Science.gov

Sample records for 176lu decay constant

  1. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant

    NASA Astrophysics Data System (ADS)

    Albarède, Francis; Scherer, Erik E.; Blichert-Toft, Janne; Rosing, Minik; Simionovici, Alexandre; Bizzarro, Martin

    2006-03-01

    When recent geological calibrations of the 176Lu decay constant are used, the 176Lu- 176Hf ages of chondrites are consistently 4% too old (˜4.75 Ga). Here, we suggest that this discrepancy reflects the photoexcitation of the long-lived 176Lu ground state to the short-lived isomeric state ( T1/2 = 3.7 h) by γ-rays irradiating early condensates. Irradiation may have been of solar origin and taking place at the inner edge of the nebular disk. Alternatively, the source of γ-rays could have been one or more supernova(e) exploding in the vicinity of the solar nebula. Such photoexcitation has been experimentally observed, but requires γ-ray photons that have energies in excess of 838 keV. At this stage, we cannot assess whether the Hf isotope composition of the Bulk Silicate Earth differs from that of chondrites, eucrites, and the 4.56 Ga old Martian meteorite ALH84001, and therefore, whether the precursor material for these different planetary bodies received comparable fluences of γ-rays.

  2. Geochemical test for branching decay of 176Lu

    NASA Astrophysics Data System (ADS)

    Amelin, Y.; Davis, W. J.

    2005-01-01

    Two different groups of values for the 176Lu decay constant have been determined by recent high-precision experiments. The λ 176Lu values of 1.86-1.87 × 10 -11 a -1 were determined by age comparisons using terrestrial minerals of Proterozoic and late Archean age, whereas values of ˜1.94 × 10 -11 a -1 were determined in age comparison studies of meteorites. A possible branched decay of 176Lu could be the cause of this discrepancy. The β + decay of 176Lu to 176Yb was detected in the early studies of radioactivity of 176Lu, with reported values of λβ +/(λβ + + λβ -) in the total 176Lu ranging from less than 0.03 to 0.67. If the β + decay fraction is close to the upper limit of the reported values, it can explain the 4%-6% difference between the apparent λ 176Lu values. To get a reliable estimate for the β + decay of 176Lu, we have measured Yb isotopic composition in 2.7 Ga zircons with Lu/Yb N (chondrite-normalized) ratios of 1.40 and 1.45, in 1.0 Ga xenotime with Lu/Yb N = 1.23, using Yb from the 28.4 Ma Fish Canyon Tuff (FCT) zircon and titanite as the modern reference value. Multiple analyses yielded the following weighted mean values (± 2σ) for the 176Yb/ 174Yb ratio: 0.4022134 ± 0.0000017 for the FCT zircon and titanite, 0.4022134 ± 0.0000019 for the 1.0 Ga xenotime, and 0.4022124 ± 0.0000033 for the 2.7 Ga zircons. These data yield λβ +/(λβ + + λβ -) = -0.005 ± 0.015 (2σ) and establish an upper limit of 0.9% of total decays for the β + decay branch. Branching decay can therefore be eliminated as the cause of the discrepancy in 176Lu decay constant estimates. We discuss other possible causes of the λ 176Lu terrestrial vs. meteorite discrepancy.

  3. THE LU ISOTOPIC COMPOSITION OF ACHONDRITES: CLOSING THE CASE FOR ACCELERATED DECAY OF {sup 176}LU

    SciTech Connect

    Wimpenny, Josh; Yin, Qing-zhu; Amelin, Yuri

    2015-10-10

    Studies of Lu–Hf isotope systematics in meteorites have produced apparent “ages” that are older than Pb–Pb ages and older than the estimated age of our solar system. One proposed explanation for this discrepancy is that irradiation by cosmic rays caused excitation of {sup 176}Lu to its short-lived isomer that then underwent rapid decay to {sup 176}Hf. This explanation can account for apparent excesses in {sup 176}Hf that correlate with Lu/Hf ratio. Mass balance requires that samples with measurable excess in {sup 176}Hf should also have measurable deficiencies in {sup 176}Lu on the order of 1‰–3‰. To unambiguously test the accelerated decay hypothesis, we have measured the {sup 176}Lu/{sup 175}Lu ratio in terrestrial materials and achondrites to search for evidence of depletion in {sup 176}Lu. To a precision of 0.1‰ terrestrial standards, cumulate and basaltic eucrites and angrites all have the same {sup 176}Lu/{sup 175}Lu ratio. Barring a subsequent mass-dependent fractionation event, these results suggest that the apparent excesses in {sup 176}Hf are not caused by accelerated decay of {sup 176}Lu, and so another hypothesis is required to explain apparently old Lu–Hf ages.

  4. 176Lu/176Hf: A Sensitive Test of s-Process Temperature and Neutron Density in AGB Stars

    NASA Astrophysics Data System (ADS)

    Heil, M.; Winckler, N.; Dababneh, S.; Käppeler, F.; Wisshak, K.; Bisterzo, S.; Gallino, R.; Davis, A. M.; Rauscher, T.

    2008-01-01

    The s-process branching at A = 176 has been analyzed on the basis of significantly improved experimental cross sections. This work reports on activation measurements of the partial (n,γ ) cross section of 176Lu feeding the isomeric state in 176Lu. In total, six irradiations were performed at the Karlsruhe 3.7 MV pulsed Van de Graaff accelerator, and the induced activities were measured with HPGe clover detectors. In combination with previous data, partial cross sections of 3185 +/- 156 and 1153 +/- 30 mbarn were deduced at kT = 5.1 and 25 keV, respectively. With these results and a recent time-of-flight measurement of the total stellar (n,γ ) cross section, the isomeric ratio was found to be constant in the relevant thermal energy range of the main s-process component. Based on these new data, a comprehensive analysis of the branching at 176Lu was carried out for testing the temperature and neutron density conditions during He shell flashes in thermally pulsing low-mass asymptotic giant branch stars. It was found that the long-standing problem of the mother/daughter ratio of the two s-only isotopes 176Lu and 176Hf could be solved, if the temperature-dependent β-decay half-life of 176Lu was considered with sufficient resolution over the temperature profile of the convective He shell flashes.

  5. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  6. 176Lu-176Hf geochronology of garnet I: experimental determination of the diffusion kinetics of Lu3+ and Hf4+ in garnet, closure temperatures and geochronological implications

    NASA Astrophysics Data System (ADS)

    Bloch, Elias; Ganguly, Jibamitra; Hervig, Richard; Cheng, Weiji

    2015-02-01

    The 176Lu-176Hf and 147Sm-143Nd decay systems are routinely used to determine garnet (Grt)-whole-rock (WR) ages; however, the 176Lu-176Hf age of garnet is typically older than the 147Sm-143Nd age determined from the same aliquots. Here we present experimental data for Lu3+ and Hf4+ diffusion in garnet as functions of temperature, pressure and oxygen fugacity and show that the diffusivity of Hf4+ in almandine/spessartine garnet is significantly slower than that of Lu3+. The diffusive closure temperature ( T C) of Hf4+ is significantly higher than that of Nd3+, and although this property is partly responsible for the observed 176Lu-176Hf and 147Sm-143Nd Grt-WR age discrepancies, the difference between the T C-s of Lu3+ and Hf4+ could lead to apparent Grt-WR 176Lu-176Hf ages that are skewed from the age of Hf4+ closure in garnet. In addition, the slow diffusivity of Hf4+ indicates that the bulk of metamorphic garnets retain a substantial fraction of prograde radiogenic 176Hf throughout peak metamorphic conditions, a phenomenon that further complicates the interpretation of 176Lu-176Hf garnet ages and invalidates the use of analytical T C expressions. We argue that the diffusion of trivalent rare earth elements in garnet becomes much faster when their concentration level falls below a few hundred ppm, as in the experiments of Tirone et al. (Geochim Cosmochim Acta 69: 2385-2398, 2005), and further argue that this low-concentration mechanism is appropriate for modeling the susceptibility of 147Sm-143Nd garnet ages to diffusive resetting.

  7. Connections between high-K and low-K states in the s-process nucleus {sup 176}Lu

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Chowdhury, P.

    2010-01-15

    Gamma-ray branches that connect high-K states to low-K states in the s-process nucleus {sup 176}Lu were observed, thus providing a link between the 58 Gyr, 7{sup -} ground state and the 5.3 h, 1{sup -} isomeric state. High sensitivity and unambiguous placement were achieved through the study of the decay of the 58 {mu}s K{sup {pi}}=14{sup +} isomer using {gamma}-{gamma}-coincidence measurements. The large number of decay paths from the isomer provides a means of populating a broad selection of states from above, resulting, paradoxically, in higher sensitivity than in cases where low-spin input reactions are used. The out-of band decay widths important for excitation processes in stars are quantified.

  8. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-03-01

    The isomeric ratio for the neutron capture reaction 176Lu(n,γ) on the Jπ= 5/2-, 761.7 keV, T1/2=32.8 ns level of 177mLu, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory.

  9. On the question of connections between high-K and low-K states in {sup 180}Ta and {sup 176}Lu

    SciTech Connect

    Dracoulis, G. D.

    2010-08-12

    Possible connections between the high- and low-K states in the odd-odd isotopes {sup 176}Lu and {sup 180}Ta are discussed in the context of photoactivation resonances, and the implications for excitations in a stellar environment. Recent spectroscopic studies using (d, 2n) reactions provide limits on the {gamma}-ray branches expected if proposed intermediate states are correct in {sup 180}Ta and {sup 176}Lu, while Deep-inelastic measurements have observed a definitive set of connections in {sup 176}Lu.

  10. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  11. Properties of the 5{sup -} state at 839 keV in {sup 176}Lu and the s-process branching at A=176

    SciTech Connect

    Mohr, P.; Bisterzo, S.; Gallino, R.; Kaeppeler, F.; Kneissl, U.; Winckler, N.

    2009-04-15

    The s-process branching at mass number A=176 depends on the coupling between the high-K ground state and a low-lying low-K isomer in {sup 176}Lu. This coupling is based on electromagnetic transitions via intermediate states at higher energies. The properties of the lowest experimentally confirmed intermediate state at 839 keV are reviewed, and the transition rate between low-K and high-K states under stellar conditions is calculated on the basis of new experimental data for the 839-keV state. Properties of further candidates for intermediate states are briefly analyzed. It is found that the coupling between the high-K ground state and the low-K isomer in {sup 176}Lu is at least one order of magnitude stronger than previously assumed, leading to crucial consequences for the interpretation of the {sup 176}Lu/{sup 176}Hf pair as an s-process thermometer.

  12. Modification of nuclear transitions in stellar plasma by electronic processes: K isomers in {sup 176}Lu and {sup 180}Ta under s-process conditions

    SciTech Connect

    Gosselin, G.; Morel, P.; Mohr, P.

    2010-05-15

    The influence of the stellar plasma on the production and destruction of K isomers is studied for the examples {sup 176}Lu and {sup 180}Ta. Individual electromagnetic transitions are enhanced predominantly by nuclear excitation by electron capture, whereas the other mechanisms of electron scattering and nuclear excitation by electron transition give only minor contributions. It is found that individual transitions can be enhanced significantly for low transition energies below 100 keV. Transitions with higher energies above 200 keV are practically not affected. Although one low-energy transition in {sup 180}Ta is enhanced by up to a factor of 10, the stellar transition rates from low-K to high-K states via so-called intermediate states in {sup 176}Lu and {sup 180}Ta do not change significantly under s-process conditions. The s-process nucleosynthesis of {sup 176}Lu and {sup 180}Ta remains essentially unchanged.

  13. Axion decay constants away from the lamppost

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Krippendorf, Sven

    2016-04-01

    It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 M P ). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.

  14. Beauty vector meson decay constants from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2016-01-01

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  15. The decay constant of 87Rb

    NASA Astrophysics Data System (ADS)

    Rotenberg, E.; Davis, D. W.; Amelin, Y.

    2009-05-01

    Despite dozens of measurements of the decay constant of 87Rb (λ87), uncertainty surrounding the value remains. Mounting evidence [e.g. 1,2,3] suggests that the actual value is 1-2% lower than the conventional value of 1.42 × 10-11a-1 [4]. Increased precision and accuracy are crucial if meaningful comparisons are to be made between Rb-Sr and U-Pb ages. We have been working on measuring the decay constant by the accumulation of radiogenic 87Sr (87Sr*) in a RbClO4 salt. Our original measurements by this method had large errors [5,6] and tended to agree with the conventional value. Because the samples contained very little common Sr, it was impossible to properly correct for instrumental fractionation, with the result that both precision and accuracy were compromised. Furthermore, the concentration of the 84Sr spike was not determined reliably, which likely affected the accuracy. In order to overcome this, a new 84-86Sr double-spike was prepared, and the experiment was repeated. The spike was calibrated against three different Sr reference solutions. Two were prepared from Sr metal and the third from SrCl2. The isotopic abundance ratios of the 84-86Sr double-spike are: 84/86 = 0.93252, 87/86 = 0.01033, and 88/86 = 0.02240. The concentration was determined to be 832.95 ± 0.26 ng Sr/g solution (MSWD = 2.5). Seventeen measurements of the decay-constant were made by measuring 87Sr* ingrowth in a RbClO4 salt over approximately 32 years. 87Sr* ranges from 125 - 616 pg. The two highest points are eliminated: one due to high procedure blank and the second due to abnormal fractionation behaviour. A weighted average of the remaining fifteen measurements yields a decay constant of 1.3981 × 10-11a-11 ± 0.0009 (0.062%; and a high MSWD = 106. The 2σ standard deviation is 0.004). The data scatter outside of their analytical errors. Recent geological calibrations [1,2] and a carefully controlled decay counting measurement [3] yield λ87 values from 1.395 ± 0.006 to 1.398 ± 0

  16. ^176Lu/^175Lu thermometry for Oklo natural reactors: a new look at old data

    NASA Astrophysics Data System (ADS)

    Gould, Chris; Sharapov, Eduard

    2012-03-01

    Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures TO, which in turn impacts Oklo bounds on the time variation of the fine structure constant α. We revisit results for reactor zone RZ10 in light of new astrophysical measurements of the isomer branching ratio B^g in ^175Lu neutron capture at 5 and 25 keV. We recalculate predictions for TO as a function of B^g using realistic models of the Oklo neutron flux. We find TO= 100 ±30 C using a new value of B^g, in contrast to 350 < TO< 500 C using the evaluated value at thermal energy. Lutetium thermometry can be applicable to analyses of Oklo reactor data, but a better measurement of B^g with thermal neutrons is needed to confirm the reliability of temperature predictions.

  17. 176Lu/175Lu thermometry for the Oklo natural reactors: A new examination of old data

    NASA Astrophysics Data System (ADS)

    Gould, C. R.; Sharapov, E. I.

    2012-02-01

    Background: Lutetium thermometry has been used to analyze Oklo natural nuclear reactor zones but leads to widely varying and puzzling predictions for the temperatures TO which in turn impacts bounds on time variation of the fine structure constant α.Purpose: We revisit results for reactor zone RZ10 in light of new measurements of the isomer branching ratio Bg in 175Lu neutron capture at 5 and 25 keV.Method: We recalculate predictions for TO as a function of Bg using realistic models of the Oklo neutron flux.Results: We find TO=100±30 ∘C using a new value of Bg, in contrast to 350

  18. Small field axion inflation with sub-Planckian decay constant

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.

    2016-10-01

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  19. Trace element systematics and 147Sm- 143Nd and 176Lu- 176Hf ages of Larkman Nunatak 06319: Closed-system fractional crystallization of an enriched shergottite magma

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Brandon, A. D.; Lapen, T. J.; Righter, M.; Peslier, A. H.; Beard, B. L.

    2010-12-01

    Combined 147Sm- 143Nd and 176Lu- 176Hf chronology of the martian meteorite Larkman Nunatak (LAR) 06319 indicates an igneous crystallization age of 193 ± 20 Ma (2 σ weighted mean). The individual 147Sm- 143Nd and 176Lu- 176Hf internal isochron ages are 183 ± 12 Ma and 197 ± 29 Ma, respectively, and are concordant with two previously determined 147Sm- 143Nd and 87Rb- 87Sr internal isochron ages of 190 ± 26 Ma and 207 ± 14 Ma, respectively ( Shih et al., 2009). With respect to the 147Sm- 143Nd isotope systematics, maskelynite lies above the isochron defined by primary igneous phases and is therefore not in isotopic equilibrium with the other phases in the rock. Non-isochronous maskelynite is interpreted to result from shock-induced reaction between plagioclase and partial melts of pyroxene and phosphate during transformation to maskelynite, which resulted in it having unsupported 143Nd relative to its measured 147Sm/ 144Nd ratio. The rare earth element (REE) and high field strength element (HFSE) compositions of major constituent minerals can be modeled as the result of progressive crystallization of a single magma with no addition of secondary components. The concordant ages, combined with igneous textures, mineralogy, and trace element systematics indicate that the weighted average of the radiometric ages records the true crystallization age of this rock. The young igneous age for LAR 06319 and other shergottites are in conflict with models that advocate for circa 4.1 Ga crystallization ages of shergottites from Pb isotope compositions, however, they are consistent with updated crater counting statistics indicating that young volcanic activity on Mars is more widespread than previously realized ( Neukum et al., 2010).

  20. Heavy-meson decay constants from QCD sum rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2010-12-22

    We sketch a recent sum-rule extraction of the decay constants of the heavy pseudoscalar mesons D, D{sub s}, B, and B{sub s} from the two-point correlator of heavy-light pseudoscalar currents. Our main emphasis lies on the control over all the uncertainties in the decay constants, related both to the input QCD parameters and to the limited accuracy of the method of sum rules. Gaining this control has become possible by application of our new procedure of extracting hadron observables based on a dual threshold depending on the Borel parameter. For the charmed-meson decay constants, we find fD = (206.2{+-}7.3{sub (OPE)}{+-}5.1{sub (syst)}) MeV, fD{sub s} = (245.3{+-}15.7{sub (OPE)}{+-}4.5{sub (syst)}) MeV. For the beauty mesons, the decay constants turn out to be extremely sensitive to the precise value of the {ovr MS} mass of the b-quark, {bar m}{sub b}({bar m}{sub b}). By requiring our sum-rule estimate to match the average of the lattice determinations of f{sub B}, we extract the rather accurate value {bar m}{sub b}({bar m}{sub b}) = (4.245{+-}0.025) GeV. Feeding this parameter value into our sum-rule formalism leads to the beauty-meson decay constants fB = (193.4{+-}12.3{sub (OPE)}{+-}4.3{sub (syst)}) MeV, fB{sub s} = (232.5{+-}18.6{sub (OPE)}{+-}2.4{sub (syst)}) MeV.

  1. Decay Constants of Beauty Mesons from QCD Sum Rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2014-11-01

    Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i) For the input value of the bottom-quark mass in the M̅S̅ scheme m̅b(m̅b) ≈ 4:18 GeV; the sum-rule result fB ≈ 210-220 MeV for the B meson decay constant is substantially larger than the recent lattice-QCD finding fB ≈ 190 MeV: Requiring QCD sum rules to reproduce the lattice-QCD value of fB yields a significantly larger b-quark mass: m̅b(m̅b) = 4:247 GeV: (ii) Whereas QCD sum-rule predictions for the charmed-meson decay constants fD; fDs, fD* and fDs* are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants—and especially for the ratio fB* / fB—prove to be very sensitive to the specific scale setting.

  2. Cosmological perturbations of axion with a dynamical decay constant

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takeshi; Takahashi, Fuminobu

    2016-08-01

    A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the number of degenerate vacua along the axion potential.

  3. Charmed and light pseudoscalar meson decay constants from HISQ simulations

    SciTech Connect

    Bazavov, Alexei; et al.

    2014-11-16

    We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2})\\ \\mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5})\\ \\mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. We also obtain $f_{K^+}/f_{\\pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively.

  4. Decay constants of pseudoscalar mesons containing heavy quarks

    SciTech Connect

    Mathur, V. S.; Yamawaki, M. T.

    1981-01-01

    The QCD sum-rules of Shifman et al. for n-th order moments are applied to the determination of the decay constants of pseudoscalar mesons containing a heavy quark (c or b). The general case when Q/sup 2/, the squared momentum transfer, is non-zero is considered. The stability of the sum-rules against variations in both Q/sup 2/ and n is discussed.

  5. Evidence against solar influence on nuclear decay constants

    NASA Astrophysics Data System (ADS)

    Pommé, S.; Stroh, H.; Paepen, J.; Van Ammel, R.; Marouli, M.; Altzitzoglou, T.; Hult, M.; Kossert, K.; Nähle, O.; Schrader, H.; Juget, F.; Bailat, C.; Nedjadi, Y.; Bochud, F.; Buchillier, T.; Michotte, C.; Courte, S.; van Rooy, M. W.; van Staden, M. J.; Lubbe, J.; Simpson, B. R. S.; Fazio, A.; De Felice, P.; Jackson, T. W.; Van Wyngaardt, W. M.; Reinhard, M. I.; Golya, J.; Bourke, S.; Roy, T.; Galea, R.; Keightley, J. D.; Ferreira, K. M.; Collins, S. M.; Ceccatelli, A.; Unterweger, M.; Fitzgerald, R.; Bergeron, D. E.; Pibida, L.; Verheyen, L.; Bruggeman, M.; Vodenik, B.; Korun, M.; Chisté, V.; Amiot, M.-N.

    2016-10-01

    The hypothesis that proximity to the Sun causes variation of decay constants at permille level has been tested and disproved. Repeated activity measurements of mono-radionuclide sources were performed over periods from 200 days up to four decades at 14 laboratories across the globe. Residuals from the exponential nuclear decay curves were inspected for annual oscillations. Systematic deviations from a purely exponential decay curve differ from one data set to another and are attributable to instabilities in the instrumentation and measurement conditions. The most stable activity measurements of alpha, beta-minus, electron capture, and beta-plus decaying sources set an upper limit of 0.0006% to 0.008% to the amplitude of annual oscillations in the decay rate. Oscillations in phase with Earth's orbital distance to the Sun could not be observed within a 10-6 to 10-5 range of precision. There are also no apparent modulations over periods of weeks or months. Consequently, there is no indication of a natural impediment against sub-permille accuracy in half-life determinations, renormalisation of activity to a distant reference date, application of nuclear dating for archaeology, geo- and cosmochronology, nor in establishing the SI unit becquerel and seeking international equivalence of activity standards.

  6. Charmed meson decay constants in three-flavor lattice QCD

    SciTech Connect

    Aubin, C.; Bernard, C.; DeTar, C.; Di Pierro, M.; Freeland, Elizabeth D.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Kronfeld, Andreas S.; Levkova, L.; Mackenzie, P.B.; Menscher, D.; Maresca, F.; Nobes, M.; Okamoto, M.; Renner, D.B.; Simone, J.; Sugar, R.; Toussaint, D.; Trottier, H.D.; /Art Inst. of Chicago /Columbia U. /Washington U., St. Louis /Utah U. /DePaul U. /Indiana U. /APS, New York /U. Pacific, Stockton /Illinois U., Urbana /Fermilab /Cornell U., LEPP /Arizona U. /UC, Santa Barbara /Simon Fraser U.

    2005-06-01

    The authors present the first lattice QCD calculation with realistic sea quark content of the D{sup +}-meson decay constant f{sub D+}. They use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). They obtain f{sub D+} = 201 {+-} 3 {+-} 17 MeV, where the errors are statistical and a combination of systematic errors. They also obtain f{sub D{sub s}} = 249 {+-} 3 {+-} 16 MeV for the D{sub s} meson.

  7. Scalar decay constant and Yukawa coupling in walking gauge theories

    SciTech Connect

    Hashimoto, Michio

    2011-05-01

    We propose an approach for the calculation of the Yukawa coupling through the scalar decay constant and the chiral condensate in the context of the extended technicolor . We perform the nonperturbative computation of the Yukawa coupling based on the improved ladder Schwinger-Dyson equation. It turns out that the Yukawa coupling can be larger or smaller than the standard model value, depending on the number N{sub D} of the weak doublets for each technicolor (TC) index. It is thus nontrivial whether or not the huge enhancement of the production of the scalar via the gluon fusion takes place even for a walking TC model with a colored techni-fermion. For the typical one-family TC model near conformality, it is found that the Yukawa coupling is slightly larger than the standard model one, where the expected mass of the scalar bound state is around 500 GeV. In this case, the production cross section via the gluon fusion is considerably enhanced, as naively expected, and hence such a scalar can be discovered/excluded at the early stage of the LHC.

  8. Decay Constants of B and D Mesons from Non-pertubatively Improved Lattice QCD

    SciTech Connect

    K.C. Bowler; L. Del Debbio; J.M. Flynn; G.N, Lacagnina; V.I. Lesk; C.M. Maynard; D.G. Richards

    2000-07-01

    The decay constants of B and D mesons are computed in quenched lattice QCD at two different values of the coupling. The action and operators are ? (a) improved with non-perturbative coefficients where available. The results and systematic errors are discussed in detail. Results for vector decay constants, flavour symmetry breaking ratios of decay constants, the pseudoscalar-vector mass splitting and D meson masses are also presented.

  9. About variable constants

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, J.; Albarede, F.

    2011-12-01

    When only modern isotope compositions are concerned, the choice of normalization values is inconsequential provided that their values are universally accepted. No harm is done as long as large amounts of standard reference material with known isotopic differences with respect to the reference value ('anchor point') can be maintained under controlled conditions. For over five decades, the scientific community has been referring to an essentially unavailable SMOW for stable O and H isotopes and to a long-gone belemnite sample for carbon. For radiogenic isotopes, the isotope composition of the daughter element, the parent-daughter ratio, and a particular value of the decay constant are all part of the reference. For the Lu-Hf system, for which the physical measurements of the decay constant have been particularly defective, the reference includes the isotope composition of Hf and the Lu/Hf ratio of an unfortunately heterogeneous chondrite mix that has been successively refined by Patchett and Tatsumoto (1981), Blichert-Toft and Albarede (1997, BTA), and Bouvier et al. (2008, BVP). The \\varepsilonHf(T) difference created by using BTA and BVP is nearly within error (+0.45 epsilon units today and -0.36 at 3 Ga) and therefore of little or no consequence. A more serious issue arises when the chondritic reference is taken to represent the Hf isotope evolution of the Bulk Silicate Earth (BSE): the initial isotope composition of the Solar System, as determined by the indistinguishable intercepts of the external eucrite isochron (Blichert-Toft et al., 2002) and the internal angrite SAH99555 isochron (Thrane et al., 2010), differs from the chondrite value of BTA and BVP extrapolated to 4.56 Ga by ~5 epsilon units. This difference and the overestimated value of the 176Lu decay constant derived from the slopes of these isochrons, have been interpreted as reflecting irradiation of the solar nebula by either gamma (Albarede et al., 2006) or cosmic rays (Thrane et al., 2010) during

  10. Systematics of cluster-radioactivity-decay constants as suggested by microscopic calculations

    SciTech Connect

    Blendowske, R.; Walliser, H.

    1988-10-24

    In the microscopic approach the decay constant of cluster radioactivity is determined by the preformation probability for the open channel multiplied with the Gamov penetrability. The preformation probability is found to possess a simple mass dependence on the emitted cluster. This observation leads to a formula for order-of-magnitude estimates of absolute decay constants. The estimates are in excellent agreement with available experimental data. Predictions for as-yet unmeasured decay rates are made.

  11. Precision and accuracy of decay constants and age standards

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2011-12-01

    40 years of round-robin experiments with age standards teach us that systematic errors must be present in at least N-1 labs if participants provide N mutually incompatible data. In EarthTime, the U-Pb community has produced and distributed synthetic solutions with full metrological traceability. Collector linearity is routinely calibrated under variable conditions (e.g. [1]). Instrumental mass fractionation is measured in-run with double spikes (e.g. 233U-236U). Parent-daughter ratios are metrologically traceable, so the full uncertainty budget of a U-Pb age should coincide with interlaboratory uncertainty. TIMS round-robin experiments indeed show a decrease of N towards the ideal value of 1. Comparing 235U-207Pb with 238U-206Pb ages (e.g. [2]) has resulted in a credible re-evaluation of the 235U decay constant, with lower uncertainty than gamma counting. U-Pb microbeam techniques reveal the link petrology-microtextures-microchemistry-isotope record but do not achieve the low uncertainty of TIMS. In the K-Ar community, N is large; interlaboratory bias is > 10 times self-assessed uncertainty. Systematic errors may have analytical and petrological reasons. Metrological traceability is not yet implemented (substantial advance may come from work in progress, e.g. [7]). One of the worst problems is collector stability and linearity. Using electron multipliers (EM) instead of Faraday buckets (FB) reduces both dynamic range and collector linearity. Mass spectrometer backgrounds are never zero; the extent as well as the predictability of their variability must be propagated into the uncertainty evaluation. The high isotope ratio of the atmospheric Ar requires a large dynamic range over which linearity must be demonstrated under all analytical conditions to correctly estimate mass fractionation. The only assessment of EM linearity in Ar analyses [3] points out many fundamental problems; the onus of proof is on every laboratory claiming low uncertainties. Finally, sample

  12. The decay constants f(B) and f(D+) from three-flavor lattice QCD

    SciTech Connect

    Bernard, C.; DeTar, C.; Di Pierro, M.; El-Khadra, A.X.; Evans, R.T.; Freeland, E.; Gamiz, E.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; Jain, R.; /Illinois U., Urbana /Fermilab /Fermilab /Washington U., St. Louis

    2007-01-01

    We present new preliminary results for the leptonic decay constants f{sub B} and f{sub D+} determined in 2+1 flavor lattice QCD at lattice spacings a = 0.09, 0.12 and 0.15 fm. Results are obtained using the MILC Collaboration gauge configuration ensembles, clover heavy quarks in the Fermilab interpretation and improved staggered light quarks. Decay constants, computed at partially quenched combinations of the valence and sea light quark masses, are used to determine the low-energy parameters of staggered chiral perturbation theory. The physical decay constants are found in an extrapolation using the parameterized chiral formula.

  13. Leptonic B- and D-Meson Decay Constants with 2+1 Flavors of Asqtad Fermions

    SciTech Connect

    Neil, Ethan T.; Simone, James N.; Van de Water, Ruth S.; Kronfeld, Andreas S.

    2015-01-08

    We present the status of our updated D- and B-meson decay-constant analysis, based on the MILC Nf =2+1 asqtad gauge ensembles. Heavy quarks are incorporated using the Wilson clover action with the Fermilab interpretation. This analysis includes ensembles at five lattice spacings from α ≈ 0.045 to 0.15 fm, and light sea-quark masses down to 1/20th of the strange-quark mass. Projected error budgets for ratios of decay constants, in particular between bottom- and charm-meson decay constants, are presented.

  14. Decay constants of the pion and its excitations on the lattice.

    SciTech Connect

    Mastropas, Ekaterina V.; Richards, David G.

    2014-07-01

    We present a calculation using lattice QCD of the ratios of decay constants of the excited states of the pion, to that of the pion ground state, at three values of the pion mass between 400 and 700 MeV, using an anisotropic clover fermion action with three flavors of quarks. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass. The strong suppression of the decay constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.

  15. Decay constants of the pion and its excitations on the lattice

    SciTech Connect

    Mastropas, Ekaterina V.; Richards, David G.

    2014-06-23

    We present a lattice QCD calculation of the ratios of decay constants of the excited states of the pion, to that of the pion ground state. We use an anisotropic clover fermion action with three flavors of quarks, and study the pion decay constants at three values of the light-quark masses, corresponding to pion masses of 391, 524 and 702 MeV. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass. The strong suppression of the decay constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.

  16. B and D meson decay constants from 2+1 flavor improved staggered simulations

    SciTech Connect

    Neil, E.T.; Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Di Pierro, M.; El-Khadra, A.X.; Evans, R.T.; Freeland, E.; Gamiz, E.

    2011-12-01

    We give an update on simulation results for the decay constants f{sub B}; f{sub B{sub s}}, f{sub D} and f{sub D{sub s}}. These decay constants are important for precision tests of the standard model, in particular entering as inputs to the global CKM unitarity triangle fit. The results presented here make use of the MILC (2+1)-flavor asqtad ensembles, with heavy quarks incorporated using the clover action with the Fermilab method. Partially quenched, staggered chiral perturbation theory is used to extract the decay constants at the physical point. In addition, we give error projections for a new analysis in progress, based on an extended data set.

  17. Lattice study of the leptonic decay constant of the pion and its excitations

    SciTech Connect

    Mastropas, Ekaterina; Richard, David

    2014-11-01

    We present a calculation of the decay constant of the pion, and its lowest-lying three excitations, at three values of the pion mass between around 400 and 700 MeV, using anisotropic clover lattices. We use the variational method to determine an optimal interpolating operator for each of the states. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass.

  18. Pion Decay Constant, Z{sub A} and Chiral Log from Overlap Fermions

    SciTech Connect

    Shao-Jing Dong; Terrence Draper; Ivan Horvath; Frank X. Lee; Jianbo Zhang

    2002-03-01

    We report our calculation of the pion decay constant f{sub {pi}}, the axial renormalization constant Z{sub A}, and the quenched chiral logarithms from the overlap fermions. The calculation is done on a quenched 20{sup 4} lattice at a=0.148 fm using tree level tadpole improved gauge action. The smallest pion mass we reach is about 280 MeV. The lattice size is about 4 times the Compton wavelength of the lowest mass pion.

  19. Numerical simulation of the decay of swirling flow in a constant volume engine simulator

    SciTech Connect

    Cloutman, L.D.

    1986-05-01

    The KIVA and COYOTE computer programs were used to simulate the decay of turbulent swirling flow in a constant-volume combustion bomb. The results are in satisfactory agreement with the measurement of both swirl velocity and temperature. Predictions of secondary flows and suggestions for future research also are presented. 14 refs., 15 figs.

  20. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  1. On the correlation between exciter duration and decay constant of solar decameter Type III radio bursts

    NASA Astrophysics Data System (ADS)

    Subramanian, K. R.; Krishan, V.; Sastry, Ch. V.

    1981-04-01

    It is observed that while there exists a strong correlation between the decay constant and the exciter duration for isolated Type III radio bursts, it is absent for those Type III radio bursts which are preceded by Type IIIb radio bursts. A possible theoretical explanation for the presence of correlation in one case and lack of it in the other is proposed.

  2. High-precision calculation of the branching ratio of the 40K decay constant.

    NASA Astrophysics Data System (ADS)

    Jourdan, F.

    2008-12-01

    40K is of great importance in Earth science, particularly for K/Ar, 40Ar/39Ar and K/Ca geochronology. The decay scheme of the 40K includes two different modes of decay, beta and electron capture followed by gamma-ray emission, which yield two different products, 40Ca* and 40Ar*. The relative probability that 40K decay following one of the two schemes is known as the branching ratio. An original method of calculation to obtain the value of the 40K branching ratio (λβ- /λtot) based on the K/Ar technique, is proposed. λβ- /λtot is obtained by combining the 40Ar*/40K value of Fish Canyon sanidine (FCs) secondary standard derived from four primary 40Ar/39Ar standards, with the current best estimates of the age of FCs and the value of the 40K total decay constant. The latest estimation of the 40K total decay constant and the age of FCs by Mundil et al. (2006), through comparison with U/Pb ages, yields a λβ- /λtot value of 89.59 ± 0.03% (1σ; relative error = ± 0.035%). Indirect measurement of the age of FCs by orbital tuning (Kuiper et al., 2008) combined with the value of 40K total decay constant measured by liquid scintillation counting by Kossert and Gunther (2004) yields a statistically indistinguishable value for the branching ratio of 89.61 ± 0.03%, with an average between the two values of 89.60 ± 0.04%. The method proposed here allows can easily be applied to further constrain the value of the 40K branching ratio as future refinements of the 40K decay constant and FCs age are produced, although it is expected that the adopted value will be close to λβ- /λtot = 89.60 ± 0.04%. Kossert and Gunther, 2004. Appl. Radiat. Isot. 60, 459-464. Kuiper et al., 2008. Science 320, 500-504. Mundil et al. 2006, Eos Trans. AGU, 87(52)

  3. The decay constants f(B+) and f(D+) from three-flavor lattice QCD

    SciTech Connect

    Bernard, C.; DeTar, Carleton; Levkova, L.; Di Pierro, Massimo; El-Khadra, Aida Xenia; Evans, R.T.; Jain, R.; Freeland, Elizabeth Dawn; Gottlieb, Steven A.; Heller, Urs M.; Hetrick, James E.; /U. Pacific, Stockton /Fermilab /Simon Fraser U. /Arizona U. /UC, Santa Barbara

    2006-01-01

    We present new results for f{sub B+} and f{sub D+} from the MILC 2+1 flavor a = 0.09fm 'fine' lattice. We use clover heavy quarks in the Fermilab interpretation and improved staggered light quarks. Lattice results from partially quenched QCD fix the parameters of staggered chiral perturbation theory which is used in the extrapolation to the physical decay constants.

  4. Heavy-Quark Mass and Heavy-Meson Decay Constants from QCD Sum Rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-05-23

    We present a sum-rule extraction of decay constants of heavy mesons from the two-point correlator of heavy-light pseudoscalar currents. Our primary concern is to control the uncertainties of the decay constants, induced by both input QCD parameters and limited accuracy of the sum-rule method. Gaining this control is possible by applying our novel procedure for the extraction of hadron observables utilizing Borel-parameter-depending dual thresholds. For the charmed mesons, we obtain f{sub D} (206.2{+-}7.3{sub (OPE){+-}}5.1{sub (syst)}) MeV and f{sub D{sub s}} (245.3{+-}15.7{sub (OPE){+-}}4.5{sub (syst)}) MeV. In the case of the beauty mesons, the decay constants prove to be extremely sensitive to the exact value of the b-quark MS mass m-bar{sub b}(m-bar{sub b}). By matching our sum-rule prediction for f{sub B} to the lattice outcomes, the very accurate b-mass value m-bar{sub b}(m-bar{sub b}) = (4.245{+-}0.025) GeV is found, which yields f{sub B} = (193.4{+-}12.3{sub (OPE){+-}}4.3{sub (syst)}) MeV and f{sub B{sub s}} (232.5{+-}18.6{sub (OPE){+-}}2.4{sub (syst)}) MeV.

  5. Systematic and Statistical Errors Associated with Nuclear Decay Constant Measurements Using the Counting Technique

    NASA Astrophysics Data System (ADS)

    Koltick, David; Wang, Haoyu; Liu, Shih-Chieh; Heim, Jordan; Nistor, Jonathan

    2016-03-01

    Typical nuclear decay constants are measured at the accuracy level of 10-2. There are numerous reasons: tests of unconventional theories, dating of materials, and long term inventory evolution which require decay constants accuracy at a level of 10-4 to 10-5. The statistical and systematic errors associated with precision measurements of decays using the counting technique are presented. Precision requires high count rates, which introduces time dependent dead time and pile-up corrections. An approach to overcome these issues is presented by continuous recording of the detector current. Other systematic corrections include, the time dependent dead time due to background radiation, control of target motion and radiation flight path variation due to environmental conditions, and the time dependent effects caused by scattered events are presented. The incorporation of blind experimental techniques can help make measurement independent of past results. A spectrometer design and data analysis is reviewed that can accomplish these goals. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  6. High-precision lattice calculation of the decay constants fB and fBs

    NASA Astrophysics Data System (ADS)

    Detar, Carleton; Bazavov, Alexei; Bernard, Claude; Bouchard, Christopher; Brown, Nathan; Du, Daping; El Khadra, Aida; Freeland, Elizabeth; Gamiz, Elvira; Gottlieb, Steven; Na, Heechang; Heller, Urs; Komijani, Javad; Kronfeld, Andreas; Laiho, John; MacKenzie, Paul; Neil, Ethan; Simone, James; Sugar, Robert; Toussaint, Douglas; van de Water, Ruth; Zhou, Ran; Fermilab Lattice Collaboration; MILC Collaboration

    2016-03-01

    We present preliminary, high-precision results for the hadronic decay constants of the B and the Bs mesons from lattice QCD simulations using a highly improved quark formulation for both heavy and light valence quarks. Calculations are carried out with several heavy valence-quark masses on lattice ensembles with 2+1+1 flavors of HISQ sea quarks at five lattice spacings and three light sea quark mass ratios mud /ms , including approximately physical sea quark masses. This range of parameters provides excellent control of the continuum limit and of heavy-quark discretization errors. Present affiliation: Ohio Supercomputer Center.

  7. Volume behavior of quark condensate, pion mass, and decay constant from Dyson-Schwinger equations

    SciTech Connect

    Luecker, Jan; Williams, Richard; Fischer, Christian S.

    2010-05-01

    We solve the coupled system of Dyson-Schwinger and Bethe-Salpeter equations for the quark propagator and the pion Bethe-Salpeter amplitude on a finite volume. To this end we use a truncation scheme that includes pion cloud effects in the quark propagator and light mesons. We study volume effects in the quark condensate, the pion mass, and the pion decay constant and compare to corresponding results in other approaches. In general we find large effects for volumes below V=(1.8 fm){sup 4}.

  8. Charmed-Meson Decay Constants in Three-Flavor Lattice QCD

    SciTech Connect

    Aubin, C.; Bernard, C.; DeTar, C.; Maresca, F.; Di Pierro, M.; Freeland, E.D.; Gottlieb, Steven; Levkova, L.; Heller, U.M.; Hetrick, J.E.; El-Khadra, A.X.; Menscher, D.; Kronfeld, A.S.; Mackenzie, P.B.; Okamoto, M.; Simone, J.; Nobes, M.; Renner, D.; Toussaint, D.; Sugar, R.

    2005-09-16

    We present the first lattice QCD calculation with realistic sea quark content of the D{sup +}-meson decay constant f{sub D{sup +}}. We use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f{sub D{sup +}}=201{+-}3{+-}17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f{sub D{sub s}}=249{+-}3{+-}16 MeV for the D{sub s} meson.

  9. Structure and decay constant of the {rho} meson within the Bethe-Salpeter equation

    SciTech Connect

    Wang, Z. G.; Wan, S. L.

    2007-08-15

    In this article, we study the structure of the {rho} meson in the framework of the coupled rainbow Schwinger-Dyson equation and ladder Bethe-Salpeter equation with a confining effective potential. The u and d quark propagators get significantly modified, the mass poles are absent in the timelike region, which implements confinement naturally. The Bethe-Salpeter amplitudes of the {rho} meson center around zero momentum and extend to the energy scale about q{sup 2}=1 GeV{sup 2}, which happens to be the energy scale of chiral symmetry breaking, strong interactions in the infrared region result in bound state. The numerical results of the mass and decay constant of the {rho} meson are in agreement with the experimental data.

  10. Decay Constants $f_B$ and $f_{B_s}$ from HISQ Simulations

    SciTech Connect

    Bazavov, A.; et al.

    2015-11-06

    We give a progress report on a project aimed at a high-precision calculation of the decay constants $f_B$ and $f_{B_s}$ from simulations with HISQ heavy and light valence and sea quarks. Calculations are carried out with several heavy valence-quark masses on ensembles with 2+1+1 flavors of HISQ sea quarks at five lattice spacings and several light sea-quark mass ratios $m_{ud}/m_s$, including approximately physical sea-quark masses. This range of parameters provides excellent control of the continuum limit and of heavy-quark discretization errors. We present a preliminary error budget with projected uncertainties of 2.2~MeV and 1.5~MeV for $f_B$ and $f_{B_s}$, respectively.

  11. Determination of the Rubidium Decay Constant by Age Comparison Against the U-Pb System

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Mezger, K.; Scherer, E. E.; Davies, G. R.

    2006-12-01

    The currently accepted Rb decay constant (λ 87Rb) was suggested by the Subcommission on Geochronology [1] is 1.42 x 10-11yr-1, and has a potential precision at the percent level at best [2]. This value has been used in most Rb-Sr studies in the last three decades. Several attempts to refine λ87Rb by different techniques yielded results that, despite excellent reported precisions, differed from the proposed value and also from each other. In a recent evaluation of published calibrations of the decay constant, Begemann et al. [2] suggested a lower value [~ 1.40 x 10-11yr-1] but also called for a re-determination of λ87Rb to check its accuracy and significantly improve the precision. Subsequent re-determinations [3,4] yielded values that differ significantly from each other and from that proposed by the Subcommission on Geochronology [1], one of which being higher [3], the other one lower [4] than the recommended value. Therefore, at present, there is no consensus on the λ87Rb to be used in Rb-Sr chronology. Here we report three individual determinations of λ87Rb by the method of age comparison. This entails solving for λ87Rb using 1) the measured slopes of high precision Rb-Sr isochrons from igneous rocks and minerals and 2) the emplacement ages of these samples as determined by the precise and presumably accurate U-Pb method. The precision of the measured 87Rb/86Sr has been improved to ~0.2% by measuring Rb concentrations by isotope dilution MC-ICPMS [5] (cf. ~1% for TIMS data). A challenging aspect of Rb-Sr studies is that of spike calibration, which is generally performed using standards prepared from salts of Rb and Sr rather than pure metals. The Rb/Sr values of individual spikes calibrated against two standard solutions made from different salts (iodide and carbonate) agree to within 0.15%, strongly suggesting that the stoichiometry of the salts, after careful dehydration, is sufficiently ideal for accurate spike calibrations. The calibration was checked

  12. The decay constants fDs and fD+ form lattice QCD

    SciTech Connect

    Simone, James N

    2011-03-01

    Recent calculations of the decay constants in lattice QCD are reviewed and compared to experiment. The decay constants are tabulated in Table 2 and plotted in Figure 2. The most precise f{sub Ds} value is from HPQCD. It is about 2{sigma} higher than their previous result. The change is due to a more precise determination of the lattice spacing and better tuning of the quark masses. They have updated f{sub D+} using the new f{sub Ds} and their older f{sub Ds}/f{sub D+} ratio which is expected to be less sensitive to mistuning of the lattice spacing and masses. The preliminary FNAL/MILC f{sub Ds} value is about 1.4{sigma} higher than the HPQCD result but with a larger error. The f{sub D+} values, however, are in better agreement. FNAL/MILC expect to finalize their results once the charm quark mass tuning is complete. The two flavor ETM f{sub D+} value is about 1.6{sigma} lower than the HPQCD value while f{sub Ds} is in better agreement. It is not clear how much of the difference is from neglecting the strange sea quark, given the errors. Lattice and experiment differ most significantly for f{sub Ds}. Figure 3 shows Kronfeld's (updated) history of f{sub Ds}. The yellow bands depict the evolution of the experimental average while the three-flavor lattice average is shown in grey. The right-hand scale and green lines show the differences in sigmas. The 3.8{sigma} discrepancy around t {approx} 2 provoked the 'f{sub Ds} puzzle'. That discrepancy has now shrunk to 1.6{sigma}. Future lattice and experiment will be decisive.

  13. Mass spectrum of vector mesons and their leptonic-decay constants in the bilocal relativistic potential model

    SciTech Connect

    Ablakulov, Kh. Narzikulov, Z.

    2015-01-15

    A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants.

  14. B- and D-meson decay constants from three-flavor lattice QCD

    SciTech Connect

    Bazavov, A.; et al.

    2012-06-01

    We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gauge configurations which include the effects of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-quark masses (down to ~m_s/10) and at three lattice spacings (a ~ 0.15, 0.12, and 0.09 fm) and extrapolate to the physical up and down quark masses and the continuum using expressions derived in heavy-light meson staggered chiral perturbation theory. We renormalize the heavy-light axial current using a mostly nonperturbative method such that only a small correction to unity must be computed in lattice perturbation theory and higher-order terms are expected to be small. We obtain f_{B^+} = 196.9(8.9) MeV, f_{B_s} = 242.0(9.5) MeV, f_{D^+} = 218.9(11.3) MeV, f_{D_s} = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios f_{B_s}/f_{B} = 1.229(26) and f_{D_s}/f_{D} = 1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties added in quadrature.

  15. Decay constants and mixing parameters in a relativistic model for a q{bar Q} system

    SciTech Connect

    Ahmady, M.R.; Mendel, R.R.; Talman, J.D.

    1997-01-01

    We extend our recent work, in which the Dirac equation with a {open_quotes}(asymptotically free) Coulomb + (Lorentz scalar {gamma}{sub 0}{sigma}r) linear{close_quotes} potential is used to obtain the light quark wave function for q{bar Q} mesons in the limit m{sub Q}{r_arrow}{infinity}, to estimate the decay constant f{sub P} and the mixing parameter B of the pseudoscalar mesons. We compare our results for the evolution of f{sub P} and B with the meson mass M{sub P} to the nonrelativistic formulas for these quantities and show that there is a significant correction in the subasymptotic region. For {sigma}=0.14 GeV{sup {minus}2} and {Lambda}{sub {ovr MS}}=0.240 GeV we obtain f{sub D}=0.371, f{sub D{sub s}}=0.442, f{sub B}=0.301, f{sub B{sub s}}=0.368 GeV, and B{sub D}=0.88, B{sub D{sub s}}=0.89, B{sub B}=0.95, B{sub B{sub s}}=0.96,andB{sub K}=0.60. {copyright} {ital 1997} {ital The American Physical Society}

  16. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules

    PubMed Central

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-01-01

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465

  17. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules.

    PubMed

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-06-27

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules.

  18. Measurement of the Ds+→ℓ+νℓ branching fractions and the decay constant fDs+

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2016-10-01

    Using 482 pb-1 of e+e- collision data collected at a center-of-mass energy of √{s }=4.009 GeV with the BESIII detector, we measure the branching fractions of the decays Ds+→μ+νμ and Ds+→τ+ντ. By constraining the ratio of decay rates of Ds+ to τ+ντ and to μ+νμ to the Standard Model prediction, the branching fractions are determined to be B (Ds+→μ+νμ)=(0.495 ±0.067 ±0.026 )% and B (Ds+→τ+ντ)=(4.83 ±0.65 ±0.26 )%. Using these branching fractions, we obtain a value for the decay constant fDs+ of (241.0 ±16.3 ±6.5 ) MeV , where the first error is statistical and the second systematic.

  19. Real-time method and apparatus for measuring the decay-time constant of a fluorescing phosphor

    DOEpatents

    Britton, Jr., Charles L.; Beshears, David L.; Simpson, Marc L.; Cates, Michael R.; Allison, Steve W.

    1999-01-01

    A method for determining the decay-time constant of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.

  20. Temperature, pressure and deuterium effects on the phosphorescence decay-rate constant of naphthalene in a single crystal of durene

    NASA Astrophysics Data System (ADS)

    Hoshi, Nagahiro; Yamauchi, Seigo; Hirota, Noboru

    1990-06-01

    It is suggested that the hitherto unexplained drastic temperature, pressure and external deuterium isotope effects on the phosphorescence decay-rate constant ( kT) of naphthalene in a single crystal of durene can be consistently explained in terms of the photoinduced hydrogen-abstraction reaction of triplet naphthalene from durene in which tunneling plays an essential role. This suggestion is supported by calculations based on the "golden rule" approach to tunneling developed by Siebrand, Wildman and Zgierski.

  1. Distribution amplitudes and decay constants for ({pi},K,{rho},K*) mesons in the light-front quark model

    SciTech Connect

    Choi, Ho-Meoyng; Ji, Chueng-Ryong

    2007-02-01

    We present a calculation of the quark distribution amplitudes (DAs), the Gegenbauer moments, and decay constants for {pi}, {rho}, K, and K* mesons using the light-front quark model. While the quark DA for {pi} is somewhat broader than the asymptotic one, that for {rho} meson is very close to the asymptotic one. The quark DAs for K and K* show asymmetric form due to the flavor SU(3)-symmetry breaking effect. The decay constants for the transversely polarized {rho} and K* mesons (f{sub {rho}}{sup T} and f{sub K*}{sup T}) as well as the longitudinally polarized ones (f{sub {rho}} and f{sub K*}) are also obtained. Our averaged values for f{sub V}{sup T}/f{sub V}, i.e. (f{sub {rho}}{sup T}/f{sub {rho}}){sub av}=0.78 and (f{sub K*}{sup T}/f{sub K*}){sub av}=0.84, are found to be consistent with other model predictions. Especially, our results for the decay constants are in good agreement with the SU(6) symmetry relation, f{sub {rho}}{sub (K*)}{sup T}=(f{sub {pi}}{sub (K)}+f{sub {rho}}{sub (K*)})/2.

  2. Temperature dependence of CsI(Tl) gamma-ray scintillation decay time constants and emission spectrum

    NASA Astrophysics Data System (ADS)

    Valentine, John; Moses, William W.; Derenzo, Stephen E.; Wehe, David K.; Knoll, Glenn F.

    1992-12-01

    The gamma-ray excited, temperature dependent scintillation characteristics of CsI(Tl) are reported over the temperature range of -100 to +50 degree(s)C. The modified Bollinger-Thomas and shaped square wave methods were used to measure the rise and decay times. The emission spectra were measured using a monochromator and corrected for monochromator and photocathode spectral efficiency. The shaped square wave method was also used to determine the scintillation yield as was a current mode method. The thermoluminescence emissions of CsI(Tl) were measured using the same current mode method. At room temperature, CsI(Tl) was found to have two primary decay components with decay time constants of (tau) (subscript 1) equals 679 +/- 10 ns (63.7%) and (tau) (subscript 2) equals 3.34 +/- 0.14 microsecond(s) (36.1%) and to have emission bands at about 400 and 560 nm. The (tau) (subscript 1) luminescent state was observed to be populated by an exponential process with a resulting rise time constant of 19.6 +/- 1.9 ns at room temperature. An ultra-fast decay component with a < 0.5 ns decay time was found to emit about 0.2% (about 100 photons/MeV) of the total scintillation light. At -100 degree(s)C (tau) (subscript 2) was too long to be resolved and (tau) (subscript 1) was determined to be 3.52 +/- 0.39 microsecond(s) , while the 400 nm emission band was not observed. At +50 degree(s)C the decay constants were found to be 628 ns (70%) and 2.63 microsecond(s) (30%) and both emission bands are present. Four different commercially available CsI(Tl) crystals were used. Minimal variations in the measured scintillation characteristics were observed among these four crystals. Thermoluminescence emissions were observed to have peak yields at -90, -65, -40, +20, and possibly -55 degree(s)C. The relative magnitudes and number of thermoluminescence peaks were found to vary from crystal to crystal.

  3. The decay constant of rubidium-87 and a combined uranium-lead, rubidium-strontium chronology of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Rotenberg, Ethan David

    The 87Rb 86Sr system is a widely used long-lived isotope geochronometer. 87Rb, the naturally occurring radioactive isotope of Rb, undergoes beta-decay to stable 87Sr with a half-life of approximately 50 Ga. Decay of 87Rb to 87Sr results in variable 87Sr/86Sr in minerals with different Rb/Sr, and measurement of 87Rb/ 86Sr and 87Sr/86Sr allows for the determination of the age of the rock. Accurate ages depend both on the quality of the isotopic analysis and on the accuracy of the 87Rb decay constant, lambda 87. Although the currently accepted value for lambda87 of 1.42 x 10-11a-1 has been in use for over 30 years, there is growing evidence that it is not accurate. Recent attempts to refine lambda87 and its precision have not reached a consensus. This thesis describes a new experiment to measure lambda 87 by 87Sr accumulation over a period of about 30 years, and the preparation of a 84-86Sr double-spike in conjunction with that experiment. Radiogenic 87Sr produced in aliquots of a RbClO4 salt was measured by isotope dilution thermal ionization mass spectrometry. An average of 31 measurements yields a value of 1.398 +/- 0.003 x 10-11a-1 . This requires a substantial revision from the previously accepted decay constant and makes Rb-Sr ages calculated with it 1.5% older. A Rb-Sr and U-Pb isotopic chronometry study was carried out on thirteen ordinary chondrites---the most common type of meteorite, the origin and history of which are still unclear. Some meteorites appear disturbed, possibly by recent shock during breakup of the parent body, whereas others yielded accurate and precise U-Pb and Pb-Pb ages. For example, L5 Elenovka yielded distinct ages for silicates (4555 Ma) and phosphates (4535 Ma), allowing the cooling rate of this meteorite from approximately 1055 K to 759 K to be constrained to 15 +/- 3 K/Ma. Rb-Sr yielded less precise ages than U-Pb, but using the new decay constant allows accurate comparison between the two methods. This study creates a firm

  4. Measurement of the pseudoscalar decay constant fDs using Ds+→τ+ν, τ+→ρ+ν¯ decays

    NASA Astrophysics Data System (ADS)

    Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Randrianarivony, K.; Reed, J.; Robichaud, A. N.; Tatishvili, G.; White, E. J.; Briere, R. A.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hunt, J. M.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Yelton, J.; Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Kornicer, M.; Mitchell, R. E.; Shepherd, M. R.; Tarbert, C. M.; Besson, D.; Pedlar, T. K.; Xavier, J.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Poling, R.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A.; Brisbane, S.; Libby, J.; Martin, L.; Powell, A.; Spradlin, P.; Wilkinson, G.; Mendez, H.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Hu, D.; Moziak, B.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Ricciardi, S.; Thomas, C.; Artuso, M.; Blusk, S.; Khalil, S.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Lincoln, A.; Smith, M. J.; Zhou, P.; Zhu, J.

    2009-12-01

    Analyzing 600pb-1 of e+e- collisions at 4170 MeV center-of-mass energy with the CLEO-c detector, we measure the branching fraction B(Ds+→τ+ν)=(5.52±0.57±0.21)% using the τ+→ρ+ν¯ decay mode. Combining with other CLEO measurements of B(Ds+→τ+ν) we determine the pseudoscalar decay constant fDs=(259.7±7.8±3.4)MeV consistent with the value obtained from our Ds+→μ+ν measurement of (257.6±10.3±4.3)MeV. Combining these measurements we find a value of fDs=(259.0±6.2±3.0)MeV, that differs from the most accurate prediction based on unquenched lattice gauge theory of (241±3)MeV by 2.4 standard deviations. We also present the first measurements of B(Ds+→K0π+π0)=(1.00±0.18±0.04)%, and B(Ds+→π+π0π0)=(0.65±0.13±0.03)%, and measure a new value for B(Ds+→ηρ+)=(8.9±0.6±0.5)%.

  5. B-meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s, and c quarks.

    PubMed

    Dowdall, R J; Davies, C T H; Horgan, R R; Monahan, C J; Shigemitsu, J

    2013-05-31

    We present the first lattice QCD calculation of the decay constants f(B) and f(B(s)) with physical light quark masses. We use configurations generated by the MILC Collaboration including the effect of u, d, s, and c highly improved staggered quarks in the sea at three lattice spacings and with three u/d quark mass values going down to the physical value. We use improved nonrelativistic QCD (NRQCD) for the valence b quarks. Our results are f(B)=0.186(4) GeV, f(B(s))=0.224(4) GeV, f(B(s))/f(B)=1.205(7), and M(B(s))-M(B)=85(2) MeV, superseding earlier results with NRQCD b quarks. We discuss the implications of our results for the standard model rates for B((s))→μ(+)μ(-) and B→τν.

  6. Determining a self-consistent set of physical constants for use in geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.

    2012-12-01

    It is widely recognized that the accuracy of isotopic dates depends on the accuracy of decay constants, which link the relative abundance of parent and daughter isotopes to the passage of time. While precise first-principles measurements of some decay constants exist (e.g. λ238U [1]), others have been measured less precisely (e.g. λ235U [1], λɛ and λβ for 40K [2]) and have been partially (e.g. λɛ and λβ for 40K [3]) or completely (e.g. λ234U, λ230Th [4], λ187Re [5], λ176Lu [6]) calibrated against more precise decay constants utilizing systems closed with respect to both chronometers. Thus, the uncertainties of many decay constants used in modern geochronology are based upon the same underlying data and are therefore correlated. These correlations (systematic uncertainties) must be considered when comparing or combining data from multiple isotopic chronometers, and quantitative results require an estimate of this correlation. However, the relationships between dates determined with different chronometers are not limited to decay constant inter-calibration. Ar-Ar dating also requires a fluence monitor of known date, which has been estimated using U-Pb data [3]. Mineral isotope ratios for other systems are typically measured against a well-characterized tracer solution (e.g. 202Pb-205Pb-233U-235U) or standard whose isotopic composition (IC) can be traced back to first-principles isotopic and purity measurements of elemental standards (e.g. NBS 981 Pb or IRMM 3636 U). These standards can influence the calculation of dates from multiple chronometers in multiple ways: for instance, the IRMM 3636 233U-236U solution could be used to (1) calibrate multiple U-Pb tracer parameters, used to calculate 206Pb/238U dates, as well as (2) determine 238U/235U ratios of accessory minerals, used to calculate 207Pb/206Pb dates, and (3) calibrate multiple U-Th tracer parameters, used to determine U-series disequilibrium dates and λ234U and λ 230Th relative to λ 238U [4

  7. Leptonic-decay-constant ratio f(K+)/f(π+) from lattice QCD with physical light quarks.

    PubMed

    Bazavov, A; Bernard, C; DeTar, C; Foley, J; Freeman, W; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kim, J; Laiho, J; Levkova, L; Lightman, M; Osborn, J; Qiu, S; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2013-04-26

    A calculation of the ratio of leptonic decay constants f(K+)/f(π+) makes possible a precise determination of the ratio of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |V(us)|/|V(ud)| in the standard model, and places a stringent constraint on the scale of new physics that would lead to deviations from unitarity in the first row of the CKM matrix. We compute f(K+)/f(π+) numerically in unquenched lattice QCD using gauge-field ensembles recently generated that include four flavors of dynamical quarks: up, down, strange, and charm. We analyze data at four lattice spacings a ≈ 0.06, 0.09, 0.12, and 0.15 fm with simulated pion masses down to the physical value 135 MeV. We obtain f(K+)/f(π+) = 1.1947(26)(37), where the errors are statistical and total systematic, respectively. This is our first physics result from our N(f) = 2+1+1 ensembles, and the first calculation of f(K+)/f(π+) from lattice-QCD simulations at the physical point. Our result is the most precise lattice-QCD determination of f(K+)/f(π+), with an error comparable to the current world average. When combined with experimental measurements of the leptonic branching fractions, it leads to a precise determination of |V(us)|/|V(ud)| = 0.2309(9)(4) where the errors are theoretical and experimental, respectively.

  8. Mass of the b quark and B -meson decay constants from Nf=2 +1 +1 twisted-mass lattice QCD

    NASA Astrophysics Data System (ADS)

    Bussone, A.; Carrasco, N.; Dimopoulos, P.; Frezzotti, R.; Lami, P.; Lubicz, V.; Picca, E.; Riggio, L.; Rossi, G. C.; Simula, S.; Tarantino, C.; ETM Collaboration

    2016-06-01

    We present precise lattice computations for the b -quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B -decay constants. We employ gauge configurations with four dynamical quark flavors, up-down, strange and charm, at three values of the lattice spacing (a ˜0.06 - 0.09 fm ) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated to the physical pion mass and to the continuum limit and read mb(MS ¯ ,mb)=4.26 (10 ) GeV , mb/mc=4.42 (8 ), mb/ms=51.4 (1.4 ), fB s=229 (5 ) MeV , fB=193 (6 ) MeV , fB s/fB=1.184 (25 ) and (fB s/fB)/(fK/fπ)=0.997 (17 ).

  9. Measurement of the D-s Decay Constant fDs and Observation of New Charm Resonances Decaying to D*π

    SciTech Connect

    Benitez, Jose

    2012-03-01

    The absolute branching fractions for the decays D-s → ℓ-$\\bar{v}$-(ℓ = e, μ, or τ) are measured using a data sample corresponding to an integrated luminosity of 521 fb-1 collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEPII e+e- collider at SLAC. The number of Ds- mesons is determined by reconstructing the recoiling system DKXγ in events of the type e+e- → DKXD*s-, where D*s- → Ds- γ and X represents additional pions from fragmentation. The Ds- → ℓ-v events are detected by full or partial reconstruction of the recoiling system DKX{gamma}ℓ. The following results are obtained: β(Ds- → μ-v) = (6.02 ± 0.38 ± 0.34) x 10-3, {Beta}(Ds-→ τ-v) = (5.00 ± 0.35 ± 0.49) x 10-2, and B(Ds- → e-ν) < 2.8 x 10-4 at 90% C.L., where the first uncertainty is statistical and the second is systematic. The branching fraction measurements are combined to determine the Ds- decay constant fDs = (258.6 ± 6.4 ± 7.5) MeV. In addition, a study has been performed of the D+π}-, D0π}+, and D*+π- systems in inclusive e+e- → cc interactions in a search for excited D meson states. The dataset used consists of {approx}454 fb-1. The mass spectra for these systems show, for the first time, candidates for the radial excitations of the D0, D*0, and D*+, as well as the L = 2 excited states of the D0 and D-, where L is the orbital angular momentum of the quarks. Finally, a prototype of a

  10. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  11. Investigation of the Fundamental Constants Stability Based on the Reactor Oklo Burn-Up Analysis

    NASA Astrophysics Data System (ADS)

    Onegin, M. S.; Yudkevich, M. S.; Gomin, E. A.

    2012-12-01

    The burn-up of few samples of the natural Oklo reactor zones 3, 5 was calculated using the modern Monte Carlo code. We reconstructed the neutron spectrum in the core by means of the isotope ratios: 147Sm/148Sm and 176Lu/175Lu. These ratios unambiguously determine the water content and core temperature. The isotope ratio of the 149Sm in the sample calculated using this spectrum was compared with experimental one. The disagreement between these two values allows one to limit a possible shift of the low lying resonance of 149Sm. Then, these limits were converted to the limits for the change of the fine structure constant α. We have found out, that for the rate of α change, the inequality ěrt˙ {α }/α ěrt<= 5× 10-18 is fulfilled, which is one order higher than our previous limit.

  12. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than

  13. Mass spectrum and leptonic decay constants of ground and radially excited states of ηc and ηb in a Bethe-Salpeter equation framework

    NASA Astrophysics Data System (ADS)

    Negash, Hluf; Bhatnagar, Shashank

    2015-04-01

    In this paper, we study the mass spectrum and decay constants of ground state (1S) and radially excited states (2S and 3S) of heavy equal mass pseudoscalar mesons, ηc and ηb. We have employed the framework of Bethe-Salpeter equation (BSE) under Covariant Instantaneous Ansatz (CIA). Our predictions are in reasonable agreement with the data on available states and results of other models.

  14. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    SciTech Connect

    Bazavov, A.; Bernard, C.; Komijani, J.; Bouchard, C. M.; DeTar, C.; Foley, J.; Levkova, L.; Du, D.; Laiho, J.; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kim, J.; Toussaint, D.; Kronfeld, A. S.; Mackenzie, P. B.; Simone, J. N.; Van de Water, R. S.; Zhou, R.; Neil, E. T.; Sugar, R.

    2014-10-30

    We compute the leptonic decay constants fD+, fDs, and fK+ and the quark-mass ratios mc/ms and ms/ml in unquenched lattice QCD using the experimentally determined value of fπ+ for normalization. We use the MILC highly improved staggered quark ensembles with four dynamical quark flavors—up, down, strange, and charm—and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from a0.06 to 0.15 fm are included in the analysis to control the extrapolation to the

  15. Joint determination of 40K decay constants and 40Ar∗/ 40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/ 39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, Paul R.; Mundil, Roland; Balco, Greg; Min, Kyoungwon; Ludwig, Kenneth R.

    2010-09-01

    40Ar/ 39Ar and K-Ar geochronology have long suffered from large systematic errors arising from imprecise K and Ar isotopic data for standards and imprecisely determined decay constants for the branched decay of 40K by electron capture and β - emission. This study presents a statistical optimization approach allowing constraints from 40K activity data, K-Ar isotopic data, and pairs of 238U- 206Pb and 40Ar/ 39Ar data for rigorously selected rocks to be used as inputs for estimating the partial decay constants ( λ ɛ and λ β) of 40K and the 40Ar∗/ 40K ratio ( κFCs) of the widely used Fish Canyon sanidine (FCs) standard. This yields values of κFCs = (1.6418 ± 0.0045) × 10 -3, λ ɛ = (0.5755 ± 0.0016) × 10 -10 a -1 and λ β = (4.9737 ± 0.0093) × 10 -10 a -1. These results improve uncertainties in the decay constants by a factor of >4 relative to values derived from activity data alone. Uncertainties in these variables determined by our approach are moderately to highly correlated (cov( κFCs, λ ɛ) = 7.1889 × 10 -19, cov( κFCs, λ β) = -7.1390 × 10 -19, cov( λ ɛ, λ β) = -3.4497 × 10 -26) and one must take account of the covariances in error propagation by either linear or Monte Carlo methods. 40Ar/ 39Ar age errors estimated from these results are significantly reduced relative to previous calibrations. Also, age errors are smaller for a comparable level of isotopic measurement precision than those produced by the 238U/ 206Pb system, because the 40Ar/ 39Ar system is now jointly calibrated by both the 40K and 238U decay constants, and because λ ɛ( 40K) < λ( 238U). Based on this new calibration, the age of the widely used Fish Canyon sanidine standard is 28.305 ± 0.036 Ma. The increased accuracy of 40Ar/ 39Ar ages is now adequate to provide meaningful validation of high-precision U/Pb or astronomical tuning ages in cases where closed system behavior of K and Ar can be established.

  16. A Measurement of the Pseudoscalar DecayConstant fDs using Charm-Tagged Events in e+e- Collisions at the Y(4S)

    SciTech Connect

    Stelzer, Jorg; /Stanford U., Phys. Dept. /SLAC

    2006-10-10

    The decay constant f{sub D{sub s}} of the pseudoscalar strange charm meson D{sub s}{sup +} is an important benchmark test of the theoretical methods that quantitatively describe the nonperturbative low-energy regime of QCD, the theory of the strong interaction. A confirmation of the validity of these predictive methods, foremost lattice QCD, in the sector of heavy-light meson decay constants increases trust in the calculation of f{sub B}, which is an important number for the measurement of the CKM matrix element V{sub td} in B{sup 0}{bar B}{sup 0}-mixing events. From October 1999 through July 2004, the BABAR experiment, located at the PEP-II storage ring at the Stanford Linear Accelerator Center, collected 230.2 fb{sup -1} of data in e{sup +}e{sup -} collision at {radical}s = 10.58 GeV. In this thesis, these data are searched for e{sup +}e{sup -} {yields} c{bar c} events by identifying sets of charged and neutral pions and charged kaons, consistent with the decay of a charm meson, D{sup 0}, D{sup +}, D{sub s}{sup +}, or D*{sup +}. A sample of 510,000 charmed mesons with a momentum consistent with e{sup +}e{sup -} {yields} c{bar c} events is identified.

  17. Measurement of the Branching Fraction for D8+ rarr tau+nu_tau and Extraction of the Decay Constant f_D_s

    SciTech Connect

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; Hawkes, C.M.; /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-06-04

    The branching fraction for the decay D{sub s}{sup +} {yields} {tau}{sup +}{nu}{sub {tau}} with {tau}{sup +} {yields} e{sup +}{bar {nu}}{sub {tau}}, is measured using a data sample corresponding to an integrated luminosity of 427 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. In the process e{sup +}e{sup -} {yields} c{bar c} {yields} D*{sub s}{sup +} {bar D}{sub TAG}{bar K}X, the D*{sub s}{sup +} meson is reconstructed as a missing particle, and the subsequent decay D*{sub s}{sup +} {yields} D{sub s}{sup +}{gamma} yields an inclusive D{sub s}{sup +} data sample. Here {bar D}{sub TAG} refers to a fully reconstructed hadronic {bar D} decay, {bar K} is a K{sup -} or {bar K}{sup 0}, and X stands for any number of charged or neutral pions. The decay D{sub s}{sup +} {yields} K{sub S}{sup 0}K{sup +} is isolated also, and from ratio of event yields and known branching fractions, {Beta}(D{sub s}{sup +} {yields} {tau}{sup +}{nu}{sub {tau}}) = (4.5 {+-} 0.5 {+-} 0.4 {+-} 0.3)% is determined. The pseudoscalar decay constant is extracted to be f{sub D{sub s}} = (233 {+-} 13 {+-} 10 {+-} 7) MeV, where the first uncertainty is statistical, the second is systematic, and the third results from the uncertainties on the external measurements used as input to the calculation.

  18. Search for D/sup +/. -->. mu. /sup +/ nu/sub mu/ decay, and the pseudoscalar decay constant f/sub D/

    SciTech Connect

    Becker, J.J.; Blaylock, G.T.; Bolton, T.; Brown, J.S.; Bunnell, K.O.; Burnett, T.H.; Cassell, R.E.; Coffman, D.; Cook, V.; Coward, D.H.

    1987-02-01

    Results of a search for the purely leptonic decay D/sup +/ ..-->.. ..mu../sup +/nu/sub ..mu../ using the Mark III detector at SPEAR are reported. No signal is observed in a data sample of 9.3 pb/sup -1/ collected at the psi(3770) resonance, where 1.2 +- 0.16 (stat.)/sub -0.20//sup +0.24/ background events are expected. The 90% CL upper limit on the branching ratio B(D/sup +/ ..-->.. ..mu../sup +/nu/sub ..mu../) is found to be 8.4 x 10/sup -4/, corresponding to an upper limit on f/sub D/ of 340 MeV/c/sup 2/. This limit has implications for the theoretical understanding of differences in D/sup 0/ and D/sup +/ lifetimes, D/sup 0/ anti D/sup 0/ and B/sup 0/ anti B/sup 0/ mixing, and provides a test of the non-relativistic potential model. 20 refs., 3 figs.

  19. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model

    NASA Astrophysics Data System (ADS)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.

    2015-06-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.

  20. Assessment of the 187Re decay constant by cross calibration of Re Os molybdenite and U Pb zircon chronometers in magmatic ore systems

    NASA Astrophysics Data System (ADS)

    Selby, David; Creaser, Robert A.; Stein, Holly J.; Markey, Richard J.; Hannah, Judith L.

    2007-04-01

    The past decade has seen renewed interest in 187Re- 187Os geochronology using a variety of matrices including sulfide minerals, shales and meteorites. The most widely used value of the 187Re decay constant ( λ187Re) is 1.666 ± 0.005 × 10 -11 a -1 (±0.31%), which is based on cross calibration of Re-Os and Pb-Pb chronometers for certain meteorites [Smoliar M. I., Walker R. J., and Morgan J. W. (1996) Re-Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science271, 1099-1102]. However, other recent studies have yielded alternate values of λ187Re, based upon either direct counting experiments or analysis of meteorites. Here, we provide an independent assessment of λ187Re, using methodology, sample materials, and preparation of Os standard solutions different from those of Smoliar et al. (1996). Combining Re-Os age data for molybdenite formed in magmatic ore deposits, with the U-Pb zircon age of the magmatic rocks, a refined λ187Re value is determined by averaging 11 individual cross-calibration experiments spanning ca. 2700 Ma of Earth history. Using the U decay constants of Jaffey [Jaffey A. H., Flynn K. F., Glendenin L. E., Bentley W. C., and Essling A. M. (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev.4, 1889-1906], a value for λ187Re of 1.6668 ± 0.0034 × 10 -11 a -1 is determined. Using the λ238U value of Jaffey et al. (1971) and λ235U value of Schoene [Schoene B., Crowley J. L., Condon D. J., Schmitz M. D., and Bowring S. A. (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta70, 426-445], a value for λ187Re of 1.6689 ± 0.0031 × 10 -11 a -1 is determined. These values are nominally higher (ca. 0.1 and ca. 0.2%) than the value determined by Smoliar et al. [Smoliar M. I., Walker R. J., and Morgan J. W. (1996) Re-Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science271

  1. A Frequency Metrology approach to Newtonian constant G determination using a pair of extremely high Q simple pendulums in free decay

    NASA Astrophysics Data System (ADS)

    De Marchi, A.

    2016-06-01

    It is argued that simple pendulums exhibiting Q values in excess of 108 can be realized by using high strength fibres to suspend in vacuum a bob of less than 10-3 kg. For a 1 m long pendulum this means damping time constants of several years, long enough to allow experiments in free decay mode, maximizing in this way the expected short term frequency stability. A dual pendulum experiment based on this projection is discussed, which common-modes seismic noise and is expected to yield 10-5 uncertainty on Big G. The value of the latter can be obtained from the variation in relative frequency difference between the two pendulums when they are subjected to well controlled variations of the gravitational field. A discussion is given of Type A and Type B uncertainty contributions, and a tentative accuracy budget is projected.

  2. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect

    Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; Kawanai, Taichi; Lehner, Christoph; Soni, Amarjit; Van de Water, Ruth S.; Witzel, Oliver

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  3. Origin of Excess 176Hf in Meteorites

    NASA Astrophysics Data System (ADS)

    Thrane, Kristine; Connelly, James N.; Bizzarro, Martin; Meyer, Bradley S.; The, Lih-Sin

    2010-07-01

    After considerable controversy regarding the 176Lu decay constant176Lu), there is now widespread agreement that (1.867 ± 0.008) × 10-11 yr-1 as confirmed by various terrestrial objects and a 4557 Myr meteorite is correct. This leaves the 176Hf excesses that are correlated with Lu/Hf elemental ratios in meteorites older than ~4.56 Ga meteorites unresolved. We attribute 176Hf excess in older meteorites to an accelerated decay of 176Lu caused by excitation of the long-lived 176Lu ground state to a short-lived 176m Lu isomer. The energy needed to cause this transition is ascribed to a post-crystallization spray of cosmic rays accelerated by nearby supernova(e) that occurred after 4564.5 Ma. The majority of these cosmic rays are estimated to penetrate accreted material down to 10-20 m, whereas a small fraction penetrate as deep as 100-200 m, predicting decreased excesses of 176Hf with depth of burial at the time of the irradiation event.

  4. ORIGIN OF EXCESS {sup 176}Hf IN METEORITES

    SciTech Connect

    Thrane, Kristine; Connelly, James N.; Bizzarro, Martin; Meyer, Bradley S.; The, Lih-Sin

    2010-07-10

    After considerable controversy regarding the {sup 176}Lu decay constant ({lambda}{sup 176}Lu), there is now widespread agreement that (1.867 {+-} 0.008) x 10{sup -11} yr{sup -1} as confirmed by various terrestrial objects and a 4557 Myr meteorite is correct. This leaves the {sup 176}Hf excesses that are correlated with Lu/Hf elemental ratios in meteorites older than {approx}4.56 Ga meteorites unresolved. We attribute {sup 176}Hf excess in older meteorites to an accelerated decay of {sup 176}Lu caused by excitation of the long-lived {sup 176}Lu ground state to a short-lived {sup 176m}Lu isomer. The energy needed to cause this transition is ascribed to a post-crystallization spray of cosmic rays accelerated by nearby supernova(e) that occurred after 4564.5 Ma. The majority of these cosmic rays are estimated to penetrate accreted material down to 10-20 m, whereas a small fraction penetrate as deep as 100-200 m, predicting decreased excesses of {sup 176}Hf with depth of burial at the time of the irradiation event.

  5. Radioactive decay.

    PubMed

    Groch, M W

    1998-01-01

    When a parent radionuclide decays to its daughter radionuclide by means of alpha, beta, or isomeric transition, the decay follows an exponential form, which is characterized by the decay constant lambda. The decay constant represents the probability per unit time that a single radioatom will decay. The decay equation can be used to provide a useful expression for radionuclide decay, the half-life, the time when 50% of the radioatoms present will have decayed. Radiotracer half-life has direct implications in nuclear imaging, radiation therapy, and radiation safety because radionuclide half-life affects the ability to evaluate tracer kinetics and create appropriate nuclear images and also affects organ, tumor, and whole-body radiation dose. The number of radioatoms present in a sample is equal to the activity, defined as the number of transitions per unit time, divided by the decay constant; the mass of radioatoms present in a sample can be calculated to determine the specific activity (activity per unit mass). The dynamic relationship between the number of parent and daughter atoms present over time may lead to radioactive equilibrium, which takes two forms--secular and transient--and has direct relevance to generator-produced radionuclides.

  6. Measurement of the pseudoscalar decay constant fDs using charm-tagged events in e+e- collisions at square root s=10.58 GeV.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M

    2007-04-01

    Using 230.2 fb-1 of e+e- annihilation data collected with the BABAR detector at and near the peak of the Upsilon(4S) resonance, 489+/-55 events containing the pure leptonic decay Ds+-->micro;+numicro have been isolated in charm-tagged events. The ratio of partial widths Gamma(D+-->micro+numicro)/Gamma(Ds+-->phipi+) is measured to be 0.143+/-0.018+/-0.006 allowing a determination of the pseudoscalar decay constant fDs=(283+/-17+/-7+/-14) MeV. The errors are statistical, systematic, and from the Ds+-->phipi+ branching ratio, respectively. PMID:17501265

  7. Measurement of the pseudoscalar decay constant fDs using charm-tagged events in e+e- collisions at square root s=10.58 GeV.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H

    2007-04-01

    Using 230.2 fb-1 of e+e- annihilation data collected with the BABAR detector at and near the peak of the Upsilon(4S) resonance, 489+/-55 events containing the pure leptonic decay Ds+-->micro;+numicro have been isolated in charm-tagged events. The ratio of partial widths Gamma(D+-->micro+numicro)/Gamma(Ds+-->phipi+) is measured to be 0.143+/-0.018+/-0.006 allowing a determination of the pseudoscalar decay constant fDs=(283+/-17+/-7+/-14) MeV. The errors are statistical, systematic, and from the Ds+-->phipi+ branching ratio, respectively.

  8. The evaluation of half-lives and other decay data used in nuclear astrophysics and cosmochronology

    SciTech Connect

    Chechev, V. P.

    2011-12-15

    The current status of some decay data used in nuclear astrophysics and cosmochronology is presented. The half-life of {sup 79}Se has been evaluated as 3.6(3) Multiplication-Sign 10{sup 5} yr. The total energy of non-neutrino radiation released in act of {sup 37}Ar decay has been obtained being 2.709 (16) keV per disintegration. The recommended half-life values of the long-lived radionuclides (T{sub 1/2} Greater-Than-Or-Equivalent-To 10{sup 6} yr) of {sup 26}Al, {sup 40}K, {sup 53}Mn, {sup 60}Fe, {sup 87}Rb, {sup 93}Zr, {sup 98}Tc, {sup 107}Pd, {sup 129}I, {sup 135}Cs, {sup 146}Sm, {sup 176}Lu, {sup 182}Hf, {sup 187}Re, {sup 205}Pb, {sup 232}Th, {sup 235}U, {sup 238}U, {sup 244}Pu, and {sup 247}Cm are given based on the evaluations published until 2010.

  9. 40Ar/ 39Ar ages of CAMP in North America: Implications for the Triassic-Jurassic boundary and the 40K decay constant bias

    NASA Astrophysics Data System (ADS)

    Jourdan, F.; Marzoli, A.; Bertrand, H.; Cirilli, S.; Tanner, L. H.; Kontak, D. J.; McHone, G.; Renne, P. R.; Bellieni, G.

    2009-06-01

    a minor CAMP late tailing activity (190-194 Ma) which has been observed already for dykes and sills in Africa and Brazil. We speculate that, if genuine, this late activity can be due to a major extensional event, possibly heralding the oceanization process at ~ 190 Ma. Comparison between high quality U/Pb and 40Ar/ 39Ar ages of pegmatite lenses from the North Mountain basalts confirms a ~ 1% bias between the two chronometers. This discrepancy is likely attributed to the miscalibration of the 40K decay constants, in particular the electron capture branch.

  10. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  11. Recent Terrestrial Disturbance of the 176Lu-176Hf Systematics in Meteorites

    NASA Astrophysics Data System (ADS)

    Bast, R.; Scherer, E. E.; Sprung, P.; Mezger, K.; Bischoff, A.

    2016-08-01

    The Lu-Hf isotope systematics of many achondrites exhibit excessive scatter above a solar system isochron that cannot be explained by early solar system processes but by recent terrestrial weathering or contamination.

  12. NUCLEAR DATA REVIEW

    SciTech Connect

    HOLDEN,N.E.

    2004-12-01

    Non-neutron nuclear data are periodically reviewed and evaluated. The recommended values are published in the Table of the Isotopes of the Chemical Rubber Company's Handbook of Chemistry and Physics. A 2004 review has begun to re-examine some data of interest to the International Union of Geological Sciences (IUGS) sub-commission on Geochronology dealing with radioactive decay constants and isotopic abundance ratios. Among the decay constants that are being evaluated are those of the following nuclides: {sup 40}K, {sup 87}Rb, {sup 138}La, {sup 147}Sm, {sup 176}Lu, {sup 174}Hf, {sup 187}Re, {sup 190}Pt, {sup 232}Th, {sup 235}U, {sup 238}U.

  13. Tuning fork decay.

    PubMed

    Miller, G W

    1979-03-01

    Tuning fork tests are used routinely by many otologists. A different group of otologists find the tests inconsistent and unreliable. This controversy has probably developed because the audiometer has replaced the tuning fork in hearing measurement. As a result, the art of use of the tuning fork is poorly learned. This study examines decay, one of the physical parameters of tuning forks. Measurements of acoustic (sound wave) and vibration (stem movement) decay were made. Alteration in decay due to pressure changes on the fork stem were studied. Acoustic signals were generated in an anechoic chamber. Vibration measurements were obtained using an artificial mastoid. Analysis of the signals was accomplished by a system of amplifiers, filters, tape recorders, and a graphic recorder. Tuning fork sound decay is a property of the instrument which occurs every time the fork is struck. The decay is a constant in decibels per second. The acoustic mode and the vibration mode decay at similar rates for the same fork. The strike frequency (a higher frequency than the fundamental produced when the fork is struck) also has a constant decay rate in decibels per second, and it is reported here for the first time. Force of 800 gm. and less applied to the bottom of the stem in vibration measurement caused minimal decay constant changes. When the physical parameters of the tuning fork (including this information on damping) are fully studied, tuning fork testing should become more of a science and less of an art.

  14. Are Fundamental Constants Really Constant?

    ERIC Educational Resources Information Center

    Swetman, T. P.

    1972-01-01

    Dirac's classical conclusions, that the values of e2, M and m are constants and the quantity of G decreases with time. Evoked considerable interest among researchers and traces historical development by which further experimental evidence points out that both e and G are constant values. (PS)

  15. Calibration of the Lutetium-Hafnium Clock

    NASA Astrophysics Data System (ADS)

    Scherer, Erik; Münker, Carsten; Mezger, Klaus

    2001-07-01

    Well-defined constants of radioactive decay are the cornerstone of geochronology and the use of radiogenic isotopes to constrain the time scales and mechanisms of planetary differentiation. Four new determinations of the lutetium-176 decay constant176Lu) made by calibration against the uranium-lead decay schemes yield a mean value of 1.865 +/- 0.015 × 10-11 year-1, in agreement with the two most recent decay-counting experiments. Lutetium-hafnium ages that are based on the previously used λ176Lu of 1.93 × 10-11 to 1.94 × 10-11 year-1 are thus ~4% too young, and the initial hafnium isotope compositions of some of Earth's oldest minerals and rocks become less radiogenic relative to bulk undifferentiated Earth when calculated using the new decay constant. The existence of strongly unradiogenic hafnium in Early Archean and Hadean zircons implies that enriched crustal reservoirs existed on Earth by 4.3 billion years ago and persisted for 200 million years or more. Hence, current models of early terrestrial differentiation need revision.

  16. Calibration of the lutetium-hafnium clock.

    PubMed

    Scherer, E; Munker, C; Mezger, K

    2001-07-27

    Well-defined constants of radioactive decay are the cornerstone of geochronology and the use of radiogenic isotopes to constrain the time scales and mechanisms of planetary differentiation. Four new determinations of the lutetium-176 decay constant (lambda176Lu) made by calibration against the uranium-lead decay schemes yield a mean value of 1.865 +/- 0.015 x 10(-11) year(-1), in agreement with the two most recent decay-counting experiments. Lutetium-hafnium ages that are based on the previously used lambda176Lu of 1.93 x 10(-11) to 1.94 x 10(-11) year(-1) are thus approximately 4% too young, and the initial hafnium isotope compositions of some of Earth's oldest minerals and rocks become less radiogenic relative to bulk undifferentiated Earth when calculated using the new decay constant. The existence of strongly unradiogenic hafnium in Early Archean and Hadean zircons implies that enriched crustal reservoirs existed on Earth by 4.3 billion years ago and persisted for 200 million years or more. Hence, current models of early terrestrial differentiation need revision.

  17. Alpha decay in electron surrounding

    SciTech Connect

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2013-12-15

    The influence of atomic electron shells on the constant of alpha decay of heavy and mediummass nuclei was considered in detail. A method for simultaneously taking into account the change in the potential-barrier shape and the effect of reflection of a diverging Coulomb wave in the classically allowed region was developed. The ratios of decay probabilities per unit time for a bare nucleus and the respective neutral atom were found for some alpha-decaying isotopes.

  18. Tooth Decay

    MedlinePlus

    ... in your mouth made up mostly of germs. Tooth decay starts in the outer layer, called the enamel. Without a filling, the decay can get deep into the tooth and its nerves and cause a toothache or ...

  19. Beta decay of polarized neutrons

    SciTech Connect

    Bopp, P.; Dubbers, D.; Hornig, L.; Klemt, E.; Last, J.; Schuetze, H.; Freedman, S.J.; Schaerpf, O.

    1985-01-15

    Beta decay of polarized neutrons has been studied with the superconductive spectrometer PERKEO at the Institut Laue-Langevin. The energy spectrum of the ..beta..-decay asymmetry has been measured for the first time; from the absolute value of the asymmetry we obtain a new value for the ratio of weak coupling constants g/sub A//g/sub V/, which is compared to similar data from hyperon decays. The measurement of further weak interaction parameters from neutron decay is in progress.

  20. Selective photoionisation of lutetium isotopes

    SciTech Connect

    D'yachkov, Aleksei B; Kovalevich, S K; Labozin, Valerii P; Mironov, Sergei M; Panchenko, Vladislav Ya; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2012-10-31

    A three-stage laser photoionisation scheme intended for enriching the {sup 176}Lu isotope from natural lutetium was considered. An investigation was made of the hyperfine structure of the second excited state 5d6s7s {yields} {sup 4}D{sub 3/2} with an energy of 37194 cm{sup -1} and the autoionisation state with an energy of 53375 cm{sup -1} of the {sup 176}Lu and {sup 175}Lu isotopes. The total electron momentum of the autoionisation level and the constant A of hyperfine magnetic interaction were determined. Due to a small value of the isotopic shift between {sup 176}Lu and {sup 175}Lu, appreciable selectivity of their separation may be achieved with individual hyperfine structure components. The first tentative enrichment of the 176Lu isotope was performed to a concentration of 60 % - 70 %. (laser applications and other topics in quantum electronics)

  1. beta. -decay asymmetry of the free neutron

    SciTech Connect

    Bopp, P.; Dubbers, D.; Klemt, E.; Last, J.; Schuetze, H.; Weibler, W.; Freedman, S.J.; Schaerpf, O.

    1983-01-01

    The ..beta..-decay of polarized neutrons has been studied with the new superconducting spectrometer PERKEO at the ILL. The energy dependence of the ..beta..-decay asymmetry has been measured for the first time. From the measured ..beta..-asymmetry parameter we obtain a new value for the ratio of weak coupling constants g/sub A//g/sub V/. 11 references.

  2. Seal Out Tooth Decay

    MedlinePlus

    ... Topics > Tooth Decay (Caries) > Seal Out Tooth Decay Seal Out Tooth Decay Main Content What are dental ... back teeth decay so easily? Who should get seal​ants? Should sealants be put on baby teeth? ...

  3. String theory, cosmology and varying constants

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.

  4. Lu-Hf total-rock age for the Amîtsoq gneisses, West Greenland

    USGS Publications Warehouse

    Pettingill, H.S.; Patchett, P.J.

    1981-01-01

    Lu-Hf total-rock data for the Amîtsoq gneisses of West Greenland yield an age of 3.55±0.22Gy(2σ), based on the decay constant λ176Lu=1.96×10−11y−1, and an initial176Hf/177Hf ratio of 0.280482±33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 Gy, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial176Hf/177Hf lies close to a chondritic Hf isotopic evolution curve from 4.55 Gy to present. This is consistent with the igneous precursors to the Amîtsoq gneisses having been derived from the mantle at or shortly before 3.6 Gy. Anomalous relationships between Hf concentration and the176Lu/177Hf ratio may suggest that trace element abundances in the Amîtsoq gneisses are partly controlled by processes related to metamorphism.

  5. Evaluation of decay curves of a chemical species undergoing simultaneous first- and second-order decay

    NASA Technical Reports Server (NTRS)

    Schmidt, K. H.

    1970-01-01

    IBM 1620 computer prepares tables to enable fast calculation of the first- and second-order rate constants from two half-lives and the corresponding initial concentrations, obtained from either one or two decay curves.

  6. Preliminary heavy-light decay constants from the MILC Collaboration

    SciTech Connect

    Bernard, C.

    1994-12-01

    Preliminary results from the MILC Collaboration for f{sub B}, f{sub B{sub s}}, f{sub D}, f{sub D{sub s}} and their ratios are presented. We compute in the quenched approximation at {beta} = 6.3, 6.0 and 5.7 with Wilson light quarks and static and Wilson heavy quarks. We attempt to quantify all systematic errors other than quenching.

  7. Photoactivation of 176mLu via Bremsstrahlung at the Stuttgart DYNAMITRON

    NASA Astrophysics Data System (ADS)

    Goddard, Brian; Henry, Tom; Balint, Trevor; Pitz, Heinz-Hermann; Stedile, Frank; Kneissl, Ulrich; Gaison, Jeremy; Winick, Tristan; Carroll, James

    2014-09-01

    Though unstable, the ground state of 176Lu has a very long half-life of approximately 37 billion years and primarily β- decays (>99.9%) to 176Hf. However, 176Lu possesses an isomer (Jπ = 7-) 123 keV above the ground state (Jπ = 1-) that also β- decays to 176Hf but with a much shorter half-life of about 3.6 hours. The study of this isomer could lead to new findings regarding astrophysical nucleosynthesis. A disparity between the predicted abundance of 176Lu due to nucleosynthesis and the actual measured abundance implies that transitions from the isomer to the ground state via intermediate states must have taken place during the s-process. Since the rates at which these transitions occur are temperature dependent, 176Lu could be used as an s-process ``thermometer.'' A photoactivation experiment was performed on 176Lu at the Stuttgart DYNAMITRON using bremsstrahlung with varying endpoints between 0.7 and 2.2 MeV to determine the intermediate state energies and integral cross sections for the transitions that lead to the isomer. We present the results of the analysis of the data as well as preliminary values for the intermediate state energies and their cross sections.

  8. Cosmological constant in scale-invariant theories

    SciTech Connect

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.

    2011-10-01

    The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.

  9. On the Khinchin Constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)

    1995-01-01

    We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.

  10. The hubble constant.

    PubMed

    Huchra, J P

    1992-04-17

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution. PMID:17743107

  11. The cosmological constant

    NASA Technical Reports Server (NTRS)

    Carroll, Sean M.; Press, William H.; Turner, Edwin L.

    1992-01-01

    The cosmological constant problem is examined in the context of both astronomy and physics. Effects of a nonzero cosmological constant are discussed with reference to expansion dynamics, the age of the universe, distance measures, comoving density of objects, growth of linear perturbations, and gravitational lens probabilities. The observational status of the cosmological constant is reviewed, with attention given to the existence of high-redshift objects, age derivation from globular clusters and cosmic nuclear data, dynamical tests of Omega sub Lambda, quasar absorption line statistics, gravitational lensing, and astrophysics of distant objects. Finally, possible solutions to the physicist's cosmological constant problem are examined.

  12. Lu-hf total-rock isochron for the eucrite meteorites

    USGS Publications Warehouse

    Patchett, P.J.; Tatsumoto, M.

    1980-01-01

    The isotope 176Lu (2.6% of natural lutetium) decays by ??- to 176Hf, with a long half life. We present here the first Lu-Hf isochron. The eucrite meteorites, a suite of planetary igneous rocks of known age, 4,550 Myr, define a 10-point total-rock isochron with a slope of 0.0934 ?? 40, leading to a value of 3.53 ?? 0.14 ??1010yr for the ??--decay half life of 176Lu. The isochron intercept of 0.27973 ?? 12 gives the initial 176Hf/177Hf for the inner Solar System at the time of accretion. ?? 1980 Nature Publishing Group.

  13. Measurement of B(D{sub s}{sup +}{yields}l{sup +}{nu}) and the decay constant f{sub D{sub s}{sup +}} from 600 pb{sup -1} of e{sup +}e{sup -} annihilation data near 4170 MeV

    SciTech Connect

    Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Hunt, J. M.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krueger, H.; Mohapatra, D.; Patterson, J. R.

    2009-03-01

    We examine e{sup +}e{sup -}{yields}D{sub s}{sup -}D{sub s}*{sup +} and D{sub s}*{sup -}D{sub s}{sup +} interactions at 4170 MeV using the CLEO-c detector in order to measure the decay constant f{sub D{sub s}{sup +}} with good precision. Previously our measurements were substantially higher than the most precise lattice based QCD calculation of (241{+-}3) MeV. Here we use the D{sub s}{sup +}{yields}l{sup +}{nu} channel, where the l{sup +} designates either a {mu}{sup +} or a {tau}{sup +}, when the {tau}{sup +}{yields}{pi}{sup +}{nu}. Analyzing both modes independently, we determine B(D{sub s}{sup +}{yields}{mu}{sup +}{nu})=(0.565{+-}0.045{+-}0.017)%, and B(D{sub s}{sup +}{yields}{tau}{sup +}{nu})=(6.42{+-}0.81{+-}0.18)%. We also analyze them simultaneously to find an effective value of B{sup eff}(D{sub s}{sup +}{yields}{mu}{sup +}{nu})=(0.591{+-}0.037{+-}0.018)% and f{sub D{sub s}{sup +}}=(263.3{+-}8.2{+-}3.9) MeV. Combining with the CLEO-c value determined independently using D{sub s}{sup +}{yields}{tau}{sup +}{nu}, {tau}{sup +}{yields}e{sup +}{nu}{nu} decays, we extract f{sub D{sub s}{sup +}}=(259.5{+-}6.6{+-}3.1) MeV. Combining with our previous determination of B(D{sup +}{yields}{mu}{sup +}{nu}), we extract the ratio f{sub D{sub s}{sup +}}/f{sub D{sup +}}=1.26{+-}0.06{+-}0.02. No evidence is found for a CP asymmetry between {gamma}(D{sub s}{sup +}{yields}{mu}{sup +}{nu}) and {gamma}(D{sub s}{sup -}{yields}{mu}{sup -}{nu}); specifically the fractional difference in rates is measured to be (4.8{+-}6.1)%. Finally, we find B(D{sub s}{sup +}{yields}e{sup +}{nu})<1.2x10{sup -4} at 90% confidence level.

  14. Fundamental Physical Constants

    National Institute of Standards and Technology Data Gateway

    SRD 121 CODATA Fundamental Physical Constants (Web, free access)   This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.

  15. Calculation of magnetostriction constants

    NASA Astrophysics Data System (ADS)

    Tatebayashi, T.; Ohtsuka, S.; Ukai, T.; Mori, N.

    1986-02-01

    The magnetostriction constants h1 and h2 for Ni and Fe metals and the anisotropy constants K1 and K2 for Fe metal are calculated on the basis of the approximate d bands obtained by Deegan's prescription, by using Gilat-Raubenheimer's method. The obtained results are compared with the experimental ones.

  16. Space Shuttle astrodynamical constants

    NASA Technical Reports Server (NTRS)

    Cockrell, B. F.; Williamson, B.

    1978-01-01

    Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

  17. The cosmological constant problem

    SciTech Connect

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.

  18. The distribution of sunspot decay rates

    NASA Astrophysics Data System (ADS)

    Martinez Pillet, V.; Moreno-Insertis, F.; Vazquez, M.

    1993-07-01

    The distribution of sunspot decay rates is studied using the Greenwich Photoheliographic Results (GPR) for a total of approximately hundred years between 1874 and 1976. The decay rates are seen to be lognormally distributed. The discrepancies between the decay rates given in the past by different authors are shown to originate as a consequence of this asymmetric distribution. It is pointed out that the extended tails shown by the lognormal distributions are associated to spots decaying much faster than suggested by Bumba's (1963) work. A cycle by cycle analysis of the lognormal distributions associated with each sunspot group type and for single spots is presented. The differences between the nine solar cycles involved are studied. As a remarkable property of the decay process, we show that it happens at a nearly constant total to umbral area ratio. This property holds for decaying spots which are still large enough to show a penumbra. We have studied the suitability of a decay law with the instantaneous decay rate proportional to the length of the spot boundary. This law predicts a parabolic decay pattern with some specific characteristics. No definite conclusion in favour of this law is reached, but it is suggested that a linear decay is as weakly supported by the GPR data as a peripheral one. On the other hand, weak non-linearities are seen in the decay of isolated spots with a clear tendency to produce a convex pattern in the area vs. time diagram. The implication is that sunspot decay is braked as time proceeds.

  19. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  20. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  1. Nonexponential decay at late times and a different Zeno paradox

    NASA Astrophysics Data System (ADS)

    Lawrence, Jay

    2002-08-01

    The decay profile of a metastable quantum state decaying in isolation is predicted to depart from exponential behaviour after many lifetimes, and in typical cases to adopt algebraic behaviour as the late-time limit. The effect of environmental interactions, including measurement, is quite different from that of the familiar Zeno (and anti-Zeno) effects that have been observed at very early times. Instead of arresting the decay (or hastening it), the late-time interactions tend to enforce the exponential decay law, without substantially changing the decay constant intrinsic to the isolated system. The experimental challenge is to prevent these interactions and observe the crossover to the nonexponential regime.

  2. Leptonic Decays of Charged Pseudoscalar Mesons - 2015

    SciTech Connect

    Rosner, Jonathan L.; Stone, Sheldon; Van de Water, Ruth S.

    2015-09-07

    We review the physics of purely leptonic decays of $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ pseudoscalar mesons. The measured decay rates are related to the product of the relevant weak-interaction-based CKM matrix element of the constituent quarks and a strong interaction parameter related to the overlap of the quark and antiquark wave-functions in the meson, called the decay constant $f_P$. The leptonic decay constants for $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ mesons can be obtained with controlled theoretical uncertainties and high precision from {\\it ab initio} lattice-QCD simulations. The combination of experimental leptonic decay-rate measurements and theoretical decay-constant calculations enables the determination of several elements of the CKM matrix within the standard model. These determinations are competitive with those obtained from semileptonic decays, and also complementary because they are sensitive to different quark flavor-changing currents. They can also be used to test the unitarity of the first and second rows of the CKM matrix. Conversely, taking the CKM elements predicted by unitarity, one can infer "experimental" values for $f_P$ that can be compared with theory. These provide tests of lattice-QCD methods, provided new-physics contributions to leptonic decays are negligible at the current level of precision. This review is the basis of the article in the Particle Data Group's 2016 edition, updating the versions in Refs. [1-3].

  3. Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.

    2006-11-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. The spatial variation can explain a fine tuning of the fundamental constants which allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamental constants are consistent with our existence. We present a review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra. Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance.

  4. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  5. The Hubble constant

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1992-01-01

    The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy radial velocities and distances. Although there has been considerable progress in the development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution.

  6. Compassion is a constant.

    PubMed

    Scott, Tricia

    2015-11-01

    Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands.

  7. XrayOpticsConstants

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  8. Compassion is a constant.

    PubMed

    Scott, Tricia

    2015-11-01

    Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands. PMID:26542898

  9. Demonstration of the exponential decay law using beer froth

    NASA Astrophysics Data System (ADS)

    Leike, A.

    2002-01-01

    The volume of beer froth decays exponentially with time. This property is used to demonstrate the exponential decay law in the classroom. The decay constant depends on the type of beer and can be used to differentiate between different beers. The analysis shows in a transparent way the techniques of data analysis commonly used in science - consistency checks of theoretical models with the data, parameter estimation and determination of confidence intervals.

  10. Decay properties of charm and beauty open flavour mesons

    SciTech Connect

    Kumar Rai, Ajay; Vinodkumar, P. C.

    2007-10-03

    The masses of S and P states, pseudoscalar and vector decay constants, leptonic, semileptonic decay widths of charm (D) and beauty (B) open flavour mesons have been computed in the framework of Coulomb and power potential of the form V(r) = -({alpha}{sub c}/r)+Ar{sup v}. The results are compared with other theoretical as well as experimental results.

  11. Vacuum Decay via Lorentzian Wormholes

    NASA Astrophysics Data System (ADS)

    Rosales, J. L.

    We speculate about the space-time description due to the presence of Lorentzian worm-holes (handles in space-time joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordström space-times is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the value of the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete space-times should be acutally negligible in our physical Universe.

  12. Classical picture of postexponential decay

    SciTech Connect

    Torrontegui, E.; Muga, J. G.; Martorell, J.; Sprung, D. W. L.

    2010-04-15

    Postexponential decay of the probability density of a quantum particle leaving a trap can be reproduced accurately, except for interference oscillations at the transition to the postexponential regime, by means of an ensemble of classical particles emitted with constant probability per unit time and the same half-life as the quantum system. The energy distribution of the ensemble is chosen to be identical to the quantum distribution, and the classical point source is located at the scattering length of the corresponding quantum system. A one-dimensional example is provided to illustrate the general argument.

  13. Review of modern double beta decay experiments

    SciTech Connect

    Barabash, A. S.

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  14. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  15. Evidence for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Callot, O.; Calvi, M.; Gomez, M. Calvo; Camboni, A.; Campana, P.; Perez, D. Campora; Caponio, F.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Esen, S.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Ferguson, D.; Albor, V. Fernandez; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Hafkenscheid, T. W.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jezabek, M.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Manzali, M.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Sánchez, A. Martín; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Rodriguez, J. Molina; Monteil, S.; Moran, D.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Mountain, R.; Muheim, F.; Müller, K.; Muresan, R.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Goicochea, J. M. Otalora; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Alvarez, A. Pazos; Pearce, A.; Pellegrino, A.; Altarelli, M. Pepe; Perazzini, S.; Trigo, E. Perez; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Casasus, M. Plo; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Molina, V. Rives; Romero, D. A. Roa; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Vidal, A. Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Valls, P. Ruiz; Sabatino, G.; Silva, J. J. Saborido; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Sidorov, F.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spinella, F.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Sierra, C. Vázquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-05-01

    Evidence is presented for the decay using proton-proton collision data, corresponding to an integrated luminosity of 3 fb-1, collected with the LHCb detector. A signal yield of 32 ± 8 decays is found with a significance of 4.5 standard deviations. The ratio of the branching fraction of the decay to that of the decay is measured to be where the first uncertainty is statistical and the second is systematic. [Figure not available: see fulltext.

  16. Varying constants quantum cosmology

    SciTech Connect

    Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl

    2015-02-01

    We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.

  17. Change is a Constant.

    PubMed

    Lubowitz, James H; Provencher, Matthew T; Brand, Jefferson C; Rossi, Michael J; Poehling, Gary G

    2015-06-01

    In 2015, Henry P. Hackett, Managing Editor, Arthroscopy, retires, and Edward A. Goss, Executive Director, Arthroscopy Association of North America (AANA), retires. Association is a positive constant, in a time of change. With change comes a need for continuing education, research, and sharing of ideas. While the quality of education at AANA and ISAKOS is superior and most relevant, the unique reason to travel and meet is the opportunity to interact with innovative colleagues. Personal interaction best stimulates new ideas to improve patient care, research, and teaching. Through our network, we best create innovation.

  18. Cosmology with varying constants.

    PubMed

    Martins, Carlos J A P

    2002-12-15

    The idea of possible time or space variations of the 'fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. I present the current theoretical motivations and expectations for such variations, review the current observational status and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.

  19. Radiative Corrections for Neutron Decay and Search for New Physics

    PubMed Central

    Gudkov, V.; Kubodera, K.; Myhrer, F.

    2005-01-01

    The expected increased accuracy of neutron β-decay experiments at the new Spallation Neutron Source could result in more stringent tests of the Standard Model. For an unambiguous search for new physics in neutron decay experiments and for a precise determination of fundamental constants, it is necessarily to understand and evaluate all corrections for neutron decay with higher accuracy than the expected experimental precision. We discuss the possibility to estimate the accuracy of radiative corrections. New results based on the applications of effective field theory for neutron decay is presented. PMID:27308143

  20. Measurement of the solar constant

    NASA Technical Reports Server (NTRS)

    Crommelynck, D.

    1981-01-01

    The absolute value of the solar constant and the long term variations that exist in the absolute value of the solar constant were measured. The solar constant is the total irradiance of the Sun at a distance of one astronomical unit. An absolute radiometer removed from the effects of the atmosphere with its calibration tested in situ was used to measure the solar constant. The importance of an accurate knowledge of the solar constant is emphasized.

  1. DBI analog of a decaying vacuum cosmology

    NASA Astrophysics Data System (ADS)

    Bessada, Dennis

    2013-07-01

    In this work I discuss the dynamical and thermodynamical equivalence between a general k-essence scalar field cosmology and an arbitrary cosmological model with a decaying vacuum, thus generalizing the approach proposed by Maia and Lima [Phys. Rev. D 65, 083513 (2002)]. The formalism obtained is quite general and holds for any noncanonical scalar field model. As a special case I derive a Dirac-Born-Infeld model with an exponential potential and constant speed of sound, and show that it is equivalent to a cosmological model with decay law Λ(H)=3βH2.

  2. The Hubble constant.

    PubMed

    Tully, R B

    1993-06-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  3. When constants are important

    SciTech Connect

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  4. The Hubble constant.

    PubMed Central

    Tully, R B

    1993-01-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  5. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  6. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, T.J.

    1994-06-07

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.

  7. Constant attitude orbit transfer

    NASA Astrophysics Data System (ADS)

    Cress, Peter; Evans, Michael

    A two-impulse orbital transfer technique is described in which the spacecraft attitude remains constant for both burns, eliminating the need for attitude maneuvers between the burns. This can lead to significant savings in vehicle weight, cost and complexity. Analysis is provided for a restricted class of applications of this transfer between circular orbits. For those transfers with a plane change less than 30 deg, the total velocity cost of the maneuver is less than twelve percent greater than that of an optimum plane split Hohmann transfer. While this maneuver does not minimize velocity requirement, it does provide a means of achieving necessary transfer while substantially reducing the cost and complexity of the spacecraft.

  8. A Constant Pressure Bomb

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1924-01-01

    This report describes a new optical method of unusual simplicity and of good accuracy suitable to study the kinetics of gaseous reactions. The device is the complement of the spherical bomb of constant volume, and extends the applicability of the relationship, pv=rt for gaseous equilibrium conditions, to the use of both factors p and v. The method substitutes for the mechanical complications of a manometer placed at some distance from the seat of reaction the possibility of allowing the radiant effects of reaction to record themselves directly upon a sensitive film. It is possible the device may be of use in the study of the photoelectric effects of radiation. The method makes possible a greater precision in the measurement of normal flame velocities than was previously possible. An approximate analysis shows that the increase of pressure and density ahead of the flame is negligible until the velocity of the flame approaches that of sound.

  9. Rare Decays at LHCb

    NASA Astrophysics Data System (ADS)

    Hall, Sam

    2014-04-01

    Rare decays of beauty and charm hadrons provide an effective method of testing the Standard Model and probing possible new physics scenarios. The LHCb experiment has published a variety of interesting results in this field, some of which are presented here. In particular the measurements of the branching fractions of B(s)0 → μ+μ- which, in combination with CMS, resulted in the first observation of the Bs0 → μ+μ- decay. Other topics include searches for the rare decay D0 → μ+μ-, the lepton flavour violating decays B(s)0 → e±μ∓, and the observation of the ψ(4160) resonance in the region of low recoil in B+ → K+μ+μ- decay. New results on the angular analysis of the decay B0 → K*0μ+μ- with form factor independent observables are also shown.

  10. Effective Majorana neutrino decay

    NASA Astrophysics Data System (ADS)

    Duarte, Lucía; Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A.

    2016-08-01

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width.

  11. New precision measurements of free neutron beta decay with cold neutrons

    DOE PAGES

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; Počanić, Dinko

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  12. B -meson decay constants from 2+1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect

    Christ, N. H.; Flynn, J. M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; Van de Water, R. S.; Witzel, O.

    2015-03-01

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a0.11, 0.086 fm with unitary pion masses as light as Mπ290MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the

  13. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  14. Beyond the Hubble Constant

    NASA Astrophysics Data System (ADS)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  15. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  16. Axions from wall decay

    SciTech Connect

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  17. Modulated curvaton decay

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2013-03-01

    We study primordial density perturbations generated by the late decay of a curvaton field whose decay rate may be modulated by the local value of another isocurvature field, analogous to models of modulated reheating at the end of inflation. We calculate the primordial density perturbation and its local-type non-Gaussianity using the sudden-decay approximation for the curvaton field, recovering standard curvaton and modulated reheating results as limiting cases. We verify the Suyama-Yamaguchi inequality between bispectrum and trispectrum parameters for the primordial density field generated by multiple field fluctuations, and find conditions for the bound to be saturated.

  18. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  19. Local tunneling decay length and Kelvin probe force spectroscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, Florian; Fleischmann, Martin; Scheer, Manfred; Gross, Leo; Repp, Jascha

    2015-12-01

    In the past, current-distance spectroscopy has been widely applied to determine variations of the work function at surfaces. While for homogeneous sample areas this technique is commonly accepted to yield at least qualitative results, its applicability to atomic-scale variations has not been proven neither right nor wrong. Here we benchmark measurements of the current-distance decay constant against the well established Kelvin probe force spectroscopy for four distinctly different cases with atomic-scale variations of the local contact potential. The two techniques yield quite different results. Whereas the maps of the current-distance decay constant are consistent with being topographical artifacts, the Kelvin probe force spectroscopy maps show variations of the local contact potential difference in agreement with expected surface dipoles. This comparison clarifies that maps of the current-distance decay constant are not suited to directly characterize contact potential variations at surfaces on atomic length scales.

  20. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  1. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  2. Charmless B Decays

    SciTech Connect

    Gradl, Wolfgang; /Edinburgh U.

    2007-03-06

    Rare charmless hadronic B decays are a good testing ground for the standard model. The dominant amplitudes contributing to this class of B decays are CKM suppressed tree diagrams and b {yields} s or b {yields} d loop diagrams (''penguins''). These decays can be used to study interfering standard model (SM) amplitudes and CP violation. They are sensitive to the presence of new particles in the loops, and they provide valuable information to constrain theoretical models of B decays. The B factories BABAR at SLAC and Belle at KEK produce B mesons in the reaction e{sup +}e{sup -} {yields} {Upsilon}(4S) {yields} B{bar B}. So far they have collected integrated luminosities of about 406 fb{sup -1} and 600 fb{sup -1}, respectively. The results presented here are based on subsets of about 200-500 fb{sup -1} and are preliminary unless a journal reference is given.

  3. Elastic constants and dynamics in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Humpert, Anja; Allen, Michael P.

    2015-09-01

    In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.

  4. Open Flavor Strong Decays

    NASA Astrophysics Data System (ADS)

    García-Tecocoatzi, H.; Bijker, R.; Ferretti, J.; Galatà, G.; Santopinto, E.

    2016-10-01

    In this contribution, we discuss the results of a QM calculation of the open-flavor strong decays of **** light nucleon resonances. These are the results of a recent calculation, where we used a modified ^3P_0 model for the amplitudes and the U(7) algebraic model and the hypercentral quark model to predict the baryon spectrum. The decay amplitudes are compared with the existing experimental data.

  5. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  6. Beta-decay rates

    NASA Astrophysics Data System (ADS)

    Borzov, I. N.

    2006-10-01

    Major astrophysical applications involve a huge number of exotic nuclei. Their beta-decay properties play a crucial role in stellar explosive events. An important effort has been developed in last decades to measure the masses and β-decay properties of very neutron-rich nuclei at radioactive nuclear beam facilities. However, most of them cannot be synthesized in terrestrial laboratories and only theoretical predictions can fill the gap. We will concentrate mainly on the β-decay rates needed for stellar r-process modeling and for performing the RNB experiments. An overview of the microscopic approaches to the β-decay strength function is given. The continuum QRPA approach based on the self-consistent ground state description in the framework of the density functional theory is outlined. For the first time, a systematic study of the total β-decay half-lives and delayed neutron emission probabilities takes into account the Gamow Teller and first-forbidden transitions. Due to the shell configuration effects, the first-forbidden decays have a strong impact on the β-decay characteristics of the r-process relevant nuclei at Z≈28, N>50; Z⩾50, N>82 and Z=60 70, N≈126. Suppression of the delayed neutron emission probability is found in nuclei with the neutron excess bigger than one major shell. The effect originates from the high-energy first-forbidden transitions to the states outside the (Q-B)-window in the daughter nuclei. The performance of existing global models for the nuclides near the r-process paths is critically analyzed and confronted with the recent RIB experiments in the regions of 78Ni, 132Sn and “east” of 208Pb.

  7. Decrease in the probability of tritium decay in an external electric field

    SciTech Connect

    Filippov, D. V.

    2007-11-15

    The probability of tritium beta decay is shown to decrease under the effect of a constant uniform external electric field on the atom. For the tritium atom, the effect is due first to the reduction of the beta-decay endpoint energy and second to the reduction of the density of vacant bound electron states at the nucleus. Both of these factors reduce the beta-decay probability: the first reduces the probability of decay to continuum electron states, while the second reduces the probability of decay to a bound state.

  8. HALF-LIVES OF LONG-LIVED ALPHA DECAY, BETA DECAY, ELECTRON CAPTURE DECAY, BETA BETA-DECAY, PROTON DECAY AND SPONTANEOUS FISSION DECAY NUCLIDES.

    SciTech Connect

    HOLDEN, H.E.

    2003-08-08

    In his review of radionuclides for dating purposes, Roth noted that there were a large number of nuclides, normally considered ''stable'' but which are radioactive with a very long half-life. Roth suggested that I review the data on the half-life values of these long-lived nuclides for the 2001 Atomic Weights Commission meeting in Brisbane. I provided a report, BNL-NCS-68377, to fulfill Roth's request. Peiser has now made a similar suggestion that I review these data for our next Commission meeting in Ottawa for their possible inclusion in our Tables. These half-life values for long-lived nuclides include those due to various decay modes, {alpha}-decay, {beta}-decay, electron capture decay, {beta}{beta}-decay, proton decay and spontaneous fission decay. This data review (post Brisbane) provides an update to the recommendation of the 2001 review.

  9. Constants and Variables of Nature

    SciTech Connect

    Sean Carroll

    2009-04-03

    It is conventional to imagine that the various parameters which characterize our physical theories, such as the fine structure constant or Newton’s gravitational constant, are truly “constant”, in the sense that they do not change from place to place or time to time. Recent developments in both theory and observation have led us to re-examine this assumption, and to take seriously the possibility that our supposed constants are actually gradually changing. I will discuss why we might expect these parameters to vary, and what observation and experiment have to say about the issue.

  10. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  11. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  12. Kinetics of Radioactive Decay

    NASA Astrophysics Data System (ADS)

    Nagy, S.

    At present there are over 3,000 known nuclides (see the Appendix in Vol. 2 on the “Table of the Nuclides”), 265 of which are stable, while the rest, i.e., more than 90% of them, are radioactive. The chemical applications of the specific isotopes of chemical elements are mostly connected with the latter group, including quite a number of metastable nuclear isomers, making the kinetics of radioactive decay an important chapter of nuclear chemistry. After giving a phenomenological and then a statistical interpretation of the exponential law, the various combinations of individual decay processes as well as the cases of equilibrium and nonequilibrium will be discussed. Half-life systematics of the different decay modes detailed in Chaps. 2 and 4 of this volume are also summarized.

  13. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  14. Weak decay of hypernuclei

    SciTech Connect

    Grace, R.

    1983-01-01

    The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.

  15. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 < m( π + π -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  16. γ-ray fluxes in Oklo natural reactors

    NASA Astrophysics Data System (ADS)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2012-11-01

    Background: Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant α. Improved 176Lu/175Lu thermometry has been discussed but its usefulness may be complicated by photoexcitation of the isomeric state 176mLu by 176Lu(γ,γ') fluorescence.Purpose: We calculate prompt, delayed, and equilibrium γ-ray fluxes due to fission of 235U in pulsed mode operation of Oklo zone RZ10.Methods: We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes.Results: We find γ-ray fluxes as a function of energy and derive values for the coefficients λγ,γ' that describe burn-up of 176Lu through the isomeric 176mLu state.Conclusion: The contribution of the (γ,γ') channel to the 176Lu/175Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium thermometry is fully applicable to analyses of Oklo reactor data.

  17. Monticello BWR spent fuel assembly decay heat predictions and measurements

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Heeb, C.M.; Creer, J.M.

    1986-06-01

    This report compares pre-calorimetry predictions of rates of six 7 x 7 boiling water reactor (BWR) spent fuel assemblies with measured decay heat rates. The assemblies were from Northern States Power Company's Monticello Nuclear Generating Plant and had burnups of 9 to 21 GWd/MTU and cooling times of 9 to 10 years. Conclusions are: The agreement between ORIGEN2 predictions and decay heat measurements of Monticello spent fuel is dependent on the method used to calibrate the calorimeter and to make the decay heat measurements. The agreement between predictions and measurements of decay heat rates of Monticello fuel is the same as that for Cooper and Dresden fuel if the same measurement method is used. The predictions are within a standard deviation of +-15 W of the measurements. Using a different measurement method, ORIGEN2 underpredicts the measured decay heat output of Monticello fuel assemblies by a constant 20 +- 2 W. The 20-W offset appears to be an artifact of the calibration procedure. The constant term in the calibration curve (i.e., q/sub DH/ = mx + b) can account for measurement differences of 40 W based on the 1983, 1984, and 1985 calibration curves. The difference between ORIGEN2 predictions and calorimeter decay heat measurements does not appear to be dependent on the magnitude of decay heat output. Predicted axial decay heat profiles are in good agreement with measured axial gamma radiation profiles. Recommendations are: Predictions using other decay heat codes should be compared to experimental data contained in this report, to evaluate prediction capabilities. The source of the differences that exist among calorimeter calibration curves needs to be determined. Calorimeter operational methods need to be investigated further to determine cause and effect relationships between operational method and calorimeter precision and accuracy.

  18. Varying Constants, Gravitation and Cosmology

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2011-12-01

    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  19. Unraveling duality violations in hadronic tau decays

    SciTech Connect

    Cata, Oscar; Cata, Oscar; Golterman, Maarten; Peris, Santiago

    2008-03-03

    There are some indications from recent determinations of the strong coupling constant alpha_s and the gluon condensate that the Operator Product Expansion may not be accurate enough to describe non-perturbative effects in hadronic tau decays. This breakdown of the Operator Product Expansion is usually referred to as being due to"Duality Violations." With the help of a physically motivated model, we investigate these duality violations. Based on this model, we argue how they may introduce a non-negligible systematic error in the current analysis, which employs finite-energy sum rules with pinched weights. In particular, this systematic effect might affect the precision determination of alpha_s from tau decays. With a view to a possible future application to real data, we present an alternative method for determining the OPE coefficients that might help estimating, and possibly even reducing, this systematic error.

  20. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, Chris

    2010-08-30

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall{approx}}1-100(f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  1. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, C A

    2010-03-10

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  2. BABAR B Decay Results

    SciTech Connect

    MacFarlane, David B

    2002-03-14

    Data from the first run of the BABAR detector at the PEP II accelerator are presented. Measurements of many rare B decay modes are now possible using the large data sets currently being collected by BABAR. An overview of analysis techniques and results on data collected in 2000 are described.

  3. Cosmology with decaying particles

    SciTech Connect

    Turner, M.S.

    1984-09-01

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons ..beta../sup -1/ identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (..beta..) family of solutions; physically ..beta../sup -1/ approx. = (..cap omega../sub R//..cap omega../sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references.

  4. Semileptonic B Meson Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-01-03

    Semileptonic decays of B mesons play a critical role in the determination of the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements V{sub cb} and V{sub ub}. These two quantities are fundamental parameters of the Standard Model and have to be determined experimentally. Over the past decade, the vast samples of B mesons recorded at the B factories at LEP at Cornell University, KEK at Tsukuba, and SLAC at Stanford University have allowed for detailed studies of semileptonic B decays. These decays proceed via first-order weak interactions; thus, they are expected to be free of non-Standard Model contributions and therefore are well suited for the extraction of the quark-mixing parameters. Differential decay rates are combined with theoretical calculations of hadronization effects, leading to a substantially improved knowledge of |V{sub cb}| and |V{sub ub}|. The results are used to constrain the parameters of the CKM matrix and to test the Standard Model predictions for CP-violating effects.

  5. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  6. Tooth decay - early childhood

    MedlinePlus

    Bottle mouth; Bottle carries; Baby bottle tooth decay; Early childhood caries (ECC) ... Your child needs strong, healthy baby teeth to chew food and to talk. Baby teeth also make space in children's jaws for their adult teeth to grow in straight. ...

  7. Re/Os Constraint on the Time Variability of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori; Iwamoto, Akira

    2003-12-01

    We argue that the accuracy by which the isochron parameters of the decay 187Re→187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant α, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.

  8. Re/Os constraint on the time variability of the fine-structure constant.

    PubMed

    Fujii, Yasunori; Iwamoto, Akira

    2003-12-31

    We argue that the accuracy by which the isochron parameters of the decay 187Re-->187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant alpha, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.

  9. Constant fields and constant gradients in open ionic channels.

    PubMed

    Chen, D P; Barcilon, V; Eisenberg, R S

    1992-05-01

    Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant.

  10. Constant fields and constant gradients in open ionic channels.

    PubMed Central

    Chen, D P; Barcilon, V; Eisenberg, R S

    1992-01-01

    Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159

  11. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi

    2016-09-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  12. Cosmological model with decaying vacuum energy from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek

    2015-06-01

    We construct the cosmological model to explain the cosmological constant problem. We built the extension of the standard cosmological model Λ CDM by consideration of decaying vacuum energy represented by the running cosmological term. From the principles of quantum mechanics one can find that in the long-term behavior survival probability of unstable states is a decreasing function of the cosmological time and has the inverse powerlike form. This implies that cosmological constant ρvac=Λ (t )=Λbare+α/t2 where Λbare and α are constants. We investigate the dynamics of this model using dynamical system methods due to a link to the Λ (H ) cosmologies. We have found the exact solution for the scale factor as well as the indicators of its variability like the deceleration parameter and the jerk. From the calculation of the jerk we obtain a simple test of the decaying vacuum in the Friedman-Robertson-Walker universe. Using astronomical data [SNIa, H (z ), CMB, BAO] we have estimated the model parameters and compared this model with the Λ CDM model. Our statistical results indicate that the decaying vacuum model is a little worse than the Λ CDM model. But the decaying vacuum cosmological model explains the small value of the cosmological constant today.

  13. Anatomy of decays

    NASA Astrophysics Data System (ADS)

    Bel, Lennaert; De Bruyn, Kristof; Fleischer, Robert; Mulder, Mick; Tuning, Niels

    2015-07-01

    The decays B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} probe the CP-violating mixing phases ϕ d and ϕ s , respectively. The theoretical uncertainty of the corresponding determinations is limited by contributions from penguin topologies, which can be included with the help of the U-spin symmetry of the strong interaction. We analyse the currently available data for B {/d, s 0} → D {/d, s -} D {/d, s +} decays and those with similar dynamics to constrain the involved non-perturbative parameters. Using further information from semileptonic B {/d 0} → D {/d -} ℓ + ν ℓ decays, we perform a test of the factorisation approximation and take non-factorisable SU(3)-breaking corrections into account. The branching ratios of the B {/d 0} → D {/d -} D {/d +}, B {/s 0} → D {/s -} D {/d +} and B {/s 0} → D {/s -} D {/s +}, B {/d 0} → D {/d -} D {/s +} decays show an interesting pattern which can be accommodated through significantly enhanced exchange and penguin annihilation topologies. This feature is also supported by data for the B {/s 0} → D {/d -} D {/d +} channel. Moreover, there are indications of potentially enhanced penguin contributions in the B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} decays, which would make it mandatory to control these effects in the future measurements of ϕ d and ϕ s . We discuss scenarios for high-precision measurements in the era of Belle II and the LHCb upgrade.

  14. Constraints on vacuum decay from the microwave background

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.; Bowyer, S.

    1993-01-01

    We consider the possible decay of a vacuum with nonzero energy density into radiation. This is one way to introduce a time-varying cosmological constant, which has been suggested as a means of resolving the cosmological constant problem. We concentrate on the model of Freese et al., in which the vacuum energy density is given as a fraction x/(1 - x) of the energy density of radiation. Using equations for the visible extragalactic background light and assuming that the vacuum decay energy is converted entirely into photons with a Planckian spectrum, we show that the decay process would be capable of contributing significantly to the intensity of the cosmic microwave background. Comparison with COBE observations leads to the constraint x is equal to or less than 0.001, which is stronger than the upper limit of 0.07 obtained previously by Freese et al. from considerations of primordial nucleosynthesis.

  15. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1989-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented of the optical constants of solid methane for the 0.4 to 2.6 micron region. K is reported for both the amorphous and the crystalline (annealed) states. Using the previously measured values of the real part of the refractive index, n, of liquid methane at 110 K n is computed for solid methane using the Lorentz-Lorentz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH4.

  16. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite

  17. Universal equations and constants of turbulent motion

    NASA Astrophysics Data System (ADS)

    Baumert, H. Z.

    2013-07-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.

  18. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1990-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented on the optical constants of solid methane for the 0.4 to 2.6 micrometer region. Deposition onto a substrate at 10 K produces glassy (semi-amorphous) material. Annealing this material at approximately 33 K for approximately 1 hour results in a crystalline material as seen by sharper, more structured bands and negligible background extinction due to scattering. The constant k is reported for both the amorphous and the crystalline (annealed) states. Typical values (at absorption maxima) are in the .001 to .0001 range. Below lambda = 1.1 micrometers the bands are too weak to be detected by transmission through the films less than or equal to 215 micrometers in thickness, employed in the studies to date. Using previously measured values of the real part of the refractive index, n, of liquid methane at 110 K, n is computed for solid methane using the Lorentz-Lorenz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for

  19. Royal Society, Discussion on the Constants of Physics, London, England, May 25, 26, 1983, Proceedings

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Various topics dealing with the constants of physics are addressed. The subjects considered include: measurement of the fundamental constants; the search for proton decay; the constancy of G; limits on the variability of coupling constants from the Oklo natural reactor; implications of quasar spectroscopy for constancy of constants; theoretical prospects for understanding the values of fundamental constants; the strong, electromagnetic, and weak couplings; and field theories without fundamental gauge symmetries. Also discussed are: Einstein gravitation as a long-wavelength effective field theory; unification and supersymmetry; phase transitions in the early universe; the cosmological constant; large numbers and ratios in astrophysics and cosmology; dependence of macrophysical phenomena on the values of the fundamental constants; dimensionality; and the anthropic principle and its implications for biological evolution.

  20. Cosmologies with variable gravitational constant

    SciTech Connect

    Narkikar, J.V.

    1983-03-01

    In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.

  1. Elastic constants for 8-OCB

    NASA Astrophysics Data System (ADS)

    Czechowski, Grzegorz; Zywucki, B.; Jadzyn, Jan

    1993-10-01

    The Frederiks transitions for the n-octyloxycyanobiphenyl (8-OCB) placed in the external magnetic and electric field as a function of the temperature have been studied. On the basis of threshold values Bc and Uc, the elastic constants for splay, bend and twist modes are determined. The magnetic anisotropy of 8-OCB as a function of temperature has been determined. The K11 and K33 elastic constants show the pretransitional nematic- smectic A effect. The values of critical exponents obtained from the temperature dependence of K11 and K33 in the vicinity of N-SA phase transition are discussed.

  2. B Decays Involving Light Mesons

    NASA Astrophysics Data System (ADS)

    Eschrich, Ivo Gough

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B → η‧(π, K, ρ) modes, and a comprehensive Dalitz Plot analysis of B → KKK decays.

  3. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  4. α -decay chains of recoiled superheavy nuclei: A theoretical study

    NASA Astrophysics Data System (ADS)

    Niyti, Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2015-05-01

    A systematic theoretical study of α -decay half-lives in the superheavy mass region of the periodic table of elements is carried out by extending the quantum-mechanical fragmentation theory based on the preformed cluster model (PCM) to include temperature (T ) dependence in its built-in preformation and penetration probabilities of decay fragments. Earlier, the α -decay chains of the isotopes of Z =115 were investigated by using the standard PCM for spontaneous decays, with"hot-optimum" orientation effects included, which required a constant scaling factor of 104 to approach the available experimental data. In the present approach of the PCM (T ≠0 ), the temperature effects are included via the recoil energy of the residual superheavy nucleus (SHN) left after x -neutron emission from the superheavy compound nucleus. The important result is that the α -decay half-lives calculated by the PCM (T ≠0 ) match the experimental data nearly exactly, without using any scaling factor of the type used in the PCM. Note that the PCM (T ≠0 ) is an equivalent of the dynamical cluster-decay model for heavy-ion collisions at angular momentum ℓ =0 . The only parameter of model is the neck-length parameter Δ R , which for the calculated half-lives of α -decay chains of various isotopes of Z =113 to 118 nuclei formed in "hot-fusion" reactions is found to be nearly constant, i.e., Δ R ≈0.95 ±0.05 fm for all the α -decay chains studied. The use of recoiled residue nucleus as a secondary heavy-ion beam for nuclear reactions has also been suggested in the past.

  5. Decay Dynamics of Tumors

    PubMed Central

    2016-01-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. We investigate the mathematical function that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic lymphocytes. We do it in the context of enzyme kinetics, using geometrical and analytical arguments. We derive the equations governing the decay of a tumor in the limit in which it is plainly surrounded by immune cells. A cellular automaton is used to test such decay, confirming its validity. Finally, we introduce a modification in the fractional cell kill so that the expected dynamics is attained in the mentioned limit. We also discuss the potential of this new function for non-solid and solid tumors which are infiltrated with lymphocytes. PMID:27310010

  6. Boltzmann's constant: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kruglak, Haym

    1989-03-01

    The mean-square displacement of a latex microsphere is determined from its projection on a TV monitor. The distribution of displacement is shown to be Gaussian. Boltzmann's constant, calculated from the pooled data of several observers, is in excellent agreement with the accepted value. The experiment is designed for one laboratory period in the advanced undergraduate laboratory.

  7. Ten Thousand Solar Constants Radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.

    1985-01-01

    "Radiometer for Accurate (+ or - 1%) Measurement of Solar Irradiances Equal to 10,000 Solar Constants," gives additional information on radiometer described elsewhere. Self-calibrating, water-cooled, thermopile radiometer measures irradiance produced in solar image formed by parabolic reflector or by multiple-mirror solar installation.

  8. Radioactive decay data tables

    SciTech Connect

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  9. The 1% concordance Hubble constant

    SciTech Connect

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Hinshaw, G.

    2014-10-20

    The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.

  10. Variation of fundamental constants: theory

    NASA Astrophysics Data System (ADS)

    Flambaum, Victor

    2008-05-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. There are some hints for the variation of different fundamental constants in quasar absorption spectra and Big Bang nucleosynthesis data. A large number of publications (including atomic clocks) report limits on the variations. We want to study the variation of the main dimensionless parameters of the Standard Model: 1. Fine structure constant alpha (combination of speed of light, electron charge and Plank constant). 2. Ratio of the strong interaction scale (LambdaQCD) to a fundamental mass like electron mass or quark mass which are proportional to Higgs vacuum expectation value. The proton mass is propotional to LambdaQCD, therefore, the proton-to-electron mass ratio comes into this second category. We performed necessary atomic, nuclear and QCD calculations needed to study variation of the fundamental constants using the Big Bang Nucleosynthsis, quasar spectra, Oklo natural nuclear reactor and atomic clock data. The relative effects of the variation may be enhanced in transitions between narrow close levels in atoms, molecules and nuclei. If one will study an enhanced effect, the relative value of systematic effects (which are not enhanced) may be much smaller. Note also that the absolute magnitude of the variation effects in nuclei (e.g. in very narrow 7 eV transition in 229Th) may be 5 orders of magnitude larger than in atoms. A different possibility of enhancement comes from the inversion transitions in molecules where splitting between the levels is due to the quantum tunneling amplitude which has strong, exponential dependence on the electron to proton mass ratio. Our study of NH3 quasar spectra has already given the best limit on the variation of electron to proton mass ratio.

  11. Varying Fine-Structure Constant and the Cosmological Constant Problem

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  12. RADIATIVE PENGUIN DECAYS FROM BABAR

    SciTech Connect

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  13. Charmless b decays at CDF

    SciTech Connect

    Donega, Mauro; /Geneva U.

    2005-07-01

    The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.

  14. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  15. Three pion nucleon coupling constants

    NASA Astrophysics Data System (ADS)

    Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.

    2016-08-01

    There exist four pion nucleon coupling constants, fπ0pp, - fπ0nn, fπ+pn/2 and fπ-np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.

  16. Quaternions as astrometric plate constants

    NASA Technical Reports Server (NTRS)

    Jefferys, William H.

    1987-01-01

    A new method for solving problems in relative astrometry is proposed. In it, the relationship between the measured quantities and the components of the position vector of a star is modeled using quaternions, in effect replacing the plate constants of a standard four-plate-constant solution with the four components of a quaternion. The method allows a direct solution for the position vectors of the stars, and hence for the equatorial coordinates. Distortions, magnitude, and color effects are readily incorporated into the formalism, and the method is directly applicable to overlapping-plate problems. The advantages of the method include the simplicity of the resulting equations, their freedom from singularities, and the fact that trigonometric functions and tangential point transformations are not needed to model the plate material. A global solution over the entire sky is possible.

  17. Three pion nucleon coupling constants

    NASA Astrophysics Data System (ADS)

    Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.

    2016-08-01

    There exist four pion nucleon coupling constants, fπ0pp, ‑ fπ0nn, fπ+pn/2 and fπ‑np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.

  18. Time-Varying Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Olive, Keith

    2003-04-01

    Recent data from quasar absorption systems can be interpreted as arising from a time variation in the fine-structure constant. However, there are numerous cosmological, astro-physical, and terrestrial bounds on any such variation. These includes bounds from Big Bang Nucleosynthesis (from the ^4He abundance), the Oklo reactor (from the resonant neutron capture cross-section of Sm), and from meteoretic lifetimes of heavy radioactive isotopes. The bounds on the variation of the fine-structure constant are significantly strengthened in models where all gauge and Yukawa couplings vary in a dependent manner, as would be expected in unified theories. Models which are consistent with all data are severly challenged when Equivalence Principle constraints are imposed.

  19. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  20. The observation of decay

    NASA Astrophysics Data System (ADS)

    Sudbery, A.

    1984-10-01

    It is argued that the usual formulation of quantum mechanics does not satisfactorily describe physical change: the standard formula for a transition probability does not follow from the postulates. Instead, these yield the paradox that a watched pot never bolls (sometimes called "Zeno's paradox"). The paradox is reviewed and the possibility of avoiding it is discussed. A simple model of a decaying system is analysed; the system is then considered in continuous interaction with an apparatus designed to observe the time development of the system. In the light of this analysis, the possibility is considered of replacing the usual (diserete) projection postulate by a continuous projection postulate.

  1. Rare B Decays

    SciTech Connect

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  2. Rare decays and CP asymmetries in charged B decays

    SciTech Connect

    Deshpande, N.G.

    1991-01-01

    The theory of loop induced rare decays and the rate asymmetry due to CP violation in charged B Decays in reviewed. After considering b {yields} s{gamma} and b {yields} se{sup +}e{sup {minus}} decays, the asymmetries for pure penguin process are estimated first. A larger asymmetry can result in those modes where a tree diagram and a penguin diagram interfere, however these estimates are necessarily model dependent. Estimates of Cabbibo suppressed penguins are also considered.

  3. Aggregation-fragmentation processes and decaying three-wave turbulence.

    PubMed

    Connaughton, Colm; Krapivsky, P L

    2010-03-01

    We use a formal correspondence between the isotropic three-wave kinetic equation and the rate equations for a nonlinear fragmentation-aggregation process to study the wave frequency power spectrum of decaying three-wave turbulence in the infinite capacity regime. We show that the transient spectral exponent is lambda+1 , where lambda is the degree of homogeneity of the wave interaction kernel and derive a formula for the decay amplitude. When lambda=0 the transient exponent coincides with the thermodynamic equilibrium exponent leading to logarithmic corrections to scaling which we calculate explicitly for the case of constant interaction kernel.

  4. Search for the Decay B --> D(2536)+X

    SciTech Connect

    Jessop, Colin P.

    2003-05-01

    We have searched for the decay B {yields} D{sub s1}{sup +}(2536)X and measured an upper limit for the inclusive branching fraction of {Beta}(B {yields} D{sub s1}{sup +}X) < 0.95% at the 90% confidence level. This limit is small compared with the total expected B {yields} {bar D}D{sup (*)}KX rate. Assuming factorization, the D{sub s1}{sup +} decay constant is constrained to be f{sub D{sub s1}{sup +}} < 114 MeV at the 90% confidence level, at least 2.5 times smaller than that of D{sub s}{sup +}.

  5. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  6. Soudan nucleon decay program

    SciTech Connect

    Ayres, D.S.

    1981-01-01

    The Soudan nucleon decay program is being carried out in the Soudan iron mine in northeastern Minnesota, at a depth of 2000 m of water equivalent. A 30-ton prototype experiment, Soudan 1, has been built and is now being operated by a University of Minnesota - Argonne National Laboratory collaboration. The detector is a block of iron-loaded concrete instrumented with 3456 gas proportional tubes. It can detect nucleon decay at the 2 x 10/sup 30/ year level, and will measure cosmic-ray induced backgrounds. Soudan 1 is also obtaining data on very high energy cosmic-ray interactions. Monte-Carlo predictions of performance have been checked by calibration of a detector module in a charged-particle test beam. A proposal to build a 1000-ton experiment, Soudan 2, has been submitted to funding agencies in the USA and the UK by a Minnesota - Argonne - Oxford University collaboration. The proposed detector utilizes drift chambers with 50-cm drifts to obtain very fine-grained ionization and tracking information at low cost. This tracking-calorimeter detector has a fiducial mass of 650 tons, and could be operating in 1985. A drifting scheme utilizing 50 cm x 5 m x 1 cm planar chambers has been shown feasible, and prototypes of alternate drifting structures are also being studied. A plan to provide expandability to an eventual 5000 tons has been developed.

  7. Review of semileptonic charm decays

    SciTech Connect

    Potter, D.M.

    1991-01-01

    The experimental status of D{sup 0} and D{sup +} semileptonic decays is reviewed and compared to model predictions. Topics covered are the form factor pole mass and decay rate for D {yields} Klv, the decay rate and form factor ratios for D {yields} K*lv, and, finally, the issue of modes other than Klv and K*lv. 4 refs., 5 tabs.

  8. Millikan's measurement of Planck's constant

    NASA Astrophysics Data System (ADS)

    Franklin, Allan

    2013-12-01

    Robert Millikan is famous for measuring the charge of the electron. His result was better than any previous measurement and his method established that there was a fundamental unit of charge, or charge quantization. He is less well-known for his measurement of Planck's constant, although, as discussed below, he is often mistakenly given credit for providing significant evidence in support of Einstein's photon theory of light.1 His Nobel Prize citation was "for his work on the elementary electric charge of electricity and the photoelectric effect," an indication of the significance of his work on the photoelectric effect.

  9. Chandra Independently Determines Hubble Constant

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  10. Henry's law constants of polyols

    NASA Astrophysics Data System (ADS)

    Compernolle, S.; Müller, J.-F.

    2014-05-01

    Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. Depending on the case, infinite dilution activity coefficients (IDACs), solid state pressures or activity coefficient ratios are obtained as intermediary results. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  11. Tuning sum rules with window functions for optical constant evaluation

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis V.; Méndez, José A.; Larruquert, Juan I.

    2016-07-01

    Sum rules are a useful tool to evaluate the global consistency of a set of optical constants. We present a procedure to spectrally tune sum rules to evaluate the local consistency of optical constants. It enables enhancing the weight of a desired spectral range within the sum-rule integral. The procedure consists in multiplying the complex refractive index with an adapted function, which is named window function. Window functions are constructed through integration of Lorentz oscillators. The asymptotic decay of these window functions enables the derivation of a multiplicity of sum rules akin to the inertial sum rule, along with one modified version of f-sum rule. This multiplicity of sum rules combined with the free selection of the photon energy range provides a double way to tune the spectral contribution within the sum rule. Window functions were applied to reported data of SrF2 and of Al films in order to check data consistency over the spectrum. The use of window functions shows that the optical constants of SrF2 are consistent in a broad spectrum. Regarding Al, some spectral ranges are seen to present a lower consistency, even though the standard sum rules with no window function did not detect inconsistencies. Hence window functions are expected to be a helpful tool to evaluate the local consistency of optical constants.

  12. Rare B Decays at Babar

    SciTech Connect

    Palombo, Fernando; Collaboration, for the BABAR

    2009-01-12

    The author presents some of the most recent BABAR measurements for rare B decays. These include rate asymmetries in the B decays to K{sup (*)}l{sup +}l{sup -} and K{sup +}{pi}{sup -} and branching fractions in the B decays to l{sup +}{nu}{sub l}, K{sub 1}(1270){sup +}{pi}{sup -} and K{sub 1}(1400){sup +}{pi}{sup -}. The author also reports a search for the B{sup +} decay to K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup +}.

  13. Exponential tuning of the coupling constant of coupled microcantilevers by modifying their separation

    SciTech Connect

    Gil-Santos, Eduardo; Ramos, Daniel; Pini, Valerio; Calleja, Montserrat; Tamayo, Javier

    2011-03-21

    Vibration localization in coupled nanomechanical resonators has emerged as a promising concept for ultrasensitive mass sensing. It possesses intrinsic common mode rejection and the mass sensitivity can be enhanced with no need of extreme miniaturization of the devices. In this work, we have experimentally studied the role of the separation between cantilevers that are elastically coupled by an overhang. The results show that the coupling constant exponentially decays with the separation. In consistency with the theoretical expectations, the mass sensitivity is inversely proportional to the coupling constant. Finite element simulations show that the coupling constant can be exponentially reduced by increasing the ratio of the cantilever separation to the overhang length.

  14. Stability constant estimator user`s guide

    SciTech Connect

    Hay, B.P.; Castleton, K.J.; Rustad, J.R.

    1996-12-01

    The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.

  15. Theoretical Analysis of One-Dimensional Pressure Diffusion from a Constant Upstream Pressure to a Constant Downstream Storage

    NASA Astrophysics Data System (ADS)

    Song, Insun

    2016-05-01

    The one-dimensional diffusion equation was solved to understand the pressure and flow behaviors along a cylindrical rock specimen for experimental boundary conditions of constant upstream pressure and constant downstream storage. The solution consists of a time-constant asymptotic part and a transient part that is a negative exponential function of time. This means that the transient flow exponentially decays with time and is eventually followed by a steady-state condition. For a given rock sample, the transient stage is shortest when the downstream storage is minimized. For this boundary condition, a simple equation was derived from the analytic solution to determine the hydraulic permeability from the initial flow rate during the transient stage. The specific storage of a rock sample can be obtained simply from the total flow into the sample during the entire transient stage if there is no downstream storage. In theory, both of these hydraulic properties could be obtained simultaneously from transient-flow stage measurements without a complicated curve fitting or inversion process. Sensitivity analysis showed that the derived permeability is more reliable for lower-permeability rock samples. In conclusion, the constant head method with no downstream storage might be more applicable to extremely low-permeability rocks if the upstream flow rate is measured precisely upstream.

  16. Decay of oscillating universes

    NASA Astrophysics Data System (ADS)

    Mithani, Audrey Todhunter

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  17. Reactivity of bromoalkanes in reactions of coordinated molecular decay

    NASA Astrophysics Data System (ADS)

    Pokidova, T. S.; Denisov, E. T.

    2016-09-01

    The results from experiments on reactions of the coordinated molecular decay of RBr bromoalkanes on olefin and HBr are analyzed using the model of intersecting parabolas (MIP). Kinetic parameters within the MIP are calculated from the experimental data, enabling calculation of the activation energies ( E) and rate constants ( k) of such reactions, based on the enthalphy of the reaction and the MIP algorithms. The factors affecting the E of the RBr decay reaction are established: the enthalphy of the reaction, triplet repulsion, the energy of radical R• stabilization, the presence of a π bond adjacent to the reaction center, and the dipole-dipole interaction of polar groups. The energy spectrum of the partial energies of activation is constructed for the reaction of coordinated molecular decay of RBr, and the E and k of inverse addition reactions are evaluated.

  18. Asympotics with positive cosmological constant

    NASA Astrophysics Data System (ADS)

    Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna

    2014-03-01

    Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.

  19. Henry's law constants of polyols

    NASA Astrophysics Data System (ADS)

    Compernolle, S.; Müller, J.-F.

    2014-12-01

    Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  20. Philicities, Fugalities, and Equilibrium Constants.

    PubMed

    Mayr, Herbert; Ofial, Armin R

    2016-05-17

    The mechanistic model of Organic Chemistry is based on relationships between rate and equilibrium constants. Thus, strong bases are generally considered to be good nucleophiles and poor nucleofuges. Exceptions to this rule have long been known, and the ability of iodide ions to catalyze nucleophilic substitutions, because they are good nucleophiles as well as good nucleofuges, is just a prominent example for exceptions from the general rule. In a reaction series, the Leffler-Hammond parameter α = δΔG(⧧)/δΔG° describes the fraction of the change in the Gibbs energy of reaction, which is reflected in the change of the Gibbs energy of activation. It has long been considered as a measure for the position of the transition state; thus, an α value close to 0 was associated with an early transition state, while an α value close to 1 was considered to be indicative of a late transition state. Bordwell's observation in 1969 that substituent variation in phenylnitromethanes has a larger effect on the rates of deprotonation than on the corresponding equilibrium constants (nitroalkane anomaly) triggered the breakdown of this interpretation. In the past, most systematic investigations of the relationships between rates and equilibria of organic reactions have dealt with proton transfer reactions, because only for few other reaction series complementary kinetic and thermodynamic data have been available. In this Account we report on a more general investigation of the relationships between Lewis basicities, nucleophilicities, and nucleofugalities as well as between Lewis acidities, electrophilicities, and electrofugalities. Definitions of these terms are summarized, and it is suggested to replace the hybrid terms "kinetic basicity" and "kinetic acidity" by "protophilicity" and "protofugality", respectively; in this way, the terms "acidity" and "basicity" are exclusively assigned to thermodynamic properties, while "philicity" and "fugality" refer to kinetics

  1. Counterflow driven by swirl decay

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-06-01

    The global meridional circulation of a viscous fluid, caused by swirl decay in a cylindrical container, is studied. To this end, a new solution to the Navier-Stokes equations is obtained, and simple experiments are performed to verify the predictions of the theory. The swirl decay mechanism explains elongated counterflows in hydrocyclones and vortex tubes sometimes extending over a hundred diameters.

  2. Status of rare decay experiments

    SciTech Connect

    Littenberg, L.S.

    1984-01-01

    Some results are given for rare muon decay experiments currently running. Also, plans are discussed for rare kaon decay experiments. Some of the events sought come from processes which violate lepton flavor conservation. Several apparatuses used in the search are described. 35 references. (LEW)

  3. Particle decay in inflationary cosmology

    SciTech Connect

    Boyanovsky, D.; Vega, H.J. de

    2004-09-15

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form {eta}{sup {gamma}{sub 1}} with {eta} being conformal time and we give an explicit expression for {gamma}{sub 1} to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is <decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/{pi}M. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C({eta}) the scale factor and {alpha} determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities.

  4. Decay of isotropic turbulence generated by a mechanically agitated grid.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Wan, C. A.

    1972-01-01

    Experimental study of weak isotropic turbulence, created by a mechanically agitated grid, has indicated that in the absence of large linear-momentum wakes the energy of turbulence relaxes very quickly into a stable self-preserving structure, which, depending on the initial Reynolds number of turbulence, decays at different constant inverse powers of time. Both the longitudinal correlation coefficients and the corresponding spectral distributions, except for the difference in the parametric constants, are of the same functional type as those found previously for a passive grid.

  5. Top decays in extended models

    SciTech Connect

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  6. Spectral decomposition of phosphorescence decays.

    PubMed

    Fuhrmann, N; Brübach, J; Dreizler, A

    2013-11-01

    In phosphor thermometry, the fitting of decay curves is a key task in the robust and precise determination of temperatures. These decays are generally assumed to be mono-exponential in certain temporal boundaries, where fitting is performed. The present study suggests a multi-exponential method to determine the spectral distribution in terms of decay times in order to analyze phosphorescence decays and thereby complement the mono-exponential analysis. Therefore, two methods of choice are compared and verified using simulated data in the presence of noise. Addtionally, this spectral decomposition is applied to the thermographic phosphor Mg4FGeO6 : Mn and reveals changes in the exponential distributions of decay times upon a change of the excitation laser energy.

  7. Fine structure of cluster decays

    SciTech Connect

    Dumitrescu, O.

    1994-03-01

    Within the one level {ital R}-matrix approach, expressions are derived for the hindrance factors of cluster radioactive decays in which {ital y} {ital the} {ital shell} {ital model} {ital with} {ital effective} {ital residual} {ital interactions} [{ital e}.{ital g}.,{ital thelar} in the Michigan State University version for nearly spherical nuclei, or the enlarged superfluid model (ESM) recently proposed for deformed nuclei]. The exterior wave functions are calculated from a cluster-nucleus double-folding model potential obtained with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of {alpha} decay of {sup 241}Am and {sup 243}Cm, {sup 14}C decay of {sup 223}Ra, and {sup 34}Si decay of {sup 243}Cm. Good agreement with the experimental data is obtained.

  8. Application of the renormalization group to the calculation of the vacuum decay rate in flat and curved space-time

    NASA Astrophysics Data System (ADS)

    Metaxas, Dimitrios

    2007-02-01

    I show that an application of renormalization group arguments may lead to significant corrections to the vacuum decay rate for phase transitions in flat and curved space-time. It can also give some information regarding its dependence on the parameters of the theory, including the cosmological constant in the case of decay in curved space-time.

  9. Optimized finite-difference (DRP) schemes perform poorly for decaying or growing oscillations

    NASA Astrophysics Data System (ADS)

    Brambley, E. J.

    2016-11-01

    Computational aeroacoustics often use finite difference schemes optimized to require relatively few points per wavelength; such optimized schemes are often called Dispersion Relation Preserving (DRP). Similar techniques are also used outside aeroacoustics. Here the question is posed: what is the equivalent of points per wavelength for growing or decaying waves, and how well are such waves resolved numerically? Such non-constant-amplitude waves are common in aeroacoustics, such as the exponential decay caused by acoustic linings, the O (1 / r) decay of an expanding spherical wave, and the decay of high-azimuthal-order modes in the radial direction towards the centre of a cylindrical duct. It is shown that optimized spatial derivatives perform poorly for waves that are not of constant amplitude, under performing maximal-order schemes. An equivalent criterion to points per wavelength is proposed for non-constant-amplitude oscillations, reducing to the standard definition for constant-amplitude oscillations and valid even for pure growth or decay with no oscillation. Using this definition, coherent statements about points per wavelength necessary for a given accuracy can be made for maximal-order schemes applied to non-constant-amplitude oscillations. These features are illustrated through a numerical example of a one-dimensional wave propagating through a damping region.

  10. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  11. Simple dissipative quartz crystal microbalance and methods for determining dissipation decay constants

    SciTech Connect

    Wu Kun; Wu Bing; Feng, C.-Q.; Du Xianbin; Huang Huan; Yin Zejie; Zhu Daming

    2006-03-15

    We describe a simple dissipative quartz crystal microbalance (QCM) and two simple methods for determining the dissipation factor. The microbalance consists of an oscillator circuit interfaced with a personal computer. The oscillation voltages are undersampled through a low speed data acquisition card. Both methods for determining the resonant frequency and the dissipation factor assume a limited variation of the resonant frequency, which is the case for general applications of QCMs. The first method directly fits the undersampled data with a nonlinear function. The second method determines the resonant frequency of a quartz crystal by Fourier transformation of the acquired data. The dissipation factor is obtained by rectifying the undersampled data and then fitting them with an exponential function.

  12. Decay of transverse correlations in quantum Heisenberg models

    SciTech Connect

    Björnberg, Jakob E. E-mail: daniel@ueltschi.org; Ueltschi, Daniel E-mail: daniel@ueltschi.org

    2015-04-15

    We study a class of quantum spin systems that include the S=1/2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.

  13. Nuclear matrix elements for double-β decay

    SciTech Connect

    Engel, Jonathan

    2015-07-15

    Recent progress in nuclear-structure theory has been dramatic. I describe applications in progress of ab inito calculations to double-beta decay, and discuss the recent and future application of generator-coordinate methods to the same problem. I also discuss the old and vexing problem of the renormalization of the weak nuclear axial-vector coupling constant “in medium” and plans to resolve it.

  14. General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum

    SciTech Connect

    Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo

    2009-08-15

    It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.

  15. Is There a Cosmological Constant?

    NASA Technical Reports Server (NTRS)

    Kochanek, Christopher; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The grant contributed to the publication of 18 refereed papers and 5 conference proceedings. The primary uses of the funding have been for page charges, travel for invited talks related to the grant research, and the support of a graduate student, Charles Keeton. The refereed papers address four of the primary goals of the proposal: (1) the statistics of radio lenses as a probe of the cosmological model (#1), (2) the role of spiral galaxies as lenses (#3), (3) the effects of dust on statistics of lenses (#7, #8), and (4) the role of groups and clusters as lenses (#2, #6, #10, #13, #15, #16). Four papers (#4, #5, #11, #12) address general issues of lens models, calibrations, and the relationship between lens galaxies and nearby galaxies. One considered cosmological effects in lensing X-ray sources (#9), and two addressed issues related to the overall power spectrum and theories of gravity (#17, #18). Our theoretical studies combined with the explosion in the number of lenses and the quality of the data obtained for them is greatly increasing our ability to characterize and understand the lens population. We can now firmly conclude both from our study of the statistics of radio lenses and our survey of extinctions in individual lenses that the statistics of optically selected quasars were significantly affected by extinction. However, the limits on the cosmological constant remain at lambda < 0.65 at a 2-sigma confidence level, which is in mild conflict with the results of the Type la supernova surveys. We continue to find that neither spiral galaxies nor groups and clusters contribute significantly to the production of gravitational lenses. The lack of group and cluster lenses is strong evidence for the role of baryonic cooling in increasing the efficiency of galaxies as lenses compared to groups and clusters of higher mass but lower central density. Unfortunately for the ultimate objective of the proposal, improved constraints on the cosmological constant, the next

  16. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  17. Inclusive radiative J/{psi} decays

    SciTech Connect

    Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.

    2008-08-01

    Using data taken with the CLEO-c detector at the Cornell Electron Storage Ring, we have investigated the direct-photon momentum spectrum in the decay J/{psi}(1S){yields}{gamma}gg, via the ''tagged'' process: e{sup +}e{sup -}{yields}{psi}(2S); {psi}(2S){yields}J/{psi}{pi}{sup +}{pi}{sup -}; J/{psi}{yields}{gamma}+X. Including contributions from two-body radiative decay processes, we find the ratio of the inclusive direct-photon branching fraction to that of the dominant three-gluon branching fraction [R{sub {gamma}}=B(gg{gamma})/B(ggg)] to be R{sub {gamma}}=0.137{+-}0.001{+-}0.016{+-}0.004, where the errors shown are statistical, systematic, and the model-dependent uncertainty related to the extrapolation to zero photon energy. The shape of the scaled photon energy spectrum in J/{psi}{yields}gg{gamma} is observed to be very similar to that of {upsilon}{yields}gg{gamma}. The R{sub {gamma}} value obtained is roughly consistent with that expected by a simple quark-charge scaling [R{sub {gamma}}{approx}(q{sub c}/q{sub b}){sup 2}] of the value determined at the {upsilon}(1S), but somewhat higher than the value expected from the running of the strong coupling constant.

  18. Decaying Turbulence in the Generalised Burgers Equation

    NASA Astrophysics Data System (ADS)

    Boritchev, Alexandre

    2014-10-01

    We consider the generalised Burgers equation where f is strongly convex and ν is small and positive. We obtain sharp estimates for Sobolev norms of u (upper and lower bounds differ only by a multiplicative constant). Then, we obtain sharp estimates for the dissipation length scale and the small-scale quantities which characterise the decaying Burgers turbulence, i.e., the structure functions and the energy spectrum. The proof uses a quantitative version of an argument by Aurell et al. (J Fluid Mech 238:467-486, 1992). Note that we are dealing with decaying, as opposed to stationary turbulence. Thus, our estimates are not uniform in time. However, they hold on a time interval [ T 1, T 2], where T 1 and T 2 depend only on f and the initial condition, and do not depend on the viscosity. These results allow us to obtain a rigorous theory of the one-dimensional Burgers turbulence in the spirit of Kolmogorov's 1941 theory. In particular, we obtain two results which hold in the inertial range. On one hand, we explain the bifractal behaviour of the moments of increments, or structure functions. On the other hand, we obtain an energy spectrum of the form k -2. These results remain valid in the inviscid limit.

  19. Decay of dipolar vortex structures in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Flór, J. B.; van Heijst, G. J. F.; Delfos, R.

    1995-02-01

    In this paper the viscous decay of dipolar vortex structures in a linearly stratified fluid is investigated experimentally, and a comparison of the experimental results with simple theoretical models is made. The dipoles are generated by a pulsed horizontal injection of fluid. In a related experimental study by Flór and van Heijst [J. Fluid Mech. 279, 101 (1994)], it was shown that, after the emergence of the pancake-shaped vortex structure, the flow is quasi-two-dimensional and decays due to the vertical diffusion of vorticity and entrainment of ambient irrotational fluid. This results in an expansion of the vortex structure. Two decay models with the horizontal flow based on the viscously decaying Lamb-Chaplygin dipole, are presented. In a first model, the thickness and radius of the dipole are assumed constant, and in a second model also the increasing thickness of the vortex structure is taken into account. The models are compared with experimental data obtained from flow visualizations and from digital analysis of particle-streak photographs. Although both models neglect entrainment and the decay is modeled by diffusion only, a reasonable agreement with the experiments is obtained.

  20. Optimizing VANDLE for Decay Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brewer, N. T.; Taylor, S. Z.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Cizewski, J. A.; Peters, W. A.; Vandle Collaboration

    2013-10-01

    Understanding the decay properties of neutron rich isotopes has well established importance to the path of the r-process and to the total decay heat for reactor physics. Specifically, the half-life, branching ratio and spectra for β-n decay is of particular interest. With that in mind, we have continued attempts to improve upon the Versatile Array of Neutron Detectors at Low Energy (VANDLE) in terms of efficiency and TOF resolution through the use of new and larger scintillators. Details of the new implementation, design and characterization of the array will be shown and compared to previous results.

  1. Does the Newtonian Gravity "Constant" G Vary?

    NASA Astrophysics Data System (ADS)

    Noerdlinger, Peter D.

    2015-08-01

    A series of measurements of Newton's gravity constant, G, dating back as far as 1893, yielded widely varying values, the variation greatly exceeding the stated error estimates (Gillies, 1997; Quinn, 2000, Mohr et al 2008). The value of G is usually said to be unrelated to other physics, but we point out that the 8B Solar Neutrino Rate ought to be very sensitive. Improved pulsar timing could also help settle the issue as to whether G really varies. We claim that the variation in measured values over time (1893-2014 C.E.) is a more serious problem than the failure of the error bars to overlap; it appears that challenging or adjusting the error bars hardly masks the underlying disagreement in central values. We have assessed whether variations in the gravitational potential due to (for example) local dark matter (DM) could explain the variations. We find that the required potential fluctuations could transiently accelerate the Solar System and nearby stars to speeds in excess of the Galactic escape speed. Previous theories for the variation in G generally deal with supposed secular variation on a cosmological timescale, or very rapid oscillations whose envelope changes on that scale (Steinhardt and Will 1995). Therefore, these analyses fail to support variations on the timescale of years or spatial scales of order parsecs, which would be required by the data for G. We note that true variations in G would be associated with variations in clock rates (Derevianko and Pospelov 2014; Loeb and Maoz 2015), which could mask changes in orbital dynamics. Geringer-Sameth et al (2014) studied γ-ray emission from the nearby Reticulum dwarf galaxy, which is expected to be free of "ordinary" (stellar, black hole) γ-ray sources and found evidence for DM decay. Bernabei et al (2003) also found evidence for DM penetrating deep underground at Gran Sasso. If, indeed, variations in G can be tied to variations in gravitational potential, we have a new tool to assess the DM density.

  2. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  3. High voltage compliance constant current ballast

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.

    1976-01-01

    A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.

  4. Temporal variation of coupling constants and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Oberhummer, H.; Csótó, A.; Fairbairn, M.; Schlattl, H.; Sharma, M. M.

    2003-05-01

    We investigate the triple-alpha process and the Oklo phenomenon to obtain constraints on possible cosmological time variations of fundamental constants. Specifically we study cosmological temporal constraints for the fine structure constant and nucleon and meson masses.

  5. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  6. RARE DECAYS INCLUDING PENGUINS

    SciTech Connect

    Eigen, G

    2003-12-04

    The authors present a preliminary measurement of the exclusive charmless semileptonic B decays, B {yields} {rho}{ell}{nu}, and the extraction of the CKM parameters V{sub ub}. IN a data sample of 55 x 10{sup 6} B{bar B} events they measure a branching fraction of {Beta}(B {yields} {rho}{ell}{nu}) = (3.39 {+-} 0.44{sub stat} {+-} 0.52{sub sys} {+-} 0.60{sub th}) x 10{sup -4} yielding |V{sub ub}| = (3.69 {+-} 0.23{sub stat} {+-} 0.27{sub sys -0.59th}{sup +0.40}) x 10{sup -3}. Next, they report on a preliminary study of the radiative penguin modes B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -}. In a data sample of 84 x 10{sup 6} B{bar B} events they observe a significant signal (4.4{sigma}) in B {yields} K{ell}{sup +}{ell}{sup -}, yielding a branching fraction of {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) = (0.78{sub -0.20-0.18}{sup +0.24+0.11}) x 10{sup -6}. In B {yields} K*{ell}{sup +}{ell}{sup -} the observed yield is not yet significant (2.8{sigma}), yielding an upper limit of the branching fraction of {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) 3.0 x 10{sup -6} {at} 90% confidence level. Finally, they summarize preliminary results of searches for B {yields} {rho}({omega}){gamma}, B{sup +} {yields} K{sup +} {nu}{bar {nu}} and B{sup 0} {yields} {ell}{sup +}{ell}{sup -}.

  7. CP violation in K decays

    SciTech Connect

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs.

  8. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  9. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  10. Exploring Radioactive Decay and Geochronology through Hydrostatic Principles

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2008-12-01

    One of the most essential tools to unraveling Earth's history and the processes involved in shaping our planet is an understanding of deep time and the timescales involved in geologic processes. The primary process that allows quantification of this history is radioactive decay of unstable isotopes within earth materials, and as one of the most essential tools in geology, this concept is taught at all levels of geoscience education. The concept of radioactive decay contains nuances that are often lost on students during lectures, and students often express low confidence in their comprehension of the concept. The goal of this laboratory activity is for students to understand radioactive decay including what controls it, how it proceeds and what information it provides, along with developing higher level scientific skills including making observations and predictions, and creating and interpreting quantitative graphical representations of data. The activity employs graduated beakers, shampoo, and stopwatches. Students pour shampoo put into an upper beaker (representing the parent isotope) with a hole in the base and allow it to flow into a lower beaker (representing the daughter isotope). Students measure changes in liquid depth with time, relating this to the amount of decay and its dependence on the amount of parent available (depth of liquid) and the decay constant (area of the hole in the beaker). Several beakers with varying sized holes illustrate variations specific to the different parent isotopes. They then explore graphical representations of their "decay" data, discovering for themselves which kinds of plots yield the equations and constants that control the decay process and the derived quantity of the "half-life", and are therefore the most useful. Making their own measurements, creating graphs, and then calculating these fundamental quantities is both enlightening and empowering. An advanced variation of this experiment involves students predicting the

  11. Lorentz violation and {alpha} decay

    SciTech Connect

    Altschul, Brett

    2009-01-01

    Relating the effective Lorentz violation coefficients for composite particles to the coefficients for their constituent fields is a challenging problem. We calculate the Lorentz violation coefficients relevant to the dynamics of an {alpha} particle in terms of proton and neutron coefficients. The {alpha}-particle coefficients would lead to anisotropies in the {alpha} decays of nuclei, and because the decay process involves quantum tunneling, the effects of any Lorentz violations could be exponentially enhanced.

  12. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10-25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10-26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  13. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10‑25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10‑26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  14. Modern Measurements of Uranium Decay Rates

    NASA Astrophysics Data System (ADS)

    Parsons-Moss, T.; Faye, S. A.; Williams, R. W.; Wang, T. F.; Renne, P. R.; Mundil, R.; Harrison, M.; Bandong, B. B.; Moody, K.; Knight, K. B.

    2015-12-01

    It has been widely recognized that accurate and precise decay constants (λ) are critical to geochronology as highlighted by the EARTHTIME initiative, particularly the calibration benchmarks λ235U and λ238U. [1] Alpha counting experiments in 1971[2] measured λ235U and λ238U with ~0.1% precision, but have never been independently validated. We are embarking on new direct measurements of λ235U, λ238U, λ234Th, and λ234U using independent approaches for each nuclide. For the measurement of λ235U, highly enriched 235U samples will be chemically purified and analyzed for U concentration and isotopic composition by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Thin films will be electrodeposited from these solutions and the α activity will be measured in an α-γ coincidence counting apparatus, which allows reduced uncertainty in counting efficiency while achieving adequate counting statistics. For λ238U measurement we will measure ingrowth of 234Th in chemically purified, isotopically enriched 238U solutions, by quantitatively separating the Th and allowing complete decay to 234U. All of the measurements will be done using MC-ICP-MS aiming at 0.05% precision. This approach is expected to result in values of λ238U with less than 0.1% uncertainty, if combined with improved λ234Th measements. These will be achieved using direct decay measurements with an E-∆E charged particle telescope in coincidence with a gamma detector. This system allows measurement of 234Th β-decay and simultaneous detection and identification of α particles emitted by the 234U daughter, thus observing λ234U at the same time. The high-precision λ234U obtained by the direct activity measurements can independently verify the commonly used values obtained by indirect methods.[3] An overarching goal of the project is to ensure the quality of results including metrological traceability in order to facilitate implementation across diverse disciplines. [1] T

  15. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    PubMed

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

  16. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    PubMed

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago. PMID:25870298

  17. Detecting the dynamical state of the atmosphere from the orbital decay of the ODERACS spheres

    NASA Technical Reports Server (NTRS)

    Tan, Arjun

    1996-01-01

    The orbital decay curve of a satellite having constant cross-sectional area and in circular orbit can furnish valuable information regarding the dynamical state of the atmosphere. It is shown that a rectilinear decay curve having constant downward slope (zero curvature) should indicate that the atmosphere was undergoing compression during that period. A decay curve having concavity upwards (positive curvature) will strongly indicate that the atmosphere was in a contracting phase. A decay curve with downward concavity (negative curvature) may indicate an expanding, a stationary or a contracting atmosphere. This theory, when applied to the orbital decay of the Orbital Debris Radar Calibration Spheres (ODERACS) satellites, indicates that during the period from Day 90 through Day 240 in the year 1994, the atmosphere was very definitely in a compression mode. During this period, ODERACS Sphere 1 faced nearly constant densities while Sphere 6 actually encountered progressively smaller air densities as they descended. The atmospheric scale height as calculated from the orbital data of Spheres 1 and 6 diminished steadily during the same period. It is shown that Spheres 1 and 6 descended faster and slower respectively, than the level of constant air density equal to 5 x 10 kg/m . During a brief period from Day 240 through Day 290, the atmosphere reversed to a strongly expanding mode. Thereafter, the atmosphere reverted back to a compression mode from Day 290 through Day 390, 1994.

  18. Fundamental Constants and Tests with Simple Atoms

    NASA Astrophysics Data System (ADS)

    Tan, Joseph

    2015-05-01

    Precise measurements with simple atoms provide stringent tests of physical laws, improving the accuracy of fundamental constants--a set of which will be selected to fully define the proposed New International System of Units. This talk focuses on the atomic constants (namely, the Rydberg constant, the fine-structure constant, and the proton charge radius), discussing the impact of the proton radius obtained from the Lamb-shift measurements in muonic hydrogen. Significant discrepancies persist despite years of careful examination: the slightly smaller proton radius obtained from muonic hydrogen requires the Rydberg constant and the fine-structure constant to have values that disagree significantly with the CODATA recommendations. After giving a general overview, I will discuss our effort to produce one-electron ions in Rydberg states, to enable a different test of theory and measurement of the Rydberg constant.

  19. Order and disorder in irreversible decay processes.

    PubMed

    Nichols, Jonathan W; Flynn, Shane W; Green, Jason R

    2015-02-14

    Dynamical disorder motivates fluctuating rate coefficients in phenomenological, mass-action rate equations. The reaction order in these rate equations is the fixed exponent controlling the dependence of the rate on the number of species. Here, we clarify the relationship between these notions of (dis)order in irreversible decay, n A → B, n = 1, 2, 3, …, by extending a theoretical measure of fluctuations in the rate coefficient. The measure, Jn-Ln (2)≥0, is the magnitude of the inequality between Jn, the time-integrated square of the rate coefficient multiplied by the time interval of interest, and Ln (2), the square of the time-integrated rate coefficient. Applying the inequality to empirical models for non-exponential relaxation, we demonstrate that it quantifies the cumulative deviation in a rate coefficient from a constant, and so the degree of dynamical disorder. The equality is a bound satisfied by traditional kinetics where a single rate constant is sufficient. For these models, we show how increasing the reaction order can increase or decrease dynamical disorder and how, in either case, the inequality Jn-Ln (2)≥0 can indicate the ability to deduce the reaction order in dynamically disordered kinetics.

  20. Cold fission description with constant and varying mass asymmetries

    NASA Astrophysics Data System (ADS)

    Duarte, S. B.; Rodríguez, O.; Tavares, O. A. P.; Gonçalves, M.; García, F.; Guzmán, F.

    1998-05-01

    Different descriptions for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the prescission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A>200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life values and mass yield of 234U cold fission are satisfactorily reproduced.

  1. The near constant loss dynamic mode in metallic glass

    NASA Astrophysics Data System (ADS)

    Jiang, H. Y.; Luo, P.; Wen, P.; Bai, H. Y.; Wang, W. H.; Pan, M. X.

    2016-10-01

    The near constant loss (NCL) in relaxation spectra is a crucial dynamic phenomenon for glass-forming materials, while its underlying mechanism remains unclear and is hard to study due to the absence of characteristic time scale. We define a characteristic crossover point from both the dynamic mechanical measurements and the quasi-static tension experiments in the metallic glasses (MGs), to study the transition regime, where the NCL dynamics terminates and evolves to the initiation of the β-relaxation. It is found that such transition shows an apparent activation energy well below that of the β-relaxation. Our results also show the concomitant change of the crossover points and the NCL with aging and provide a cursory physical picture on how the NCL occurs, decays and evolves to the β- and α-relaxations in MGs.

  2. Time variation of the fine structure constant driven by quintessence

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis; Goldberg, Haim

    2003-10-01

    There are indications from the study of quasar absorption spectra that the fine structure constant α may have been measurably smaller for redshifts z>2. Analyses of other data (149Sm fission rate for the Oklo natural reactor, variation of 187Re β-decay rate in meteorite studies, atomic clock measurements) which probe variations of α in the more recent past imply much smaller deviations from its present value. In this work we tie the variation of α to the evolution of the quintessence field proposed by Albrecht and Skordis, and show that agreement with all these data, as well as consistency with Wilkinson Microwave Anisotropy Probe observations, can be achieved for a range of parameters. Some definite predictions follow for upcoming space missions searching for violations of the equivalence principle.

  3. Single and Double Beta-Decay Q Values among the Triplet 96Zr, 96Nb, and 96Mo

    NASA Astrophysics Data System (ADS)

    Alanssari, M.; Frekers, D.; Eronen, T.; Canete, L.; Dilling, J.; Haaranen, M.; Hakala, J.; Holl, M.; Ješkovský, M.; Jokinen, A.; Kankainen, A.; Koponen, J.; Mayer, A. J.; Moore, I. D.; Nesterenko, D. A.; Pohjalainen, I.; Povinec, P.; Reinikainen, J.; Rinta-Antila, S.; Srivastava, P. C.; Suhonen, J.; Thompson, R. I.; Voss, A.; Wieser, M. E.

    2016-02-01

    The atomic mass relations among the mass triplet 96Zr, 96Nb, and 96Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the 96Zr single and double β decays to 96Nb and 96decay to 96Mo, which are Qβ(96Zr)=163.96 (13 ) , Qβ β(96Zr)=3356.097 (86 ) , and Qβ(96Nb)=3192.05 (16 ) keV . Of special importance is the 96Zr single β -decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the 96Zr β β decay, and its observation can provide one of the most direct tests of the neutrinoless β β -decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single β -decay rate has been re-evaluated using a shell-model approach, which indicates a 96Zr single β -decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant gA.

  4. MUON DECAY ASYMMETRIES FROM KOL YIELDS POM+M-DECAYS.

    SciTech Connect

    DIWAN, M.V.; MA, H.; TRUEMAN, T.L.

    2001-06-12

    We have examined the decay K{sub L}{sup 0} {yields} {pi}{sup 0} {mu}{sup +} {mu}{sup -} in which the branching ratio, the muon energy asymmetry and the muon decay asymmetry could be measured. In particular, we find that within the Standard Model the longitudinal polarization (PL) of the muon is proportional to the direct CP violating amplitude. On the other hand the energy asymmetry and the out-of-plane polarization (P{sub N}) depend on both indirect and direct CP violating amplitudes. Although the branching ratio is small and difficult to measure because of background, the asymmetries could be large {Omicron}(1) in the Standard Model. A combined analysis of the energy asymmetry, P{sub L} and P{sub N} could be used to separate indirect, CPV, direct CPV, and CP conserving contributions to the decay.

  5. Assessment of the time constant of relaxation: insights from simulations and hemodynamic measurements

    NASA Technical Reports Server (NTRS)

    De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.

    2001-01-01

    The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.

  6. Unsolved problems in hadronic charm decay

    SciTech Connect

    Browder, T.E.

    1989-08-01

    This paper describes several outstanding problems in the study of hadronic decays of charmed mesons where further experimental work and theoretical understanding is needed. Four topics are stressed: double Cabibbo suppressed decays (DCSD) of D/sup +/ mesons, hadronic D/sub s/ decays, weak hadronic quasi-two-body decays to pairs of vector mesons, and penguin decays of D mesons. 24 refs., 10 figs., 5 tabs.

  7. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  8. Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence

    NASA Technical Reports Server (NTRS)

    Manzanares, E. R.; Suto, Masako; Lee, Long C.; Coffey, Dewitt, Jr.

    1986-01-01

    A room-temperature discharge-flow system investigation of the rate constant for the reaction 'HO2 + O3 yields OH + 2O2' has detected HO2 through the OH(A-X) fluorescence produced by photodissociative excitation of HO2 at 147 nm. A reaction rate constant of 1.9 + or - 0.3 x 10 to the -15th cu cm/molecule per sec is obtained from first-order decay of HO2 in excess O3; this agrees well with published data.

  9. Deflation of the cosmological constant associated with inflation and dark energy

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2016-06-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  10. Decay curve study in a standard electron capture decay

    SciTech Connect

    Nishimura, D.; Fukuda, M.; Kisamori, K.; Kuwada, Y.; Makisaka, K.; Matsumiya, R.; Matsuta, K.; Mihara, M.; Takagi, A.; Yokoyama, R.; Izumikawa, T.; Ohtsubo, T.; Suzuki, T.; Yamaguchi, T.

    2010-05-12

    We have searched for a time-modulated decay in a standard electron capture experiment for {sup 140}Pr, in order to confirm a report from GSI, where an oscillatory decay has been observed for hydrogen-like {sup 140}Pr and {sup 142}Pm ions in the cooler storage ring. {sup 140}Pr has been produced with the {sup 140}Ce(p, n) reaction by a pulsed proton beam accelerated from the Van de Graaff accelerator at Osaka University. Resultant time dependence of the K{sub a}lpha and K{sub b}eta X-ray intensities from the daughter shows no oscillatory behavior.

  11. Resummation Analysis of the τ-DECAY Width Using the Four-Loop β-FUNCTION

    NASA Astrophysics Data System (ADS)

    Groote, S.; Körner, J. G.; Pivovarov, A. A.

    We extract the strong coupling constant α s(m2_r) from the semileptonic τ-decay width taking into account resummation effects from the running of the strong coupling constant. In the /line{MS} scheme. The result reads αs=0.375±0.007 to third-order and αs=0.378±0.007 to fourth-order in the β-function, respectively, where we use the recently computed four-loop coefficient β3. These values for the coupling constant have to be compared with the value αs=0.354±0.005 derived from a third-order analysis of τ-decays. We determine the exact value of the convergence radius of the perturbation series by analyzing the singularity structure of the complex coupling constant plane.

  12. Effective elastic constants of polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Bonilla, Luis L.

    A METHOD is presented for the determination of the effective elastic constants of a transversely isotropic aggregate of weakly anisotropic crystallites with cubic symmetry. The results obtained generalize those given in the literature for the second and third order elastic constants. In addition, the second moments and the binary angular correlations of the second order stiffnesses are obtained. It is also explained how these moments can be used to find the two-point correlations of the elastic constants.

  13. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, Max E.

    1996-01-01

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.

  14. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  15. Modification of the characteristic gravitational constants

    NASA Astrophysics Data System (ADS)

    Vujičić, V. A.

    2006-08-01

    In the educational and scientific literature the numerical values of gravitational constants are seen as only approximately correct. The numerical values are different in work by various researchers, as also are the formulae and definitions of constants employed. In this paper, on the basis of Newton’s laws and Kepler’s laws we prove that it is necessary to modify the characteristic gravitational constants and their definitions. The formula for the geocentric gravitational constant of the satellites Kosmos N and the Moon are calculated.

  16. Heavy quark spectroscopy and decay

    SciTech Connect

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  17. Decay of capillary wave turbulence.

    PubMed

    Deike, Luc; Berhanu, Michael; Falcon, Eric

    2012-06-01

    We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all Fourier modes are found to decrease exponentially with time at the same damping rate. The longest wavelengths involved in the system are shown to be damped by a viscous surface boundary layer. These long waves play the role of an energy source during the decay that sustains nonlinear interactions to keep capillary waves in a wave turbulent state.

  18. Decay of massive scalar hair in the background of a dilaton gravity black hole

    SciTech Connect

    Rogatko, Marek

    2007-05-15

    We investigate analytically both the intermediate and late-time behavior of the massive scalar field in the background of the static spherically symmetric black hole solution in dilaton gravity with an arbitrary coupling constant. The intermediate asymptotic behavior of the scalar field depends on the field's parameter mass as well as the multiple number l. On its turn, the late-time behavior has the power-law decay rate independent on the coupling constant in the theory under consideration.

  19. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  20. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  1. Search for anomalies in the decay of radioactive Mn-54

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    2016-06-01

    Recent papers have reported that 54Mn, which decays by electron capture (a weak nuclear interaction) with half-life ∼312 days, is influenced by solar activity. Should this actually occur, new physics would be needed to explain it. This paper reports results of an analysis of 54Mn activity measured over a time interval of ∼3.6 half-lives. If standard nuclear physics applies, the logarithmic residuals of 54Mn activities should form a stationary set of independent random variables whose statistics are determined solely by a constant decay rate λ and initial mean count μ. Analysis of the time-variation, autocorrelation, and power spectra of the 54Mn logarithmic residuals agrees exquisitely with standard nuclear physics. Computer-simulated activities exhibiting periodic decay of amplitude A=αλ show that anomalies would be detectable by these statistical tests for values of α as low as ∼1 part in 104. This limit is about 10 times lower than reported deviations from exponential decay.

  2. Brane induced gravity, its ghost and the cosmological constant problem

    SciTech Connect

    Hassan, S.F.; Strauss, Mikael von; Hofmann, Stefan E-mail: stefan.hofmann@physik.lmu.de

    2011-01-01

    ''Brane Induced Gravity'' is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.

  3. Fluctuations in the energy input determine Kolmogorov constants in turbulence

    NASA Astrophysics Data System (ADS)

    Bewley, Gregory; Lachaussée, Florent; Kassel, Johannes; Voth, Greg; Bodenschatz, Eberhard

    2013-11-01

    Attention to turbulence is often focused, for good reason, on flows that either maintain a steady state or decay freely. But these conditions are not typical in natural or industrial flows. We ask what effect deviations from these conditions have on the turbulence itself. To answer the question, we employ a new active grid with many independently controllable degrees of freedom to generate turbulence in a wind tunnel. We find the following: The anisotropy in the flow can be set to various states, including an isotropic one, by adjusting the correlations between motions on the grid. Some part of the fluctuations in the flow can be attributed to the instantaneous configuration of the grid, in the sense that it is reproduced when the grid returns to the same configuration. The value of the Kolmogorov constants for the structure functions of different order can be adjusted by changing over time the degree to which the active grid agitates the flow. We interpret these variations in agitation as variations of the energy input rate. We then find that the Kolmogorov constants, in particular those of order higher than two, can be made to have universal values when the variation of the energy input rate is accounted for by a model based on the refined similarity theory.

  4. β decay of Na32

    NASA Astrophysics Data System (ADS)

    Mattoon, C. M.; Sarazin, F.; Hackman, G.; Cunningham, E. S.; Austin, R. A. E.; Ball, G. C.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Koopmans, K. A.; Leslie, J. R.; Phillips, A. A.; Schumaker, M. A.; Scraggs, H. C.; Schwarzenberg, J.; Smith, M. B.; Svensson, C. E.; Waddington, J. C.; Walker, P. M.; Washbrook, B.; Zganjar, E.

    2007-01-01

    The β-decay of Na32 has been studied using β-γ coincidences. New transitions and levels are tentatively placed in the level scheme of Mg32 from an analysis of γ-γ and β-γ-γ coincidences. The observation of the indirect feeding of the 2321 keV state in Mg32 removes some restrictions previously placed on the spin assignment for this state. No evidence of a state at 2117 keV in Mg32 is found. Previously unobserved weak transitions up to 5.4 MeV were recorded but could not be placed in the decay scheme of Na32.

  5. Laser-Assisted Muon Decay

    SciTech Connect

    Liu Aihua; Li Shumin; Berakdar, Jamal

    2007-06-22

    We show theoretically that the muon lifetime can be changed dramatically by embedding the decaying muon in a strong linearly polarized laser field. Evaluating the S-matrix elements taking all electronic multiphoton processes into account we find that a CO{sub 2} laser with an electric field amplitude of 10{sup 6} V cm{sup -1} results in an order of magnitude shorter lifetime of the muon. We also analyze the dependencies of the decay rate on the laser frequency and intensity.

  6. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers

    NASA Astrophysics Data System (ADS)

    Trinter, F.; Schöffler, M. S.; Kim, H.-K.; Sturm, F. P.; Cole, K.; Neumann, N.; Vredenborg, A.; Williams, J.; Bocharova, I.; Guillemin, R.; Simon, M.; Belkacem, A.; Landers, A. L.; Weber, Th.; Schmidt-Böcking, H.; Dörner, R.; Jahnke, T.

    2014-01-01

    In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.

  7. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005.

  8. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005. PMID:16574422

  9. Varying constant cosmologies and cosmic singularities

    NASA Astrophysics Data System (ADS)

    Dabrowski, Mariusz P.; Marosek, Konrad

    2013-02-01

    We review standard and non-standard cosmological singularities paying special attention onto those which are of a weak type and do not necessarily exhibit geodesic incompletness. Then, we discuss how these singularities can be weakened, strengthened, or avoided due to the time-variation of the physical constants such as the speed of light c and the gravitational constant G.

  10. Quantitative imaging of disease signatures through radioactive decay signal conversion

    PubMed Central

    Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan

    2013-01-01

    In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701

  11. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  12. CP violation and rare decays

    SciTech Connect

    Quigg, C.

    2000-01-24

    After a brief essay on the current state of particle physics and possible approaches to the opportunities that have presented themselves, the author summarizes the contributions to the Third Workshop on Physics and Detectors for DA{Phi}NE that deal with CP Violation and Rare Decays.

  13. Rare decays at the Tevatron

    SciTech Connect

    Farrington, S.M.; /Liverpool U.

    2006-01-01

    The confidence level limits of the CDF and D0 searches for the B{sub s}{sup 0}, B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}{phi} rare decays are presented.

  14. First observation of the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Burducea, I.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Holtrop, M.; Hombach, C.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2013-11-01

    The first observation of the decay is reported. The analysis is based on a data sample corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at TeV, collected with the LHCb detector. A yield of 30 ± 6 decays is found in the mass windows 1012.5 < M ( K + K -) < 1026.5 MeV/ c 2 and 746 < M( K - π +) < 1046 MeV/ c 2. The signal yield is found to be dominated by decays, and the corresponding branching fraction is measured to be = (1.10 ± 0.24 (stat) ± 0.14 (syst) ± 0.08 ( f d / f s )) × 10-6, where the uncertainties are statistical, systematic and from the ratio of fragmentation fractions f d / f s which accounts for the different production rate of B 0 and mesons. The significance of signal is 6.1 standard deviations. The fraction of longitudinal polarization in decays is found to be f 0 = 0.51 ± 0.15 (stat) ± 0.07 (syst). [Figure not available: see fulltext.

  15. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  16. Interatomic Coulombic decay in nanodroplets

    NASA Astrophysics Data System (ADS)

    Sisourat, Nicolas

    2014-05-01

    Interatomic (molecular) Coulombic decay (ICD) is an ultrafast non-radiative electronic decay process for excited atoms or molecules embedded in a chemical environment. Via ICD, the excited system can get rid of the excess energy, which is transferred to one of the neighbors and ionize it. ICD produces two charged particles next to each other and thus leads to Coulomb explosion. Kinetic energy distribution of the ionic fragments gives information on the dynamics of the decay process. From the theoretical point of view general quantum mechanical equations for describing the decay processes and the subsequent fragmentations are known but are only applicable for rather small systems. During the presentation, a semiclassical approach for modeling ICD and the subsequent fragmentations will be presented. This approach involves a classical treatment for the nuclear motion while retaining a quantum description for the electron dynamics. Such approach has low computational costs and can be used to study much larger systems. Comparison of the results from semiclassical and from quantum mechanical calculations will be shown for simple systems, demonstrating the good performance of the semiclassical method. Results on ICD in nanodroplets will finally be reported.

  17. Rare B decays at CDF

    SciTech Connect

    Farrington, Sinead M.; /Liverpool U.

    2006-10-01

    The confidence level limits of the CDF search for the B{sub s}{sup 0} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} rare decays and the branching ratio measurement of B{sub s}{sup 0} {yields} D{sub s}{sup +} D{sub s}{sup -} are presented.

  18. Review of tau lepton decays

    SciTech Connect

    Stoker, D.P.

    1991-07-01

    Measurements of the {tau} decay modes are reviewed and compared with the predictions of the Standard Model. While the agreement is generally good, the status of the 1-prong puzzle'' remains controversial and a discrepancy between the measured leptonic branching fractions and the {tau} lifetime persists. Prospects for precision measurements at a Tau-Charm Factory are also reviewed. 20 refs., 2 tabs.

  19. Fermi's β-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 β-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  20. FDCSUSYDecay: An MSSM decay package

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Wang, Jian-xiong

    2007-08-01

    FDCSUSYDecay is a FORTRAN program package generated by FDC (Feynman Diagram Calculation) system fully automatically. It is dedicated to calculate at tree-level all the possible 2-body decays of SUSY and Higgs particles in the Minimal Supersymmetric extension of the Standard Model (MSSM). The format of its output files complies with SUSY Les Houches Accord and can be easily imported by other packages. Program summaryManuscript title:FDCSUSYDecay: An MSSM decay package Authors:Wei Qi, Jian-xiong Wang Program title:FDCSUSYDecay (Version 1.00) Catalogue identifier:ADYV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYV_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:22 008 No. of bytes in distributed program, including test data, etc.:622 751 Distribution format:tar.gz Programming language:FORTRAN 77 Operating system:Linux Keywords:SUSY decay, MSSM, FDC PACS:02.70.-c, 12.60.Jv Classification:11.1, 11.6 External routines:CERNLIB 2003 (or up) Nature of problem: This package can calculate all the possible SUSY particle and Higgs 2-body decay width and branch ratio at tree-level in the MSSM model. Solution method: By running FDC, the Feynman rules for the MSSM model are generated, all the decay widths are calculated analytically and corresponding FORTRAN codes are generated for this package. Running time: Less than 1 second for both high-scale and low-scale modes on a Pentium IV 2.4 GHz machine (512 MB memory).

  1. Mathematical analysis of the Photovoltage Decay (PVD) method for minority carrier lifetime measurements

    NASA Technical Reports Server (NTRS)

    Vonroos, O. H.

    1982-01-01

    When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.

  2. Vicinal coupling constants and protein dynamics.

    PubMed

    Hoch, J C; Dobson, C M; Karplus, M

    1985-07-16

    The effects of motional averaging on the analysis of vicinal spin-spin coupling constants derived from proton NMR studies of proteins have been examined. Trajectories obtained from molecular dynamics simulations of bovine pancreatic trypsin inhibitor and of hen egg white lysozyme were used in conjunction with an expression for the dependence of the coupling constant on the intervening dihedral angle to calculate the time-dependent behavior of the coupling constants. Despite large fluctuations, the time-average values of the coupling constants are not far from those computed for the average structure in the cases where fluctuations occur about a single potential well. The calculated differences show a high correlation with the variation in the magnitude of the fluctuations of individual dihedral angles. For the cases where fluctuations involve multiple sites, large differences are found between the time-average values and the average structure values for the coupling constants. Comparison of the simulation results with the experimental trends suggests that side chains with more than one position are more common in proteins than is inferred from X-ray results. It is concluded that for the main chain, motional effects do not introduce significant errors where vicinal coupling constants are used in structure determinations; however, for side chains, the motional average can alter deductions about the structure. Accurately measured coupling constants are shown to provide information concerning the magnitude of dihedral angle fluctuations.

  3. On geometrically unified fields and universal constants

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2013-07-01

    We consider the Cartan extension of Riemann geometry as the basis upon which to build the Sciama-Kibble completion of Einstein gravity, developing the most general theory in which torsion and metric have two independent coupling constants: the main problem of the ESK theory was that torsion, having the Newton constant, was negligible beyond the Planck scale, but in this {ESK}2 theory torsion, with its own coupling constant, may be relevant much further Planck scales; further consequences of these torsionally-induced interactions will eventually be discussed.

  4. The Determination of the Strong Coupling Constant

    NASA Astrophysics Data System (ADS)

    Dissertori, Günther

    2016-10-01

    The strong coupling constant is one of the fundamental parameters of the Standard Theory of particle physics. In this review I will briefly summarise the theoretical framework, within which the strong coupling constant is defined and how it is connected to measurable observables. Then I will give an historical overview of its experimental determinations and discuss the current status and world average value. Among the many different techniques used to determine this coupling constant in the context of quantum chromodynamics, I will focus in particular on a number of measurements carried out at the Large Electron-Positron Collider (LEP) and the Large Hadron Collider (LHC) at CERN.

  5. Laser Propulsion and the Constant Momentum Mission

    NASA Astrophysics Data System (ADS)

    Larson, C. William; Mead, Franklin B.; Knecht, Sean D.

    2004-03-01

    We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids.

  6. Laser Propulsion and the Constant Momentum Mission

    SciTech Connect

    Larson, C. William; Mead, Franklin B. Jr.; Knecht, Sean D.

    2004-03-30

    We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids.

  7. Constants and Pseudo-Constants of Coupled Beam Motion in the PEP-II Rings

    SciTech Connect

    Decker, F.J.; Colocho, W.S.; Wang, M.H.; Yan, Y.T.; Yocky, G.; /SLAC

    2011-11-01

    Constants of beam motion help as cross checks to analyze beam diagnostics and the modeling procedure. Pseudo-constants, like the betatron mismatch parameter or the coupling parameter det C, are constant till certain elements in the beam line change them. This can be used to visually find the non-desired changes, pinpointing errors compared with the model.

  8. Power-law decay of the view times of scientific courses on YouTube

    NASA Astrophysics Data System (ADS)

    Gao, Lingling

    2012-11-01

    The temporal power-law decay is one class of interesting decay processes, usually indicating a long-time correlation and benefiting for a system to perform functions in various time-scales. In this work, I collect the data of the view times versus lectures of some scientific courses on YouTube, according to some special principles. These data can reflect the dynamical property of the spontaneous learning behavior, influenced by the decay of learning interest. The view times versus lectures show an obviously power-law decay process. The power approximates to 1, a universal constant. This finding brings the learning process into the interesting power-law family. It will be of interest in the fields of the human dynamics, psychology and education.

  9. Aggregate Fission-Product Decay Data Based on ENDF/B-IV and -V.

    1982-10-12

    Version 02 The ENDF/B-IV fission-product files contain neutron cross sections, decay constants, decay energies, and other decay data for 824 important fission products. They also contain fission yields for these fission products produced by one or more fission-neutron energies (14 MeV, fast, and thermal fission). Also, spectral data exist for the most important decay-heat contributors among the 824 nuclides. Because the spectra are based on fission pulses, the libraries have a general utility. The exponentialmore » fits, for example, can be folded into any power (fission) history that can be described analytically or by a histogram representation. The effects of neutron absorption are also treated and approximately accounted for in the methodology.« less

  10. Measurement of the Neutron's Beta Decay Asymmetry using Polarized Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. B.; Makela, M.; Pitt, M.; Carr, R.; Filippone, B.; Ito, T. M.; Martin, J. W.; McKeown, R.; Tipton, B.; Yuan, J.; Geltenbort, P.; Soyama, K.; Bowles, T.; Fowler, M.; Hill, R.; Hime, A.; Hogan, G.; Kirch, K.; Lamoreaux, S.; Morris, C.; Pichlmaeir, A.; Saunders, A.; Seestrom, S.; Walstrom, P.; Wilhelmy, J.; Alduschenkov, A.; Kharitonov, A.; Lassakov, M.; Rudnev, Yu.; Serebrov, A.; Vasilev, A.; Hoedel, S.; Liu, C.-Y.; Smith, D.; Young, A. R.; Kitagaki, T.; Asahi, K.; Hino, M.; Kawai, T.; Utsuro, M.; Garcia, A.; Miyachi, T.

    2001-04-01

    A measurement of the beta decay asymmetry in polarized neutron decay, when combined with the neutron lifetime, provides a determination of the fundamental vector and axial vector weak coupling constants, GV and G_A. The value of GV can be compared to that obtained from other observables to check the consistency of the electroweak Standard Model and to search for physics beyond it. We describe a new neutron beta decay asymmetry experiment being prepared at LANSCE. The experiment will use ultra-cold neutrons (UCN) from a recently developed spallation driven solid deuterium UCN source. UCNs can be produced with 100polarization, and they can be efficiently transported over long distances, thus insuring a low background environment. These properties provide some important advantages over previous neutron beta decay asymmetry experiments performed using cold neutron beams from reactors. We will report on the details of the experimental setup and the expected precision.

  11. Extraction of {gamma} from charmless hadronic B {yields} PP decays using SU(3) flavor symmetry

    SciTech Connect

    Suprun, Denis A.

    2006-07-11

    The decays of B mesons to a pair of charmless pseudoscalar mesons (PP decays) have been analyzed within the framework of flavor SU(3) symmetry and quark-diagrammatic topological approach. Flavor symmetry breaking is taken into account in tree (T) amplitudes through ratios of decay constants fK and f{pi}; exact SU(3) is assumed elsewhere. Acceptable fits to B {yields} PP branching ratios and CP asymmetries are obtained with tree, color-suppressed and QCD penguin amplitudes. Singlet penguin amplitude was introduced to describe decay amplitudes of the modes with {eta} and {eta}' mesons in the final state. Electroweak penguin amplitudes were expressed in terms of the corresponding tree-level diagrams. Values of the weak phase {gamma} were found to be consistent with the current indirect bounds from other analyses of CKM parameters.

  12. Decay characteristics of surface mounds with contrasting interlayer mass transport channels.

    PubMed

    Li, M; Wendelken, J F; Liu, B G; Wang, E G; Zhang, Z

    2001-03-12

    The decay characteristics of three-dimensional (3D) islands formed on surfaces are investigated theoretically considering two types of interlayer mass transport mechanisms. If an adatom on a given layer can easily descend from any site along the periphery of the layer, an optimal island slope and a constant terrace width will be selected during the decay. In contrast, if the adatom can descend primarily through selective (such as kinked) sites, the decay will be accompanied by a gradual increase in the island slope. These generic conclusions provide the basis for a microscopic understanding of the decay of nanostructures in fcc(111) and fcc(100) metal homoepitaxy and are applicable to other systems as well.

  13. Decay Characteristics of Surface Mounds with Contrasting Interlayer Mass Transport Channels

    SciTech Connect

    Li, Maozhi; Wendelken, J. F.; Liu, Bang-Gui; Wang, E. G.; Zhang, Zhenyu

    2001-03-12

    The decay characteristics of three-dimensional (3D) islands formed on surfaces are investigated theoretically considering two types of interlayer mass transport mechanisms. If an adatom on a given layer can easily descend from any site along the periphery of the layer, an optimal island slope and a constant terrace width will be selected during the decay. In contrast, if the adatom can descend primarily through selective (such as kinked) sites, the decay will be accompanied by a gradual increase in the island slope. These generic conclusions provide the basis for a microscopic understanding of the decay of nanostructures in fcc(111) and fcc(100) metal homoepitaxy and are applicable to other systems as well.

  14. Gaussian Confinement in a Jkj Decay Model

    NASA Astrophysics Data System (ADS)

    da Silva, Mario L. L.; Hadjimichef, Dimiter; Vasconcellos, Cesar A. Z.

    In microscopic decay models, one attempts to describe hadron strong decays in terms of quark and gluon degrees of freedom. We begin by assuming that strong decays are driven by the same interquark Hamiltonian which determines the spectrum, and that it incorporates gaussian confinement. An A → BC decay matrix element of the JKJ Hamiltonian involves a pair-production current matrix elements times a scatering matrix element. Diagrammatically this corresponds to an interaction between an initial line and produced pair.

  15. Review of J//psi/ decays

    SciTech Connect

    Toki, W.H.

    1988-11-01

    Recent results from the Mark III collaboration in radiative J//psi/ decays are presented. This includes a study of iota/E decays in J//psi/ el/eta/ and elelp, two pseudoscalar decays near threshold in J//psi/ el and el /bar K/K and two vector decays in J//psi/ el /bar K//sup o/*K/sup o/*. 20 refs., 9 figs.

  16. How the cosmological constant affects gravastar formation

    SciTech Connect

    Chan, R.; Silva, M.F.A. da; Rocha, P. E-mail: mfasnic@gmail.com

    2009-12-01

    Here we generalized a previous model of gravastar consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with an equation of state, but now we consider an external de Sitter-Schwarzschild spacetime. We have shown explicitly that the final output can be a black hole, a ''bounded excursion'' stable gravastar, a stable gravastar, or a de Sitter spacetime, depending on the total mass of the system, the cosmological constants, the equation of state of the thin shell and the initial position of the dynamical shell. We have found that the exterior cosmological constant imposes a limit to the gravastar formation, i.e., the exterior cosmological constant must be smaller than the interior cosmological constant. Besides, we have also shown that, in the particular case where the Schwarzschild mass vanishes, no stable gravastar can be formed, but we still have formation of black hole.

  17. The Solar Constant: A Take Home Lab

    ERIC Educational Resources Information Center

    Eaton, B. G.; And Others

    1977-01-01

    Describes a method that uses energy from the sun, absorbed by aluminum discs, to melt ice, and allows the determination of the solar constant. The take-home equipment includes Styrofoam cups, a plastic syringe, and aluminum discs. (MLH)

  18. Dielectric constant of water in the interface.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å.

  19. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  20. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests.

    PubMed

    Fravolini, Giulia; Egli, Markus; Derungs, Curdin; Cherubini, Paolo; Ascher-Jenull, Judith; Gómez-Brandón, María; Bardelli, Tommaso; Tognetti, Roberto; Lombardi, Fabio; Marchetti, Marco

    2016-11-01

    Deadwood is known to significantly contribute to global terrestrial carbon stocks and carbon cycling, but its decay dynamics are still not thoroughly understood. Although the chemistry of deadwood has been studied as a function of decay stage in temperate to subalpine environments, it has generally not been related to time. We therefore studied the decay (mass of deadwood, cellulose and lignin) of equal-sized blocks of Picea abies wood in soil-mesocosms over two years in the Italian Alps. The 8 sites selected were along an altitudinal sequence, reflecting different climate zones. In addition, the effect of exposure (north- and south-facing slopes) was taken into account. The decay dynamics of the mass of deadwood, cellulose and lignin were related to soil parameters (pH, soil texture, moisture, temperature) and climatic data. The decay rate constants of Picea abies deadwood were low (on average between 0.039 and 0.040y(-1)) and of lignin close to zero (or not detectable), while cellulose reacted much faster with average decay rate constants between 0.110 and 0.117y(-1). Our field experiments showed that local scale factors, such as soil parameters and topographic properties, influenced the decay process: higher soil moisture and clay content along with a lower pH seemed to accelerate wood decay. Interestingly, air temperature negatively correlated with decay rates or positively with the amount of wood components on south-facing sites. It exerted its influence rather on moisture availability, i.e. the lower the temperature the higher the moisture availability. Topographic features were also relevant with generally slower decay processes on south-facing sites than on north-facing sites owing to the drier conditions, the higher pH and the lower weathering state of the soils (less clay minerals). This study highlights the importance of a multifactorial consideration of edaphic parameters to unravel the complex dynamics of initial wood decay. PMID:27373380

  1. Competing bounds on the present-day time variation of fundamental constants

    SciTech Connect

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2009-04-15

    We compare the sensitivity of a recent bound on time variation of the fine structure constant from optical clocks with bounds on time-varying fundamental constants from atomic clocks sensitive to the electron-to-proton mass ratio, from radioactive decay rates in meteorites, and from the Oklo natural reactor. Tests of the weak equivalence principle also lead to comparable bounds on present variations of constants. The 'winner in sensitivity' depends on what relations exist between the variations of different couplings in the standard model of particle physics, which may arise from the unification of gauge interactions. Weak equivalence principle tests are currently the most sensitive within unified scenarios. A detection of time variation in atomic clocks would favor dynamical dark energy and put strong constraints on the dynamics of a cosmological scalar field.

  2. Competing bounds on the present-day time variation of fundamental constants

    NASA Astrophysics Data System (ADS)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2009-04-01

    We compare the sensitivity of a recent bound on time variation of the fine structure constant from optical clocks with bounds on time-varying fundamental constants from atomic clocks sensitive to the electron-to-proton mass ratio, from radioactive decay rates in meteorites, and from the Oklo natural reactor. Tests of the weak equivalence principle also lead to comparable bounds on present variations of constants. The “winner in sensitivity” depends on what relations exist between the variations of different couplings in the standard model of particle physics, which may arise from the unification of gauge interactions. Weak equivalence principle tests are currently the most sensitive within unified scenarios. A detection of time variation in atomic clocks would favor dynamical dark energy and put strong constraints on the dynamics of a cosmological scalar field.

  3. Double beta decay: A theoretical overview

    SciTech Connect

    Rosen, S.P.

    1988-01-01

    This paper reviews the theoretical possibility of double beta decay. The titles of the main sections of this paper are: Nuclear physics setting; Particle physics requirements; Kinematical features of the decay modes; Nuclear matrix elements; the Shell model and two-neutrino decay; Quasi-particle random phase approximation; and Future considerations. 18 refs., 7 tabs. (LSP)

  4. Weak radiative baryonic decays of B mesons

    SciTech Connect

    Kohara, Yoji

    2004-11-01

    Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.

  5. Penguin and rare decays in BABAR

    NASA Astrophysics Data System (ADS)

    Akar, Simon; Babar Collaboration

    2014-11-01

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ-π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xsl+l- inclusive decays.

  6. Beauty baryon decays: a theoretical overview

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming

    2014-11-01

    I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.

  7. Recent results on semileptonic decays at BABAR

    NASA Astrophysics Data System (ADS)

    Serrano, J.; Babar Collaboration

    2009-01-01

    Some recent BABAR results on semileptonic decays are presented. They focus on the determination of the CKM matrix elements |V| and |V| in inclusive and exclusive b→uℓν and b→cℓν decays, and on form factors measurement in exclusive c→sℓν decays.

  8. Review of B and Bs decays

    NASA Astrophysics Data System (ADS)

    Bozzi, Concezio

    2014-05-01

    A review of B and Bs decays is presented. Emphasis is given to processes most sensitive to physics beyond the Standard Model, such as radiative, electroweak and "Higgs" penguin decays, and tree-level decays involving tau leptons in the final state. An outlook on future perspectives is also given.

  9. RNA structure and scalar coupling constants

    SciTech Connect

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  10. Effect of entanglement on the decay dynamics of a pair of H(2p) atoms due to spontaneous emission

    SciTech Connect

    Tanabe, Takehiko; Odagiri, Takeshi; Nakano, Motoyoshi; Kumagai, Yoshiaki; Kitajima, Masashi; Kouchi, Noriyuki; Suzuki, Isao H.

    2010-10-15

    We have measured the coincidence time spectra of two Lyman-{alpha} photons emitted by a pair of H(2p) atoms in the photodissociation of H{sub 2} at the incident photon energy of 33.66 eV and at the hydrogen gas pressures of 0.40 and 0.02 Pa. The decay time constant at 0.02 Pa is approximately half the lifetime of a single H(2p) atom, 1.60 ns, while the decay time constant at 0.40 Pa is in agreement with the lifetime of a single H(2p) atom. It turns out that the decay faster than the lifetime of a single H(2p) atom originates from the entanglement in the pair of H(2p) atoms. We have demonstrated an effect of entanglement on atomic decay.

  11. A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions.

    PubMed

    Sudicky, Edward A; Hwang, Hyoun-Tae; Illman, Walter A; Wu, Yu-Shu; Kool, Jan B; Huyakorn, Peter

    2013-01-01

    We present a set of new, semi-analytical solutions to simulate three-dimensional contaminant transport subject to first-order chain-decay reactions. The aquifer is assumed to be areally semi-infinite, but finite in thickness. The analytical solution can treat the transformation of contaminants into daughter products, leading to decay chains consisting of multiple contaminant species and various reaction pathways. The solution in its current form is capable of accounting for up to seven species and four decay levels. The complex pathways are represented by means of first-order decay and production terms, while branching ratios account for decay stoichiometry. Besides advection, dispersion, bio-chemical or radioactive decay and daughter product formation, the model also accounts for sorption of contaminants on the aquifer solid phase with each species having a different retardation factor. First-type contaminant boundary conditions are utilized at the source (x=0 m) and can be either constant-in-time for each species, or the concentration can be allowed to undergo first-order decay. The solutions are obtained by exponential Fourier, Fourier cosine and Laplace transforms. Limiting forms of the solutions can be obtained in closed form, but we evaluate the general solutions by numerically inverting the analytical solutions in exponential Fourier and Laplace transform spaces. Various cases are generated and the solutions are verified against the HydroGeoSphere numerical model.

  12. Decay data evaluation project (DDEP): updated evaluations of the 233Th and 241Am decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2010-01-01

    The results of new decay data evaluations are presented for (233)Th (beta(-)) decay to nuclear levels in (233)Pa and (241)Am (alpha) decay to nuclear levels in (237)Np. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2009.

  13. Decay Data Evaluation Project (DDEP): evaluation of the main 243Cm and 245Cm decay characteristics.

    PubMed

    Chechev, Valery P

    2012-09-01

    The results of new decay data evaluations are presented for (243)Cm (α) decay to nuclear levels in (239)Pu and (245)Cm (α) decay to nuclear levels in (241)Pu. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2011.

  14. Form factors and decay rate of Bc * Dsl+l- decays in the QCD sum rules

    NASA Astrophysics Data System (ADS)

    Zeynali, K.; Bashiry, V.; Zolfagharpour, F.

    2014-08-01

    Rare exclusive decays are analyzed in the framework of the three-point QCD sum rules approach. The two-gluon condensate corrections to the correlation function are included and the form factors of this transition are evaluated. Using the form factors, the decay width and integrated decay rate for these decays are also calculated.

  15. Lyapunov decay in quantum irreversibility.

    PubMed

    García-Mata, Ignacio; Roncaglia, Augusto J; Wisniacki, Diego A

    2016-06-13

    The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime. PMID:27140966

  16. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation

    PubMed Central

    Ilmoniemi, Risto J.; Mäki, Hanna; Saari, Jukka; Salvador, Ricardo; Miranda, Pedro C.

    2016-01-01

    Background: The behavior of the dendritic or axonal membrane voltage due to transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial decay of the membrane voltage in the case of constant applied electric field. In TMS, however, the induced electric field waveform is typically a segment of a sinusoidal wave, with characteristic frequencies of the order of several kHz. Objective: To show that the high frequency content of the stimulation pulse causes deviations in the spatial profile of the membrane voltage as compared to the steady state. Methods: We derive the cable equation in complex form utilizing the complex frequency-dependent representation of the membrane conductivity. In addition, we define an effective length constant λeff, which governs the spatial decay of the membrane voltage. We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with the complex cable equation and by solving the traditional cable equation numerically. Results: The effective length constant decreases as a function of frequency. For a model dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is decreased by a factor 10 to 0.13 mm. Conclusion: The frequency dependency of the neuronal length constant has to be taken into account when predicting the spatial behavior of the membrane voltage as a response to TMS. PMID:27555808

  17. Decays of the tau lepton

    SciTech Connect

    Burchat, P.R.

    1986-02-01

    Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb/sup -1/ of data accumulated with the Mark II detector at the PEP e/sup +/e/sup -/ storage ring. The sample is selected using the decay products of one member of the ..gamma../sup +/..gamma../sup -/ pair produced in e/sup +/e/sup -/ annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources. First, the leptonic branching fractions measured in this analysis are about one standard deviation higher than the world average. The measured leptonic branching fractions correspond to a tau lifetime of (3.0 +- 0.2) x 10/sup -13/ s. Secondly, the total branching fraction to one charged hadron plus at least one neutral particle is measured to be (7 +- 3)% higher than the branching fraction expected from a combination of previous measurements and theoretical predictions. It is shown that decay modes involving the eta are not expected to contribute more than 3% to this excess.

  18. Optical spectroscopy and tooth decay

    NASA Astrophysics Data System (ADS)

    Misra, P.; De, T.; Singh, R.

    2005-11-01

    Optical spectroscopy in the ultraviolet, visible and mid-infrared spectral regions has been used to discriminate between healthy and diseased teeth of patients in the age range 15-75 years. Spectral scans of absorbance versus wavenumber and fluorescence intensity versus wavelength have been recorded and investigated for caries and periodontal disease. Such optical diagnostics can prove very useful in the early detection and treatment of tooth decay.

  19. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  20. Nuclear Decay Data: On-going Studies to Address and Improve Radionuclide Decay Characteristics

    NASA Astrophysics Data System (ADS)

    Nichols, Alan L.

    2005-05-01

    Representative decay data studies are described and reviewed, ranging from various measurement programmes to the maintenance of evaluated decay-data libraries. Gross beta-decay measurements are essential to address the decay-data requirements for short-lived fission products, well-defined half-lives are required in assessments of the storage of long-lived radionuclides in waste depositories, and improved decay data continue to be demanded in safeguards, to improve detector-calibration standards, and for medical and analytical applications. Such needs require the measurement of good quality decay data, along with multinational evaluations of decay schemes by means of agreed procedures.

  1. Radiative decay of nonstationary system.

    PubMed

    Banerjee, Sumana; Gangopadhyay, Gautam

    2004-04-01

    When a finite quantum system, say a fluorescent molecule is attached to a bulk surface and excited by a short laser pulse, the decay dynamics of the system is modulated by the surface and the signal is enhanced due to the bulk surface. We have considered the decay dynamics of a model of displaced distorted molecule whose excited potential surface is coupled to a continuum and then this first continuum is in turn coupled to a second continuum. In the short time scale there is a coherent exchange of energy between the system molecule and the first continuum states. In the long time scale the energy of the whole system plus first continuum drains out to the final continuum states. A dendrimer nanocomposite with the gold surface shows an enhanced light emission. This can be qualitatively understood from the model we proposed here. We have numerically studied the various potential parameters of the molecule which can affect the signal. When the potential surfaces are flat, the band structure of the first continuum states along with its initial excitation has some nontrivial effect on the profile of the radiative decay. PMID:15267501

  2. Shell-model study of the 4th- and 6th-forbidden β-decay branches of Ca48

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Horoi, M.; Suhonen, J.

    2014-03-01

    The highly forbidden β- decay of Ca48 is reexamined by performing shell-model calculations with the GXPF1A effective interaction. We examine the three available decay branches to the lowest 6+, 5+, and 4+ states of 48Sc, and extract a theoretical half-life of T1/2β=5.2-1.3+1.7×1020gA-2 yr for the β- decay, where gA is the value of the axial-vector coupling constant. The current half-life estimate suggests stronger competition between the single-β-decay and double-β-decay branches of Ca48 than previously expected on theoretical grounds.

  3. Factorization for radiative heavy quarkonium decays into scalar Glueball

    NASA Astrophysics Data System (ADS)

    Zhu, Ruilin

    2015-09-01

    We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ ψ, ψ(2 S) and Υ( nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f 0(1370), f 0(1500) and f 0(1710).

  4. Exponential depression as a test of estimated decay parameters

    NASA Astrophysics Data System (ADS)

    Isenberg, Irvin; Small, Enoch W.

    1982-09-01

    A new test for judging the goodness of estimated decay parameters is presented. The test is based on the fact that a convolution is invariant under exponential depression. In the absence of significant error the estimated parameters will then remain constant as the degree of depression is varied over a finite range. In the presence of error, the parameters will vary. Up to now, no test has existed to see if moment index displacement corrects errors to a satisfactory extent in any given analysis. It has always been necessary to have some a priori knowledge of the type of error that limited the analysis. The test presented here removes that requirement. In addition, it is shown that the test performs better than a visual inspection of residual and autocorrelation plots in judging analyses when decays are closely spaced, even in the absence of nonrandom errors. The test is useful in accepting or rejecting analyses, with or without automatic error correction, in helping to discriminate between different models of sample decay, and in tuning pulse fluorometers for optimal performance. The test is, in principle, independent of the method of moments; it may be used with any method which needs only a small amount of computer time, and which is a statistically resistant procedure.

  5. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  6. The evolution of a decaying spheromak

    NASA Astrophysics Data System (ADS)

    Sgro, A. G.; Mirin, A. A.; Marklin, G.

    1987-10-01

    The evolution of a low beta spheromak initially in a two-dimensional stable equilibrium having a constant J/B (the so-called minimum energy state) is calculated within the context of resistive magnetohydrodynamics. Since the initial equilibrium is stable, the spheromak at first resistively evolves through a sequence of stable quasiequilibria. This phase of the evolution is calculated with a transport code in which the resistivity is assumed to be largest at the wall and lowest at the magnetic axis. Resistive diffusion causes the safety factor q to decrease everywhere while decreasing fastest near the wall. The quasiequilibria through which the spheromak evolves are tested for stability with both an ideal linear stability code and a resistive one. The results of both stability codes are in basic agreement and show that when q drops to below (1)/(2) everywhere the spheromak becomes unstable to an n=2 mode. The agreement of the stability codes implies that the unstable mode is a resistively modified ideal mode. The unstable equilibrium is used as the initial condition in a 3-D nonlinear magnetohydrodynamic simulation. This simulation shows that after the unstable mode saturates, the spheromak resistively evolves through a sequence of three-dimensional quasiequilibria until it reaches another unstable configuration, after which it approaches the 2-D minimum energy state again. This evolutionary cycle can conceivably start again, unless the cycle time becomes comparable to the configuration decay time, which happens at high S. One consequence of the evolutionary cycle is that as the 3-D spheromak approaches the minimum energy state, the magnetic axis and hot plasma near it approach the wall and a new magnetic axis is formed. At high enough S, when the cycle time is comparable to the configuration lifetime, this convective heat loss mechanism is minimized. The 3-D code predicts that only the n=0 and n=2 modes are active. Simulations in which the n=1, 3, and 4 modes are

  7. Optimizing constant wavelength neutron powder diffractometers

    NASA Astrophysics Data System (ADS)

    Cussen, Leo D.

    2016-06-01

    This article describes an analytic method to optimize constant wavelength neutron powder diffractometers. It recasts the accepted mathematical description of resolution and intensity in terms of new variables and includes terms for vertical divergence, wavelength and some sample scattering effects. An undetermined multiplier method is applied to the revised equations to minimize the RMS value of resolution width at constant intensity and fixed wavelength. A new understanding of primary spectrometer transmission (presented elsewhere) can then be applied to choose beam elements to deliver an optimum instrument. Numerical methods can then be applied to choose the best wavelength.

  8. Dielectric constants of soils at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Williams, D.

    1972-01-01

    A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.

  9. Microfabricated microengine with constant rotation rate

    SciTech Connect

    Romero, L.A.; Dickey, F.M.

    1999-09-21

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  10. Atomic Weights No Longer Constants of Nature

    SciTech Connect

    Coplen, T.B.; Holden, N.

    2011-03-01

    Many of us grew up being taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis has changed the way we view atomic weights and why they are no longer constants of nature.

  11. Atomic weights: no longer constants of nature

    USGS Publications Warehouse

    Coplen, Tyler B.; Holden, Norman E.

    2011-01-01

    Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature

  12. TOPICAL REVIEW The cosmological constant puzzle

    NASA Astrophysics Data System (ADS)

    Bass, Steven D.

    2011-04-01

    The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of general relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 1056 times smaller than the value expected from quantum fields and standard model particle physics. Is the vacuum energy density time dependent? We give an introduction to the cosmological constant puzzle and ideas how to solve it.

  13. Environmental dependence of masses and coupling constants

    SciTech Connect

    Olive, Keith A.; Pospelov, Maxim

    2008-02-15

    We construct a class of scalar field models coupled to matter that lead to the dependence of masses and coupling constants on the ambient matter density. Such models predict a deviation of couplings measured on the Earth from values determined in low-density astrophysical environments, but do not necessarily require the evolution of coupling constants with the redshift in the recent cosmological past. Additional laboratory and astrophysical tests of {delta}{alpha} and {delta}(m{sub p}/m{sub e}) as functions of the ambient matter density are warranted.

  14. Our Universe from the cosmological constant

    SciTech Connect

    Barrau, Aurélien; Linsefors, Linda E-mail: linda.linsefors@lpsc.in2p3.fr

    2014-12-01

    The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.

  15. Microfabricated microengine with constant rotation rate

    DOEpatents

    Romero, Louis A.; Dickey, Fred M.

    1999-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  16. Expiratory Time Constant and Sleep Apnea Severity in the Overlap Syndrome

    PubMed Central

    Wiriyaporn, Darunee; Wang, Lu; Aboussouan, Loutfi S.

    2016-01-01

    Study Objectives: Lung mechanics in the overlap of COPD and sleep apnea impact the severity of sleep apnea. Specifically, increased lung compliance with hyperinflation protects against sleep apnea, whereas increased airway resistance worsens sleep apnea. We sought to assess whether the expiratory time constant, which reflects lung mechanics, is associated with sleep apnea severity in such patients. Methods: Polysomnographies in 34 subjects with the overlap syndrome were reviewed. Three time constants were measured for each of up to 5 stages (wake, NREM stages, and REM). The time constants were derived by fitting time and pressure coordinates on the expiratory portion of a nasal pressure signal along an exponentially decaying equation, and solving for the time constant. Demographics, morphometrics, wake end-tidal CO2, right diaphragmatic arc on a chest radiograph, and the apnea-hypopnea index (AHI) were recorded. Results: The time constant was not associated with age, gender, body mass index, right diaphragmatic arc, or wake end-tidal CO2, and was not significantly different between sleep stages. A mean time constant (TC) was therefore obtained. Subjects with a TC > 0.5 seconds had a greater AHI than those with a TC ≤ 0.5 seconds (median AHI 58 vs. 18, respectively, p = 0.003; Odds ratio of severe sleep apnea 10.6, 95% CI 3.9–51.1, p = 0.005). Conclusions: A larger time constant in the overlap syndrome is associated with increased odds of severe sleep apnea, suggesting a greater importance of airway resistance relative to lung compliance in sleep apnea causation in these subjects. Citation: Wiriyaporn D, Wang L, Aboussouan LS. Expiratory time constant and sleep apnea severity in the overlap syndrome. J Clin Sleep Med 2016;12(3):327–332. PMID:26414979

  17. HALF-LIVES OF LONG-LIVED A-DECAY, B-DECAY, BB-DECAY AND SPONTANEOUS FISSION NUCLIDES.

    SciTech Connect

    HOLDEN,N.E.

    2001-06-29

    In his review of radionuclides for dating purposes, Roth noted that there were a large number of nuclides, normally considered ''stable'' but which are radioactive with a very long half-life. Roth suggested that I review the data on the half-life values of these long-lived nuclides for a discussion session at the next meeting. These half-life values for long-lived nuclides include those due to various decay modes, {alpha}-decay, {beta}-decay, electron capture decay, {beta}{beta}-decay and spontaneous fission decay. This report is preliminary but will provide a quick overview of the extensive table of data on the recommendations from that review.

  18. Exploring the simplest purely baryonic decay processes

    NASA Astrophysics Data System (ADS)

    Geng, C. Q.; Hsiao, Y. K.; Rodrigues, Eduardo

    2016-07-01

    Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. We propose to search for purely baryonic decay processes at the LHCb experiment. No such type of decay has ever been observed. In particular, we concentrate on the decay Λb0→p p ¯n , which is the simplest purely baryonic decay mode, with solely spin-1 /2 baryons involved. We predict its decay branching ratio to be B (Λb0→p p ¯ n )=(2. 0-0.2+0.3)×10-6 , which is sufficiently large to make the decay mode accessible to LHCb. Our study can be extended to other purely baryonic decays such as Λb0→p p ¯ Λ , Λb0→Λ p ¯ Λ , and Λb0→Λ Λ ¯Λ , as well as to similar decays of antitriplet b baryons such as Ξb0 ,-.

  19. Bremsstrahlung in {alpha} Decay Reexamined

    SciTech Connect

    Boie, H.; Scheit, H.; Jentschura, U. D.; Koeck, F.; Lauer, M.; Schwalm, D.; Milstein, A. I.; Terekhov, I. S.

    2007-07-13

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed, which allows us to follow the photon spectra up to energies of {approx}500 keV. The measured differential emission probability is in good agreement with our theoretical results obtained within the quasiclassical approximation as well as with the exact quantum mechanical calculation. It is shown that, due to the small effective electric dipole charge of the radiating system, a significant interference between the electric dipole and quadrupole contributions occurs, which is altering substantially the angular correlation between the {alpha} particle and the emitted photon.

  20. Bremsstrahlung in alpha decay reexamined.

    PubMed

    Boie, H; Scheit, H; Jentschura, U D; Köck, F; Lauer, M; Milstein, A I; Terekhov, I S; Schwalm, D

    2007-07-13

    A high-statistics measurement of bremsstrahlung emitted in the alpha decay of (210)Po has been performed, which allows us to follow the photon spectra up to energies of approximately 500 keV. The measured differential emission probability is in good agreement with our theoretical results obtained within the quasiclassical approximation as well as with the exact quantum mechanical calculation. It is shown that, due to the small effective electric dipole charge of the radiating system, a significant interference between the electric dipole and quadrupole contributions occurs, which is altering substantially the angular correlation between the alpha particle and the emitted photon.

  1. Gravitational effects on inflaton decay

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori

    2015-05-22

    We point out that the inflaton inevitably couples to all non-conformally coupled matters gravitationally through an oscillation in the Hubble parameter or the cosmic scale factor. It leads to particle production during the inflaton oscillation regime, which is most efficient just after inflation. Moreover, the analysis is extended to the model with non-minimal inflaton couplings to gravity, in which the Hubble parameter oscillates more violently. We apply our results to the graviton production by the inflaton: gravitons are also produced just after inflation, but the non-minimal coupling does not induce inflaton decay into the graviton pair.

  2. Proton decay studies at HRIBF

    SciTech Connect

    Batchelder, J.C.; Bingham, C.R.; Rykaczewski, K.; Toth, K.S.; Mas, J.F.; McConnell, J.W.; Yu, C.; Bingham, C.R.; Grzywacz, R.; Kim, S.H.; Weintraub, W.; Rykaczewski, K.; Janas, Z.; Karny, M.; Davinson, T.; Slinger, R.C.; Woods, P.J.; Ginter, T.N.; Gross, C.J.; MacDonald, B.D.; Piechaczek, A.; Zganjar, E.F.; Ressler, J.J.; Walters, W.B.; Szerypo, J.

    1998-12-01

    A double-sided Si-strip detector system has been installed and commissioned at the focal plane of the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. The system can be used for heavy charged particle emission studies with half-lives as low as a few {mu}sec. In this paper we present identification and study of the decay properties of the five new proton emitters: {sup 140}Ho, {sup 141m}Ho, {sup 145}Tm, {sup 150m}Lu and {sup 151m}Lu. {copyright} {ital 1998 American Institute of Physics.}

  3. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  4. Decay of Grooves Cut in a Surface with Singular Orientation when the Neighbouring Orientations are Unstable

    NASA Astrophysics Data System (ADS)

    Duport, Christophe; Chame, Anna; Mullins, W. W.; Villain, Jacques

    1996-08-01

    The decay of a grooved profile when the average orientation is singular is treated in the particular case when the orientations close to the singular one are unstable. The system is assumed to exchange atoms with its vapour. The step fluctuations, which allow the profile decay, are treated by a partially exact transfer matrix method. The time overline tau to peel the topmost layer is obtained as a function of the width ell of a terrace: overline tau propto ell exp(kell), where the constant k depends on the temperature.

  5. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  6. Damping constant estimation in magnetoresistive readers

    SciTech Connect

    Stankiewicz, Andrzej Hernandez, Stephanie

    2015-05-07

    The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ∼0.03.

  7. Variations of the Solar Constant. [conference

    NASA Technical Reports Server (NTRS)

    Sofia, S. (Editor)

    1981-01-01

    The variations in data received from rocket-borne and balloon-borne instruments are discussed. Indirect techniques to measure and monitor the solar constant are presented. Emphasis is placed on the correlation of data from the Solar Maximum Mission and the Nimbus 7 satellites.

  8. Unified Technical Concepts. Module 12: Time Constants.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  9. The ideal Kolmogorov inertial range and constant

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1993-01-01

    The energy transfer statistics measured in numerically simulated flows are found to be nearly self-similar for wavenumbers in the inertial range. Using the measured self-similar form, an 'ideal' energy transfer function and the corresponding energy flux rate were deduced. From this flux rate, the Kolmogorov constant was calculated to be 1.5, in excellent agreement with experiments.

  10. The Elastic Constants for Wrought Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  11. The Cosmological Constant and its Interpretation

    NASA Astrophysics Data System (ADS)

    Liddle, A.; Murdin, P.

    2002-12-01

    The cosmological constant was first introduced into the equations of general relativity by Einstein himself, who later famously criticized this move as his `greatest blunder'. His main motivation had been to allow cosmological models featuring a static universe, but this possibility swiftly became redundant with Edwin Hubble's discovery of the expansion of the universe. Despite this, it has period...

  12. Can compactifications solve the cosmological constant problem?

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Masoumi, Ali

    2016-06-01

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.

  13. Spray Gun With Constant Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Simpson, William G.

    1987-01-01

    Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.

  14. Asymptotically Vanishing Cosmological Constant in the Multiverse

    NASA Astrophysics Data System (ADS)

    Kawai, Hikaru; Okada, Takashi

    We study the problem of the cosmological constant in the context of the multiverse in Lorentzian space-time, and show that the cosmological constant will vanish in the future. This sort of argument was started by Sidney Coleman in 1989, and he argued that the Euclidean wormholes make the multiverse partition function a superposition of various values of the cosmological constant Λ, which has a sharp peak at Λ = 0. However, the implication of the Euclidean analysis to our Lorentzian space-time is unclear. With this motivation, we analyze the quantum state of the multiverse in Lorentzian space-time by the WKB method, and calculate the density matrix of our universe by tracing out the other universes. Our result predicts vanishing cosmological constant. While Coleman obtained the enhancement at Λ = 0 through the action itself, in our Lorentzian analysis the similar enhancement arises from the front factor of eiS in the universe wave function, which is in the next leading order in the WKB approximation.

  15. A tunable CMOS constant current source

    NASA Technical Reports Server (NTRS)

    Thelen, D.

    1991-01-01

    A constant current source has been designed which makes use of on chip electrically erasable memory to adjust the magnitude and temperature coefficient of the output current. The current source includes a voltage reference based on the difference between enhancement and depletion transistor threshold voltages. Accuracy is +/- 3% over the full range of power supply, process variations, and temperature using eight bits for tuning.

  16. Man's Size in Terms of Fundamental Constants.

    ERIC Educational Resources Information Center

    Press, William H.

    1980-01-01

    Reviews calculations that derive an order of magnitude expression for the size of man in terms of fundamental constants, assuming that man satifies these three properties: he is made of complicated molecules; he requires an atmosphere which is not hydrogen and helium; he is as large as possible. (CS)

  17. Factorization of the constants of motion

    NASA Astrophysics Data System (ADS)

    Nash, P. L.; Chen, L. Y.

    2006-08-01

    A complete set of first integrals, or constants of motion, for a model system is constructed using "factorization", as described below. The system is described by the effective Feynman Lagrangian L = 1/4 [m(x)double over dot(t) + 2m lambda(x)over dot(t) + partial derivative V-x(x(t))](2), with one of the simplest, nontrivial, potentials V (x) = 1/2m omega(2)x(2) selected for study. Four new, explicitly time-dependent, constants of the motion c(i +/-), i = 1, 2 are defined for this system. While partial derivative/partial derivative tc(i +/-) not equal 0, d/tc(i +/-) = partial derivative/partial derivative tc(i +/-) + (x)over dot partial derivative/partial derivative xc(i +/-) + (x)double over dot partial derivative/partial derivative xci +/- + ... = along an extremal of L. The Hamiltonian H is shown to equal a sum of products of the c(i +/-), and verifies partial derivative H/partial derivative t = 0. A second, functionally independent constant of motion is also constructed as a sum of the quadratic products of c(i +/-). It is shown that these derived constants of motion are in involution.

  18. Teaching Nanochemistry: Madelung Constants of Nanocrystals

    ERIC Educational Resources Information Center

    Baker, Mark D.; Baker, A. David

    2010-01-01

    The Madelung constants for binary ionic nanoparticles are determined. The computational method described here sums the Coulombic interactions of each ion in the particle without the use of partial charges commonly used for bulk materials. The results show size-dependent lattice energies. This is a useful concept in teaching how properties such as…

  19. Sinks in the landscape, Boltzmann brains and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    2007-01-01

    This paper extends a recent investigation of the string theory landscape (Ceresole et al 2006 Phys. Rev. D 74 086010), where it was found that the decay rate of de Sitter (dS) vacua to a collapsing space with a negative vacuum energy can be quite large. The parts of space that experience a decay to a collapsing space, or to a Minkowski vacuum, never return back to dS space. The channels of irreversible vacuum decay serve as sinks for the probability flow. The existence of such sinks is a distinguishing feature of the string theory landscape. We describe relations between several different probability measures for eternal inflation taking into account the existence of the sinks. The local (comoving) description of the inflationary multiverse suffers from the so-called Boltzmann brain (BB) problem unless the probability of the decay to the sinks is sufficiently large. We show that some versions of the global (volume-weighted) description do not have this problem even if one ignores the existence of the sinks. We argue that if the number of different vacua in the landscape is large enough, the anthropic solution of the cosmological constant problem in the string landscape scenario should be valid for a broad class of the probability measures which solve the BB problem. If this is correct, the solution of the cosmological constant problem may be essentially measure-independent. Finally, we describe a simplified approach to the calculations of anthropic probabilities in the landscape, which is less ambitious but also less ambiguous than other methods. To the memory of Eugene Feinberg, who was trying to make a bridge between science, philosophy and art.

  20. Production of P-wave charmed mesons in hadronic B decays

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chua, Chun-Khiang

    2006-08-01

    Production of even-parity charmed mesons in hadronic B decays is studied. Specifically, we focus on the Cabibbo-allowed decays B¯→D**π and D¯s**D(*), where D** denotes generically a P-wave charmed meson. While the measured color-allowed decays B¯0→D**+π- are consistent with the theoretical expectation, the experimental observation of B-→D**0π- for the broad D** states is astonishing as it requires that the color-suppressed contribution dominates over the color-allowed one, even though the former is 1/mb suppressed in the heavy quark limit. In order to accommodate the data of B¯→D**π-, it is found that the real part of a2/a1 has a sign opposite to that in B¯→Dπ decays, where a1 and a2 are the effective parameters for color-allowed and color-suppressed decay amplitudes, respectively. The decay constants and form factors for D** and the Isgur-Wise functions τ1/2(ω) and τ3/2(ω) are extracted from the data of B→D**π decays. The Isgur-Wise functions calculated in the covariant light-front quark model are in good agreement with experiment. The neutral modes B¯0→D**0π0 for D**=D0*(2400), D1'(2430), and B¯0→D1'0(2430)ω are predicted to have branching ratios of order 10-4 which are also supported by the isospin argument. The decay constants of Ds0*(2317) and Ds1'(2460) are inferred from the measurements of B¯→Ds**-D to be 58 86 MeV and 130 200 MeV, respectively. Contrary to the decay constants fD0* and fD1' which are similar in size, the large disparity between fDs0* and fDs1' is surprising and unexpected.

  1. Cascade decays of hollow ions

    SciTech Connect

    Omar, G. ); Hahn, Y. )

    1991-05-01

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe{sup 14+} ions with the initial 1{ital s}, 2{ital s}, and 2{ital p} vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1{ital s} holes is analyzed, and the result compared with that for the case of one 1{ital s} hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts.

  2. Baryogenesis from decaying magnetic helicity

    NASA Astrophysics Data System (ADS)

    Kamada, Kohei; Long, Andrew J.

    2016-09-01

    As a result of the Standard Model chiral anomalies, baryon number is violated in the early Universe in the presence of a hypermagnetic field with varying helicity. We investigate whether the matter/antimatter asymmetry of the Universe can be created from the decaying helicity of a primordial (hyper)magnetic field before and after the electroweak phase transition. In this model, baryogenesis occurs without (B -L )-violation, since the (B +L ) asymmetry generated by the hypermagnetic field counteracts the washout by electroweak sphalerons. At the electroweak crossover, the hypermagnetic field becomes an electromagnetic field, which does not source (B +L ). Although the sphalerons remain in equilibrium for a time, washout is avoided since the decaying magnetic helicity sources chirality. The relic baryon asymmetry is fixed when the electroweak sphaleron freezes out. Under reasonable assumptions, a baryon asymmetry of nB/s ≃4 ×10-12 can be generated from a maximally helical, right-handed (hyper)magnetic field that has a field strength of B0≃10-14 Gauss and coherence length of λ0≃1 pc today. Relaxing an assumption that relates λ0 to B0, the model predicts nB/s ≳10-10, which could potentially explain the observed baryon asymmetry of the Universe.

  3. Bs decays at the Tevatron

    SciTech Connect

    Giurgiu, Gavril; /Johns Hopkins U.

    2010-09-01

    The authors present measurements of the branching ratio and of the polarization amplitudes in charmless B{sub s} {yields} {phi}{phi} decays using data corresponding to 2.9 fb{sup -1} of integrated luminosity, collected by the CDF experiment at the Tevatron. The branching ratio in B{sub s} {yields} {phi}{phi} decays is measured relative to the normalization mode B{sub s} {yields} J/{Psi}{phi} be {Beta}(B{sub s} {yields} {phi}{phi})/{Beta}(B{sub s} {yields} J/{Psi}{phi}) = [1.78 {+-} 0.14(stat) {+-} 0.20(syst)] x 10{sup -2}. Using the experimental value of {Beta}(B{sub s} {yields} J/{Psi}{phi}) they determine the B{sub s} {yields} {phi}{phi} branching ratio {Beta}(B{sub s} {yields} {phi}{phi}) = 2.40 {+-} 0.21(stat) {+-} 0.27(syst) {+-} 0.82(BR) x 10{sup -5}. The polarization fractions are measured for the first time in this analysis and found to be: |A{sub 0}|{sup 2} = 0.348 {+-} 0.041(stat) {+-} 0.021(syst); |A{sub {parallel}}|{sup 2} = 0.287 {+-} 0.043(stat) {+-} 0.011(syst); and |A{sub {perpendicular}}|{sup 2} = 0.365 {+-} 0.044(stat) {+-} 0.027(syst).

  4. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  5. Dark Decay of the Top Quark

    SciTech Connect

    Kong, Kyoungchul; Lee, Hye-Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. The top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6sigma deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t-->bW+Z's. This is the same as the dominant top quark decay (t-->bW) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. We discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  6. Rare decays at the LHCb experiment

    NASA Astrophysics Data System (ADS)

    Lanfranchi, G.

    2015-01-01

    Rare flavour-changing neutral-current (FCNC) decays of beauty and charm quarks, lepton flavour- and lepton-number-violating decays can provide a powerful probe for as yet unobserved virtual particles. Recent results on these topics from the LHCb experiment are reviewed. Particular attention is paid to the angular distribution of the B^0 → K^{*0}μ^+μ^- decay, where a measurement performed by LHCb shows a local discrepancy of 3.7 standard deviations with respect to the SM prediction. Using the decay B+ → K+ π+π- γ , LHCb have also been able to demonstrate the polarisation of photons produced in b → s transitions. An update for the studies dedicated to decays τ+ → μ+ μ- μ+ and B^0_{(s)} → μ^{±} e^{∓} and to the on-shell Majorana neutrinos coupling to muons in the B+ → π- μ+ μ+ decay channel are also presented.

  7. Dark decay of the top quark

    SciTech Connect

    Kong, Kyoungchul; Lee, Hye -Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 σ deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t → b W + Z's. This is the same as the dominant top quark decay (t → b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. In addition, we discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  8. SU(2) Low-Energy Constants from Mixed-Action Lattice QCD

    SciTech Connect

    Silas Beane, William Detmold, Parikshit Junnarkar, T.C. Luu, Konstantinos Orginos, Assumpta Parreno, Martin Savage, Aaron Torok, Andre Walker-Loud

    2012-11-01

    An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 <= m_l / m_s <= 0.6, while pion masses are in the range 235 < m_\\pi < 680 MeV. A two-flavor chiral perturbation theory analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients bar{l}_3 and bar{l}_4 to be bar{l}_3 = 4.04(40)(+73-55) and bar{l}_4 = 4.30(51)(+84-60). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f_\\pi / f = 1.062(26)(+42-40) where f is the decay constant in the chiral limit. The most recent scale setting by the MILC Collaboration yields a postdiction of f_\\pi = 128.2(3.6)(+4.4-6.0)(+1.2-3.3) MeV at the physical pion mass.

  9. Components of Dielectric Constants of Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Izgorodina, Ekaterina I.

    2010-03-01

    In this study ab initio-based methods were used to calculate electronic polarizability and dipole moment of ions comprising ionic liquids [1]. The test set consisted of a number of anions and cations routinely used in the ionic liquid field. As expected, in the first approximation electronic polarizability volume turned out to be proportional to the ion volume, also calculated by means of ab initio theory. For ionic liquid ions this means that their electronic polarizabilities are at least an order of magnitude larger than those of traditional molecular solvents like water and DMSO. On this basis it may seem surprising that most of ionic liquids actually possess modest dielectric constants, falling the narrow range between 10 and 15. The lower than first expected dielectric constants of ionic liquids has been explored in this work via explicit calculations of the electronic and orientation polarization contributions to the dielectric constant using the Clausius-Mossotti equation and the Onsager theory for polar dielectric materials. We determined that the electronic polarization contribution to the dielectric constant was rather small (between 1.9 and 2.2) and comparable to that of traditional molecular solvents. These findings were explained by the interplay between two quantities, increasing electronic polarizability of ions and decreasing number of ions present in the unit volume; although electronic polarizability is usually relatively large for ionic liquid ions, due to their size there are fewer ions present per unit volume (by a factor of 10 compared to traditional molecular solvents). For ionic liquids consisting of ions with zero (e.g. BF4) or negligible (e.g. NTf2) dipole moments the calculated orientation polarization does not contribute enough to account for the whole of the measured values of the dielectric constants. We suggest that in ionic liquids an additional type of polarization, ``ionic polarization'', originating from small movements of the

  10. Spectroscopy of element 115 decay chains

    SciTech Connect

    Rudolph, Dirk; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L.-L.; Di Nitto, A.; Duehllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; Gross, Carl J; Hessberger, F. P.; Herzberg, R.-D; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, Krzysztof Piotr; Schaedel, M.; Aberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; Jaeger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Thoerle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Tuerler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2013-01-01

    A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  11. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States.... Slight surface development of green mold (Cladosporium) shall not be considered decay....

  12. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  13. Higgs decays and brane gravi-vectors

    SciTech Connect

    Clark, T. E.; Liu Boyang; Love, S. T.; Xiong, C.; Veldhuis, T. ter

    2008-10-01

    Higgs boson decays in flexible brane world models with stable, massive gravi-vectors are considered. Such vectors couple bilinearly to the standard model fields through either the standard model energy-momentum tensor, the weak hypercharge field strength, or the Higgs scalar. The role of the coupling involving the extrinsic curvature is highlighted. It is found that within the presently allowed parameter space, the decay rate of the Higgs into two gravi-vectors (which would appear as an invisible Higgs decay) can be comparable to the rate for any of the standard model decay modes.

  14. Effects of a decaying cosmological fluctuation.

    PubMed

    Amendola, Luca; Finelli, Fabio

    2005-06-10

    We present the initial conditions for a decaying cosmological perturbation and study its signatures in the cosmic microwave background anisotropies and matter power spectra. An adiabatic decaying mode in the presence of components that are not described as perfect fluids (such as collisionless matter) decays slower than in a perfect-fluid dominated Universe and displays super-Hubble oscillations. Wilkinson Microwave Anisotropy Probe first year data constrain the decaying to growing ratio of scale invariant adiabatic fluctuations at the matter-radiation equality to less than 10%.

  15. Decay kinetics of benzophenone triplets and corresponding free radicals in soft and rigid polymers studied by laser flash photolysis.

    PubMed

    Levin, Peter P; Efremkin, Alexei F; Sultimova, Natalie B; Kasparov, Valery V; Khudyakov, Igor V

    2014-01-01

    The kinetics of transients formed under photoexcitation of benzophenone (B) dissolved in three different polymers was studied by ns laser flash photolysis. These polymers were the soft rubbers poly (ethylene-co-butylene) (EB), polystyrene block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) and hard polystyrene (PS). We monitored the decay kinetics of triplet state (3)B(*) and of ketyl radicals BH(●). We observed exponential decay of (3)B(*) and two-stage decay kinetics of BH(●) in EB. The first stage is a fast cage recombination of a radical pair (BH(●), radical of polymer R(●)). The second slow stage of BH(●) decay follows the second-order law with a relatively high rate constant, which corresponds to recombination of BH(●) in a homogeneous liquid with a viscosity of only ~0.1 P (about five times of 2-propanol viscosity). Application of a magnetic field (MF) of 0.2 T leads to deceleration of both stages of BH(●) decay in EB by approximately 20%. Decay kinetics of both transients were observed in SEBS. There was no MF effect on BH(●) decay in SEBS. We only observed (3)B(*) in PS. Decay kinetics of (3)B(*) in this case were described as polychromatic dispersive first-order kinetics. We discuss the effects of polymer structure on transient kinetics and the MF effect.

  16. Optical constants of liquid and solid methane

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Orton, Glenn S.

    1994-01-01

    The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.

  17. Some Dynamical Effects of the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.

    Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.

  18. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. Dielectric Constant Measurements for Characterizing Lunar Soils

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.

    2005-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.

  20. Cosmological constant in the quantum multiverse

    NASA Astrophysics Data System (ADS)

    Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.

    2011-12-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.

  1. Hyperscaling violation and the shear diffusion constant

    NASA Astrophysics Data System (ADS)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2016-09-01

    We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating exponents z , θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d - z - θ > - 1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d - z - θ = - 1, we find logarithmic behaviour. This relation is equivalent to z = 2 +deff where deff =di - θ is the effective boundary spatial dimension (and di = d - 1 the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.

  2. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  3. Simple liquid models with corrected dielectric constants.

    PubMed

    Fennell, Christopher J; Li, Libo; Dill, Ken A

    2012-06-14

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations--water, carbon tetrachloride, chloroform, and dichloromethane. Normally, such solvent models are parametrized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parametrizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parametrizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations.

  4. Pole placement with constant gain output feedback

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Lindorff, D. P.

    1972-01-01

    Given a linear time invariant multivariable system with m inputs and p outputs, it was shown that p closed loop poles of the system can be preassigned arbitrarily using constant gain output feedback provided (A circumflex, B circumflex) is controllable. These data show that if (A circumflex, B circumflex, C circumflex) is controllable and observable, and Rank B circumflex = m, Rank C circumflex = p, then max (m,p) poles of the system can be assigned arbitarily using constant gain output feedback. Further, it is shown that in some cases more than max (m,p) poles can be arbitrarily assigned. A least square design technique is outlined to approximate the desired pole locations when it is not possible to place all the poles.

  5. A damped simple pendulum of constant amplitude

    NASA Astrophysics Data System (ADS)

    Abdelkader, Mostafa A.

    1984-03-01

    A simple pendulum acted on by gravity and subjected to a resistance proportional to the velocity of the bob is considered. If the length of the string and the mass of the bob are held constant, the amplitude of the bob decreases gradually because of the damping. We want to keep the maximum swing of the bob constant for all time; this we achieve by varying the length of the string, the mass of the bob or both. The key to the solution of our problem is a second-order nonlinear differential equation having arbitrary nonlinearity and an arbitrary coefficient function, for which we give the exact integral. We also give an application of this differential equation to a boundary-value problem for a nonlinear generalization of a hypergeometric equation.

  6. Single and Double Beta-Decay Q Values among the Triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo.

    PubMed

    Alanssari, M; Frekers, D; Eronen, T; Canete, L; Dilling, J; Haaranen, M; Hakala, J; Holl, M; Ješkovský, M; Jokinen, A; Kankainen, A; Koponen, J; Mayer, A J; Moore, I D; Nesterenko, D A; Pohjalainen, I; Povinec, P; Reinikainen, J; Rinta-Antila, S; Srivastava, P C; Suhonen, J; Thompson, R I; Voss, A; Wieser, M E

    2016-02-19

    The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16)  keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the ^{96}Zr ββ decay, and its observation can provide one of the most direct tests of the neutrinoless ββ-decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single β-decay rate has been re-evaluated using a shell-model approach, which indicates a ^{96}Zr single β-decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant g_{A}. PMID:26943530

  7. Gravitational constant in multiple field gravity

    SciTech Connect

    Abedi, Habib; Abbassi, Amir M. E-mail: amabasi@khayam.ut.ac.ir

    2015-05-01

    In the present study, we consider general form of the Lagrangian  f(R, φ{sup I}, X) , that is a function of the Ricci scalar, multiple scalar fields and non-canonical kinetic terms. We obtain the effective Newton's constant deep inside the Hubble radius. We use Jordan and Einstein frames, and study the conservation of energy-momentum tensor.

  8. Mars Pathfinder Project: Planetary Constants and Models

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin

    1995-01-01

    This document provides a common set of astrodynamic constants and planetary models for use by the Mars Pathfinder Project. It attempts to collect in a single reference all the quantities and models in use across the project during development and for mission operations. These models are central to the navigation and mission design functions, but they are also used in other aspects of the project such as science observation planning and data reduction.

  9. Casimir effect in spacetimes with cosmological constant

    NASA Astrophysics Data System (ADS)

    Bessa, C. H. G.; Bezerra, V. B.; Silva, J. C. J.

    2016-06-01

    In this work, we study the influence of the gravitational field induced by the presence of a cosmological constant Λ on the Casimir energy density. We consider two metrics with the presence of the Λ-term, namely de Sitter and Schwarzschild-de Sitter (SdS). In the former case, we consider a conformal de Sitter spacetime and in the last one, a weak gravitational SdS spacetime.

  10. Dynamical Cosmological Constant in R 3 Gravity

    NASA Astrophysics Data System (ADS)

    Zare, Nasser; Fathi, Mohsen

    2015-03-01

    In this paper, we go through the famous f( R) theories of gravity, but keeping a peculiar one, namely R 3 modification. Moreover, instead of a coordinate free cosmological parameter, we take it to be a function of time. Having all these stuff, we investigate the notions of standard cosmology model, in the context of R 3 modification to general relativity, and in various regimes, we study the dynamical cosmological constant.

  11. Time constants of flat superconducting cables

    SciTech Connect

    Takacs, S.; Yamamoto, J.

    1997-06-01

    The frequency dependence of coupling losses is calculated for flat superconducting cables, including the electromagnetic coupling between different current loops on the cable. It is shown that there are two characteristic time constants for both parallel and transverse coupling losses. The values of these time constants {tau}{sub 0} and {tau}{sub 1} are calculated by introducing effective inductances for the current loops. In both cases, {tau}{sub 1} is considerably smaller than {tau}{sub 0}. As the most important methods of determining {tau}{sub 0} from AC losses - namely, the limiting slope of loss/cycle at zero frequency and the position of the maximum loss/cycle vs. frequency - estimate {tau}{sub 0} and {tau}{sub 1}, respectively, the results are important for practical measurements and evaluation of time constants from AC losses. At larger frequencies, the losses are more likely to those in normal conductors (skin effect). The calculation schemes can be applied to cables with closely wound strands (like the cable-in-conduit conductors), too. However, several other effects should be considered being different and/or more important with respect to other cable types (demagnetization factor of strands and cables, larger regions near the cable edges, smaller number of strands and subcables, etc.).

  12. Universal constant for heat production in protists.

    PubMed

    Johnson, Matthew D; Völker, Jens; Moeller, Holly V; Laws, Edward; Breslauer, Kenneth J; Falkowski, Paul G

    2009-04-21

    Using a high sensitivity differential scanning calorimeter in isothermal mode, we directly measured heat production in eukaryotic protists from 5 phyla spanning over 5 orders of magnitude in carbon biomass and 8 orders of magnitude in cell volume. Our results reveal that metabolic heat production normalized to cell mass is virtually constant in these organisms, with a median of 0.037 pW pg C(-1) (95% confidence interval = 0.022-0.061 pW pg C(-1)) at 5 degrees C. Contrary to allometric models, the relationship between heat production and cell carbon content or surface area is isometric (scaling exponents, 1.056 and 1.057, respectively). That heat production per unit cell surface area is constant suggests that heat flux through the cell surface is effectively instantaneous, and hence that cells are isothermal with their environment. The results further suggest that allometric models of metabolism based on metazoans are not applicable to protists, and that the underlying metabolic processes in the latter polyphyletic group are highly constrained by evolutionary selection. We propose that the evolutionary constraint leading to a universally constant heat production in single-celled eukaryotes is related to cytoplasmic packaging of organelles and surface area to volume relationships controlling diffusion of resources to these organelles.

  13. Properties of a Decaying Sunspot

    NASA Astrophysics Data System (ADS)

    Balthasar, H.; Beck, C.; Gömöry, P.; Muglach, K.; Puschmann, K. G.; Shimizu, T.; Verma, M.

    A small decaying sunspot was observed with the Vacuum Tower Telescope (VTT) on Tenerife and the Japanese Hinode satellite. We obtained full Stokes scans in several wavelengths covering different heights in the solar atmosphere. Imaging time series from Hinode and the Solar Dynamics Observatory (SDO) complete our data sets. The spot is surrounded by a moat flow, which persists also on that side of the spot where the penumbra already had disappeared. Close to the spot, we find a chromospheric location with downflows of more than 10 km s^{-1} without photospheric counterpart. The height dependence of the vertical component of the magnetic field strength is determined in two different ways that yielded different results in previous investigations. Such a difference still exists in our present data, but it is not as pronounced as in the past.

  14. Protonium decay and phase space

    NASA Astrophysics Data System (ADS)

    Vandermeulen, J.

    1992-09-01

    Nucleon-antinucleon at rest presents a variety of channels, where wide mesons often interfere, as shown by the analysis of protonium decay into three pions by the Asterix and Crystal Barrel experiments. A statistical model for emission of the narrow mesons π, η, η' ω, K, ¯K is presented to account for the general profile of the reaction. It is an alternative to a model based on two-doorway state dominance proposed earlier. It allows direct prediction with phenomenological channels, but deals only with branching ratios, not with the detailed structure of the final states. The initial state interactions do not influence the bulk of predictions, although they matter for two-particle branching ratios, which are small. The model is in reasonable agreement with present experimental data and is offered as a standard for comparison with forthcoming results. Some obvious deviations claim for a dynamical explanation.

  15. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1994-01-01

    Davidsen et al. (1991) have argued that the failure to detect UV photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  16. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1993-01-01

    The DM profile in clusters of galaxies was studied and simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations and in agreement with microwave background fluctuations. Neutrino DM densities, with this amplitude normalization cluster, are comparable to observed cluster DM values. It was concluded that given this normalization, the cluster DM should be al least largely composed of neutrinos. The constraint of Davidson et al., who argued that the failure to detect uv photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis, could be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  17. New Physics in B decays

    NASA Astrophysics Data System (ADS)

    Crivellin, Andreas

    2016-04-01

    While the LHC did not observe direct evidence for physics beyond the standard model, indirect hints for new physics were uncovered in the flavour sector in the decays B → K*µ+ µ-, B → Kµ+ µ-/B → Ke+e-, Bs → øµ+µ-, B → D(*) τv and h → τ±µ∓. Each observable deviates from the SM predictions at the 2 - 3σ level only, but combining all b → sµ+µ- data via a global fit, one finds 4 - 5 σ difference for NP compared to the SM and combining B → D* τv with B → Dτv one obtains 3:9 σ. While B → D(*) τv and h → τv can be naturally explained by an extended Higgs sector, the b → sµ+µ- anomalies point at a Z' gauge boson. However, it is also possible to explain B → D(*) τv and b → sµ+ µ- simultaneously with leptoquarks while their effect in h → τ±µ∓ is far too small to account for current data. Combining a 2HDM with a gauged Lµ - Lτ symmetry allows for explaining the b → sµ+ µ- anomalies in combination with h → τ±µ∓, predicting interesting correlations with τ → 3µ. In the light of these deviations from the SM we also discuss the possibilities of observing lepton flavour violating B decays (e.g. B → K(*) τ±µ∓ and Bs → τ±µ∓).

  18. Nuclear vertex constants and asymptotic normalization coefficients for the tritium nucleus

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2009-12-15

    The properties of the nuclear vertex constant for virtual triton decay to a deuteron and a neutron (T {sup {yields}} d + n) are investigated along with the properties of the asymptotic normalization coefficient defined for the triton wave function and related to this constant. These quantities are calculated numerically on the basis of an equation that relates the asymptotic normalization coefficient to the triton effective radius {rho}{sub T}, which was introduced in the present study. The values of G{sub T}{sup 2} = 1.244(68) fm and C{sub T}{sup 2} = 2.958(162) found from our calculations are in good agreement with experimental and theoretical estimates obtained for these quantities in other studies. Physical properties of the triton virtual state are also discussed.

  19. Simulation and quantification of the natural decay of a typical endocrine disrupting chemical Atrazine in an aquatic system.

    PubMed

    Lin, K Y; Chu, W

    2011-09-15

    The degradation of Atrazine (ATZ) in an outdoor environment was investigated by varying the ATZ concentration and pH levels and then cross-checked with temperature and sunlight information. The overall decay rate constant of ATZ in outdoor is slower in neutral pH and faster at extreme pH levels, while parallel tests show that higher ATZ concentration leads to slower decay rate constant. Two abiotic mechanisms including direct photolysis and hydrolysis were identified and studied in the laboratory as a comparison. Hydrolysis was found to be a slow process but it is a continuous process, which is critical as the sunlight intensity is weak. Effect of temperature on the hydrolysis was also studied. A model incorporating ATZ decay rate constants, pH levels and temperatures was proposed. Photolysis, though, is a non-continuous process in the environment. It is a fast and dominant process, which contributes 82-45% (depending on pH levels) of overall ATZ decay at outdoor. In natural environment, humic acid can act as photosensitizer and enhance photolysis of ATZ at low concentration (<10mg/L); while at high concentration of humic acid, retardation of ATZ decay was observed likely due to the scavenging of radicals and light attenuation.

  20. Study of B c → J/ ψ π, η c π decays with perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Du, Dongsheng; Yang, Yueling

    2009-03-01

    The B c → J/ ψ π, η c π decays are studied with the perturbative QCD approach. It is found that the form factors A_{0,1,2}^{Bcto J/{ψ}} and F0^{Bcto{η}c} for the B c → J/ ψ, η c transitions and the branching ratios are sensitive to the parameters ω, v, f J/ ψ and f_{{η}c} , where ω and v are the parameters of the charmonium wave functions for a Coulomb potential and the harmonic-oscillator potential, respectively, and f J/ ψ and f_{{η}c} are the decay constants of the J/ ψ and η c mesons, respectively. The large branching ratios and the clear signals of the final states make the B c → J/ ψ π, η c π decays the prospective channels for measurements at the hadron colliders.

  1. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  2. QCD in heavy quark production and decay

    SciTech Connect

    Wiss, J.

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  3. Michel parameters in radiative muon decay

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Kopylova, T. V.

    2016-09-01

    Radiative muon and tau lepton decays are described within the model-independent approach with the help of generalized Michel parameters. The exact dependence on charged lepton masses is taken into account. The results are relevant for modern and future experiments on muon and tau lepton decays.

  4. Spectroscopy and decays of charm and bottom

    SciTech Connect

    Butler, J.N.

    1997-10-01

    After a brief review of the quark model, we discuss our present knowledge of the spectroscopy of charm and bottom mesons and baryons. We go on to review the lifetimes, semileptonic, and purely leptonic decays of these particles. We conclude with a brief discussion B and D mixing and rare decays.

  5. Addressing Tooth Decay in Head Start Children

    ERIC Educational Resources Information Center

    Knowlden, Adam P.; Hill, Lawrence F.; Alles-White, Monica L.; Cottrell, Randall R.

    2012-01-01

    Tooth decay is the most prevalent chronic disease of childhood. Oral health education and dental services are crucial to reducing the number of children afflicted with dental cavities. Due to limited access to preventative care, Head Start children are particularly vulnerable to tooth decay. This article outlines practical implications of a…

  6. Crystal Ball results on tau decays

    SciTech Connect

    Lowe, S.T.

    1987-10-01

    This report reviews measurements and upper limit determinations for a number of exclusive 1-prong tau decay modes using the Crystal Ball detector. These results are important input to the apparent discrepancy between the topological and sum-of-exclusive branching fractions in 1-prong tau decays.

  7. A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay

    NASA Astrophysics Data System (ADS)

    Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.

    2016-05-01

    For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.

  8. New improved massive gravity and three-dimensional spacetimes of constant curvature and constant torsion

    NASA Astrophysics Data System (ADS)

    Dereli, Tekin; Yetişmişoǧlu, Cem

    2016-09-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti-de Sitter space AdS3) and constant torsion provide exact solutions.

  9. Search for a vector gauge boson in ϕ meson decays with the KLOE detector

    NASA Astrophysics Data System (ADS)

    KLOE-; 2 Collaboration; Archilli, F.; Babusci, D.; Badoni, D.; Balwierz, I.; Bencivenni, G.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Budano, A.; Bulychjev, S. A.; Caldeira Balkeståhl, L.; Campana, P.; Capon, G.; Ceradini, F.; Ciambrone, P.; Czerwiński, E.; Dané, E.; De Lucia, E.; De Robertis, G.; de Santis, A.; de Zorzi, G.; di Domenico, A.; di Donato, C.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Felici, G.; Fiore, S.; Franzini, P.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Gonnella, F.; Graziani, E.; Happacher, F.; Höistad, B.; Iafolla, L.; Iarocci, E.; Jacewicz, M.; Johansson, T.; Kowalewska, A.; Kulikov, V.; Kupsc, A.; Lee-Franzini, J.; Loddo, F.; Mandaglio, G.; Martemianov, M.; Martini, M.; Mascolo, M.; Matsyuk, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Nguyen, F.; Passeri, A.; Patera, V.; Prado Longhi, I.; Ranieri, A.; Redmer, C. F.; Santangelo, P.; Sarra, I.; Schioppa, M.; Sciascia, B.; Sciubba, A.; Silarski, M.; Stucci, S.; Taccini, C.; Tortora, L.; Venanzoni, G.; Versaci, R.; Wiślicki, W.; Wolke, M.; Zdebik, J.

    2012-01-01

    The existence of a light dark force mediator has been tested with the KLOE detector at DAΦNE. This particle, called U, is searched for using the decay chain ϕ→ηU, η→πππ, U→ee. No evidence is found in 1.5 fb-1 of data. The resulting exclusion plot covers the mass range 5constant and the fine structure constant, α/α, of ⩽2×10 at 90% C.L. for 50

  10. Stick slip, charge separation and decay

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.S.; Ponomarev, A.V.

    1986-01-01

    Measurements of charge separation in rock during stable and unstable deformation give unexpectedly large decay times of 50 sec. Time-domain induced polarization experiments on wet and dry rocks give similar decay times and suggest that the same decay mechanisms operate in the induced polarization response as in the relaxation of charge generated by mechanical deformation. These large decay times are attributed to electrochemical processes in the rocks, and they require low-frequency relative permittivity to be very large, in excess of 105. One consequence of large permittivity, and therefore long decay times, is that a significant portion of any electrical charge generated during an earthquake can persist for tens or hundreds of seconds. As a result, electrical disturbances associated with earthquakes should be observable for these lengths of time rather than for the milliseconds previously suggested. ?? 1986 Birka??user Verlag.

  11. Searching for displaced Higgs boson decays

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Kuflik, Eric; Lombardo, Salvator; Slone, Oren

    2015-10-01

    We study a simplified model of the Standard Model (SM) Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs boson decays below 10 cm are found by recasting existing tracker searches from Run I. New tracker search strategies, sensitive to the characteristics of these models and similar decays, are proposed with sensitivities projected for Run II at √{s }=13 TeV . With 20 fb-1 of data, we find that Higgs branching ratios down to 2 ×1 0-4 can be probed for centimeter decay lengths.

  12. Neutron Decay with PERC: a Progress Report

    NASA Astrophysics Data System (ADS)

    Konrad, G.; Abele, H.; Beck, M.; Drescher, C.; Dubbers, D.; Erhart, J.; Fillunger, H.; Gösselsberger, C.; Heil, W.; Horvath, M.; Jericha, E.; Klauser, C.; Klenke, J.; Märkisch, B.; Maix, R. K.; Mest, H.; Nowak, S.; Rebrova, N.; Roick, C.; Sauerzopf, C.; Schmidt, U.; Soldner, T.; Wang, X.; Zimmer, O.; Perc Collaboration

    2012-02-01

    The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The new instrument PERC is under development by an international collaboration. The physics motivation, sensitivity, and applications of PERC as well as the status of the design and preliminary results on uncertainties in proton spectroscopy are presented in this paper.

  13. Radiative decay of the free neutron

    SciTech Connect

    Gentile, T. R.; Dewey, M. S.; Fisher, B. M.; Mumm, H. P.; Nico, J. S.; Thompson, A. K.; Chupp, T. E.; Cooper, R. L.; Kremsky, I.; Wietfeldt, F. E.; Beise, E. J.; Breuer, H.; Hood, J.; Kiriluk, K. G.; McGonagle, M.; Byrne, J.; Coakley, K. J.

    2007-10-26

    The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and antineutrino should be accompanied by a continuous spectrum of soft photons. We recently reported the first observation of this radiative decay mode of the neutron, measured by recording photons in coincidence with both the electron and proton emitted in neutron decay. The experiment was performed on the NG-6 Fundamental Physics Beam Line at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new experiment is under development to measure both the branching ratio and energy spectrum for radiative decay with a relative standard uncertainty of a few percent. We briefly review the fundamental neutron physics program at the NCNR and describe the new radiative decay experiment.

  14. Constraining weak annihilation using semileptonic D decays

    SciTech Connect

    Ligeti, Zoltan; Luke, Michael; Manohar, Aneesh V.

    2010-08-01

    The recently measured semileptonic D{sub s} decay rate can be used to constrain weak annihilation (WA) effects in semileptonic D and B decays. We revisit the theoretical predictions for inclusive semileptonic D{sub (s)} decays using a variety of quark mass schemes. The most reliable results are obtained if the fits to B decay distributions are used to eliminate the charm quark mass dependence, without using any specific charm mass scheme. Our fit to the available data shows that WA is smaller than commonly assumed. There is no indication that the WA octet contribution (which is better constrained than the singlet contribution) dominates. The results constrain an important source of uncertainty in the extraction of |V{sub ub}| from inclusive semileptonic B decays.

  15. Rate Constant for the OH + CO Reaction at Low Temperatures.

    PubMed

    Liu, Yingdi; Sander, Stanley P

    2015-10-01

    Rate constants for the reaction of OH + CO → products (1) have been measured using laser photolysis/laser-induced fluorescence (LP/LIF) over the temperature range 193–296 K and at pressures of 50–700 Torr of Ar and N2. The reaction was studied under pseudo-first-order conditions, monitoring the decay of OH in the presence of a large excess of CO. The rate constants can be expressed as a combination of bimolecular and termolecular components. The bimolecular component was found to be temperature-independent with an expression given by kbi(T) = (1.54 ± 0.14) × 10(–13)[e(–(13±17)/T)] cm(3) molecule(–1) s(–1), with an error of one standard deviation. The termolecular component was fitted to the expression, kter = k0(T)[M]/[1 + (k0(T)[M]/k∞(T)] × 0.6({1+[log10(k0(T)[M]/k∞(T))]2}−1) where k0(T) = k0(300)(T/300)(−n) and k∞(T) = k∞(300)(T/300)(−m). The parameters for k0(T) were determined to be k0(300) = (6.0±0.5) × 10(−33) cm(6) molecule(–2) s(–1) in N2 and k0(300) = (3.4 ± 0.3) × 10(–33) cm(6) molecule(–2) s(–1) in Ar, with n = 1.9±0.5 and 2.0±0.4 in N2 and Ar, respectively. These parameters were determined using k0(T) and m from the NASA kinetics data evaluation (JPL Publication No. 10-6) since the experimental pressure range was far from the high-pressure limit. Addition of low concentrations of O2 had no discernible effect on the mechanism of the OH + CO reaction but resulted in secondary reactions which regenerated OH.

  16. Localized (super)gravity and cosmological constant

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zurab

    2000-11-01

    We consider localization of gravity in domain wall solutions of Einstein's gravity coupled to a scalar field with a generic potential. We discuss conditions on the scalar potential such that domain wall solutions are non-singular. Such solutions even exist for appropriate potentials which have no minima at all and are unbounded below. Domain walls of this type have infinite tension, while usual kink type of solutions interpolating between two AdS minima have finite tension. In the latter case the cosmological constant on the domain wall is necessarily vanishing, while in the former case it can be zero or negative. Positive cosmological constant is allowed for singular domain walls. We discuss non-trivial conditions for physically allowed singularities arising from the requirement that truncating the space at the singularities be consistent. Non-singular domain walls with infinite tension might a priori avoid recent "no-go" theorems indicating impossibility of supersymmetric embedding of kink type of domain walls in gauged supergravity. We argue that (non-singular) domain walls are stable even if they have infinite tension. This is essentially due to the fact that localization of gravity in smooth domain walls is a Higgs mechanism corresponding to a spontaneous breakdown of translational invariance. As to discontinuous domain walls arising in the presence of δ-function "brane" sources, they explicitly break translational invariance. Such solutions cannot therefore be thought of as limits of smooth domain walls. We point out that if the scalar potential has no minima and approaches finite negative values at infinity, then higher derivative terms are under control, and do not affect the cosmological constant which is vanishing for such backgrounds. Nonetheless, we also point out that higher curvature terms generically delocalize gravity, so that the desired lower-dimensional Newton's law is no longer reproduced.

  17. Leptonic and semileptonic decays of B mesons

    NASA Astrophysics Data System (ADS)

    Dingfelder, Jochen; Mannel, Thomas

    2016-07-01

    Semileptonic decays are ideally suited to study the weak interaction as well as strong interaction effects in B -meson decays. In the last decade, precision studies of semileptonic B decays have been made possible by the large samples of B mesons collected at the B factories KEKB in Japan and PEP-II in the USA. Measurements of the charged-current semileptonic transitions b →q ℓν (q =u , c ) allow for a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vc b and Vu b and the masses of the b and c quarks, which are fundamental parameters of the standard model of particle physics. The values of |Vc b| and |Vu b| are determined from measurements of inclusive B decays in combination with calculations of partial decay rates or from exclusive decays combined with theoretical predictions of hadronic form factors. Purely leptonic B decays B →ℓν (ℓ=e , μ , τ ) also provide access to |Vu b|. They are theoretically simpler, but the available signal samples are still small. Decays involving a τ lepton, B →τ ν and B →D(*)τ ν , are sensitive to new physics, in particular, to charged Higgs bosons in models with an extended Higgs sector, and provide a window to the physics of the third generation. In this article, the measurements and theoretical descriptions of charged-current leptonic and semileptonic B decays and the status of |Vc b| and |Vu b| determinations are reviewed. An overview of the theoretical approaches and the experimental techniques used in the study of these decays is also provided.

  18. Beta-decay asymmetry of the neutron and g/sub A//g/sub V/

    SciTech Connect

    Bopp, P.; Dubbers, D.; Hornig, L.; Klemt, E.; Last, J.; Schuetze, H.; Freedman, S.J.; Scharpf, O.

    1986-03-03

    The ..beta..-decay asymmetry of the free neutron is measured by use of a beam of polarized neutrons and a long solenoidal ..beta.. spectrometer with 4..pi.. solid angle for electron detection. The asymmetry parameter corrected for recoil and weak magnetism is A/sub 0/ = -0.1146 +- 0.0019, implying g/sub A//g/sub V/ = -1.262 +- 0.005 for the ratio of the axial-vector to the vector weak-coupling constants.

  19. Rate constants, timescales, and free energy barriers

    NASA Astrophysics Data System (ADS)

    Salamon, Peter; Wales, David; Segall, Anca; Lai, Yi-An; Schön, J. Christian; Hoffmann, Karl Heinz; Andresen, Bjarne

    2016-01-01

    The traditional connection between rate constants and free energy landscapes is extended to define effective free energy landscapes relevant on any chosen timescale. Although the Eyring-Polanyi transition state theory specifies a fixed timescale of τ=h/kBT}, we introduce instead the timescale of interest for the system in question, e.g. the observation time. The utility of drawing such landscapes using a variety of timescales is illustrated by the example of Holliday junction resolution. The resulting free energy landscapes are easier to interpret, clearly reveal observation time dependent effects like coalescence of short-lived states, and reveal features of interest for the specific system more clearly.

  20. Optical constants of minerals and rocks.

    PubMed

    Aronson, J R; Strong, P F

    1975-12-01

    Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function of frequency and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found. PMID:20155132

  1. The fine structure constant and habitable planets

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α-1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  2. Quantum coherence, wormholes, and the cosmological constant

    SciTech Connect

    Unruh, W.G. )

    1989-08-15

    Coleman has argued that if wormhole solutions to the Euclidean action coupled to matter dominate the Euclidean path integral for quantum gravity, they do not lead to a loss of quantum coherence for wave functions in our Universe. Furthermore, they also lead to the prediction that the ultimate'' cosmological constant is zero. I analyze the assumptions that go into this result and argue that the presence of wormhole solutions does lead to a loss of quantum coherence and, furthermore, completely destroys the Euclidean quantum theory by producing a highly nonlocal effective Euclidean action which is violently unbounded from below.

  3. Constant-Elasticity-of-Substitution Simulation

    NASA Technical Reports Server (NTRS)

    Reiter, G.

    1986-01-01

    Program simulates constant elasticity-of-substitution (CES) production function. CES function used by economic analysts to examine production costs as well as uncertainties in production. User provides such input parameters as price of labor, price of capital, and dispersion levels. CES minimizes expected cost to produce capital-uncertainty pair. By varying capital-value input, one obtains series of capital-uncertainty pairs. Capital-uncertainty pairs then used to generate several cost curves. CES program menu driven and features specific print menu for examining selected output curves. Program written in BASIC for interactive execution and implemented on IBM PC-series computer.

  4. Optical constants of minerals and rocks.

    PubMed

    Aronson, J R; Strong, P F

    1975-12-01

    Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function of frequency and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found.

  5. Characterization of a constant current charge detector.

    PubMed

    Mori, Masanobu; Chen, Yongjing; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2012-12-15

    Ion exchangers are ionic equivalents of doped semiconductors, where cations and anions are equivalents of holes and electrons as charge carriers in solid state semiconductors. We have previously demonstrated an ion exchange membrane (IEM) based electrolyte generator which behaves similar to a light-emitting diode and a charge detector (ChD) which behaves analogous to a p-i-n photodiode. The previous work on the charge detector, operated at a constant voltage, established its unique ability to respond to the charge represented by the analyte ions regardless of their redox properties, rather than to their conductivities. It also suggested that electric field induced dissociation (EFID) of water occurs at one or both ion exchange membranes. A logical extension is to study the behavior of the same device, operated in a constant current mode (ChD(i)). The evidence indicates that in the present operational mode the device also responds to the charge represented by the analytes and not their conductivity. Injection of a base into a charge detector operated in the constant voltage mode was not previously examined; in the constant current mode, base injection appears to inhibit EFID. The effects of applied current, analyte residence time and outer channel fluid composition were individually examined; analyte ions of different mobilities as well as affinities for the respective IEMs were used. While the exact behavior is somewhat dependent on the applied current, strong electrolytes, both acids and salts, respond the highest and in a near-uniform fashion, weak acids and their salts respond in an intermediate fashion and bases produce the lowest responses. A fundamentally asymmetric behavior is observed. Injected bases but not injected acids produce a poor response; the effects of incorporating a strong base as the electrolyte in the anion exchange membrane (AEM) compartment is far greater than incorporating an acid in the cation exchange membrane (CEM) compartment. These

  6. TASI Lectures on the cosmological constant

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael

    2007-08-30

    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.

  7. The fine structure constant and habitable planets

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α‑1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  8. The Boltzmann constant from a snifter

    NASA Astrophysics Data System (ADS)

    Tyukodi, B.; Sárközi, Zs; Néda, Z.; Tunyagi, A.; Györke, E.

    2012-03-01

    Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments.

  9. Radiation balances and the solar constant

    NASA Astrophysics Data System (ADS)

    Crommelynck, D.

    1981-07-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  10. Optical constants of minerals and rocks

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Strong, P. F.

    1975-01-01

    Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found.

  11. B, D and K Decays

    SciTech Connect

    Artuso, M.; Asner, D.M.; Ball, P.; Baracchini, E.; Bell, G.; Beneke, M.; Berryhill, J.; Bevan, A.; Bigi, I.I.; Blanke, M.; Bobeth, Ch.; Bona, M.; Borzumati, F.; Browder, T.; Buanes, T.; Buchalla, G.; Buchmuller, O.; Buras, A.J.; Burdin, S.; Cassel, D.G.; Cavanaugh, R.; /Syracuse U. /Carleton U. /Durham U., IPPP /Rome U. /INFN, Rome /Karlsruhe U. /RWTH Aachen U. /Fermilab /Queen Mary, U. of London /Notre Dame U. /Munich, Tech. U. /Munich, Max Planck Inst. /Dortmund U. /Annecy, LAPP /ICTP, Trieste /Taiwan, Natl. Central U. /Hawaii U. /Bergen U. /Munich U. /CERN /Liverpool U.

    2008-03-07

    The present report documents the results of Working Group 2: B, D and K decays, of the workshop on Flavor in the Era of the LHC, held at CERN from November 2005 through March 2007. With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavor physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC. The aim of Working Group 2 was twofold: on one hand, to provide a coherent, up-to-date picture of the status of flavor physics before the start of the LHC; on the other hand, to initiate activities on the path towards integrating information on NP from high-p{sub T} and flavor data. This report is organized as follows. In Sec. 1, we give an overview of NP models, focusing on a few examples that have been discussed in some detail during the workshop, with a short description of the available computational tools for flavor observables in NP models. Sec. 2 contains a concise discussion of the main theoretical problem in flavor physics: the evaluation of the relevant hadronic matrix elements for weak decays. Sec. 3 contains a detailed discussion of NP effects in a set of flavor observables that we identified as 'benchmark channels' for NP searches. The experimental prospects for flavor physics at future facilities are discussed in Sec. 4. Finally, Sec. 5 contains some assessments on the work done at the workshop and the prospects for future developments.

  12. A general algorithm for radioactive decay with branching and loss from a medium.

    PubMed

    Strenge, D L

    1997-12-01

    Many areas in the field of health physics require evaluation of the change of radionuclide quantity in a medium with time. A general solution to first-order compartmental models is presented in this paper for application to systems consisting of one physical medium that contains any number of radionuclide decay chain members. The general analytical solution to the problem is first described mathematically and then extended to four applications: 1) evaluation of the quantity of radionuclides as a function of time, 2) evaluation of the time integral of the quantity during a time period, 3) evaluation of the amount in a medium as a function of time following deposition at a constant rate, and 4) evaluation of the time integral of the amount in a medium after deposition at a constant rate for a time. The solution can be applied to any system involving constant physical transfers from the medium and radioactive chain decay with branching in the medium. The general solution is presented for quantities expressed in units of atoms and activity. Unlike many earlier mathematical solutions, this solution includes chain decay with branching explicitly in the equations. PMID:9373074

  13. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  14. Holographic dark energy with cosmological constant

    NASA Astrophysics Data System (ADS)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  15. Ventricular fibrillation time constant for swine.

    PubMed

    Wu, Jiun-Yan; Nimunkar, Amit J; Sun, Hongyu; O'Rourke, Ann; Huebner, Shane; Will, James A; Webster, John G

    2008-10-01

    The strength-duration curve for cardiac excitation can be modeled by a parallel resistor-capacitor circuit that has a time constant. Experiments on six pigs were performed by delivering current from the X26 Taser dart at a distance from the heart to cause ventricular fibrillation (VF). The X26 Taser is an electromuscular incapacitation device (EMD), which generates about 50 kV and delivers a pulse train of about 15-19 pulses s(-1) with a pulse duration of about 150 micros and peak current about 2 A. Similarly a continuous 60 Hz alternating current of the amplitude required to cause VF was delivered from the same distance. The average current and duration of the current pulse were estimated in both sets of experiments. The strength-duration equation was solved to yield an average time constant of 2.87 ms +/- 1.90 (SD). Results obtained may help in the development of safety standards for future electromuscular incapacitation devices (EMDs) without requiring additional animal tests.

  16. Superintegrable systems on spaces of constant curvature

    SciTech Connect

    Gonera, Cezary Kaszubska, Magdalena

    2014-07-15

    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

  17. Constant-mesh, multiple-shaft transmission

    SciTech Connect

    Rea, J.E.; Mills, D.D.; Sewell, J.S.

    1992-04-21

    This patent describes a multiple-shaft, constant-mesh transmission adapted to establish selectively a reverse torque delivery path and a forward drive torque delivery path and having a torque input means including a torque input shaft, a mainshaft aligned with the input shaft, a countershaft geared to the input shaft in spaced, parallel relationship with respect to the mainshaft, a torque output shaft joined to the mainshaft; multiple mainshaft gear elements journalled on the main airshaft, multiple cluster gear elements carried by the countershaft in meshing engagement with the mainshaft gear elements, one of the cluster gear elements being rotatably journalled on the countershaft; a reverse idle gear, a reverse gear journalled on the countershaft, the reverse idler gear being in constant mesh with the reverse gear and one of the mainshaft gear elements; first clutch means for connecting selectively the reverse gear and the countershaft; second synchronizer clutch means for connecting selectively the one of the mainshaft gear elements to the mainshaft; and third synchronizer clutch means for selectively connecting another of the mainshaft gear elements to the mainshaft; the first clutch means being a double-acting clutch with a first common axially movable clutch element adapted upon movement in one axial direction to drivably connected the reverse gear to the countershaft and adapted upon movement in the opposite axial direction to connect the one cluster gear element to the countershaft.

  18. The Hubble Constant and the Expanding Universe

    NASA Astrophysics Data System (ADS)

    Freedman, Wendy

    2003-01-01

    In 1929 Edwin Hubble proved that our universe is expanding by showing that the farther a galaxy is from us, the faster it is speeding away into space. This velocity-distance relation came to be called Hubble's law, and the value that describes the rate of expansion is known as the Hubble constant, or H0 . Like the speed of light, H0 is a fundamental constant, and it is a key parameter needed to estimate both the age and size of the universe. Since the late 1950s astronomers have been arguing for an H0 value between 50 to 100 kilometers per second per megaparsec, a lack of precision that produced an unacceptably wide range of ages for the universe—anywhere from 10 to 20 billion years. Using the Hubble Space Telescope, Freedman and her colleagues measured H0 to an unprecedented level of accuracy, deriving a value of 72, with an uncertainty of 10 percent—a milestone achievement in cosmology. The new result suggests that our universe is about 13 billion years old, give or take a billion years, and it's a value that sits comfortably alongside the 12 billion years estimated for the age of the oldest stars.

  19. A Constant-Force Resistive Exercise Unit

    NASA Technical Reports Server (NTRS)

    Colosky, Paul; Ruttley, Tara

    2010-01-01

    A constant-force resistive exercise unit (CFREU) has been invented for use in both normal gravitational and microgravitational environments. In comparison with a typical conventional exercise machine, this CFREU weighs less and is less bulky: Whereas weight plates and associated bulky supporting structures are used to generate resistive forces in typical conventional exercise machines, they are not used in this CFREU. Instead, resistive forces are generated in this CFREU by relatively compact, lightweight mechanisms based on constant-torque springs wound on drums. Each such mechanism is contained in a module, denoted a resistive pack, that includes a shaft for making a torque connection to a cable drum. During a stroke of resistive exercise, the cable is withdrawn from the cable drum against the torque exerted by the resistance pack. The CFREU includes a housing, within which can be mounted one or more resistive pack(s). The CFREU also includes mechanisms for engaging any combination of (1) one or more resistive pack(s) and (2) one or more spring(s) within each resistive pack to obtain a desired level of resistance.

  20. Holographic dark energy with cosmological constant

    SciTech Connect

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao E-mail: mli@itp.ac.cn E-mail: zhangzhh@mail.ustc.edu.cn

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  1. Direct Measures of the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Schechter, P. L.

    1999-05-01

    When astronomers talk about Lutz-Kelker corrections, metallicity dependent zeropoints, statistical parallaxes, Tully-Fisher relations, "fundamental" planes, light curve decline rates and, worst of all, Malmquist bias, physicists begin heading for the exits, showing signs of severe allergic reaction. They respond less violently to so-called "direct" methods of measuring distances which bypass the traditional distance ladder. Two of these, gravitational lens time delay measurements (Refsdal's method) and the Sunyaev-Zeldovich (S-Z) effect, give distance measurements to objects at high redshift which appear to rival more traditional approaches. Present, model mediated interpretations of such measurements give low values for the Hubble constant. But as is often the case with new techniques, initial enthusiasm is followed by increasing concern about systematic errors connected with messy astrophysical details. The single largest source of error in modelling lenses is the difficulty in constraining the degree of central concentration of the lensing galaxy. Sources of systematic error in S-Z distances include the clumpiness of intracluster gas, temperature variations within that gas and a bias toward selecting clusters that are elongated along the line of sight. Present best estimates of the Hubble constant, along with best estimates of the systematic uncertainties, and the prospects for improving upon these, will be presented. Support from NSF grant AST96-16866 is gratefully acknowledged.

  2. Exercise Device Would Exert Selectable Constant Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Damon C.

    2003-01-01

    An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.

  3. Do Wormholes Fix the Coupling Constants?

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2004-05-01

    If Newtonian gravitation is modified to use surface-to-surface separation between particles, it can have the strength of nuclear force between nucleons. This may be justified by possible existence of quantum wormholes in particles. All gravitational interactions would be between coupled wormholes, emitting 1/r graviton flux from their exit mouths as a function of the particle size, allowing the point-like treatment above. When the wormhole exit mouths are 1 Planck length apart, the resultant force is the known strong force coupling constant with an order of magnitude of 40 compared to the normal gravitational strength for nucleons. In addition to being mathematically simple, the above finding is consistent with observations of other coupling constants, Feynman's speculation of "transfusion" of two particles into spin 2 gravitons (published in 1962), Hawking radiation, big-bang theory abundance of quantum wormholes, wormhole theory fine-tuned by Kip S. Thorne and Matt Visser, and recent microscopic gravity measurements. It potentially leads to the holographic principle being promoted by Dr. G. t' Hooft, by naturally pointing out that the mass of the particles is proportional to their diameter squared.

  4. Laser Measurements of the H Atom + Ozone Rate Constant at Mesospheric Temperatures.

    PubMed

    Liu, Yingdi; Peng, Jian; Reppert, Kelsey; Callahan, Sara; Smith, Gregory P

    2016-06-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We remeasured its rate constant to reduce its uncertainty and extended the measurements to lower mesospheric temperatures using modern laser-induced fluorescence (LIF) techniques. H atoms were produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O((1)D) with added H2. A second, delayed, frequency-mixed dye laser measured the reaction decay rate with the remaining ozone using LIF. We monitored either the H atom decay by two photon excitation at 205 nm and detection of red fluorescence, or the OH (v = 9) product time evolution with excitation of the B(2)Σ(+)-X(2)Π (0,9) band at 237 nm and emission in the blue B(2)Σ(+)-A(2)Σ(+) (0,7) band. By cooling the enclosed low pressure flow cell we obtained measurements from 140 to 305 K at 20 to 200 Torr in Ar. Small kinetic modeling corrections were made for secondary regeneration of H atoms. The results are consistent with the current NASA JPL recommendation for this rate constant and establish its extrapolation down to the lower temperatures of the mesosphere. PMID:27193050

  5. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  6. Nonuniversality and Finite Dissipation in Decaying Magnetohydrodynamic Turbulence.

    PubMed

    Linkmann, M F; Berera, A; McComb, W D; McKay, M E

    2015-06-12

    A model equation for the Reynolds number dependence of the dimensionless dissipation rate in freely decaying homogeneous magnetohydrodynamic turbulence in the absence of a mean magnetic field is derived from the real-space energy balance equation, leading to Cϵ=Cϵ,∞+C/R-+O(1/R-(2)), where R- is a generalized Reynolds number. The constant Cϵ,∞ describes the total energy transfer flux. This flux depends on magnetic and cross helicities, because these affect the nonlinear transfer of energy, suggesting that the value of Cϵ,∞ is not universal. Direct numerical simulations were conducted on up to 2048(3) grid points, showing good agreement between data and the model. The model suggests that the magnitude of cosmological-scale magnetic fields is controlled by the values of the vector field correlations. The ideas introduced here can be used to derive similar model equations for other turbulent systems.

  7. β -decay study within multireference density functional theory and beyond

    NASA Astrophysics Data System (ADS)

    Konieczka, M.; Bączyk, P.; Satuła, W.

    2016-04-01

    A pioneering study of Gamow-Teller (GT) and Fermi matrix elements (MEs) using no-core-configuration-interaction formalism rooted in multireference density functional theory is presented. After a successful test performed for 6He→6Liβ decay, the model is applied to compute MEs in the s d - and p f -shell T =1 /2 mirror nuclei. The calculated GT MEs and the isospin-symmetry-breaking corrections to the Fermi branch are found to be in very good agreement with shell-model predictions in spite of fundamental differences between these models concerning model space, treatment of correlations, or inclusion of a core. This result indirectly supports the two-body-current-based scenarios behind the quenching of the axial-vector coupling constant.

  8. In-flight decay spectroscopy of exotic light nuclei

    SciTech Connect

    Charity, R. J.

    2012-11-20

    In-flight-decay spectroscopy is discussed, including its advantages and disadvantages. In particular the use of in-flight-decay spectroscopy for the study of two-proton decay along isobaric multiplets in highlighted.

  9. Penguin diagram dominance in radiative weak decays of bottom baryons

    SciTech Connect

    Kohara, Yoji

    2005-05-01

    Radiative weak decays of antitriplet bottom baryons are studied under the assumption of penguin diagram dominance and flavor-SU(3) (or SU(2)) symmetry. Relations among decay rates of various decay modes are derived.

  10. Tau Decays at BaBar

    SciTech Connect

    Hast, Carsten; /SLAC

    2009-01-22

    Recent results of tau lepton decay studies based on luminosities between 350 fb{sup -1} and 469 fb{sup -1} collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory are presented. The analyses reported here are Charged Current Lepton Universality and measurements of |V{sub us}| using {tau}{sup -} {yields} e{sup -}{bar {nu}}{sub e}{nu}{sub {tau}}, {mu}{sup -}{bar {nu}}{sub {mu}}{nu}{sub {tau}}, {pi}{sup -} {nu}{sub {tau}}, and K{sup -}{nu}{sub {tau}} decays, as well as searches for Second Class Currents in {tau}{sup -} {yields} {omega}{pi}{sup -}{nu}{sub {tau}} decays, studies of Lepton Flavor Violations, and a tau mass measurement and CPT-Test. If not explicitly mentioned, charge conjugate decay modes are also implied. decays, as well as searches for Second Class Currents in {tau}{sup -} {yields} {omega}{pi}{sup -}{nu}{sub {tau}} decays, studies of Lepton Flavor Violations, and a tau mass measurement and CPT-Test. If not explicitly mentioned, charge conjugate decay modes are also implied.

  11. Radiative vacancies decay of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, Miron; Baltenkov, Arkadiy

    2006-05-01

    It is demonstrated that the fulleren shell affects dramatically the radiative vacancy decay of an endohedral atom A@C60. It also adds new possibilities to radiative and non-radiative decay by opening a number of new interchannel decays similar to that in ordinary atoms where initial and final state vacancies almost always belong to different subshells. We demonstrate that the radiative width of a vacancy decay due to electron transition in the atom A in A@C60 acquire an additional factor that can be expressed via the polarizability of the C60 at transition energy. In general, it can not only enhance but also totally lock the radiative decay channel. For vacancies in subvalent shells of noble gas atoms N the non-radiative decay is forbidden. For N@C60 this decay is allowed since can proceed due to transition of fulleren shell electron to the vacancy in N. Corresponding width is expressed via the C60 total photoabsorption cross-section at the transition energy.

  12. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  13. Beta decay of 187Re and cosmochronology

    NASA Astrophysics Data System (ADS)

    Ashktorab, K.; Jänecke, J. W.; Becchetti, F. D.

    1993-06-01

    Uncertainties which limit the use of the 187-187Os isobaric pair as a cosmochronometer for the age of the galaxy and the universe include those of the partial half-lives of the continuum and bound-state decays of 187Re. While the total half-life of the decay is well established, the partial half-life for the continuum decay is uncertain, and several previous measurements are not compatible with each other. A high-temperature quartz proportional counter has been used in this work to remeasure the continuum decay of 187Re by introducing a metallo-organic rhenium compound into the counting gas. The measured beta end-point energy for the continuum decay of neutral 187Re to singly ionized 187Os of 2.70+/-0.09 keV agrees with earlier results. However, the present half-life measurement of (45+/-3) Gyr agrees within the quoted uncertainties only with the earlier measurement of Payne [Ph.D. thesis, University of Glasgow, 1965 (unpublished)] and Drever (private communication). The new half-life for the continuum decay and the total half-life of (43.5+/-1.3) Gyr, as reported by Linder et al. [Nature (London) 320, 246 (1986)] yield a branching ratio for the bound-state decay into discrete atomic states of (3+/-6)%. This is in agreement with the most recent calculated theoretical branching ratio of approximately 1%.

  14. Lower bound on e+e- decay of massive neutrinos

    NASA Technical Reports Server (NTRS)

    Cowsik, R.; Schramm, D. N.; Hoflicn, P

    1988-01-01

    Astronomical observations of SN1987A, such as the light curve, spectral intensities of lines, the X-ray emissions, etc., constrain the lifetime for the decay of a heavy neutrino 1 MeV less than or equivalent to m sub nu H less than or equal to 50 MeV through nu sub H yields nu sub 1+e(+)+e(-) exceeds 4 x 10 to the 15th exp(-m sub nuH/5MeV) seconds. Otherwise. resulting ionization energy deposits and stronger X-ray emission would have been observed. This coupled with traditional cosmological considerations argues that the lifetime of tau-neutrinos probably exceeds the age of the universe. This in turn would imply the standard cosmological mass bound does apply to nu sub tau, namely m sub nu sub tau less than or equivalent to 100 h squared eV (where h is the Hubble constant in units of 100 km/sec/mpc). The only significant loophole for these latter arguments would be if nu sub tau primarily decays rapidly into particles having very weak interactions.

  15. The beta decay asymmetry parameter of /sup 35/Ar

    SciTech Connect

    Garnett, J.D.

    1987-11-01

    The beta decay asymmetry parameter for /sup 35/Ar = /sup 35/Cl + e/sup +/ + nu/sub e/ has been remeasured in order to resolve a long standing puzzle. Previous asymmetry measurements, when combined with the comparative half-life, yield a value for the vector coupling constant, G/sub v/, that is in serious disagreement with the accepted value. We produced polarized /sup 35/Ar by a (p,n) reaction on /sup 35/Cl using the polarized proton beam provided by Lawrence Berkeley Laboratory's 88-Inch Cyclotron. The polarization of the /sup 35/Ar was determined by measuring the asymmetry of the positrons produced in /sup 35/Ar decay to the first excited state in /sup 35/Cl (branching ratio = 1.3%) in coincidence with a 1219.4 keV gamma ray. Our result, A/sub 0/ = 0.49 +- 0.10, combined with the comparative half-life yields a value for G/sub v/ in agreement with the accepted value.

  16. Decaying leptophilic dark matter at IceCube

    SciTech Connect

    Boucenna, Sofiane M.; Chianese, Marco; Mangano, Gianpiero; Miele, Gennaro; Morisi, Stefano; Pisanti, Ofelia; Vitagliano, Edoardo

    2015-12-29

    We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with the IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale — unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.

  17. Exotic vector charmonium and its leptonic decay width

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Chiu, Wei-Feng; Gong, Ming; Gui, Long-Cheng; Liu, Zhao-Feng

    2016-08-01

    We propose a novel type of interpolating field operator, which manifests the hybrid-like configuration that the charm quark-antiquark pair recoils against gluonic degrees of freedom. A heavy vector charmonium-like state with a mass of 4.33(2),GeV is disentangled from the conventional charmonium states in the quenched approximation. This state has affinity for the hybrid-like operators but couples less to the relevant quark bilinear operator. We also try to extract its leptonic decay constant and give a tentative upper limit that it is less than one tenth of that of J/ψ, which corresponds to a leptonic decay width about dozens of eV. The connection of this state with X(4260) is also discussed. The numerical calculations were carried out on Tianhe-1A at the National Supercomputer Center (NSCC) in Tianjin and the GPU cluster at Hunan Normal University. This work is supported in part by the National Science Foundation of China (NSFC) (11575196, 11575197, 11335001, 11405053), Y.C. and Z.L. also acknowledge the support of NSFC (11261130311) (CRC 110 by DFG and NSFC)

  18. Radiative β decay for studies of CP violation

    NASA Astrophysics Data System (ADS)

    Gardner, Susan; He, Daheng

    2013-06-01

    A triple-product correlation in the radiative β decay rate of neutrons or of nuclei, characterized by the kinematical variable ξ≡(lν×le)·k, where, e.g., n(p)→p(p')+e-(le)+ν¯e(lν)+γ(k), can be generated by the pseudo-Chern-Simons term found by Harvey, Hill, and Hill as a consequence of the baryon vector current anomaly and SU(2)L×U(1)Y gauge invariance at low energies. The correlation probes the imaginary part of its coupling constant, so that its observation at anticipated levels of sensitivity would reflect the presence of sources of CP violation beyond the standard model. We compute the size of the asymmetry in n→pe-ν¯eγ decay in chiral effective theory, compare it with the computed background from standard-model final-state interactions, and consider the new physics scenarios which would be limited by its experimental study.

  19. Radiative Beta Decay for Studies of CP Violation

    NASA Astrophysics Data System (ADS)

    Gardner, Susan; He, Daheng

    2013-10-01

    A triple-product correlation in the radiative β decay rate of neutrons or of nuclei, characterized by the kinematical variable, where, e.g., n (p) --> p (p') +e- (le) + νe (lν) + γ (k) , can be generated by the pseudo-Chern-Simons term found by Harvey, Hill, and Hill as a consequence of the baryon vector current anomaly and SU(2)L ×U(1)Y gauge invariance at low energies. The correlation probes the imaginary part of its coupling constant, so that its observation at anticipated levels of sensitivity would reflect the presence of sources of CP violation beyond the standard model. We compute the size of the asymmetry in n --> pe-νe γ decay in chiral effective theory, compare it with the computed background from standard-model final-state interactions, and consider the new physics scenarios which would be limited by its experimental study. Work supported in part by the U.S. Department of Energy Office of Nuclear Physics under contract no. DE-FG02-96ER40989.

  20. Quantitative imaging of disease signatures through radioactive decay signal conversion.

    PubMed

    Thorek, Daniel L J; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan

    2013-10-01

    In the era of personalized medicine, there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used; however, radioactive decay is a physical constant, and its signal is independent of biological interactions. Here, we introduce a framework of previously uncharacterized targeted and activatable probes that are excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. We accomplished this by using Cerenkov luminescence, the light produced by β-particle-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to tumor identification from a conventional PET scan, we demonstrate the medical utility of our approach by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and represents a shift toward activatable nuclear medicine agents.