Science.gov

Sample records for 17-story multifunctional residential

  1. Structural Concept and Analysis of a 17-Story Multifunctional Residential Complex with and without Seismic Isolation System

    SciTech Connect

    Melkumyan, Mikayel; Gevorgyan, Emma

    2008-07-08

    In recent years seismic isolation technologies in Armenia were extensively applied in construction of multistory buildings. These are 10-17-story residential complexes with parking floors and with floors envisaged for offices, shopping centers, fitness clubs, etc. Also there is a 20-story business centre designed in 2006, which is currently under construction. All mentioned complexes are briefly described in the paper, which is, however, mainly dedicated to the 17-story residential complex designed in 2007. The structural concept, including the new approach on installation of seismic isolation rubber bearings in this building, is described and detailed results of the earthquake response analysis for two cases, i.e. when the building is base isolated and when it has a fixed base, are given. Several time histories were used in the analysis and for both cases the building was analyzed also according to the requirements of the Armenian Seismic Code. Comparison of the obtained results indicates the high effectiveness of the proposed structural concept of isolation system and the need for further improvement of Seismic Code provisions regarding the values of the reduction factors.

  2. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  3. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2007-08-28

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  4. Residential Wiring.

    ERIC Educational Resources Information Center

    Taylor, Mark

    The second in a series of three curriculum packages on wiring, these materials for a five-unit course were developed to prepare postsecondary students for entry-level employment in the residential wiring trade. The five units are: (1) blueprint reading and load calculations; (2) rough-in; (3) service; (4) trim out and troubleshooting; and (5) load…

  5. Multifunctionality in molecular magnetism.

    PubMed

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  6. Multifunctional cellulase and hemicellulase

    SciTech Connect

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  7. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  8. Residential Energy Management Education.

    ERIC Educational Resources Information Center

    Mecca, Stephen J.; Robertshaw, Joseph E.

    1980-01-01

    Describes two formal programs in the area of energy management education: a Residential Energy Management Summer Institute (part of a faculty development program funded by the Department of Energy), and a Residential Energy Management curriculum for Energy Auditors. (CS)

  9. Leasing Residential PV Systems

    SciTech Connect

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  10. Multifunctional nanoparticles: analytical prospects.

    PubMed

    de Dios, Alejandro Simón; Díaz-García, Marta Elena

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifunctional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  11. Mechanics of Multifunctional Materials & Microsystems

    DTIC Science & Technology

    2012-03-09

    Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self

  12. Residential mobility microsimulation models

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Wu, Lun

    2010-09-01

    Residential mobility refers to the spatial movement of individuals and households between dwellings within an urban area. This considerable amount of intra-urban movement affects the urban structure and has significant repercussions for urban transportation. In order to understand and project related impacts, a considerable number of residential mobility models has been developed and used in the regional planning process. Within this context, the history and state-of-art residential mobility models are discussed and indicated. Meanwhile, a residential mobility Microsimulation model, called URM-Microsim (Urban Residential Mobility Microsimulation), is introduced and discussed.

  13. Adaptive multifunctional composites

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Inman, Daniel J.

    2013-05-01

    The adaptive multifunctional composite structure studied here is to address two issues remaining in lightweight structural composites required by many engineering applications. The first is to add additional functionality to multifunctional composites and the second is to provide adaptive damping in structures that cover a wide range of frequencies and temperatures. Because of its potential for practical payoffs, passive structural damping can find wide application through the use of high-damping viscoelastic polymers or elastomers. However, all passive damping using these damping materials suffer from failing at certain temperatures and in certain frequency ranges. The extreme environments often seen by engineering systems provide high temperature, which is exactly where damping levels in structures reduce causing unacceptable vibrations. In addition, as loading frequencies reduce damping levels also fall off, and many loads experienced by large structures are low frequency. The proposed research addresses increasing the range of effectiveness of damping by addressing the temperature and frequency dependence of material damping by using a multifunctional composite system containing an active element. Previous research has yielded a finite element model of linear viscoelastic material and structural behavior that captures characteristic frequency-dependent behavior, continuing research has addressed the accommodation of temperature dependence, and the examination of the new concept of `electronic damping' or `e-damping'. The resulting modeling approach is validated through experimental validation.

  14. Templated biomimetic multifunctional coatings

    NASA Astrophysics Data System (ADS)

    Sun, Chih-Hung; Gonzalez, Adriel; Linn, Nicholas C.; Jiang, Peng; Jiang, Bin

    2008-02-01

    We report a bioinspired templating technique for fabricating multifunctional optical coatings that mimic both unique functionalities of antireflective moth eyes and superhydrophobic cicada wings. Subwavelength-structured fluoropolymer nipple arrays are created by a soft-lithography-like process. The utilization of fluoropolymers simultaneously enhances the antireflective performance and the hydrophobicity of the replicated films. The specular reflectivity matches the optical simulation using a thin-film multilayer model. The dependence of the size and the crystalline ordering of the replicated nipples on the resulting antireflective properties have also been investigated by experiment and modeling. These biomimetic materials may find important technological application in self-cleaning antireflection coatings.

  15. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  16. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  17. Multi-functional windows

    NASA Astrophysics Data System (ADS)

    Nag, Nagendra; Goldman, Lee M.; Balasubramanian, Sreeram; Sastri, Suri

    2013-06-01

    The requirements for modern aircraft are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the physical properties of optically transparent materials currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows held in weight bearing frames. Novel material systems will have to be developed which combine different materials (e.g. ductile metals with transparent ceramics) into structures that combine transparency with structural integrity. Surmet's demonstrated ability to produce novel transparent ceramic/metal structures will allow us to produce such structures in the types of conformal shapes required for future aircraft applications. Furthermore, the ability to incorporate transparencies into such structures also holds out the promise of creating multi-functional windows which provide a broad range of capabilities that might include RF antennas and de-icing in addition to transparency. Recent results in this area will be presented.

  18. Protein Multifunctionality: Principles and Mechanisms

    PubMed Central

    Zaretsky, Joseph Z.; Wreschner, Daniel H.

    2008-01-01

    In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins. PMID:21566747

  19. Building Technologies Residential Survey

    SciTech Connect

    Secrest, Thomas J.

    2005-11-07

    Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

  20. Harmful Materials and Residential Demolition

    EPA Pesticide Factsheets

    Certain harmful or problematic materials present in residential buildings may need to be handled differently from general demolition debris. Here is a list of several specific types of materials that may be present in residential buildings.

  1. Multifunctional periodic cellular metals.

    PubMed

    Wadley, Haydn N G

    2006-01-15

    Periodic cellular metals with honeycomb and corrugated topologies are widely used for the cores of light weight sandwich panel structures. Honeycombs have closed cell pores and are well suited for thermal protection while also providing efficient load support. Corrugated core structures provide less efficient and highly anisotropic load support, but enable cross flow heat exchange opportunities because their pores are continuous in one direction. Recent advances in topology design and fabrication have led to the emergence of lattice truss structures with open cell structures. These three classes of periodic cellular metals can now be fabricated from a wide variety of structural alloys. Many topologies are found to provide adequate stiffness and strength for structural load support when configured as the cores of sandwich panels. Sandwich panels with core relative densities of 2-10% and cell sizes in the millimetre range are being assessed for use as multifunctional structures. The open, three-dimensional interconnected pore networks of lattice truss topologies provide opportunities for simultaneously supporting high stresses while also enabling cross flow heat exchange. These highly compressible structures also provide opportunities for the mitigation of high intensity dynamic loads created by impacts and shock waves in air or water. By filling the voids with polymers and hard ceramics, these structures have also been found to offer significant resistance to penetration by projectiles.

  2. Multifunctions of bounded variation

    NASA Astrophysics Data System (ADS)

    Vinter, R. B.

    2016-02-01

    Consider control systems described by a differential equation with a control term or, more generally, by a differential inclusion with velocity set F (t , x). Certain properties of state trajectories can be derived when it is assumed that F (t , x) is merely measurable w.r.t. the time variable t. But sometimes a refined analysis requires the imposition of stronger hypotheses regarding the time dependence. Stronger forms of necessary conditions for minimizing state trajectories can be derived, for example, when F (t , x) is Lipschitz continuous w.r.t. time. It has recently become apparent that significant addition properties of state trajectories can still be derived, when the Lipschitz continuity hypothesis is replaced by the weaker requirement that F (t , x) has bounded variation w.r.t. time. This paper introduces a new concept of multifunctions F (t , x) that have bounded variation w.r.t. time near a given state trajectory, of special relevance to control. We provide an application to sensitivity analysis.

  3. Residential electricity demand in Arkansas

    NASA Astrophysics Data System (ADS)

    Resendez, Ileana M.

    This study analyzes residential electricity demand in Arkansas. Explanatory variables utilized include real per capita income, residential electricity price, heating degree days, cooling degree days, and residential natural gas price. The results indicate that the income effect dominates the substitution effect given a real personal income increase and a decline in real electricity rates in the state of Arkansas during the period under study.

  4. Photovoltaics for residential applications

    SciTech Connect

    Not Available

    1984-02-01

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  5. Residential Wiring. Revised.

    ERIC Educational Resources Information Center

    Taylor, Mark

    This competency-based curriculum guide contains materials for conducting a course in residential wiring. A technically revised edition of the 1978 publication, the guide includes 28 units. Each instructional unit includes some or all of the following basic components: performance objectives, suggested activities for teachers and students,…

  6. Residential Continuing Education.

    ERIC Educational Resources Information Center

    Houle, Cyril O.

    The theme of this discursive essay is residential continuing education: its definition, its development along somewhat different lines in Europe and in America, and its practice in university centers in the United States. Continuing education includes any learning or teaching program that is based on the assumptions that the learners have studied…

  7. Residential Mechanical Precooling

    SciTech Connect

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  8. Solar photovoltaic residential project

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Progress with technology transfer and the performance of photovoltaic power supplies in Northeastern and Southwestern residences are reported. Also, systems operation in Florida and Hawaii are discussed briefly. Technology development in the field of power conditioning and flywheel storage is described. Work on some non-residential field tests is also described. Project management data are summarized.

  9. Residential Solar Systems.

    ERIC Educational Resources Information Center

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  10. Residential Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Taylor, Mark; And Others

    This guide is designed to assist teachers conducting a course to prepare students for entry-level employment in the residential wiring trade. Included in the guide are six instructional units and the following sections of information for teachers: guidelines in using the unit components; academic and workplace skills classifications and…

  11. Enhanced multifunctional paint for detection of radiation

    DOEpatents

    Farmer, Joseph C.; Moses, Edward Ira; Rubenchik, Alexander M.

    2017-03-07

    An enhanced multifunctional paint apparatus, systems, and methods for detecting radiation on a surface include providing scintillation particles; providing an enhance neutron absorptive material; providing a binder; combining the scintillation particles, the enhance neutron absorptive material, and the binder creating a multifunctional paint; applying the multifunctional paint to the surface; and monitoring the surface for detecting radiation.

  12. Terahertz Nanoscience of Multifunctional Materials: Atomistic Exploration

    DTIC Science & Technology

    2014-03-28

    Approved for Public Release; Distribution Unlimited Final report on the project "Terahertz Nanoscience of Multifunctional Materials: Atomistic...non peer-reviewed journals: Final report on the project "Terahertz Nanoscience of Multifunctional Materials: Atomistic Exploration" Report Title In... nanoscience of multifunctional materials: atomistic exploration” PI:Inna Ponomareva We have accomplished the following. 1. We have developed a set of

  13. Multifunctional pattern-generating circuits.

    PubMed

    Briggman, K L; Kristan, W B

    2008-01-01

    The ability of distinct anatomical circuits to generate multiple behavioral patterns is widespread among vertebrate and invertebrate species. These multifunctional neuronal circuits are the result of multistable neural dynamics and modular organization. The evidence suggests multifunctional circuits can be classified by distinct architectures, yet the activity patterns of individual neurons involved in more than one behavior can vary dramatically. Several mechanisms, including sensory input, the parallel activity of projection neurons, neuromodulation, and biomechanics, are responsible for the switching between patterns. Recent advances in both analytical and experimental tools have aided the study of these complex circuits.

  14. Guidelines for residential commissioning

    SciTech Connect

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to

  15. Residential lighting in Lithuania

    SciTech Connect

    Kazakevicius, Eduardas; Gadgil, Ashok; Vorsatz, Diana

    1998-09-01

    A wider use of compact fluorescent lamps (CFLs) offers a significant opportunity for Lithuania in reducing wasteful electricity consumption, and making progress towards retiring the Chernobyl-type Ignalina nuclear power reactors. The authors evaluate the conservation potential of compact fluorescent lamps for managing the residential electrical energy demand in Lithuania. The analysis is undertaken from the three-separate perspectives of (1) the national economy, (2) the consumers and (3) the utilities. In their analysis they use the most recent available data on Lithuanian residential lighting. The costs of conserved energy of 15 and 23 W CFLs range from $0.007 to 0.031 per kW-h depending on CFL price and assuming 4-hour daily lamp use. Replacing only the two most used 60 W incandescent lamps per household with CFLs would save 190 GW-h of electrical energy for Lithuania annually worth 12 million US dollars at the long run2048ginal cost. The authors compare the current residential lighting situation in Lithuania with that in Hungary and Poland, where introduction of CFLs has been much more successful. They then discuss factors that could explain the much higher CFL penetration in Hungary and Poland, barriers to immediate large-scale introduction of CFLs in Lithuania, and policy instruments that could be used for promoting the diffusion of CFLs in the residential sector of Lithuania. They conclude that future success of CFL penetration in Lithuania will depend on aggressive information and promotion efforts by at least the CFL manufacturers, and/or by any of the stakeholder institutions, (e.g., the state agencies responsible for energy and environment, electric utilities, international agencies, etc.).

  16. Detailed residential electric determination

    SciTech Connect

    Not Available

    1984-06-01

    Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

  17. Multi-functional composite structures

    SciTech Connect

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  18. Multi-functional composite structures

    DOEpatents

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2010-04-27

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  19. Large-Scale Residential Demolition

    EPA Pesticide Factsheets

    The EPA provides resources for handling residential demolitions or renovations. This includes planning, handling harmful materials, recycling, funding, compliance assistance, good practices and regulations.

  20. Re-thinking residential mobility

    PubMed Central

    van Ham, Maarten; Findlay, Allan M.

    2015-01-01

    While researchers are increasingly re-conceptualizing international migration, far less attention has been devoted to re-thinking short-distance residential mobility and immobility. In this paper we harness the life course approach to propose a new conceptual framework for residential mobility research. We contend that residential mobility and immobility should be re-conceptualized as relational practices that link lives through time and space while connecting people to structural conditions. Re-thinking and re-assessing residential mobility by exploiting new developments in longitudinal analysis will allow geographers to understand, critique and address pressing societal challenges. PMID:27330243

  1. Experiential Education, Outdoor Adventure As a Modality in Youth Care and Residential Treatment. A Survey of Programs, Principles, Research and Practice on the European Continent, Especially the Netherlands.

    ERIC Educational Resources Information Center

    Duindam, Ton

    Orthopedagogisch Centrum Michiel is a multifunctional institution in the eastern Netherlands for youth with emotional problems. The staff of the institution's residential treatment center has gradually become involved with outdoor experiential education through training programs, conferences, special projects, and supervised programs. Activities…

  2. ASHRAE and residential ventilation

    SciTech Connect

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  3. Multifunctional nanoparticles for cancer immunotherapy

    PubMed Central

    Saleh, Tayebeh; Shojaosadati, Seyed Abbas

    2016-01-01

    ABSTRACT During the last decades significant progress has been made in the field of cancer immunotherapy. However, cancer vaccines have not been successful in clinical trials due to poor immunogenicity of antigen, limitations of safety associated with traditional systemic delivery as well as the complex regulation of the immune system in tumor microenvironment. In recent years, nanotechnology-based delivery systems have attracted great interest in the field of immunotherapy since they provide new opportunities to fight the cancer. In particular, for delivery of cancer vaccines, multifunctional nanoparticles present many advantages such as targeted delivery to immune cells, co-delivery of therapeutic agents, reduced adverse outcomes, blocked immune checkpoint molecules, and amplify immune activation via the use of stimuli-responsive or immunostimulatory materials. In this review article, we highlight recent progress and future promise of multifunctional nanoparticles that have been applied to enhance the efficiency of cancer vaccines. PMID:26901287

  4. Educational Attainment and Residential Location

    ERIC Educational Resources Information Center

    Sander, William

    2006-01-01

    The effects of residential location at age 16 and current residential location on measures of educational attainment are estimated. Particular attention is given to the effects of migration and family background on educational outcomes. It is shown that central cities and suburbs of large metropolitan areas in the United States have significantly…

  5. Education Funding for Residential Facilities.

    ERIC Educational Resources Information Center

    Ohio State Legislative Office of Education Oversight, Columbus.

    About 167 residential facilities in Ohio serve approximately 7,000 youth on any given day. Youth are placed in residential facilities because they have committed a crime or have behavioral problems. An "education provider" operates an on-grounds school in most facilities. Because of ongoing concerns about education funding for youth in…

  6. Multifunctional Information Distribution System (MIDS)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-554 Multifunctional Information Distribution System (MIDS) As of FY 2017 President’s Budget...Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be... selectable levels Multiple selectable levels >=200 with IF for 1000 200 with IF Multiple selectable levels LVT(2) Multiple selectable levels Multiple

  7. Residential Mechanical Precooling

    SciTech Connect

    German, Alea; Hoeschele, Marc

    2014-12-01

    Residential air conditioning (AC) represents a challenging load for many electric utilities with poor load factors. Mechanical precooling improves the load factor by shifting cooling operation from on-peak to off-peak hours. This provides benefits to utilities and the electricity grid, as well as to occupants who can take advantage of time-of-use (TOU) electricity rates. Performance benefits stem from reduced compressor cycling, and shifting condensing unit operation to earlier periods of the day when outdoor temperatures are more favorable to operational efficiency. Finding solutions that save energy and reduce demand on the electricity grid is an important national objective and supports key Building America goals. The Alliance for Residential Building Innovation team evaluated mechanical AC precooling strategies in homes throughout the United States. EnergyPlus modeling was used to evaluate two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes. A successful off-peak AC strategy offers the potential for increased efficiency and improved occupant comfort, and promotes a more reliable and robust electricity grid. Demand response capabilities and further integration with photovoltaic TOU generation patterns provide additional opportunities to flatten loads and optimize grid impacts.

  8. Residential fuel quality

    SciTech Connect

    Santa, T.

    1997-09-01

    This report details progress made in improving the performance of No. 2 heating oil in residential applications. Previous research in this area is documented in papers published in the Brookhaven Oil Heat Technology Conference Proceedings in 1993, 1994 and 1996. By way of review we have investigated a number of variables in the search for improved fuel system performance. These include the effect of various additives designed to address stability, dispersion, biotics, corrosion and reaction with metals. We have also investigated delivery methods, filtration, piping arrangements and the influence of storage tank size and location. As a result of this work Santa Fuel Inc. in conjunction with Mobile Oil Corporation have identified an additive package which shows strong evidence of dramatically reducing the occurrence of fuel system failures in residential oil burners. In a broad market roll-out of the additized product we have experienced a 29% reduction in fuel related service calls when comparing the 5 months ending January 1997 to the same period ending January 1996.

  9. Multifunctional shape-memory polymers.

    PubMed

    Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas

    2010-08-17

    The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.

  10. National Residential Efficiency Measures Database

    DOE Data Explorer

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  11. Advancing Residential Energy Retrofits

    SciTech Connect

    Jackson, Roderick K; Boudreaux, Philip R; Kim, Eyu-Jin; Roberts, Sydney

    2012-01-01

    To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

  12. College residential sleep environment.

    PubMed

    Sexton-Radek, Kathy; Hartley, Andrew

    2013-12-01

    College students regularly report increased sleep disturbances as well as concomitant reductions in performance (e.g., academic grades) upon entering college. Sleep hygiene refers to healthy sleep practices that are commonly used as first interventions in sleep disturbances. One widely used practice of this sort involves arranging the sleep environment to minimize disturbances from excessive noise and light at bedtime. Communal sleep situations such as those in college residence halls do not easily support this intervention. Following several focus groups, a questionnaire was designed to gather self-reported information on sleep disturbances in a college population. The present study used The Young Adult Sleep Environment Inventory (YASEI) and sleep logs to investigate the sleep environment of college students living in residential halls. A summary of responses indicated that noise and light are significant sleep disturbances in these environments. Recommendations are presented related to these findings.

  13. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  14. Locally rare species influence grassland ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-05-19

    Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.

  15. Generic Automated Multi-function Finger Design

    NASA Astrophysics Data System (ADS)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  16. Residential Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  17. Phototriggered multifunctional drug delivery device

    NASA Astrophysics Data System (ADS)

    Härtner, S.; Kim, H.-C.; Hampp, N.

    2006-02-01

    Although phototriggered cleavage of chemical bonds induced by single-photon or two-photon-absorption provides attractive tools for controlled drug delivery, the choice of drugs is still limited by the linker system to which the therapeutic molecules need to be bound covalently. The use of a multifunctional linker system suitable for coupling a broad spectrum of drugs to the polymeric carrier will open a new field for drug delivery. We have developed a novel photocleavable multifunctional linker system based on coumarin dimers, whose unique photochemical behavior are well characterized. As a first example, an acrylic polymer-drug conjugate with antimetabolites is explored. The cleavage of the link between the drug and the polymer backbone is triggered by both single- as well as two-photon absorption. The release of the drug is investigated. It is possible to manufacture a polymeric drug delivery device with several drugs in different areas. In particular the two-photon-absorption induced process offers the possibility to address the drug of interest owing to the superior spatial resolution. The key to such devices is a versatile linker-system which can be adopted to work with various drug compounds.

  18. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  19. Bi- or multifunctional peptide drugs

    PubMed Central

    Schiller, Peter W.

    2009-01-01

    Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called “bivalent” ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt1[DALDA] with triple action as a μ opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed μ opioid agonist/δ opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a μ opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented. PMID:19285088

  20. Global residential appliance standards

    SciTech Connect

    Turiel, I.; McMahon, J.E. ); Lebot, B. )

    1993-03-01

    In most countries, residential electricity consumption typically ranges from 20% to 40% of total electricity consumption. This energy is used for heating, cooling, refrigeration and other end-uses. Significant energy savings are possible if new appliance purchases are for models with higher efficiency than that of existing models. There are several ways to ensure or encourage such an outcome, for example, appliance rebates, innovative procurement, and minimum efficiency standards. This paper focuses on the latter approach. At the present time, the US is the only country with comprehensive appliance energy efficiency standards. However, many other countries, such as Australia, Canada, the European Community (EC), Japan and Korea, are considering enacting standards. The greatest potential impact of minimum efficiency standards for appliances is in the developing countries (e.g., China and India), where saturations of household appliances are relatively low but growing rapidly. This paper discusses the potential savings that could be achieved from global appliance efficiency standards for refrigerators and freezers. It also could be achieved from global appliance efficiency standards for refrigerators and freezers. It also discusses the impediments to establishing common standards for certain appliance types, such as differing test procedures, characteristics, and fuel prices. A methodology for establishing global efficiency standards for refrigerators and freezers is described.

  1. Residential Transactive Control Demonstration

    SciTech Connect

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  2. CCD Multi-Function Processor Test Bed.

    DTIC Science & Technology

    1982-01-01

    AD-A111 335 MITRE CORP BEDFORDMA F/6 9/5 CCD MULTIFUNCTION PROCESSOR TEST BED.(U) JAN 82 M W PACZAN. S M WALOSTEIN F19628-81-C-OO01 UNCLASSIFIED MTR...HAIAf III 4 ESD-TR-81-394 MTR-8417 CCD MULTI-FUNCTION PROCESSOR TEST BED By M. W. Paczan and S. M. Waldstein JANUARY 1982 Prepared for DEPUTY FOR...TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED CCD MULTI-FUNCTION PROCESSOR TEST BED 6. PERFORMING ORG. REPORT NUMBER MTR-8417 7 AUT-OR(s) S

  3. Multifunctionalities driven by ferroic domains

    SciTech Connect

    Yang, J. C.; Huang, Y. L.; Chu, Y. H.; He, Q.

    2014-08-14

    Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.

  4. Synthetic approaches to multifunctional indenes

    PubMed Central

    López-Pérez, Sara; Dinarès, Immaculada

    2011-01-01

    Summary The synthesis of multifunctional indenes with at least two different functional groups has not yet been extensively explored. Among the plausible synthetic routes to 3,5-disubstituted indenes bearing two different functional groups, such as the [3-(aminoethyl)inden-5-yl)]amines, a reasonable pathway involves the (5-nitro-3-indenyl)acetamides as key intermediates. Although several multistep synthetic approaches can be applied to obtain these advanced intermediates, we describe herein their preparation by an aldol-type reaction between 5-nitroindan-1-ones and the lithium salt of N,N-disubstituted acetamides, followed immediately by dehydration with acid. This classical condensation process, which is neither simple nor trivial despite its apparent directness, permits an efficient entry to a variety of indene-based molecular modules, which could be adapted to a range of functionalized indanones. PMID:22238553

  5. Toward multifunctional "clickable" diamond nanoparticles.

    PubMed

    Khanal, Manakamana; Turcheniuk, Volodymyr; Barras, Alexandre; Rosay, Elodie; Bande, Omprakash; Siriwardena, Aloysius; Zaitsev, Vladimir; Pan, Guo-Hui; Boukherroub, Rabah; Szunerits, Sabine

    2015-04-07

    Nanodiamonds (NDs) are among the most promising new carbon based materials for biomedical applications, and the simultaneous integration of various functions onto NDs is an urgent necessity. A multifunctional nanodiamond based formulation is proposed here. Our strategy relies on orthogonal surface modification using different dopamine anchors. NDs simultaneously functionalized with triethylene glycol (EG) and azide (-N3) functions were fabricated through a stoichiometrically controlled integration of the dopamine ligands onto the surface of hydroxylated NDs. The presence of EG functionalities rendered NDs soluble in water and biological media, while the -N3 group allowed postsynthetic modification of the NDs using "click" chemistry. As a proof of principle, alkynyl terminated di(amido amine) ligands were linked to these ND particles.

  6. Multifunctional composites for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  7. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-28

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

  8. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  9. Microbial diversity drives multifunctionality in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  10. Multifunctional Nanotherapeutic System for Advanced Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    therapy for drug resistant prostate cancer cells. In addition the findings from this study can be extended to the combinatorial therapy involving...AD_________________ Award Number: W81XWH-11-1-0571 TITLE: “Multifunctional Nanotherapeutic System for Advanced Prostate Cancer ...29September2013 4. TITLE AND SUBTITLE Multifunctional Nanotherapeutic System for Advanced Prostate Cancer 5a. CONTRACT NUMBER W81XWH-11-1-0571 5b

  11. Multifunctional magnetic quantum dots for cancer theranostics.

    PubMed

    Singh, Surinder P

    2011-02-01

    The development of an innovative platform for cancer theranostics that will be capable of noninvasive imaging and treatment of cancerous tumors using biocompatible and multifunctional Fe3O4-ZnO core-shell magnetic quantum dots (M-QDs) is being explored. This multi-functional approach will facilitate deep tumor targeting using a combination of a specific cancer marker and an external magnetic field will simultaneously provide therapy that may evolve as a new paradigm in cancer theranostics.

  12. Active Structural Fibers for Multifunctional Composite Materials

    DTIC Science & Technology

    2014-05-06

    1. Lin, Y., Zhi, Z. and Sodano, 2012, “Barium Titanate and Barium Strontium Titanate Coated Carbon Fibers for Multifunctional Structural Capacitors...Multifunctional Structural Capacitors Consisting of Barium Titanate and Barium Strontium Titanate Coated Carbon Fibers, 18 th International Conference on... Strontium Titanate Coated SiC Fibers,” Electronic Materials and Applications 2011, Jan. 19 th –21 st Orlando, FL (Invited). 9. Lin, Y., Shaffer

  13. Redefining Residential: Integrating Evidence-Based Practices

    ERIC Educational Resources Information Center

    Residential Treatment for Children & Youth, 2009

    2009-01-01

    This is the fifth in a series of papers being issued by the American Association of Children's Residential Centers (AACRC) regarding key program and policy issues facing the field of residential treatment. AACRC is the longest standing national association focused exclusively on the needs of children who require residential treatment and their…

  14. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  15. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  16. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  17. 5 CFR 1655.20 - Residential loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Residential loans. 1655.20 Section 1655.20 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD LOAN PROGRAM § 1655.20 Residential loans. (a) A residential loan will be made only for the purchase or construction of the...

  18. 5 CFR 1655.20 - Residential loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Residential loans. 1655.20 Section 1655.20 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD LOAN PROGRAM § 1655.20 Residential loans. (a) A residential loan will be made only for the purchase or construction of the...

  19. Assessing the Effectiveness of Residential Adult Education.

    ERIC Educational Resources Information Center

    Kafka, James J.; Griffith, William S.

    1984-01-01

    This study was conducted to investigate the aspects of residential adult education that might account for differences among the participants in residential programs. An analysis of the claims advanced by advocates of residential adult education led to the identification of three factors that appeared to account for the alleged superiority of this…

  20. Residential solar-heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  1. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  2. Multifunctional nanorods for gene delivery

    NASA Astrophysics Data System (ADS)

    Salem, Aliasger K.; Searson, Peter C.; Leong, Kam W.

    2003-10-01

    The goal of gene therapy is to introduce foreign genes into somatic cells to supplement defective genes or provide additional biological functions, and can be achieved using either viral or synthetic non-viral delivery systems. Compared with viral vectors, synthetic gene-delivery systems, such as liposomes and polymers, offer several advantages including ease of production and reduced risk of cytotoxicity and immunogenicity, but their use has been limited by the relatively low transfection efficiency. This problem mainly stems from the difficulty in controlling their properties at the nanoscale. Synthetic inorganic gene carriers have received limited attention in the gene-therapy community, the only notable example being gold nanoparticles with surface-immobilized DNA applied to intradermal genetic immunization by particle bombardment. Here we present a non-viral gene-delivery system based on multisegment bimetallic nanorods that can simultaneously bind compacted DNA plasmids and targeting ligands in a spatially defined manner. This approach allows precise control of composition, size and multifunctionality of the gene-delivery system. Transfection experiments performed in vitro and in vivo provide promising results that suggest potential in genetic vaccination applications.

  3. EHF multifunction phased array antenna

    NASA Astrophysics Data System (ADS)

    Solbach, Klaus

    1986-07-01

    The design of a low cost demonstration EHF multifunction-phased array antenna is described. Both, the radiating elements and the phase-shifter circuits are realized on microstrip substrate material in order to allow photolithographic batch fabrication. Self-encapsulated beam-lead PIN-diodes are employed as the electronic switch elements to avoid expensive hermetic encapsulation of the semiconductors or complete circuits. A space-feed using a horn-radiator to illuminate the array from the front-side is found to be the simplest and most inexpensive feed. The phased array antenna thus operates as a reflect-array, the antenna elements employed in a dual role for the collection of energy from the feed-horn and for the re-radiation of the phase-shifted waves (in transmit-mode). The antenna is divided into modules containing the radiator/phase-shifter plate plus drive- and BITE-circuitry at the back. Both drive- and BITE-components use gate-array integrated circuits especially designed for the purpose. Several bus-systems are used to supply bias and logical data flows to the modules. The beam-steering unit utilizes several signal processors and high-speed discrete adder circuits to combine the pointing, frequency and beam-shape information from the radar system computer with the stored phase-shift codes for the array elements. Since space, weight and power consumption are prime considerations only the most advanced technology is used in the design of both the microwave and the digital/drive circuitry.

  4. Multifunctional nanocomposite foams for space applications

    NASA Astrophysics Data System (ADS)

    Rollins, Diandra J.

    Materials combined with a small amount of nanoparticles offer new possibilities in the synthesizing of multifunctional materials. Graphene nanoplatelets (GnP) are multifunctional nanoreinforcing agents consisting of stacks of graphene sheets with comparable properties to a single graphene layer at an overall lower cost in a more robust form. Such particles have been shown to have good thermal, mechanical and electrical properties. In addition, a low density multifunctional nanocomposite foam has the potential for multiple applications and potential use for the aerospace industry. This dissertation investigates two different microporous (foam) polymers that are modified by the addition of GnP to combat this density effect to improve the foam's macroscopic properties Three sizes of GnP with varying aspect ratio were used to improve the polymeric foams' dielectric, electrical and mechanical properties. (Abstract shortened by ProQuest.).

  5. Multifunctional materials for bone cancer treatment

    PubMed Central

    Marques, Catarina; Ferreira, José MF; Andronescu, Ecaterina; Ficai, Denisa; Sonmez, Maria; Ficai, Anton

    2014-01-01

    The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multi-functionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative), cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin), silver nanoparticles, antibiotics (anthracyclines, geldanamycin), and/or analgesics (ibuprofen, fentanyl). The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management) in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies. PMID:24920907

  6. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.

  7. Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures

    DTIC Science & Technology

    2016-01-05

    AFRL-AFOSR-VA-TR-2016-0128 Multifunctional Material Systems for Reconfigurable Antennas Gregory Huff TEXAS ENGINEERING EXPERIMENT STATION COLLEGE...Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures 5a. CONTRACT NUMBER FA9550-12-1-0090 5b. GRANT NUMBER...antenna systems enabled by fluidic dispersions of nanoparticles and multifunctional composites. This final report summarizes major research

  8. Complex Multifunctional Polymer/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Patel, Pritesh; Balasubramaniyam, Gobinath; Chen, Jian

    2009-01-01

    A methodology for developing complex multifunctional materials that consist of or contain polymer/carbon-nanotube composites has been conceived. As used here, "multifunctional" signifies having additional and/or enhanced physical properties that polymers or polymer-matrix composites would not ordinarily be expected to have. Such properties include useful amounts of electrical conductivity, increased thermal conductivity, and/or increased strength. In the present methodology, these properties are imparted to a given composite through the choice and processing of its polymeric and CNT constituents.

  9. Novel hybrid multifunctional magnetoelectric porous composite films

    NASA Astrophysics Data System (ADS)

    Martins, P.; Gonçalves, R.; Lopes, A. C.; Venkata Ramana, E.; Mendiratta, S. K.; Lanceros-Mendez, S.

    2015-12-01

    Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu g-1 and a maximum magnetoelectric coefficient of 9 mV cm-1 Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

  10. Residential mobility, well-being, and mortality.

    PubMed

    Oishi, Shigehiro; Schimmack, Ulrich

    2010-06-01

    We tested the relation between residential mobility and well-being in a sample of 7,108 American adults who were followed for 10 years. The more residential moves participants had experienced as children, the lower the levels of well-being as adults. As predicted, however, the negative association between the number of residential moves and well-being was observed among introverts but not among extraverts. We further demonstrated that the negative association between residential mobility and well-being among introverts was explained by the relative lack of close social relationships. Finally, we found that introverts who had moved frequently as children were more likely to have died during the 10-year follow-up. Among extraverts, childhood residential mobility was unrelated to their mortality risk as adults. These findings indicate that residential moves can be a risk factor for introverts and that extraversion can be an interpersonal resource for social relationships and well-being in mobile societies.

  11. Evaluation of evolving residential electricity tariffs

    SciTech Connect

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  12. Brain and language: evidence for neural multifunctionality.

    PubMed

    Cahana-Amitay, Dalia; Albert, Martin L

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.

  13. Multifunctional lubricant additives and compositions thereof

    SciTech Connect

    Farng, L.O.; Horodysky, A.G.

    1991-03-26

    This paper discusses an antioxidant/ antiwear/extreme pressure/load carrying lubricant composition. It comprises a major proportion of an oil of lubricating viscosity or grease or other solid lubricant prepared therefrom and a minor amount of an ashless multifunctional antioxidant/antiwear/extreme pressure/load carrying additive product comprising a thiophosphate derived from a dihydrocarbyl dithiocarbamate.

  14. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  15. Magnetically Attached Multifunction Maintenance Rover

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  16. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.

  17. Chapter 17: Residential Behavior Protocol

    SciTech Connect

    Stewart, James; Todd, Annika

    2015-01-01

    Residential behavior-based (BB) programs use strategies grounded in the behavioral social sciences to influence household energy use. Strategies may include providing households with real-time or delayed feedback about their energy use; supplying energy-efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5%.

  18. Transport improvement, commuting costs, and residential location

    NASA Technical Reports Server (NTRS)

    Stucker, J. P.

    1973-01-01

    A theoretical framework for evaluating the effects of introducing new transportation on residential travel patterns is presented. Data are based on changes in residential location of urban commuters that alter the mode and length of work trips as well as economic factors.

  19. 5 CFR 1655.20 - Residential loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Residential loans. (a) A residential loan will be made only for the purchase or construction of the primary... primary residence purchased more than 2 years before the date of the loan application. (b) The participant... townhouse, a condominium, a share in a cooperative housing corporation, a mobile home, a boat, or...

  20. 5 CFR 1655.20 - Residential loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Residential loans. (a) A residential loan will be made only for the purchase or construction of the primary... primary residence purchased more than 2 years before the date of the loan application. (b) The participant... townhouse, a condominium, a share in a cooperative housing corporation, a mobile home, a boat, or...

  1. Credit Scores, Race, and Residential Sorting

    ERIC Educational Resources Information Center

    Nelson, Ashlyn Aiko

    2010-01-01

    Credit scores have a profound impact on home purchasing power and mortgage pricing, yet little is known about how credit scores influence households' residential location decisions. This study estimates the effects of credit scores on residential sorting behavior using a novel mortgage industry data set combining household demographic, credit, and…

  2. Creative Permanency Planning: Residential Services for Families.

    ERIC Educational Resources Information Center

    Gibson, David; Noble, Dorinda N.

    1991-01-01

    Describes the Residential Services for Parents program, which provides residential service for single mothers and their families. The program provides a variety of services including help with income, housing, abuse and other family dysfunctions, and prevention of separation. The program is effective in keeping families together. (GH)

  3. Arab American Residential Segregation: Differences in Patterns.

    ERIC Educational Resources Information Center

    Parrillo, Vincent N.

    In order to determine the extent of residential segregation among first or second generation Arabs living in and around Paterson, New Jersey, 286 families were located and interviewed. Field data were combined with statistics from the U.S. Census Bureau Population and Housing Summary Tape File 1-A. It was found that residential segregation was not…

  4. Residential Wood Combustion Emissions and Safety Guidebook.

    ERIC Educational Resources Information Center

    Becker, Mimi, Ed.; Barnett, Lucy, Ed.

    This seven-part guidebook provides information to assist decision makers and other individuals involved in the residential wood energy fuel cycle. It can be used as a tool for designing or implementing programs, strategies, and policies that encourage, prevent, or mitigate safety or air emission related impacts of residential woodburning equipment…

  5. 78 FR 32124 - Community Residential Care

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AFFAIRS 38 CFR Part 17 RIN 2900-AO62 Community Residential Care AGENCY: Department of Veterans Affairs... concerning approval of non-VA community residential care facilities to allow VA to waive such facilities... cannot be corrected, and into more restrictive and/or costly care. In addition, we make a technical...

  6. Determinants of Residential Adult Education Effectiveness.

    ERIC Educational Resources Information Center

    Kafka, James J.

    Advocates of residential education have isolated three determinants of residential adult education effectiveness: isolation from the outside environment; concentration on content; and group support. This study investigated the independent and collective relationships of different levels of these determinants with cognitive gain and posttest…

  7. Residential ventilation standards scoping study

    SciTech Connect

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  8. Residential photovoltaic module and array requirements study

    NASA Technical Reports Server (NTRS)

    Nearhoof, S. L.; Oster, J. R.

    1979-01-01

    Design requirements for photovoltaic modules and arrays used in residential applications were identified. Building codes and referenced standards were reviewed for their applicability to residential photovoltaic array installations. Four installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Installation costs were developed for these mounting types as a function of panel/module size. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. It is concluded that there are no perceived major obstacles to the use of photovoltaic modules in residential arrays. However, there is no applicable building code category for residential photovoltaic modules and arrays and additional work with standards writing organizations is needed to develop residential module and array requirements.

  9. New multifunctional surfactants from natural phenolic acids.

    PubMed

    Centini, Marisanna; Rossato, Maria Sole; Sega, Alessandro; Buonocore, Anna; Stefanoni, Sara; Anselmi, Cecilia

    2012-01-11

    Several new multifunctional molecules derived from natural sources such as amino acids and hydroxycinnamic acids were synthesized. They exhibit various activities such as emulsifying, UV-protecting, and radical scavenging, thereby conforming to the latest requirements for cosmetic ingredients. The synthesis comprises only a few steps: (i) the amino acid, the acid groups of which are protected by esterification, is coupled with ferulic or caffeic acid; (ii) the p-hydroxyl group of the cinnamic derivative reacts with dodecyl bromide in the presence of potassium carbonate (the resulting compounds are highly lipophilic and tested as water/oil (W/O) emulsifiers); (iii) these molecules, by deprotonating the acid groups of the amino acids, with successive salification, are more hydrophilic, with stronger O/W emulsifying properties. The new multifunctional surfactants might prove useful for the treatment of multiple skin conditions, including loss of cellular antioxidants, damage from free radicals, damage from UV, and others.

  10. Emerging Multifunctional Metal-Organic Framework Materials.

    PubMed

    Li, Bin; Wen, Hui-Min; Cui, Yuanjing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2016-10-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.

  11. Multiscale/Multifunctional Probabilistic Composite Fatigue

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A multilevel (multiscale/multifunctional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.

  12. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  13. From polymer latexes to multifunctional liquid marbles.

    PubMed

    Fernandes, Ana M; Mantione, Daniele; Gracia, Raquel; Leiza, Jose R; Paulis, Maria; Mecerreyes, David

    2015-02-25

    A simple method to prepare multifunctional liquid marbles and dry water with magnetic, color, and fluorescent properties is presented. Multifunctional liquid marbles were prepared by encapsulation of water droplets using flocculated polymer latexes. First, the emulsion polymerization reaction of polystyrene and poly(benzyl methacrylate) was carried out using cheap and commercially available cationic surfactants. Subsequently, flocculation of the latex was provoked by an anion-exchange reaction of the cationic surfactant by the addition of lithium bis(trifluoromethanesulfonyl)imide salt. The flocculated polymer latex was filtered and dried, leading to very hydrophobic micronanoparticulated powders. These powders showed a great ability to stabilize the air/water interface. Stable liquid marbles were obtained by rolling water droplets onto the hydrophobic powders previously prepared. The use of very small polystyrene nanoparticles led us to the preparation of very stable and the biggest known liquid marbles up to 2.5 mL of water. Furthermore, the introduction of fluorescent comonomer dyes into the polymer powders allowed us to obtain new morphological images and new knowledge about the structure of liquid marbles by confocal microscopy. Furthermore, the introduction of magnetic nanoparticles into the polymer latex led to magnetic responsive liquid marbles, where the iron oxide nanoparticles are protected within a polymer. Altogether this method represents an accessible and general platform for the preparation of multifunctional liquid marbles and dry water, which may contribute to extending of their actual range of applications.

  14. Brain and Language: Evidence for Neural Multifunctionality

    PubMed Central

    Cahana-Amitay, Dalia; Albert, Martin L.

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term “neural multifunctionality” refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging. PMID:25009368

  15. Thick-walled carbon composite multifunctional structures

    NASA Astrophysics Data System (ADS)

    Haake, John M.; Jacobs, Jack H.; McIlroy, Bruce E.

    1997-06-01

    Satellite programs are moving in the direction of smaller and lighter structures. Technological advances have permitted more sophisticated equipment to be consolidated into compact spaces. Micro-satellites, between 10 and 100 kg, will incorporate micro-electric devices into the lay-up of the satellite structure. These structures will be designed to carry load, provide thermal control, enhance damping, and include integrated passive electronics. These multifunctional structures offer lighter weight, reduced volume, and a 'smarter' overall package for incorporation of sensors, electronics, fiber optics, powered appendages or active components. McDonnell Douglas Corporation (MDC) has applied technology from the synthesis and processing of intelligent cost effective structures (SPICES) and independent research and development (IRAD) programs to the modular instrument support system (MISS) for multifunctional space structures and micro-satellites. The SPICES program was funded by the Defense Advanced Research Projects Agency (DARPA) to develop affordable manufacturing processes for smart materials to be used in vibration control, and the MISS program was funded by NASA-Langley. The MISS program was conceived to develop concepts and techniques to make connections between different multifunctional structures. MDA fabricated a trapezoidal carbon composite structure out of IM7/977-3 tape prepreg. Flex circuits, thermal and optical conduits were embedded to realize a utility modular connector. These provide electrical, thermal, optical and mechanical connections between micro- satellite components. A quick disconnect mount was also developed to accommodate a variety of devices such as solar arrays, power sources, thermal transfer and vibration control modules.

  16. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Three basic module design concepts were analyzed with respect to both production and installation costs. The results of this evaluation were used to synthesize a fourth design which incorporates the best features of these initial concepts to produce a module/array design approach which offers the promise of a substantial reduction in the installed cost of a residential array. A unique waterproofing and mounting scheme was used to reduce the cost of installing an integral array while still maintaining a high probability that the installed array will be watertight for the design lifetime of the system. This recommended concept will also permit the array to be mounted as a direct or stand-off installation with no changes to the module design.

  17. Residential solar home resale analysis

    SciTech Connect

    Noll, S.A.

    1980-01-01

    One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

  18. Residential care for the elderly.

    PubMed

    Alber, J

    1992-01-01

    This article maps variations in a standardized way in residential care for elderly people in three Western nations. Measured by the number of available places per person aged sixty-five and over and by the number of staff members per bed in nursing homes, the United Kingdom has the most highly developed standards. The United States ranks second, with Germany lagging considerably behind. The variations are explained by four variables: the pressure of the problem, as defined by the percentage of the population aged sixty-five and over; the caretaker potential in the family system, which alleviates this pressure; the structure and financing of the supply of residential care; and decision-making procedures in health care policy-making. My analysis emphasizes the last two variables. In the United Kingdom and the United States, the public and private providers who supply care have either political or market incentives to expand their services. Germany's mix of public and private, by contrast, is dominated by voluntary associations that are neither responsible to an electorate nor allowed to make profits. Thus, their clients do not have opportunities to articulate their needs. Health care decision making in Germany takes place through a collective bargaining process between the sickness funds and the providers. In such a system, the interests of groups who are not represented at the negotiation table--such as the elderly--tend to be neglected. A national health system of the British type links political decision makers via the election mechanism more closely to the concerns of the public. As older people represent growing proportions of the electorate, their needs find more adequate consideration in the policy process. In the United States, political officeholders also have to pay attention to the needs of increasingly organized older people, since the tax-financed and federally regulated Medicaid system is largely responsible for financing long-term care for the elderly.

  19. 12 CFR 541.23 - Residential real estate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Residential real estate. 541.23 Section 541.23... AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.23 Residential real estate. The terms residential real estate... home used in part for business); (c) Other real estate used for primarily residential purposes...

  20. 12 CFR 541.16 - Improved residential real estate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Improved residential real estate. 541.16... REGULATIONS AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.16 Improved residential real estate. The term improved residential real estate means residential real estate containing offsite or other...

  1. Impact of improved building thermal efficiency on residential energy demand

    SciTech Connect

    Adams, R.C.; Rockwood, A.D.

    1983-04-01

    The impact of improved building shell thermal efficiency on residential energy demand is explored in a theoretical framework. The important economic literature on estimating the price elasticity of residential energy demand is reviewed. The specification of the residential energy demand model is presented. The data used are described. The empirical estimation of the residential energy demand model is described. (MHR)

  2. Forecasting residential electricity demand in provincial China.

    PubMed

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  3. Experiments in International Residential Adult Education

    ERIC Educational Resources Information Center

    Schacht, Robert H.

    1970-01-01

    The University of Wisconsin has offered summer residential seminars for adults in North America and Europe--in Ireland, England, and Scotland; in The Netherlands, Scandinavia, and West Germany; and in Greece, Romania, and Yugoslavia. (EB)

  4. Photovoltaic Residential Applications Program Implementation Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.

    1980-01-01

    Two major aspects of the workshop are presented: (1) presentations on the Photovoltaic program and the National Solar Heating and Cooling Demonstration program, and (2) discussions on the issues pertinent to the Residential Application program.

  5. Community Services and Residential Institutions for Children

    ERIC Educational Resources Information Center

    Gula, Martin

    1974-01-01

    Describes constructive "deinstitutionalization", the movement away from the establishment of large, custodial public residential institutions for dependent, delinquent, retarded or emotionally disturbed children, to more decentralized, informal community services. (CS)

  6. Development of Residential SOFC Cogeneration System

    NASA Astrophysics Data System (ADS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  7. Chamberless residential warm air furnace design

    SciTech Connect

    Godfree, J.

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  8. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  9. Solar residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    Melton, D. E.; Humphries, W. R.

    1975-01-01

    System has been placed in operation to verify technical feasibility of using solar energy to provide residential heating and cooling. Complete system analysis was performed to provide design information.

  10. RACIAL RESIDENTIAL SEGREGATION AND ADVERSE BIRTH OUTCOMES

    EPA Science Inventory

    INTRODUCTION. The disparity between black and white women's adverse birth outcomes has been subject to much investigation, yet the factors underlying its persistence remain elusive, which has encouraged research on neighborhood-level influences, including racial residential segr...

  11. Residential construction code impacts on radon

    SciTech Connect

    Galbraith, S.; Brennan, T.; Osborne, M.C.

    1988-04-01

    The paper discusses residential construction-code impacts on radon. It references existing residential construction codes that pertain to the elements of construction that impact either the ability to seal radon out of houses or the ability to achieve good soil ventilation for radon control. Several inconsistencies in the codes that will impact radon resistant construction are identified. Resolution of these resulting radon issues is necessary before specification-style building codes can be developed to achieve radon-resistant construction.

  12. Residential market transformation: National and regional indicators

    SciTech Connect

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  13. Multifunctional integration: from biological to bio-inspired materials.

    PubMed

    Liu, Kesong; Jiang, Lei

    2011-09-27

    Nature is a school for human beings. Learning from nature has long been a source of bioinspiration for scientists and engineers. Multiscale structures are characteristic for biological materials, exhibiting inherent multifunctional integration. Optimized biological solutions provide inspiration for scientists and engineers to design and to fabricate multiscale structured materials for multifunctional integration.

  14. Multifunctional Flexible Composites Based on Continuous Carbon Nanotube Fiber

    DTIC Science & Technology

    2014-07-28

    applications in various fields . In this program, we systematically studied the tensile strength, compressive strength, microstructure, torsional ...of multifunctional applications in various fields . With the support of the Project “Multifunctional Flexible Composites Based on Continuous Carbon...techniques, including the tensile strength, compressive strength, microstructure evolution, torsional behavior, electromechanical response, failure

  15. Multifunctional Ultra-Light Mg-Li Alloy Nanocomposites

    DTIC Science & Technology

    2012-08-20

    Nanoccomposite Materials for Energy Storage and Multifunctional Applications at TMS, Orlando, FL (2012) (invited) 3. G. Yushin, Nanocomposite Materials for...Lithium and Beyond (invited) 4. G. Yushin, Nanocomposite Carbon-Containing Materials for Energy Storage and Multifunctional Applications , at the... Nanocomposite Materials for Energy Storage Applications , at the 2nd UNIST International Conference, which took place in Ulsan, Korea (2010) (invited

  16. Multifunctional UV (MUV) Coatings and Ce-based Materials

    DTIC Science & Technology

    2008-02-01

    Coat Metallic Substrate Non-Chromate Conversion Coating Multifunctional UV (MUV)- Curable Coating Current 3...Layer, Cr(VI) Based Coating System 2 Layer, UV Curable Coating System With No Cr(VI) and No VOCs Technical Objective Surface Finishing Workshop Feb 08... UV Curable Coatings and Inhibitors Non-Chromate Pretreatments Multifunctional UV (MUV) Coating Conversion Coating Characterization,

  17. Nanodumbbells as multi-functional diagnosis probes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Rauf, Sakandar; Padmanabhan, Harish; Dimitrov, Krassen

    2013-05-01

    In this study, we present a method to generate multi-functional nanometre dumbbell structure, which comprises a cobalt magnetic and a gold nanoparticle bridged by target biomarker. Both cobalt magnetic and gold nanoparticles were successfully modified with two different monoclonal antibodies, which will specifically bind to target antigen. ELISA results confirmed that the activities of those antibodies were not lost due to the conjugation to nanoparticles. The formation of dumbbell structure with the presence of target biomarker molecule was demonstrated via scanning electron microscope. The success of this study allows us to apply this featured dumbbell structure into a nanoelectrode device for digital detection of diagnostic biomarker in the next step.

  18. Multifunctional Nanotherapeutic System for Advanced Prostate Cancer

    DTIC Science & Technology

    2012-10-01

    delivery of eIF4E siRNA and DTX using dendrimer as a nanocarrier. To this end the objective of this study is to prepare, characterize and test the...multifunctional delivery system by conjugating DTX to dendrimer and complexing eIF4E siRNA to the resulting conjugate. The DTX- dendrimer conjugate...formed complex with siRNA at 20:1 ratio. The dendrimer - siRNA complex was taken up by the prostate cancer cells while the free siRNA was not taken up by

  19. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites

    SciTech Connect

    Wang, Xin; Yong, Zhenzhong; Li, Qingwen; Bradford, Philip D.; Liu, Wei; Tucker, Dennis S.; Cai, Wei; Wang, Hsin; Yuan, Fuh-Gwo; Zhu, Yuntian

    2012-01-01

    Carbon nanotubes (CNTs) are an order of magnitude stronger than any current engineering fiber. However, for the past two decades it has been a challenge to utilize their reinforcement potential in composites. Here we report CNT composites with unprecedented multifunctionalities, including record high strength (3.8 GPa), Young s modulus (293 GPa), electrical conductivity (1230 S cm-1) and thermal conductivity (41 W m-1 K-1). These superior properties are derived from the long length, high volume fraction, good alignment and reduced waviness of the CNTs, which were produced by a novel processing approach that can be easily scaled up for industrial production.

  20. Requirements for a multifunctional code architecture

    SciTech Connect

    Tiihonen, O.; Juslin, K.

    1997-07-01

    The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results are managed.

  1. Multifunctional 2D- Materials: Selenides and Halides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching Hua; Arnold, Brad; Choa, Fow-Sen; Bohorfous, Sara

    2016-01-01

    Material is the key component and controls the performance of the detectors, devices and sensors. The materials design, processing, growth and fabrication of bulk and nanocrystals and fabrication into devices and sensors involve multidisciplinary team of experts. This places a large burden on the cost of the novel materials development. Due to this reason there is a big thrust for the prediction of multifunctionality of materials before design and development. Up to some extent design can achieve certain properties. In multinary materials processing is also a big factor. In this presentation, examples of two classes of industrially important materials will be described.

  2. Multifunctional epitaxial systems on silicon substrates

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John Thomas; Narayan, Jagdish

    2016-09-01

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO3, SrTiO3 (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called "domain matching epitaxy," is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%-25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation "smart" devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a

  3. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Royal, G. C., III

    1981-01-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  4. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Royal, G. C., III

    1981-04-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  5. The 1986 residential occupant survey

    SciTech Connect

    Ivey, D.L.; Alley, P.K.

    1987-04-01

    In 1986, Pacific Northwest Laboratory developed the Residential Occupant Survey-Spring '86, which was implemented. The overall purpose of the study was to collect demographic, attitudinal, and behavioral data related to the use and conservation of electricity in dwellings participating in the Bonneville Power Administration's End-Use Load and Conservation Assessment Program (ELCAP). Information was collected on the respondents' perceptions of the energy efficiency of their dwelling, temperature the dwelling was kept when people were at home and awake during the last heating season, which rooms, if any, were not heated during the last heating season, number of times the dwelling was unoccupied for at least one week, number of times pets were let out of the dwelling per day, attitudes toward energy use and conservation and several socio-demographic variables such as age, sex, and total household income. The results of the data analyses showed age to be an important factor for reported indoor temperature and perceived energy efficiency of the dwelling. The results also showed that almost 60% of the ELCAP occupants do not heat one or more rooms during the heating season, and almost 45% of the ELCAP dwellings were unoccupied for at least one week during the reporting period. In terms of the reported allocation of household income for household energy expenses, the results showed that the reported dollar amount spent for the expenses remained relatively constant over income levels.

  6. Plant species richness and ecosystem multifunctionality in global drylands.

    PubMed

    Maestre, Fernando T; Quero, José L; Gotelli, Nicholas J; Escudero, Adrián; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A; Cabrera, Omar; Chaieb, Mohamed; Derak, McHich; Eldridge, David J; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Gatica, M Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P; Wang, Deli; Zaady, Eli

    2012-01-13

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  7. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  8. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  9. Differences between Residential and Non-Residential Fathers on Sexual Socialisation of African American Youth

    ERIC Educational Resources Information Center

    Sneed, Carl D.; Willis, Leigh A.

    2016-01-01

    This study investigated differences between residential and non-residential fathers on topics discussed during father-child sex communication and factors associated with child sexual socialisation. Young people (N = 159, 53% female) provided self-reports using computer surveys on the role of their fathers on father-child sex communication, general…

  10. Short-Stay Residential Experience: Residential Work by Secondary School Pupils.

    ERIC Educational Resources Information Center

    Schools Council, London (England).

    Most secondary schools in Great Britain today have implemented residential courses. They have built, bought, or adapted premises ranging from derelict colleges to country houses for use as residential centers where students may spend from a few days to several weeks studying, working, or learning to use leisure time. This publication examines…

  11. Multifunction Habitat Workstation/OLED Development

    NASA Technical Reports Server (NTRS)

    Schumacher, Shawn; Salazar, George; Schmidt, Oron

    2013-01-01

    This paper gives a general outline of both a multifunction habitat workstation and the research put into an Organic Light Emitting Diode (OLED) device. It first covers the tests that the OLED device will go through to become flight ready along with reasoning. Guidelines for building an apparatus to house the display and its components are given next, with the build of such following. The three tests the OLED goes through are presented (EMI, Thermal/Vac, Radiation) along with the data recovered. The second project of a multifunction workstation is then discussed in the same pattern. Reasoning for building such a workstation with telepresence in mind is offered. Build guidelines are presented first, with the build timeline following. Building the workstation will then be shown in great detail along with accompanying photos. Once the workstation has been discussed, the versatility of its functions are given. The paper concludes with future views and concepts that can added when the time or technology presents itself.

  12. Carbon nanotube integrated multifunctional multiscale composites

    NASA Astrophysics Data System (ADS)

    Qiu, Jingjing; Zhang, Chuck; Wang, Ben; Liang, Richard

    2007-07-01

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer composites and enabling functionality, but current manufacturing challenges hinder the realization of their potential. This paper presents a method to fabricate multifunctional multiscale composites through an effective infiltration-based vacuum-assisted resin transfer moulding (VARTM) process. Multi-walled carbon nanotubes (MWNTs) were infused through and between glass-fibre tows along the through-thickness direction. Both pristine and functionalized MWNTs were used in fabricating multiscale glass-fibre-reinforced epoxy composites. It was demonstrated that the mechanical properties of multiscale composites were remarkably enhanced, especially in the functionalized MWNT multiscale composites. With only 1 wt% loading of functionalized MWNTs, tensile strength was increased by 14% and Young's modulus by 20%, in comparison with conventional fibre-reinforced composites. Moreover, the shear strength and short-beam modulus were increased by 5% and 8%, respectively, indicating the improved inter-laminar properties. The strain-stress tests also suggested noticeable enhancement in toughness. Scanning electron microscopy (SEM) characterization confirmed an enhanced interfacial bonding when functionalized MWNTs were integrated into epoxy/glass-fibre composites. The coefficient thermal expansion (CTE) of functionalized nanocomposites indicated a reduction of 25.2% compared with epoxy/glass-fibre composites. The desired improvement of electrical conductivities was also achieved. The multiscale composites indicated a way to leverage the benefits of CNTs and opened up new opportunities for high-performance multifunctional multiscale composites.

  13. Multifunctional Microtubule-Associated Proteins in Plants

    PubMed Central

    Krtková, Jana; Benáková, Martina; Schwarzerová, Kateřina

    2016-01-01

    Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes. PMID:27148302

  14. Designing multifunctional landscapes for forest conservation

    NASA Astrophysics Data System (ADS)

    Santika, Truly; Meijaard, Erik; Wilson, Kerrie A.

    2015-11-01

    A multifunctional landscape approach to forest protection has been advocated for tropical countries. Designing such landscapes necessitates that the role of different land uses in protecting forest be evaluated, along with the spatial interactions between land uses. However, such evaluations have been hindered by a lack of suitable analysis methodologies and data with fine spatial resolution over long time periods. We demonstrate the utility of a matching method with multiple categories to evaluate the role of alternative land uses in protecting forest. We also assessed the impact of land use change trajectories on the rate of deforestation. We employed data from Kalimantan (Indonesian Borneo) at three different time periods during 2000-2012 to illustrate our approach. Four single land uses (protected areas (PA), natural forest logging concessions (LC), timber plantation concessions (TC) and oil-palm plantation concessions (OC)) and two mixed land uses (mixed concessions and the overlap between concessions and PA) were assessed. The rate of deforestation was found to be lowest for PA, followed by LC. Deforestation rates for all land uses tended to be highest for locations that share the characteristics of areas in which TC or OC are located (e.g. degraded areas), suggesting that these areas are inherently more susceptible to deforestation due to foregone opportunities. Our approach provides important insights into how multifunctional landscapes can be designed to enhance the protection of biodiversity.

  15. Multifunctional porous silicon nanoparticles for cancer theranostics.

    PubMed

    Wang, Chang-Fang; Sarparanta, Mirkka P; Mäkilä, Ermei M; Hyvönen, Maija L K; Laakkonen, Pirjo M; Salonen, Jarno J; Hirvonen, Jouni T; Airaksinen, Anu J; Santos, Hélder A

    2015-04-01

    Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.

  16. Multifunctional Energy Storage and Conversion Devices.

    PubMed

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application.

  17. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  18. Multifunctional Carbon Fibre Tapes for Automotive Composites

    NASA Astrophysics Data System (ADS)

    Koncherry, V.; Potluri, P.; Fernando, A.

    2017-04-01

    Cabon fibre composites are used where mechanical performance such as strength, stiffness and impact properties at low density is a critical parameter for engineering applications. Carbon fibre flat tape is one material which is traditionally used to manufacture three-dimensional composites in this area. Modifying the carbon fibre tape to incorporate other functions such as stealth, electromagnetic interference, shielding, de-icing, self-repair, energy storage, allows us to create multi-functional carbon fibre tape. Researchers have been developing such material and the technology for their manufacture in order to produce multifunctional carbon fibre based components more economically and efficiently. This paper presents the manufacturing process of a metallised carbon fibre material for a chopped fibre preforming process that uses electromagnets for preforming instead of traditional suction airflow fibre deposition. In addition, the paper further presents mechanical and magneto-static modelling that is carried out to investigate the bending properties of the material produced and its suitability for creating 3D preforms.

  19. Identification of multifunctional peptides from human milk.

    PubMed

    Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K

    2014-06-01

    Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry.

  20. Multifunctional Carbon Fibre Tapes for Automotive Composites

    NASA Astrophysics Data System (ADS)

    Koncherry, V.; Potluri, P.; Fernando, A.

    2016-11-01

    Cabon fibre composites are used where mechanical performance such as strength, stiffness and impact properties at low density is a critical parameter for engineering applications. Carbon fibre flat tape is one material which is traditionally used to manufacture three-dimensional composites in this area. Modifying the carbon fibre tape to incorporate other functions such as stealth, electromagnetic interference, shielding, de-icing, self-repair, energy storage, allows us to create multi-functional carbon fibre tape. Researchers have been developing such material and the technology for their manufacture in order to produce multifunctional carbon fibre based components more economically and efficiently. This paper presents the manufacturing process of a metallised carbon fibre material for a chopped fibre preforming process that uses electromagnets for preforming instead of traditional suction airflow fibre deposition. In addition, the paper further presents mechanical and magneto-static modelling that is carried out to investigate the bending properties of the material produced and its suitability for creating 3D preforms.

  1. Post-Retrofit Residential Assessments

    SciTech Connect

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be

  2. Communicating with residential electrical devices via a vehicle telematics unit

    DOEpatents

    Roth, Rebecca C.; Pebbles, Paul H.

    2016-11-15

    A method of communicating with residential electrical devices using a vehicle telematics unit includes receiving information identifying a residential electrical device to control; displaying in a vehicle one or more controlled features of the identified residential electrical device; receiving from a vehicle occupant a selection of the displayed controlled features of the residential electrical device; sending an instruction from the vehicle telematics unit to the residential electrical device via a wireless carrier system in response to the received selection; and controlling the residential electrical device using the sent instruction.

  3. Biotic homogenization can decrease landscape-scale forest multifunctionality

    PubMed Central

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952

  4. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    PubMed

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.

  5. 76 FR 76328 - Energy Conservation Program: Enforcement of Regional Standards for Residential Furnaces and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Residential Furnaces and Central Air Conditioners and Heat Pumps AGENCY: Office of Energy Efficiency and... of regional standards for residential furnaces and residential central air conditioners and heat... inform the rulemaking for enforcement of regional energy efficiency standards for residential...

  6. Next-Generation Multifunctional Electrochromic Devices.

    PubMed

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy

  7. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  8. Residential load profiles for photovoltaic simulation studies

    NASA Astrophysics Data System (ADS)

    Rudisill, J. F.; Lathrop, J. W.

    In order to analyze the performance of photovoltaic (PV) systems in residential applications, it is necessary to consider the load characteristics. This paper describes a computer based model which simulates the demand of a 'typical' residential customer. Input parameters allow the model to be customized for different lifestyles and different geographical locations. Previous research has utilized hourly intervals of the time domain, based on utility averages. Since the electrical demand (and solar supply) can change instantaneously, the continuous time feature is necessary in order to accurately analyze the effect of various load management strategies. The residential load was divided into heating-ventilating-air conditioning, water heating, and diversified components. The model incorporates the interactive effects of the three components as well as temporal, meteorological, and geographic effects.

  9. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  10. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  11. Hybrid metamaterials for electrically triggered multifunctional control

    PubMed Central

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-01-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342

  12. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  13. Intelligent multifunction myoelectric control of hand prostheses.

    PubMed

    Light, C M; Chappell, P H; Hudgins, B; Engelhart, K

    2002-01-01

    Intuitive myoelectric prosthesis control is difficult to achieve due to the absence of proprioceptive feedback, which forces the user to monitor grip pressure by visual information. Existing myoelectric hand prostheses form a single degree of freedom pincer motion that inhibits the stable prehension of a range of objects. Multi-axis hands may address this lack of functionality, but as with multifunction devices in general, serve to increase the cognitive burden on the user. Intelligent hierarchical control of multiple degree-of-freedom hand prostheses has been used to reduce the need for visual feedback by automating the grasping process. This paper presents a hybrid controller that has been developed to enable different prehensile functions to be initiated directly from the user's myoelectric signal. A digital signal processor (DSP) regulates the grip pressure of a new six-degree-of-freedom hand prosthesis thereby ensuring secure prehension without continuous visual feedback.

  14. Modeling phase noise in multifunction subassemblies.

    PubMed

    Driscoll, Michael

    2012-03-01

    Obtaining requisite phase noise performance in hardware containing multifunction circuitry requires accurate modeling of the phase noise characteristics of each signal path component, including both absolute (oscillator) and residual (non-oscillator) circuit contributors. This includes prediction of both static and vibration-induced phase noise. The model (usually in spreadsheet form) is refined as critical components are received and evaluated. Additive (KTBF) phase noise data can be reasonably estimated, based on device drive level and noise figure. However, accurate determination of component near-carrier (multiplicative) and vibration-induced noise usually must be determined via measurement. The model should also include the effects of noise introduced by IC voltage regulators and properly discriminate between common versus independent signal path residual noise contributors. The modeling can be easily implemented using a spreadsheet.

  15. Multifunctional carbon nanohorn complexes for cancer treatment.

    PubMed

    Chechetka, Svetlana A; Pichon, Benoit; Zhang, Minfang; Yudasaka, Masako; Bégin-Colin, Sylvie; Bianco, Alberto; Miyako, Eijiro

    2015-01-01

    Multifunctional carbon nanohorn (CNH) complexes were synthesized using oxidized CNH, magnetite (MAG) nanoparticles, and polyethyleneimine (PEI). The ferromagnetic MAG nanoparticles were loaded onto CNH (MAG-CNH) using iron(II) acetate and subsequent heat treatment. Chemical functionalization of the MAG-CNH complexes with PEI improved their water-dispersibility and allowed further conjugation with a fluorophore. The application of an external magnetic field significantly intensified the targeted vectorization of CNH complexes into human cervical cancer (HeLa) cells. Following cell uptake, laser irradiation of the cells showed a significant enhancement in the photothermal effects of CNHs leading to cell death. We have confirmed that the photothermal properties and ferromagnetic characteristics of CNH complexes show efficient cell elimination. The present study is an essential step toward the development of an innovative cancer therapy and a highly sensitive detection of cancer cells at the single-cell level.

  16. On Multifunctional Collaborative Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  17. High Performance Multifunctional Carbon Nanotube Fibers

    NASA Astrophysics Data System (ADS)

    Dalton, Alan; Collins, Steve; Munoz, Edgar; Razal, Joselito; Ebron, Von; Ferraris, John; Baughman, Ray

    2003-03-01

    Exploiting the extraordinary properties of carbon nanotubes has remained somewhat elusive due to the inability to process the as produced insoluble soot into functional macroscopic assemblies. To this end we have developed a simple but effective method to produce continuous, homogeneous fibers containing carbon nanotubes having as-spun mechanical properties that compare very favorably to recognized synthetic and natural "super fibers" such as Kevlar and spider silk. By using novel spinning apparatus, spinning solutions, and spinning coagulants, we have spun nanotube fibers having record lengths, record tensile strengths, and having an energy-to-break (toughness) higher than any material that we have found. As an example of the potential multi-functionalities of our fibers, we have fabricated fiber supercapacitors, which we weave into textiles.

  18. Multiscale Multifunctional Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  19. Hybrid metamaterials for electrically triggered multifunctional control

    NASA Astrophysics Data System (ADS)

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-10-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems.

  20. A multifunctional rotary photoelectric encoder management system

    NASA Astrophysics Data System (ADS)

    Ye, Zunzhong; Ying, Yibin

    2005-11-01

    The rotary photoelectric encoder can be used in many fields, such as robot research, fruit assembly lines, and so on. If there have many photoelectric encoders in one system, it's difficult to manage them and acquire the right pulse number. So it's important to design a multifunctional management system. It includes a powerful microchip with high processing speed, assuring the acquisition precision of rotary pulse. It uses a special method to judge the rotary direction and will be competent for many occasions which rotary direction changes quickly. Considering encoder data transmission, the management system provides a serial port using RS-485 protocol to transmit current pulse data and rotary direction. It allows linking a maximum of 100 management systems using only two communication lines to up-systems and also configing the encoder counting pattern locally (using the keyboard) or remotely (through the computer).

  1. Nanoporous alumina as templates for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  2. Artificial neural network for multifunctional areas.

    PubMed

    Riccioli, Francesco; El Asmar, Toufic; El Asmar, Jean-Pierre; Fagarazzi, Claudio; Casini, Leonardo

    2016-01-01

    The issues related to the appropriate planning of the territory are particularly pronounced in highly inhabited areas (urban areas), where in addition to protecting the environment, it is important to consider an anthropogenic (urban) development placed in the context of sustainable growth. This work aims at mathematically simulating the changes in the land use, by implementing an artificial neural network (ANN) model. More specifically, it will analyze how the increase of urban areas will develop and whether this development would impact on areas with particular socioeconomic and environmental value, defined as multifunctional areas. The simulation is applied to the Chianti Area, located in the province of Florence, in Italy. Chianti is an area with a unique landscape, and its territorial planning requires a careful examination of the territory in which it is inserted.

  3. 40 CFR 246.201 - Residential materials recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Residential materials recovery. 246... SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201 Residential materials recovery....

  4. 40 CFR 246.201 - Residential materials recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Residential materials recovery. 246... SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures § 246.201 Residential materials recovery....

  5. Indirect Dietary Residential Exposure Assessment Model (IDREAM) Implementation

    EPA Pesticide Factsheets

    The Indirect Dietary Residential Exposure Assessment Model (IDREAM) estimates indirect ingestion exposure to disinfectants used in residential settings on hard surfaces where there may be inadvertent transfer to edible items prepared on those surfaces.

  6. PRN 2011-1: Residential Exposure Joint Venture

    EPA Pesticide Factsheets

    This PR Notice is to advise registrants of an industry-wide joint venture, titled the Residential Exposure Joint Venture (REJV), which has developed a national survey regarding residential consumer use/usage data for pesticides.

  7. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  8. Residential design for real life rehabilitation.

    PubMed

    Kiser, Laura; Zasler, Nathan

    2009-01-01

    This article provides readers with a review of the major considerations for designing living environments for persons with neurodisability due to acquired brain injury (ABI). Components that need to be considered in order to assure that the environment is designed with a functional perspective in mind are explored. The issues to be considered herein include the influences of cognition and visual and visuoperceptual, motor, behavioral, and sensory impairment on residential design considerations. Resources for individuals involved in residential design for this special population are also provided to facilitate design decisions and implementation.

  9. MULTIFUNCTIONAL SOLAR ENERGY SYSTEMS RESEARCH PROJECT

    SciTech Connect

    Byard Wood, Lance Seefeldt, Ronald Sims, Bradley Wahlen, and Dan Dye

    2012-06-29

    The solar energy available within the visible portion of the solar spectrum is about 300 W/m2 (43%) and that available in the UV and IR portion is about 400 W/m2 (57%). This provides opportunities for developing integrated energy systems that capture and use specific wavelengths of the solar spectrum for different purposes. For example: biofuels from photosynthetic microbes use only the visible light; solar cells use a narrow band of the solar spectrum that could be either mostly in the visible or in the IR regions of the solar spectrum, depending on the photovoltaic materials, e.g., gallium antimonide (GaSb) cells utilize predominately IR radiation; and finally, solar panels that heat water utilize a broad range of wavelengths (visible plus IR). The basic idea of this research is that sunlight has many possible end-use applications including both direct use and energy conversion schemes; it is technically feasible to develop multifunctional solar energy systems capable of addressing several end-use needs while increasing the overall solar energy utilization efficiency when compared to single-purpose solar technologies. Such a combination of technologies could lead to more cost-competitive ?multifunctional? systems that add value and broaden opportunities for integrated energy systems. The goal of this research is to increase the overall energy efficacy and cost competitiveness of solar systems. The specific objectives of this research were: 1) Evaluate the efficacy of a combined photobioreactor and electric power system; 2) Improve the reliability and cost effectiveness of hybrid solar lighting systems ? a technology in which sunlight is collected and distributed via optical fibers into the interior of a building; 3) Evaluate the efficacy of using filtered light to increase the production of biomass in photobioreactors and provide more solar energy for other uses; 4) Evaluates several concepts for wavelength shifting such that a greater percentage of the solar

  10. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2011-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). By increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate concept MLI blankets for MMOD shields. In conjunction, these MLI blankets and the subsequent MMOD shields were also evaluated for their radiation shielding effectiveness towards protecting crew. These concepts were evaluated against the ISS MLI blankets and the ISS MMOD shield, which acted as the baseline. These radiation shielding assessments were performed using the high charge and energy transport software (HZETRN). This software is based on a one-dimensional formula of the Boltzmann transport equation with a straight-ahead approximation. Each configuration was evaluated against the following environments to provide a diverse view of radiation shielding effectiveness in most space environments within the heliosphere: August 1972 solar particle event, October 1989 solar particle event, 1982 galactic cosmic ray environment (during solar maximum), 1987 galactic cosmic ray environment (during solar minimum), and a low earth orbit environment in 1970 that corresponded to an altitude of 400 km and inclination of 51.6 . Both the absorbed dose and the dose equivalent were analyzed, but the focus of the discussion was on the dose equivalent since the data is most concerned with radiation shielding of the crew. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for

  11. Managing adaptively for multifunctionality in agricultural systems.

    PubMed

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  12. Residential Group Care Quarterly. Volume 6, Number 2, Fall 2005

    ERIC Educational Resources Information Center

    Michael, Jennifer, Ed.

    2005-01-01

    This issue of "Residential Group Care Quarterly" contains the following articles: (1) "CWLA's Position on Residential Care"; (2) "The View of Adolescent Life: Perceptions and Realities" ( Lisa Moore Willis); (3) "Assessing Youth Preferences for Adult Behavior in Residential Care: A Replication" (Jack T. Bowers, III, Robert J. Jones, Gary D.…

  13. 10 CFR 429.20 - Residential clothes washers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential clothes washers. 429.20 Section 429.20 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.20 Residential clothes washers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential...

  14. Residential Group Care Quarterly. Volume 5, Number 3, Winter 2005

    ERIC Educational Resources Information Center

    Michael, Jennifer, Ed.

    2005-01-01

    This issue of "Residential Group Care Quarterly" contains the following articles: (1) "Promising Practices for Adequately Funding and Reimbursing Residential Services" (Lloyd Bullard); (2) "Closing the Gender Gap" (Erin Andersen); (3) "Residential Child Care: Guidelines for Physical Techniques, Crisis Prevention, and Management" (Kurk Lalemand);…

  15. Analysis and design of residential load centers. Volume 2: Appendices

    NASA Astrophysics Data System (ADS)

    Mehalick, E. M.; Lamders, R.; Obrien, G.; Tully, G. F.; Parker, J.

    1982-03-01

    These three appendices present information on residential load center classification information. Emphasis is given to: residential development trends and residential housing classifications; detached house site layout alternatives; and legal and institional issues, including condominium ownership, commercial ownership of photovoltaic systems in mobile homes, and utility ownership of photovoltaic systems.

  16. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  17. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  18. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  19. Ferrite Materials for Advanced Multifunction Microwave Systems Applications

    DTIC Science & Technology

    2006-07-05

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Ferrite Materials for Advanced Multifunction Microwave Systems Applications Award No. (Grant) N00014-03-1-0070 PR...were also used in this work. (200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES Microwave ferrites , yttrium iron garnet, lithium ferrites , hexagonal...Unlimited COVER PAGE FINAL REPORT to the UNITED STATES OFFICE OF NAVAL RESEARCH Ferrite Materials for Advanced Multifunction Microwave Systems

  20. A review of multifunctional structure technology for aerospace applications

    NASA Astrophysics Data System (ADS)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  1. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  2. Residential GSHPs: Efficiency With Short Payback Periods

    SciTech Connect

    Cooperman, Alissa; Dieckmann, John; Brodrick, James

    2012-04-30

    This article discusses ground source heat pumps (GSHPs) for residential application as an alternative to conventional HVAC systems. A listing of current space heating energy sources are presented which are then followed by a technology overview as advances have made GSHPs more efficient. The article concludes with potential energy savings offered by GSHPs and a brief market overview.

  3. Small Child Care Facilities in Residential Areas.

    ERIC Educational Resources Information Center

    Giegerich & Associates, Inc., Rockville, MD.

    One part of a three-part investigation prepared for the Montgomery County Planning Board in Silver Spring, Maryland, this study addresses planning and site planning issues arising from the location of child care facilities in residential settings. The study, which emphasizes homes and centers which care for 7 to 20 children, provides a detailed…

  4. Risk Factors for Rural Residential Fires

    ERIC Educational Resources Information Center

    Allareddy, Veerasathpurush; Peek-Asa, Corinne; Yang, Jingzhen; Zwerling, Craig

    2007-01-01

    Context and Purpose: Rural households report high fire-related mortality and injury rates, but few studies have examined the risk factors for fires. This study aims to identify occupant and household characteristics that are associated with residential fires in a rural cohort. Methods: Of 1,005 households contacted in a single rural county, 691…

  5. Financing Residential Adult and Continuing Education.

    ERIC Educational Resources Information Center

    Pelton, Arthur Elwood

    Using a mailed questionnaire survey of administrators, this dissertation examined sources of income, proposed expenditures, and financial practices in publicly supported college and university residential continuing education centers. Data were gathered, organized, and interpreted in terms of well established principles of educational finance as…

  6. Enhancing Residential Treatment for Drug Court Participants

    ERIC Educational Resources Information Center

    Koob, Jeff; Brocato, Jo; Kleinpeter, Christine

    2011-01-01

    In this study, the authors describe and evaluate the impact of increased access to residential treatment added to traditional drug court services in Orange County, California, with a goal of increasing program retention, successful completion, and graduation rates for a high-risk drug offender population participating in drug court between January…

  7. Songs for Residential Outdoor Education Programs.

    ERIC Educational Resources Information Center

    Wood, Diane, Comp.

    A collection of songs for residential outdoor education programs gives the lyrics to 42 recent and traditonal songs. Recent songs include "Leaving on a Jet Plane,""Blowin' in the Wind,""Country Roads,""Last Thing on My Mind,""City of New Orleans,""Me and Bobby McGee,""Moon…

  8. Guidelines for Transferring Residential Courses into Web

    ERIC Educational Resources Information Center

    Tüzün, Hakan; Çinar, Murat

    2016-01-01

    This study shared unique design experiences by examining the process of transferring residential courses to the Web, and proposed a design model for individuals who want to transfer their courses into this environment. The formative research method was used in the study, and two project teams' processes of putting courses, which were being taught…

  9. A Curriculum for the Residential Educable Child.

    ERIC Educational Resources Information Center

    Southern Wisconsin Colony and Training School, Union Grove.

    Organized so that each teacher may use some latitude in planning teaching approaches, the guide describes the sequential curriculum used with educable mentally retarded children in a residential setting. Arithmetic, language arts, science, and social studies are outlined separately for preprimary, primary, and intermediate levels. Vocational units…

  10. Residential and Light Commercial HVAC. Teacher Edition.

    ERIC Educational Resources Information Center

    Stephenson, David; Fulkerson, Dan, Ed.

    This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…

  11. Residential Carpentry Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for nine occupations in the residential carpentry series. Each occupation is divided into a number of duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular duty has been taught and to…

  12. Current Research Trends in Residential Life.

    ERIC Educational Resources Information Center

    Ware, Thomas E., Jr.; Miller, Michael T.

    This paper reviews the literature on the role that campus residential life plays in the life of college students. While some researchers have concluded that living on-campus or off-campus has little affect on student academic achievement (Bliming, 1989; Bowman and Partin, 1993), others have expressed that on-campus living produces students with…

  13. Does Fall History Influence Residential Adjustments?

    ERIC Educational Resources Information Center

    Leland, Natalie; Porell, Frank; Murphy, Susan L.

    2011-01-01

    Purpose of the study: To determine whether reported falls at baseline are associated with an older adult's decision to make a residential adjustment (RA) and the type of adjustment made in the subsequent 2 years. Design and Methods: Observations (n = 25,036) were from the Health and Retirement Study, a nationally representative sample of…

  14. 24 CFR 203.672 - Residential areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES SINGLE FAMILY MORTGAGE INSURANCE Servicing Responsibilities Occupied Conveyance § 203.672 Residential areas. (a... used by persons active in the real estate industry in the affected area. (b) HUD shall establish...

  15. 24 CFR 203.672 - Residential areas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES SINGLE FAMILY MORTGAGE INSURANCE Servicing Responsibilities Occupied Conveyance § 203.672 Residential areas. (a... used by persons active in the real estate industry in the affected area. (b) HUD shall establish...

  16. 34 CFR 300.104 - Residential placement

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Residential placement 300.104 Section 300.104 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN...

  17. Forecasting Residential Solar Photovoltaic Deployment in California

    SciTech Connect

    Dong, Changgui; Sigrin, Benjamin; Brinkman, Gregory

    2016-12-06

    Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast residential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffusion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5-2 GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent ITC extension may increase annual PV installations by 12%-18% (roughly 500 MW, MW) for the California residential sector in 2019-2020. The new NEM policy only has a negligible effect in California due to the relatively small new charges (< 100 MW in 2019-2020). Furthermore, impacts of the VOS compensation scheme ($0.12 per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900-1300 MW) in 2019-2020.

  18. House Work: Jobs in Residential Upkeep

    ERIC Educational Resources Information Center

    Bierer, Amy

    2011-01-01

    For many people, domestic bliss does not involve cleaning, home repairs, or yard work. That doesn't mean that their vision of a happy home involves a dirty, broken-down house with an unkempt yard. It simply means that they prefer to pay others to do the grittier tasks of residential upkeep. And in doing so, they create employment opportunities for…

  19. Procedures for Calculating Residential Dehumidification Loads

    SciTech Connect

    Winkler, Jon; Booten, Chuck

    2016-06-01

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.

  20. Laboratory Performance Testing of Residential Dehumidifiers (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

  1. MODEL FOR INSTANTANEOUS RESIDENTIAL WATER DEMANDS

    EPA Science Inventory

    Residential wateer use is visualized as a customer-server interaction often encountered in queueing theory. Individual customers are assumed to arrive according to a nonhomogeneous Poisson process, then engage water servers for random lengths of time. Busy servers are assumed t...

  2. Distinctively American: The Residential Liberal Arts College.

    ERIC Educational Resources Information Center

    Koblik, Steven, Ed.; Graubard, Stephen R., Ed.

    This book seeks to examine the residential liberal arts colleges as an institution, from its role in the lives of students, to its value as a form of education. It explores the threat faced by liberal arts colleges, as well as the transformative role, but positive and negative, information technology will play in future development and survival.…

  3. A sense of home in residential care.

    PubMed

    Falk, Hanna; Wijk, Helle; Persson, Lars-Olof; Falk, Kristin

    2013-12-01

    Moving into a residential care facility requires a great deal of adjustment to an environment and lifestyle entirely different from that of one's previous life. Attachment to place is believed to help create a sense of home and maintain self-identity, supporting successful adjustment to contingencies of ageing. The purpose of this study was to deepen our understanding of processes and strategies by which older people create a sense of home in residential care. Our findings show that a sense of home in residential care involves strategies related to three dimensions of the environment - attachment to place, to space and attachment beyond the institution - and that the circumstances under which older people manage or fail in creating attachment, consist of psychosocial processes involving both individual and shared attitudes and beliefs. Assuming that attachment is important to human existence regardless of age, attention must be paid to optimize the circumstances under which attachment is created in residential care, and how nursing interventions can help speed up this process due to the frail and vulnerable state of most older residents.

  4. Prototype residential solar-energy system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete solar-energy domestic-hot-water system for single-family residences is described in brochure. It contains data on procurement, installation, operation, and maintainance of system in residential or light commercial buildings. Appendix includes vendor brochures for major system components. Drawings, tables, and graphs complement text.

  5. Residential Schools Offer Students Deaf Culture.

    ERIC Educational Resources Information Center

    Johnston, Edna

    1997-01-01

    Discusses a survey of 115 high school students who are deaf or hard of hearing, which examined the pros and cons of mainstreaming. Results found that center schools offered a stronger representation of deaf culture and that more residential students than mainstream students were satisfied with their school experience overall. (Author/CR)

  6. Development of a Residential Integrated Ventilation Controller

    SciTech Connect

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  7. Electricity: Residential Wiring. Secondary Schools. Curriculum Guide.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This curriculum guide on residential wiring for secondary students is one of six developed for inservice teachers at Marianas High School in Saipan. The guide provides the rationale, description, goals, and objectives of the program; the program of studies and performance objectives by levels; samples of lesson plans for effective delivery of…

  8. Chapter 6: Residential Lighting Evaluation Protocol

    SciTech Connect

    Dimetrosky, Scott; Parkinson, Katie; Lieb, Noah

    2015-02-01

    In recent years, residential lighting has represented a significant share of ratepayer-funded energy-efficiency electricity savings. Utilities have achieved the majority of these savings by promoting the purchase and installation of compact fluorescent lamps (CFLs), both standard 'twister' bulbs and specialty CFLs such as reflectors, A-Lamps, globes, and dimmable lights.

  9. Comparative review of multifunctionality and ecosystem services in sustainable agriculture.

    PubMed

    Huang, Jiao; Tichit, Muriel; Poulot, Monique; Darly, Ségolène; Li, Shuangcheng; Petit, Caroline; Aubry, Christine

    2015-02-01

    Two scientific communities with broad interest in sustainable agriculture independently focus on multifunctional agriculture or ecosystem services. These communities have limited interaction and exchange, and each group faces research challenges according to independently operating paradigms. This paper presents a comparative review of published research in multifunctional agriculture and ecosystem services. The motivation for this work is to improve communication, integrate experimental approaches, and propose areas of consensus and dialog for the two communities. This extensive analysis of publication trends, ideologies, and approaches enables formulation of four main conclusions. First, the two communities are closely related through their use of the term "function." However, multifunctional agriculture considers functions as agricultural activity outputs and prefers farm-centred approaches, whereas ecosystem services considers ecosystem functions in the provision of services and prefers service-centred approaches. Second, research approaches to common questions in these two communities share some similarities, and there would be great value in integrating these approaches. Third, the two communities have potential for dialog regarding the bundle of ecosystem services and the spectrum of multifunctional agriculture, or regarding land sharing and land sparing. Fourth, we propose an integrated conceptual framework that distinguishes six groups of ecosystem services and disservices in the agricultural landscape, and combines the concepts of multifunctional agriculture and ecosystem services. This integrated framework improves applications of multifunctional agriculture and ecosystem services for operational use. Future research should examine if the framework can be readily adapted for modelling specific problems in agricultural management.

  10. Multifunctional composites: Healing, heating and electromagnetic integration

    NASA Astrophysics Data System (ADS)

    Plaisted, Thomas Anthony John

    2007-12-01

    Multifunctional materials, in the context of this research, integrate other functions into materials that foremost have outstanding structural integrity. Details of the integration of electromagnetic, heating, and healing functionalities into fiber-reinforced polymer composites are presented. As a result of fiber/wire integration through textile braiding and weaving, the dielectric constant of a composite may be tuned from negative to positive values. These wires are further leveraged to uniformly heat the composite through resistive heating. A healing functionality is introduced by utilizing a polymer matrix with the ability to heal internal cracking through thermally-reversible covalent bonds based on Diels-Alder cycloaddition. The Double Cleavage Drilled Compression (DCDC) specimen is applied to study the fracture and healing characteristics of the neat polymer. This method allows for quantitative evaluation of incremental crack growth, and ensures that the cracked sample remains in one piece after the test, improving the ability to re-align the fracture surfaces prior to healing. Initially, the fracture strength of PMMA is studied with various DCDC geometries to develop a model of the propagation of a crack within this type of specimen. Applied to the healable polymer (2MEP4F), repeated fracture-healing cycles demonstrate that treatment at temperatures between 85 to 95°C results in full fracture toughness recovery and no dimensional changes due to creep. The fracture toughness after each fracturing and healing cycle has been calculated, using the model, to yield a fracture toughness of about 0.71 MPa·m1/2 for this material at room temperature. Glass and carbon fiber-reinforced composites have been fabricated with the 2MEP4F polymer, and the ability of this polymer to heal microcracks in fiber-reinforced composites is demonstrated. Microcracks have been introduced into the composites by cryogenic cycling in liquid nitrogen, causing a reduction in the storage

  11. Multifunctional Stiff Carbon Foam Derived from Bread.

    PubMed

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  12. Multifunctional PEGylated nanoclusters for biomedical applications.

    PubMed

    Peng, Erwin; Choo, Eugene Shi Guang; Tan, Cherie Shi Hua; Tang, Xiaosheng; Sheng, Yang; Xue, Junmin

    2013-07-07

    A simple and versatile synthesis method to form water soluble multifunctional nanoclusters using polyethylene glycol (PEG) functionalized poly(maleic anhydride-alt-1-octadecene) amphiphilic brush copolymers (PMAO-g-PEG) was presented. Simply by tuning the core size and the initial nanocrystal concentration, manganese ferrite nanoparticles (MFNPs) were used to demonstrate the versatility of tuning the loading amount of the nanoclusters. The resultant nanoclusters were found to have a well-controlled spherical shape. When Zn-doped AgInS2 quantum dots (AIZS QDs) were loaded together with the MFNP nanocrystals, bi-functional nanoclusters with fluorescent and magnetic behaviors were obtained. Such bi-functional nanoclusters were also successfully demonstrated for cellular bio-imaging. Moreover, the presence of another type of nanocrystals together with MFNPs was found to have a negligible effect on the overall properties of the nanoclusters as demonstrated by the MR relaxivity test. From the time-dependent colloidal stability test, it was found that the presence of the PEG chain grafted onto PMAO was able to reduce protein adsorption onto the nanocluster surface. An in vitro study on NIH/3T3 demonstrated the biocompatibility of the nanoclusters. Such biocompatible and colloidally stable nanoclusters with an approximate size of 80-120 nm were suitable for both MRI and cell labeling applications.

  13. Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.

    PubMed

    Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali

    2016-11-23

    Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.

  14. Development of multifunctional shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Naguib, Hani E.

    2015-05-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials which are able to respond to external stimulus such as temperature and deformation by changing their shape, and return to their original shape upon reversal or removal of the external stimulus. Although SMP materials have been studied extensively and have been used in a wide range of applications such as medicine, aerospace, and robotics, only few studies have looked at the potential of designing multifunctional SMP foams and blends. In this study, we investigate the feasibility of a design of SMP foam materials and blends. The actuator construct will contain a core SMP epoxy and blend of polylactic acid and polyurethane. The effects of the processing parameters of shape memory polymer (SMP) foams on the shape memory effect (SME) were investigated. The solid state foaming technique was employed to obtain the desired foamed cellular structure. One particular point of interest is to understand how the processing parameters affect the SMP and its glass transition temperature (Tg). By correctly tailoring these parameters it is possible to modify the SMP to have an improved shape memory effect SME.

  15. Multifunctional Deployment Hinges Rigidified by Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert; Scarborough, Stephen Emerson

    2005-01-01

    Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.

  16. Multifunctional magnetoelectric materials for device applications

    NASA Astrophysics Data System (ADS)

    Ortega, N.; Kumar, Ashok; Scott, J. F.; Katiyar, Ram S.

    2015-12-01

    Over the past decade magnetoelectric (ME) mutiferroic (MF) materials and their devices are one of the highest priority research topics that has been investigated by the scientific ferroics community to develop the next generation of novel multifunctional materials. These systems show the simultaneous existence of two or more ferroic orders, and cross-coupling between them, such as magnetic spin, polarisation, ferroelastic ordering, and ferrotoroidicity. Based on the type of ordering and coupling, they have drawn increasing interest for a variety of device applications, such as magnetic field sensors, nonvolatile memory elements, ferroelectric photovoltaics, nano-electronics etc. Since single-phase materials exist rarely in nature with strong cross-coupling properties, intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarises the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which the signal to noise ratio is good for device fabrication. We describe the possible applications of these materials.

  17. Angiography with a multifunctional line scanning ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba

    2012-02-01

    A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes.

  18. Service Behavior of Multifunctional Triboelectric Nanogenerators.

    PubMed

    Zhang, Qian; Liang, Qijie; Liao, Qingliang; Yi, Fang; Zheng, Xin; Ma, Mingyuan; Gao, Fangfang; Zhang, Yue

    2017-03-01

    Triboelectric nanogenerators (TENGs) or TENG-based self-charging systems harvesting energy from ambient environment are promising power solution for electronics. The stable running remains a key consideration in view of potential complex application environment. In this work, a textile-based tailorable multifunctional TENG (T-TENG) is developed. The T-TENG is used as self-powered human body motion sensor, water energy harvester, and formed all textile-based flexible self-charging system by integrating with textile-based supercapacitors. The service behavior and the mechanism of performance retention are also studied when the T-TENG is damaged. As a self-powered human body motion sensor, the T-TENG maintains the stable properties when it is cut. As a water energy harvester, the T-TENG is capable of scavenging mechanical energy from water efficiently even if it is damaged partly. Besides, the charge properties of the self-charging system are systematically investigated when the T-TENG is cut. The investigation on service behavior of T-TENG and TENG-based self-charging system pushes forward the development of highly reliable electronics and is a guide for other nanodevices and nanosystems.

  19. Multifunctional brushes made from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cao, Anyuan; Veedu, Vinod P.; Li, Xuesong; Yao, Zhaoling; Ghasemi-Nejhad, Mehrdad N.; Ajayan, Pulickel M.

    2005-07-01

    Brushes are common tools for use in industry and our daily life, performing a variety of tasks such as cleaning, scraping, applying and electrical contacts. Typical materials for constructing brush bristles include animal hairs, synthetic polymer fibres and metal wires (see, for example, ref. 1). The performance of these bristles has been limited by the oxidation and degradation of metal wires, poor strength of natural hairs, and low thermal stability of synthetic fibres. Carbon nanotubes, having a typical one-dimensional nanostructure, have excellent mechanical properties, such as high modulus and strength, high elasticity and resilience, thermal conductivity and large surface area (50-200 m2 g-1). Here we construct multifunctional, conductive brushes with carbon nanotube bristles grafted on fibre handles, and demonstrate their several unique tasks such as cleaning of nanoparticles from narrow spaces, coating of the inside of holes, selective chemical adsorption, and as movable electromechanical brush contacts and switches. The nanotube bristles can also be chemically functionalized for selective removal of heavy metal ions.

  20. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  1. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect

    Charles McCormick; Andrew Lowe

    2007-03-20

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  2. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    NASA Astrophysics Data System (ADS)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  3. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect

    Charles McCormick; Andrew Lowe

    2005-10-15

    Herein we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water-soluble A blocks comprised of N,N-dimethylacrylamide (DMA) and pH-responsive B blocks of N,N-dimethylvinylbenzylamine (DMVBA). To our knowledge, this represents the first example of an acrylamido-styrenic block copolymer prepared directly in homogeneous aqueous solution. The best blocking order (using polyDMA as a macro-CTA) was shown to yield well-defined block copolymers with minimal homopolymer impurity. Reversible aggregation of these block copolymers in aqueous media was studied by {sup 1}H NMR spectroscopy and dynamic light scattering. Finally, an example of core-crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. Our ability to form micelles directly in water that are responsive to pH represents an important milestone in developing ''smart'' multifunctional polymers that have potential for oil mobilization in Enhanced Oil Recovery Processes.

  4. Multifunction multiband airborne radio architecture study

    NASA Astrophysics Data System (ADS)

    Ma, L. N.; Ogi, S. K.; Huang, M. Y.; Bodnar, L. L.; Martin, P.

    1982-01-01

    The demands of modern military avionic communication, radio navigation, and cooperative identification (CNI) equipment has been greatly expanded as the result of the need for antijam (AJ), low probability of intercept (LPI), higher navigation accuracy, and increased volume of information transfer. These demands are verified in programs such as GPS, JTIDS, SEEK TALK, SINCGARS and AFSAT I and II. The cost of this additional capability has severely hampered the ability of the Government to procure new CNI systems and equipment with desired performance capabilities. The problem is further compounded by the lack of available space in the tactical aircraft, the transition of new equipment into the inventory, and the retention of many current systems. The multifunction multiband airborne radio system (MFBARS) program is formulated to explore the feasibility of producing a modern CNI system at an affordable life cycle cost (LCC) and within real estate requirements. A cost effective system approach was developed that revolved around high technology RF-LSI analog components that are in the development stage, high speed digital pre-processor elements and a programmable signal processor all under control of a host processor configuration. This design trades the ultimate gain in volume, weight and life cycle cost against a reasonable risk for the mid 1980's development.

  5. Glyconanoparticles: multifunctional nanomaterials for biomedical applications.

    PubMed

    García, Isabel; Marradi, Marco; Penadés, Soledad

    2010-07-01

    Metal-based glyconanoparticles (GNPs) are biofunctional nanomaterials that combine the unique physical, chemical and optical properties of the metallic nucleus with the characteristics of the carbohydrate coating. The latter characteristics comprise a series of advantages that range from ensuring water solubility, biocompatibility and stability to targeting properties. The selection of suitable carbohydrates for specifically targeting biomarkers opens up the possibility to employ metallic GNPs in diagnostics and/or therapy. Within the vast nanoscience field, this review intends to focus on the advances of multifunctional and multimodal GNPs, which make use of the 'glycocode' to specifically address pathogens or pathological-related biomedical problems. Examples of their potential application in antiadhesion therapy and diagnosis are highlighted. From the ex vivo diagnostic perspective, it can be predicted that GNPs will soon be used clinically. However, the in vivo application of metallic GNPs in humans will probably need more time. In particular, major concerns regarding nanotoxicity need to be exhaustively addressed. However, it is expected that the sugar shell of GNPs will lower the intrinsic toxicity of metal nanoclusters better than other non-natural coatings.

  6. Multifunctional Prenylated Peptides for Live Cell Analysis

    PubMed Central

    Wollack, James W.; Zeliadt, Nicholette A.; Mullen, Daniel G.; Amundson, Gregg; Geier, Suzanne; Falkum, Stacy; Wattenberg, Elizabeth V.; Barany, George; Distefano, Mark D.

    2009-01-01

    Protein prenylation is a common post-translational modification present in eukaryotic cells. Many key proteins involved in signal transduction pathways are prenylated and inhibition of prenylation can be useful as a therapeutic intervention. While significant progress has been made in understanding protein prenylation in vitro, we have been interested in studying this process in living cells, including the question of where prenylated molecules localize. Here, we describe the synthesis and live cell analysis of a series of fluorescently labeled multifunctional peptides, based on the C-terminus of the naturally prenylated protein CDC42. A synthetic route was developed that features a key Acm to Scm protecting group conversion. This strategy was compatible with acid-sensitive isoprenoid moieties, and allowed incorporation of an appropriate fluorophore as well as a cell-penetrating sequence (penetratin). These peptides are able to enter cells through different mechanisms, depending on the presence or absence of the penetratin vehicle and the nature of the prenyl group attached. Interestingly, prenylated peptides lacking penetratin are able to enter cells freely through an energy-independent process, and localize in a perinuclear fashion. This effect extends to a prenylated peptide that includes a full “CAAX box” sequence (specifically, CVLL). Hence, these peptides open the door for studies of protein prenylation in living cells, including enzymatic processing and intracellular peptide trafficking. Moreover, the synthetic strategy developed here should be useful for the assembly of other types of peptides that contain acid sensitive functionalities. PMID:19425596

  7. Counteraction of the multifunctional restriction factor tetherin

    PubMed Central

    Sauter, Daniel

    2014-01-01

    The interferon-inducible restriction factor tetherin (also known as CD317, BST-2 or HM1.24) has emerged as a key component of the antiviral immune response. Initially, tetherin was shown to restrict replication of various enveloped viruses by inhibiting the release of budding virions from infected cells. More recently, it has become clear that tetherin also acts as a pattern recognition receptor inducing NF-κB-dependent proinflammatory gene expression in virus infected cells. Whereas the ability to restrict virion release is highly conserved among mammalian tetherin orthologs and thus probably an ancient function of this protein, innate sensing seems to be an evolutionarily recent activity. The potent and broad antiviral activity of tetherin is reflected by the fact that many viruses evolved means to counteract this restriction factor. A continuous arms race with viruses has apparently driven the evolution of different isoforms of tetherin with different functional properties. Interestingly, tetherin has also been implicated in cellular processes that are unrelated to immunity, such as the organization of the apical actin network and membrane microdomains or stabilization of the Golgi apparatus. In this review, I summarize our current knowledge of the different functions of tetherin and describe the molecular strategies that viruses have evolved to antagonize or evade this multifunctional host restriction factor. PMID:24782851

  8. Surface-modified multifunctional MIP nanoparticles

    PubMed Central

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; de Vargas Sansalvador, Isabel Perez; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2015-01-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly-sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinyl ferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors. PMID:23503559

  9. Dynamic management of integrated residential energy systems

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  10. Panethnicity, Ethnic Diversity and Residential Segregation

    PubMed Central

    Kim, Ann H.; White, Michael J.

    2013-01-01

    We consider the theoretical and empirical implications of the structural basis of panethnicity and of the layering of ethnic boundaries in residential patterns while simultaneously evaluating the ‘panethnic hypothesis’, that is, the extent to which homogeneity within panethnic categories can be assumed. Our results do show a panethnic effect – greater residential proximity is evident within panethnic boundaries than between, net of ethnic group size and metropolitan area, but this association clearly depends on immigration. While findings generally show a lower degree of social distance between panethnic subgroups, particularly for blacks, whites and Latinos and less for Asians, ethno-national groups continue to maintain some degree of distinctiveness within a racialized context. PMID:20503650

  11. Residential independence of elderly immigrants in Canada.

    PubMed

    Lee, Sharon M; Edmonston, Barry

    2014-12-01

    This article addresses three questions: Are elderly immigrants less likely than Canadian-born elderly people to reside independently? What are the effects of economic, cultural, and life course factors on residential independence among elderly immigrants? What are the effects of immigrant-specific characteristics such as duration of residence and cultural background? Descriptive results show that elderly immigrants are less likely to reside independently, but the large gap of over 15 per cent is reduced to 5 per cent once economic, cultural, life course, and other factors are considered in the multivariate analysis. Effects of economic, cultural, and life course factors are mostly as expected, as are those of immigrant-specific characteristics such as duration of residence. Although aging immigrants have more-varied living arrangements than their Canadian-born peers, these are likely to increasingly include residential independence.

  12. MICRO-CHP System for Residential Applications

    SciTech Connect

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  13. [Attachment representation of adolescents in residential care].

    PubMed

    Schleiffer, Roland; Müller, Susanne

    2002-12-01

    In this investigation the attachment representations of adolescents in residential care were examined for the first time. 72 adolescents were interviewed by using the Adult Attachment Interview (AAI). At the same time the degree of adolescent psychopathology was recorded. For this purpose the caregivers completed Achenbach's Child Behavior Checklist (CBCL), the adolescents themselves answered Achenbach's Youth Self Report (YSR). The adolescents in this sample proved to be severely burdened in psychopathological terms. They had access to only an insecure and, in many cases, an extremely insecure attachment representation. For a sub-group of adolescent mothers the early infant-mother attachment was examined using Ainsworth's Strange Situation. The findings show an intergenerational transmission of insecure attachment relationships. The implications of these results for the practice of residential care inspired by attachment theory are discussed.

  14. Development Of Economic Techniques For Residential Thermography

    NASA Astrophysics Data System (ADS)

    Allen, Lee R.; Allen, Sharon

    1983-03-01

    Infrared thermography has proven to be a valuable tool in the detection of heat loss in both commercial and residential buildings. The field of residential thermography has needed a simple method with which to report the deficiencies found during an infrared scan. Two major obstacles hindering the cost effectiveness of residential thermography have been 1) the ability to quickly transport some high resolution imaging system equipment from job site to job site without having to totally dismount the instruments at each area, and 2) the lack of a standard form with which to report the findings of the survey to the customer. Since the industry has yet to provide us with either, we believed it necessary to develop our own. Through trial and error, we have come up with a system that makes interior residential thermography a profitable venture at a price the homeowner can afford. Insulation voids, or defects can be instantly spotted with the use of a thermal imaging system under the proper conditions. A special hand-held device was developed that enables the thermographer to carry the equipment from house to house without the need to dismantle and set up at each stop. All the necessary components are attached for a total weight of about 40 pounds. The findings are then conveyed to a form we have developed. The form is simple enough that the client without special training in thermography can understand. The client is then able to locate the problems and take corrective measures or give it to a con-tractor to do the work.

  15. Evaluation of evolving residential electricity tariffs

    SciTech Connect

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-03-22

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30percent, 100percent, 200percent, and 300percent+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

  16. Accuracy of flow hoods in residential applications

    SciTech Connect

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2002-05-01

    To assess whether houses can meet performance expectations, the new practice of residential commissioning will likely use flow hoods to measure supply and return grille airflows in HVAC systems. Depending on hood accuracy, these measurements can be used to determine if individual rooms receive adequate airflow for heating and cooling, to determine flow imbalances between different building spaces, to estimate total air handler flow and supply/return imbalances, and to assess duct air leakage. This paper discusses these flow hood applications and the accuracy requirements in each case. Laboratory tests of several residential flow hoods showed that these hoods can be inadequate to measure flows in residential systems. Potential errors are about 20% to 30% of measured flow, due to poor calibrations, sensitivity to grille flow non-uniformities, and flow changes from added flow resistance. Active flow hoods equipped with measurement devices that are insensitive to grille airflow patterns have an order of magnitude less error, and are more reliable and consistent in most cases. Our tests also show that current calibration procedures for flow hoods do not account for field application problems. As a result, a new standard for flow hood calibration needs to be developed, along with a new measurement standard to address field use of flow hoods. Lastly, field evaluation of a selection of flow hoods showed that it is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement.

  17. Metal contamination in environmental media in residential ...

    EPA Pesticide Factsheets

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  18. Multifunctional PEGylated nanoclusters for biomedical applications

    NASA Astrophysics Data System (ADS)

    Peng, Erwin; Choo, Eugene Shi Guang; Tan, Cherie Shi Hua; Tang, Xiaosheng; Sheng, Yang; Xue, Junmin

    2013-06-01

    A simple and versatile synthesis method to form water soluble multifunctional nanoclusters using polyethylene glycol (PEG) functionalized poly(maleic anhydride-alt-1-octadecene) amphiphilic brush copolymers (PMAO-g-PEG) was presented. Simply by tuning the core size and the initial nanocrystal concentration, manganese ferrite nanoparticles (MFNPs) were used to demonstrate the versatility of tuning the loading amount of the nanoclusters. The resultant nanoclusters were found to have a well-controlled spherical shape. When Zn-doped AgInS2 quantum dots (AIZS QDs) were loaded together with the MFNP nanocrystals, bi-functional nanoclusters with fluorescent and magnetic behaviors were obtained. Such bi-functional nanoclusters were also successfully demonstrated for cellular bio-imaging. Moreover, the presence of another type of nanocrystals together with MFNPs was found to have a negligible effect on the overall properties of the nanoclusters as demonstrated by the MR relaxivity test. From the time-dependent colloidal stability test, it was found that the presence of the PEG chain grafted onto PMAO was able to reduce protein adsorption onto the nanocluster surface. An in vitro study on NIH/3T3 demonstrated the biocompatibility of the nanoclusters. Such biocompatible and colloidally stable nanoclusters with an approximate size of 80-120 nm were suitable for both MRI and cell labeling applications.A simple and versatile synthesis method to form water soluble multifunctional nanoclusters using polyethylene glycol (PEG) functionalized poly(maleic anhydride-alt-1-octadecene) amphiphilic brush copolymers (PMAO-g-PEG) was presented. Simply by tuning the core size and the initial nanocrystal concentration, manganese ferrite nanoparticles (MFNPs) were used to demonstrate the versatility of tuning the loading amount of the nanoclusters. The resultant nanoclusters were found to have a well-controlled spherical shape. When Zn-doped AgInS2 quantum dots (AIZS QDs) were loaded together

  19. Multi-Function Gas Fired Heat Pump

    SciTech Connect

    Abu-Heiba, Ahmad; Vineyard, Edward Allan

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  20. Residential solar photovoltaic systems: Final report for the Northeast Residential Experiment Station

    SciTech Connect

    Kern, E.C. Jr.

    1986-06-01

    This report covers research and development work conducted by the MIT Energy Lab. from July 1982 through June 1986. This Energy Lab. work in the field of solar photovoltaic systems followed six years of similar work at the MIT Lincoln Lab. under the same contract with the US DOE. The final report from the Lincoln Lab. period was published by Lincoln Lab. in 1983. During the period of Energy Lab. involvement, the project focused on the refinement of residential scale, roof-mounted photovoltaic systems for application in the northeastern US. Concurrent with the conclusion of MIT`s involvement, the New England Electric Co. is building a major field test of residential photovoltaics in Gardner, Massachusetts to determine experimentally the effects of photovoltaics on electric power company operations. Using systems designs and technology developed at MIT, the long-term performance of these thirty residential systems in Gardner will provide a measure of our success.

  1. Residential building code compliance: Implications for evaluating the performance of utility residential new construction programs

    SciTech Connect

    Vine, E.

    1996-05-01

    Knowing how well builders comply with (or exceed) energy-related building codes is critical for completing a sound evaluation of utility residential new construction programs and for determining the actual cost-effectiveness of these programs. Obtaining credit from utility regulators for additional energy savings from code compliance in participant houses as a result of the utility program is one of the key options available for utilities for improving the cost-effectiveness of these programs. In this paper, the authors examine residential building energy code compliance and specific code violations in three states (California, Oregon and Washington). They then compare residential building energy code compliance for program participants and nonparticipants as well as estimates of the energy savings impacts from noncompliance. The authors also point out some of the methodological limitations of these studies which limit the ability to generalize from these studies.

  2. Multifunctional nanostructured materials for multimodal cancer imaging and therapy.

    PubMed

    Liao, Jinfeng; Qi, Tingting; Chu, Bingyang; Peng, Jinrong; Luo, Feng; Qian, Zhiyong

    2014-01-01

    This paper reviews the recent research and development of multifunctional nanostructured materials for multimodal imaging and therapy. The biomedical applications for multifunctional imaging, diagnosis and therapy are discussed for several nanostructured materials such as polymeric nanoparticles, magnetic nanoparticles, gold nanomaterials, carbon materials, quantum dots and silica nanoparticles. Due to the unique features of nanostructured materials including the large surface area, structural diversity, multifunctionality, and long circulation time in blood, these materials have emerged as attractive preferences for optimized therapy. Multimodal imaging can be introduced to nanostructured materials for precise and fast diagnosis of cancer, which overcomes the shortcoming of single-imaging modality. Meanwhile, nanostructured materials can be also used to deliver therapeutic agents to the disease site in order to accomplish multimodal imaging and simultaneous diagnosis and therapy.

  3. Automation of crew procedures using multifunction display and control systems

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Tonkin, M. H.

    1982-01-01

    A multifunction display and control system (MFDCS) design concept has been developed for the Orbiter spacecraft. The system provides for automation of crew procedures, fault prioritization, incorporation of checklists and procedures into the display and control system and system flexibility in response to mission variation, increased experience and advancing display and control technology. Hardware included in the system includes a multifunction keyboard using programmable legend switches, a medium size flat panel display for presentation of alphanumeric information and a color CRT for the display of schematic diagrams. The access schema for the multifunction display and control system preserves the single function capability of the present set of dedicated switches while also providing for automation of many of the checklists and procedures. A basic design feature of the system is the ability to change the relative level of automation and crew interaction without modifying the system hardware or basic software operating system.

  4. Multifunctional nanoparticles for drug delivery and molecular imaging.

    PubMed

    Bao, Gang; Mitragotri, Samir; Tong, Sheng

    2013-01-01

    Recent advances in nanotechnology and growing needs in biomedical applications have driven the development of multifunctional nanoparticles. These nanoparticles, through nanocrystalline synthesis, advanced polymer processing, and coating and functionalization strategies, have the potential to integrate various functionalities, simultaneously providing (a) contrast for different imaging modalities, (b) targeted delivery of drug/gene, and (c) thermal therapies. Although still in its infancy, the field of multifunctional nanoparticles has shown great promise in emerging medical fields such as multimodal imaging, theranostics, and image-guided therapies. In this review, we summarize the techniques used in the synthesis of complex nanostructures, review the major forms of multifunctional nanoparticles that have emerged over the past few years, and provide a perceptual vision of this important field of nanomedicine.

  5. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  6. Material selection for Multi-Function Waste Tank Facility tanks

    SciTech Connect

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P.; Danielson, M.J.; Westerman, R.E.; Divine, J.R.; Foster, G.M.

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  7. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect

    O'Hern, T. J.

    2012-03-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  8. An Assessment of the U.S. Residential Lighting Market

    SciTech Connect

    Jennings, Judy; Brown, Rich; Moezzi, Mithra; Mills, Evan; Sardinsky, Robert

    1995-10-01

    This report provides background data upon which residential lighting fixture energy conservation programs can be built. The current stock of residential lighting is described by usage level, lamp wattage, fixture type, and location within the house. Data are discussed that indicate that 25% of residential fixtures are responsible for 80% of residential lighting energy use, and that justify targeting these fixtures as candidates for retrofit with energy-efficient fixtures. Fixtures determined to have the highest energy use are hardwired ceiling fixtures in kitchens, living/family rooms, dining rooms, and outdoors. An assessment of the market for residential fixtures shows that nearly half of new residential fixtures are imported, 61% of new fixtures sold are hardwired, and about half of all new fixtures sold are for ceiling installation.

  9. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  10. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt; Groten, Will; Judzis, Arvids; Foley, Richard; Smith, Larry; Cross, Will; Vogt, T.

    2011-06-27

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  11. Market and economic analysis of residential photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Tabors, R. D.

    1982-06-01

    The overall structure of a project to evaluate the U.S. residential photovoltaic market or markets is reviewed and experience obtained before cuts in federal funding for the project were reduced is summarized. Topics covered include residential worth analysis, (including retrofit applications); evaluation of presently available regional, econometric models which could be used to project housing stocks; and the analysis of retrofit potential for residential photovoltaic power systems given available roof area.

  12. Three-dimensional multifunctional optical coherence tomography for skin imaging

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  13. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  14. The drivers to adopt renewable energy among residential users.

    NASA Astrophysics Data System (ADS)

    Rahman, Zahari Abdul; Elinda, Esa

    2016-03-01

    This study aims to examine the drivers to adopt renewable energy (RE) among residential users in Malaysia. Based on the theoretical framework of a consumer’s decision making process, an empirical study of the adoption of RE was conducted. A total of 501 residential users were used in this study. This study proved that perceived utility of new technology, perceived utility of new service, and perceived benefit of new technology are the drivers to adopt RE among residential users. These factors are knowing crucial to RE suppliers and producers because it will generates more demand from the residential users and the percentage of energy mix from RE sources can be increase.

  15. Enact legislation supporting residential property assessed clean energy financing (PACE)

    SciTech Connect

    Saha, Devashree

    2012-11-15

    Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nation’s states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nation’s state and metropolitan areas.

  16. Novel Fabrication Strategies for Multifunctional Hydrogel Particles

    NASA Astrophysics Data System (ADS)

    Lewis, Chrisitna L.

    2011-12-01

    Three fabrication strategies for poly (ethylene glycol) (PEG) -based microparticles and their utility for exploiting the advantages of viral nanotemplates and DNA oligonucleotides are presented in this dissertation: 1. Nucleic Acid Hybridization Assembly of Viral Nanotemplates on Microparticles A flow lithography technique known as stop-flow lithography (SFL) was used to fabricate microparticles with discrete regions for sample identification and patterned assembly of functionalized tobacco mosaic virus (TMV) nanotemplates. TMV nanotemplates were programmed with linker DNA, complementary to the probe DNA in the assembly region of the microparticles. The hybridization-based assembly yielded specific, programmable, and spatially selective assembly of TMV nanotemplates on encoded hydrogel microparticles and demonstrates a novel high throughput route to create multiplexed and multifunctional viral-synthetic hybrid microentities. 2. Microparticles Containing Functionalized Viral Nanotemplates Functionalized viral assemblies were uniformly distributed throughout hydrogel microparticles by direct embedding with a microfluidic flow-focusing device and UV photopolymerization. Fluorescence and confocal microscopy images showed uniform distribution of the TMV nanotemplates. Microparticles containing TMV-templated palladium (Pd) nanoparticles exhibited catalytic activity for the dichromate reduction reaction. The results reveal that microparticles provide a stable and simple-to-handle carrier for TMV nanotemplates and address a critical challenge of 3D assembly of functionalized viral hybrid nanomaterials. 3. DNA-Conjugated Microparticles via Replica Molding (RM) DNA-conjugated microparticles were fabricated using a soft-lithographic batch processing-based technique, known as RM. A humidity controlled environment was found to minimize the negative effects of rapid evaporation and ensure uniformity across batch fabricated microparticles. It was also found that PEG

  17. Multi-functional Textiles for Military Applications

    NASA Astrophysics Data System (ADS)

    Malshe, Priyadarshini

    helped create a multi-functional fabric with an anti-bacterial bulk, hydrophilic back surface and repellent front surface for enhanced protective and aesthetic values.

  18. Bullying in Adolescent Residential Care: The Influence of the Physical and Social Residential Care Environment

    ERIC Educational Resources Information Center

    Sekol, Ivana

    2016-01-01

    Background: To date, no study examined possible contributions of environmental factors to bullying and victimization in adolescent residential care facilities. Objective: By testing one part of the Multifactor Model of Bullying in Secure Setting (MMBSS; Ireland in "Int J Adolesc Med Health" 24(1):63-68, 2012), this research examined the…

  19. Improving residential miscellaneous electrical load modeling

    NASA Astrophysics Data System (ADS)

    Burgett, Joseph M.

    Over the past 30 years, the intensity of all major energy use categories has decreased in the residential market with the exception of miscellaneous electrical loads (MELs). MELs include primarily 120V plug-loads and some hard wired loads. MELs stand alone as the only category in which energy intensity has steadily increased over time. While MELs constitute approximately 15% - 25% of a typical home's total energy use, it is projected to increase to 36% by 2020. Despite the significant percentage of the home's total load, MELs are the least researched energy end use category and most poorly modeled. The Home Energy Rating System (HERS) index is the most widely used residential energy rating system and uses a simple square foot multiplier to model MELs. This study improves upon the HERS model by including occupant characteristics as part of the MEL model. This "new model" was created by regressing and explanatory equation from the Energy Information Agency's Residential Energy Consumption Survey (RECS). The RECS has a very large sample size of 12,083 respondents who answered over 90 pages of questions related to home structure, appliances they own and demographical information. The information provided by the respondents was used to calculate a MEL for all the RECS households. A stepwise regression process was used to create a model that included size of the home, household income, number of household members and presence of a home business to predict the MEL. The new model was then tested on 24 actual homes to compare its predictive power with the HERS model. The new model more closely predicted the actual MEL for 17 of the 24 test houses (71%). Additionally, the standard deviation or the "tightness of fit" of the new model was less than half of the HERS model when used on the RECS respondents. What this study found was that using occupant characteristics to supplement a square foot multiplier significantly increased the precision of MEL modeling.

  20. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  1. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24

  2. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  3. Residential lighting: Use and potential savings

    SciTech Connect

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  4. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  5. Multifunctional "Se": Course of Development in Spanish Children.

    ERIC Educational Resources Information Center

    Gathercole, Virginia C.

    A study explored the acquisition of "se" by Spanish-speaking children in Madrid, Spain, looking at: (1) acquisition of multifunctional forms; and (2) the course of acquisition for a linguistic expression that has both anaphoric and non-anaphoric functions, and its relevance to Binding Theory approaches to the acquisition of reflexives.…

  6. Multifunctional aerial display through use of polarization-processing display

    NASA Astrophysics Data System (ADS)

    Uchida, Keitaro; Ito, Shusei; Yamamoto, Hirotsugu

    2017-02-01

    We have realized a multifunctional aerial display. An aerial image of a polarization-processing display is formed through aerial imaging by retro-reflection. By changing the polarization modulation patterns, we can switch between a three-layered display and a secure display.

  7. Multi-Function Displays: A Guide for Human Factors Evaluation

    DTIC Science & Technology

    2013-11-01

    mental workload in rotary wing aircraft . Ergonomics , 36, 1121 - 40. Smith, S., & Mosier, J. (1984). Design guidelines for the user interface for...Monterey Technologies, Inc., except one designated by (*), who is from CAMI. 16. Abstract This guide is designed to assist aircraft ...section. 17. Key Words 18. Distribution Statement Multi-Function Displays, Display Design , Avionics, Human Factors Criteria, Aircraft

  8. High-strength porous carbon and its multifunctional applications

    DOEpatents

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  9. Voluntary initiation of movement: multifunctional integration of subjective agency.

    PubMed

    Grüneberg, Patrick; Kadone, Hideki; Suzuki, Kenji

    2015-01-01

    This paper investigates subjective agency (SA) as a special type of efficacious action consciousness. Our central claims are, firstly, that SA is a conscious act of voluntarily initiating bodily motion. Secondly, we argue that SA is a case of multifunctional integration of behavioral functions being analogous to multisensory integration of sensory modalities. This is based on new perspectives on the initiation of action opened up by recent advancements in robot assisted neuro-rehabilitation which depends on the active participation of the patient and yields experimental evidence that there is SA in terms of a conscious act of voluntarily initiating bodily motion (phenomenal performance). Conventionally, action consciousness has been considered as a sense of agency (SoA). According to this view, the conscious subject merely echoes motor performance and does not cause bodily motion. Depending on sensory input, SoA is implemented by means of unifunctional integration (binding) and inevitably results in non-efficacious action consciousness. In contrast, SA comes as a phenomenal performance which causes motion and builds on multifunctional integration. Therefore, the common conception of the brain should be shifted toward multifunctional integration in order to allow for efficacious action consciousness. For this purpose, we suggest the heterarchic principle of asymmetric reciprocity and neural operators underlying SA. The general idea is that multifunctional integration allows conscious acts to be simultaneously implemented with motor behavior so that the resulting behavior (SA) comes as efficacious action consciousness. Regarding the neural implementation, multifunctional integration rather relies on operators than on modular functions. A robotic case study and possible experimental setups with testable hypotheses building on SA are presented.

  10. Voluntary initiation of movement: multifunctional integration of subjective agency

    PubMed Central

    Grüneberg, Patrick; Kadone, Hideki; Suzuki, Kenji

    2015-01-01

    This paper investigates subjective agency (SA) as a special type of efficacious action consciousness. Our central claims are, firstly, that SA is a conscious act of voluntarily initiating bodily motion. Secondly, we argue that SA is a case of multifunctional integration of behavioral functions being analogous to multisensory integration of sensory modalities. This is based on new perspectives on the initiation of action opened up by recent advancements in robot assisted neuro-rehabilitation which depends on the active participation of the patient and yields experimental evidence that there is SA in terms of a conscious act of voluntarily initiating bodily motion (phenomenal performance). Conventionally, action consciousness has been considered as a sense of agency (SoA). According to this view, the conscious subject merely echoes motor performance and does not cause bodily motion. Depending on sensory input, SoA is implemented by means of unifunctional integration (binding) and inevitably results in non-efficacious action consciousness. In contrast, SA comes as a phenomenal performance which causes motion and builds on multifunctional integration. Therefore, the common conception of the brain should be shifted toward multifunctional integration in order to allow for efficacious action consciousness. For this purpose, we suggest the heterarchic principle of asymmetric reciprocity and neural operators underlying SA. The general idea is that multifunctional integration allows conscious acts to be simultaneously implemented with motor behavior so that the resulting behavior (SA) comes as efficacious action consciousness. Regarding the neural implementation, multifunctional integration rather relies on operators than on modular functions. A robotic case study and possible experimental setups with testable hypotheses building on SA are presented. PMID:26052308

  11. 26 CFR 1.23-1 - Residential energy credit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... which he received a loan of $5,000 from the Federal Solar-Energy and Energy Conservation Bank. Assume... 26 Internal Revenue 1 2013-04-01 2013-04-01 false Residential energy credit. 1.23-1 Section 1.23-1... Rates During A Taxable Year § 1.23-1 Residential energy credit. (a) General rule. Section 23 or...

  12. 26 CFR 1.23-1 - Residential energy credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... which he received a loan of $5,000 from the Federal Solar-Energy and Energy Conservation Bank. Assume... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Residential energy credit. 1.23-1 Section 1.23-1... Rates During A Taxable Year § 1.23-1 Residential energy credit. (a) General rule. Section 23 or...

  13. 26 CFR 1.23-1 - Residential energy credit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... which he received a loan of $5,000 from the Federal Solar-Energy and Energy Conservation Bank. Assume... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Residential energy credit. 1.23-1 Section 1.23-1... Rates During A Taxable Year § 1.23-1 Residential energy credit. (a) General rule. Section 23 or...

  14. 26 CFR 1.23-1 - Residential energy credit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... which he received a loan of $5,000 from the Federal Solar-Energy and Energy Conservation Bank. Assume... 26 Internal Revenue 1 2012-04-01 2012-04-01 false Residential energy credit. 1.23-1 Section 1.23-1... Rates During A Taxable Year § 1.23-1 Residential energy credit. (a) General rule. Section 23 or...

  15. 26 CFR 1.23-1 - Residential energy credit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... which he received a loan of $5,000 from the Federal Solar-Energy and Energy Conservation Bank. Assume... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Residential energy credit. 1.23-1 Section 1.23-1... Rates During A Taxable Year § 1.23-1 Residential energy credit. (a) General rule. Section 23 or...

  16. The Application of a Residential Treatment Evaluation Model.

    ERIC Educational Resources Information Center

    Nelson, Ronald H.; And Others

    This study applied a model for the evaluation of a children's residential treatment center. The conclusions are based on data collected for 22 children at four key points: a community baseline relating to families and prior agency contacts, a residential baseline dealing with the child's reported behavior during the first six weeks at the center,…

  17. Student Preference for Residential or Online Project Work in Psychology

    ERIC Educational Resources Information Center

    Kaye, Helen; Barrett, Jane P.; Knightley, Wendy M.

    2013-01-01

    Psychology students at the Open University (OU) can choose whether to complete their project work at residential school or by participating in an online equivalent. This study identifies different factors governing module choice and student experience: When choosing residential school, social aspects are important, whereas for online, students are…

  18. Building a Community of Learning through Early Residential Fieldwork

    ERIC Educational Resources Information Center

    Walsh, Cathy; Larsen, Carl; Parry, Damian

    2014-01-01

    The positioning of residential fieldwork early in students' higher education is an established way of attempting to build and engage them in a community of learning. In the study reported here, the benefits of such early residential fieldwork were investigated using Krausse and Coates's seven scales of engagement. These scales consider a number of…

  19. 38 CFR 36.4357 - Combination residential and business property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Combination residential and business property. 36.4357 Section 36.4357 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Guaranty or Insurance of Loans to Veterans With Electronic Reporting § 36.4357 Combination residential...

  20. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    SciTech Connect

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  1. 10 CFR 429.21 - Residential clothes dryers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential clothes dryers. 429.21 Section 429.21 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.21 Residential clothes dryers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to clothes dryers; and...

  2. 10 CFR 429.21 - Residential clothes dryers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential clothes dryers. 429.21 Section 429.21 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.21 Residential clothes dryers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to clothes dryers; and...

  3. 10 CFR 429.21 - Residential clothes dryers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential clothes dryers. 429.21 Section 429.21 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.21 Residential clothes dryers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to clothes dryers; and...

  4. No End of Grief: Indian Residential Schools in Canada.

    ERIC Educational Resources Information Center

    Grant, Agnes

    This book documents and comments on what is known about the Indian residential school era in Canada. The aftermath of this era has exacted a huge toll, both in the human suffering of First Nations and on Canadian society in general, but understanding the impact of residential schools can aid the healing process. Chapters are: (1) "Examining…

  5. Behind Closed Doors: Stories from the Kamloops Indian Residential School.

    ERIC Educational Resources Information Center

    Jack, Agness, Ed.

    Thirty-two Canada Natives who attended the Kamloops Indian Residential School agreed to share their stories in the form of this book. In this way, their families and communities could learn and understand what happened at the school, and all Canadians could know the truth about residential schools so that history is never repeated. Kamloops Indian…

  6. Residential Group Care Quarterly. Volume 7, Number 1, Summer 2006

    ERIC Educational Resources Information Center

    Michael, Jennifer, Ed.

    2006-01-01

    "Residential Group Care Quarterly" is published four times a year by the Child Welfare League of America (CWLA). This issue of "Residential Group Care Quarterly" contains the following articles: (1) Building Bridges between Service Delivery Providers, Families, and Youth (Lloyd Bullard); (2) The Promise of Professionalism Arrives in Practice:…

  7. Engineering economic assessment of residential wood heating in NY

    EPA Science Inventory

    We provide insight into the recent resurgence in residential wood heating in New York by: (i) examining the lifetime costs of outdoor wood hydronic heaters (OWHHs) and other whole-house residential wood heat devices,(ii) comparing these lifetime costs with those of competing tech...

  8. The Future of Family Engagement in Residential Care Settings

    ERIC Educational Resources Information Center

    Affronti, Melissa L.; Levison-Johnson, Jody

    2009-01-01

    Residential programs for children and youth are increasingly implementing engagement strategies to promote family-centered and family-driven models of care (Leichtman, 2008). The practice of engagement is a fairly new area of research, especially in residential care. Driven by their goal to increase the use of state-of-the-art family engagement…

  9. The Role of Residential Segregation in Contemporary School Segregation

    ERIC Educational Resources Information Center

    Frankenberg, Erica

    2013-01-01

    Inaction to address housing segregation in metropolitan areas has resulted in persistently high levels of residential segregation. As the Supreme Court has recently limited school districts' voluntary integration efforts, this article considers the role of residential segregation in maintaining racially isolated schools, namely what is known about…

  10. Adolescent Perception of Family Climate and Adaptation to Residential Schooling.

    ERIC Educational Resources Information Center

    Shulman, Shmuel; Prechter, Eti

    1989-01-01

    Changes in adolescents' perceptions of the family as they adapt to residential schooling were studied for 51 residential and 57 nonresidential tenth graders in a school in Israel. No differences in the perception of family climate were found between the groups, suggesting no change with the individual's act of leaving. (SLD)

  11. Residential Group Care Quarterly. Volume 6, Number 4, Spring 2006

    ERIC Educational Resources Information Center

    Michael, Jennifer, Ed.

    2006-01-01

    "Residential Group Care Quarterly" is published four times a year by the Child Welfare League of America (CWLA). This issue of "Residential Group Care Quarterly" contains the following articles: (1) Strengthening the Culture of Care in Child Care Agencies (Vonda I. Wallace and Jean Carpenter-Williams); (2) Improving Restraint Monitoring with Pulse…

  12. 20. VIEW OF RESIDENTIAL BUILDINGS TAKEN IN 1911 LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF RESIDENTIAL BUILDINGS TAKEN IN 1911 LOOKING NORTHEAST PROBABLY FROM SWAN FALLS DAM. FROM LEFT TO RIGHT, RESIDENTIAL BUILDINGS ARE COTTAGE 101, THE COTTAGE THAT BURNED IN 1921 (AND WAS REPLACED WITH COTTAGE 231), AND THE CLUB HOUSE. OTHER BUILDINGS IN FOREGROUND ARE STOREHOUSES AND SHOPS. - Swan Falls Village, Snake River, Kuna, Ada County, ID

  13. Black Residential Segregation: Impact of State Licensing Laws.

    ERIC Educational Resources Information Center

    Darden, Joe T.

    1982-01-01

    Compared the level of Black residential segregation among two groups of States: those whose real estate licensing laws contain explicit fair housing or anti-discrimination provisions, and those whose licensing laws contain no such provisions. Found that State licensing laws have no significant impact on Black residential discrimination. (GC)

  14. Residential Preferences: What's Terrorism Got to Do with It?

    ERIC Educational Resources Information Center

    Kay, David; Geisler, Charles; Bills, Nelson

    2010-01-01

    Security has long been recognized as an element in residential preference and its relative importance has risen with fear of extremist attacks on U.S. cities. Using polling data from 2004, this research investigates whether the security breaches of 9/11 in New York City influenced residential preferences in New York State. Our results confirm that…

  15. Effect of Organizational Climate on Youth Outcomes in Residential Treatment

    ERIC Educational Resources Information Center

    Jordan, Neil; Leon, Scott C.; Epstein, Richard A.; Durkin, Elizabeth; Helgerson, Jena; Lakin-Starr, Brittany L.

    2009-01-01

    This study examined the association between organizational climate and changes in internalizing and externalizing behavior for youth in residential treatment centers (RTCs). The sample included 407 youth and 349 front-line residential treatment staff from 17 RTCs in Illinois. Youth behavior was measured using the Child Functional Assessment Rating…

  16. Exploring the Relationship between Conduct Disorder and Residential Treatment Outcomes

    ERIC Educational Resources Information Center

    Shabat, Julia Cathcart; Lyons, John S.; Martinovich, Zoran

    2008-01-01

    We examined the differential outcomes in residential treatment for youths with conduct disorder (CD)--with special attention paid to interactions with age and gender--in a sample of children and adolescents in 50 residential treatment centers and group homes across Illinois. Multi-disciplinary teams rated youths ages 6-20 (N = 457) on measures of…

  17. Examination of Negative Peer Contagion in a Residential Care Setting

    ERIC Educational Resources Information Center

    Huefner, Jonathan C.; Ringle, Jay L.

    2012-01-01

    There has been ongoing concern about the negative impact of residential treatment on youth in care. Research examining the impact of negative peer influence in juvenile justice, education, and residential care settings is reviewed. A study was conducted to examine the impact of negative peer contagion on the level of problem behavior in a…

  18. Residential Mobility, Inhibitory Control, and Academic Achievement in Preschool

    ERIC Educational Resources Information Center

    Schmitt, Sara A.; Finders, Jennifer K.; McClelland, Megan M.

    2015-01-01

    Research Findings: The present study investigated the direct effects of residential mobility on children's inhibitory control and academic achievement during the preschool year. It also explored fall inhibitory control and academic skills as mediators linking residential mobility and spring achievement. Participants included 359 preschool children…

  19. Residential Mobility, Inhibitory Control, and Academic Achievement in Preschool

    ERIC Educational Resources Information Center

    Schmitt, Sara A.; Finders, Jennifer K.; McClelland, Megan M.

    2015-01-01

    The present study investigated the direct effects of residential mobility on children's inhibitory control and academic achievement during the preschool year. It also explored fall inhibitory control and academic skills as mediators linking residential mobility and spring achievement. Participants included 359 preschool children (49% female)…

  20. Residential Group Care Quarterly. Volume 7, Number 2, Fall 2006

    ERIC Educational Resources Information Center

    Ruby, Kathy, Ed.

    2006-01-01

    "Residential Group Care Quarterly" is published four times a year by the Child Welfare League of America (CWLA). This issue of "Residential Group Care Quarterly" contains the following articles: (1) Whatever Happened to Sound Clinical Reasoning? (Elizabeth Kohlstaedt); (2) Minorities as Majority Disproportionality in Child…

  1. Residential Learning Communities. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    Residential learning communities in postsecondary education, also known as living-learning programs, aim to improve student learning and success by integrating students' academic and daily living environments. Students participating in these programs live together (usually in a residential dormitory), take certain classes together, and engage in…

  2. The Right to Choose: Achieving Residential Alternatives in the Community.

    ERIC Educational Resources Information Center

    Patterson, Gene, Ed.; Byrne, Richard, Ed.

    The handbook gives guidelines for the development, operation, and evaluation of a community based system of residential facilities for mentally retarded (MR) persons. Directions are given which explain the step-by-step procedure for planning in any community. The idea of a residential service delivery system is described in terms of small…

  3. 77 FR 51569 - Large Residential Washers From Korea and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... COMMISSION Large Residential Washers From Korea and Mexico Scheduling of the final phase of countervailing... the United States is materially retarded, by reason of subsidized imports from Korea and less-than-fair-value imports from Korea and Mexico of large residential washers, provided for in subheading...

  4. 77 FR 9700 - Large Residential Washers From Korea and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... COMMISSION Large Residential Washers From Korea and Mexico Determinations On the basis of the record \\1... materially injured by reason of imports from Korea of large residential washers that are alleged to be sold in the United States at less than fair value (LTFV) and subsidized by the Government of Korea....

  5. Residential Group Care Quarterly. Volume 6, Number 1, Summer 2005

    ERIC Educational Resources Information Center

    Michael, Jennifer, Ed.

    2005-01-01

    This issue of "Residential Group Care Quarterly" includes the following articles: (1) "Residential Treatment: Finding the Appropriate Level of Care" (Shay Bilchik); (2) "Family-Centered Practices" (Rodger McDaniel and Brenden McKinney); and (3) "Can the Community Serve Sex Offenders?" (Point/Counterpoint--Daniel Wallach and Wayne D. Parks).…

  6. MOTIVES FOR RESIDENTIAL MOBILITY IN LATER LIFE

    PubMed Central

    SERGEANT, JULIE F.; EKERDT, DAVID J.

    2008-01-01

    This qualitative study delineates motives for residential mobility, describes dynamics between the elder and family members during the move decision process, and locates the move decision within ecological layers of the aging context. Interviews were conducted with 30 individuals and couples (ages 60-87) who experienced a community-based move within the past year, and with 14 extended family members. Reasons for moving (from perspectives of both elders who moved and their family members) were grouped into four themes and eleven issues that influenced the move decision. These themes parallel the ecological context of individual health and functioning, beliefs and attitudes, physical environment, and social pressures. Late-life mobility is a significant life transition that is the outcome of an ongoing appraisal and reappraisal of housing fit with individual functioning, needs, and aspirations. Family members are an integral part of these decision and residential mobility processes. Well, she moved because my sister and I decided she was going to move. But she wanted to move. It wouldn’t have happened if we hadn’t decided that she was gonna move. It was a little complicated . . . - Linda Brierton’s daughter, Karen PMID:18453180

  7. Economic aspects of possible residential heating conservation

    SciTech Connect

    Hopkowicz, M.; Szul, A.

    1995-12-31

    The paper presents methods of evaluation of energy and economy related effects of different actions aimed at conservation in residential buildings. It identifies also the method of selecting the most effective way of distribution funds assigned to weatherization as well as necessary improvements to be implemented within the heating node and the internal heating system of the building. The analysis of data gathered for four 11-stories high residential buildings of {open_quotes}Zeran{close_quotes} type being subject of the Conservation Demonstrative Project, included a differentiated scope of weatherization efforts and various actions aimed at system upgrading. Basing upon the discussion of the split of heat losses in a building as well as the established energy savings for numerous options of upgrading works, the main problem has been defined. It consists in optimal distribution of financial means for the discussed measures if the total amount of funds assigned for modifications is defined. The method based upon the principle of relative increments has been suggested. The economical and energy specifications of the building and its components, required for this method have also been elaborated. The application of this method allowed to define the suggested optimal scope of actions within the entire fund assigned for the comprehensive weatherization.

  8. Solar preheater for residential heat pumps

    SciTech Connect

    1983-01-01

    The Solar Preheater for Residential Heat PUmps was designed to offset the weakest points in a heat pump system using solar energy. These weak points affect both energy efficiency and comfort, and are: (1) the heat pumps need to defrost its outside coils, and (2) its use of resistance coils when outside air is very cold. While a heat pump can claim close to 100% efficiency in its conversion of electricity to heat, these efficiencies drop way off under the above circumstances. Less dramatic energy savings should also occur during the heat pump's normal operation, since a heat pump takes available heat and condenses it to heat the house. It seems reasonable to say that if there is more heat in the outside air it will take less time to raise the temperature inside. The net effect should be similar to having the heat pump located several hundred miles south of the home it is heating. There are several ways to achieve solar augmentation of heat pump operation, but most are either too expensive, too difficult for do-it-yourselfers, or are not easily adaptable to existing units. The solar preheater for residential heat pumps gets around all the above restrictions.

  9. Solar Energy Systems for Ohioan Residential Homeowners

    NASA Astrophysics Data System (ADS)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  10. Thermal Profiling of Residential Energy Use

    SciTech Connect

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  11. A novel approach to measuring residential socioeconomic ...

    EPA Pesticide Factsheets

    Individual-level characteristics, including socioeconomic status, have been associated with poor metabolic and cardiovascular health; however, residential area-level characteristics may also independently contribute to health status. In the current study, we used a novel application of hierarchical clustering to aggregate 444 US Census block groups in Durham, Orange, and Wake Counties, NC, USA into six homogenous clusters of similar characteristics based on 12 demographic factors. We assigned 2254 cardiac catheterization patients to these clusters based on residence at first catheterization. After controlling for individual age, sex, smoking status, and race, there were elevated odds of patients being obese (OR = 1.92, 95% CI = 1.39, 2.67), and having diabetes (OR = 2.19, 95% CI = 1.57, 3.04) and hypertension (OR = 2.05, 95% CI = 1.38, 3.11) in a cluster that was urban, impoverished, and unemployed, compared to a cluster that was urban with a low percentage of people that were impoverished or unemployed. Our findings demonstrate the feasibility of applying hierarchical clustering to an assessment of area-level characteristics and that living in impoverished, urban residential clusters may have an adverse impact on health. This abstract does not necessarily reflect U.S. EPA policy. This is an abstract of a presentation to be presented at the International Society for Environmental Epidemiology (ISEE) 2016 Conference. Reactions to this presentation will guid

  12. Residential fuel choice in the Pacific Northwest

    SciTech Connect

    Lee, A.D.; Englin, J.E.; Harkreader, S.A.

    1989-02-01

    In 1983, the Northwest Power Planning Council (Council) issued Model Conservation Standards (MCS) designed to improve the efficiency of electrically heated buildings. Since then, the standards have been adopted by numerous local governments and utilities. The Bonneville Power Administration (Bonneville) has played an active role in marketing residential energy efficiency improvements through the Super Good Cents Program (SGCP) and encouraging the adoption and implementation of the MCS as local codes through the Early Adopter Program (EAP). Since the inception of the MCS, however, questions have arisen about the effect of the code and programs on the selection of heating fuels for new homes. Recently, Bonneville has proposed a gradual reduction in the incentive levels under these two programs prior to 1995 based on several assumptions about the market for MCS homes: builder costs will decline as builders gain experience building them; buyers will seek out MCS homes as their appreciation for their lower energy costs and greater comfort increases; and the resale market will increasingly reflect the greater quality of MCS homes. The growing availability of data from several jurisdictions where the MCS have been implemented has recently made it possible to begin assessing the effect of the MCS programs on residential fuel choice and evaluating assumptions underlying the programs and Bonneville's plans to revise them. This study is the first such assessment conducted for Bonneville.

  13. Measured Rattle Threshold of Residential House Windows

    NASA Technical Reports Server (NTRS)

    Sizov, Natalia; Schultz, Troy; Hobbs, Christopher; Klos, Jacob

    2008-01-01

    Window rattle is a common indoor noise effect in houses exposed to low frequency noise from such sources as railroads, blast noise and sonic boom. Human perception of rattle can be negative that is a motivating factor of the current research effort to study sonic boom induced window rattle. A rattle study has been conducted on residential houses containing windows of different construction at a variety of geographic locations within the United States. Windows in these houses were excited by a portable, high-powered loudspeaker and enclosure specifically designed to be mounted on the house exterior to cover an entire window. Window vibration was measured with accelerometers placed on different window components. Reference microphones were also placed inside the house and inside of the loudspeaker box. Swept sine excitation was used to identify the vibration threshold at which the response of the structure becomes non-linear and begins to rattle. Initial results from this study are presented and discussed. Future efforts will continue to explore the rattle occurrence in windows of residential houses exposed to sonic booms.

  14. Parental Involvement in Residential Care and Perceptions of their Offspring's Life Satisfaction in Residential Facilities for Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Schwartz, Chaya

    2005-01-01

    Background: This study examined parental involvement in relocation and post-placement care of offspring in residential facilities for adults with intellectual disability, as well as the characteristics of residents, parents, and residential institutions and the effect of those variables on parental perceptions of their offspring's life…

  15. Children and Residential Experiences: A Comprehensive Strategy for Implementing a Research-Informed Program Model for Residential Care

    ERIC Educational Resources Information Center

    Holden, Martha J.; Izzo, Charles; Nunno, Michael; Smith, Elliott G.; Endres, Thomas; Holden, Jack C.; Kuhn, Frank

    2010-01-01

    This paper describes an effort to bridge research and practice in residential care through implementing a program model titled Children and Residential Experiences (CARE). The strategy involves consulting at all levels of the organization to guide personnel to incorporate CARE evidence-based principles into daily practice, and fostering an…

  16. Functional and Multifunctional Polymers: Materials for Smart Structures

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.

    1996-01-01

    The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three

  17. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  18. [Burnout in Residential Drug- and Alcohol Treatment

    PubMed

    Härtel, Roland; Limmer, Uwe; Schiller, Martin; Wolfersdorf, Manfred

    2003-05-01

    OBJECTIVE: The study aimed at comparing burnout in staff members at residential drug and alcohol detoxification wards with and without teamsupervision. METHOD: 4 times in a period of 18 month all staff members (n = 44) were assessed for burnout using a german version (Checkliste Burnoutmerkmale) of the Maslach Burnout Inventory (MBI, Maslach u. Jackson 1986) to asses the severity and the CBE (Checkliste Burnoutentstehungsmerkmale) for associated burnout risc-factors. RESULT: There was no statistical differences between the mean scores of the 3 different wards due to extreme SDs. The interpersonal differences among staff on the 4 occasions were remarkably. On repeated measurements the intraindividual changes were high. Higher scores were correlated with high workload (seen as frequent admissions). CONCLUSION: Work-related variables (admissions) turned out to be of more importance than supervision in times of chronic staff-shortage.

  19. Flexible Residential Smart Grid Simulation Framework

    NASA Astrophysics Data System (ADS)

    Xiang, Wang

    Different scheduling and coordination algorithms controlling household appliances' operations can potentially lead to energy consumption reduction and/or load balancing in conjunction with different electricity pricing methods used in smart grid programs. In order to easily implement different algorithms and evaluate their efficiency against other ideas, a flexible simulation framework is desirable in both research and business fields. However, such a platform is currently lacking or underdeveloped. In this thesis, we provide a simulation framework to focus on demand side residential energy consumption coordination in response to different pricing methods. This simulation framework, equipped with an appliance consumption library using realistic values, aims to closely represent the average usage of different types of appliances. The simulation results of traditional usage yield close matching values compared to surveyed real life consumption records. Several sample coordination algorithms, pricing schemes, and communication scenarios are also implemented to illustrate the use of the simulation framework.

  20. Economic analysis of residential solar water heaters

    SciTech Connect

    1980-09-23

    A typical residential solar water heater, and typical cost and performance information are described briefly. The monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the Payback Period for any non-typical solar water heater are described. This calculated Payback Period is then shown to be related to the effective interest rate that the puchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system would provide. (MHR)

  1. Residential Solar Power and the Physics Teacher

    NASA Astrophysics Data System (ADS)

    Carpenter, David

    2007-10-01

    The roof of my house sports one of the largest residential photovoltaic arrays in Ohio. It produces all of the electricity for my house and family of four. With state and federal incentives, it cost less to install than the price of a new car. It will pay for itself within the warrantee period. A picture of my house with solar panels is the background on my classroom computer. I am the physics teacher at Hayes High School in Delaware, Ohio. I don't need a formal curriculum. Sooner or later my students start asking questions. They even ask the exact same questions that adults do. The inverter for my PV system sends performance data to my computer. I post this on my website, which takes it into my classroom. This sparks conversation on a whole variety of topics, from sun angles to energy, electricity, technology and climate studies.

  2. Data acquisition at a residential photovoltaic system

    NASA Astrophysics Data System (ADS)

    McIntyre, J. M.; Miller, G. N.

    A description is presented of the techniques employed for data collection and analysis in the study of a small residential photovoltaic (PV) system. A model home of approximately 139 sq m incorporated a PV array on the south-facing roof. The PV system was designed to interface directly to the local utility system through an inverter which converted the direct current output of the array to 60 Hz alternating current. Electric power could flow either from the utility lines into the house or vice versa. The solar panel consisted of 120 modules installed in a 5 x 24 array. Attention is given to initial problems, the conduction of a systems analysis, the data collection method, the equipment used in the data acquisition system, aspects of data collection, the encountered problems, and the results of the data acquisition project. It was found that the data acquisition system employed was effective for computer-compatible data collection.

  3. Hypospadias and Residential Proximity to Pesticide Applications

    PubMed Central

    Yang, Wei; Roberts, Eric M.; Kegley, Susan E.; Wolff, Craig; Guo, Liang; Lammer, Edward J.; English, Paul; Shaw, Gary M.

    2013-01-01

    BACKGROUND: Experimental evidence suggests pesticides may be associated with hypospadias. OBJECTIVE: Examine the association of hypospadias with residential proximity to commercial agricultural pesticide applications. METHODS: The study population included male infants born from 1991 to 2004 to mothers residing in 8 California counties. Cases (n = 690) were ascertained by the California Birth Defects Monitoring Program; controls were selected randomly from the birth population (n = 2195). We determined early pregnancy exposure to pesticide applications within a 500-m radius of mother’s residential address, using detailed data on applications and land use. Associations with exposures to physicochemical groups of pesticides and specific chemicals were assessed using logistic regression adjusted for maternal race or ethnicity and age and infant birth year. RESULTS: Forty-one percent of cases and controls were classified as exposed to 57 chemical groups and 292 chemicals. Despite >500 statistical comparisons, there were few elevated odds ratios with confidence intervals that excluded 1 for chemical groups or specific chemicals. Those that did were for monochlorophenoxy acid or ester herbicides; the insecticides aldicarb, dimethoate, phorate, and petroleum oils; and adjuvant polyoxyethylene sorbitol among all cases; 2,6-dinitroaniline herbicides, the herbicide oxyfluorfen, and the fungicide copper sulfate among mild cases; and chloroacetanilide herbicides, polyalkyloxy compounds used as adjuvants, the insecticides aldicarb and acephate, and the adjuvant nonyl-phenoxy-poly(ethylene oxy)ethanol among moderate and severe cases. Odds ratios ranged from 1.9 to 2.9. CONCLUSIONS: Most pesticides were not associated with elevated hypospadias risk. For the few that were associated, results should be interpreted with caution until replicated in other study populations. PMID:24167181

  4. Residential Mercury Spills from Gas Regulators

    PubMed Central

    Hryhorczuk, Daniel; Persky, Victoria; Piorkowski, Julie; Davis, Jennifer; Moomey, C. Michael; Krantz, Anne; Runkle, Ken D.; Saxer, Tiffanie; Baughman, Thomas; McCann, Ken

    2006-01-01

    Many older homes are equipped with mercury-containing gas regulators that reduce the pressure of natural gas in the mains to the low pressure used in home gas piping. Removal of these regulators can result in elemental mercury spills inside the home. In the summer of 2000, mercury spills were discovered in the basements of several Chicago-area homes after removal of gas regulators by gas company contractors. Subsequent inspections of approximately 361,000 homes by two northern Illinois gas companies showed that 1,363 homes had residential mercury contamination. Urine mercury screening was offered to concerned residents, and results of urine bioassays and indoor mercury air measurements were available for 171 homes. Six of these 171 homes (3.5%) had a cumulative total of nine residents with a urine mercury ≥ 10 μg/L. The highest urine mercury concentration observed in a resident was 26 μg/L. Positive bioassays were most strongly associated with mercury air concentrations > 10 μg/m3 on the first floor [odds ratio (OR) = 21.4; 95% confidence interval (CI), 3.6–125.9] rather than in the basement (OR = 3.0; 95% CI, 0.3–26), and first-floor air samples were more predictive of positive bioassays than were basement samples. Overall, the risk of residential mercury contamination after gas regulator removal ranged from 0.9/1,000 to 4.3/1,000 homes, depending on the gas company, although the risk was considerably higher (20 of 120 homes, 16.7%) for one of the contractors performing removal work for one of the gas companies. Gas companies, their contractors, and residents should be aware of these risks and should take appropriate actions to prevent these spills from occurring and remediate them if they occur. PMID:16759983

  5. How Should We Study Residential Recovery Homes?

    PubMed Central

    Polcin, Douglas L.

    2014-01-01

    Purpose Persons with serious alcohol and drug problems who are attempting to maintain abstinence often lack an alcohol and drug free living environment that supports sustained recovery. Residential recovery homes, called “sober living houses” in California, are alcohol and drug-free living environments that offer long-term support for persons with addictive disorders. They do not offer formal treatment services but usually encourage or mandate attendance at self-help recovery groups such as Alcoholics Anonymous. Approach This paper weighs the strengths and weaknesses of different research designs for studying residential recovery homes. Alternatives to randomized designs that are able to capture “real world” data that are readily generalized are described and understudied topics are identified. Findings A significant limitation of traditional randomized designs is they eliminate mutual selection processes between prospective residents and recovery home residents and staff. Naturalistic research designs have the advantage of including mutual selection processes and there are methods available for limiting self-selection bias. Qualitative methods should be used to identify factors that residents experience as helpful that can then be studied further. Innovative studies are needed to investigate how outcomes are affected by architectural characteristics of the houses and resident interactions with the surrounding community. Practical implications Use of the recommended strategies could lead to findings that are more informative, intuitively appealing, and interpretable. Social implications Recovery homes and similar programs will be more responsive to consumers. Originality This paper represents one of the first to review various options for studying recovery homes and to provide suggestions for new studies. PMID:26604434

  6. Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research.

    PubMed

    Zhou, Xuan; Chen, Lisha; Wang, Anxin; Ma, Yufei; Zhang, Hailu; Zhu, Yimin

    2015-10-01

    In this paper, a multifunctional peptide-fluorescent-magnetic nanocomposites (Fe₃O₄@PEI@Cy5.5@PEG@HCBP-1 NPs) was synthesized via a layer-by-layer approach for potential application to cancer diagnoses. The multifunctional nanocomposites have great dispersibility and homogeneous particle sizes in aqueous solution. Meanwhile, it has perfect hemocompatibility and satisfying cytocompatibility in a relatively high concentration. Data from in vitro cytotoxicity assay indicated that the nanocomposites could recognize the lung cancer stem cells (CSCs) specifically and enrich the HCBP-1 positive CSCs from H460 tumor xenografts effectively. Additionally, the results of in vivo live fluorescent imaging and magnetic resonance imaging (MRI) showed that the nanocomposites could identify lung CSCs in tumor xenografts. These results suggested that the nanocomposites could be used as a potential cancer diagnostic agent through modifying diverse fluorescence dyes and targeting ligands on its surface.

  7. Multifunctional fluorescent and magnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Selvan, Subramanian T.

    2012-03-01

    Hybrid multifunctional nanoparticles (NPs) are emerging as useful probes for magnetic based targeting, delivery, cell separation, magnetic resonance imaging (MRI), and fluorescence-based bio-labeling applications. Assessing from the literature, the development of multifunctional NPs for multimodality imaging is still in its infancy state. This report focuses on our recent work on quantum dots (QDs), magnetic NPs (MNPs) and bi-functional NPs (composed of either QDs or rare-earth NPs, and magnetic NPs - iron oxide or gadolinium oxide) for multimodality imaging based biomedical applications. The combination of MRI and fluorescence would ally each other in improving the sensitivity and resolution, resulting in improved and early diagnosis of the disease. The challenges in this area are discussed.

  8. Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials.

    PubMed

    Qi, Haisong; Schulz, Björn; Vad, Thomas; Liu, Jianwen; Mäder, Edith; Seide, Gunnar; Gries, Thomas

    2015-10-14

    Electroconductive fibers composed of cellulose and carbon nanotubes (CNTs) were spun using aqueous alkaline/urea solution. The microstructure and physical properties of the resulting fibers were investigated by scanning electron microscopy, Raman microscopy, wide-angle X-ray diffraction, tensile tests, and electrical resistance measurements. We found that these flexible composite fibers have sufficient mechanical properties and good electrical conductivity, with volume resistivities in the range of about 230-1 Ohm cm for 2-8 wt % CNT loading. The multifunctional sensing behavior of these fibers to tensile strain, temperature, environmental humidity, and liquid water was investigated comprehensively. The results show that these novel CNT/cellulose composite fibers have impressive multifunctional sensing abilities and are promising to be used as wearable electronics and for the design of various smart materials.

  9. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    PubMed Central

    Perche, Federico; Torchilin, Vladimir P.

    2013-01-01

    Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies. PMID:23533772

  10. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery

    PubMed Central

    Torchilin, Vladimir P.

    2015-01-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  11. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.

    PubMed

    Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett

    2015-04-24

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.

  12. Multifunctional wearable devices for diagnosis and therapy of movement disorders.

    PubMed

    Son, Donghee; Lee, Jongha; Qiao, Shutao; Ghaffari, Roozbeh; Kim, Jaemin; Lee, Ji Eun; Song, Changyeong; Kim, Seok Joo; Lee, Dong Jun; Jun, Samuel Woojoo; Yang, Shixuan; Park, Minjoon; Shin, Jiho; Do, Kyungsik; Lee, Mincheol; Kang, Kwanghun; Hwang, Cheol Seong; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-05-01

    Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.

  13. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers

    PubMed Central

    Lv, Yifan; Hu, Rong; Zhu, Guizhi; Zhang, Xiaobing; Mei, Lei; Liu, Qiaoling; Qiu, Liping; Wu, Cuichen; Tan, Weihong

    2016-01-01

    We describe a comprehensive protocol for the preparation of multifunctional DNA nanostructures termed nanoflowers (NFs), which are self-assembled from long DNA building blocks generated via rolling-circle replication (RCR) of a designed template. NF assembly is driven by liquid crystallization and dense packaging of building blocks, which eliminates the need for conventional Watson-Crick base pairing. As a result of dense DNA packaging, NFs are resistant to nuclease degradation, denaturation or dissociation at extremely low concentrations. By manually changing the template sequence, many different functional moieties including aptamers, bioimaging agents and drug-loading sites could be easily integrated into NF particles, making NFs ideal candidates for a variety of applications in biomedicine. In this protocol, the preparation of multifunctional DNA NFs with highly tunable sizes is described for applications in cell targeting, intracellular imaging and drug delivery. Preparation and characterization of functional DNA NFs takes ~5 d; the following biomedical applications take ~10 d. PMID:26357007

  14. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality

    NASA Astrophysics Data System (ADS)

    Si, Yang; Yu, Jianyong; Tang, Xiaomin; Ge, Jianlong; Ding, Bin

    2014-12-01

    Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm-3, rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.

  15. Neuroscience of aphasia recovery: the concept of neural multifunctionality.

    PubMed

    Cahana-Amitay, Dalia; Albert, Martin L

    2015-07-01

    Aphasia therapy, while demonstrably successful, has been limited by its primary focus on language, with relatively less attention paid to nonlinguistic factors (cognitive, affective, praxic) that play a major role in recovery from aphasia. Neuroscientific studies of the past 15-20 years have opened a breach in the wall of traditional clinico-anatomical teachings on aphasia. It is not an exaggeration to talk of a paradigm shift. The term "neural multifunctionality" denotes a complex web of neural networks supporting both linguistic and nonlinguistic functions in constant and dynamic interaction, creating language as we know it and contributing to recovery from aphasia following brain damage. This paper reviews scientific underpinnings of neural multifunctionality and suggests ways in which this new approach to understanding the neural basis of language can lead to meaningful, practical steps for improvements in aphasia therapy.

  16. Residential photovoltaic power conditioning technology for grid connected applications

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Klein, J. W.

    1982-01-01

    Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.

  17. Reliability worth assessment in a developing country - residential survey results

    SciTech Connect

    Billinton, R.; Pandey, M.

    1999-11-01

    This paper presents the results of a residential customer survey conducted in service areas of the Nepal Integrated Electric Power System (NPS). The objective was to determine the power interruption costs incurred by the residential customers of a developing country, and extend the customer survey approach to reliability worth evaluation in a developing environment. Interruption cost estimates were obtained using in-person interviews with 944 sample customers. The results indicate the implications of service reliability to residential customers of Nepal, and show that reliability worth evaluation in a developing country is both possible and practical.

  18. Twenty Predictions about the Future of Residential Services in Mental Retardation

    ERIC Educational Resources Information Center

    Wolfensberger, Wolf

    2011-01-01

    Twenty predictions about the future of residential services to the mentally retarded are presented. These changes imply: (1) an entirely new model of residential services; (2) increasing continuity between residential and nonresidential services; and (3) increasing acceptance of cost-benefit rationales in the decision to offer residential or other…

  19. Multifunctional composites aircraft applications in Finmeccanica - Some examples

    NASA Astrophysics Data System (ADS)

    Iannone, Michele

    2016-05-01

    Some examples of multifunctional composite materials presently developed by Finmeccanica are described. The basic concept is to modify the material/structure by adding a further function to the structural basic one. The described examples refer to: improvement of processability; self-diagnostic capability; improvement of the allowables, acting on reduction of the knock down factor required to take in account the environmental ageing effects.

  20. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications.

    PubMed

    Gao, Jinhao; Gu, Hongwei; Xu, Bing

    2009-08-18

    The combination of nanotechnology and molecular biology has developed into an emerging research area: nanobiotechnology. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional magnetic nanoparticles. Currently, there are two strategies to fabricate magnetic nanoparticle-based multifunctional nanostructures. The first, molecular functionalization, involves attaching antibodies, proteins, and dyes to the magnetic nanoparticles. The other method integrates the magnetic nanoparticles with other functional nanocomponents, such as quantum dots (QDs) or metallic nanoparticles. Because they can exhibit several features synergistically and deliver more than one function simultaneously, such multifunctional magnetic nanoparticles could have unique advantages in biomedical applications. In this Account, we review examples of the design and biomedical application of multifunctional magnetic nanoparticles. After their conjugation with proper ligands, antibodies, or proteins, the biofunctional magnetic nanoparticles exhibit highly selective binding. These results indicate that such nanoparticles could be applied to biological medical problems such as protein purification, bacterial detection, and toxin decorporation. The hybrid nanostructures, which combine magnetic nanoparticles with other nanocomponents, exhibit paramagnetism alongside features such as fluorescence or enhanced optical contrast. Such structures could provide a platform for enhanced medical imaging and controlled drug delivery. We expect that the combination of unique structural

  1. Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications

    DTIC Science & Technology

    2009-06-01

    creep resistance retaining the mechanical properties at elevated temperatures and (2) to elucidate and demonstrate the multifunctional potential of...applications. We report progress on three different areas: 1. The mechanical properties of polyphase Al2TiO5 - Al2O3 system eutectic, which showed...superior mechanical properties than the either constituent alone due to the strong constraining effects provided by the coherent interfaces and

  2. Normal coderivative for multifunctions and implicit function theorems

    NASA Astrophysics Data System (ADS)

    Lee, G. M.; Tam, N. N.; Yen, N. D.

    2008-02-01

    In the framework of the theory of normal coderivative for multifunctions, new implicit function theorems are obtained. The main tools of the proofs are the Ekeland variational principle, a nonsmooth version of Fermat's rule, a sum rule, and the differential estimate for marginal functions established by B.S. Mordukhovich and Y. Shao [B.S. Mordukhovich, Y. Shao, Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348 (1996) 1235-1280].

  3. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    SciTech Connect

    Estevez, Luis; Kelarakis, Antonios; Gong, Qianming; Da’as, Eman Husni; Giannelis, Emmanuel P.

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold

  4. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-02-13

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein. including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  5. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-01-30

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  6. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2003-11-18

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  7. Electronic Skin with Multifunction Sensors Based on Thermosensation.

    PubMed

    Zhao, Shuai; Zhu, Rong

    2017-02-13

    A multifunctional electronic skin (e-skin) with multimodal sensing capabilities of perceiving mechanical and thermal stimuli, discriminating matter type, and sensing wind is developed using the thermosensation of a platinum ribbon array, whose temperature varies with conductive or convective heat transfer toward the surroundings. Pressure is perceived by a porous elastomer covering on the heated platinum ribbon, which bears mechanical-thermal conversion to allow high integration with other sensors.

  8. Multifunctionality assessment of urban agriculture in Beijing City, China.

    PubMed

    Peng, Jian; Liu, Zhicong; Liu, Yanxu; Hu, Xiaoxu; Wang, An

    2015-12-15

    As an important approach to the realization of agricultural sustainable development, multifunctionality has become a hot spot in the field of urban agriculture. Taking 13 agricultural counties of Beijing City as the assessing units, this study selects 10 assessing index from ecological, economic and social aspects, determines the index weight using Analytic Hierarchy Process (AHP) method, and establishes an index system for the integrated agricultural function. Based on standardized data from agricultural census and remote sensing, the integrated function and multifunctionality of urban agriculture in Beijing City are assessed through the index grade mapping. The results show that agricultural counties with the highest score in ecological, economic, and social function are Yanqing, Changping, and Miyun, respectively; and the greatest disparity among those counties is economic function, followed by social and ecological function. Topography and human disturbance may be the factors that affect integrated agricultural function. The integrated agricultural function of Beijing rises at the beginning then drops later with the increase of mean slope, average altitude, and distance from the city. The whole city behaves balance among ecological, economic, and social functions at the macro level, with 8 out of the 13 counties belonging to ecology-society-economy balanced areas, while no county is dominant in only one of the three functions. On the micro scale, however, different counties have their own functional inclination: Miyun, Yanqing, Mentougou, and Fengtai are ecology-society dominant, and Tongzhou is ecology-economy dominant. The agricultural multifunctionality in Beijing City declines from the north to the south, with Pinggu having the most significant agricultural multifunctionality. The results match up well with the objective condition of Beijing's urban agriculture planning, which has proved the methodological rationality of the assessment to a certain extent.

  9. Multifunctional epidermal electronics printed directly onto the skin.

    PubMed

    Yeo, Woon-Hong; Kim, Yun-Soung; Lee, Jongwoo; Ameen, Abid; Shi, Luke; Li, Ming; Wang, Shuodao; Ma, Rui; Jin, Sung Hun; Kang, Zhan; Huang, Yonggang; Rogers, John A

    2013-05-28

    Materials and designs are presented for electronics and sensors that can be conformally and robustly integrated onto the surface of the skin. A multifunctional device of this type can record various physiological signals relevant to health and wellness. This class of technology offers capabilities in biocompatible, non-invasive measurement that lie beyond those available with conventional, point-contact electrode interfaces to the skin.

  10. Multifunctional nanowire scaffolds for neural tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Bechara, Samuel Leo

    Unlike other regions of the body, the nervous system is extremely vulnerable to damage and injury because it has a limited ability to self-repair. Over 250,000 people in the United States have spinal cord injuries and due to the complicated pathophysiology of such injuries, there are few options available for functional regeneration of the spinal column. Furthermore, peripheral nerve damage is troublingly common in the United States, with an estimated 200,000 patients treated surgically each year. The current gold standard in treatment for peripheral nerve damage is a nerve autograft. This technique was pioneered over 45 years ago, but suffers from a major drawback. By transecting a nerve from another part of the body, function is regained at the expense of destroying a nerve connection elsewhere. Because of these issues, the investigation of different materials for regenerating nervous tissue is necessary. This work examines multi-functional nanowire scaffolds to provide physical and chemical guidance cues to neural stem cells to enhance cellular activity from a biomedical engineering perspective. These multi-functional scaffolds include a unique nanowire nano-topography to provide physical cues to guide cellular adhesion. The nanowires were then coated with an electrically conductive polymer to further enhance cellular activity. Finally, nerve growth factor was conjugated to the surface of the scaffolds to provide chemical cues for the neural stem cells. The results in this work suggest that these multifunctional nanowire scaffolds could be used in vivo to repair nervous system tissue.

  11. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  12. Effective Design of Multifunctional Peptides by Combining Compatible Functions

    PubMed Central

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A.; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-01-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf. PMID:27096600

  13. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas.

    PubMed

    Hansen, Rieke; Pauleit, Stephan

    2014-05-01

    Green infrastructure (GI) and ecosystem services (ES) are promoted as concepts that have potential to improve environmental planning in urban areas based on a more holistic understanding of the complex interrelations and dynamics of social-ecological systems. However, the scientific discourses around both concepts still lack application-oriented frameworks that consider such a holistic perspective and are suitable to mainstream GI and ES in planning practice. This literature review explores how multifunctionality as one important principle of GI planning can be operationalized by approaches developed and tested in ES research. Specifically, approaches developed in ES research can help to assess the integrity of GI networks, balance ES supply and demand, and consider trade-offs. A conceptual framework for the assessment of multifunctionality from a social-ecological perspective is proposed that can inform the design of planning processes and support stronger exchange between GI and ES research.

  14. Residential Radon Exposure and Risk of Lung Cancer in Missouri

    Cancer.gov

    A case-control study of lung cancer and residential radon exposure in which investigators carried out both standard year-long air measurements and CR-39 alpha detector measurements (call surface monitors)

  15. Commercial and Residential Water Damage: The Mold Connection.

    ERIC Educational Resources Information Center

    Williams, Del

    2002-01-01

    Describes the problem of toxic mold in residential and commercial property resulting from excess moisture. Includes common sources of unwanted moisture, design and construction flaws, determining the presence of mold, and advice for identifying and hiring reputable mold remediators. (PKP)

  16. CHARACTERIZATION OF RESIDENTIAL EXPOSURE TO CHLORPYRIFOS AND DIAZINON

    EPA Science Inventory

    Exposures to chlorpyrifos and diazinon in residential microenvironment in AZ were estimated using the indirect method of exposure calculation by combining measured concentrations in multiple media with time subjects spent indoors, dietary and non-dietary items they consumed, an...

  17. PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR

    EPA Science Inventory

    Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...

  18. Residents Living in Residential Care Facilities: United States, 2010

    MedlinePlus

    ... of and changes in the residential care industry. Definitions Length of stay : Derived from the month and ... had a unit or wing meeting the above definition and their residents could be separately enumerated. The ...

  19. Use of Electronic Health Records in Residential Care Communities

    MedlinePlus

    ... multiple chronic conditions better manage their health care. Definitions Residential care communities : Includes assisted-living facilities and ... a unit or wing that met the above definition and residents could be enumerated separately. The 2010 ...

  20. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... State Residential Building Energy Efficiency Codes AGENCY: Office of Energy Efficiency and Renewable... (DOE or Department) has preliminarily determined that the 2009 version of the International Code Council (ICC) International Energy Conservation Code (IECC) would achieve greater energy efficiency in...

  1. Residential Energy Efficiency Research Planning Meeting Summary Report

    SciTech Connect

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  2. Estimated United States Residential Energy Use in 2005

    SciTech Connect

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  3. Current cost and performance requirements for residential cool storage systems

    SciTech Connect

    Brown, D.R.; Spanner, G.E.

    1988-08-01

    This study defines the current cost and performance requirements for residential cool storage technologies based on the characteristics of conventional air conditioning equipment and residential time-of-day (TOD) rate structures existing during the 1986--1987 time frame. Currently, rate structures are changing rapidly. Given the volatility of rate structures, the establishment of cost goal is challenging. The goals presented in this study are based on the utility rate structure as of 1986. This study serves to define residential cool storage cost and performance requirements in the current economic environment as well as the many issues affecting the requirements for residential cool storage systems both now and in the future. The same methodology can be employed to establish long-run goals once future rate structures are adequately defined. 12 refs., 6 figs., 18 tabs.

  4. Prototype residential solar-energy system-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Compilation includes documents and drawings for complete solar-heating system. It discussed system installed in residential building at Veterns' Administration Hospital in Togus, Maine. System can be adapted to other buildings without changing design.

  5. On the move: Incarceration, race, and residential mobility.

    PubMed

    Warner, Cody

    2015-07-01

    The present study examines the relationship between incarceration and post-prison residential mobility. In spite of recent research examining the residential context following incarceration, we know little about if or how incarceration affects individual patterns of residential mobility. This study starts to fill this gap in knowledge by drawing on nationally representative data from the 1979 National Longitudinal Survey of Youth (NLSY79). I find that individuals with a history of incarceration are more likely to move after prison than they are before prison. This relationship holds even after accounting for various time-varying and time-stable sources of spuriousness, including other known correlates of mobility. Additional analyses suggest that this effect is strongest early in the reentry period, and that there exists important racial variation in the relationship between incarceration and mobility. These results imply that, while housing stability is an important feature of successful prisoner reentry, incarceration contributes to larger patterns of residential instability.

  6. Psychological Disorders of Blind Persons and Success in Residential Rehabilitation.

    ERIC Educational Resources Information Center

    Needham, W. E.; And Others

    1992-01-01

    Comparison of residential rehabilitation outcomes of blind clients with (n=45) or without (n=67) previous psychiatric diagnosis found no intergroup differences after rehabilitation in skill, attitude, and overall adjustment. All clients improved significantly during rehabilitation. (DB)

  7. Trends in U.S. Residential Natural Gas Consumption

    EIA Publications

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

  8. World Energy Projection System Plus Model Documentation: Residential Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  10. Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options

    SciTech Connect

    Speer, B.

    2012-10-01

    This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

  11. Costs of day hospital and community residential chemical dependency treatment

    PubMed Central

    Kaskutas, Lee Ann; Zavala, Silvana K.; Parthasarathy, Sujaya; Witbrodt, Jane

    2009-01-01

    Background Evidence suggests that expensive hospital-based inpatient chemical dependency programs do not deliver outcomes that are superior to less costly day hospital programs, but patient placement criteria developed by the Addiction Society of Medicine (ASAM) nonetheless have identified a need for low-intensity residential treatment for patients with higher levels of severity. Community-based residential programs may represent a low-cost inpatient alternative that satisfies the ASAM criteria, but research is lacking in this area. A recent clinical trial has found similar outcomes at social model residential treatment and clinically-oriented day hospital programs, but did not report on the costs associated with treatment in that study. Aims This paper addresses whether the similar outcomes in the recent trial were delivered with comparable costs. It also studies costs separately for men and women, and for Whites and non-Whites, subgroups not included or identified in prior cost effectiveness work. Method This paper reports on clients who participated in a randomized trial conducted in three metropolitan areas served by a large pre-paid health plan. Clients were eligible if they met the first five dimensions of the ASAM criteria for low-intensity residential treatment and had not been mandated to residential treatment due to dangerous home environment (the sixth ASAM dimension). The five day hospital programs included here are typical of mainstream private chemical dependency programs that were developed as an alternative to inpatient treatment. The seven residential programs are typical of those historically developed by members of alcohol mutual-help programs. Cost data for the study sites were collected using the Drug Abuse Treatment Cost Analysis Program (DATCAP) which produces estimates of average costs per week per client treated at a particular treatment program. Lengths of stay were derived from program records. Costs per episode for each study subject

  12. Residential hot water distribution systems: Roundtablesession

    SciTech Connect

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  13. Definition study for photovoltaic residential prototype system

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.

    1976-01-01

    A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.

  14. Does Mixing Make Residential Ventilation More Effective?

    SciTech Connect

    Sherman, Max; Walker, Iain

    2010-08-16

    Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

  15. LED Context Lighting System in Residential Areas

    PubMed Central

    Im, Kyoung-Mi

    2014-01-01

    As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one's life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user's surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context. PMID:25101325

  16. Residential exposures to pesticides and childhood leukaemia

    PubMed Central

    Metayer, Catherine; Buffler, Patricia A.

    2008-01-01

    Like many chemicals, carcinogenicity of pesticides is poorly characterised in humans, especially in children, so that the present knowledge about childhood leukaemia risk derives primarily from epidemiological studies. Overall, case–control studies published in the last decade have reported positive associations with home use of insecticides, mostly before the child's birth, while findings for herbicides are mixed. Previous studies relied solely on self-reports, therefore lacking information on active ingredients and effects of potential recall bias. Few series to date have examined the influence of children's genetic susceptibility related to transport and metabolism of pesticides. To overcome these limitations, investigators of the Northern California Childhood Leukaemia Study (NCCLS) have undertaken, in collaboration with a multidisciplinary team, a comprehensive assessment of residential pesticide exposure, including: (1) quality control of self-reports; (2) home pesticide inventory and linkage to the Environmental Protection Agency to obtain data on active ingredients; (3) collection and laboratory analyses of ∼600 home dust samples for over 60 pesticides and (4) geographic information studies using California environmental databases to assess exposure to agricultural pesticides. The NCCLS is also conducting large-scale genotyping to evaluate the role of genes in xenobiotic pathways relevant to the transport and metabolism of pesticides. A better quantification of children's exposures to pesticides at home is critical to the evaluation of childhood leukaemia risk, especially for future gene–environment interaction studies. PMID:18940823

  17. Residential construction cost: An Italian survey.

    PubMed

    Canesi, Rubina; Marella, Giuliano

    2017-04-01

    This paper reports data describing development projects for new buildings according to construction costs in North-East Italy. A survey was carried out on local companies undertaking new residential development projects in two Italian regions (Veneto and Lombardy). The aim of this survey was to record new real estate construction projects, collecting both technical and socio-economic cost features. It is extremely difficult to collect such data for the Italian real estate construction sector, due to its lack of transparency, so that the novelty for the Italian scenario is the dataset itself. Another interest perspective of this survey is that socio-economic characteristics were also recorded; they are often studied in urban economics, but are usually related to property purchase prices and values, not to construction costs. The data come from an analysis of Canesi and Marella regarding the relationship between the trend of construction costs and the socio-economic conditions of the reference setting, such as the mean years of schooling of the workforce, housing market trends, and average per capita income.

  18. Mitigating residential exposure to secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Klepeis, Neil E.; Nazaroff, William W.

    In a companion paper, we used a simulation model to explore secondhand tobacco smoke (SHS) exposures for typical conditions in residences. In the current paper, we extend this analysis to evaluate the effectiveness of physical mitigation approaches in reducing nonsmokers' exposure to airborne SHS particulate matter in a hypothetical 6-zone house. Measures investigated included closing doors or opening windows in response to smoking activity, modifying location patterns to segregate the nonsmoker and the active smoker, and operating particle filtration devices. We first performed 24 scripted simulation trials using hypothetical patterns of occupant location. We then performed cohort simulation trials across 25 mitigation scenarios using over 1000 pairs of nonsmoker and smoker time-location patterns that were selected from a survey of human activity patterns in US homes. We limited cohort pairs to cases where more than 10 cigarettes were smoked indoors at home each day and the nonsmoker was at home for more than two thirds of the day. We evaluated the effectiveness of each mitigation approach by examining its impact on the simulated frequency distribution of residential SHS particle exposure. The two most effective strategies were the isolation of the smoker in a closed room with an open window, and a ban on smoking whenever the nonsmoker was at home. The use of open windows to supply local or cross ventilation, or the operation of portable filtration devices in smoking rooms, provided moderate exposure reductions. Closed doors, by themselves, were not effective.

  19. Human response to vibration in residential environments.

    PubMed

    Waddington, David C; Woodcock, James; Peris, Eulalia; Condie, Jenna; Sica, Gennaro; Moorhouse, Andrew T; Steele, Andy

    2014-01-01

    This paper presents the main findings of a field survey conducted in the United Kingdom into the human response to vibration in residential environments. The main aim of this study was to derive exposure-response relationships for annoyance due to vibration from environmental sources. The sources of vibration considered in this paper are railway and construction activity. Annoyance data were collected using questionnaires conducted face-to-face with residents in their own homes. Questionnaires were completed with residents exposed to railway induced vibration (N = 931) and vibration from the construction of a light rail system (N = 350). Measurements of vibration were conducted at internal and external positions from which estimates of 24-h vibration exposure were derived for 1073 of the case studies. Sixty different vibration exposure descriptors along with 6 different frequency weightings were assessed as potential predictors of annoyance. Of the exposure descriptors considered, none were found to be a better predictor of annoyance than any other. However, use of relevant frequency weightings was found to improve correlation between vibration exposure and annoyance. A unified exposure-response relationship could not be derived due to differences in response to the two sources so separate relationships are presented for each source.

  20. LED context lighting system in residential areas.

    PubMed

    Kwon, Sook-Youn; Im, Kyoung-Mi; Lim, Jae-Hyun

    2014-01-01

    As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one's life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user's surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context.

  1. Optimizing Hydronic System Performance in Residential Applications

    SciTech Connect

    Arena, L.; Faakye, O.

    2013-10-01

    Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

  2. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  3. Risks from Radon: Reconciling Miner and Residential Epidemiology

    SciTech Connect

    Chambers, Douglas B.; Harley, Naomi H.

    2008-08-07

    Everyone is exposed to radon, an inert radioactive gas that occurs naturally and is present everywhere in the atmosphere. The annual dose from radon and its (short-lived) decay products is typically about one-half of the dose received by members of the public from all natural sources of ionizing radiation. Data on exposures and consequent effects have recently been reviewed by the National Council on Radiation Protection and Measurements (NCRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Studies of underground miners provides a well-established basis for estimating risks from occupational exposures to radon and for studying factors that may affect the dose response relationship such as the reduction of risk (coefficients) with increasing time since exposure. Miners' studies previously formed the basis for estimating risks to people exposed to radon at home, with downward extrapolation from exposures in mines to residential levels of radon. Presently, the risk estimates from residential studies are adequate to estimate radon risks in homes. Although there are major uncertainties in extrapolating the risks of exposure to radon from the miner studies to assessing risks in the home, there is remarkably good agreement between the average of risk factors derived from miner studies and those from pooled residential case-control studies. There are now over 20 analytical studies of residential radon and lung cancer. These studies typically assess the relative risk from exposure to radon based on estimates of residential exposure over a period of 25 to 30 years prior to diagnosis of lung cancer. Recent pooled analyses of residential case-control studies support a small but detectable lung cancer risk from residential exposure, and this risk increases with increasing concentrations. The excess relative risk of lung cancer from long-term residential exposure is about the same for both smokers and non-smokers; however, because the

  4. Financing Non-Residential Photovoltaic Projects: Options and Implications

    SciTech Connect

    Bolinger, Mark

    2009-01-09

    Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years.ii Specifically, due to financial

  5. Risks from Radon: Reconciling Miner and Residential Epidemiology

    NASA Astrophysics Data System (ADS)

    Chambers, Douglas B.; Harley, Naomi H.

    2008-08-01

    Everyone is exposed to radon, an inert radioactive gas that occurs naturally and is present everywhere in the atmosphere. The annual dose from radon and its (short-lived) decay products is typically about one-half of the dose received by members of the public from all natural sources of ionizing radiation. Data on exposures and consequent effects have recently been reviewed by the National Council on Radiation Protection and Measurements (NCRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Studies of underground miners provides a well-established basis for estimating risks from occupational exposures to radon and for studying factors that may affect the dose response relationship such as the reduction of risk (coefficients) with increasing time since exposure. Miners' studies previously formed the basis for estimating risks to people exposed to radon at home, with downward extrapolation from exposures in mines to residential levels of radon. Presently, the risk estimates from residential studies are adequate to estimate radon risks in homes. Although there are major uncertainties in extrapolating the risks of exposure to radon from the miner studies to assessing risks in the home, there is remarkably good agreement between the average of risk factors derived from miner studies and those from pooled residential case-control studies. There are now over 20 analytical studies of residential radon and lung cancer. These studies typically assess the relative risk from exposure to radon based on estimates of residential exposure over a period of 25 to 30 years prior to diagnosis of lung cancer. Recent pooled analyses of residential case-control studies support a small but detectable lung cancer risk from residential exposure, and this risk increases with increasing concentrations. The excess relative risk of lung cancer from long-term residential exposure is about the same for both smokers and non-smokers; however, because the

  6. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect

    Starke, Michael R; Onar, Omer C; DeVault, Robert C

    2011-09-01

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads

  7. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are

  8. Integration of Multifunctional Epitaxial Oxide Heterostructures with Si(001)

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John; Narayan, Jay

    Multifunctional heterostructures exhibit a wide range of functional properties, including colossal magneto-resistance, multiferroic behavior, and spin, charge, and orbital ordering. However, putting this functionality to work remains a challenge. To date, most of the previous works reported in the literature have dealt with heterostructures deposited on closely lattice matched (using lattice matching epitaxy-LME) insulating substrates such as DyScO3, NdGaO3, MgO, SrTiO3 and MBE-grown STO buffered Si(100). This presentation discusses the major advances in the integration of multifunctional oxide materials onto ubiquitous silicon semiconductor platform reported1-6 in the recent past by the presenting authors using a novel thin film growth approach, called `domain matching epitaxy'(DME), which minimizes the strain and nucleation of unwanted defects. The DME paradigm has been used across the large misfit scale (7-25%). Of particular interest, thin film heterostructures including two-phase multiferroics such as BiFeO3(BFO)/La0.7Sr0.3MnO3 (LSMO), BaTiO3(BTO)/LSMO, and LSMO/SrRuO3(SRO). These significant materials advancements may herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.1S. S. Rao,et al.,Nano Letters 13, 5814 (2013); J. Appl. Phys., 116, 094103 (2014); J. Appl. Phys., 116, 224104 (2014); J. Appl. Phys., 117, 17D908 (2015); 5J. Appl. Phys., 117, 17B711 (2015); 6Current Opinion in Solid State and Materials Science. 19, 301-304 (2015).

  9. Cyanate ester-nanoparticle composites as multifunctional structural capacitors

    NASA Astrophysics Data System (ADS)

    De Leon, J. Eliseo

    An important goal of engineering is to increase the energy density of electrical energy storage devices used to deliver power onboard mobile platforms. Equally important is the goal to reduce the overall mass of the vehicles transporting these devices to achieve increased fuel and cost efficiency. One approach to meeting both these objectives is to develop multifunctional systems that serve as both energy storage and load bearing structural devices. Multifunctional devices consist of constituents that individually perform a subset of the overall desired functions. However, the synergy achieved by the combination of each constituent's characteristics allows for system-level benefits that cannot be achieved by simply optimizing the separate subsystems. We investigated multifunctional systems consisting of light weight polymer matrix and high dielectric constant fillers to achieve these objectives. The monomer of bisphenol E cyanate ester exhibited excellent processing ability because of its low room temperature viscosity. Additionally, the fully cured thermoset demonstrated excellent thermal stability, specific strength and stiffness. Fillers, including multi-walled carbon nanotubes, nanometer scale barium titanate and nanometer scale calcium copper titanate, offer high dielectric constants that raised the effective dielectric constant of the polymer matrix composite. The combination of high epsilon'and high dielectric strength produce high energy density components exhibiting increased electrical energy storage. Mechanical (load bearing) improvements of the PMCs were attributed to covalently bonded nanometer and micrometer sized filler particles, as well as the continuous glass fiber, integrated into the resin systems which increased the structural characteristics of the cured composites. Breakdown voltage tests and dynamic mechanical analysis were employed to demonstrate that precise combinations of these constituents, under the proper processing conditions, can

  10. Multifunctional "smart" particles engineered from live immunocytes: toward capture and release of cancer cells.

    PubMed

    Huang, Chao; Yang, Gao; Ha, Qing; Meng, Jinxin; Wang, Shutao

    2015-01-14

    Multifunctional "smart" particles with magnetic, topographic, cell-targeting, and stimulus-responsive properties are obtained using a "live template" strategy. These particles exhibit improved efficiency in capture of target cancer cells by introducing synergistic topographic interactions, and enable the release of captured cells with high viability via reduction of disulfide bonds. Diverse multifunctional particles can be designed using the "live template" strategy.

  11. Multifunctional hybrid Fe2O3-Au nanoparticles for efficient plasmonic heating

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Lascola, Robert J.

    2016-02-20

    We describe the synthesis and properties of multifunctional Fe2O3-Au nanoparticles produced by a wet chemical approach and investigate their photothermal properties using laser irradiation. Here, the composite Fe2O3-Au nanoparticles retain the properties of both materials, creating a multifunctional structure with excellent magnetic and plasmonic properties.

  12. Recreation and Agroforestry: Examining New Dimensions of Multifunctionality in Family Farms

    ERIC Educational Resources Information Center

    Barbieri, Carla; Valdivia, Corinne

    2010-01-01

    Multifunctionality serves as an analytical framework to recognize many services that farms provide to their surrounding communities and society. This study explores an often overlooked dimension of multifunctionality by examining different recreational services provided by landowners in Missouri and analyzing the relationship between recreational…

  13. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2007-10-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

  14. Nitrogen-doped carbon dots as multifunctional fluorescent probes

    NASA Astrophysics Data System (ADS)

    Du, Fengyi; Jin, Xin; Chen, Junhui; Hua, Ye; Cao, Mulan; Zhang, Lirong; Li, Jianan; Zhang, Li; Jin, Jie; Wu, Chaoyang; Gong, Aihua; Xu, Wenrong; Shao, Qixiang; Zhang, Miaomiao

    2014-11-01

    Highly fluorescent nitrogen-doped carbon dots (NCDs) were prepared through the hydrothermal carbonization of citric acid and ammonium acetate. The resulting NCDs were quasi-spherical particles with an average diameter of approximately 2.1 nm. They exhibited excellent photoluminescent properties and had favorable solubility in water. Furthermore, the NCDs had low cytotoxicity and were readily integrated with cytoplasm. This makes them particularly suitable for multicolor bioimaging. Most importantly, NCDs internalized by cancer cells can be detected at four channels simultaneously with flow cytometry, which further demonstrates that the NCDs can be used as multifunctional fluorescent probes for biomedical applications.

  15. Finishing Titanium Alloy Cutting Zone Analysis Via Multifunction Measuring System

    NASA Astrophysics Data System (ADS)

    Andrej, Czán; Michal, Šajgalík; Drbúl, Mário; Holubják, Jozef; Mrázik, Jozef; Babík, Ondrej; Zaušková, Lucia; Piešová, Marianna

    2015-12-01

    With the development of automotive, aerospace and biomedical industry, there is higher demand for exotic alloys, often based on titanium or nickel, though they are hard to machine. Therefore, it is essential to thoroughly understand their behavior during machining. Processes in the cutting zone of said materials are due to the complexity and dynamics defined by specific models. These include some deviations, thus it is essential to improve machining observation methodology, so exhibited errors and deviations are minimal or none. Based on the observations, multifunction measuring system has been designed, which allows simultaneous observation of characteristics such as e.g. cutting forces, deformations and thermal spread without uninterrupting machining process.

  16. Note: a multifunctional electrospinning system for manufacturing diversified nanofibrous structures.

    PubMed

    Ru, Changhai; Wang, Feilong; Ge, Cuicui; Luo, Jun

    2013-08-01

    A multifunctional electrospinning system has been developed to fabricate diversified nanofibrous structures. It consists of a high voltage power supply, a syringe pump, and a cage like collector that are dominated via the controller by setting parameters from a touch screen. As the key component, speed, and diameter of the collector can be adjusted automatically according to predetermined requirement, which enhances the flexibility of the system. Well-aligned nanofiber array, nanofibrous membrane, and 3D nanofibrous structure were obtained successfully through the technique. This work should be of help to construct functional nanofibrous materials for promoting the development of electrospinning.

  17. Note: A multifunctional electrospinning system for manufacturing diversified nanofibrous structures

    NASA Astrophysics Data System (ADS)

    Ru, Changhai; Wang, Feilong; Ge, Cuicui; Luo, Jun

    2013-08-01

    A multifunctional electrospinning system has been developed to fabricate diversified nanofibrous structures. It consists of a high voltage power supply, a syringe pump, and a cage like collector that are dominated via the controller by setting parameters from a touch screen. As the key component, speed, and diameter of the collector can be adjusted automatically according to predetermined requirement, which enhances the flexibility of the system. Well-aligned nanofiber array, nanofibrous membrane, and 3D nanofibrous structure were obtained successfully through the technique. This work should be of help to construct functional nanofibrous materials for promoting the development of electrospinning.

  18. Survey of multi-function display and control technology

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Tonkin, M. H.

    1982-01-01

    The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described.

  19. Application of multi-function display and control technology

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.

    1982-01-01

    The NASA orbiter spacecraft incorporates a complex array of systems, displays, and controls. The incorporation of discrete dedicated controls into a multifunction display and control system (MFDCS) offers the potential for savings in weight, power, panel space, and crew training time. Technology identified as applicable to a MFDCS is applied to the orbiter orbital maneuvering system (OMS) and the electrical power distribution and control system (EPDCS) to derive concepts for a MFDCS design. Several concepts of varying degrees of performance and complexity are discussed and a suggested concept for further development is presented in greater detail. Both the hardware and software aspects and the human factors considerations of the designs are included.

  20. Multifunctional ferrimagnetic-ferroelectric thin films for microwave applications

    NASA Astrophysics Data System (ADS)

    Heindl, R.; Srikanth, H.; Witanachchi, S.; Mukherjee, P.; Heim, A.; Matthews, G.; Balachandran, S.; Natarajan, S.; Weller, T.

    2007-06-01

    Ferrimagnetic and ferroelectric structures based on barium strontium titanate and barium hexaferrite are investigated for potential applications in tunable microwave devices. Thin film bilayers were grown on MgO and sapphire, and their underlying crystallographic, microstructural, and magnetic properties were analyzed and compared. Microcircuits were fabricated using optical lithography, and microwave properties and electrical tunability were measured in the range of 1-50GHz. Overall, the studies demonstrate the possibility of realizing high quality multifunctional microwave materials that combine tunable magnetic and dielectric properties.

  1. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  2. [The development of multifunction intravenous infusion quantitative packaging device].

    PubMed

    Zhao, Shufang; Li, Ruihua; Shen, Lianhong

    2012-11-01

    Aimed at tackling the compatibility issues arising from the drug reaction in intravenous infusion tube, we developed a simple, suitable and multi-function intravenous infusion tube for the special use for rescuing critical patients, the elderly, children etc. Each drug in a transfusion process can be filtered to realize quantitative packet and packet delivery. Thus, the drugs in the infusion tube are prevented from meeting with each other. No overlap, no particle pollution occurred. Stable performance and accurate dosage are maintained. As a result safety is ensured during drug delivery.

  3. Multifunctional combinatorial-designed nanoparticles for nucleic acid therapy

    NASA Astrophysics Data System (ADS)

    Amiji, Mansoor M.

    2016-05-01

    Recent advances in biomedical sciences, especially in the field of human genetics, is increasingly considered to facilitate a new frontier in development of novel disease-modifying therapeutics. One of major challenges in the development of nucleic acid therapeutics is efficient and specific delivery of the molecules to the target tissue and cell upon systemic administration. In this report, I discuss our strategy to develop combinatorial-designed multifunctional nanoparticle assemblies based on natural biocompatible and biodegradable polymers for nucleic acid delivery in: (1) overcoming tumor drug resistance and (2) genetic modulation of macrophage functional phenotype from M1 to M2 in treatment of inflammatory diseases.

  4. Rational Design and Development of Reactive Multifunctional Micellar Composite Nano-particles for Destruction of Bio-agents

    DTIC Science & Technology

    2015-02-01

    of aero-oxidation, electro-oxidation, photo-catalytic oxidation and absorption. Four types of multifunction composites (Au- metal oxide core-shell...nanoparticles, , multifunction porous metal oxide-silica composites, porous silicon - Titania and PSi-silver heterojunctions ) have been successfully...Multifunctional Composites Porous Silicon Metal Oxide Unclassified Unclassified Unclassified SAR 13 Suhithi Peiris 703-767-4732

  5. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics.

    PubMed

    Morsi, Rania E; Alsabagh, Ahmed M; Nasr, Shimaa A; Zaki, Manal M

    2017-04-01

    Multifunctional nanocomposites of chitosan with silver nanoparticles, copper nanoparticles and carbon nanotubes either as bi- or multifunctional nanocomposites were prepared. Change in the overall morphology of the prepared nanocomposites was observed; carbon nanotubes, Ag NPs and Cu NPs are distributed homogeneously inside the polymer matrix individually in the case of the bi-nanocomposites while a combination of different dimensional shapes; spherical NPs and nanotubes was observed in the multifunctional nanocomposite. Multifunctional nanocomposites has a higher antimicrobial activity, in relative short contact times, against both Gram negative and Gram positive bacteria; E. coli, Staphylococcus aureus; respectively in addition to the fungal strain; Aspergillus flavus isolated from local wastewater sample. The nanocomposites are highly differentiable at the low contact time and low concentration; 1% concentration of the multifunctional nanocomposite is very effective against the tested microbes at contact time of only 10min.

  6. Residential Mobility within Guangzhou City, China, 1990–2010: Local Residents Versus Migrants

    PubMed Central

    Lu, Si-Ming; Zhu, Yushu

    2015-01-01

    Drawing on residential history data from two household surveys conducted in Guangzhou in 2005 and 2010, this paper compares the pattern of intra-city residential moves of local residents and that of migrants. The findings show different trajectories of residential moves for the two groups. While migrants showed increasing mobility over time, residential moves of locals first rose until the early 2000s, then declined steadily afterward. Moreover, the determinants of residential moves of migrants differ from those of the local population. Also, whereas residential moves for the local population are subject to changing factors over time, drivers of relocation for migrants remain more or less stable. PMID:26985169

  7. Micro-CHP Systems for Residential Applications

    SciTech Connect

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner

  8. The value of residential photovoltaic systems: A comprehensive assessment

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1983-01-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  9. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  10. The small light multi-function integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Lin, Zhaorong; Yao, Yigang

    2015-08-01

    With the development of network information, the era of big data is coming, and this has high demand to the information quantity and the diversity of the remote sensing images. Currently the available remote sensing system focuses on the convenience and the celerity of the acquiring images, and lacking the remote sensing system which can acquire the image with the diversity and large amount of information. In this paper, a new small light multifunction integrated remote sensing and the remote sensing information network system of multi-sensor are proposed to meet the new developing requirements of the current network information. The small light multi-function integrated remote sensing system consists of a load platform, the integrated sensor system, the airborne control system, the stabilized platform, the transmission system and the ground processing system. The components, function and the principle of the system are introduced, and the key technologies of the integrated remote sensing system are analyzed, in the last the applications of the system are described in order to make a contribution to the industrialization of the big data remote sensing.

  11. Multifunctional composites using reinforced laminae with carbon-nanotube forests

    NASA Astrophysics Data System (ADS)

    Veedu, Vinod P.; Cao, Anyuan; Li, Xuesong; Ma, Kougen; Soldano, Caterina; Kar, Swastik; Ajayan, Pulickel M.; Ghasemi-Nejhad, Mehrdad N.

    2006-06-01

    Traditional fibre-reinforced composite materials with excellent in-plane properties fare poorly when out-of-plane through-thickness properties are important. Composite architectures with fibres designed orthogonal to the two-dimensional (2D) layout in traditional composites could alleviate this weakness in the transverse direction, but all of the efforts so far have only produced limited success. Here, we unveil an approach to the 3D composite challenge, without altering the 2D stack design, on the basis of the concept of interlaminar carbon-nanotube forests that would provide enhanced multifunctional properties along the thickness direction. The carbon-nanotube forests allow the fastening of adjacent plies in the 3D composite. We grow multiwalled carbon nanotubes on the surface of micro-fibre fabric cloth layouts, normal to the fibre lengths, resulting in a 3D effect between plies under loading. These nanotube-coated fabric cloths serve as building blocks for the multilayered 3D composites, with the nanotube forests providing much-needed interlaminar strength and toughness under various loading conditions. For the fabricated 3D composites with nanotube forests, we demonstrate remarkable improvements in the interlaminar fracture toughness, hardness, delamination resistance, in-plane mechanical properties, damping, thermoelastic behaviour, and thermal and electrical conductivities making these structures truly multifunctional.

  12. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Corr, Serena A.; Rakovich, Yury P.; Gun'ko, Yurii K.

    2008-03-01

    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  13. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  14. Multifunctional magnetic rotator for micro and nanorheological studies

    NASA Astrophysics Data System (ADS)

    Tokarev, Alexander; Aprelev, Alexey; Zakharov, Mikhail N.; Korneva, Guzeliya; Gogotsi, Yury; Kornev, Konstantin G.

    2012-06-01

    We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects.

  15. Multifunctional non-woven fabrics of interfused graphene fibres

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Xu, Zhen; Liu, Yingjun; Wang, Ran; Gao, Chao

    2016-11-01

    Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong interfibre bonding. The all-graphene fabrics obtained through a wet-fusing assembly approach are porous and lightweight, showing high in-plane electrical conductivity up to ~2.8 × 104 S m-1 and prominent thermal conductivity of ~301.5 W m-1 K-1. Given the low density (0.22 g cm-3), their specific electrical and thermal conductivities set new records for carbon-based papers/fabrics and even surpass those of individual graphene fibres. The as-prepared fabrics are further used as ultrafast responding electrothermal heaters and durable oil-adsorbing felts, demonstrating their great potential as high-performance and multifunctional fabrics in real-world applications.

  16. Multifunctional hydrogel nano-probes for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  17. 3D Printing for Spacecraft Multi-Functional Structures

    NASA Astrophysics Data System (ADS)

    Roddy, P. A.; Huang, C. Y.; Lyke, J.; Baur, J.; Durstock, M.; MacDonald, E.

    2013-12-01

    Three-dimensional printing, more formally Additive Manufacturing (AM), is being explored by groups worldwide for use in space missions, but we recognize the amazing potential of this emerging technology to produce space weather environmental sensors at costs commensurate with declining research budgets. We present here a plan to go substantially beyond the novelty stage of this technology by developing a foundation for using AM in high-assurance space system missions. Our two-pronged approach involves (1) a disciplined investigation of material properties and reliability (electrical, mechanical, radiation) of AM and (2) the extension of this knowledge to make complex structures that can exploit the advantages of AM. We address the design, manufacture, and optimization of multifunctional space structures using multi-physics design methods, integrated computational models, and AM. Integrated multifunctional structures have significant advantage in flexibility, size, weight, and power in comparison to formally attached elements, but their design and fabrication can be complex. The complexity and range in element shape, processing method, material properties and vehicle integration make this an ideal problem to advance the current state of the art methods for multiphysics mechanism design and strengthening AM processing science.

  18. Potential Applications of Smart Multifunctional Wearable Materials to Gerontology.

    PubMed

    Armstrong, David G; Najafi, Bijan; Shahinpoor, Mohsen

    2017-01-12

    Smart multifunctional materials can play a constructive role in addressing some very important aging-related issues. Aging affects the ability of older adults to continue to live safely and economically in their own residences for as long as possible. Thus, there will be a greater need for preventive, acute, rehabilitative, and long-term health care services for older adults as well as a need for tools to enable them to function independently during daily activities. The objective of this paper is, thus, to present a comprehensive review of some potential smart materials and their areas of applications to gerontology. Thus, brief descriptions of various currently available multifunctional smart materials and their possible applications to aging-related problems are presented. It is concluded that some of the most important applications to geriatrics may be in various sensing scenarios to collect health-related feedback or information and provide personalized care. Further described are the applications of wearable technologies to aging-related needs, including devices for home rehabilitation, remote monitoring, social well-being, frailty monitoring, monitoring of diabetes and wound healing and fall detection or prediction. It is also concluded that wearable technologies, when combined with an appropriate application and with appropriate feedback, may help improve activities and functions of older patients with chronic diseases. Finally, it is noted that methods developed to measure what one collectively manages in this population may provide a foundation to establish new definitions of quality of life.

  19. Multifunctional Composite Microcapsules for Oral Delivery of Insulin

    PubMed Central

    Sun, Shaoping; Liang, Na; Gong, Xianfeng; An, Weiwei; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2016-01-01

    In this study, we designed and developed a new drug delivery system of multifunctional composite microcapsules for oral administration of insulin. Firstly, in order to enhance the encapsulation efficiency, insulin was complexed with functional sodium deoxycholate to form insulin-sodium deoxycholate complex using hydrophobic ion pairing method. Then the complex was encapsulated into poly(lactide-co-glycolide) (PLGA) nanoparticles by emulsion solvent diffusion method. The PLGA nanoparticles have a mean size of 168 nm and a zeta potential of −29.2 mV. The encapsulation efficiency was increased to 94.2% for the complex. In order to deliver insulin to specific gastrointestinal regions and reduce the burst release of insulin from PLGA nanoparticles, hence enhancing the bioavailability of insulin, enteric targeting multifunctional composite microcapsules were further prepared by encapsulating PLGA nanoparticles into pH-sensitive hydroxypropyl methyl cellulose phthalate (HP55) using organic spray-drying method. A pH-dependent insulin release profile was observed for this drug delivery system in vitro. All these strategies help to enhance the encapsulation efficiency, control the drug release, and protect insulin from degradation. In diabetic fasted rats, administration of the composite microcapsules produced a great enhancement in the relative bioavailability, which illustrated that this formulation was an effective candidate for oral insulin delivery. PMID:28036045

  20. Structural basis for multifunctional roles of mammalian aminopeptidase N

    PubMed Central

    Chen, Lang; Lin, Yi-Lun; Peng, Guiqing; Li, Fang

    2012-01-01

    Mammalian aminopeptidase N (APN) plays multifunctional roles in many physiological processes, including peptide metabolism, cell motility and adhesion, and coronavirus entry. Here we determined crystal structures of porcine APN at 1.85 Å resolution and its complexes with a peptide substrate and a variety of inhibitors. APN is a cell surface-anchored and seahorse-shaped zinc-aminopeptidase that forms head-to-head dimers. Captured in a catalytically active state, these structures of APN illustrate a detailed catalytic mechanism for its aminopeptidase activity. The active site and peptide-binding channel of APN reside in cavities with wide openings, allowing easy access to peptides. The cavities can potentially open up further to bind the exposed N terminus of proteins. The active site anchors the N-terminal neutral residue of peptides/proteins, and the peptide-binding channel binds the remainder of the peptides/proteins in a sequence-independent fashion. APN also provides an exposed outer surface for coronavirus binding, without its physiological functions being affected. These structural features enable APN to function ubiquitously in peptide metabolism, interact with other proteins to mediate cell motility and adhesion, and serve as a coronavirus receptor. This study elucidates multifunctional roles of APN and can guide therapeutic efforts to treat APN-related diseases. PMID:23071329

  1. Multifunctional non-woven fabrics of interfused graphene fibres

    PubMed Central

    Li, Zheng; Xu, Zhen; Liu, Yingjun; Wang, Ran; Gao, Chao

    2016-01-01

    Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong interfibre bonding. The all-graphene fabrics obtained through a wet-fusing assembly approach are porous and lightweight, showing high in-plane electrical conductivity up to ∼2.8 × 104 S m−1 and prominent thermal conductivity of ∼301.5 W m−1 K−1. Given the low density (0.22 g cm−3), their specific electrical and thermal conductivities set new records for carbon-based papers/fabrics and even surpass those of individual graphene fibres. The as-prepared fabrics are further used as ultrafast responding electrothermal heaters and durable oil-adsorbing felts, demonstrating their great potential as high-performance and multifunctional fabrics in real-world applications. PMID:27901022

  2. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    PubMed Central

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  3. Multifunctionality of chiton biomineralized armor with an integrated visual system

    DOE PAGES

    Li, Ling; Connors, Matthew; Kolle, Mathias; ...

    2015-11-20

    Nature provides a multitude of examples of multifunctional structural materials. There are often trade-offs in these materials because few of them are equally well suited for multiple tasks. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lens. Here, we used optical experiments to demonstrate directly, for the first time, that these microscopic, mineralized lenses are able to form images. Furthermore, our experiments revealed that the optical performance of these polycrystalline lenses is enhanced by the reduction of spherical aberration through the shape ofmore » the lens and that birefringence scattering is minimized by the use of relatively large, co-aligned grains (~10 μm as compared to ~1 μm in the non-eye regions). Additionally, we used multi-scale mechanical testing techniques to show that A. granulata’s lenses are an integral component of its biomineralized armor, but that both the intrinsic and overall mechanical properties of the lenses are compromised as compared to the primary solid regions of the armor plates. Our results demonstrate that as the size, complexity, and functionality of the integrated sensory elements increases, the local mechanical performance of the armor decreases. But, A. granulata has evolved several strategies to compensate for its local mechanical vulnerabilities to form a multifunctional system with co-optimized overall optical and structural functions.« less

  4. Multifunctionality of chiton biomineralized armor with an integrated visual system

    SciTech Connect

    Li, Ling; Connors, Matthew; Kolle, Mathias; England, Grant; Speiser, Daniel; Xiao, Xianghui; Aizenberg, Joanna; Ortiz, Christine

    2015-11-20

    Nature provides a multitude of examples of multifunctional structural materials. There are often trade-offs in these materials because few of them are equally well suited for multiple tasks. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lens. Here, we used optical experiments to demonstrate directly, for the first time, that these microscopic, mineralized lenses are able to form images. Furthermore, our experiments revealed that the optical performance of these polycrystalline lenses is enhanced by the reduction of spherical aberration through the shape of the lens and that birefringence scattering is minimized by the use of relatively large, co-aligned grains (~10 μm as compared to ~1 μm in the non-eye regions). Additionally, we used multi-scale mechanical testing techniques to show that A. granulata’s lenses are an integral component of its biomineralized armor, but that both the intrinsic and overall mechanical properties of the lenses are compromised as compared to the primary solid regions of the armor plates. Our results demonstrate that as the size, complexity, and functionality of the integrated sensory elements increases, the local mechanical performance of the armor decreases. But, A. granulata has evolved several strategies to compensate for its local mechanical vulnerabilities to form a multifunctional system with co-optimized overall optical and structural functions.

  5. PREFACE: Workshop on Oxide Materials 2014: Novel Multifunctional Properties

    NASA Astrophysics Data System (ADS)

    Gómez, M. E.; Lopera, W.

    2015-07-01

    The 2014 Workshop on Oxide Materials: Novel Multifunctional Properties was held in Cali, Colombia, from September 15 to September 19 on the campus of Universidad del Valle. It was a great privilege to have had this workshop in Cali after the first workshop on oxide materials commemorating the first centennial of the discovery of the superconductivity in 2011. The meeting gathered an audience of 80 participants, 10 invited speakers with two or three plenary talks each, 20 short oral contributions, two poster sessions with 20 presentations each. This proceedings volume contains papers reported at the conference. The Proceedings of the 2014 Workshop on Oxide Materials: Novel Multifunctional Properties were edited by Maria Elena Gomez and Wilson Lopera with the assistance of Carlos William Sanchez and Albert Ortiz as copy editor. We are grateful for the financial support from COLCIENCIAS through research project COLCIENCIAS-UNIVALLE contract 002/2013; Universidad de Valle through Professor Ivan Ramos, Rector; the Faculty of Science with Professor Jaime Cantera, Dean; the Center of Excellence on Novel Materials with Professor Pedro Prieto, Director; ICETEX, and INTECO Ltda. Further details about the conference, including details of the invited speakers and plenary sessions are available in the PDF. Maria Elena Gómez, Editor Wilson Lopera, Editor

  6. Soil biodiversity and soil community composition determine ecosystem multifunctionality.

    PubMed

    Wagg, Cameron; Bender, S Franz; Widmer, Franco; van der Heijden, Marcel G A

    2014-04-08

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

  7. A Multifunctional Joint Angle Sensor with Measurement Adaptability

    PubMed Central

    Quan, Wei; Wang, Hua; Liu, Datong

    2013-01-01

    The paper presents a multifunctional joint sensor with measurement adaptability for biological engineering applications, such as gait analysis, gesture recognition, etc. The adaptability is embodied in both static and dynamic environment measurements, both of body pose and in motion capture. Its multifunctional capabilities lay in its ability of simultaneous measurement of multiple degrees of freedom (MDOF) with a single sensor to reduce system complexity. The basic working mode enables 2DOF spatial angle measurement over big ranges and stands out for its applications on different joints of different individuals without recalibration. The optional advanced working mode enables an additional DOF measurement for various applications. By employing corrugated tube as the main body, the sensor is also characterized as flexible and wearable with less restraints. MDOF variations are converted to linear displacements of the sensing elements. The simple reconstruction algorithm and small outputs volume are capable of providing real-time angles and long-term monitoring. The performance assessment of the built prototype is promising enough to indicate the feasibility of the sensor. PMID:24217353

  8. Constraint and contingency in multifunctional gene regulatory circuits.

    PubMed

    Payne, Joshua L; Wagner, Andreas

    2013-01-01

    Gene regulatory circuits drive the development, physiology, and behavior of organisms from bacteria to humans. The phenotypes or functions of such circuits are embodied in the gene expression patterns they form. Regulatory circuits are typically multifunctional, forming distinct gene expression patterns in different embryonic stages, tissues, or physiological states. Any one circuit with a single function can be realized by many different regulatory genotypes. Multifunctionality presumably constrains this number, but we do not know to what extent. We here exhaustively characterize a genotype space harboring millions of model regulatory circuits and all their possible functions. As a circuit's number of functions increases, the number of genotypes with a given number of functions decreases exponentially but can remain very large for a modest number of functions. However, the sets of circuits that can form any one set of functions becomes increasingly fragmented. As a result, historical contingency becomes widespread in circuits with many functions. Whether a circuit can acquire an additional function in the course of its evolution becomes increasingly dependent on the function it already has. Circuits with many functions also become increasingly brittle and sensitive to mutation. These observations are generic properties of a broad class of circuits and independent of any one circuit genotype or phenotype.

  9. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  10. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.

    PubMed

    Misra, Superb K; Ansari, Tahera I; Valappil, Sabeel P; Mohn, Dirk; Philip, Sheryl E; Stark, Wendelin J; Roy, Ipsita; Knowles, Jonathan C; Salih, Vehid; Boccaccini, Aldo R

    2010-04-01

    Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 microm) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering.

  11. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    PubMed Central

    Zhang, Jianhua; Zhu, Yufang; Li, Jie; Zhu, Min; Tao, Cuilian; Hanagata, Nobutaka

    2013-01-01

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO3 materials were investigated. Mesoporous Fe–CaSiO3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO3 materials, mesoporous Fe–CaSiO3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. PMID:27877616

  12. Multifunctional polymeric nanoconstructs for biomedical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Decuzzi, Paolo

    2016-09-01

    Multifunctional nanoconstructs are particle-based nano-scale systems designed for the `smart' delivery of therapeutic and imaging agents. The Laboratory of Nanotechnology for Precision Medicine at the Italian Institute of Technology synthesizes polymeric nanoconstructs with different sizes, ranging from a few tens of nanometers to a few microns; shapes, including spherical, cubical and discoidal; surface properties, with positive, negative, neutral coatings; and mechanical stiffness, varying from that of cells to rigid, inorganic materials, such as iron oxide. These are the 4S parameters - size, shape, surface, stiffness - which can be precisely tuned in the synthesis process enabling disease- and patient-specific designs of multifunctional nanoconstructs. In this lecture, the application of these nanoconstructs to the detection and treatment of cancer lesions and cardiovascular diseases, such as thrombosis and atherosclerosis, is discussed. The contribution of the 4S parameters in modulating nanoconstruct sequestration by the mononuclear phagocyte system, organ specific accumulation, and blood longevity is also critically presented. These polymeric nanoconstructs can be loaded with a variety of therapeutic payloads - anti-cancer molecules (docetaxel, paclitaxel, doxorubicin), anti-inflammatory molecules (curcumin, diclofenac, celecoxib) and small biologicals (peptides, siRNAs, miRNAs); and imaging agents - optical probes; Gd and iron oxide nanoparticles for MR imaging; and radio-isotopes for Nuclear Imaging.

  13. A novel multifunctional NiTi/Ag hierarchical composite

    NASA Astrophysics Data System (ADS)

    Hao, Shijie; Cui, Lishan; Jiang, Jiang; Guo, Fangmin; Xiao, Xianghui; Jiang, Daqiang; Yu, Cun; Chen, Zonghai; Zhou, Hua; Wang, Yandong; Liu, Yuzi; Brown, Dennis E.; Ren, Yang

    2014-06-01

    Creating multifunctional materials is an eternal goal of mankind. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is neatly illustrated by the formation of nature materials where contrasting components are combined in sophisticated hierarchical designs. In this study, inspired by the hierarchical structure of the tendon, we fabricated a novel composite by subtly combining two contrasting components: NiTi shape-memory alloy and Ag. The composite exhibits simultaneously exceptional mechanical properties of high strength, good superelasticity and high mechanical damping, and remarkable functional properties of high electric conductivity, high visibility under fluoroscopy and excellent thermal-driven ability. All of these result from the effective-synergy between the NiTi and Ag components, and place the composite in a unique position in the properties chart of all known structural-functional materials providing new opportunities for innovative electrical, mechanical and biomedical applications. Furthermore, this work may open new avenues for designing and fabricating advanced multifunctional materials by subtly combining contrasting multi-components.

  14. Multifunctional magnetic rotator for micro and nanorheological studies

    PubMed Central

    Tokarev, Alexander; Aprelev, Alexey; Zakharov, Mikhail N.; Korneva, Guzeliya; Gogotsi, Yury; Kornev, Konstantin G.

    2012-01-01

    We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects. PMID:22755665

  15. Multifunctional hydrogel nano-probes for atomic force microscopy

    PubMed Central

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  16. Multifunctional non-woven fabrics of interfused graphene fibres.

    PubMed

    Li, Zheng; Xu, Zhen; Liu, Yingjun; Wang, Ran; Gao, Chao

    2016-11-30

    Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong interfibre bonding. The all-graphene fabrics obtained through a wet-fusing assembly approach are porous and lightweight, showing high in-plane electrical conductivity up to ∼2.8 × 10(4 )S m(-1) and prominent thermal conductivity of ∼301.5 W m(-1 )K(-1). Given the low density (0.22 g cm(-3)), their specific electrical and thermal conductivities set new records for carbon-based papers/fabrics and even surpass those of individual graphene fibres. The as-prepared fabrics are further used as ultrafast responding electrothermal heaters and durable oil-adsorbing felts, demonstrating their great potential as high-performance and multifunctional fabrics in real-world applications.

  17. Multifunctional polymer nano-composite based superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  18. Multifunctional graphene sensors for magnetic and hydrogen detection.

    PubMed

    Huang, Le; Zhang, Zhiyong; Li, Zishen; Chen, Bingyan; Ma, Xiaomeng; Dong, Lijun; Peng, Lian-Mao

    2015-05-13

    Multifunctional graphene magnetic/hydrogen sensors are constructed for the first time through a simple microfabrication process. The as-fabricated graphene sensor may act as excellent Hall magnetic detector, demonstrating small linearity error within 2% and high magnetic resolution up to 7 mG/Hz(0.5). Meanwhile the same graphene sensor is also demonstrated as high-performance hydrogen sensor with high gas response, excellent linearity, and great repeatability and selectivity. In particular, the graphene sensor exhibits high hydrogen response up to 32.5% when exposed to 1000 ppm hydrogen, outperforming most graphene-based hydrogen sensors. In addition the hydrogen-sensing mechanism of Pd-decorated graphene is systematically explored through investigating its transfer characteristics during gas detection. Our work demonstrates that graphene is a terrific material for multifunctional sensing, which may in principle reduce the complexity of manufacturing process, lower the number of sensors required in the sensing systems, and potentially derive new and more powerful functions.

  19. Electrospray of multifunctional microparticles for image-guided drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Yan, Yan; Mena, Joshua; Sun, Jingjing; Letson, Alan; Roberts, Cynthia; Zhou, Chuanqing; Chai, Xinyu; Ren, Qiushi; Xu, Ronald

    2012-03-01

    Anti-VEGF therapies have been widely explored for the management of posterior ocular disease, like neovascular age-related macular degeneration (AMD). Loading anti-VEGF therapies in biodegradable microparticles may enable sustained drug release and improved therapeutic outcome. However, existing microfabrication processes such as double emulsification produce drug-loaded microparticles with low encapsulation rate and poor antibody bioactivity. To overcome these limitations, we fabricate multifunctional microparticles by both single needle and coaxial needle electrospray. The experimental setup for the process includes flat-end syringe needles (both single needle and coaxial needle), high voltage power supplies, and syringe pumps. Microparticles are formed by an electrical field between the needles and the ground electrode. Droplet size and morphology are controlled by multiple process parameters and material properties, such as flow rate and applied voltage. The droplets are collected and freezing dried to obtain multifunctional microparticles. Fluorescent beads encapsulated poly(DL-lactide-co-glycolide) acid (PLGA) microparticles are injected into rabbits eyes through intravitreal injection to test the biodegradable time of microparticles.

  20. New multifunction materials with both electrorheological performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Xing; Shang, Yan-Li; Jia, Yun-Ling; Dong, Xiang-Yu; Ren, Jing; Li, Jun-Ran

    2017-02-01

    Novel multifunctional materials, the composites AlOOH-NaYFTb5 and AlOOH-NaYFTb10, containing AlO(OH) and β-NaYF4:5%Tb3+, have been synthesized via a facile hydrothermal route and a simple grinding method. The boehmite [AlO(OH)], yttrium nitrate [Y(NO3)3·6H2O], terbium nitrate, [Tb(NO3)3·6H2O], sodium citrate (Na3C6H5O7·2H2O) and sodium fluoride (NaF) were used as starting materials. The composition, electrorheological (ER) performance, and luminescence property of the functional materials were studied. Our results show that the composites not only have good electrorheological (ER) performance, but also have good optics property. The relative shear stress τ r ( τ r = τ E/ τ 0, τ E and τ 0 are the shear stresses at the electric field strength E = 4 and 0 kV/mm, respectively) values of the suspension (25 wt.%) of AlOOHNaYFTb5 material in silicone oil are all larger than 50 in a shear rate ranging from 0.06 to 26 s-1, the τr value reaches 1333 at a shear rate of 0.06 s-1. The material with such high ER activity and favorable luminescence performance is advantageous in its application as a multifunctional material.

  1. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-10-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  2. Baseline data for the residential sector and development of a residential forecasting database

    SciTech Connect

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  3. Interactive model of urban development in residential areas in Skopje

    NASA Astrophysics Data System (ADS)

    Marina, O.; Masala, E.; Pensa, S.; Stavric, M.

    2012-10-01

    Development of residential areas in Skopje in a period after the 1963 earthquake led to an emergence of continuous pressure to the physical structure of the city. It's essential to analyse, explore and understand the processes that are shaping our city. The study explores interactive tool that exercise the complex analysis of architectural and urban structure within the Skopje's residential areas and proposes a 3D model to investigate local dynamics and best fitting urban indicators for development. Through series of analysis of diverse typologies, programs, spatial and functional configurations of the dwelling within the city, the study presents an effort by use of Interactive Visualization Tool (InViTo) for modeling of urban development to explicate spatial distribution, the process of transformation and acknowledge the regularities and suitability of development of urban form in Skopje's residential area and, in particular, the relationship between functions and its localizations.

  4. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. In this project, researchers at the National Renewable Energy Laboratory (NREL) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, the team tested the part load performance of four residential dehumidifiers in NREL’s Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  5. Residential water demand with endogenous pricing: The Canadian Case

    NASA Astrophysics Data System (ADS)

    Reynaud, Arnaud; Renzetti, Steven; Villeneuve, Michel

    2005-11-01

    In this paper, we show that the rate structure endogeneity may result in a misspecification of the residential water demand function. We propose to solve this endogeneity problem by estimating a probabilistic model describing how water rates are chosen by local communities. This model is estimated on a sample of Canadian local communities. We first show that the pricing structure choice reflects efficiency considerations, equity concerns, and, in some cases, a strategy of price discrimination across consumers by Canadian communities. Hence estimating the residential water demand without taking into account the pricing structures' endogeneity leads to a biased estimation of price and income elasticities. We also demonstrate that the pricing structure per se plays a significant role in influencing price responsiveness of Canadian residential consumers.

  6. Bringing proximate neighbours into the study of US residential segregation.

    PubMed

    Friedman, Samantha

    2011-01-01

    The race and ethnicity of neighbours are thought to be critical in shaping household mobility underlying residential segregation. However, studies on this topic have used data at the census-tract level of analysis rather than at the proximate-neighbour level. Using a non-publicly available version of the neighbour-cluster sample within the American Housing Survey, this study incorporates data on the race, ethnicity and socioeconomic characteristics of the proximate neighbours of White, Black and Latino households and examines their impact on household residential satisfaction, out- and in-mobility. Results indicate that proximate-neighbour race and ethnicity matter in influencing endpoints of the mobility process and do not necessarily parallel those at the census-tract level. Implications of these findings are discussed as they relate to the study of residential segregation.

  7. Canadian Residential Schools and Urban Indigenous Knowledge Production about Diabetes

    PubMed Central

    Howard, Heather A.

    2016-01-01

    The construction of illness as an inscription on the body of colonization figures importantly among Indigenous community-based service and health care providers. While residential schools and diabetes have both been characterized as products of colonization, little work has been done to examine how they are connected to and informative for health provider practice. The research data presented in this article come from a collaborative urban Indigenous community-based study examining the legacy of negative relationships with food that was instilled in residential schools and used in diabetes intervention. I illustrate how residential school disciplined eating, providing a context for understanding the contemporary production of Indigenous health knowledge and practice in the urban setting, and the diet-related management of diabetes. PMID:24964719

  8. Residential Transitions among Adults with Intellectual Disability across 20 Years

    PubMed Central

    Woodman, Ashley C.; Mailick, Marsha R.; Anderson, Kristy A.; Esbensen, Anna J.

    2014-01-01

    The present study addresses critical gaps in the literature by examining residential transitions among 303 adults with intellectual disability over 10 years (Part 1) and 75 adults with Down syndrome over 20 years (Part 2). All adults lived at home at the start of the study, but many moved to a variety of settings. Several characteristics of the adults with intellectual disability differed across settings, most notably adaptive behavior and the number of residential transitions, while characteristics such as age, type of disability, and behavior problems were less predictive of residential placements. The number of moves over the course of the study varied widely, with critical links to earlier family dynamics, social relationships, and health and adaptive behavior. PMID:25354121

  9. Best practices guide for residential HVAC Retrofits

    SciTech Connect

    Walker, Iain S.

    2003-08-11

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various

  10. Psychotherapy in residential treatment: historical development and critical issues.

    PubMed

    Zimmerman, D Patrick

    2004-04-01

    In a time of concern with policies of managed care, more limited financial resources, and reduced lengths of residential treatment for troubled children and adolescents in the United States, we seem to be confronted ironically with an ever larger number of children who are growing up in circumstances of social dis-organization and personal despair. Faced with this dilemma, considerations of issues related to the provision of therapeutic services within residential treatment were provided by an examination of the historical development of the concepts of the milieu and residential care in the United States. The historical review revealed how the emergence of differing theories of psychotherapy has influenced the creation of various models of residential care. Several tensions have persisted over the years in the effort to provide therapy services within the broader residential setting. Behavioral and cognitive-behavioral methodologies currently have come to the forefront in many aspects of milieu treatment in group care for children and adolescents in the United States. This article concluded with a critique of some potential impacts associated with those perspectives on individual and group treatment and on our views of the individual and culture in general. This discussion did not attempt to provide answers to all the stresses that can emerge in a residential setting that strives to provide a range of mental health services, nor was it intended to present an exclusively rejecting, strident criticism of the medical model or behaviorally oriented therapies. The intent was to point out some of the limitations of relying exclusively on those perspectives and to show that an amalgamation of treatment models can have real consequences for children in group care. A continued awareness of those potential consequences is essential to mitigate their potentially antitherapeutic effects.

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Rhode Island

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Rhode Island. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Rhode Island.

  12. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Texas

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Texas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Texas.

  13. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    EIA Publications

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  14. 77 FR 51948 - Airport Improvement Program (AIP): Policy Regarding Access to Airports From Residential Property...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Federal Aviation Administration 14 CFR Chapter 1 Airport Improvement Program (AIP): Policy Regarding Access to Airports From Residential Property; Correction AGENCY: Federal Aviation Administration (FAA... paragraph in the Proposed Policy Regarding Access to Airports From Residential Property that was...

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Louisiana

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Louisiana. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Louisiana.

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Oklahoma

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Oklahoma. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Oklahoma.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for South Dakota

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in South Dakota. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in South Dakota.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for West Virginia

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in West Virginia. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in West Virginia.

  19. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Massachusetts

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Massachusetts. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Massachusetts.

  20. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Vermont

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Vermont. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Vermont.

  1. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Ohio

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Ohio. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Ohio.

  2. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Kansas

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Kansas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Kansas.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Delaware

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Delaware. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Delaware.

  4. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Hawaii

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Hawaii. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Hawaii.

  5. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New Mexico

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New Mexico. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in New Mexico.

  6. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Virginia

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Virginia. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Virginia.

  7. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Alabama

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Alabama. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Alabama.

  8. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Colorado

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Colorado. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Colorado.

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for South Carolina

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in South Carolina. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in South Carolina.

  10. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Florida

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Florida. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Florida.

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Nevada

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Nevada. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Nevada.

  12. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Kentucky

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Kentucky. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Kentucky.

  13. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Arizona

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Arizona. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Arizona.

  14. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wyoming

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wyoming. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Wyoming.

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Pennsylvania

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Pennsylvania. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Pennsylvania.

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Arkansas

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Arkansas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Arkansas.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Tennessee

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Tennessee. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Tennessee.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wisconsin

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wisconsin. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Wisconsin.

  19. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New York

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New York. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in New York.

  20. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Indiana

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Indiana. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Indiana.