This study investigated the persistence of trace DNA on surfaces relevant to the investigation of burglary and robbery offences. The study aimed to limit the number of variables involved to solely determine the effect of time on DNA recovery. Given that it is difficult to control the quantity of DNA deposited during a hand contact, human buffy coat and DNA control solution were chosen as an alternative to give a more accurate measure of quantity. Set volumes of these solutions were deposited onto outdoor surfaces (window frames and vinyl material to mimic burglary and 'bag snatch' offences) and sterile glass slides stored in a closed environment in the laboratory, for use as a control. Trace DNA casework data was also scrutinised to assess the effect of time on DNA recovery from real samples. The amount of DNA recovered from buffy coat on the outdoor surfaces declined by approximately half over two weeks, to a negligible amount after six weeks. Profiles could not be obtained after two weeks. The samples stored in the laboratory were more robust, and full profiles were obtained after six weeks, the longest time period tested in these experiments. It is possible that profiles may be obtained from older samples when kept in similarly favourable conditions. The experimental results demonstrate that the ability to recover DNA from human cells on outdoor surfaces decreases significantly over two weeks. Conversely, no clear trends were identified in the casework data, indicating that many other factors are involved affecting the recovery of trace DNA. Nevertheless, to ensure that valuable trace evidence is not lost, it is recommended that crime scenes

  2. Poxvirus DNA Replication

    PubMed Central

    Moss, Bernard

    2013-01-01

    Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase–primase, a uracil DNA glycosylase, a processivity factor, a single-stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long concatemers that are resolved by a viral Holliday junction endonuclease. PMID:23838441

  3. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  4. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor

    2015-12-29

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  5. Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2.

    PubMed

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay; Robertson, Patrick D; Ramsden, Dale A; Williams, R Scott

    2012-12-01

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl-linked topo II-DNA adducts. Here, X-ray structures of mouse Tdp2-DNA complexes reveal that Tdp2 β-2-helix-β DNA damage-binding 'grasp', helical 'cap' and DNA lesion-binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single-metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

  6. Mechanism of repair of 5'-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2

    SciTech Connect

    Schellenberg, Matthew J; Appel, C Denise; Adhikari, Sanjay; Robertson, Patrick D; Ramsden, Dale A; Williams, R Scott

    2012-10-28

    The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl–linked topo II–DNA adducts. Here, X-ray structures of mouse Tdp2–DNA complexes reveal that Tdp2 β–2-helix–β DNA damage–binding 'grasp', helical 'cap' and DNA lesion–binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single–metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

  7. Elasticity and Electrostatics of Plectonemic DNA

    PubMed Central

    Clauvelin, N.; Audoly, B.; Neukirch, S.

    2009-01-01

    We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our model is based on a one-dimensional continuum description of the DNA molecule and accounts both for its elasticity and for DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the molecule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the experimental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are found in good agreement with experimental data. PMID:19413977

  8. Regulation of DNA repair by parkin

    SciTech Connect

    Kao, Shyan-Yuan

    2009-05-01

    Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson's disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.

  9. Substrates For High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1988-01-01

    Proposed hot-dipping process prepares materials well suited to serve as substrates for high-temperature superconductors. Makes it possible to produce substrates combining properties needed for given application, such as flexibility, strength, long grains, and <001> crystal orientation. Properties favor growth of superconductive films carrying high current and fabricated in variety of useful shapes. Used in making solar cells, described in "Hot-Dipped Metal Films as Epitaxial Substrates" (NPO-15904).

  10. Substrate for thin silicon solar cells

    DOEpatents

    Ciszek, T.F.

    1995-03-28

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  11. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  12. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  13. Foam drainage placed on a porous substrate.

    PubMed

    Arjmandi-Tash, O; Kovalchuk, N; Trybala, A; Starov, V

    2015-05-14

    A model for drainage/imbibition of a foam placed on the top of a porous substrate is presented. The equation of liquid imbibition into the porous substrate is coupled with a foam drainage equation at the foam/porous substrate interface. The deduced dimensionless equations are solved using a finite element method. It was found that the kinetics of foam drainage/imbibition depends on three dimensionless numbers and the initial liquid volume fraction. The result shows that there are three different regimes of the process. Each regime starts after initial rapid decrease of a liquid volume fraction at the foam/porous substrate interface: (i) rapid imbibition: the liquid volume fraction inside the foam at the foam/porous substrate interface remains constant close to a final liquid volume fraction; (ii) intermediate imbibition: the liquid volume fraction at the interface with the porous substrate experiences a peak point and imbibition into the porous substrate is slower as compared with the drainage; (iii) slow imbibition: the liquid volume fraction at the foam/porous substrate interface increases to a maximum limiting value and a free liquid layer is formed between the foam and the porous substrate. However, the free liquid layer disappears after some time. The transition points between these three different drainage/imbibition regimes were delineated by introducing two dimensionless numbers.

  14. Biological chiral recognition: the substrate's perspective.

    PubMed

    Sundaresan, Vidyasankar; Abrol, Ravinder

    2005-01-01

    A novel stereocenter-recognition (SR) model has been proposed recently for describing the stereoselectivity of biological and other macromolecules towards substrates that have multiple stereocenters, based on the topology of substrate stereocenters (Sundaresan and Abrol, Prot Sci 11:1330-1339, 2002). The SR model provides the minimum number of substrate locations interacting with receptor sites that need to be considered for understanding stereoselectivity characteristics. Interactions between substrate locations and receptor sites may be binding, nonbinding or repulsive in nature and may occur in a many-to-one or one-to-many fashion, but for a receptor to be stereoselective, its interactions with substrate stereoisomers have to involve a minimum number of locations, in the correct geometry. The SR model is topologically rigorous, explains several previous experimental observations, and is predictive in nature. It predicts that stereoselectivity towards a substrate with N stereocenters in a linear structure involves a minimum of N + 2 substrate locations, distributed over all stereocenters in the substrate, such that effectively at least three locations per stereocenter interact with one or more receptor sites. This article uses the SR model to provide an insight into the chiral recognition process from a substrate's perspective that is intuitive and simple, furnishing a rigorous stereochemical basis for explaining stereoselectivity characteristics of many biological systems.

  15. Photovoltaic cell with nano-patterned substrate

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2016-10-18

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  16. Cancer and the metastatic substrate

    PubMed Central

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2016-01-01

    Seventy percent of cancer patients have detectable metastases when they receive a diagnosis and 90% of cancer deaths result from metastases. These two facts emphasise the urgency for research to study the mechanisms and processes that enable metastasis. We need to develop a greater understanding of the cellular and molecular mechanisms that cause metastasis and also we need to do more. We must also consider the micro- and macro-environmental factors that influence this disease. Studying this environmental context has led us to update the ‘seed and soil’ hypothesis which dates back to the 19th century. This theory describes cancerous cells as seeds and the substrate as the soil in target organs though this may seem antiquated. Nonetheless, the tissue specificity that researchers have recently observed in metastatic colonisation supports the validity of the seed and soil theory. We now know that the metastatic potential of a tumour cell depends on multiple, reciprocal interactions between the primary tumour and distant sites. These interactions determine tumour progression. Studies of metastasis have allowed us to develop treatments that focus on therapeutic effectiveness. These new treatments account for the frequent metastasis of some tumours to target organs such as bones, lungs, brain, and liver. The purpose of this review is first to describe interactions between the cellular and molecular entities and the target organ tumour environment that enables metastasis. A second aim is to describe the complex mechanisms that mediate these interactions. PMID:28105072

  17. DNA Damage, DNA Repair, Aging, and Neurodegeneration.

    PubMed

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2015-09-18

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.

  18. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3' arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase.

    PubMed

    Galletto, Roberto; Jezewska, Maria J; Bujalowski, Wlodzimierz

    2004-10-08

    The effect of two structural elements of a replication DNA fork substrate, the length of the 3' arm of the fork and the stability of the double-stranded DNA (dsDNA) part, on the kinetics of the dsDNA unwinding by the Escherichia coli hexameric helicase DnaB protein has been examined under single turnover conditions using the rapid quench-flow technique. The length of the 3' arm of the replication fork, i.e. the number of nucleotides in the arm, is a major structural factor that controls the unwinding rate and processivity of the helicase. The data show the existence of an optimal length of the 3' arm where there is the highest unwinding rate and processivity, indicating that during the unwinding process, the helicase transiently interacts with the 3' arm at a specific distance on the arm with respect to the duplex part of the DNA. Moreover, the area on the enzyme that engages in interactions has also a discrete size. For DNA substrates with the 3' arm containing 14, or less, nucleotide residues, the DnaB helicase becomes a completely distributive enzyme. However, the 3' arm is not a "specific activating cofactor" in the unwinding reaction. Rather, the 3' arm plays a role as a mechanical fulcrum for the enzyme, necessary to provide support for the advancing large helicase molecule on the opposite strand of the DNA. Binding of ATP is necessary to engage the 3' arm with the DnaB helicase, but it does not change the initial distribution of complexes of the enzyme with the DNA fork substrate. Stability of the dsDNA has a significant effect on the unwinding rate and processivity. The unwinding rate constant is a decreasing linear function of the fractional content of GC base-pairs in the dsDNA, indicating that the activation of the unwinding step is proportional to the stability of the nucleic acid.

  19. Reversal of DNA damage induced Topoisomerase 2 DNA-protein crosslinks by Tdp2.

    PubMed

    Schellenberg, Matthew J; Perera, Lalith; Strom, Christina N; Waters, Crystal A; Monian, Brinda; Appel, C Denise; Vilas, Caroline K; Williams, Jason G; Ramsden, Dale A; Williams, R Scott

    2016-05-05

    Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA-protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg(2+)-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg(2+) binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons.

  20. One-step large-scale deposition of salt-free DNA origami nanostructures.

    PubMed

    Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J Jussi; Kostiainen, Mauri A; Tuukkanen, Sampo

    2015-10-23

    DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm(2). Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation.

  1. One-step large-scale deposition of salt-free DNA origami nanostructures

    NASA Astrophysics Data System (ADS)

    Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.; Tuukkanen, Sampo

    2015-10-01

    DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm2. Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation.

  2. One-step large-scale deposition of salt-free DNA origami nanostructures

    PubMed Central

    Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.; Tuukkanen, Sampo

    2015-01-01

    DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm2. Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation. PMID:26492833

  3. DNA transfer by examination tools--a risk for forensic casework?

    PubMed

    Szkuta, Bianca; Harvey, Michelle L; Ballantyne, Kaye N; van Oorschot, Roland A H

    2015-05-01

    The introduction of profiling systems with increased sensitivity has led to a concurrent increase in the risk of detecting contaminating DNA in forensic casework. To evaluate the contamination risk of tools used during exhibit examination we have assessed the occurrence and level of DNA transferred between mock casework exhibits, comprised of cotton or glass substrates, and high-risk vectors (scissors, forceps, and gloves). The subsequent impact of such transfer in the profiling of a target sample was also investigated. Dried blood or touch DNA, deposited on the primary substrate, was transferred via the vector to the secondary substrate, which was either DNA-free or contained a target sample (dried blood or touch DNA). Pairwise combinations of both heavy and light contact were applied by each vector in order to simulate various levels of contamination. The transfer of dried blood to DNA-free cotton was observed for all vectors and transfer scenarios, with transfer substantially lower when glass was the substrate. Overall touch DNA transferred less efficiently, with significantly lower transfer rates than blood when transferred to DNA-free cotton; the greatest transfer of touch DNA occurred between cotton and glass substrates. In the presence of a target sample, the detectability of transferred DNA decreased due to the presence of background DNA. Transfer had no impact on the detectability of the target profile, however, in casework scenarios where the suspect profiles are not known, profile interpretation becomes complicated by the addition of contaminating alleles and the probative value of the evidence may be affected. The results of this study reiterate the need for examiners to adhere to stringent laboratory cleaning protocols, particularly in the interest of contamination minimisation, and to reduce the handling of items to prevent intra-item transfer.

  4. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once

    PubMed Central

    Lafrance-Vanasse, Julien

    2014-01-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by Watson-Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases

  5. Surface Modification of Nanocellulose Substrates

    NASA Astrophysics Data System (ADS)

    Zoppe, Justin Orazio

    Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo

  6. Biochemical characterization of the DNA ligase I from Entamoeba histolytica.

    PubMed

    Cardona-Felix, Cesar S; Pastor-Palacios, Guillermo; Cardenas, Helios; Azuara-Liceaga, Elisa; Brieba, Luis G

    2010-11-01

    DNA ligases play an essential role in DNA replication and repair. Herein, we report the cloning and biochemical characterization of DNA ligase I from the protozoan parasite Entamoeba histolytica (EhDNAligI). EhDNAligI is an ATP-dependent DNA ligase of 685 amino acids with 35% identity to human DNA ligase I. This report shows that heterologous expressed EhDNAligI is able to perform the three conserved steps of a DNA ligation reaction: adenylation, binding to a 5'-phosphorylated nicked DNA substrate and sealing of the nick. EhDNAligI is strongly inhibited by NaCl and displays optimal activity at pH 7.5. EhDNAligI uses Mn2+ or Mg2+ as metal cofactors and ATP as nucleotide cofactor. EhDNAligI has a nicked DNA binding constant of 6.6microM and follows Michaelis-Menten steady-state kinetics with a K(m) ATP of 64nM and a k(cat) of 2.4min(-1). Accordingly to its properties as a family I DNA ligase, EhDNAligI is able to ligate a RNA strand upstream of a nucleic acid nick, but not in the downstream or the template position. We propose that EhDNAligI is involved in sealing DNA nicks during lagging strand synthesis and may have a role in base excision repair in E. histolytica.

  7. Reinvestigation of DNA ligase I in axolotl and Pleurodeles development.

    PubMed Central

    Aoufouchi, S; Hardy, S; Prigent, C; Philippe, M; Thiebaud, P

    1991-01-01

    We have recently shown that the exclusion process causing the replacement of DNA ligases II by DNA ligase I in amphibian eggs after fertilization does not occur in the case of Xenopus laevis [Hardy, S., Aoufouchi, S., Thiebaud, P., and Prigent, C., (1991) Nucleic Acids Res. 19, 701-705]. Since this result is in contradiction with the situation reported in axolotl and Pleurodeles we decided to reinvestigate such results in both species. Three different approaches have been used: (1) the substrate specificity of DNA ligase I; (2) the DNA ligase-AMP adduct reaction and (3) the immunological detection using antibodies raised against the X.laevis DNA ligase I. Our results clearly demonstrate that DNA ligase I activity is associated with a single polypeptide which is present in oocyte, unfertilized egg and embryo of both amphibians. Therefore, the hypothesis of a change in DNA ligase forms, resulting from an expression of the DNA ligase I gene in axolotl and Pleurodeles early development must be rejected. We also show that, in contradiction with published data, the unfertilized sea urchin egg contains a DNA ligase activity able to join blunt ended DNA molecules. Images PMID:1886765

  8. Effect of DNA modifications on DNA processing by HIV-1 integrase and inhibitor binding: role of DNA backbone flexibility and an open catalytic site.

    PubMed

    Johnson, Allison A; Sayer, Jane M; Yagi, Haruhiko; Patil, Sachindra S; Debart, Françoise; Maier, Martin A; Corey, David R; Vasseur, Jean-Jacques; Burke, Terrence R; Marquez, Victor E; Jerina, Donald M; Pommier, Yves

    2006-10-27

    Integration of the viral cDNA into host chromosomes is required for viral replication. Human immunodeficiency virus integrase catalyzes two sequential reactions, 3'-processing (3'-P) and strand transfer (ST). The first integrase inhibitors are undergoing clinical trial, but interactions of inhibitors with integrase and DNA are not well understood in the absence of a co-crystal structure. To increase our understanding of integrase interactions with DNA, we examined integrase catalysis with oligonucleotides containing DNA backbone, base, and groove modifications placed at unique positions surrounding the 3'-processing site. 3'-Processing was blocked with substrates containing constrained sugars and alpha-anomeric residues, suggesting that integrase requires flexibility of the phosphodiester backbone at the 3'-P site. Of several benzo[a]pyrene 7,8-diol 9,10-epoxide (BaP DE) adducts tested, only the adduct in the minor groove at the 3'-P site inhibited 3'-P, suggesting the importance of the minor groove contacts for 3'-P. ST occurred in the presence of bulky BaP DE DNA adducts attached to the end of the viral DNA suggesting opening of the active site for ST. Position-specific effects of these BaP DE DNA adducts were found for inhibition of integrase by diketo acids. Together, these results demonstrate the importance of DNA structure and specific contacts with the viral DNA processing site for inhibition by integrase inhibitors.

  9. DNA methylation by N-methyl-N-nitrosourea: methylation pattern changes in single- and double-stranded DNA, and in DNA with mismatched or bulged guanines.

    PubMed Central

    Wurdeman, R L; Douskey, M C; Gold, B

    1993-01-01

    The detection of abnormal DNA base pairing arrangements and conformations is chemically probed in synthetic 32P-end-labeled deoxyribonucleotide oligomers using N-methyl-N-nitrosourea (MNU) and 2,12,-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]heptadeca-1 -[17],2,11,13,15 pentaene-Ni (II) (Ni-complex) with KHSO5. The DNA targets studied are single-stranded (s-s) DNA, double-stranded (d-s) DNA, d-s DNA with G-G, G-A and G-T mismatches, d-s DNA with a single bulged G and d-s DNA with two bulged G's. The effect of the non-Watson--Crick structures on the formation of N7-methylguanine (N7-MeG) by MNU and the oxidation of G by Ni-complex is reported along with the Tm's and circular dichroism spectra of the different duplex oligomers. The results for MNU and Ni-complex show that the qualitative and quantitative character of the cleavage patterns at a G3 run change with the nature of the abnormal base pairing motif. Based on the DNA substrates studied, the results indicate that a combination of reagents which report electronic and steric perturbations can be a useful approach to monitor DNA mismatches and bulges. Images PMID:8177747

  10. Kinetics of DNA unwinding by the RecD2 helicase from Deinococcus radiodurans.

    PubMed

    Shadrick, William R; Julin, Douglas A

    2010-06-04

    RecD2 from Deinococcus radiodurans is a superfamily 1 DNA helicase that is homologous to the Escherichia coli RecD protein but functions outside the context of RecBCD enzyme. We report here on the kinetics of DNA unwinding by RecD2 under single and multiple turnover conditions. There is little unwinding of 20-bp substrates by preformed RecD2-dsDNA complexes when excess ssDNA is present to trap enzyme molecules not bound to the substrate. A shorter 12-bp substrate is unwound rapidly under single turnover conditions. The 12-bp unwinding reaction could be simulated with a mechanism in which the DNA is unwound in two kinetic steps with rate constant of k(unw) = 5.5 s(-1) and a dissociation step from partially unwound DNA of k(off) = 1.9 s(-1). These results indicate a kinetic step size of about 3-4 bp, unwinding rate of about 15-20 bp/s, and low processivity (p = 0.74). The reaction time courses with 20-bp substrates, determined under multiple turnover conditions, could be simulated with a four-step mechanism and rate constant values very similar to those for the 12-bp substrate. The results indicate that the faster unwinding of a DNA substrate with a forked end versus only a 5'-terminal single-stranded extension can be accounted for by a difference in the rate of enzyme binding to the DNA substrates. Analysis of reactions done with different RecD2 concentrations indicates that the enzyme forms an inactive dimer or other oligomer at high enzyme concentrations. RecD2 oligomers can be detected by glutaraldehyde cross-linking but not by size exclusion chromatography.

  11. Single Pore Translocation of Folded, Double-Stranded, and Tetra-stranded DNA through Channel of Bacteriophage Phi29 DNA Packaging Motor

    PubMed Central

    Haque, Farzin; Wang, Shaoying; Stites, Chris; Chen, Li; Wang, Chi; Guo, Peixuan

    2015-01-01

    The elegant architecture of the channel of bacteriophage phi29 DNA packaging motor has inspired the development of biomimetics for biophysical and nanobiomedical applications. The reengineered channel inserted into a lipid membrane exhibits robust electrophysiological properties ideal for precise sensing and fingerprinting of dsDNA at the single-molecule level. Herein, we used single channel conduction assays to quantitatively evaluate the translocation dynamics of dsDNA as a function of the length and conformation of dsDNA. We extracted the speed of dsDNA translocation from the dwell time distribution and estimated the various forces involved in the translocation process. A ~35-fold slower speed of translocation per base pair was observed for long dsDNA, a significant contrast to the speed of dsDNA crossing synthetic pores. It was found that the channel could translocate both dsDNA with ~32% of channel current blockage and ~64% for tetra-stranded DNA (two parallel dsDNA). The calculation of both cross-sectional areas of the dsDNA and tetra-stranded DNA suggested that the blockage was purely proportional to the physical space of the channel lumen and the size of the DNA substrate. Folded dsDNA configuration was clearly reflected in their characteristic current signatures. The finding of translocation of tetra-stranded DNA with 64% blockage is in consent with the recently elucidated mechanism of viral DNA packaging via a revolution mode that requires a channel larger than the dsDNA diameter of 2 nm to provide room for viral DNA revolving without rotation. The understanding of the dynamics of dsDNA translocation in the phi29 system will enable us to design more sophisticated single pore DNA translocation devices for future applications in nanotechnology and personal medicine. PMID:25890769

  12. Ultratrace DNA Detection Based on the Condensing-Enrichment Effect of Superwettable Microchips.

    PubMed

    Xu, Li-Ping; Chen, Yanxia; Yang, Gao; Shi, Wanxin; Dai, Bing; Li, Guannan; Cao, Yanhua; Wen, Yongqiang; Zhang, Xueji; Wang, Shutao

    2015-11-18

    A sensitive nucleic acid detection platform based on superhydrophilic microwells spotted on a superhydrophobic substrate is fabricated. Due to the wettability differences, ultratrace DNA molecules are enriched and the fluorescent signals are amplified to allow more sensitive detection. The biosensing interface based on superwettable materials provides a simple and cost-effective way for ultratrace DNA sensing.

  13. A Simple and Inexpensive Method for Sending Binary Vector Plasmid DNA by Mail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe a simple cost-effective technique for the transport of plasmid DNA by mail. Our results demonstrate that common multipurpose printing paper is a satisfactory substrate and superior to the more absorbent 3MM chromatography paper for the transport of plasmid DNA through the U.S. first clas...

  14. DNA microarray technology. Introduction.

    PubMed

    Pollack, Jonathan R

    2009-01-01

    DNA microarray technology has revolutionized biological research by enabling genome-scale explorations. This chapter provides an overview of DNA microarray technology and its application to characterizing the physical genome, with a focus on cancer genomes. Specific areas discussed include investigations of DNA copy number alteration (and loss of heterozygosity), DNA methylation, DNA-protein (i.e., chromatin and transcription factor) interactions, DNA replication, and the integration of diverse genome-scale data types. Also provided is a perspective on recent advances and future directions in characterizing the physical genome.

  15. Biaxially textured metal substrate with palladium layer

    DOEpatents

    Robbins, William B [Maplewood, MN

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  16. Buffer layers on biaxially textured metal substrates

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  17. Direct transfer of graphene onto flexible substrates.

    PubMed

    Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T

    2013-10-29

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  18. Direct transfer of graphene onto flexible substrates

    NASA Astrophysics Data System (ADS)

    Pimenta, Luiz Gustavo; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred; Kong, Jing; Araujo, Paulo

    2014-03-01

    We explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate. Various substrates of general interest in research and industry were studied including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate present processes and open up directions for applications of chemical vapor deposition (CVD) graphene on flexible substrates. A broad range of applications of CVD graphene can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  19. Microfabricated EIS biosensor for detection of DNA

    NASA Astrophysics Data System (ADS)

    Taing, M.; Sweatman, D.

    2006-01-01

    This paper focuses on the design of an EIS (electrolyte on insulator on Silicon) structure as a detection method for pathogenic DNA. Current rapid detection methods rely on fluorescent labeling to determine binding affinity. Fluorescent quenching is seen by a change in activity as opposed to non-quenched states. Sensitive optical equipment is required to detect and distinguish these colour changes because they cannot be seen by the naked eye. The disadvantages of this is (1) a portable, independent device cannot be made since samples have to be brought back to the benchtop and (2) the obvious cost of acquiring and maintaining these optical detection systems. A low cost, portable electrical detection method has been investigated. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a small field effect DNA detection sensor. The sensor responds to fluctuating capacitances caused by a depletion layer thickness change at the surface of the silicon substrate as a result of DNA adsorption onto the dielectric oxide/APTES (Aminopropylthioxysilane) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes. The negative charge exhibited by the DNA forces negative charge carriers in the silicon substrate to move away from the surface. This causes a depletion layer in n-type substrate to thicken and for a p-type to thin and can be observed as a change in capacitance. A low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The EIS sensor is designed to be later integrated into a complete lab on chip solution. A full lab on chip can incorporate the sensor to perform DNA quantity based measurements. Nucleic acids can be amplified by the on chip PCR system and then fed into the sensor to work out the DNA concentration. The sensor surface contains capture probes that will bind to the pathogen. They are held onto the

  20. A novel substrate for multisensor hyperspectral imaging.

    PubMed

    Ofner, J; Kirschner, J; Eitenberger, E; Friedbacher, G; Kasper-Giebl, A; Lohninger, H; Eisenmenger-Sittner, C; Lendl, B

    2017-03-01

    The quality of chemical imaging, especially multisensor hyperspectral imaging, strongly depends on sample preparation techniques and instrumental infrastructure but also on the choice of an appropriate imaging substrate. To optimize the combined imaging of Raman microspectroscopy, scanning-electron microscopy and energy-dispersive X-ray spectroscopy, a novel substrate was developed based on sputtering of highly purified aluminium onto classical microscope slides. The novel aluminium substrate overcomes several disadvantages of classical substrates like impurities of the substrate material and contamination of the surface as well as surface roughness and homogeneity. Therefore, it provides excellent conditions for various hyperspectral imaging techniques and enables high-quality multisensor hyperspectral chemical imaging at submicron lateral resolutions.

  1. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  2. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1989-05-09

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  3. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.

    1989-01-01

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  4. Substrate Effects for Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. For excellent structural stability, we demand chemical bonding between the adatoms and substrate atoms, but then good electronic isolation may not be guaranteed. Conditions are clarified for good isolation. Because of the chemical bonding, fundamental adatom properties are strongly influenced: a chain with group IV adatoms having two chemical bonds, or a chain with group III adatoms having one chemical bond is semiconducting. Charge transfer from or to the substrate atoms brings about unintentional doping, and the electronic properties have to be considered for the entire combination of the adatom and substrate systems even if the adatom modes are well localized at the surface.

  5. Butyrate as preferred substrate for polyhydroxybutyrate production.

    PubMed

    Marang, Leonie; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2013-08-01

    In this study, the suitability of butyrate as substrate for polyhydroxyalkanoate (PHA) production by microbial enrichment cultures was assessed. Two sequencing batch reactors were operated under feast-famine conditions: one fed with butyrate, and another with mixed acetate and butyrate. The obtained results were compared to previous results with acetate as sole substrate. In all three reactors Plasticicumulans acidivorans dominated the enrichment culture. The carbon uptake rate and PHA yield were significantly higher on butyrate than on acetate, resulting in a higher PHA production rate. When both substrates were available the bacteria strongly preferred the uptake of butyrate. Only after butyrate depletion acetate was taken up at a high rate. The molar substrate uptake rate remained the same, suggesting that substrate uptake is the rate-limiting step. The results show that for optimized waste-based PHA production the pre-fermentation process should be directed towards butyrate production.

  6. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    PubMed

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  7. CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase.

    PubMed

    Ramsay, Nicola; Jemth, Ann-Sofie; Brown, Anthony; Crampton, Neal; Dear, Paul; Holliger, Philipp

    2010-04-14

    DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.

  8. The Chromodomains of the Chd1 Chromatin Remodeler Regulate DNA Access to the ATPase Motor

    SciTech Connect

    Hauk, G.; McKnight, J; Nodelman, I; Bowman, G

    2010-01-01

    Chromatin remodelers are ATP-driven machines that assemble, slide, and remove nucleosomes from DNA, but how the ATPase motors of remodelers are regulated is poorly understood. Here we show that the double chromodomain unit of the Chd1 remodeler blocks DNA binding and activation of the ATPase motor in the absence of nucleosome substrates. The Chd1 crystal structure reveals that an acidic helix joining the chromodomains can pack against a DNA-binding surface of the ATPase motor. Disruption of the chromodomain-ATPase interface prevents discrimination between nucleosomes and naked DNA and reduces the reliance on the histone H4 tail for nucleosome sliding. We propose that the chromodomains allow Chd1 to distinguish between nucleosomes and naked DNA by physically gating access to the ATPase motor, and we hypothesize that related ATPase motors may employ a similar strategy to discriminate among DNA-containing substrates.

  9. Differential DNA lesion formation and repair in heterochromatin and euchromatin

    PubMed Central

    Han, Chunhua; Srivastava, Amit Kumar; Cui, Tiantian; Wang, Qi-En; Wani, Altaf A.

    2016-01-01

    Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction. PMID:26717995

  10. Human repair endonuclease incises DNA at cytosine photoproducts

    SciTech Connect

    Gallagher, P.E.; Weiss, R.B.; Brent, T.P.; Duker, N.J.

    1987-05-01

    The nature of DNA damage by uvB and uvC irradiation was investigated using a defined sequence of human DNA. A UV-irradiated, 3'-end-labeled, 92 base pair sequence from the human alphoid segment was incubated with a purified human lymphoblast endonuclease that incises DNA at non-dimer photoproducts. Analysis by polyacrylamide gel electrophoresis identified all sites of endonucleolytic incision as cytosines. These were found in regions of the DNA sequence lacking adjacent pyrimidines and therefore are neither cyclobutane pyrimidine dimers nor 6-4'-pyrimidines. Incision at cytosine photoproducts was not detected at loci corresponding to alkali-labile sites in either control or irradiated substrates. This demonstrates that the bands detected after the enzymic reactions were not the result of DNA strand breaks, base loss sites or ring-opened cytosines. The optimal wavelengths for formation of cytosine photoproducts are 270-295 nm, similar to those associated with maximal tumor yields in animal ultraviolet carcinogenesis studies. Irradiation by monochromatic 254 nm light resulted in reduced cytosine photoproduct formation. This human UV endonuclease has an apparently identical substrate specificity to E. coli endonuclease III. Both the human and bacterial enzymes incise cytosine moieties in UV irradiated DNA and modified thymines in oxidized DNA.

  11. Phototoxicity mechanisms: chlorpromazine photosensitized damage to DNA and cell membranes

    SciTech Connect

    Kochevar, K.E.

    1981-07-01

    Photosensitized damage to biological molecules is the initial process in phototoxic responses. It is now recognized that many phototoxic compounds can photosensitize damage to more than one type of biological substrate. The in vitro light-initiated reactions of phototoxic compounds with DNA, soluble proteins and membrane components can be classified by their molecular mechanisms: (1) those in which an excited state of the phototoxic compound (or an unstable species derived from it) reacts directly with the biological substrate and (2) those in which a molecule derived from the phototoxic compound (a photoproduct or an activated oxygen species) reacts with the biological substrate. This paper describes the mechanisms by which chlorpromazine photosensitizes damage to membranes, protein and DNA and compares them to the mechanisms of photosensitization by psoralens, porphyrins, dyes, and other molecules.

  12. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates.

    PubMed

    Kiruba, G S M; Xu, Jiahui; Zelikson, Victoria; Lee, Jeehiun K

    2016-03-07

    Gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of nucleobase derivatives that have not heretofore been examined under vacuum. The studied species are substrates for the enzyme formamidopyrimidine glycosylase (Fpg), which cleaves damaged nucleobases from DNA. The gas-phase results are compared and contrasted to solution-phase data, to afford insight into the Fpg mechanism. Calculations are also used to probe the energetics of various possible mechanisms and to predict isotope effects that could potentially allow for discrimination between different mechanisms. Specifically, (18) O substitution at the ribose O4' is predicted to result in a normal kinetic isotope effect (KIE) for a ring-opening "endocyclic" mechanism and an inverse KIE for a direct base excision "exocyclic" pathway.

  13. Serotonin transporter: a potential substrate in the biology of suicide.

    PubMed

    Purselle, David C; Nemeroff, Charles B

    2003-04-01

    Suicide is a serious public health problem in the US, yet its neurobiological underpinnings are poorly understood. Suicide is highly correlated with depressive symptoms, and considerable evidence suggests that depression is associated with a relative deficiency in serotonergic neurotransmission. Serotonergic circuits also mediate impulsivity, a trait obviously relevant to suicide. These findings, taken together, suggest that alterations in the serotonergic system might contribute to suicidal behavior, serving as an impetus for researchers to scrutinize the serotonin transporter (SERT) as a potential substrate for the pathophysiology of suicide. Using post-mortem brain tissue, platelets, and DNA from suicide completers and attempters have not provided unequivocal evidence for a pre-eminent role for the SERT in the pathophysiology of suicide. This paper provides a review of several studies that have evaluated the role of the SERT in the pathophysiology of suicide.

  14. Phosphorylated 5-ethynyl-2'-deoxyuridine for advanced DNA labeling.

    PubMed

    Seo, Siyoong; Onizuka, Kazumitsu; Nishioka, Chieko; Takahashi, Eiki; Tsuneda, Satoshi; Abe, Hiroshi; Ito, Yoshihiro

    2015-04-21

    The representative DNA-labeling agent 5-ethynyl-2'-deoxyuridine (EdU) was chemically modified to improve its function. Chemical monophosphorylation was expected to enhance the efficiency of the substrate in DNA polymerization by circumventing the enzymatic monophosphorylation step that consumes energy. In addition, to enhance cell permeability, the phosphates were protected with bis-pivaloyloxymethyl that is stable in buffer and plasma, and degradable inside various cell types. The phosphorylated EdU (PEdU) was less toxic than EdU, and had the same or a slightly higher DNA-labeling ability in vitro. PEdU was also successfully applied to DNA labeling in vivo. In conclusion, PEdU can be used as a less toxic DNA-labeling agent for studies that require long-term cell survival or very sensitive cell lines.

  15. A clamp-like biohybrid catalyst for DNA oxidation

    NASA Astrophysics Data System (ADS)

    van Dongen, Stijn F. M.; Clerx, Joost; Nørgaard, Kasper; Bloemberg, Tom G.; Cornelissen, Jeroen J. L. M.; Trakselis, Michael A.; Nelson, Scott W.; Benkovic, Stephen J.; Rowan, Alan E.; Nolte, Roeland J. M.

    2013-11-01

    In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.

  16. Scanning Probe Microscopy of DNA with a Quartz Tuning Fork

    NASA Astrophysics Data System (ADS)

    King, G. M.; Nunes, G., Jr.

    2001-03-01

    Quartz tuning-forks have recently been put to use as highly sensitive force detectors in atomic force microscopy (AFM).(F.J.Giessibl et al.), Science 289, 422 (2000). In this study we have applied a home-built, tuning-fork based AFM to the investigation of single and double stranded DNA (ssDNA and dsDNA). We operate the microscope in the non-contact mode (typical tip amplitude ~1 nm) with a variety of tips (e.g. Si, Si_3N_4, W). Here we report on recent results showing that the apparent height of plasmid dsDNA on mica substrates depends on both the tip material and imaging frequency shift. This talk will also review our efforts to probe ssDNA with a chemically functionalized tip. Current and future prospects for this dynamic-mode, chemically-sensitive force microscopy technique will be discussed.

  17. Structural Organization of DNA.

    ERIC Educational Resources Information Center

    Banfalvi, Gaspar

    1986-01-01

    Explains the structural organization of DNA by providing information on the primary, secondary, tertiary, and higher organization levels of the molecule. Also includes illustrations and descriptions of sign-inversion and rotating models for supercoiling of DNA. (ML)

  18. Unusual DNA structures

    SciTech Connect

    Wells, R.D.; Harvey, S.C.

    1988-01-01

    The contents of this book are: Unusual DNS Structures and the Probes Used for Their Detection; The Specificity of Single Strand Specific Endonucleases; Chromatin STructure and DNA Structure at the hsp 26 Locus of Drosophilia; Cruciform Extrusion in Supercoiled DNA-Mechanisms and Contextual Influence; Torsional Stress, Unusual DNA Structures, and Eukaryotic Gene Expression; DNA Sequence and Structure: Bending to Biology. Cruciform Transitions Assayed Using a Psoralen Cross-linking Method: Applications to Measurements of DNA Torisonal Tension; NMR-Distance Geometry Studies of Helical Errors and Sequence Dependent Conformations of DNA in Solution; Hyperreactivity of the B-Z Junctions Probed by Two Aromatic Chemical Carcinogens; Inherently Curved DNA and Its Structural Elements; and DNA Flexibility Under Control: The Juma Algorithm and its Application to BZ Junctions.

  19. DNA tagged microparticles

    DOEpatents

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  20. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  1. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    SciTech Connect

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  2. An adenosine triphosphate-dependent deoxyribonuclease from Bacillus laterosporus. Improved purification, subunit structure and substrate specificity.

    PubMed

    Fujiyoshi, T; Anai, M

    1981-04-01

    The ATP-dependent deoxyribonuclease from Bacillus laterosporus has been purified to near homogeneity by a procedure involving ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-150 gel filtration, DEAE-Sephadex A-25 chromatography and DNA-cellulose affinity chromatography. The purified enzyme has a molecular weight of 210,000 +/- 8,000 as determined by sucrose gradient sedimentation. It is composed of two nonidentical polypeptide chains with close molecular weights of around 110,000. The substrate preference of the pure enzyme is essentially identical with the previous result obtained with the partially purified enzyme preparation (Anai, M., Mihara, T., Yamanaka, M., Shibata, T., & Takagi, Y. (1975) J. Biochem. 78, 105-114). Thus, the enzyme degrades double-stranded DNA about 100 times faster than heat-denatured DNA in the presence of ATP. Double-stranded DNA is not degraded to any measurable extent in the absence of ATP, but the enzyme exhibits activity toward denatured DNA in the absence of ATP. Furthermore, no endonuclease activity is observed on covalently closed circular duplex DNA and open circular duplex DNA.

  3. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  4. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.

  5. HUMAN DHX9 HELICASE UNWINDS TRIPLE HELICAL DNA STRUCTURES☟

    PubMed Central

    Jain, Aklank; Bacolla, Albino; Chakraborty, Prasun; Grosse, Frank; Vasquez, Karen M.

    2010-01-01

    Naturally occurring poly(purine·pyrimidine) rich regions in the human genome are prone to adopt non-canonical DNA structures such as intramolecular triplexes (i.e. H-DNA). Such structure-forming sequences are abundant and can regulate the expression of several diseases-linked genes. In addition, the use of triplex-forming oligonucleotides (TFOs) to modulate gene structure and function has potential as an approach to targeted gene therapy. Previously, we found that endogenous H-DNA structures can induce DNA double-strand breaks and promote genomic rearrangements. Herein, we find that the DHX9 helicase co-immunoprecipitates with triplex DNA structures in mammalian cells, suggesting a role in the maintenance of genome stability. We tested this postulate by assessing the helicase activity of purified human DHX9 on various duplex and triplex DNA substrates in vitro. DHX9 displaced the third strand from a specific triplex DNA structure and catalyzed the unwinding with a 3′→5′ polarity with respect to the displaced third strand. Helicase activity required a 3′-single-stranded overhang on the third strand and was dependent on ATP hydrolysis. The reaction kinetics consisted of a pre-steady-state burst phase followed by a linear, steady-state pseudo-zero-order-reaction. In contrast, very little, if any helicase activity was detected on blunt triplexes, triplexes with 5′-overhangs, blunt duplexes, duplexes with overhangs, or forked duplex substrates. Thus, triplex structures containing a 3′-overhang represent preferred substrates for DHX9, where it removes the strand with Hoogsteen hydrogen-bonded bases. Our results suggest the involvement of DHX9 in maintaining genome integrity by unwinding mutagenic triplex DNA structures. PMID:20669935

  6. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOEpatents

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  7. Molecular underpinnings of Aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease.

    PubMed

    Schellenberg, Matthew J; Tumbale, Percy P; Williams, R Scott

    2015-03-01

    Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1.

  8. Poly (ADP-ribose) polymerase (PARP) is essential for sulfur mustard-induced DNA damage repair, but has no role in DNA ligase activation.

    PubMed

    Bhat, K Ramachandra; Benton, Betty J; Ray, Radharaman

    2006-01-01

    Concurrent activation of poly (ADP-ribose) polymerase (PARP) and DNA ligase was observed in cultured human epidermal keratinocytes (HEK) exposed to the DNA alkylating compound sulfur mustard (SM), suggesting that DNA ligase activation could be due to its modification by PARP. Using HEK, intracellular 3H-labeled NAD+ (3H-adenine) was metabolically generated and then these cells were exposed to SM (1 mM). DNA ligase I isolated from these cells was not 3H-labeled, indicating that DNA ligase I is not a substrate for (ADP-ribosyl)ation by PARP. In HEK, when PARP was inhibited by 3-amino benzamide (3-AB, 2 mM), SM-activated DNA ligase had a half-life that was four-fold higher than that observed in the absence of 3-AB. These results suggest that DNA repair requires PARP, and that DNA ligase remains activated until DNA damage repair is complete. The results show that in SM-exposed HEK, DNA ligase I is activated by phosphorylation catalysed by DNA-dependent protein kinase (DNA-PK). Therefore, the role of PARP in DNA repair is other than that of DNA ligase I activation. By using the DNA ligase I phosphorylation assay and decreasing PARP chemically as well as by PARP anti-sense mRNA expression in the cells, it was confirmed that PARP does not modify DNA ligase I. In conclusion, it is proposed that PARP is essential for efficient DNA repair; however, PARP participates in DNA repair by altering the chromosomal structure to make the DNA damage site(s) accessible to the repair enzymes.

  9. Nanopores: Flossing with DNA

    NASA Astrophysics Data System (ADS)

    Kasianowicz, John J.

    2004-06-01

    Passing a DNA strand many times back-and-forth through a protein nanopore would enable the interaction between them to be studied more closely. This may now be possible, using a dumbbell-shaped DNA-polymer complex, which may lead to a more reliable analysis of DNA sequences using nanopores.

  10. Direct transfer of graphene onto flexible substrates

    PubMed Central

    Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.

    2013-01-01

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582

  11. Substrate binding to mammalian 15-lipoxygenase

    NASA Astrophysics Data System (ADS)

    Toledo, Lea; Masgrau, Laura; Lluch, José M.; González-Lafont, Àngels

    2011-09-01

    Lipoxygenases (LOs) are implicated in the regulation of metabolic processes and in several human diseases. Revealing their exact role is hindered by an incomplete understanding of their activity, including substrate specificity and substrate alignment in the active site. Recently, it has been proposed that the change in substrate specificity for arachidonic acid (AA) or linoleic acid (LA) could be part of an auto-regulatory mechanism related to cancer grow. Kinetic differences between reactions of 15-hLO with AA and LA have also led to the suggestion that the two substrates could present mechanistic differences. In the absence of a crystal structure for the substrate:15-LO complex, here we present an atomic-level study of catalytically competent binding modes for LA to rabbit 15-LO (15-rLO-1) and compare the results to our previous work on AA. Docking calculations, molecular dynamics simulations, re-docking and cross-docking calculations are all used to analyze the differences and similarities between the binding modes of the two substrates. Interestingly, LA seems to adapt more easily to the enzyme structure and differs from AA on some dynamical aspects that could introduce kinetic differences, as observed experimentally. Still, our study concludes that, despite the different chain lengths and number of insaturations between these two physiological substrates of 15-rLO-1, the enzyme seems to catalyze their hydroperoxidation by binding them with a common binding mode that leads to similar catalytically competent complexes.

  12. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOEpatents

    Branagan, Daniel J.; Hyde, Timothy A.; Fincke, James R.

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  13. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.

    PubMed

    Tian, Cheng; Zhang, Chuan

    2017-01-01

    Tile-based DNA self-assembly is a promising method in DNA nanotechnology and has produced a wide range of nanostructures by using a small set of unique DNA strands. DNA star motif, as one of DNA tiles, has been employed to assemble varieties of symmetric one-, two-, three-dimensional (1, 2, 3D) DNA nanostructures. Herein, we describe the design principles, assembly methods, and characterization methods of 3D DNA nanostructures assembled from the DNA star motifs.

  14. Substrates for clinical applicability of stem cells

    PubMed Central

    Enam, Sanjar; Jin, Sha

    2015-01-01

    The capability of human pluripotent stem cells (hPSCs) to differentiate into a variety of cells in the human body holds great promise for regenerative medicine. Many substrates exist on which hPSCs can be self-renewed, maintained and expanded to further the goal of clinical application of stem cells. In this review, we highlight numerous extracellular matrix proteins, peptide and polymer based substrates, scaffolds and hydrogels that have been pioneered. We discuss their benefits and shortcomings and offer future directions as well as emphasize commercially available synthetic peptides as a type of substrate that can bring the benefits of regenerative medicine to clinical settings. PMID:25815112

  15. Microstrip antennas and arrays on chiral substrates

    NASA Astrophysics Data System (ADS)

    Pozar, David M.

    1992-10-01

    Results are presented for isolated microstrip antennas and infinite arrays of microstrip antennas printed on chiral substrates, computed from full-wave spectral domain moment method solutions. Data for resonant length, impedance, directivity, efficiency, cross-polarization level, and scan performance are given, and compared to results obtained for a dielectric substrate of the same thickness and permittivity. It is concluded that, from the point of view of antenna characteristics, there does not seem to be any advantage to using chiral antenna substrates, while there are disadvantages in terms of increased cross-pol levels and losses due to surface wave excitation.

  16. Implantable biomedical devices on bioresorbable substrates

    SciTech Connect

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  17. One-end immobilization of individual DNA molecules on a functional hydrophobic glass surface.

    PubMed

    Matsuura, Shun-ichi; Kurita, Hirofumi; Nakano, Michihiko; Komatsu, Jun; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2002-12-01

    We demonstrate an effective method for DNA immobilization on a hydrophobic glass surface. The new DNA immobilizing technique is extremely simple compared with conventional techniques that require heterobifunctional crosslinking reagent between DNA and substrate surface that are both modified chemically. In the first process, a coverslip was treated with dichlorodimethylsilane resulting in hydrophobic surface. lambda DNA molecules were ligated with 3'-terminus disulfide-modified 14 mer oligonucleotides at one cohesive end. After reduction of the disulfide to sulfhydryl (thiol) groups the resulting thiol-modified lambda DNA molecules were reacted on silanized coverslip. Fluorescent observation showed that the thiol-modified lambda DNA molecules were anchored specifically to the hydrophobic surface at one terminus, although non-specific binding of the DNA molecules was suppressed. It was observed that the one-end-attached DNA molecule was bound firmly to the surface and stretched reversibly in one direction when a d.c. electric field was applied.

  18. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases.

    PubMed

    Manthei, Kelly A; Hill, Morgan C; Burke, Jordan E; Butcher, Samuel E; Keck, James L

    2015-04-07

    RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. Here, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ∼90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATP hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. This bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.

  19. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore

    NASA Astrophysics Data System (ADS)

    Benner, Seico; Chen, Roger J. A.; Wilson, Noah A.; Abu-Shumays, Robin; Hurt, Nicholas; Lieberman, Kate R.; Deamer, David W.; Dunbar, William B.; Akeson, Mark

    2007-11-01

    Nanoscale pores have potential to be used as biosensors and are an established tool for analysing the structure and composition of single DNA or RNA molecules. Recently, nanopores have been used to measure the binding of enzymes to their DNA substrates. In this technique, a polynucleotide bound to an enzyme is drawn into the nanopore by an applied voltage. The force exerted on the charged backbone of the polynucleotide by the electric field is used to examine the enzyme-polynucleotide interactions. Here we show that a nanopore sensor can accurately identify DNA templates bound in the catalytic site of individual DNA polymerase molecules. Discrimination among unbound DNA, binary DNA/polymerase complexes, and ternary DNA/polymerase/deoxynucleotide triphosphate complexes was achieved in real time using finite state machine logic. This technique is applicable to numerous enzymes that bind or modify DNA or RNA including exonucleases, kinases and other polymerases.

  20. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases

    PubMed Central

    Manthei, Kelly A.; Hill, Morgan C.; Burke, Jordan E.; Butcher, Samuel E.; Keck, James L.

    2015-01-01

    RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. Here, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3′ single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ∼90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATP hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. This bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures. PMID:25831501

  1. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases

    SciTech Connect

    Manthei, Kelly A.; Hill, Morgan C.; Burke, Jordan E.; Butcher, Samuel E.; Keck, James L.

    2015-03-23

    RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. In this paper, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ~90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATP hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. Finally, this bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.

  2. Force regulated dynamics of RPA on a DNA fork

    PubMed Central

    Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-01-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742

  3. The Role of Methylation of DNA in Environmental Adaptation

    PubMed Central

    Flores, Kevin B.; Wolschin, Florian; Amdam, Gro V.

    2013-01-01

    Methylation of DNA is an epigenetic mechanism that influences patterns of gene expression. DNA methylation marks contribute to adaptive phenotypic variation but are erased during development. The role of DNA methylation in adaptive evolution is therefore unclear. We propose that environmentally-induced DNA methylation causes phenotypic heterogeneity that provides a substrate for selection via forces that act on the epigenetic machinery. For example, selection can alter environmentally-induced methylation of DNA by acting on the molecular mechanisms used for the genomic targeting of DNA methylation. Another possibility is that specific methylation marks that are environmentally-induced, yet non-heritable, could influence preferential survival and lead to consistent methylation of the same genomic regions over time. As methylation of DNA is known to increase the likelihood of cytosine-to-thymine transitions, non-heritable adaptive methylation marks can drive an increased likelihood of mutations targeted to regions that are consistently marked across several generations. Some of these mutations could capture, genetically, the phenotypic advantage of the epigenetic mark. Thereby, selectively favored transitory alterations in the genome invoked by DNA methylation could ultimately become selectable genetic variation through mutation. We provide evidence for these concepts using examples from different taxa, but focus on experimental data on large-scale DNA sequencing that expose between-group genetic variation after bidirectional selection on honeybees, Apis mellifera. PMID:23620251

  4. The Many Sides of DNA.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores the meaning of DNA. Discusses histories of DNA, literature on DNA, the contributions of Max Delbruck and Barbara McClintock, life, views of control, current research, and the language of DNA. Contains 24 references. (JRH)

  5. DNA-Mediated Electrochemistry

    PubMed Central

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  6. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  7. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  8. DNA Functionalization of Nanoparticles.

    PubMed

    Lu, Fang; Gang, Oleg

    2017-01-01

    DNA-nanoparticle conjugates are hybrid nanoscale objects that integrate different types of DNA molecules and inorganic nanoparticles with a typical architecture of a DNA shell around an inorganic core. Such incorporation provides particles with unique properties of DNA, addressability and recognition, but, at the same time, allows exploiting the properties of the particle's inorganic core. Thus, these hybrid nano-objects are advantageous for rational fabrication of functional materials and for biomedical applications. Here, we describe several established DNA functionalization procedures for different types of surface ligands and nanoparticle core materials.

  9. Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    PubMed Central

    Exell, Jack C.; Thompson, Mark J.; Finger, L. David; Shaw, Steven J.; Debreczeni, Judit; Ward, Thomas A.; McWhirter, Claire; Siöberg, Catrine L. B.; Martinez Molina, Daniel; Mark Abbott, W.; Jones, Clifford D.; Nissink, J. Willem M.; Durant, Stephen T.; Grasby, Jane A.

    2016-01-01

    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein–substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed. PMID:27526030

  10. Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases

    PubMed Central

    Srivastav, Rajpal; Kumar, Dilip; Grover, Amit; Singh, Ajit; Manjasetty, Babu A.; Sharma, Rakesh; Taneja, Bhupesh

    2014-01-01

    DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3′-5′ exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress. PMID:24878921

  11. Development of a tailorable and tunable mechanism for cell-responsive substrate-mediated gene delivery

    NASA Astrophysics Data System (ADS)

    Blocker, Kory M.

    Due to the spatial and temporal control as well as the cell-type specificity necessary to extend gene delivery to therapeutic applications, there exists a need to create systems capable of gene transfer that are well-understood and easily manipulated. Furthermore, the creation of such materials will enable further exploration of the correlation between biochemical cues and the resulting cellular responses. In response to this as yet unmet need, a method to promote cell-responsive substrate-mediated gene delivery was developed for this dissertation. Through the use of non-viral gene delivery, flexibility of the vehicle design was incorporated into the system. Using PNA technology, pDNA was able to be specifically tethered to a self-assembled monolayer via an enzymatically-labile peptide tether. This construct was shown to promote cell-responsive delivery while retaining flexibility over the chemical and physical properties of the vehicle and substrate. By alteration of some design parameters including tether number, pDNA surface coverage, and complexation agent, temporal control over the release profile was demonstrated. Furthermore, the ability to extend the applicability of the system was detailed by transitioning to a poly-D-lysine coated substrate upon which the pDNA is immobilized. This dissertation details proof-of-principle work in the formation of a controlled release gene delivery mechanism that may be used to promote understanding of cellular responses to biochemical signaling as well as be extended to use in tissue engineering applications.

  12. A paper-based inkjet-fabricated substrate for SERS detection and differentiation of PCR products

    NASA Astrophysics Data System (ADS)

    Hoppmann, Eric P.; White, Ian M.

    2013-05-01

    Surface enhanced Raman spectroscopy (SERS) is a highly sensitive sensing technique, offering sensitivity comparable to that of fluorescence while providing structure-dependent analyte information. In recent years, we have developed an innovative optofluidic SERS substrate by inkjet printing metal nanoparticles onto paper. By virtue of generating a SERS substrate on cellulose, we gain a flexible SERS sensing device, as well as the ability to harness the intrinsic wicking properties of paper to enable both separation and concentration of analytes. Here we demonstrate the application of paper-chromatographic separation to allow on-substrate separation, concentration and discrimination. By using inexpensive single-labeled DNA probes in a typical PCR amplification, we obtain a mixture containing whole probes (negative result) and probes which have been hydrolyzed by the Taq polymerase (positive result). Leveraging the solubility differences between the whole and hydrolyzed probes and the cellulose separation matrix, we are able to perform a multiplexed interrogation of the targets. Notably, this does not require the use of dual labeled DNA probes (expensive) or multiple excitation sources and filter sets needed for a multiplexed fluorescence measurement (expensive and bulky). All SERS measurements are performed using a portable spectrometer and diode laser; in combination with a portable low-power DNA amplification system, this technique has the potential to be used for rapid on-site multiplexed genetic detection, without requiring complex optical equipment.

  13. Heterogeneity of mammalian DNA ligase detected on activity and DNA sequencing gels.

    PubMed Central

    Mezzina, M; Sarasin, A; Politi, N; Bertazzoni, U

    1984-01-01

    A new method to detect DNA ligase activity in situ after NaDodSO4 polyacrylamide gel electrophoresis has been developed. After renaturation of active polypeptides the ligase reaction occurs in situ by incubating the intact gel in the presence of Mg++ and ATP. Further treatment with alkaline phosphatase removes the unligated 5'-32P-end of oligo (dT) used as a substrate and active polypeptides having ligase activity are identified by autoradiography. Analysis on DNA sequencing gels of the oligo (dT) reaction products present in the activity bands ensures that the radioactive material detected in activity gels or in standard in vitro ligase assays corresponds unambiguously to a ligase activity. Using these methods, we have analysed the purified phage T4 DNA ligase, and the activities present in crude extracts and in purified fractions from monkey kidney (CV1-P) cells. The purified T4 enzyme yields one or two active peptides with Mr values of 60,000 and 70,000. Crude extracts from CV1-P cells contain several polypeptides having DNA ligase activity. Partial purification of these extracts shows that DNA ligase I isolated from hydroxylapatite column is enriched in polypeptides with Mr 200,000, 150,000 and 120,000, while DNA ligase II is enriched in those with Mr 60,000 and 70,000. Images PMID:6377238

  14. Independent versus Cooperative Binding in Polyethylenimine–DNA and Poly(L-lysine)–DNA Polyplexes

    PubMed Central

    Ketola, Tiia-Maaria; Hanzlíková, Martina; Leppänen, Linda; Raviña, Manuela; Bishop, Corey J.; Green, Jordan J.; Urtti, Arto; Lemmetyinen, Helge; Yliperttula, Marjo; Vuorimaa-Laukkanen, Elina

    2013-01-01

    The mechanism of polyethylenimine–DNA and poly(L-lysine)–DNA complex formation at pH 5.2 and 7.4 was studied by a time-resolved spectroscopic method. The formation of a polyplex core was observed to be complete at approximately N/P = 2, at which point nearly all DNA phosphate groups were bound by polymer amine groups. The data were analyzed further both by an independent binding model and by a cooperative model for multivalent ligand binding to multisubunit substrate. At pH 5.2, the polyplex formation was cooperative at all N/P ratios, whereas for pH 7.4 at N/P < 0.6 the polyplex formation followed independent binding changing to cooperative binding at higher N/Ps. PMID:23941196

  15. The tandem repeats enabling reversible switching between the two phases of β-lactamase substrate spectrum.

    PubMed

    Yi, Hyojeong; Song, Han; Hwang, Junghyun; Kim, Karan; Nierman, William C; Kim, Heenam Stanley

    2014-09-01

    Expansion or shrinkage of existing tandem repeats (TRs) associated with various biological processes has been actively studied in both prokaryotic and eukaryotic genomes, while their origin and biological implications remain mostly unknown. Here we describe various duplications (de novo TRs) that occurred in the coding region of a β-lactamase gene, where a conserved structure called the omega loop is encoded. These duplications that occurred under selection using ceftazidime conferred substrate spectrum extension to include the antibiotic. Under selective pressure with one of the original substrates (amoxicillin), a high level of reversion occurred in the mutant β-lactamase genes completing a cycle back to the original substrate spectrum. The de novo TRs coupled with reversion makes a genetic toggling mechanism enabling reversible switching between the two phases of the substrate spectrum of β-lactamases. This toggle exemplifies the effective adaptation of de novo TRs for enhanced bacterial survival. We found pairs of direct repeats that mediated the DNA duplication (TR formation). In addition, we found different duos of sequences that mediated the DNA duplication. These novel elements-that we named SCSs (same-strand complementary sequences)-were also found associated with β-lactamase TR mutations from clinical isolates. Both direct repeats and SCSs had a high correlation with TRs in diverse bacterial genomes throughout the major phylogenetic lineages, suggesting that they comprise a fundamental mechanism shaping the bacterial evolution.

  16. Wafer bonded virtual substrate and method for forming the same

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M.; Morral, Anna Fontcuberta i

    2007-07-03

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  17. Wafer bonded virtual substrate and method for forming the same

    NASA Technical Reports Server (NTRS)

    Atwater, Jr., Harry A. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcuberta i (Inventor)

    2007-01-01

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  18. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong; Maham, Aihui; Lin, Yuehe

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate due to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.

  19. A chloroplast DNA helicase II from pea that prefers fork-like replication structures

    PubMed

    Tuteja; Phan

    1998-11-01

    A DNA helicase, called chloroplast DNA (ctDNA) helicase II, was purified to apparent homogeneity from pea (Pisum sativum). The enzyme contained intrinsic, single-stranded, DNA-dependent ATPase activity and an apparent molecular mass of 78 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The DNA helicase was markedly stimulated by DNA substrates with fork-like replication structures. A 5'-tailed fork was more active than the 3'-tailed fork, which itself was more active than substrates without a fork. The direction of unwinding was 3' to 5' along the bound strand, and it failed to unwind blunt-ended duplex DNA. DNA helicase activity required only ATP or dATP hydrolysis. The enzyme also required a divalent cation (Mg2+>Mn2+>Ca2+) for its unwinding activity and was inhibited at 200 mM KCl or NaCl. This enzyme could be involved in the replication of ctDNA. The DNA major groove-intercalating ligands nogalamycin and daunorubicin were inhibitory to unwinding (Ki approximately 0.85 &mgr;M and 2.2 &mgr;M, respectively) and ATPase (Ki approximately 1.3 &mgr;M and 3.0 &mgr;M, respectively) activities of pea ctDNA helicase II, whereas ellipticine, etoposide (VP-16), and camptothecin had no effect on the enzyme activity. These ligands may be useful in further studies of the mechanisms of chloroplast helicase activities.

  20. DNA structure and function.

    PubMed

    Travers, Andrew; Muskhelishvili, Georgi

    2015-06-01

    The proposal of a double-helical structure for DNA over 60 years ago provided an eminently satisfying explanation for the heritability of genetic information. But why is DNA, and not RNA, now the dominant biological information store? We argue that, in addition to its coding function, the ability of DNA, unlike RNA, to adopt a B-DNA structure confers advantages both for information accessibility and for packaging. The information encoded by DNA is both digital - the precise base specifying, for example, amino acid sequences - and analogue. The latter determines the sequence-dependent physicochemical properties of DNA, for example, its stiffness and susceptibility to strand separation. Most importantly, DNA chirality enables the formation of supercoiling under torsional stress. We review recent evidence suggesting that DNA supercoiling, particularly that generated by DNA translocases, is a major driver of gene regulation and patterns of chromosomal gene organization, and in its guise as a promoter of DNA packaging enables DNA to act as an energy store to facilitate the passage of translocating enzymes such as RNA polymerase.