Science.gov

Sample records for 176lu decay constant

  1. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant

    NASA Astrophysics Data System (ADS)

    Albarède, Francis; Scherer, Erik E.; Blichert-Toft, Janne; Rosing, Minik; Simionovici, Alexandre; Bizzarro, Martin

    2006-03-01

    When recent geological calibrations of the 176Lu decay constant are used, the 176Lu- 176Hf ages of chondrites are consistently 4% too old (˜4.75 Ga). Here, we suggest that this discrepancy reflects the photoexcitation of the long-lived 176Lu ground state to the short-lived isomeric state ( T1/2 = 3.7 h) by γ-rays irradiating early condensates. Irradiation may have been of solar origin and taking place at the inner edge of the nebular disk. Alternatively, the source of γ-rays could have been one or more supernova(e) exploding in the vicinity of the solar nebula. Such photoexcitation has been experimentally observed, but requires γ-ray photons that have energies in excess of 838 keV. At this stage, we cannot assess whether the Hf isotope composition of the Bulk Silicate Earth differs from that of chondrites, eucrites, and the 4.56 Ga old Martian meteorite ALH84001, and therefore, whether the precursor material for these different planetary bodies received comparable fluences of γ-rays.

  2. Geochemical test for branching decay of 176Lu

    NASA Astrophysics Data System (ADS)

    Amelin, Y.; Davis, W. J.

    2005-01-01

    Two different groups of values for the 176Lu decay constant have been determined by recent high-precision experiments. The λ 176Lu values of 1.86-1.87 × 10 -11 a -1 were determined by age comparisons using terrestrial minerals of Proterozoic and late Archean age, whereas values of ˜1.94 × 10 -11 a -1 were determined in age comparison studies of meteorites. A possible branched decay of 176Lu could be the cause of this discrepancy. The β + decay of 176Lu to 176Yb was detected in the early studies of radioactivity of 176Lu, with reported values of λβ +/(λβ + + λβ -) in the total 176Lu ranging from less than 0.03 to 0.67. If the β + decay fraction is close to the upper limit of the reported values, it can explain the 4%-6% difference between the apparent λ 176Lu values. To get a reliable estimate for the β + decay of 176Lu, we have measured Yb isotopic composition in 2.7 Ga zircons with Lu/Yb N (chondrite-normalized) ratios of 1.40 and 1.45, in 1.0 Ga xenotime with Lu/Yb N = 1.23, using Yb from the 28.4 Ma Fish Canyon Tuff (FCT) zircon and titanite as the modern reference value. Multiple analyses yielded the following weighted mean values (± 2σ) for the 176Yb/ 174Yb ratio: 0.4022134 ± 0.0000017 for the FCT zircon and titanite, 0.4022134 ± 0.0000019 for the 1.0 Ga xenotime, and 0.4022124 ± 0.0000033 for the 2.7 Ga zircons. These data yield λβ +/(λβ + + λβ -) = -0.005 ± 0.015 (2σ) and establish an upper limit of 0.9% of total decays for the β + decay branch. Branching decay can therefore be eliminated as the cause of the discrepancy in 176Lu decay constant estimates. We discuss other possible causes of the λ 176Lu terrestrial vs. meteorite discrepancy.

  3. The Lu Isotopic Composition of Achondrites: Closing the Case for Accelerated Decay of 176Lu

    NASA Astrophysics Data System (ADS)

    Wimpenny, Josh; Amelin, Yuri; Yin, Qing-zhu

    2015-10-01

    Studies of Lu-Hf isotope systematics in meteorites have produced apparent “ages” that are older than Pb-Pb ages and older than the estimated age of our solar system. One proposed explanation for this discrepancy is that irradiation by cosmic rays caused excitation of 176Lu to its short-lived isomer that then underwent rapid decay to 176Hf. This explanation can account for apparent excesses in 176Hf that correlate with Lu/Hf ratio. Mass balance requires that samples with measurable excess in 176Hf should also have measurable deficiencies in 176Lu on the order of 1‰-3‰. To unambiguously test the accelerated decay hypothesis, we have measured the 176Lu/175Lu ratio in terrestrial materials and achondrites to search for evidence of depletion in 176Lu. To a precision of 0.1‰ terrestrial standards, cumulate and basaltic eucrites and angrites all have the same 176Lu/175Lu ratio. Barring a subsequent mass-dependent fractionation event, these results suggest that the apparent excesses in 176Hf are not caused by accelerated decay of 176Lu, and so another hypothesis is required to explain apparently old Lu-Hf ages.

  4. Normal and anomalous K-hindered decays from four-quasiparticle isomers in 176Lu

    NASA Astrophysics Data System (ADS)

    McGoram, T. R.; Dracoulis, G. D.; Kibédi, T.; Byrne, A. P.; Bark, R. A.; Baxter, A. M.; Mullins, S. M.

    2000-09-01

    Two four-quasiparticle isomers, with Kπ=12+ and (14+) and mean lives of 450(100) ns and 58(5) μs, have been identified in 176Lu, at excitation energies of 1515 and 1588 keV, respectively. The 12+ isomer exhibits a large number of K-forbidden decay branches, populating the rotational sequences based on the Kπ=7- ground state, two Kπ=8+ states, and a Kπ=4+ state from the ν\\{7/2-[514]\\}⊗π\\{1/2-[541]\\} configuration. Most branches have decay rates that are consistent with normal K-hindrances except for the branch to the Kπ=4+ band. It has an anomalously low hindrance factor, which is attributed to two-state mixing due to a near-degeneracy between the 12+ isomer and the 12+ member of this band. The implied mixing matrix element has a value of only 5 eV, showing explicitly that very small mixing matrix elements may be responsible for anomalous K-hindered decays.

  5. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  6. Solar abundance of {sup 176}Lu and s-process nucleosynthesis

    SciTech Connect

    Laeter, J.R. de; Bukilic, N.

    2006-04-15

    The isotopic composition of lutetium has been measured with high precision using a thermal ionization mass spectrometer whose linearity was verified by measuring an isotopically certified reference material for potassium prepared by the National Institute of Standards and Technology (NIST 985). The abundance sensitivity of the mass spectrometer for the measured ion beams of Lu{sup +} was examined to ensure the absence of tailing effects and interfering ion beams. The isotope fractionation of the measured {sup 176}Lu/{sup 175}Lu ratio was estimated with reference to the isotope fractionation of ytterbium (whose isotopes are in the same mass region as lutetium), which was recently measured in this laboratory using gravimetrically prepared solutions of the enriched isotopes {sup 171}Yb and {sup 176}Yb. This is the first reported publication in which the measured isotope ratio of Lu has been corrected for isotope fractionation. An accurate determination of the abundance of {sup 176}Lu is required because of the importance of this isotope in cosmochronometry, cosmothermometry, and s-process branching studies. An accurate abundance of {sup 176}Lu is also required as it is the parent nuclide of the {sup 176}Lu/{sup 176}Hf geochronometer. The measured isotopic composition of Lu, corrected for isotope fractionation, is {sup 176}Lu/{sup 175}Lu = 0.026680 {+-} 0.000013, which gives isotope abundances for {sup 175}Lu of 97.4013 {+-} 0.0012% and of {sup 176}Lu of 2.5987 {+-} 0.0012%. The isotope abundances and relative atomic masses of the two isotopes give an atomic weight of 174.9668 {+-} 0.0001, which is in good agreement with the present Standard Atomic Weight A{sub r}(Lu) = 174.967 {+-} 0.001, but with improved accuracy. An accurate assessment of the {sup 176}Lu/{sup 175}Lu ratio is important in order to calculate the Solar System abundances of {sup 175}Lu and {sup 176}Lu for astrophysical evaluations. The experimentally determined Solar System abundances for {sup 175}Lu

  7. Connections between high-K and low-K states in the s-process nucleus {sup 176}Lu

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Chowdhury, P.

    2010-01-15

    Gamma-ray branches that connect high-K states to low-K states in the s-process nucleus {sup 176}Lu were observed, thus providing a link between the 58 Gyr, 7{sup -} ground state and the 5.3 h, 1{sup -} isomeric state. High sensitivity and unambiguous placement were achieved through the study of the decay of the 58 {mu}s K{sup {pi}}=14{sup +} isomer using {gamma}-{gamma}-coincidence measurements. The large number of decay paths from the isomer provides a means of populating a broad selection of states from above, resulting, paradoxically, in higher sensitivity than in cases where low-spin input reactions are used. The out-of band decay widths important for excitation processes in stars are quantified.

  8. Measurements of conversion electrons in the s-process branching point nucleus 176Lu

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Tan, W.; Avetisyan, R.; Casarella, C.; Gyurijinyan, A.; Manukyan, K. V.; Marley, S. T.; Nystrom, A.; Paul, N.; Siegl, K.; Smith, K.; Smith, M. K.; Strauss, S. Y.; Aprahamian, A.

    2016-05-01

    Conversion coefficients, gamma-gamma and gamma-electron coincidences were measured in the s-process branching point nucleus 176Lu . Our goal was to determine the multipolarities of the γ -ray transitions that connect the high and low K states of 176Lu . This 176Lu nucleus has a long-lived ground state ( K=7- of 37.6Gy, a short-lived isomeric state ( K=0- at 122.8keV with half-life of 3.6h, as well as a 58μs isomer at 1588keV ( K=14+ . The excitation structure of this nucleus contains bands of intermediate spins of both positive and negative parities. The intermediate states can under certain stellar temperatures completely change the equilibrium between the isomer and ground state of 176Lu and change the abundance of this nucleus. We populated 37 previously known levels in this nucleus via the 176Yb ( p, n reaction and measured 42 conversion coefficients for γ -ray transitions including 17 of them for the first time.

  9. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-03-01

    The isomeric ratio for the neutron capture reaction 176Lu(n,γ) on the Jπ= 5/2-, 761.7 keV, T1/2=32.8 ns level of 177mLu, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory.

  10. On the question of connections between high-K and low-K states in {sup 180}Ta and {sup 176}Lu

    SciTech Connect

    Dracoulis, G. D.

    2010-08-12

    Possible connections between the high- and low-K states in the odd-odd isotopes {sup 176}Lu and {sup 180}Ta are discussed in the context of photoactivation resonances, and the implications for excitations in a stellar environment. Recent spectroscopic studies using (d, 2n) reactions provide limits on the {gamma}-ray branches expected if proposed intermediate states are correct in {sup 180}Ta and {sup 176}Lu, while Deep-inelastic measurements have observed a definitive set of connections in {sup 176}Lu.

  11. Modification of nuclear transitions in stellar plasma by electronic processes: K isomers in {sup 176}Lu and {sup 180}Ta under s-process conditions

    SciTech Connect

    Gosselin, G.; Morel, P.; Mohr, P.

    2010-05-15

    The influence of the stellar plasma on the production and destruction of K isomers is studied for the examples {sup 176}Lu and {sup 180}Ta. Individual electromagnetic transitions are enhanced predominantly by nuclear excitation by electron capture, whereas the other mechanisms of electron scattering and nuclear excitation by electron transition give only minor contributions. It is found that individual transitions can be enhanced significantly for low transition energies below 100 keV. Transitions with higher energies above 200 keV are practically not affected. Although one low-energy transition in {sup 180}Ta is enhanced by up to a factor of 10, the stellar transition rates from low-K to high-K states via so-called intermediate states in {sup 176}Lu and {sup 180}Ta do not change significantly under s-process conditions. The s-process nucleosynthesis of {sup 176}Lu and {sup 180}Ta remains essentially unchanged.

  12. Properties of the 5{sup -} state at 839 keV in {sup 176}Lu and the s-process branching at A=176

    SciTech Connect

    Mohr, P.; Bisterzo, S.; Gallino, R.; Kaeppeler, F.; Kneissl, U.; Winckler, N.

    2009-04-15

    The s-process branching at mass number A=176 depends on the coupling between the high-K ground state and a low-lying low-K isomer in {sup 176}Lu. This coupling is based on electromagnetic transitions via intermediate states at higher energies. The properties of the lowest experimentally confirmed intermediate state at 839 keV are reviewed, and the transition rate between low-K and high-K states under stellar conditions is calculated on the basis of new experimental data for the 839-keV state. Properties of further candidates for intermediate states are briefly analyzed. It is found that the coupling between the high-K ground state and the low-K isomer in {sup 176}Lu is at least one order of magnitude stronger than previously assumed, leading to crucial consequences for the interpretation of the {sup 176}Lu/{sup 176}Hf pair as an s-process thermometer.

  13. Axion decay constants away from the lamppost

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Krippendorf, Sven

    2016-04-01

    It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 M P ). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.

  14. Beauty vector meson decay constants from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2016-01-01

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  15. Decay constants of p and d wave heavy light mesons

    SciTech Connect

    Veseli, Sinisa; Dunietz, Isard

    1996-07-01

    We investigate decay constants of P- and D-wave heavy-light mesons within the mock-meson approach. Numerical estimates are obtained using the relativistic quark model. We also comment on recent calculations of heavy-light pseudo-scalar and vector decay constants.

  16. Particle-number conserving analysis for the 2-quasiparticle and high-K multi-quasiparticle states in doubly-odd 174,176Lu

    NASA Astrophysics Data System (ADS)

    Li, Bing-Huan; Zhang, Zhen-Hua; Lei, Yi-An

    2013-01-01

    Two-quasiparticle bands and low-lying excited high-K four-, six-, and eight-quasiparticle bands in the doubly-odd174,176 Lu are analyzed by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. The proton and neutron Nilsson level schemes for174,176, Lu are taken from the adjacent odd-A Lu and Hf isotopes, which are adopted to reproduce the experimental bandhead energies of the one-quasiproton and one-quasineutron bands of these odd-A Lu and Hf nuclei, respectively. Once the quasiparticle configurations are determined, the experimental bandhead energies and the moments of inertia of these two- and multi-quasiparticle bands are well reproduced by PNC-CSM calculations. The Coriolis mixing of the low-K (K=|Ω1-Ω2|) two-quasiparticle band of the Gallagher-Moszkowski doublet with one nucleon in the Ω=1/2 orbital is analyzed.

  17. Fluorescence decay-time constants in organic liquid scintillators

    SciTech Connect

    Marrodan Undagoitia, T.; Feilitzsch, F. von; Oberauer, L.; Potzel, W.; Ulrich, A.; Winter, J.; Wurm, M.

    2009-04-15

    The fluorescence decay-time constants have been measured for several scintillator mixtures based on phenyl-o-xylylethane (PXE) and linear alkylbenzene (LAB) solvents. The resulting values are of relevance for the physics performance of the proposed large-volume liquid scintillator detector Low Energy Neutrino Astronomy (LENA). In particular, the impact of the measured values to the search for proton decay via p{yields}K{sup +}{nu} is evaluated in this work.

  18. Heavy-meson decay constants from QCD sum rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2010-12-22

    We sketch a recent sum-rule extraction of the decay constants of the heavy pseudoscalar mesons D, D{sub s}, B, and B{sub s} from the two-point correlator of heavy-light pseudoscalar currents. Our main emphasis lies on the control over all the uncertainties in the decay constants, related both to the input QCD parameters and to the limited accuracy of the method of sum rules. Gaining this control has become possible by application of our new procedure of extracting hadron observables based on a dual threshold depending on the Borel parameter. For the charmed-meson decay constants, we find fD = (206.2{+-}7.3{sub (OPE)}{+-}5.1{sub (syst)}) MeV, fD{sub s} = (245.3{+-}15.7{sub (OPE)}{+-}4.5{sub (syst)}) MeV. For the beauty mesons, the decay constants turn out to be extremely sensitive to the precise value of the {ovr MS} mass of the b-quark, {bar m}{sub b}({bar m}{sub b}). By requiring our sum-rule estimate to match the average of the lattice determinations of f{sub B}, we extract the rather accurate value {bar m}{sub b}({bar m}{sub b}) = (4.245{+-}0.025) GeV. Feeding this parameter value into our sum-rule formalism leads to the beauty-meson decay constants fB = (193.4{+-}12.3{sub (OPE)}{+-}4.3{sub (syst)}) MeV, fB{sub s} = (232.5{+-}18.6{sub (OPE)}{+-}2.4{sub (syst)}) MeV.

  19. Decay Constants of Beauty Mesons from QCD Sum Rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2014-11-01

    Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i) For the input value of the bottom-quark mass in the M̅S̅ scheme m̅b(m̅b) ≈ 4:18 GeV; the sum-rule result fB ≈ 210-220 MeV for the B meson decay constant is substantially larger than the recent lattice-QCD finding fB ≈ 190 MeV: Requiring QCD sum rules to reproduce the lattice-QCD value of fB yields a significantly larger b-quark mass: m̅b(m̅b) = 4:247 GeV: (ii) Whereas QCD sum-rule predictions for the charmed-meson decay constants fD; fDs, fD* and fDs* are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants—and especially for the ratio fB* / fB—prove to be very sensitive to the specific scale setting.

  20. Radius of the ρ meson determined from its decay constant

    NASA Astrophysics Data System (ADS)

    Krutov, A. F.; Polezhaev, R. G.; Troitsky, V. E.

    2016-02-01

    We present a unified model describing electroweak properties of the π and ρ mesons. Using a general method of the relativistic parametrization of matrix elements of local operators, adjusted for the nondiagonal in the total angular momentum case, we calculate the ρ -meson lepton-decay constant fρ using the same parameters of free constituent quarks that have ensured exclusively good results for the π meson previously. The only free parameter, characterizing quark interactions, which include an additional spin-spin contribution and hence differ from the π -meson case, is fixed by matching the decay constant to its experimental value. The mean square charge radius is calculated, ⟨rρ2⟩=(0.56 ±0.04 ) fm2 . This result confirms, for the ρ -meson case, the conjecture of equality between electromagnetic and strong radii of hadrons. This conjecture was tested previously for proton, π and K mesons.

  1. Cosmological perturbations of axion with a dynamical decay constant

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takeshi; Takahashi, Fuminobu

    2016-08-01

    A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the number of degenerate vacua along the axion potential.

  2. Decay constants of pseudoscalar mesons containing heavy quarks

    SciTech Connect

    Mathur, V. S.; Yamawaki, M. T.

    1981-01-01

    The QCD sum-rules of Shifman et al. for n-th order moments are applied to the determination of the decay constants of pseudoscalar mesons containing a heavy quark (c or b). The general case when Q/sup 2/, the squared momentum transfer, is non-zero is considered. The stability of the sum-rules against variations in both Q/sup 2/ and n is discussed.

  3. Charmed meson decay constants in three-flavor lattice QCD

    SciTech Connect

    Aubin, C.; Bernard, C.; DeTar, C.; Di Pierro, M.; Freeland, Elizabeth D.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Kronfeld, Andreas S.; Levkova, L.; Mackenzie, P.B.; Menscher, D.; Maresca, F.; Nobes, M.; Okamoto, M.; Renner, D.B.; Simone, J.; Sugar, R.; Toussaint, D.; Trottier, H.D.; /Art Inst. of Chicago /Columbia U. /Washington U., St. Louis /Utah U. /DePaul U. /Indiana U. /APS, New York /U. Pacific, Stockton /Illinois U., Urbana /Fermilab /Cornell U., LEPP /Arizona U. /UC, Santa Barbara /Simon Fraser U.

    2005-06-01

    The authors present the first lattice QCD calculation with realistic sea quark content of the D{sup +}-meson decay constant f{sub D+}. They use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). They obtain f{sub D+} = 201 {+-} 3 {+-} 17 MeV, where the errors are statistical and a combination of systematic errors. They also obtain f{sub D{sub s}} = 249 {+-} 3 {+-} 16 MeV for the D{sub s} meson.

  4. Measurement of the strong coupling constant using τ decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  5. The Ds and D+ Leptonic Decay Constants from Lattice QCD

    SciTech Connect

    Bazavov, A.; Bernard, C.; DeTar, C.; Freeland, E.D.; Gamiz, E.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; El-Khadra, A.X.; Kronfeld, A.S.; Laiho, J.; /Washington U., St. Louis /Utah U.

    2009-12-01

    We present the leptonic decay constants f{sub D{sub s}} and f{sub D{sup +}} computed on the MILC collaboration's 2+1 flavor asqtad gauge ensembles. We use clover heavy quarks with the Fermilab interpretation and improved staggered light quarks. The simultaneous chiral and continuum extrapolation, which determines both decay constants, includes partially-quenched lattice results at lattice spacings a {approx} 0.09, 0.12 and 0.15 fm. We have made several recent improvements in our analysis: (a) we include terms in the fit describing leading order heavy-quark discretization effects, (b) we have adopted a more precise input r{sub 1} value consistent with our other D and B meson studies, (c) we have retuned the input bare charm masses based upon the new r{sub 1}. Our preliminary results are f{sub D{sub s}} = 260 {+-} 10 MeV and f{sub D{sup +}} = 217 {+-} 10 MeV.

  6. Scalar decay constant and Yukawa coupling in walking gauge theories

    SciTech Connect

    Hashimoto, Michio

    2011-05-01

    We propose an approach for the calculation of the Yukawa coupling through the scalar decay constant and the chiral condensate in the context of the extended technicolor . We perform the nonperturbative computation of the Yukawa coupling based on the improved ladder Schwinger-Dyson equation. It turns out that the Yukawa coupling can be larger or smaller than the standard model value, depending on the number N{sub D} of the weak doublets for each technicolor (TC) index. It is thus nontrivial whether or not the huge enhancement of the production of the scalar via the gluon fusion takes place even for a walking TC model with a colored techni-fermion. For the typical one-family TC model near conformality, it is found that the Yukawa coupling is slightly larger than the standard model one, where the expected mass of the scalar bound state is around 500 GeV. In this case, the production cross section via the gluon fusion is considerably enhanced, as naively expected, and hence such a scalar can be discovered/excluded at the early stage of the LHC.

  7. Decay Constants of B and D Mesons from Non-pertubatively Improved Lattice QCD

    SciTech Connect

    K.C. Bowler; L. Del Debbio; J.M. Flynn; G.N, Lacagnina; V.I. Lesk; C.M. Maynard; D.G. Richards

    2000-07-01

    The decay constants of B and D mesons are computed in quenched lattice QCD at two different values of the coupling. The action and operators are ? (a) improved with non-perturbative coefficients where available. The results and systematic errors are discussed in detail. Results for vector decay constants, flavour symmetry breaking ratios of decay constants, the pseudoscalar-vector mass splitting and D meson masses are also presented.

  8. Decay constants of pseudoscalar mesons in a relativistic quark model

    SciTech Connect

    Micu, L.

    1997-04-01

    The decay constants of pseudoscalar mesons are calculated in a relativistic quark model which assumes that mesons are made of a valence quark-antiquark pair and of an effective vacuumlike component. The results are given as functions of quark masses and of some free parameters entering the expression of the internal wave functions of the mesons. Using F{sub {pi}{sup +}}=130.7 MeV, F{sub K{sup +}}=159.8 MeV to fix the parameters of the model, we predict 60MeV{le}F{sub D{sup +}}{le}185 MeV, 95MeV{le}F{sub D{sub s}}{le}230 MeV, 80MeV{le}F{sub B{sup +}}{le}205 MeV, 90MeV{le}F{sub B{sub s}}{le}235 MeV for the light quark masses m{sub u}=5.1 MeV, m{sub d}=9.3 MeV, m{sub s}=175 MeV and the heavy quark masses in the range 1GeV{le}m{sub c}{le}1.6 GeV, 4.1GeV{le}m{sub b}{le}4.5 GeV. In the case of light neutral mesons one obtains with the same set of parameters F{sub {pi}{sup 0}}{approx}138 MeV, F{sub {eta}}{approx}130 MeV, F{sub {eta}{sup {prime}}}{approx}78 MeV. The values are in agreement with the experimental data and other theoretical results. {copyright} {ital 1997} {ital The American Physical Society}

  9. Neutron capture cross sections of natural Yb, /sup 170/Yb, /sup 175/Lu, and /sup 184/W in the energy range from 5 to 200 keV for the /sup 176/Lu-chronometer

    SciTech Connect

    Beer, H.; Wisshak, K.; Kaeppeler, F.

    1980-09-01

    The neutron capture cross sections of natural Yb, /sup 170/Yb, /sup 175/Lu and /sup 184/W have been measured in the keV neutron energy range with a pulsed Van de Graaff accelerator using the kinematically collimated neutron beam from the /sup 7/Li(p,n) and the T(p,n) reaction. Prompt capture gamma rays were registered by a Moxon-Rae detector. All measurements were performed in a single run relative to the /sup 197/Au cross section as a standard. The cross sections of /sup 175/Lu and /sup 170/Yb were used to investigate the /sup 176/Lu-cosmic clock.

  10. Systematics of cluster-radioactivity-decay constants as suggested by microscopic calculations

    SciTech Connect

    Blendowske, R.; Walliser, H.

    1988-10-24

    In the microscopic approach the decay constant of cluster radioactivity is determined by the preformation probability for the open channel multiplied with the Gamov penetrability. The preformation probability is found to possess a simple mass dependence on the emitted cluster. This observation leads to a formula for order-of-magnitude estimates of absolute decay constants. The estimates are in excellent agreement with available experimental data. Predictions for as-yet unmeasured decay rates are made.

  11. Strong decay constants of heavy tensor mesons in light cone QCD sum rules

    NASA Astrophysics Data System (ADS)

    Alhendi, H. A.; Aliev, T. M.; Savcı, M.

    2016-04-01

    Strong decay constants of the heavy tensor to heavy pseudoscalar (vector) and light pseudoscalar mesons are estimated within the light cone QCD sum rules. It is observed that the values of these coupling constants show a significant dependence on the choice of the Lorentz structure. Additionally, the decay widths of these mesons are calculated and discussed within the light of experimental data. A comparison of our results on these coupling constants with the predictions from the 3-point sum rules is performed.

  12. Precision and accuracy of decay constants and age standards

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2011-12-01

    40 years of round-robin experiments with age standards teach us that systematic errors must be present in at least N-1 labs if participants provide N mutually incompatible data. In EarthTime, the U-Pb community has produced and distributed synthetic solutions with full metrological traceability. Collector linearity is routinely calibrated under variable conditions (e.g. [1]). Instrumental mass fractionation is measured in-run with double spikes (e.g. 233U-236U). Parent-daughter ratios are metrologically traceable, so the full uncertainty budget of a U-Pb age should coincide with interlaboratory uncertainty. TIMS round-robin experiments indeed show a decrease of N towards the ideal value of 1. Comparing 235U-207Pb with 238U-206Pb ages (e.g. [2]) has resulted in a credible re-evaluation of the 235U decay constant, with lower uncertainty than gamma counting. U-Pb microbeam techniques reveal the link petrology-microtextures-microchemistry-isotope record but do not achieve the low uncertainty of TIMS. In the K-Ar community, N is large; interlaboratory bias is > 10 times self-assessed uncertainty. Systematic errors may have analytical and petrological reasons. Metrological traceability is not yet implemented (substantial advance may come from work in progress, e.g. [7]). One of the worst problems is collector stability and linearity. Using electron multipliers (EM) instead of Faraday buckets (FB) reduces both dynamic range and collector linearity. Mass spectrometer backgrounds are never zero; the extent as well as the predictability of their variability must be propagated into the uncertainty evaluation. The high isotope ratio of the atmospheric Ar requires a large dynamic range over which linearity must be demonstrated under all analytical conditions to correctly estimate mass fractionation. The only assessment of EM linearity in Ar analyses [3] points out many fundamental problems; the onus of proof is on every laboratory claiming low uncertainties. Finally, sample

  13. The decay constants f(B) and f(D+) from three-flavor lattice QCD

    SciTech Connect

    Bernard, C.; DeTar, C.; Di Pierro, M.; El-Khadra, A.X.; Evans, R.T.; Freeland, E.; Gamiz, E.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; Jain, R.; /Illinois U., Urbana /Fermilab /Fermilab /Washington U., St. Louis

    2007-01-01

    We present new preliminary results for the leptonic decay constants f{sub B} and f{sub D+} determined in 2+1 flavor lattice QCD at lattice spacings a = 0.09, 0.12 and 0.15 fm. Results are obtained using the MILC Collaboration gauge configuration ensembles, clover heavy quarks in the Fermilab interpretation and improved staggered light quarks. Decay constants, computed at partially quenched combinations of the valence and sea light quark masses, are used to determine the low-energy parameters of staggered chiral perturbation theory. The physical decay constants are found in an extrapolation using the parameterized chiral formula.

  14. Decay constants of the pion and its excitations on the lattice.

    SciTech Connect

    Mastropas, Ekaterina V.; Richards, David G.

    2014-07-01

    We present a calculation using lattice QCD of the ratios of decay constants of the excited states of the pion, to that of the pion ground state, at three values of the pion mass between 400 and 700 MeV, using an anisotropic clover fermion action with three flavors of quarks. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass. The strong suppression of the decay constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.

  15. Leptonic B- and D-Meson Decay Constants with 2+1 Flavors of Asqtad Fermions

    SciTech Connect

    Neil, Ethan T.; Simone, James N.; Van de Water, Ruth S.; Kronfeld, Andreas S.

    2015-01-08

    We present the status of our updated D- and B-meson decay-constant analysis, based on the MILC Nf =2+1 asqtad gauge ensembles. Heavy quarks are incorporated using the Wilson clover action with the Fermilab interpretation. This analysis includes ensembles at five lattice spacings from α ≈ 0.045 to 0.15 fm, and light sea-quark masses down to 1/20th of the strange-quark mass. Projected error budgets for ratios of decay constants, in particular between bottom- and charm-meson decay constants, are presented.

  16. Decay constants of the pion and its excitations on the lattice

    SciTech Connect

    Mastropas, Ekaterina V.; Richards, David G.

    2014-06-23

    We present a lattice QCD calculation of the ratios of decay constants of the excited states of the pion, to that of the pion ground state. We use an anisotropic clover fermion action with three flavors of quarks, and study the pion decay constants at three values of the light-quark masses, corresponding to pion masses of 391, 524 and 702 MeV. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass. The strong suppression of the decay constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.

  17. B+ and D(S)+ Decay Constants from Belle and BaBar

    SciTech Connect

    Schwartz, A.J.; /Cincinnati U.

    2012-04-09

    The Belle and Babar experiments have measured the branching fractions for B{sup +} {yields} {tau}{sup +}{nu} and D{sub s}{sup +} {yields} {mu}{sup +}{nu} decays. From these measurements one can extract the B{sup +} and D{sub s}{sup +} decay constants, which can be compared to lattice QCD calculations. For the D{sub s}{sup +} decay constant, there is currently a 2.1 {sigma} difference between the calculated value and the measured value.

  18. B and D meson decay constants from 2+1 flavor improved staggered simulations

    SciTech Connect

    Neil, E.T.; Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Di Pierro, M.; El-Khadra, A.X.; Evans, R.T.; Freeland, E.; Gamiz, E.

    2011-12-01

    We give an update on simulation results for the decay constants f{sub B}; f{sub B{sub s}}, f{sub D} and f{sub D{sub s}}. These decay constants are important for precision tests of the standard model, in particular entering as inputs to the global CKM unitarity triangle fit. The results presented here make use of the MILC (2+1)-flavor asqtad ensembles, with heavy quarks incorporated using the clover action with the Fermilab method. Partially quenched, staggered chiral perturbation theory is used to extract the decay constants at the physical point. In addition, we give error projections for a new analysis in progress, based on an extended data set.

  19. Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.; Platts, Emma; Sloan, David; Weltman, Amanda

    2016-04-01

    We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological "constant" that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof of principle, with no definite claim on the physical mechanism required for the present dark energy to decay.

  20. Lattice study of the leptonic decay constant of the pion and its excitations

    SciTech Connect

    Mastropas, Ekaterina; Richard, David

    2014-11-01

    We present a calculation of the decay constant of the pion, and its lowest-lying three excitations, at three values of the pion mass between around 400 and 700 MeV, using anisotropic clover lattices. We use the variational method to determine an optimal interpolating operator for each of the states. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass.

  1. Semileptonic decay constants of octet baryons in the chiral quark-soliton model

    SciTech Connect

    Kim, H.; Polyakov, M.V.; Praszalowicz, M.; Goeke, K.

    1998-01-01

    Based on the recent study of the magnetic moments and axial-vector constants within the framework of the chiral quark-soliton model, we investigate the baryon semileptonic decay constants (f{sub 1},f{sub 2}) and (g{sub 1},g{sub 2}). Employing the relations between the diagonal transition matrix elements and off-diagonal ones in the vector and axial-vector channels, we obtain the ratios of baryon semileptonic decay constants f{sub 2}/f{sub 1} and g{sub 1}/f{sub 1}. The F/D ratio is also discussed and found that the value predicted by the present model naturally lies between that of the Skyrme model and that of the nonrelativistic quark model. The singlet axial-vector constant g{sub A}{sup (0)} can be expressed in terms of the F/D ratio and g{sub A}{sup (3)} in the present model and turns out to be small. The results are compared with available experimental data and found to be in good agreement with them. In addition, the induced pseudotensor coupling constants g{sub 2}/f{sub 1} are calculated, the SU(3) symmetry breaking being considered. The results indicate that the effect of SU(3) symmetry breaking might play an important role for some decay modes in hyperon semileptonic decay. {copyright} {ital 1997} {ital The American Physical Society}

  2. Pion Decay Constant, Z{sub A} and Chiral Log from Overlap Fermions

    SciTech Connect

    Shao-Jing Dong; Terrence Draper; Ivan Horvath; Frank X. Lee; Jianbo Zhang

    2002-03-01

    We report our calculation of the pion decay constant f{sub {pi}}, the axial renormalization constant Z{sub A}, and the quenched chiral logarithms from the overlap fermions. The calculation is done on a quenched 20{sup 4} lattice at a=0.148 fm using tree level tadpole improved gauge action. The smallest pion mass we reach is about 280 MeV. The lattice size is about 4 times the Compton wavelength of the lowest mass pion.

  3. 147,146Sm-143,142Nd, 176Lu-176Hf, and 87Rb-87Sr systematics in the angrites: Implications for chronology and processes on the angrite parent body

    NASA Astrophysics Data System (ADS)

    Sanborn, Matthew E.; Carlson, Richard W.; Wadhwa, Meenakshi

    2015-12-01

    Angrites are a group of basaltic achondrites with distinctive mineralogic and geochemical characteristics that have the potential to provide insights into processes occurring on planetesimals in the early Solar System. These achondrites have been used as anchors linking the relative age information obtained from short-lived, extinct chronometers (e.g., Al-Mg, Hf-W, and Mn-Cr) with absolute chronometers (e.g., U-Pb). Angrites provide excellent examples of early differentiation processes, such as core formation and silicate differentiation, on protoplanetary bodies. The significant increase in the number of known angrite samples in recent years has offered the opportunity to compare several short- and long-lived isotopic systems in samples with different petrogenetic histories that formed on the same parent body. To this end, the 147Sm-143Nd, 146Sm-142Nd, 176Lu-176Hf, and 87Rb-87Sr isotope systematics have been investigated in a suite of plutonic, coarse-grained (NWA 4590, NWA 4801, and NWA 2999) and quenched, fine-grained (D'Orbigny) angrites. The coupled 147,146Sm-143,142Nd systematics indicate possible isotopic disturbances in two angrites (D'Orbigny and NWA 2999) resulting from post-crystallization processes. The internal 146Sm-142Nd isochrons of two coarse-grained angrites (NWA 4590 and NWA 4801) provide an updated best estimate of the initial Solar System 146Sm/144Sm ratio (i.e., at 4568 Ma) of 0.0084 ± 0.0003. The 176Lu-176Hf isotope systematics in these angrites do not provide evidence of a previously proposed intense irradiation event in the early Solar System. The internal 176Lu-176Hf isochrons for the NWA 4590 and D'Orbigny angrites provide an estimate for the Solar System initial 176Hf/177Hf ratio of 0.279775 ± 0.000031 (2σ) that agrees within uncertainty with the value of average chondrites reported by Bouvier et al. (2008). Finally, the calculated initial 87Sr/86Sr ratios based on the measured Sr-isotopic composition of plagioclase in these angrites

  4. Numerical simulation of the decay of swirling flow in a constant volume engine simulator

    SciTech Connect

    Cloutman, L.D.

    1986-05-01

    The KIVA and COYOTE computer programs were used to simulate the decay of turbulent swirling flow in a constant-volume combustion bomb. The results are in satisfactory agreement with the measurement of both swirl velocity and temperature. Predictions of secondary flows and suggestions for future research also are presented. 14 refs., 15 figs.

  5. Numerical simulation of the decay of swirling flow in a constant volume engine simulator

    NASA Astrophysics Data System (ADS)

    Cloutman, Lawrence D.

    1986-05-01

    The KIVA and COYOTE computer programs were used to simulate the decay of turbulent swirling flow in a constant-volume combustion bomb. The results are in satisfactory agreement with the measurement of both swirl velocity and temperature. Predictions of secondary flows and suggestions for future research also are presented.

  6. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  7. High-precision calculation of the branching ratio of the 40K decay constant.

    NASA Astrophysics Data System (ADS)

    Jourdan, F.

    2008-12-01

    40K is of great importance in Earth science, particularly for K/Ar, 40Ar/39Ar and K/Ca geochronology. The decay scheme of the 40K includes two different modes of decay, beta and electron capture followed by gamma-ray emission, which yield two different products, 40Ca* and 40Ar*. The relative probability that 40K decay following one of the two schemes is known as the branching ratio. An original method of calculation to obtain the value of the 40K branching ratio (λβ- /λtot) based on the K/Ar technique, is proposed. λβ- /λtot is obtained by combining the 40Ar*/40K value of Fish Canyon sanidine (FCs) secondary standard derived from four primary 40Ar/39Ar standards, with the current best estimates of the age of FCs and the value of the 40K total decay constant. The latest estimation of the 40K total decay constant and the age of FCs by Mundil et al. (2006), through comparison with U/Pb ages, yields a λβ- /λtot value of 89.59 ± 0.03% (1σ; relative error = ± 0.035%). Indirect measurement of the age of FCs by orbital tuning (Kuiper et al., 2008) combined with the value of 40K total decay constant measured by liquid scintillation counting by Kossert and Gunther (2004) yields a statistically indistinguishable value for the branching ratio of 89.61 ± 0.03%, with an average between the two values of 89.60 ± 0.04%. The method proposed here allows can easily be applied to further constrain the value of the 40K branching ratio as future refinements of the 40K decay constant and FCs age are produced, although it is expected that the adopted value will be close to λβ- /λtot = 89.60 ± 0.04%. Kossert and Gunther, 2004. Appl. Radiat. Isot. 60, 459-464. Kuiper et al., 2008. Science 320, 500-504. Mundil et al. 2006, Eos Trans. AGU, 87(52)

  8. The decay constants f(B+) and f(D+) from three-flavor lattice QCD

    SciTech Connect

    Bernard, C.; DeTar, Carleton; Levkova, L.; Di Pierro, Massimo; El-Khadra, Aida Xenia; Evans, R.T.; Jain, R.; Freeland, Elizabeth Dawn; Gottlieb, Steven A.; Heller, Urs M.; Hetrick, James E.; /U. Pacific, Stockton /Fermilab /Simon Fraser U. /Arizona U. /UC, Santa Barbara

    2006-01-01

    We present new results for f{sub B+} and f{sub D+} from the MILC 2+1 flavor a = 0.09fm 'fine' lattice. We use clover heavy quarks in the Fermilab interpretation and improved staggered light quarks. Lattice results from partially quenched QCD fix the parameters of staggered chiral perturbation theory which is used in the extrapolation to the physical decay constants.

  9. Heavy-Quark Mass and Heavy-Meson Decay Constants from QCD Sum Rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-05-23

    We present a sum-rule extraction of decay constants of heavy mesons from the two-point correlator of heavy-light pseudoscalar currents. Our primary concern is to control the uncertainties of the decay constants, induced by both input QCD parameters and limited accuracy of the sum-rule method. Gaining this control is possible by applying our novel procedure for the extraction of hadron observables utilizing Borel-parameter-depending dual thresholds. For the charmed mesons, we obtain f{sub D} (206.2{+-}7.3{sub (OPE){+-}}5.1{sub (syst)}) MeV and f{sub D{sub s}} (245.3{+-}15.7{sub (OPE){+-}}4.5{sub (syst)}) MeV. In the case of the beauty mesons, the decay constants prove to be extremely sensitive to the exact value of the b-quark MS mass m-bar{sub b}(m-bar{sub b}). By matching our sum-rule prediction for f{sub B} to the lattice outcomes, the very accurate b-mass value m-bar{sub b}(m-bar{sub b}) = (4.245{+-}0.025) GeV is found, which yields f{sub B} = (193.4{+-}12.3{sub (OPE){+-}}4.3{sub (syst)}) MeV and f{sub B{sub s}} (232.5{+-}18.6{sub (OPE){+-}}2.4{sub (syst)}) MeV.

  10. Systematic and Statistical Errors Associated with Nuclear Decay Constant Measurements Using the Counting Technique

    NASA Astrophysics Data System (ADS)

    Koltick, David; Wang, Haoyu; Liu, Shih-Chieh; Heim, Jordan; Nistor, Jonathan

    2016-03-01

    Typical nuclear decay constants are measured at the accuracy level of 10-2. There are numerous reasons: tests of unconventional theories, dating of materials, and long term inventory evolution which require decay constants accuracy at a level of 10-4 to 10-5. The statistical and systematic errors associated with precision measurements of decays using the counting technique are presented. Precision requires high count rates, which introduces time dependent dead time and pile-up corrections. An approach to overcome these issues is presented by continuous recording of the detector current. Other systematic corrections include, the time dependent dead time due to background radiation, control of target motion and radiation flight path variation due to environmental conditions, and the time dependent effects caused by scattered events are presented. The incorporation of blind experimental techniques can help make measurement independent of past results. A spectrometer design and data analysis is reviewed that can accomplish these goals. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  11. Three-flavor partially quenched chiral perturbation theory at NNLO for meson masses and decay constants

    SciTech Connect

    Bijnens, Johan; Danielsson, Niclas; Laehde, Timo A.

    2006-04-01

    We discuss partially quenched chiral perturbation theory (PQ{chi}PT) and possible fitting strategies to lattice QCD data at next-to-next-to-leading order (NNLO) in the mesonic sector. We also present a complete calculation of the masses of the charged pseudoscalar mesons, in the supersymmetric formulation of PQ{chi}PT. Explicit analytical results are given for up to three nondegenerate sea-quark flavors, along with the previously unpublished expression for the pseudoscalar meson decay constant for three nondegenerate sea-quark flavors. The numerical analysis in this paper demonstrates that the corrections at NNLO are sizable, as expected from earlier work.

  12. Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices

    SciTech Connect

    Galletly, D.; Horsley, R.; Guertler, M.; Perlt, H.; Schiller, A.; Rakow, P. E. L.; Schierholz, G.; Streuer, T.

    2007-04-01

    We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3}48 and for pion masses down to {approx_equal}250 MeV. Among the quantities we study are the pion, rho, and nucleon masses; the light and strange quark masses; and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a{approx_equal}0.1 fm and {approx_equal}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well.

  13. Some heavy vector and tensor meson decay constants in light-front quark model

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lih, Chong-Chung; Xia, Chuanhui

    2016-06-01

    We study the decay constants (f_M) of the heavy vector (D^{*}, D^{*}s, B^{*}, B^{*}s, B^{*}c) and tensor (D2^{*}, D_{s2}^{*}, B^{*}2, B^{*}_{s2}) mesons in the light-front quark model. With the known pseudoscalar meson decay constants of f_D, f_{D_s}, f_B, f_{B_s}, and f_{B_c} as the input parameters to determine the light-front meson wave functions, we obtain f_{D^{*}, D^{*}s, B^{*},B^{*}_s,B^{*}_c} = (252.0^{+13.8}_{-11.6}, 318.3^{+15.3}_{-12.6}, 201.9^{+43.2}_{-41.4}, 244.2± 7.0, 473.4± 18.2) and (264.9^{+10.2}_{-9.5}, 330.9^{+9.9}_{-9.0}, 220.2^{+49.1}_{-46.2}, 265.7± 8.0, 487.6± 19.2) MeV with Gaussian and power-law wave functions, respectively, while we have f_{D2^{*},D_{s2}^{*},B^{*}2,B^{*}_{s2}}= (143.6^{+24.9}_{-21.8}, 209.5^{+29.1}_{-24.2}, 80.9^{+33.8}_{-27.7}, 109.7^{+15.7}_{-15.0}) MeV with only Gaussian wave functions.

  14. Forbidden nonunique β decays and effective values of weak coupling constants

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Srivastava, P. C.; Suhonen, J.

    2016-03-01

    Forbidden nonunique β decays feature shape functions that are complicated combinations of different nuclear matrix elements and phase-space factors. Furthermore, they depend in a very nontrivial way on the values of the weak coupling constants, gV for the vector part and gA for the axial-vector part. In this work we include also the usually omitted second-order terms in the shape functions to see their effect on the computed decay half-lives and electron spectra (β spectra). As examples we study the fourth-forbidden nonunique ground-state-to-ground-state β- decay branches of 113Cd and 115In using the microscopic quasiparticle-phonon model and the nuclear shell model. A striking new feature that is reported in this paper is that the calculated shape of the β spectrum is quite sensitive to the values of gV and gA and hence comparison of the calculated with the measured spectrum shape opens a way to determine the values of these coupling constants. This article is designed to show the power of this comparison, coined spectrum-shape method (SSM), by studying the two exemplary β transitions within two different nuclear-structure frameworks. While the SSM seems to confine the gV values close to the canonical value gV=1.0 , the values of gA extracted from the half-life data and by the SSM emerge contradictory in the present calculations. This calls for improved nuclear-structure calculations and more measured data to systematically employ SSM for determination of the effective value of gA in the future.

  15. High-precision determination of the pi, K, D, and Ds decay constants from lattice QCD.

    PubMed

    Follana, E; Davies, C T H; Lepage, G P; Shigemitsu, J

    2008-02-15

    We determine D and D(s) decay constants from lattice QCD with 2% errors, 4 times better than experiment and previous theory: f(D(s))=241(3) MeV, f(D)=207(4) MeV, and fD(s))/f(D)=1.164(11). We also obtain f(K)/f(pi)=1.189(7) and (f(D(s))/f(D))/(f(K)/f(pi))=0.979(11). Combining with experiment gives V(us)=0.2262(14) and V(cs)/V(cd) of 4.43(41). We use a highly improved quark discretization on MILC gluon fields that include realistic sea quarks, fixing the u/d, s, and c masses from the pi, K, and eta(c) meson masses. This allows a stringent test against experiment for D and D(s) masses for the first time (to within 7 MeV). PMID:18352458

  16. Decay Constants $f_B$ and $f_{B_s}$ from HISQ Simulations

    SciTech Connect

    Bazavov, A.; et al.

    2015-11-06

    We give a progress report on a project aimed at a high-precision calculation of the decay constants $f_B$ and $f_{B_s}$ from simulations with HISQ heavy and light valence and sea quarks. Calculations are carried out with several heavy valence-quark masses on ensembles with 2+1+1 flavors of HISQ sea quarks at five lattice spacings and several light sea-quark mass ratios $m_{ud}/m_s$, including approximately physical sea-quark masses. This range of parameters provides excellent control of the continuum limit and of heavy-quark discretization errors. We present a preliminary error budget with projected uncertainties of 2.2~MeV and 1.5~MeV for $f_B$ and $f_{B_s}$, respectively.

  17. Structure and decay constant of the {rho} meson within the Bethe-Salpeter equation

    SciTech Connect

    Wang, Z. G.; Wan, S. L.

    2007-08-15

    In this article, we study the structure of the {rho} meson in the framework of the coupled rainbow Schwinger-Dyson equation and ladder Bethe-Salpeter equation with a confining effective potential. The u and d quark propagators get significantly modified, the mass poles are absent in the timelike region, which implements confinement naturally. The Bethe-Salpeter amplitudes of the {rho} meson center around zero momentum and extend to the energy scale about q{sup 2}=1 GeV{sup 2}, which happens to be the energy scale of chiral symmetry breaking, strong interactions in the infrared region result in bound state. The numerical results of the mass and decay constant of the {rho} meson are in agreement with the experimental data.

  18. The decay constants fDs and fD+ form lattice QCD

    SciTech Connect

    Simone, James N

    2011-03-01

    Recent calculations of the decay constants in lattice QCD are reviewed and compared to experiment. The decay constants are tabulated in Table 2 and plotted in Figure 2. The most precise f{sub Ds} value is from HPQCD. It is about 2{sigma} higher than their previous result. The change is due to a more precise determination of the lattice spacing and better tuning of the quark masses. They have updated f{sub D+} using the new f{sub Ds} and their older f{sub Ds}/f{sub D+} ratio which is expected to be less sensitive to mistuning of the lattice spacing and masses. The preliminary FNAL/MILC f{sub Ds} value is about 1.4{sigma} higher than the HPQCD result but with a larger error. The f{sub D+} values, however, are in better agreement. FNAL/MILC expect to finalize their results once the charm quark mass tuning is complete. The two flavor ETM f{sub D+} value is about 1.6{sigma} lower than the HPQCD value while f{sub Ds} is in better agreement. It is not clear how much of the difference is from neglecting the strange sea quark, given the errors. Lattice and experiment differ most significantly for f{sub Ds}. Figure 3 shows Kronfeld's (updated) history of f{sub Ds}. The yellow bands depict the evolution of the experimental average while the three-flavor lattice average is shown in grey. The right-hand scale and green lines show the differences in sigmas. The 3.8{sigma} discrepancy around t {approx} 2 provoked the 'f{sub Ds} puzzle'. That discrepancy has now shrunk to 1.6{sigma}. Future lattice and experiment will be decisive.

  19. Mass spectrum of vector mesons and their leptonic-decay constants in the bilocal relativistic potential model

    SciTech Connect

    Ablakulov, Kh. Narzikulov, Z.

    2015-01-15

    A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants.

  20. B- and D-meson decay constants from three-flavor lattice QCD

    SciTech Connect

    Bazavov, A.; et al.

    2012-06-01

    We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gauge configurations which include the effects of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-quark masses (down to ~m_s/10) and at three lattice spacings (a ~ 0.15, 0.12, and 0.09 fm) and extrapolate to the physical up and down quark masses and the continuum using expressions derived in heavy-light meson staggered chiral perturbation theory. We renormalize the heavy-light axial current using a mostly nonperturbative method such that only a small correction to unity must be computed in lattice perturbation theory and higher-order terms are expected to be small. We obtain f_{B^+} = 196.9(8.9) MeV, f_{B_s} = 242.0(9.5) MeV, f_{D^+} = 218.9(11.3) MeV, f_{D_s} = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios f_{B_s}/f_{B} = 1.229(26) and f_{D_s}/f_{D} = 1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties added in quadrature.

  1. Decay constants and mixing parameters in a relativistic model for a q{bar Q} system

    SciTech Connect

    Ahmady, M.R.; Mendel, R.R.; Talman, J.D.

    1997-01-01

    We extend our recent work, in which the Dirac equation with a {open_quotes}(asymptotically free) Coulomb + (Lorentz scalar {gamma}{sub 0}{sigma}r) linear{close_quotes} potential is used to obtain the light quark wave function for q{bar Q} mesons in the limit m{sub Q}{r_arrow}{infinity}, to estimate the decay constant f{sub P} and the mixing parameter B of the pseudoscalar mesons. We compare our results for the evolution of f{sub P} and B with the meson mass M{sub P} to the nonrelativistic formulas for these quantities and show that there is a significant correction in the subasymptotic region. For {sigma}=0.14 GeV{sup {minus}2} and {Lambda}{sub {ovr MS}}=0.240 GeV we obtain f{sub D}=0.371, f{sub D{sub s}}=0.442, f{sub B}=0.301, f{sub B{sub s}}=0.368 GeV, and B{sub D}=0.88, B{sub D{sub s}}=0.89, B{sub B}=0.95, B{sub B{sub s}}=0.96,andB{sub K}=0.60. {copyright} {ital 1997} {ital The American Physical Society}

  2. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules

    PubMed Central

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-01-01

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465

  3. Real-time method and apparatus for measuring the decay-time constant of a fluorescing phosphor

    DOEpatents

    Britton, Jr., Charles L.; Beshears, David L.; Simpson, Marc L.; Cates, Michael R.; Allison, Steve W.

    1999-01-01

    A method for determining the decay-time constant of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.

  4. Temperature, pressure and deuterium effects on the phosphorescence decay-rate constant of naphthalene in a single crystal of durene

    NASA Astrophysics Data System (ADS)

    Hoshi, Nagahiro; Yamauchi, Seigo; Hirota, Noboru

    1990-06-01

    It is suggested that the hitherto unexplained drastic temperature, pressure and external deuterium isotope effects on the phosphorescence decay-rate constant ( kT) of naphthalene in a single crystal of durene can be consistently explained in terms of the photoinduced hydrogen-abstraction reaction of triplet naphthalene from durene in which tunneling plays an essential role. This suggestion is supported by calculations based on the "golden rule" approach to tunneling developed by Siebrand, Wildman and Zgierski.

  5. Decay constants of pseudoscalar mesons to two loops in three-flavor partially quenched chiral perturbation theory

    SciTech Connect

    Bijnens, Johan; Laehde, Timo A.

    2005-05-01

    This paper presents a first study of the decay constants of the charged, or flavor-off-diagonal, pseudoscalar mesons to two loops for three flavors of sea quarks, in partially quenched chiral perturbation theory (PQ{chi}PT). Explicit analytical expressions up to O(p{sup 6}) in the momentum expansion are given. The calculations have been performed within the supersymmetric formulation of PQ{chi}PT. We also present some numerical results to indicate the size of the corrections.

  6. Masses and decay constants of pseudoscalar mesons to two loops in two-flavor partially quenched chiral perturbation theory

    SciTech Connect

    Bijnens, Johan; Laehde, Timo A.

    2005-10-01

    This paper presents a first study of the masses and decay constants of the charged, or flavor-off-diagonal, pseudoscalar mesons to two loops for two flavors of sea-quarks, in Partially Quenched Chiral Perturbation Theory (PQ{chi}PT). Explicit analytical expressions up to O(p{sup 6}) in the momentum expansion are given. The calculations have been performed within the supersymmetric formulation of PQ{chi}PT. A numerical analysis is done to indicate the size of the corrections.

  7. IceCube neutrinos, decaying dark matter, and the Hubble constant

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Barger, Vernon; Goldberg, Haim; Huang, Xing; Marfatia, Danny; da Silva, Luiz H. M.; Weiler, Thomas J.

    2015-09-01

    Cosmological parameters deduced from the Planck measurements of anisotropies in the cosmic microwave background are at some tension with direct astronomical measurements of various parameters at low redshifts. Very recently, it has been conjectured that this discrepancy can be reconciled if a certain fraction of dark matter is unstable and decays between recombination and the present epoch. Herein we show that if the superheavy relics have a branching into neutrinos BX →ν ν ¯˜5 ×10-8 , then this scenario can also accommodate the recently discovered extraterrestrial flux of neutrinos, relaxing the tension between IceCube results and Fermi LAT data. The model is fully predictive and can be confronted with future IceCube data. We demonstrate that in 10 years of observation IceCube will be able to distinguish the monoenergetic signal from X decay at the 3 σ level. In a few years of data taking with the upgraded IceCube-Gen2 enough statistics will be gathered to elucidate the dark matter-neutrino connection at the 5 σ level.

  8. Measurement of the pseudoscalar decay constant fDs using Ds+→τ+ν, τ+→ρ+ν¯ decays

    NASA Astrophysics Data System (ADS)

    Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Randrianarivony, K.; Reed, J.; Robichaud, A. N.; Tatishvili, G.; White, E. J.; Briere, R. A.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hunt, J. M.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Yelton, J.; Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Kornicer, M.; Mitchell, R. E.; Shepherd, M. R.; Tarbert, C. M.; Besson, D.; Pedlar, T. K.; Xavier, J.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Poling, R.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A.; Brisbane, S.; Libby, J.; Martin, L.; Powell, A.; Spradlin, P.; Wilkinson, G.; Mendez, H.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Hu, D.; Moziak, B.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Ricciardi, S.; Thomas, C.; Artuso, M.; Blusk, S.; Khalil, S.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Lincoln, A.; Smith, M. J.; Zhou, P.; Zhu, J.

    2009-12-01

    Analyzing 600pb-1 of e+e- collisions at 4170 MeV center-of-mass energy with the CLEO-c detector, we measure the branching fraction B(Ds+→τ+ν)=(5.52±0.57±0.21)% using the τ+→ρ+ν¯ decay mode. Combining with other CLEO measurements of B(Ds+→τ+ν) we determine the pseudoscalar decay constant fDs=(259.7±7.8±3.4)MeV consistent with the value obtained from our Ds+→μ+ν measurement of (257.6±10.3±4.3)MeV. Combining these measurements we find a value of fDs=(259.0±6.2±3.0)MeV, that differs from the most accurate prediction based on unquenched lattice gauge theory of (241±3)MeV by 2.4 standard deviations. We also present the first measurements of B(Ds+→K0π+π0)=(1.00±0.18±0.04)%, and B(Ds+→π+π0π0)=(0.65±0.13±0.03)%, and measure a new value for B(Ds+→ηρ+)=(8.9±0.6±0.5)%.

  9. B-meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s, and c quarks.

    PubMed

    Dowdall, R J; Davies, C T H; Horgan, R R; Monahan, C J; Shigemitsu, J

    2013-05-31

    We present the first lattice QCD calculation of the decay constants f(B) and f(B(s)) with physical light quark masses. We use configurations generated by the MILC Collaboration including the effect of u, d, s, and c highly improved staggered quarks in the sea at three lattice spacings and with three u/d quark mass values going down to the physical value. We use improved nonrelativistic QCD (NRQCD) for the valence b quarks. Our results are f(B)=0.186(4) GeV, f(B(s))=0.224(4) GeV, f(B(s))/f(B)=1.205(7), and M(B(s))-M(B)=85(2) MeV, superseding earlier results with NRQCD b quarks. We discuss the implications of our results for the standard model rates for B((s))→μ(+)μ(-) and B→τν. PMID:23767714

  10. B -meson decay constants from 2 +1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    NASA Astrophysics Data System (ADS)

    Christ, N. H.; Flynn, J. M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; van de Water, R. S.; Witzel, O.; Rbc; Ukqcd Collaborations

    2015-03-01

    We calculate the B -meson decay constants fB , fBs , and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈0.11 , 0.086 fm with unitary pion masses as light as Mπ≈290 MeV ; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O (αsa ) . We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0=199.5 (12.6 ) MeV , fB+=195.6 (14.9 ) MeV , fBs=235.4 (12.2 ) MeV , fBs/fB0=1.197 (50 ) , and fBs/fB+=1.223 (71 ) , where the errors are statistical and total systematic added in quadrature. These results are in good agreement with other published results and provide an important independent cross-check of other three-flavor determinations of B -meson decay constants using staggered light quarks.

  11. Neutral B meson mixings and B meson decay constants with static heavy and domain-wall light quarks

    NASA Astrophysics Data System (ADS)

    Aoki, Yasumichi; Ishikawa, Tomomi; Izubuchi, Taku; Lehner, Christoph; Soni, Amarjit

    2015-06-01

    Neutral B meson mixing matrix elements and B meson decay constants are calculated. The static approximation is used for the b quark and the domain-wall fermion formalism is employed for light quarks. The calculations are carried out on 2 +1 -flavor dynamical ensembles generated by the RBC and UKQCD collaborations with lattice spacings of 0.086 fm (a-1˜2.3 GeV ) and 0.11 fm (1.7 GeV), and a fixed physical spatial volume of about (2.7 fm )3 . In the static quark action, link smearings are used to improve the signal-to-noise ratio. We employ two kinds of link smearings, HYP1 and HYP2, and their results are combined when taking the continuum limit. For the matching between the lattice and the continuum theory, one-loop perturbative O (a ) improvements are made to reduce discretization errors. As the most important quantity of this work, we obtain the SU(3) breaking ratio ξ =1.208 (60 ), where the error includes both the statistical and systematic errors. (The uncertainty from an infinite b -quark mass is not included.) We also find other neutral B meson mixing quantities, fB√{B^ B }=240 (22 ) MeV , fBs√{B^Bs}=290 (22 ) MeV , B^B=1.17 (22 ), B^Bs=1.22(13 ), and BB s/BB=1.028 (74 ), and the B meson decay constants fB=219 (17 ) MeV , fBs=264(19 ) MeV , and fB s/fB=1.193 (41 ) in the static limit of the b quark, which do not include an infinite b -quark mass uncertainty.

  12. SILC decay in La 2O 3 gate dielectrics grown on Ge substrates subjected to constant voltage stress

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Evangelou, E. K.; Androulidakis, I. I.; Dimoulas, A.; Mavrou, G.; Galata, S.

    2010-09-01

    The effect of constant voltage stress (CVS) on Pt/La 2O 3/ n-Ge MOS devices biased at accumulation is investigated and reported. It is found that the stress induced leakage current (SILC) initially increases due to electron charge trapping on pre-existing bulk oxide defects. After 10 s approximately, a clear decay of SILC commences which follows a t-n power law, with n lying between 0.56 and 0.75. This decay of SILC is not changed or reversed when the stressing voltage stops for short time intervals. The effect is attributed to the creation of new positively charged defects in the oxide because of the applied stressing voltage, while other mechanism such as dielectric relaxation proposed in the past is proved insufficient to explain the experimental data. Also high frequency capacitance vs. gate voltage ( C- V g) curves measured under different CVS conditions divulge the creation of defects and charge trapping characteristics of La 2O 3 preciously. At low CVS exemplify the generation positively charged defects, however at higher CVS charge trapping obeys a model that was previously proposed and is a continuous distribution of traps.

  13. Accurate decay-constant ratios fB*/fB and fBs*/fBs from Borel QCD sum rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2015-06-01

    We present our analysis of the decay constants of the beauty vector mesons B* and Bs* within the framework of dispersive sum rules for the two-point correlator of vector currents in QCD. While the decay constants of the vector mesons fB* and fBs* —similar to the decay constants of the pseudoscalar mesons fB and fBs—individuallyhave large uncertainties induced by theory parameters not known with a satisfactory precision, these uncertainties almost entirely cancel out in the ratios of vector over pseudoscalar decay constants. These ratios, thus, may be predicted with very high accuracy due to the good control over the systematic uncertainties of the decay constants gained upon application of our hadron-parameter extraction algorithm. Our final results read fB*/fB=0.944 ±0.01 1OPE±0.01 8syst and fBs*/fB s=0.947 ±0.02 3OPE±0.02 0syst . Thus, both fB*/fB and fBs*/fBs are less than unity at 2.5 σ and 2 σ level, respectively.

  14. Stability prediction of amorphous benzodiazepines by calculation of the mean relaxation time constant using the Williams-Watts decay function.

    PubMed

    Van den Mooter, G; Augustijns, P; Kinget, R

    1999-07-01

    The enthalpic relaxation of three amorphous benzodiazepines, diazepam, temazepam and triazolam was studied using differential scanning calorimetry for ageing temperatures which were below the glass transition temperature, and ageing times up to 16 h. Experimental determination of the relaxation enthalpy and the heat capacity change, both accompanying the glass transition, enabled us to calculate the extent of relaxation of the amorphous drugs at specific ageing conditions. Fitting of the relaxation function to the Williams-Watts two parameter decay function led to calculation of the mean relaxation time constant tau and the molecular relaxation time distribution parameter beta. The mean relaxation time constants for the three drugs increased from approximately ten h at the glass transition temperature with more than eight orders of magnitude at 66 K below the glass transition temperature. It was found that the benzodiazepines exhibited significant molecular mobility until approximately 50 K below the glass transition temperature; below this temperature molecular mobility becomes unimportant with respect to the shelf life stability. Hence the presented procedure provides the formulation scientist with a tool to set storage conditions for amorphous drugs and glassy pharmaceutical products. PMID:10477327

  15. Decay of H (D) atoms in solid hydrogen at 4. 2 K. Rate constant for tunneling reaction H sub 2 (D sub 2 , HD) + H (D)

    SciTech Connect

    Miyazaki, Tetsuo; Iwata, Nobuchika; Lee, Kwangpill; Fueki, Kenji )

    1989-04-20

    Decay of H (or D) atoms at 4.2 K, produced by {gamma}-radiolysis of solid hydrogen, has been studied by ESR spectroscopy. The decay is caused by quantum mechanical tunneling. The decay rate of H atoms in H{sub 2} depends upon the initial concentration of the H atoms, and their decay is represented by second-order kinetics. D atoms decay very slowly in the D{sub 2} solid and disappear by reaction with HD, which exists as an impurity. In the HD solid, D atoms decay fast, while H atoms increase complementarily. Since the decay of these atoms is associated with hydrogen atom-molecule tunneling reactions the rate constants for the reactions are obtained from the decay rates. The rate constants for the tunneling reactions H{sub 2} + H {yields} H + H{sub 2}, D{sub 2} + D {yields} D + D{sub 2}, and HD + D {yields} H + D{sub 2} were 1.8 {times} 10, 1.8 {times} 10{sup {minus}3}, and 1.9 {times} 10{sup {minus}3} cm{sup 3} mol{sup {minus}1} s{sup {minus}1}, respectively, at 4.2 K. Room light and desk light promote remarkably the decay rate of H atoms in the H{sub 2} solid and slightly the decay rate of D atoms in the D{sub 2} solid. The decay of D atoms in the HD solid is not, however, affected by the light illumination.

  16. Unquenched B meson decay constants and neutral B meson-antineutral B meson mixing parameters from chiral lattice QCD

    NASA Astrophysics Data System (ADS)

    Loktik, Oleg

    In this thesis, we present the first 2+1 dynamical flavor lattice calculation of the B meson decay constants, fBd and fBs , as well as B0 - B0 mixing parameters in the infinite heavy quark mass limit. We use the chirality-preserving domain-wall formulation for light quarks. We employ an improved lattice formulation of the static approximation for heavy quarks and the Iwasaki gauge action for gluons. An important part of this thesis is the perturbative calculation which relates lattice operators to their continuum counterparts in the MS(NDR) scheme. This calculation had not been done previously for the aforementioned choice of lattice action, and it is discussed in detail in this thesis. Combining our numerical work with the results of the perturbative calculation, we obtain fstatBd = 231(10) +18-23 MeV, fstatBs = 261(10)(22) MeV, and for the mixing parameters, fstatBd BstatBd mb = 237(13) +19-26 MeV, fstatBs BstatBs mb = 262(12)(22) MeV, and xi ( fstatBs BstatBs )/( fstatBd BstatBd ) = 1.11(7) +13-4 , where the first error is statistical and the second is systematic.

  17. Mass of the b quark and B -meson decay constants from Nf=2 +1 +1 twisted-mass lattice QCD

    NASA Astrophysics Data System (ADS)

    Bussone, A.; Carrasco, N.; Dimopoulos, P.; Frezzotti, R.; Lami, P.; Lubicz, V.; Picca, E.; Riggio, L.; Rossi, G. C.; Simula, S.; Tarantino, C.; ETM Collaboration

    2016-06-01

    We present precise lattice computations for the b -quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B -decay constants. We employ gauge configurations with four dynamical quark flavors, up-down, strange and charm, at three values of the lattice spacing (a ˜0.06 - 0.09 fm ) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated to the physical pion mass and to the continuum limit and read mb(MS ¯ ,mb)=4.26 (10 ) GeV , mb/mc=4.42 (8 ), mb/ms=51.4 (1.4 ), fB s=229 (5 ) MeV , fB=193 (6 ) MeV , fB s/fB=1.184 (25 ) and (fB s/fB)/(fK/fπ)=0.997 (17 ).

  18. Measurement of the D-s Decay Constant fDs and Observation of New Charm Resonances Decaying to D*π

    SciTech Connect

    Benitez, Jose

    2012-03-01

    The absolute branching fractions for the decays D-s → ℓ-$\\bar{v}$-(ℓ = e, μ, or τ) are measured using a data sample corresponding to an integrated luminosity of 521 fb-1 collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEPII e+e- collider at SLAC. The number of Ds- mesons is determined by reconstructing the recoiling system DKXγ in events of the type e+e- → DKXD*s-, where D*s- → Ds- γ and X represents additional pions from fragmentation. The Ds- → ℓ-v events are detected by full or partial reconstruction of the recoiling system DKX{gamma}ℓ. The following results are obtained: β(Ds- → μ-v) = (6.02 ± 0.38 ± 0.34) x 10-3, {Beta}(Ds-→ τ-v) = (5.00 ± 0.35 ± 0.49) x 10-2, and B(Ds- → e-ν) < 2.8 x 10-4 at 90% C.L., where the first uncertainty is statistical and the second is systematic. The branching fraction measurements are combined to determine the Ds- decay constant fDs = (258.6 ± 6.4 ± 7.5) MeV. In addition, a study has been performed of the D+π}-, D0π}+, and D*+π- systems in inclusive e+e- → cc interactions in a search for excited D meson states. The dataset used consists of {approx}454 fb-1. The mass spectra for these systems show, for the first time, candidates for the radial excitations of the D0, D*0, and D*+, as well as the L = 2 excited states of the D0 and D-, where L is the orbital angular momentum of the quarks. Finally, a prototype of a

  19. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  20. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than

  1. Mass spectrum and leptonic decay constants of ground and radially excited states of ηc and ηb in a Bethe-Salpeter equation framework

    NASA Astrophysics Data System (ADS)

    Negash, Hluf; Bhatnagar, Shashank

    2015-04-01

    In this paper, we study the mass spectrum and decay constants of ground state (1S) and radially excited states (2S and 3S) of heavy equal mass pseudoscalar mesons, ηc and ηb. We have employed the framework of Bethe-Salpeter equation (BSE) under Covariant Instantaneous Ansatz (CIA). Our predictions are in reasonable agreement with the data on available states and results of other models.

  2. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    SciTech Connect

    Bazavov, A.; Bernard, C.; Komijani, J.; Bouchard, C. M.; DeTar, C.; Foley, J.; Levkova, L.; Du, D.; Laiho, J.; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kim, J.; Toussaint, D.; Kronfeld, A. S.; Mackenzie, P. B.; Simone, J. N.; Van de Water, R. S.; Zhou, R.; Neil, E. T.; Sugar, R.

    2014-10-30

    We compute the leptonic decay constants fD+, fDs, and fK+ and the quark-mass ratios mc/ms and ms/ml in unquenched lattice QCD using the experimentally determined value of fπ+ for normalization. We use the MILC highly improved staggered quark ensembles with four dynamical quark flavors—up, down, strange, and charm—and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from a0.06 to 0.15 fm are included in the analysis to control the extrapolation to the

  3. Joint determination of 40K decay constants and 40Ar∗/ 40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/ 39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, Paul R.; Mundil, Roland; Balco, Greg; Min, Kyoungwon; Ludwig, Kenneth R.

    2010-09-01

    40Ar/ 39Ar and K-Ar geochronology have long suffered from large systematic errors arising from imprecise K and Ar isotopic data for standards and imprecisely determined decay constants for the branched decay of 40K by electron capture and β - emission. This study presents a statistical optimization approach allowing constraints from 40K activity data, K-Ar isotopic data, and pairs of 238U- 206Pb and 40Ar/ 39Ar data for rigorously selected rocks to be used as inputs for estimating the partial decay constants ( λ ɛ and λ β) of 40K and the 40Ar∗/ 40K ratio ( κFCs) of the widely used Fish Canyon sanidine (FCs) standard. This yields values of κFCs = (1.6418 ± 0.0045) × 10 -3, λ ɛ = (0.5755 ± 0.0016) × 10 -10 a -1 and λ β = (4.9737 ± 0.0093) × 10 -10 a -1. These results improve uncertainties in the decay constants by a factor of >4 relative to values derived from activity data alone. Uncertainties in these variables determined by our approach are moderately to highly correlated (cov( κFCs, λ ɛ) = 7.1889 × 10 -19, cov( κFCs, λ β) = -7.1390 × 10 -19, cov( λ ɛ, λ β) = -3.4497 × 10 -26) and one must take account of the covariances in error propagation by either linear or Monte Carlo methods. 40Ar/ 39Ar age errors estimated from these results are significantly reduced relative to previous calibrations. Also, age errors are smaller for a comparable level of isotopic measurement precision than those produced by the 238U/ 206Pb system, because the 40Ar/ 39Ar system is now jointly calibrated by both the 40K and 238U decay constants, and because λ ɛ( 40K) < λ( 238U). Based on this new calibration, the age of the widely used Fish Canyon sanidine standard is 28.305 ± 0.036 Ma. The increased accuracy of 40Ar/ 39Ar ages is now adequate to provide meaningful validation of high-precision U/Pb or astronomical tuning ages in cases where closed system behavior of K and Ar can be established.

  4. A Measurement of the Pseudoscalar DecayConstant fDs using Charm-Tagged Events in e+e- Collisions at the Y(4S)

    SciTech Connect

    Stelzer, Jorg; /Stanford U., Phys. Dept. /SLAC

    2006-10-10

    The decay constant f{sub D{sub s}} of the pseudoscalar strange charm meson D{sub s}{sup +} is an important benchmark test of the theoretical methods that quantitatively describe the nonperturbative low-energy regime of QCD, the theory of the strong interaction. A confirmation of the validity of these predictive methods, foremost lattice QCD, in the sector of heavy-light meson decay constants increases trust in the calculation of f{sub B}, which is an important number for the measurement of the CKM matrix element V{sub td} in B{sup 0}{bar B}{sup 0}-mixing events. From October 1999 through July 2004, the BABAR experiment, located at the PEP-II storage ring at the Stanford Linear Accelerator Center, collected 230.2 fb{sup -1} of data in e{sup +}e{sup -} collision at {radical}s = 10.58 GeV. In this thesis, these data are searched for e{sup +}e{sup -} {yields} c{bar c} events by identifying sets of charged and neutral pions and charged kaons, consistent with the decay of a charm meson, D{sup 0}, D{sup +}, D{sub s}{sup +}, or D*{sup +}. A sample of 510,000 charmed mesons with a momentum consistent with e{sup +}e{sup -} {yields} c{bar c} events is identified.

  5. Measurement of the Branching Fraction for D8+ rarr tau+nu_tau and Extraction of the Decay Constant f_D_s

    SciTech Connect

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; Hawkes, C.M.; /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-06-04

    The branching fraction for the decay D{sub s}{sup +} {yields} {tau}{sup +}{nu}{sub {tau}} with {tau}{sup +} {yields} e{sup +}{bar {nu}}{sub {tau}}, is measured using a data sample corresponding to an integrated luminosity of 427 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. In the process e{sup +}e{sup -} {yields} c{bar c} {yields} D*{sub s}{sup +} {bar D}{sub TAG}{bar K}X, the D*{sub s}{sup +} meson is reconstructed as a missing particle, and the subsequent decay D*{sub s}{sup +} {yields} D{sub s}{sup +}{gamma} yields an inclusive D{sub s}{sup +} data sample. Here {bar D}{sub TAG} refers to a fully reconstructed hadronic {bar D} decay, {bar K} is a K{sup -} or {bar K}{sup 0}, and X stands for any number of charged or neutral pions. The decay D{sub s}{sup +} {yields} K{sub S}{sup 0}K{sup +} is isolated also, and from ratio of event yields and known branching fractions, {Beta}(D{sub s}{sup +} {yields} {tau}{sup +}{nu}{sub {tau}}) = (4.5 {+-} 0.5 {+-} 0.4 {+-} 0.3)% is determined. The pseudoscalar decay constant is extracted to be f{sub D{sub s}} = (233 {+-} 13 {+-} 10 {+-} 7) MeV, where the first uncertainty is statistical, the second is systematic, and the third results from the uncertainties on the external measurements used as input to the calculation.

  6. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model

    NASA Astrophysics Data System (ADS)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.

    2015-06-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.

  7. Assessment of the 187Re decay constant by cross calibration of Re Os molybdenite and U Pb zircon chronometers in magmatic ore systems

    NASA Astrophysics Data System (ADS)

    Selby, David; Creaser, Robert A.; Stein, Holly J.; Markey, Richard J.; Hannah, Judith L.

    2007-04-01

    The past decade has seen renewed interest in 187Re- 187Os geochronology using a variety of matrices including sulfide minerals, shales and meteorites. The most widely used value of the 187Re decay constant ( λ187Re) is 1.666 ± 0.005 × 10 -11 a -1 (±0.31%), which is based on cross calibration of Re-Os and Pb-Pb chronometers for certain meteorites [Smoliar M. I., Walker R. J., and Morgan J. W. (1996) Re-Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science271, 1099-1102]. However, other recent studies have yielded alternate values of λ187Re, based upon either direct counting experiments or analysis of meteorites. Here, we provide an independent assessment of λ187Re, using methodology, sample materials, and preparation of Os standard solutions different from those of Smoliar et al. (1996). Combining Re-Os age data for molybdenite formed in magmatic ore deposits, with the U-Pb zircon age of the magmatic rocks, a refined λ187Re value is determined by averaging 11 individual cross-calibration experiments spanning ca. 2700 Ma of Earth history. Using the U decay constants of Jaffey [Jaffey A. H., Flynn K. F., Glendenin L. E., Bentley W. C., and Essling A. M. (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev.4, 1889-1906], a value for λ187Re of 1.6668 ± 0.0034 × 10 -11 a -1 is determined. Using the λ238U value of Jaffey et al. (1971) and λ235U value of Schoene [Schoene B., Crowley J. L., Condon D. J., Schmitz M. D., and Bowring S. A. (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta70, 426-445], a value for λ187Re of 1.6689 ± 0.0031 × 10 -11 a -1 is determined. These values are nominally higher (ca. 0.1 and ca. 0.2%) than the value determined by Smoliar et al. [Smoliar M. I., Walker R. J., and Morgan J. W. (1996) Re-Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science271

  8. A Frequency Metrology approach to Newtonian constant G determination using a pair of extremely high Q simple pendulums in free decay

    NASA Astrophysics Data System (ADS)

    De Marchi, A.

    2016-06-01

    It is argued that simple pendulums exhibiting Q values in excess of 108 can be realized by using high strength fibres to suspend in vacuum a bob of less than 10-3 kg. For a 1 m long pendulum this means damping time constants of several years, long enough to allow experiments in free decay mode, maximizing in this way the expected short term frequency stability. A dual pendulum experiment based on this projection is discussed, which common-modes seismic noise and is expected to yield 10-5 uncertainty on Big G. The value of the latter can be obtained from the variation in relative frequency difference between the two pendulums when they are subjected to well controlled variations of the gravitational field. A discussion is given of Type A and Type B uncertainty contributions, and a tentative accuracy budget is projected.

  9. ORIGIN OF EXCESS {sup 176}Hf IN METEORITES

    SciTech Connect

    Thrane, Kristine; Connelly, James N.; Bizzarro, Martin; Meyer, Bradley S.; The, Lih-Sin

    2010-07-10

    After considerable controversy regarding the {sup 176}Lu decay constant ({lambda}{sup 176}Lu), there is now widespread agreement that (1.867 {+-} 0.008) x 10{sup -11} yr{sup -1} as confirmed by various terrestrial objects and a 4557 Myr meteorite is correct. This leaves the {sup 176}Hf excesses that are correlated with Lu/Hf elemental ratios in meteorites older than {approx}4.56 Ga meteorites unresolved. We attribute {sup 176}Hf excess in older meteorites to an accelerated decay of {sup 176}Lu caused by excitation of the long-lived {sup 176}Lu ground state to a short-lived {sup 176m}Lu isomer. The energy needed to cause this transition is ascribed to a post-crystallization spray of cosmic rays accelerated by nearby supernova(e) that occurred after 4564.5 Ma. The majority of these cosmic rays are estimated to penetrate accreted material down to 10-20 m, whereas a small fraction penetrate as deep as 100-200 m, predicting decreased excesses of {sup 176}Hf with depth of burial at the time of the irradiation event.

  10. Origin of Excess 176Hf in Meteorites

    NASA Astrophysics Data System (ADS)

    Thrane, Kristine; Connelly, James N.; Bizzarro, Martin; Meyer, Bradley S.; The, Lih-Sin

    2010-07-01

    After considerable controversy regarding the 176Lu decay constant176Lu), there is now widespread agreement that (1.867 ± 0.008) × 10-11 yr-1 as confirmed by various terrestrial objects and a 4557 Myr meteorite is correct. This leaves the 176Hf excesses that are correlated with Lu/Hf elemental ratios in meteorites older than ~4.56 Ga meteorites unresolved. We attribute 176Hf excess in older meteorites to an accelerated decay of 176Lu caused by excitation of the long-lived 176Lu ground state to a short-lived 176m Lu isomer. The energy needed to cause this transition is ascribed to a post-crystallization spray of cosmic rays accelerated by nearby supernova(e) that occurred after 4564.5 Ma. The majority of these cosmic rays are estimated to penetrate accreted material down to 10-20 m, whereas a small fraction penetrate as deep as 100-200 m, predicting decreased excesses of 176Hf with depth of burial at the time of the irradiation event.

  11. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect

    Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; Kawanai, Taichi; Lehner, Christoph; Soni, Amarjit; Van de Water, Ruth S.; Witzel, Oliver

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  12. Measurement of the pseudoscalar decay constant f{sub D{sub s}} using D{sub s}{sup +}{yields}{tau}{sup +}{nu}, {tau}{sup +}{yields}{rho}{sup +}{nu} decays

    SciTech Connect

    Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Randrianarivony, K.; Reed, J.; Robichaud, A. N.; Tatishvili, G.; White, E. J.; Briere, R. A.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, S. W.; Hartill, D. L.

    2009-12-01

    Analyzing 600 pb{sup -1} of e{sup +}e{sup -} collisions at 4170 MeV center-of-mass energy with the CLEO-c detector, we measure the branching fraction B(D{sub s}{sup +}{yields}{tau}{sup +}{nu})=(5.52{+-}0.57{+-}0.21)% using the {tau}{sup +}{yields}{rho}{sup +}{nu} decay mode. Combining with other CLEO measurements of B(D{sub s}{sup +}{yields}{tau}{sup +}{nu}) we determine the pseudoscalar decay constant f{sub D{sub s}}=(259.7{+-}7.8{+-}3.4) MeV consistent with the value obtained from our D{sub s}{sup +}{yields}{mu}{sup +}{nu} measurement of (257.6{+-}10.3{+-}4.3) MeV. Combining these measurements we find a value of f{sub D{sub s}}=(259.0{+-}6.2{+-}3.0) MeV, that differs from the most accurate prediction based on unquenched lattice gauge theory of (241{+-}3) MeV by 2.4 standard deviations. We also present the first measurements of B(D{sub s}{sup +}{yields}K{sup 0}{pi}{sup +}{pi}{sup 0})=(1.00{+-}0.18{+-}0.04)%, and B(D{sub s}{sup +}{yields}{pi}{sup +}{pi}{sup 0}{pi}{sup 0})=(0.65{+-}0.13{+-}0.03)%, and measure a new value for B(D{sub s}{sup +}{yields}{eta}{rho}{sup +})=(8.9{+-}0.6{+-}0.5)%.

  13. Measurement of the pseudoscalar decay constant fDs using charm-tagged events in e+e- collisions at square root s=10.58 GeV.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M

    2007-04-01

    Using 230.2 fb-1 of e+e- annihilation data collected with the BABAR detector at and near the peak of the Upsilon(4S) resonance, 489+/-55 events containing the pure leptonic decay Ds+-->micro;+numicro have been isolated in charm-tagged events. The ratio of partial widths Gamma(D+-->micro+numicro)/Gamma(Ds+-->phipi+) is measured to be 0.143+/-0.018+/-0.006 allowing a determination of the pseudoscalar decay constant fDs=(283+/-17+/-7+/-14) MeV. The errors are statistical, systematic, and from the Ds+-->phipi+ branching ratio, respectively. PMID:17501265

  14. The evaluation of half-lives and other decay data used in nuclear astrophysics and cosmochronology

    SciTech Connect

    Chechev, V. P.

    2011-12-15

    The current status of some decay data used in nuclear astrophysics and cosmochronology is presented. The half-life of {sup 79}Se has been evaluated as 3.6(3) Multiplication-Sign 10{sup 5} yr. The total energy of non-neutrino radiation released in act of {sup 37}Ar decay has been obtained being 2.709 (16) keV per disintegration. The recommended half-life values of the long-lived radionuclides (T{sub 1/2} Greater-Than-Or-Equivalent-To 10{sup 6} yr) of {sup 26}Al, {sup 40}K, {sup 53}Mn, {sup 60}Fe, {sup 87}Rb, {sup 93}Zr, {sup 98}Tc, {sup 107}Pd, {sup 129}I, {sup 135}Cs, {sup 146}Sm, {sup 176}Lu, {sup 182}Hf, {sup 187}Re, {sup 205}Pb, {sup 232}Th, {sup 235}U, {sup 238}U, {sup 244}Pu, and {sup 247}Cm are given based on the evaluations published until 2010.

  15. 40Ar/ 39Ar ages of CAMP in North America: Implications for the Triassic-Jurassic boundary and the 40K decay constant bias

    NASA Astrophysics Data System (ADS)

    Jourdan, F.; Marzoli, A.; Bertrand, H.; Cirilli, S.; Tanner, L. H.; Kontak, D. J.; McHone, G.; Renne, P. R.; Bellieni, G.

    2009-06-01

    a minor CAMP late tailing activity (190-194 Ma) which has been observed already for dykes and sills in Africa and Brazil. We speculate that, if genuine, this late activity can be due to a major extensional event, possibly heralding the oceanization process at ~ 190 Ma. Comparison between high quality U/Pb and 40Ar/ 39Ar ages of pegmatite lenses from the North Mountain basalts confirms a ~ 1% bias between the two chronometers. This discrepancy is likely attributed to the miscalibration of the 40K decay constants, in particular the electron capture branch.

  16. Self-consistent covariant description of vector meson decay constants and chirality-even quark-antiquark distribution amplitudes up to twist 3 in the light-front quark model

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Meoyng; Ji, Chueng-Ryong

    2014-02-01

    Although the meson decay amplitude described by a two-point function may be regarded as one of the simplest possible physical observables, it is interesting that this apparently simple amplitude bears abundant fundamental information on QCD vacuum dynamics and chiral symmetry. The light-front zero-mode issue of the vector meson decay constant fV is in this respect highly nontrivial and deserves careful analysis. We discuss the zero-mode issue in the light-front quark model (LFQM) prediction of fV from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. We extend the exactly solvable, manifestly covariant Bethe-Salpeter model calculation to the more phenomenologically accessible, realistic light-front quark model and present a self-consistent covariant description of fV, analyzing the twist-2 and twist-3 quark-antiquark distribution amplitudes with even chirality.

  17. Reduction method for intrinsic random coincidence events from (176)Lu in low activity PET imaging.

    PubMed

    Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2014-07-01

    For clinical studies, the effects of the intrinsic radioactivity of lutetium-based scintillators such as LSO used in PET imaging can be ignored within a narrow energy window. However, the intrinsic radioactivity becomes problematic when used in low-count-rate situations such as gene expression imaging or in-beam PET imaging. Time-of-flight (TOF) measurement capability promises not only to improve PET image quality, but also to reduce intrinsic random coincidences. On the other hand, we have developed a new reduction method for intrinsic random coincidence events based on multiple-coincidence information. Without the energy window, an intrinsic random coincidence is detected simultaneously with an intrinsic true coincidence as a multiple coincidence. The multiple-coincidence events can serve as a guide to identification of the intrinsic coincidences. After rejection of multiple-coincidence events detected with a wide energy window, data obtained included a few intrinsic random and many intrinsic true coincidence events. We analyzed the effect of intrinsic radioactivity and used Monte Carlo simulation to test both the TOF-based method and the developed multiple-coincidence-based (MC-based) method for a whole-body LSO-PET scanner. Using the TOF- and MC-based reduction methods separately, we could reduce the intrinsic random coincidence rates by 77 and 30 %, respectively. Also, the intrinsic random coincidence rate could be reduced by 84 % when the TOF+MC reduction methods were applied. The developed MC-based method showed reduced number of the intrinsic random coincidence events, but the reduction performance was limited compared to that of the TOF-based reduction method. PMID:24496884

  18. NUCLEAR DATA REVIEW

    SciTech Connect

    HOLDEN,N.E.

    2004-12-01

    Non-neutron nuclear data are periodically reviewed and evaluated. The recommended values are published in the Table of the Isotopes of the Chemical Rubber Company's Handbook of Chemistry and Physics. A 2004 review has begun to re-examine some data of interest to the International Union of Geological Sciences (IUGS) sub-commission on Geochronology dealing with radioactive decay constants and isotopic abundance ratios. Among the decay constants that are being evaluated are those of the following nuclides: {sup 40}K, {sup 87}Rb, {sup 138}La, {sup 147}Sm, {sup 176}Lu, {sup 174}Hf, {sup 187}Re, {sup 190}Pt, {sup 232}Th, {sup 235}U, {sup 238}U.

  19. Neutron Beta Decay Studies with Nab

    SciTech Connect

    Baessler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barron-Palos, L.; Bowman, James David; Bychkov, M. A.; Byrne, J.; Calarco, J; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlez, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttila, Seppo I; Pocanic, Dinko; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  20. The constant-V vortex

    NASA Astrophysics Data System (ADS)

    Faller, Alan J.

    2001-05-01

    It has been found that the generation of swirl by a continuous rotary oscillation of a right-circular cylinder partially filled with water can leave a vortex with a radially constant tangential velocity, V, i.e. [partial partial differential]V/[partial partial differential]r = 0, excepting a small central core and the sidewall boundary layer. This vortex maintains [partial partial differential]V/[partial partial differential]r = 0 during viscous decay by the turbulent bottom boundary layer, a fact that suggests that [partial partial differential]V/[partial partial differential]r = 0 is a stable condition for a decaying vortex.

  1. Alpha decay in electron surrounding

    SciTech Connect

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2013-12-15

    The influence of atomic electron shells on the constant of alpha decay of heavy and mediummass nuclei was considered in detail. A method for simultaneously taking into account the change in the potential-barrier shape and the effect of reflection of a diverging Coulomb wave in the classically allowed region was developed. The ratios of decay probabilities per unit time for a bare nucleus and the respective neutral atom were found for some alpha-decaying isotopes.

  2. Selective photoionisation of lutetium isotopes

    SciTech Connect

    D'yachkov, Aleksei B; Kovalevich, S K; Labozin, Valerii P; Mironov, Sergei M; Panchenko, Vladislav Ya; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2012-10-31

    A three-stage laser photoionisation scheme intended for enriching the {sup 176}Lu isotope from natural lutetium was considered. An investigation was made of the hyperfine structure of the second excited state 5d6s7s {yields} {sup 4}D{sub 3/2} with an energy of 37194 cm{sup -1} and the autoionisation state with an energy of 53375 cm{sup -1} of the {sup 176}Lu and {sup 175}Lu isotopes. The total electron momentum of the autoionisation level and the constant A of hyperfine magnetic interaction were determined. Due to a small value of the isotopic shift between {sup 176}Lu and {sup 175}Lu, appreciable selectivity of their separation may be achieved with individual hyperfine structure components. The first tentative enrichment of the 176Lu isotope was performed to a concentration of 60 % - 70 %. (laser applications and other topics in quantum electronics)

  3. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Cremonesi, Oliviero

    2016-05-01

    After more than 3/4 of century from its proposal, Neutrinoless Double Beta Decay (NLDBD) is still missing observation and continues to represent the only practical method for investigating the Dirac/Majorana nature of neutrinos. In case neutrinos would be Majorana particles, NLDBD would provide unique informations on their properties (absolute mass scale and Majorana phases). Boosted by the discovery of neutrino oscillations, a number of experiments with improved sensitivity have been proposed in the past decade. Some of them have recently started operation and others are ready to start. They will push the experimental sensitivity on the decay halflife beyond 1026 year, starting to analyze the region of the inverted mass hierarchy. The status and perspectives of the ongoing experimental effort are reviewed. Uncertainties coming from the calculation othe decay nuclear matrix elements (NME) as well as the recently suggested possibility of a relevant quenching of the axial coupling constant are also discussed.

  4. Tooth Decay

    MedlinePlus

    ... decay starts in the outer layer, called the enamel. Without a filling, the decay can get deep into the tooth and its nerves and cause a toothache or abscess. To help prevent cavities Brush your teeth every day with a fluoride toothpaste Clean between ...

  5. Lu-Hf total-rock age for the Amîtsoq gneisses, West Greenland

    USGS Publications Warehouse

    Pettingill, H.S.; Patchett, P.J.

    1981-01-01

    Lu-Hf total-rock data for the Amîtsoq gneisses of West Greenland yield an age of 3.55±0.22Gy(2σ), based on the decay constant λ176Lu=1.96×10−11y−1, and an initial176Hf/177Hf ratio of 0.280482±33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 Gy, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial176Hf/177Hf lies close to a chondritic Hf isotopic evolution curve from 4.55 Gy to present. This is consistent with the igneous precursors to the Amîtsoq gneisses having been derived from the mantle at or shortly before 3.6 Gy. Anomalous relationships between Hf concentration and the176Lu/177Hf ratio may suggest that trace element abundances in the Amîtsoq gneisses are partly controlled by processes related to metamorphism.

  6. Seal Out Tooth Decay

    MedlinePlus

    ... Topics > Tooth Decay (Caries) > Seal Out Tooth Decay Seal Out Tooth Decay Main Content What are dental ... back teeth decay so easily? Who should get seal​ants? Should sealants be put on baby teeth? ...

  7. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  8. On the Khinchin Constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)

    1995-01-01

    We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.

  9. Solar constant secular changes

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.; Orosz, Jerome A.

    1990-01-01

    A recent model for solar constant secular changes is used to calculate a 'proxy' solar constant for: (1) the past four centuries, based upon the sunspot record, (2) the past nine centuries, based upon C-14 observations and their relation to solar activity, and (3) the next decade, based upon a dynamo theory model for the solar cycle. The proxy solar constant data is tabulated as it may be useful for climate modelers studying global climate changes.

  10. Evaluation of decay curves of a chemical species undergoing simultaneous first- and second-order decay

    NASA Technical Reports Server (NTRS)

    Schmidt, K. H.

    1970-01-01

    IBM 1620 computer prepares tables to enable fast calculation of the first- and second-order rate constants from two half-lives and the corresponding initial concentrations, obtained from either one or two decay curves.

  11. Cosmological constant in scale-invariant theories

    SciTech Connect

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.

    2011-10-01

    The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.

  12. Lu-hf total-rock isochron for the eucrite meteorites

    USGS Publications Warehouse

    Patchett, P.J.; Tatsumoto, M.

    1980-01-01

    The isotope 176Lu (2.6% of natural lutetium) decays by ??- to 176Hf, with a long half life. We present here the first Lu-Hf isochron. The eucrite meteorites, a suite of planetary igneous rocks of known age, 4,550 Myr, define a 10-point total-rock isochron with a slope of 0.0934 ?? 40, leading to a value of 3.53 ?? 0.14 ??1010yr for the ??--decay half life of 176Lu. The isochron intercept of 0.27973 ?? 12 gives the initial 176Hf/177Hf for the inner Solar System at the time of accretion. ?? 1980 Nature Publishing Group.

  13. Fundamental Physical Constants

    National Institute of Standards and Technology Data Gateway

    SRD 121 CODATA Fundamental Physical Constants (Web, free access)   This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.

  14. Measurement of B(D{sub s}{sup +}{yields}l{sup +}{nu}) and the decay constant f{sub D{sub s}{sup +}} from 600 pb{sup -1} of e{sup +}e{sup -} annihilation data near 4170 MeV

    SciTech Connect

    Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Hunt, J. M.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krueger, H.; Mohapatra, D.; Patterson, J. R.

    2009-03-01

    We examine e{sup +}e{sup -}{yields}D{sub s}{sup -}D{sub s}*{sup +} and D{sub s}*{sup -}D{sub s}{sup +} interactions at 4170 MeV using the CLEO-c detector in order to measure the decay constant f{sub D{sub s}{sup +}} with good precision. Previously our measurements were substantially higher than the most precise lattice based QCD calculation of (241{+-}3) MeV. Here we use the D{sub s}{sup +}{yields}l{sup +}{nu} channel, where the l{sup +} designates either a {mu}{sup +} or a {tau}{sup +}, when the {tau}{sup +}{yields}{pi}{sup +}{nu}. Analyzing both modes independently, we determine B(D{sub s}{sup +}{yields}{mu}{sup +}{nu})=(0.565{+-}0.045{+-}0.017)%, and B(D{sub s}{sup +}{yields}{tau}{sup +}{nu})=(6.42{+-}0.81{+-}0.18)%. We also analyze them simultaneously to find an effective value of B{sup eff}(D{sub s}{sup +}{yields}{mu}{sup +}{nu})=(0.591{+-}0.037{+-}0.018)% and f{sub D{sub s}{sup +}}=(263.3{+-}8.2{+-}3.9) MeV. Combining with the CLEO-c value determined independently using D{sub s}{sup +}{yields}{tau}{sup +}{nu}, {tau}{sup +}{yields}e{sup +}{nu}{nu} decays, we extract f{sub D{sub s}{sup +}}=(259.5{+-}6.6{+-}3.1) MeV. Combining with our previous determination of B(D{sup +}{yields}{mu}{sup +}{nu}), we extract the ratio f{sub D{sub s}{sup +}}/f{sub D{sup +}}=1.26{+-}0.06{+-}0.02. No evidence is found for a CP asymmetry between {gamma}(D{sub s}{sup +}{yields}{mu}{sup +}{nu}) and {gamma}(D{sub s}{sup -}{yields}{mu}{sup -}{nu}); specifically the fractional difference in rates is measured to be (4.8{+-}6.1)%. Finally, we find B(D{sub s}{sup +}{yields}e{sup +}{nu})<1.2x10{sup -4} at 90% confidence level.

  15. The cosmological constant problem

    SciTech Connect

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.

  16. Space Shuttle astrodynamical constants

    NASA Technical Reports Server (NTRS)

    Cockrell, B. F.; Williamson, B.

    1978-01-01

    Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

  17. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  18. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  19. Decaying neutrinos: The long way to isotropy

    SciTech Connect

    Basboell, Anders; Bjaelde, Ole Eggers

    2010-06-15

    We investigate a scenario in which neutrinos are coupled to a pseudoscalar degree of freedom {phi} and where decays {nu}{sub 1{yields}{nu}2}+{phi} and inverse decays are the responsible mechanism for obtaining equilibrium. In this context we discuss the implication of the invisible neutrino decay on the neutrino-pseudoscalar coupling constant and the neutrino lifetime. Assuming the realistic scenario of a thermal background of neutrinos and pseudoscalar we update the bound on the (off-diagonal) neutrino-pseudoscalar coupling constant to g<2.6x10{sup -13} and the bound on the neutrino lifetime to {tau}>1x10{sup 13} s. Furthermore we confirm analytically that kinetic equilibrium is delayed by two Lorentz {gamma} factors--one for time dilation of the (decaying) neutrino lifetime and one from the opening angle. We have also confirmed this behavior numerically.

  20. Dental Caries (Tooth Decay)

    MedlinePlus

    ... Find Data by Topic > Dental Caries (Tooth Decay) Dental Caries (Tooth Decay) Main Content Dental caries (tooth decay) remains the most prevalent chronic ... important source of information on oral health and dental care in the United States since the early ...

  1. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  2. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  3. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  4. Analysis of the polarization decay of coated steel in saltwater

    SciTech Connect

    Kumar, A.; Van Blaricum, V.

    1995-10-01

    The polarization decay of coated and bare steel specimens in saltwater was measured. A simple nested equivalent circuit with two ``RC`` constants was used to analyze the data. The values of the two ``RC`` constants were calculated for 2%, 20%, and 100% bare steel. A coated and scratched specimen with the bare area less than 1% was also analyzed with this procedure. It was observed that corroded steel specimens decay slower than the coated specimens. The decay rate decreased with the increase in bare area of coated steel. The pseudo capacitance values calculated from the time constants increased as the corroded bare area of coated steel was increased.

  5. XrayOpticsConstants

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  6. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  7. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  8. Renormalization of Newton's constant

    NASA Astrophysics Data System (ADS)

    Falls, Kevin

    2015-12-01

    The problem of obtaining a gauge independent beta function for Newton's constant is addressed. By a specific parametrization of metric fluctuations a gauge independent functional integral is constructed for the semiclassical theory around an arbitrary Einstein space. The effective action then has the property that only physical polarizations of the graviton contribute, while all other modes cancel with the functional measure. We are then able to compute a gauge independent beta function for Newton's constant in d dimensions to one-loop order. No Landau pole is present provided Ng<18 , where Ng=d (d -3 )/2 is the number of polarizations of the graviton. While adding a large number of matter fields can change this picture, the absence of a pole persists for the particle content of the standard model in four spacetime dimensions.

  9. Varying constants quantum cosmology

    SciTech Connect

    Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl

    2015-02-01

    We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.

  10. Connecting Fundamental Constants

    SciTech Connect

    Di Mario, D.

    2008-05-29

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.

  11. The Hubble Constant

    NASA Astrophysics Data System (ADS)

    Jackson, Neal

    2015-09-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72-74 km s^-1 Mpc^-1, with typical errors of 2-3 km s^-1 Mpc^-1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s^-1 Mpc^-1 and typical errors of 1-2 km s^-1 Mpc^-1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  12. Classical picture of postexponential decay

    SciTech Connect

    Torrontegui, E.; Muga, J. G.; Martorell, J.; Sprung, D. W. L.

    2010-04-15

    Postexponential decay of the probability density of a quantum particle leaving a trap can be reproduced accurately, except for interference oscillations at the transition to the postexponential regime, by means of an ensemble of classical particles emitted with constant probability per unit time and the same half-life as the quantum system. The energy distribution of the ensemble is chosen to be identical to the quantum distribution, and the classical point source is located at the scattering length of the corresponding quantum system. A one-dimensional example is provided to illustrate the general argument.

  13. Dissipationless decay of Jovian jets

    NASA Astrophysics Data System (ADS)

    Pirraglia, J. A.

    1989-05-01

    IRIS data have been taken as the bases of windshear calculations whose results imply a decrease of the Jovian planet's zonal jets with altitude. The simplified dynamical model developed to furnish a mechanism accounting for the decay involves a highly truncated set of dissipationless equations simulating the upper-tropospheric and stratospheric flow. While the model's lower boundary is constrained as a latitudinally periodic set of alternating jets, the upper boundary constraint maintains a constant potential temperature. The small perturbations to which the imposed zonal jets are unstable grow and interact nonlinearly, generating a zonal flow that opposes the imposed one and thereby leading to the apparent decrease of the jets with altitude.

  14. Review of modern double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 . 10-5) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to at the level of ˜ 0.01-0.1 eV are discussed.

  15. Review of modern double beta decay experiments

    SciTech Connect

    Barabash, A. S.

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  16. The Hubble constant.

    PubMed

    Tully, R B

    1993-06-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  17. When constants are important

    SciTech Connect

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  18. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  19. A Constant Pressure Bomb

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1924-01-01

    This report describes a new optical method of unusual simplicity and of good accuracy suitable to study the kinetics of gaseous reactions. The device is the complement of the spherical bomb of constant volume, and extends the applicability of the relationship, pv=rt for gaseous equilibrium conditions, to the use of both factors p and v. The method substitutes for the mechanical complications of a manometer placed at some distance from the seat of reaction the possibility of allowing the radiant effects of reaction to record themselves directly upon a sensitive film. It is possible the device may be of use in the study of the photoelectric effects of radiation. The method makes possible a greater precision in the measurement of normal flame velocities than was previously possible. An approximate analysis shows that the increase of pressure and density ahead of the flame is negligible until the velocity of the flame approaches that of sound.

  20. The Hubble constant.

    PubMed Central

    Tully, R B

    1993-01-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  1. Moduli Decays and Gravitinos

    SciTech Connect

    Dine, Michael; Kitano, Ryuichiro; Morisse, Alexander; Shirman, Yuri

    2006-04-21

    One proposed solution of the moduli problem of string cosmology requires that the moduli are quite heavy, their decays reheating the universe to temperatures above the scale of nucleosynthesis. In many of these scenarios, the moduli are approximately supersymmetric; it is then crucial that the decays to gravitinos are helicity suppressed. In this paper, we discuss situations where these decays are, and are not, suppressed. We also comment on a possible gravitino problem from inaton decay.

  2. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  3. Radiative Corrections for Neutron Decay and Search for New Physics

    PubMed Central

    Gudkov, V.; Kubodera, K.; Myhrer, F.

    2005-01-01

    The expected increased accuracy of neutron β-decay experiments at the new Spallation Neutron Source could result in more stringent tests of the Standard Model. For an unambiguous search for new physics in neutron decay experiments and for a precise determination of fundamental constants, it is necessarily to understand and evaluate all corrections for neutron decay with higher accuracy than the expected experimental precision. We discuss the possibility to estimate the accuracy of radiative corrections. New results based on the applications of effective field theory for neutron decay is presented. PMID:27308143

  4. Beyond the Hubble Constant

    NASA Astrophysics Data System (ADS)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  5. Search for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ostrovskiy, Igor; O’Sullivan, Kevin

    2016-06-01

    We review current experimental efforts to search for neutrinoless double beta decay (0νββ). A description of the selected leading experiments is given and the strongest recent results are compared in terms of achieved background indexes (BI) and limits on effective Majorana mass. A combined limit is also shown. The second part of the review covers next generation experiments, highlighting the challenges and new technologies that may be necessary to achieve a justifiable discovery potential. A potential synergy with direct dark matter searches, which could be an especially prudent strategy in case the axial vector coupling constant is quenched in 0νββ decay, is emphasized.

  6. DBI analog of a decaying vacuum cosmology

    NASA Astrophysics Data System (ADS)

    Bessada, Dennis

    2013-07-01

    In this work I discuss the dynamical and thermodynamical equivalence between a general k-essence scalar field cosmology and an arbitrary cosmological model with a decaying vacuum, thus generalizing the approach proposed by Maia and Lima [Phys. Rev. D 65, 083513 (2002)]. The formalism obtained is quite general and holds for any noncanonical scalar field model. As a special case I derive a Dirac-Born-Infeld model with an exponential potential and constant speed of sound, and show that it is equivalent to a cosmological model with decay law Λ(H)=3βH2.

  7. {alpha} Decay of Deformed Actinide Nuclei

    SciTech Connect

    Stewart, T.L.; Kermode, M.W.; Beachey, D.J.; Rowley, N.; Grant, I.S.; Kruppa, A.T.

    1996-07-01

    {alpha} decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semiclassical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes also give good results for the known anisotropic {alpha}-particle emission of the favored decays of odd nuclei in the same mass region. {copyright} {ital 1996 The American Physical Society.}

  8. B -meson decay constants from 2+1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect

    Christ, N. H.; Flynn, J. M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; Van de Water, R. S.; Witzel, O.

    2015-03-01

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a0.11, 0.086 fm with unitary pion masses as light as Mπ290MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the

  9. Axions from string decay

    SciTech Connect

    Hagmann, C., LLNL

    1998-07-09

    We have studied numerically the evolution and decay of axion strings. These global defects decay mainly by axion emission and thus contribute to the cosmological axion energy density. The relative importance of this source relative to misalignment production of axions depends on the spectrum. Radiation spectra for various string loop configurations are presented. They support the contention that the string decay contribution is of the same order of magnitude as the contribution from misalignment.

  10. New precision measurements of free neutron beta decay with cold neutrons

    SciTech Connect

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; Počanić, Dinko

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  11. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  12. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  13. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  14. Elastic constants and dynamics in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Humpert, Anja; Allen, Michael P.

    2015-09-01

    In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.

  15. Formulas for determining rotational constants

    NASA Astrophysics Data System (ADS)

    Guelachvili, G.

    This document is part of Subvolume B `Linear Triatomic Molecules', Part 9, of Volume 20 `Molecular Constants mostly from Infrared Spectroscopy' of Landolt-Börnstein Group II `Molecules and Radicals'. Part of the introduction, it states formulas for determining rotational constants, band center, band origin, and quadrupole coupling. Specific comments relate to BHO (HBO) and COS (OCS).

  16. QCD coupling constants and VDM

    SciTech Connect

    Erkol, G.; Ozpineci, A.; Zamiralov, V. S.

    2012-10-23

    QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.

  17. Cosmology with decaying vacuum energy

    SciTech Connect

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t approx. 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 < rho/sub vac//rho/sup rad/ < 0.1, increase the number of allowed neutino species to N/sup nu/ > 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs.

  18. Exotic muon decays and the KARMEN anomaly

    NASA Astrophysics Data System (ADS)

    Gninenko, S. N.; Krasnikov, N. V.

    1998-08-01

    An anomaly in time distribution of neutrinos from the ISIS pulsed beam stop source observed by the KARMEN collaboration is discussed. We show that the anomaly can be interpreted as a superposition of two exponentials, both having time constants consistent with the μ+ lifetime of 2.2 μs. It is assumed that they both originate from muon decays at rest. One of them describes the time distribution of the prompt neutrino events, while the other describes the time distribution of events from delayed decays of slowly moving (β~=0.02) particles in the KARMEN calorimeter. We propose here that these particles are produced in exotic decays of positive muons μ+-->e++X, resulting in the second exponential time distribution shifted by the time of flight with respect to the time distribution of neutrino events. This model gives an acceptable fit to the KARMEN data if X has a mass of 103.9 MeV. The possible decay modes of this new massive neutral particle are discussed. This hypothesis can be experimentally tested in the near future by studying the low energy part of the e+ spectrum in the μ+ decays.

  19. Axions from wall decay

    SciTech Connect

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  20. Modulated curvaton decay

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2013-03-01

    We study primordial density perturbations generated by the late decay of a curvaton field whose decay rate may be modulated by the local value of another isocurvature field, analogous to models of modulated reheating at the end of inflation. We calculate the primordial density perturbation and its local-type non-Gaussianity using the sudden-decay approximation for the curvaton field, recovering standard curvaton and modulated reheating results as limiting cases. We verify the Suyama-Yamaguchi inequality between bispectrum and trispectrum parameters for the primordial density field generated by multiple field fluctuations, and find conditions for the bound to be saturated.

  1. Combinedatomic-nuclear decay

    NASA Astrophysics Data System (ADS)

    Dzyublik, A. Ya.

    2016-05-01

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2+ level of 63 153 Eu and K hole, formed in the K capture by 153Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2 p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10-13, that is much less than the recent experimental findings.

  2. Local tunneling decay length and Kelvin probe force spectroscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, Florian; Fleischmann, Martin; Scheer, Manfred; Gross, Leo; Repp, Jascha

    2015-12-01

    In the past, current-distance spectroscopy has been widely applied to determine variations of the work function at surfaces. While for homogeneous sample areas this technique is commonly accepted to yield at least qualitative results, its applicability to atomic-scale variations has not been proven neither right nor wrong. Here we benchmark measurements of the current-distance decay constant against the well established Kelvin probe force spectroscopy for four distinctly different cases with atomic-scale variations of the local contact potential. The two techniques yield quite different results. Whereas the maps of the current-distance decay constant are consistent with being topographical artifacts, the Kelvin probe force spectroscopy maps show variations of the local contact potential difference in agreement with expected surface dipoles. This comparison clarifies that maps of the current-distance decay constant are not suited to directly characterize contact potential variations at surfaces on atomic length scales.

  3. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  4. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  5. Tooth decay - early childhood

    MedlinePlus

    Bottle mouth; Bottle carries; Baby bottle tooth decay; Early childhood caries (ECC) ... chap 304. Ribeiro NM, Ribeiro MA. Breastfeeding and early childhood caries: a critical review. J Pediatr (Rio J) . ...

  6. Constant Communities in Complex Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy; Srinivasan, Sriram; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh

    2013-05-01

    Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core functional units of the larger communities.

  7. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi

    2016-09-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  8. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1989-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented of the optical constants of solid methane for the 0.4 to 2.6 micron region. K is reported for both the amorphous and the crystalline (annealed) states. Using the previously measured values of the real part of the refractive index, n, of liquid methane at 110 K n is computed for solid methane using the Lorentz-Lorentz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH4.

  9. How fundamental are fundamental constants?

    NASA Astrophysics Data System (ADS)

    Duff, M. J.

    2015-01-01

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, ?. For example, the standard model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers or scales? they use to measure them. Dimensional constants, on the other hand, such as ?, c, G, e and k ?, are merely human constructs whose number and values differ from one choice of units to the next. In this sense, only dimensionless constants are 'fundamental'. Similarly, the possible time variation of dimensionless fundamental 'constants' of nature is operationally well defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as ? or ? on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.

  10. Decay of metastable topological defects

    SciTech Connect

    Preskill, J. ); Vilenkin, A. Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 )

    1993-03-15

    We systematically analyze the decay of metastable topological defects that arise from the spontaneous breakdown of gauge or global symmetries. Quantum-mechanical tunneling rates are estimated for a variety of decay processes. The decay rate for a global string, vortex, domain wall, or kink is typically suppressed compared to the decay rate for its gauged counterpart. We also discuss the decay of global texture, and of semilocal and electroweak strings.

  11. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1990-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented on the optical constants of solid methane for the 0.4 to 2.6 micrometer region. Deposition onto a substrate at 10 K produces glassy (semi-amorphous) material. Annealing this material at approximately 33 K for approximately 1 hour results in a crystalline material as seen by sharper, more structured bands and negligible background extinction due to scattering. The constant k is reported for both the amorphous and the crystalline (annealed) states. Typical values (at absorption maxima) are in the .001 to .0001 range. Below lambda = 1.1 micrometers the bands are too weak to be detected by transmission through the films less than or equal to 215 micrometers in thickness, employed in the studies to date. Using previously measured values of the real part of the refractive index, n, of liquid methane at 110 K, n is computed for solid methane using the Lorentz-Lorenz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for

  12. Cosmologies with variable gravitational constant

    NASA Astrophysics Data System (ADS)

    Narlikar, J. V.

    1983-03-01

    In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.

  13. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  14. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  15. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  16. Weak decay of hypernuclei

    SciTech Connect

    Grace, R.

    1983-01-01

    The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.

  17. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 < m( π + π -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  18. Decay of relativistic hypernuclei

    SciTech Connect

    Majlingova, Olga

    2008-05-12

    The contribution is focused on the analysis of the hypernuclei decay. Hypernuclei, nuclei composed of nucleons and hyperon, enable us to more precise study baryon-baryon interaction, both weak and strong. Several experiments for study new hypernuclear objects are presently taking data or are planned in several laboratories in Italy, Germany, Russia, Japan and USA. The aim of the contribution is the introduction the catalogue of all possible decays of light hypernuclei (A{<=}12). Created catalogue could be exploited for planning next experiments.

  19. Constant-amplitude RC oscillator

    NASA Technical Reports Server (NTRS)

    Kerwin, W. J.; Westbrook, R. M.

    1970-01-01

    Sinusoidal oscillator has a frequency determined by resistance-capacitance /RC/ values of two charge control devices and a constant-amplitude voltage independent of frequency and RC values. RC elements provide either voltage-control, resistance-control, or capacitance-control of the frequency.

  20. Monticello BWR spent fuel assembly decay heat predictions and measurements

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Heeb, C.M.; Creer, J.M.

    1986-06-01

    This report compares pre-calorimetry predictions of rates of six 7 x 7 boiling water reactor (BWR) spent fuel assemblies with measured decay heat rates. The assemblies were from Northern States Power Company's Monticello Nuclear Generating Plant and had burnups of 9 to 21 GWd/MTU and cooling times of 9 to 10 years. Conclusions are: The agreement between ORIGEN2 predictions and decay heat measurements of Monticello spent fuel is dependent on the method used to calibrate the calorimeter and to make the decay heat measurements. The agreement between predictions and measurements of decay heat rates of Monticello fuel is the same as that for Cooper and Dresden fuel if the same measurement method is used. The predictions are within a standard deviation of +-15 W of the measurements. Using a different measurement method, ORIGEN2 underpredicts the measured decay heat output of Monticello fuel assemblies by a constant 20 +- 2 W. The 20-W offset appears to be an artifact of the calibration procedure. The constant term in the calibration curve (i.e., q/sub DH/ = mx + b) can account for measurement differences of 40 W based on the 1983, 1984, and 1985 calibration curves. The difference between ORIGEN2 predictions and calorimeter decay heat measurements does not appear to be dependent on the magnitude of decay heat output. Predicted axial decay heat profiles are in good agreement with measured axial gamma radiation profiles. Recommendations are: Predictions using other decay heat codes should be compared to experimental data contained in this report, to evaluate prediction capabilities. The source of the differences that exist among calorimeter calibration curves needs to be determined. Calorimeter operational methods need to be investigated further to determine cause and effect relationships between operational method and calorimeter precision and accuracy.

  1. Unraveling duality violations in hadronic tau decays

    SciTech Connect

    Cata, Oscar; Cata, Oscar; Golterman, Maarten; Peris, Santiago

    2008-03-03

    There are some indications from recent determinations of the strong coupling constant alpha_s and the gluon condensate that the Operator Product Expansion may not be accurate enough to describe non-perturbative effects in hadronic tau decays. This breakdown of the Operator Product Expansion is usually referred to as being due to"Duality Violations." With the help of a physically motivated model, we investigate these duality violations. Based on this model, we argue how they may introduce a non-negligible systematic error in the current analysis, which employs finite-energy sum rules with pinched weights. In particular, this systematic effect might affect the precision determination of alpha_s from tau decays. With a view to a possible future application to real data, we present an alternative method for determining the OPE coefficients that might help estimating, and possibly even reducing, this systematic error.

  2. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, Chris

    2010-08-30

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall{approx}}1-100(f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  3. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, C A

    2010-03-10

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  4. The 1% concordance Hubble constant

    SciTech Connect

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Hinshaw, G.

    2014-10-20

    The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.

  5. Optical constants of solid methane

    SciTech Connect

    Khare, B.N.; Thompson, W.R.; Sagan, C. . Lab. for Planetary Studies); Arakawa, E.T.; Bruel, C.; Judish, J.P. ); Khanna, R.K. . Dept. of Chemistry and Biochemistry); Pollack, J.B. . Ames Research Center)

    1989-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH{sub 4} for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. We present preliminary results of the optical constants of solid methane for the 0.4 {mu}m to 2.6 {mu}m region. We report k for both the amorphous and the crystalline (annealed) states. Using our previously measured values of the real part of the refractive index, n, of liquid methane at 110{degree}K (Bull. Am. Phys. Soc.31, 700 (1986)) we compute n for solid methane using the Lorentz-Lorentz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH{sub 4}. 33 refs., 6 figs., 2 tabs.

  6. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  7. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  8. Chiral quirkonium decays

    NASA Astrophysics Data System (ADS)

    Fok, R.; Kribs, Graham D.

    2011-08-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between “chiral quirkonia” versus “vectorlike quirkonia” are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt¯, tb¯/bt¯, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  9. Chiral Quirkonium Decays

    SciTech Connect

    Fok, R.; Kribs, Graham D.; /Fermilab

    2011-06-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N){sub ic} infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t{bar t}, t{bar b}/b{bar t}, and {gamma}H, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and W{gamma}, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  10. Anatomy of decays

    NASA Astrophysics Data System (ADS)

    Bel, Lennaert; De Bruyn, Kristof; Fleischer, Robert; Mulder, Mick; Tuning, Niels

    2015-07-01

    The decays B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} probe the CP-violating mixing phases ϕ d and ϕ s , respectively. The theoretical uncertainty of the corresponding determinations is limited by contributions from penguin topologies, which can be included with the help of the U-spin symmetry of the strong interaction. We analyse the currently available data for B {/d, s 0} → D {/d, s -} D {/d, s +} decays and those with similar dynamics to constrain the involved non-perturbative parameters. Using further information from semileptonic B {/d 0} → D {/d -} ℓ + ν ℓ decays, we perform a test of the factorisation approximation and take non-factorisable SU(3)-breaking corrections into account. The branching ratios of the B {/d 0} → D {/d -} D {/d +}, B {/s 0} → D {/s -} D {/d +} and B {/s 0} → D {/s -} D {/s +}, B {/d 0} → D {/d -} D {/s +} decays show an interesting pattern which can be accommodated through significantly enhanced exchange and penguin annihilation topologies. This feature is also supported by data for the B {/s 0} → D {/d -} D {/d +} channel. Moreover, there are indications of potentially enhanced penguin contributions in the B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} decays, which would make it mandatory to control these effects in the future measurements of ϕ d and ϕ s . We discuss scenarios for high-precision measurements in the era of Belle II and the LHCb upgrade.

  11. Quaternions as astrometric plate constants

    NASA Technical Reports Server (NTRS)

    Jefferys, William H.

    1987-01-01

    A new method for solving problems in relative astrometry is proposed. In it, the relationship between the measured quantities and the components of the position vector of a star is modeled using quaternions, in effect replacing the plate constants of a standard four-plate-constant solution with the four components of a quaternion. The method allows a direct solution for the position vectors of the stars, and hence for the equatorial coordinates. Distortions, magnitude, and color effects are readily incorporated into the formalism, and the method is directly applicable to overlapping-plate problems. The advantages of the method include the simplicity of the resulting equations, their freedom from singularities, and the fact that trigonometric functions and tangential point transformations are not needed to model the plate material. A global solution over the entire sky is possible.

  12. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite

  13. Confinement from constant field condensates

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Guendelman, Eduardo; Spallucci, Euro

    2007-01-01

    For (2 + 1)- and (3 + 1)-dimensional reformulated SU (2) Yang-Mills theory, we compute the interaction potential within the framework of the gauge-invariant but path-dependent variables formalism. This reformulation is due to the presence of a constant gauge field condensate. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges. This result is equivalent to that of the massive Schwinger model.

  14. Rare Down Quark Decays

    NASA Astrophysics Data System (ADS)

    Tung, Kwong-Kwai Humphrey

    1992-01-01

    The rare decays bto sX are sensitive to strong interaction corrections. The effects can be estimated by a renormalization group technique which requires the evaluation of QCD mixing among effective operators. In the dimensional reduction and the naive dimensional regularization methods, there are discrepancies in evaluating the QCD mixing of the four-quark operators with the bto sgamma and bto s+gluon dipole operators. In this thesis, the problem is investigated by considering the contributions of the epsilon -scalar field and the epsilon -dimensional operators that distinguish between the two methods. The discrepancies are shown to come from the epsilon-dimensional four-quark operators in dimensional reduction and not from the epsilon -scalar field. In the decay bto sl^+l^ -, the intermediate of cc pairs in the charm-penguin diagram can form the resonance states J/psi and psi^'. In the published literature, there is a sign discrepancy in the Breit-Wigner amplitude for the resonance effects. Here, the sign difference is settled by considering the unitarity limit of the amplitude in the Argand diagram. The effects of the resonances are quite substantial on the invariant mass spectrum for this decay. However, they are shown to be negligible on the dilepton energy spectrum below 0.95 GeV. The energy spectrum is, thus, more useful than the invariant mass spectrum for measurements of the top -quark mass. The decays Bto K^*X are well modeled by the quark-level decays bto sX. In the quark model, the hadronization is done using a nonrelativistic wave function. In the decay B to K^*gamma, the large K ^* recoil creates an uncertainty in calculating the branching ratio using the quark model. The problem is explored by considering other meson processes where data exist. The data on the pi form factor and the omegapi^0 transition form factor suggest the necessity to retain relativistic spinor and meson normalizations in the quark -model; however, the data do not resolve the

  15. α -decay chains of recoiled superheavy nuclei: A theoretical study

    NASA Astrophysics Data System (ADS)

    Niyti, Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2015-05-01

    A systematic theoretical study of α -decay half-lives in the superheavy mass region of the periodic table of elements is carried out by extending the quantum-mechanical fragmentation theory based on the preformed cluster model (PCM) to include temperature (T ) dependence in its built-in preformation and penetration probabilities of decay fragments. Earlier, the α -decay chains of the isotopes of Z =115 were investigated by using the standard PCM for spontaneous decays, with"hot-optimum" orientation effects included, which required a constant scaling factor of 104 to approach the available experimental data. In the present approach of the PCM (T ≠0 ), the temperature effects are included via the recoil energy of the residual superheavy nucleus (SHN) left after x -neutron emission from the superheavy compound nucleus. The important result is that the α -decay half-lives calculated by the PCM (T ≠0 ) match the experimental data nearly exactly, without using any scaling factor of the type used in the PCM. Note that the PCM (T ≠0 ) is an equivalent of the dynamical cluster-decay model for heavy-ion collisions at angular momentum ℓ =0 . The only parameter of model is the neck-length parameter Δ R , which for the calculated half-lives of α -decay chains of various isotopes of Z =113 to 118 nuclei formed in "hot-fusion" reactions is found to be nearly constant, i.e., Δ R ≈0.95 ±0.05 fm for all the α -decay chains studied. The use of recoiled residue nucleus as a secondary heavy-ion beam for nuclear reactions has also been suggested in the past.

  16. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  17. Second-order chlorine decay and trihalomethanes formation in a pilot-scale water distribution systems.

    PubMed

    Li, Cong; Yang, Y Jeffrey; Yu, Jieze; Zhang, Tu-qiao; Mao, Xinwei; Shao, Weiyun

    2012-08-01

    It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments were run to investigate the kinetic model of chlorine decay and the formation model of trihalomethanes (THMs) in pilot-scale water distribution systems. Experimental results show that the rate constants of chlorine decay, including wall decay and bulk decay, increasing with temperature. Moreover, the kinetic model of chlorine decay and the formation model of THMs describe experiment data of pilot-scale water distribution systems. The effect of different piping material on chlorine decay and THMs formation were also investigated. The rate constants of chlorine decay are ranked in order: stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because wall decay is the largest in stainless steel pipe than that in other piping material. Correspondingly, the rate of THMs formation follows the order of stainless steel pipe, ductile iron pipe, and last, polyethelene pipe because of less chlorine in bulk water reacting with the trihalomethane formation potential (THMFP). PMID:22953450

  18. Decay Dynamics of Tumors

    PubMed Central

    2016-01-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. We investigate the mathematical function that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic lymphocytes. We do it in the context of enzyme kinetics, using geometrical and analytical arguments. We derive the equations governing the decay of a tumor in the limit in which it is plainly surrounded by immune cells. A cellular automaton is used to test such decay, confirming its validity. Finally, we introduce a modification in the fractional cell kill so that the expected dynamics is attained in the mentioned limit. We also discuss the potential of this new function for non-solid and solid tumors which are infiltrated with lymphocytes. PMID:27310010

  19. Henry's law constants of polyols

    NASA Astrophysics Data System (ADS)

    Compernolle, S.; Müller, J.-F.

    2014-05-01

    Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. Depending on the case, infinite dilution activity coefficients (IDACs), solid state pressures or activity coefficient ratios are obtained as intermediary results. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  20. Markov constant and quantum instabilities

    NASA Astrophysics Data System (ADS)

    Pelantová, Edita; Starosta, Štěpán; Znojil, Miloslav

    2016-04-01

    For a qualitative analysis of spectra of certain two-dimensional rectangular-well quantum systems several rigorous methods of number theory are shown productive and useful. These methods (and, in particular, a generalization of the concept of Markov constant known in Diophantine approximation theory) are shown to provide a new mathematical insight in the phenomenologically relevant occurrence of anomalies in the spectra. Our results may inspire methodical innovations ranging from the description of the stability properties of metamaterials and of certain hiddenly unitary quantum evolution models up to the clarification of the mechanisms of occurrence of ghosts in quantum cosmology.

  1. Assessing uncertainty in physical constants

    NASA Astrophysics Data System (ADS)

    Henrion, Max; Fischhoff, Baruch

    1986-09-01

    Assessing the uncertainty due to possible systematic errors in a physical measurement unavoidably involves an element of subjective judgment. Examination of historical measurements and recommended values for the fundamental physical constants shows that the reported uncertainties have a consistent bias towards underestimating the actual errors. These findings are comparable to findings of persistent overconfidence in psychological research on the assessment of subjective probability distributions. Awareness of these biases could help in interpreting the precision of measurements, as well as provide a basis for improving the assessment of uncertainty in measurements.

  2. RADIATIVE PENGUIN DECAYS FROM BABAR

    SciTech Connect

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  3. Charmless b decays at CDF

    SciTech Connect

    Donega, Mauro; /Geneva U.

    2005-07-01

    The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.

  4. Tuning sum rules with window functions for optical constant evaluation

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis V.; Méndez, José A.; Larruquert, Juan I.

    2016-07-01

    Sum rules are a useful tool to evaluate the global consistency of a set of optical constants. We present a procedure to spectrally tune sum rules to evaluate the local consistency of optical constants. It enables enhancing the weight of a desired spectral range within the sum-rule integral. The procedure consists in multiplying the complex refractive index with an adapted function, which is named window function. Window functions are constructed through integration of Lorentz oscillators. The asymptotic decay of these window functions enables the derivation of a multiplicity of sum rules akin to the inertial sum rule, along with one modified version of f-sum rule. This multiplicity of sum rules combined with the free selection of the photon energy range provides a double way to tune the spectral contribution within the sum rule. Window functions were applied to reported data of SrF2 and of Al films in order to check data consistency over the spectrum. The use of window functions shows that the optical constants of SrF2 are consistent in a broad spectrum. Regarding Al, some spectral ranges are seen to present a lower consistency, even though the standard sum rules with no window function did not detect inconsistencies. Hence window functions are expected to be a helpful tool to evaluate the local consistency of optical constants.

  5. Hydrogen, deuterium and tritium in palladium: An eleastic constants study

    SciTech Connect

    Bach, H. T.; Schwarz, R. B.; Tuggle, D. G.

    2004-01-01

    We have used resonant ultrasound spectroscopy to measure the three independent elastic constants of Pd-H, Pd-D, and Pd-T single crystal at 300K as a junction of hydrogen, deuterium, and tritium concentration, respectively. The addition of interstitial H (D, or T) atoms, located at (0, 1/2, 0) in the fcc Pd lattice, affects all three elastic constants C, C{sub 44}, and B. In the mixed (a+{beta}) phase, and with increasing H isotope, the shear modulus C' shows an abnormal softening whereas C{sub 44} and B do not. This is explained in terms of Zener-type anelastic relaxations affecting the shape of the hydride phases in the coherent ({alpha}+{beta}) two-phase mixture In the single {beta}-phase, C' shows a strong isotope dependence whereas C{sub 44} and B show none. This behavior is explained in terms of differences in the excitation of optical phonons. In Pd-T, {sup 3}He is produced by the radioactive decay of tritium. We have measured in situ the swelling and the change in the elastic constants in Pd-T as a function of aging time. Aging ({sup 3}He formation) affects all three elastic constants. These measurements are being used to understand the early stages of {sup 3}H-{sup 3}He clusterformation in aged Pd-T crystal.

  6. Stability constant estimator user`s guide

    SciTech Connect

    Hay, B.P.; Castleton, K.J.; Rustad, J.R.

    1996-12-01

    The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.

  7. Biologic fluorescence decay characteristics: determination by Laguerre expansion technique

    NASA Astrophysics Data System (ADS)

    Snyder, Wendy J.; Maarek, Jean-Michel I.; Papaioannou, Thanassis; Marmarelis, Vasilis Z.; Grundfest, Warren S.

    1996-04-01

    Fluorescence decay characteristics are used to identify biologic fluorophores and to characterize interactions with the fluorophore environment. In many studies, fluorescence lifetimes are assessed by iterative reconvolution techniques. We investigated the use of a new approach: the Laguerre expansion of kernels technique (Marmarelis, V.Z., Ann. Biomed., Eng. 1993; 21, 573-589) which yields the fluorescence impulse response function by least- squares fitting of a discrete-time Laguerre functions expansion. Nitrogen (4 ns FWHM) and excimer (120 ns FWHM) laser pulses were used to excite the fluorescence of an anthracene and of type II collagen powder. After filtering (monochromator) and detection (MCP-PMT), the fluorescence response was digitized (digital storage oscilloscope) and transferred to a personal computer. Input and output data were deconvolved by the Laguerre expansion technique to compute the impulse response function which was then fitted to a multiexponential function for determination of the decay constants. A single exponential (time constant: 4.24 ns) best approximated the fluorescence decay of anthracene, whereas the Type II collagen response was best approximated by a double exponential (time constants: 2.24 and 9.92 ns) in agreement with previously reported data. The results of the Laguerre expansion technique were compared to the least-squares iterative reconvolution technique. The Laguerre expansion technique appeared computationally efficient and robust to experimental noise in the data. Furthermore, the proposed method does not impose a set multiexponential form to the decay.

  8. Henry's law constants of polyols

    NASA Astrophysics Data System (ADS)

    Compernolle, S.; Müller, J.-F.

    2014-12-01

    Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  9. Philicities, Fugalities, and Equilibrium Constants.

    PubMed

    Mayr, Herbert; Ofial, Armin R

    2016-05-17

    The mechanistic model of Organic Chemistry is based on relationships between rate and equilibrium constants. Thus, strong bases are generally considered to be good nucleophiles and poor nucleofuges. Exceptions to this rule have long been known, and the ability of iodide ions to catalyze nucleophilic substitutions, because they are good nucleophiles as well as good nucleofuges, is just a prominent example for exceptions from the general rule. In a reaction series, the Leffler-Hammond parameter α = δΔG(⧧)/δΔG° describes the fraction of the change in the Gibbs energy of reaction, which is reflected in the change of the Gibbs energy of activation. It has long been considered as a measure for the position of the transition state; thus, an α value close to 0 was associated with an early transition state, while an α value close to 1 was considered to be indicative of a late transition state. Bordwell's observation in 1969 that substituent variation in phenylnitromethanes has a larger effect on the rates of deprotonation than on the corresponding equilibrium constants (nitroalkane anomaly) triggered the breakdown of this interpretation. In the past, most systematic investigations of the relationships between rates and equilibria of organic reactions have dealt with proton transfer reactions, because only for few other reaction series complementary kinetic and thermodynamic data have been available. In this Account we report on a more general investigation of the relationships between Lewis basicities, nucleophilicities, and nucleofugalities as well as between Lewis acidities, electrophilicities, and electrofugalities. Definitions of these terms are summarized, and it is suggested to replace the hybrid terms "kinetic basicity" and "kinetic acidity" by "protophilicity" and "protofugality", respectively; in this way, the terms "acidity" and "basicity" are exclusively assigned to thermodynamic properties, while "philicity" and "fugality" refer to kinetics

  10. Constant magnification optical tracking system

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1982-01-01

    A constant magnification optical tracking system for continuously tracking of a moving object is described. In the tracking system, a traveling objective lens maintains a fixed relationship with an object to be optically tracked. The objective lens was chosen to provide a collimated light beam oriented in the direction of travel of the moving object. A reflective surface is attached to the traveling objective lens for reflecting an image of the moving object. The object to be tracked is a free-falling object which is located at the focal point of the objective lens for at least a portion of its free-fall path. A motor and control means is provided for mantaining the traveling objective lens in a fixed relationship relative to the free-falling object, thereby keeping the free-falling object at the focal point and centered on the axis of the traveling objective lens throughout its entire free-fall path.

  11. Exponential tuning of the coupling constant of coupled microcantilevers by modifying their separation

    SciTech Connect

    Gil-Santos, Eduardo; Ramos, Daniel; Pini, Valerio; Calleja, Montserrat; Tamayo, Javier

    2011-03-21

    Vibration localization in coupled nanomechanical resonators has emerged as a promising concept for ultrasensitive mass sensing. It possesses intrinsic common mode rejection and the mass sensitivity can be enhanced with no need of extreme miniaturization of the devices. In this work, we have experimentally studied the role of the separation between cantilevers that are elastically coupled by an overhang. The results show that the coupling constant exponentially decays with the separation. In consistency with the theoretical expectations, the mass sensitivity is inversely proportional to the coupling constant. Finite element simulations show that the coupling constant can be exponentially reduced by increasing the ratio of the cantilever separation to the overhang length.

  12. Theoretical Analysis of One-Dimensional Pressure Diffusion from a Constant Upstream Pressure to a Constant Downstream Storage

    NASA Astrophysics Data System (ADS)

    Song, Insun

    2016-05-01

    The one-dimensional diffusion equation was solved to understand the pressure and flow behaviors along a cylindrical rock specimen for experimental boundary conditions of constant upstream pressure and constant downstream storage. The solution consists of a time-constant asymptotic part and a transient part that is a negative exponential function of time. This means that the transient flow exponentially decays with time and is eventually followed by a steady-state condition. For a given rock sample, the transient stage is shortest when the downstream storage is minimized. For this boundary condition, a simple equation was derived from the analytic solution to determine the hydraulic permeability from the initial flow rate during the transient stage. The specific storage of a rock sample can be obtained simply from the total flow into the sample during the entire transient stage if there is no downstream storage. In theory, both of these hydraulic properties could be obtained simultaneously from transient-flow stage measurements without a complicated curve fitting or inversion process. Sensitivity analysis showed that the derived permeability is more reliable for lower-permeability rock samples. In conclusion, the constant head method with no downstream storage might be more applicable to extremely low-permeability rocks if the upstream flow rate is measured precisely upstream.

  13. Rare B Decays

    SciTech Connect

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  14. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  15. Search for the Decay B --> D(2536)+X

    SciTech Connect

    Jessop, Colin P.

    2003-05-01

    We have searched for the decay B {yields} D{sub s1}{sup +}(2536)X and measured an upper limit for the inclusive branching fraction of {Beta}(B {yields} D{sub s1}{sup +}X) < 0.95% at the 90% confidence level. This limit is small compared with the total expected B {yields} {bar D}D{sup (*)}KX rate. Assuming factorization, the D{sub s1}{sup +} decay constant is constrained to be f{sub D{sub s1}{sup +}} < 114 MeV at the 90% confidence level, at least 2.5 times smaller than that of D{sub s}{sup +}.

  16. Continuum-state and bound-state β--decay rates of the neutron

    NASA Astrophysics Data System (ADS)

    Faber, M.; Ivanov, A. N.; Ivanova, V. A.; Marton, J.; Pitschmann, M.; Serebrov, A. P.; Troitskaya, N. I.; Wellenzohn, M.

    2009-09-01

    For the β--decay of the neutron we analyze the continuum-state and bound-state decay modes. We calculate the decay rates, the electron energy spectrum for the continuum-state decay mode, and angular distributions of the decay probabilities for the continuum-state and bound-state decay modes. The theoretical results are obtained for the new value for the axial coupling constant gA=1.2750(9), obtained recently by H. Abele [Prog. Part. Nucl. Phys. 60, 1 (2008)] from the fit of the experimental data on the coefficient of the correlation of the neutron spin and the electron momentum of the electron energy spectrum of the continuum-state decay mode. We take into account the contribution of radiative corrections and the scalar and tensor weak couplings. The calculated angular distributions of the probabilities of the bound-state decay modes of the polarized neutron can be used for the experimental measurements of the bound-state β--decays into the hyperfine states with total angular momentum F=1 and scalar and tensor weak coupling constants.

  17. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  18. Strong decay patterns of the 1{sup -+} exotic hybrid mesons

    SciTech Connect

    Huang Pengzhi; Chen Huaxing; Zhu Shilin

    2011-01-01

    We calculate the coupling constants of the decay modes 1{sup -+}{yields}{rho}{pi}, f{sub 1}{pi}, b{sub 1}{pi}, {eta}{pi}, {eta}{sup '}{pi}, a{sub 1}{pi}, f{sub 1}{eta} within the framework of the light-cone QCD sum rule. Then we calculate the partial width of these decay channels, which differ greatly from the existing calculations using phenomenological models. For the isovector 1{sup -+} state, the dominant decay modes are {rho}{pi}, f{sub 1}{pi}. For its isoscalar partner, its dominant decay mode is a{sub 1}{pi}. We also discuss the possible search of the 1{sup -+} state at BESIII, for example through the decay chains J/{psi}({psi}{sup '}){yields}{pi}{sub 1}+{gamma} or J/{psi}({psi}{sup '}){yields}{pi}{sub 1}+{rho}, where {pi}{sub 1} can be reconstructed through the decay modes {pi}{sub 1}{yields}{rho}{pi}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} or {pi}{sub 1}{yields}f{sub 1}(1285){pi}{sup 0}. Hopefully the present work will be helpful to the experimental establishment of the 1{sup -+} hybrid meson.

  19. Is There a Cosmological Constant?

    NASA Technical Reports Server (NTRS)

    Kochanek, Christopher; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The grant contributed to the publication of 18 refereed papers and 5 conference proceedings. The primary uses of the funding have been for page charges, travel for invited talks related to the grant research, and the support of a graduate student, Charles Keeton. The refereed papers address four of the primary goals of the proposal: (1) the statistics of radio lenses as a probe of the cosmological model (#1), (2) the role of spiral galaxies as lenses (#3), (3) the effects of dust on statistics of lenses (#7, #8), and (4) the role of groups and clusters as lenses (#2, #6, #10, #13, #15, #16). Four papers (#4, #5, #11, #12) address general issues of lens models, calibrations, and the relationship between lens galaxies and nearby galaxies. One considered cosmological effects in lensing X-ray sources (#9), and two addressed issues related to the overall power spectrum and theories of gravity (#17, #18). Our theoretical studies combined with the explosion in the number of lenses and the quality of the data obtained for them is greatly increasing our ability to characterize and understand the lens population. We can now firmly conclude both from our study of the statistics of radio lenses and our survey of extinctions in individual lenses that the statistics of optically selected quasars were significantly affected by extinction. However, the limits on the cosmological constant remain at lambda < 0.65 at a 2-sigma confidence level, which is in mild conflict with the results of the Type la supernova surveys. We continue to find that neither spiral galaxies nor groups and clusters contribute significantly to the production of gravitational lenses. The lack of group and cluster lenses is strong evidence for the role of baryonic cooling in increasing the efficiency of galaxies as lenses compared to groups and clusters of higher mass but lower central density. Unfortunately for the ultimate objective of the proposal, improved constraints on the cosmological constant, the next

  20. Search for rare B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Frankl, C.; Graf, J.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Gershtein, L.; Gershtein, Yu.; Golutyin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1995-02-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, we have searched for decays b → sgluon through full reconstruction of a whole event. Two B overlineB decays were found with one of B meson decaying into a final state without charmed particles. We also obtained an upper limit of Br(B + → τ+ντ) of 1.04% at 90% CL.

  1. Evaluation of Uncertainties in Decay Constants of ``Short-Lived'' Radionuclides: A Meta-Analysis Approach

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Steele, R. C. J.

    2014-09-01

    We have performed a meta-analysis of half-lives for cosmochemically relevant radionuclides. We show that there is a range of behavior from well (e.g., 10Be) to poorly constrained (e.g., 53Mn or 129I).

  2. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  3. CP violation in K decays and rare decays

    SciTech Connect

    Buchalla, G.

    1996-12-01

    The present status of CP violation in decays of neutral kaons is reviewed. In addition selected rare decays of both K and B mesons are discussed. The emphasis is in particular on observables that can be reliably calculated and thus offer the possibility of clean tests of standard model flavor physics. 105 refs.

  4. High voltage compliance constant current ballast

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.

    1976-01-01

    A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.

  5. ESR melting under constant voltage conditions

    SciTech Connect

    Schlienger, M.E.

    1997-02-01

    Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.

  6. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  7. Does the Newtonian Gravity "Constant" G Vary?

    NASA Astrophysics Data System (ADS)

    Noerdlinger, Peter D.

    2015-08-01

    A series of measurements of Newton's gravity constant, G, dating back as far as 1893, yielded widely varying values, the variation greatly exceeding the stated error estimates (Gillies, 1997; Quinn, 2000, Mohr et al 2008). The value of G is usually said to be unrelated to other physics, but we point out that the 8B Solar Neutrino Rate ought to be very sensitive. Improved pulsar timing could also help settle the issue as to whether G really varies. We claim that the variation in measured values over time (1893-2014 C.E.) is a more serious problem than the failure of the error bars to overlap; it appears that challenging or adjusting the error bars hardly masks the underlying disagreement in central values. We have assessed whether variations in the gravitational potential due to (for example) local dark matter (DM) could explain the variations. We find that the required potential fluctuations could transiently accelerate the Solar System and nearby stars to speeds in excess of the Galactic escape speed. Previous theories for the variation in G generally deal with supposed secular variation on a cosmological timescale, or very rapid oscillations whose envelope changes on that scale (Steinhardt and Will 1995). Therefore, these analyses fail to support variations on the timescale of years or spatial scales of order parsecs, which would be required by the data for G. We note that true variations in G would be associated with variations in clock rates (Derevianko and Pospelov 2014; Loeb and Maoz 2015), which could mask changes in orbital dynamics. Geringer-Sameth et al (2014) studied γ-ray emission from the nearby Reticulum dwarf galaxy, which is expected to be free of "ordinary" (stellar, black hole) γ-ray sources and found evidence for DM decay. Bernabei et al (2003) also found evidence for DM penetrating deep underground at Gran Sasso. If, indeed, variations in G can be tied to variations in gravitational potential, we have a new tool to assess the DM density.

  8. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.

    PubMed

    Al-Jasser, A O

    2007-01-01

    Water quality can deteriorate in the transmission and distribution system beyond the treatment plant. Minimizing the potential for biological regrowth can be attained by chlorinating the finished water. While flowing through pipes, the chlorine concentration decreases for different reasons. Reaction with the pipe material itself and the reaction with both the biofilm and tubercles formed on the pipe wall are known as pipe wall demand, which may vary with pipe parameters. The aim of this paper was to assess the impact of the service age of pipes on the effective chlorine wall decay constant. Three hundred and two pipe sections of different sizes and eight different pipe materials were collected and tested for their chlorine first-order wall decay constants. The results showed that pipe service age was an important factor that must not be ignored in some pipes such as cast iron, steel, cement-lined ductile iron (CLDI), and cement-lined cast iron (CLCI) pipes especially when the bulk decay is not significant relative to the wall decay. For the range of the 55 years of pipe service age used in this study, effective wall decay constants ranged from a decrease by -92% to an increase by +431% from the corresponding values in the recently installed pipes. The effect of service age on the effective wall decay constants was most evident in cast iron pipes, whereas steel pipes were less affected. Effective chlorine wall decay for CLCI and CLDI pipes was less affected by service age as compared to steel and cast iron pipes. Chlorine wall decay constants for PVC, uPVC, and polyethylene pipes were affected negatively by pipe service age and such effect was relatively small. PMID:17140619

  9. Heavy-light charm mesons spectroscopy and decay widths

    NASA Astrophysics Data System (ADS)

    Upadhyay, Alka; Batra, Meenakshi; Gupta, Pallavi

    2016-05-01

    We present the mass formula for heavy-light charm meson at one loop, using heavy quark effective theory. Formulating an effective Lagrangian, the masses of the ground state heavy mesons have been studied in the heavy quark limit, including leading corrections from finite heavy quark masses and nonzero light quark masses, using a constrained fit for the eight equations with 11 parameters including three coupling constants g, h, and g^' }. Masses determined using this approach are fitted to the experimentally known decay widths to estimate the strong coupling constants, showing a better match with available theoretical and experimental data.

  10. Application of the renormalization group to the calculation of the vacuum decay rate in flat and curved space-time

    NASA Astrophysics Data System (ADS)

    Metaxas, Dimitrios

    2007-02-01

    I show that an application of renormalization group arguments may lead to significant corrections to the vacuum decay rate for phase transitions in flat and curved space-time. It can also give some information regarding its dependence on the parameters of the theory, including the cosmological constant in the case of decay in curved space-time.

  11. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and ``new physics`` searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  12. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and new physics'' searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  13. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  14. Counterflow driven by swirl decay

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-06-01

    The global meridional circulation of a viscous fluid, caused by swirl decay in a cylindrical container, is studied. To this end, a new solution to the Navier-Stokes equations is obtained, and simple experiments are performed to verify the predictions of the theory. The swirl decay mechanism explains elongated counterflows in hydrocyclones and vortex tubes sometimes extending over a hundred diameters.

  15. Decay of transverse correlations in quantum Heisenberg models

    SciTech Connect

    Björnberg, Jakob E. E-mail: daniel@ueltschi.org; Ueltschi, Daniel E-mail: daniel@ueltschi.org

    2015-04-15

    We study a class of quantum spin systems that include the S=1/2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.

  16. Radiative Neutron β-Decay in Effective Field Theory

    PubMed Central

    Gardner, Susan; Bernard, Véronique; Meißner, Ulf-G.; Zhang, Chi

    2005-01-01

    We consider radiative β-decay of the neutron in heavy baryon chiral perturbation theory. Nucleon-structure effects not encoded in the weak coupling constants gA and gV are determined at next-to-leading order in the chiral expansion, and enter at the O(0.5%)-level, making a sensitive test of the Dirac structure of the weak currents possible. PMID:27308159

  17. Nuclear matrix elements for double-β decay

    SciTech Connect

    Engel, Jonathan

    2015-07-15

    Recent progress in nuclear-structure theory has been dramatic. I describe applications in progress of ab inito calculations to double-beta decay, and discuss the recent and future application of generator-coordinate methods to the same problem. I also discuss the old and vexing problem of the renormalization of the weak nuclear axial-vector coupling constant “in medium” and plans to resolve it.

  18. Top decays in extended models

    SciTech Connect

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  19. Logarithmic decays of unstable states

    NASA Astrophysics Data System (ADS)

    Giraldi, Filippo

    2015-01-01

    It is known that the survival amplitude of unstable quantum states deviates from exponential relaxations and exhibits decays that depend on the integral and analytic properties of the energy distribution density. In the same scenario, model independent dominant logarithmic decays t -1- α0log t of the survival amplitude are induced over long times by special conditions on the energy distribution density. While the instantaneous decay rate exhibits the dominant long time relaxation 1 / t, the instantaneous energy tends to the minimum value of the energy spectrum with the dominant logarithmic decay 1/( tlog 2 t) over long times. Similar logarithmic relaxations have already been found in the dynamics of short range potential systems with even dimensional space or in the Weisskopf-Wigner model of spontaneous emission from a two-level atom. Here, logarithmic decays are obtained as a pure model independent quantum effect in general unstable states.

  20. Fundamental Constants and Tests with Simple Atoms

    NASA Astrophysics Data System (ADS)

    Tan, Joseph

    2015-05-01

    Precise measurements with simple atoms provide stringent tests of physical laws, improving the accuracy of fundamental constants--a set of which will be selected to fully define the proposed New International System of Units. This talk focuses on the atomic constants (namely, the Rydberg constant, the fine-structure constant, and the proton charge radius), discussing the impact of the proton radius obtained from the Lamb-shift measurements in muonic hydrogen. Significant discrepancies persist despite years of careful examination: the slightly smaller proton radius obtained from muonic hydrogen requires the Rydberg constant and the fine-structure constant to have values that disagree significantly with the CODATA recommendations. After giving a general overview, I will discuss our effort to produce one-electron ions in Rydberg states, to enable a different test of theory and measurement of the Rydberg constant.

  1. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    PubMed

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago. PMID:25870298

  2. {sigma}{sub Q}{lambda}{sub Q}{pi} coupling constant in light cone QCD sum rules

    SciTech Connect

    Azizi, K.; Bayar, M.; Ozpineci, A.

    2009-03-01

    The strong coupling constants g{sub {sigma}{sub Q}}Q{sub {lambda}{sub Q}}{sub {pi}} (Q=b and c) are studied in the framework of the light cone QCD sum rules using the most general form of the baryonic currents. The predicted coupling constants are used to estimate the decay widths for the {sigma}{sub Q}{yields}{lambda}{sub Q}{pi} decays which are compared with the predictions of the other approaches and existing experimental data.

  3. Beauty meson decays to charmonium

    NASA Astrophysics Data System (ADS)

    Ershov, Alexey Valerievich

    2001-10-01

    We study decays of beauty (B) mesons into the final states containing charmonium mesons. The data were collected by the CLEO experiment at the Cornell Electron Storage Ring from 1990 to 1999. First, we describe a technique that significantly improves the reconstruction efficiency for decays of J/ y and y (2S) mesons into a pair of leptons. This reconstruction method is used in all the analyses presented in this dissertation. Then we present a study of B decays to the χc 1 and χc2 charmonium states and compare our results with the predictions of different theoretical models of charmonium production. After that we report the first observation of the decay B --> J/ y φK, which is the first B meson decay requiring a creation of an additional ss¯ quark pair. Then we measure the B0 and B+ meson masses from B0 --> y (') K0S and B+ --> y (') K+ decays. The method employed eliminates the dominant systematic uncertainty associated with the previous B meson mass measurements at the e+e- colliders and results in a significant improvement in precision. After that we present a study of three B0 decay modes useful for time-dependent CP asymmetry measurements. In this study we reconstruct B0 --> J/ y K0S , B0 --> χc 1 K0S , and B0 --> J/ y π0 decays. The latter two decay modes are observed for the first time. We describe a K0S --> π0π0 detection technique and its application to the reconstruction of the decay B 0 --> J/ y K0S . Then we present a sensitivity study for the measurement of the mixing-induced CP violation in the neutral B meson system (parameter sin 2β) at CLEO using the method that requires a measurement of the decay time of only one meson in a B0overline B0 pair. Finally, we search for direct CP violation in decays B+/- --> J/ y K+/- and B +/- --> y (2S) K+/- . The results of this search are consistent with the Standard Model expectations and provide the first experimental test of the assumption that direct CP violation is negligible in B --> y (') K decays.

  4. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  5. Decaying Turbulence in the Generalised Burgers Equation

    NASA Astrophysics Data System (ADS)

    Boritchev, Alexandre

    2014-10-01

    We consider the generalised Burgers equation where f is strongly convex and ν is small and positive. We obtain sharp estimates for Sobolev norms of u (upper and lower bounds differ only by a multiplicative constant). Then, we obtain sharp estimates for the dissipation length scale and the small-scale quantities which characterise the decaying Burgers turbulence, i.e., the structure functions and the energy spectrum. The proof uses a quantitative version of an argument by Aurell et al. (J Fluid Mech 238:467-486, 1992). Note that we are dealing with decaying, as opposed to stationary turbulence. Thus, our estimates are not uniform in time. However, they hold on a time interval [ T 1, T 2], where T 1 and T 2 depend only on f and the initial condition, and do not depend on the viscosity. These results allow us to obtain a rigorous theory of the one-dimensional Burgers turbulence in the spirit of Kolmogorov's 1941 theory. In particular, we obtain two results which hold in the inertial range. On one hand, we explain the bifractal behaviour of the moments of increments, or structure functions. On the other hand, we obtain an energy spectrum of the form k -2. These results remain valid in the inviscid limit.

  6. Cold fission description with constant and varying mass asymmetries

    NASA Astrophysics Data System (ADS)

    Duarte, S. B.; Rodríguez, O.; Tavares, O. A. P.; Gonçalves, M.; García, F.; Guzmán, F.

    1998-05-01

    Different descriptions for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the prescission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A>200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life values and mass yield of 234U cold fission are satisfactorily reproduced.

  7. Decaying equatorial F region plasma depletions

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Kelley, M. C.

    1997-09-01

    We analyze plasma density data from the AE-E satellite to determine how F region irregularities decay. This satellite had a low inclination orbit that was ultimately circular at an altitude of 434 km. It frequently observed plasma depletions in the postsunset regime during spread F conditions, sometimes along a trajectory affording a ``horizontal cut'' perspective through the field-aligned irregularities. On one occasion, the satellite passed through nearly the same region of depleted flux tubes on sequential orbits. Data from these orbits imply that the irregularities decay at a constant rate over a broad range of horizontal scale sizes. We introduce a statistical model of the intermediate-scale (10 km-100 m) plasma irregularities and use it to infer a value for the perpendicular ambipolar diffusion coefficient from the measured decay rate. The value we estimate (2m2/s) is close to the expected classical value. The uniform decay rate and the quasi-universal nature of the intermediate-scale spectra hint that the irregularities themselves maintain a characteristic shape as they decay. High-resolution satellite density measurements show that irregularities have the form of kilometer-scale quasi-periodic depletions. We propose a one-dimensional, nonlinear model of the collisional interchange instability which admits a closed-form, steady state solution predicting the shape of the depletions. Computer simulations of the model produce kilometer-scale waves that resemble the in situ observations.

  8. Nonleptonic two-body decays of the B{sub c} meson in the light-front quark model and the QCD factorization approach

    SciTech Connect

    Choi, Ho-Meoyng; Ji, Chueng-Ryong

    2009-12-01

    We study exclusive nonleptonic two-body B{sub c}{yields}(D{sub (s)},{eta}{sub c},B{sub (s)})+F decays with F (pseudoscalar or vector mesons) factored out in the QCD factorization approach. The nonleptonic decay amplitudes are related to the product of meson decay constants and the form factors for semileptonic B{sub c} decays. As inputs in obtaining the branching ratios for a large set of nonleptonic B{sub c} decays, we use the weak form factors for the semileptonic B{sub c}{yields}(D{sub (s)},{eta}{sub c},B{sub (s)}) decays in the whole kinematical region and the unmeasured meson decay constants obtained from our previous light-front quark model. We compare our results for the branching ratios with those of other theoretical studies.

  9. Charm counting in b decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The inclusive production of charmed particles in Z → b overlineb decays has been measured from the yield of D0, D+, Ds+ and Λc+ decays in a sample of q overlineq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be nc = 1.230 ± 0.036 ± 0.038 ± 0.053, where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.

  10. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  11. Optimizing VANDLE for Decay Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brewer, N. T.; Taylor, S. Z.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Cizewski, J. A.; Peters, W. A.; Vandle Collaboration

    2013-10-01

    Understanding the decay properties of neutron rich isotopes has well established importance to the path of the r-process and to the total decay heat for reactor physics. Specifically, the half-life, branching ratio and spectra for β-n decay is of particular interest. With that in mind, we have continued attempts to improve upon the Versatile Array of Neutron Detectors at Low Energy (VANDLE) in terms of efficiency and TOF resolution through the use of new and larger scintillators. Details of the new implementation, design and characterization of the array will be shown and compared to previous results.

  12. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  13. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, Max E.

    1996-01-01

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.

  14. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  15. Cosmological Constant and Axions in String Theory

    SciTech Connect

    Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC

    2006-08-18

    String theory axions appear to be promising candidates for explaining cosmological constant via quintessence. In this paper, we study conditions on the string compactifications under which axion quintessence can happen. For sufficiently large number of axions, cosmological constant can be accounted for as the potential energy of axions that have not yet relaxed to their minima. In compactifications that incorporate unified models of particle physics, the height of the axion potential can naturally fall close to the observed value of cosmological constant.

  16. Dielectric constant microscopy for biological materials

    NASA Astrophysics Data System (ADS)

    Valavade, A. V.; Kothari, D. C.; Löbbe, C.

    2013-02-01

    This paper describes the work on the development of Dielectric Constant Microscopy for biological materials using double pass amplitude modulation method. The dielectric constant information can be obtained at nanometer scales using this technique. Electrostatic force microscopy images of biological materials are presented. The images obtained from the EFM technique mode clearly show inversion contrast and gives the spatial variation of tip-sample capacitance. The EFM images are further processed to obtain dielectric constant information at nanometer scales.

  17. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  18. Modification of the characteristic gravitational constants

    NASA Astrophysics Data System (ADS)

    Vujičić, V. A.

    2006-08-01

    In the educational and scientific literature the numerical values of gravitational constants are seen as only approximately correct. The numerical values are different in work by various researchers, as also are the formulae and definitions of constants employed. In this paper, on the basis of Newton’s laws and Kepler’s laws we prove that it is necessary to modify the characteristic gravitational constants and their definitions. The formula for the geocentric gravitational constant of the satellites Kosmos N and the Moon are calculated.

  19. A natural cosmological constant from chameleons

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu; Weltman, Amanda

    2015-07-01

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru-Kallosh-Linde-Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now).

  20. Exploring Radioactive Decay and Geochronology through Hydrostatic Principles

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2008-12-01

    One of the most essential tools to unraveling Earth's history and the processes involved in shaping our planet is an understanding of deep time and the timescales involved in geologic processes. The primary process that allows quantification of this history is radioactive decay of unstable isotopes within earth materials, and as one of the most essential tools in geology, this concept is taught at all levels of geoscience education. The concept of radioactive decay contains nuances that are often lost on students during lectures, and students often express low confidence in their comprehension of the concept. The goal of this laboratory activity is for students to understand radioactive decay including what controls it, how it proceeds and what information it provides, along with developing higher level scientific skills including making observations and predictions, and creating and interpreting quantitative graphical representations of data. The activity employs graduated beakers, shampoo, and stopwatches. Students pour shampoo put into an upper beaker (representing the parent isotope) with a hole in the base and allow it to flow into a lower beaker (representing the daughter isotope). Students measure changes in liquid depth with time, relating this to the amount of decay and its dependence on the amount of parent available (depth of liquid) and the decay constant (area of the hole in the beaker). Several beakers with varying sized holes illustrate variations specific to the different parent isotopes. They then explore graphical representations of their "decay" data, discovering for themselves which kinds of plots yield the equations and constants that control the decay process and the derived quantity of the "half-life", and are therefore the most useful. Making their own measurements, creating graphs, and then calculating these fundamental quantities is both enlightening and empowering. An advanced variation of this experiment involves students predicting the

  1. The decay of hot nuclei

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  2. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  3. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  4. Overview of rare K decays

    SciTech Connect

    Littenberg, L.

    1995-05-01

    The status and future prospects of searches for and studies of forbidden and highly suppressed K decays are reviewed. Here the author discusses three areas of recent activity in rare K decay. These are lepton-flavor violating decays, which are entirely forbidden in the Standard Model, K{sub S} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0}, which is of interest from the point of view of CP-violation, and `one loop` decays of the form K{sup 0,{+-}} {yields} ({pi}{sup 0,{+-}})l{bar l}, that can throw light on Standard Model CP-violation and determine parameters such as V{sub td}.

  5. CP violation in K decays

    SciTech Connect

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs.

  6. Assessment of the time constant of relaxation: insights from simulations and hemodynamic measurements.

    PubMed

    De Mey, S; Thomas, J D; Greenberg, N L; Vandervoort, P M; Verdonck, P R

    2001-06-01

    The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau. PMID:11356655

  7. Assessment of the time constant of relaxation: insights from simulations and hemodynamic measurements

    NASA Technical Reports Server (NTRS)

    De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.

    2001-01-01

    The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.

  8. Deflation of the cosmological constant associated with inflation and dark energy

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2016-06-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  9. Detecting the dynamical state of the atmosphere from the orbital decay of the ODERACS spheres

    NASA Technical Reports Server (NTRS)

    Tan, Arjun

    1996-01-01

    The orbital decay curve of a satellite having constant cross-sectional area and in circular orbit can furnish valuable information regarding the dynamical state of the atmosphere. It is shown that a rectilinear decay curve having constant downward slope (zero curvature) should indicate that the atmosphere was undergoing compression during that period. A decay curve having concavity upwards (positive curvature) will strongly indicate that the atmosphere was in a contracting phase. A decay curve with downward concavity (negative curvature) may indicate an expanding, a stationary or a contracting atmosphere. This theory, when applied to the orbital decay of the Orbital Debris Radar Calibration Spheres (ODERACS) satellites, indicates that during the period from Day 90 through Day 240 in the year 1994, the atmosphere was very definitely in a compression mode. During this period, ODERACS Sphere 1 faced nearly constant densities while Sphere 6 actually encountered progressively smaller air densities as they descended. The atmospheric scale height as calculated from the orbital data of Spheres 1 and 6 diminished steadily during the same period. It is shown that Spheres 1 and 6 descended faster and slower respectively, than the level of constant air density equal to 5 x 10 kg/m . During a brief period from Day 240 through Day 290, the atmosphere reversed to a strongly expanding mode. Thereafter, the atmosphere reverted back to a compression mode from Day 290 through Day 390, 1994.

  10. Proton decay and nuclear dynamics

    SciTech Connect

    Alvioli, M.; Strikman, M.; Benhar, O.; Ericson, M.

    2010-04-15

    The kinematics of the decay of a bound proton is governed by the proton spectral function. We evaluate this quantity in {sup 16}O using the information from nuclear physics experiments. It also includes a correlated part. The reliability of this evaluation is sufficient to open the possibility of correlated cuts in the missing mass and momentum variables to identify the decay events from the bound protons with a possible increase of the signal-to-noise ratio.

  11. Thermal corrections to Electroweak Decays

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2016-03-01

    We study the electroweak processes at finite temperatures. This includes the decay rates of electroweak gauge bosons and beta decays. Major thermal corrections come from QED type radiative corrections. Heavy mass of the electroweak gauge bosons helps to suppress the radiative corrections due to the electroweak gauge boson loops. Therefore, dominant thermal corrections are due to the photon loops. We also discuss the relevance of our results to astrophysics and cosmology.

  12. Semileptonic B-Meson Decays

    SciTech Connect

    Volk, Alexei; /Dresden, Tech. U.

    2010-08-26

    The study of the semileptonic B-meson decays is the most accessible and cleanest way to determine the CKM matrix elements |V{sub cb}| and V{sub ub}. These decays also provide experimental access to study the QCD form-factors, heavy quark masses, and HQE parameters. The theoretical description of semileptonic B-meson decays at the parton level is very simple because there is no interaction between leptonic and hadronic currents. At the hadron level one needs to introduce corrections due to the strong interaction between quarks. Especially in the description of the inclusive B-meson decays the motion of the b-quark inside the B-meson plays a crucial role. All these effects are described in the frameworks of Heavy Quark Effective Theory (HQET) and Lattice QCD (LQCD). We give an overview about results of studies of semileptonic B-meson decays collected with the BABAR and Belle detectors at the PEP-II and the KEKB e{sup +}e{sup -}-storage rings. We present recent results on hadronic moments measured in inclusive B {yields} X{sub c}lv and B {yields} X{sub u}lv decays and extracted heavy quark masses m{sub b} and m{sub c} and dominant non-perturbative Heavy Quark Expansion (HQE) parameters. We also report the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| in inclusive and in exclusive semileptonic B-meson decays. We describe the studies of the form-factor parameters for the decay B{sup 0} {yields} D*{sup -}l{sup +}v and present the measurement of the B{sup 0} {yields} {pi}{sup -}l{sup +}v form-factor shape.

  13. Modern Measurements of Uranium Decay Rates

    NASA Astrophysics Data System (ADS)

    Parsons-Moss, T.; Faye, S. A.; Williams, R. W.; Wang, T. F.; Renne, P. R.; Mundil, R.; Harrison, M.; Bandong, B. B.; Moody, K.; Knight, K. B.

    2015-12-01

    It has been widely recognized that accurate and precise decay constants (λ) are critical to geochronology as highlighted by the EARTHTIME initiative, particularly the calibration benchmarks λ235U and λ238U. [1] Alpha counting experiments in 1971[2] measured λ235U and λ238U with ~0.1% precision, but have never been independently validated. We are embarking on new direct measurements of λ235U, λ238U, λ234Th, and λ234U using independent approaches for each nuclide. For the measurement of λ235U, highly enriched 235U samples will be chemically purified and analyzed for U concentration and isotopic composition by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Thin films will be electrodeposited from these solutions and the α activity will be measured in an α-γ coincidence counting apparatus, which allows reduced uncertainty in counting efficiency while achieving adequate counting statistics. For λ238U measurement we will measure ingrowth of 234Th in chemically purified, isotopically enriched 238U solutions, by quantitatively separating the Th and allowing complete decay to 234U. All of the measurements will be done using MC-ICP-MS aiming at 0.05% precision. This approach is expected to result in values of λ238U with less than 0.1% uncertainty, if combined with improved λ234Th measements. These will be achieved using direct decay measurements with an E-∆E charged particle telescope in coincidence with a gamma detector. This system allows measurement of 234Th β-decay and simultaneous detection and identification of α particles emitted by the 234U daughter, thus observing λ234U at the same time. The high-precision λ234U obtained by the direct activity measurements can independently verify the commonly used values obtained by indirect methods.[3] An overarching goal of the project is to ensure the quality of results including metrological traceability in order to facilitate implementation across diverse disciplines. [1] T

  14. The investigation of CP violation through the decay of polarized tau leptons

    SciTech Connect

    Tsai, Y.S.

    1996-03-01

    Under the assumption that CP violation is caused by exchange of a new boson, the author proposes to measure the magnitudes and CP-violating phases of the coupling constants of this boson to five different vertices in tau decay. This can be accomplished by studying the decays of polarized tau leptons produced at an e{sup +} e{sup {minus}} collider whose beams are polarized. He points out that CP violation in the tau decay tests most directly the assumption in the standard theory that the imaginary numbers in the mass matrix is the sole cause of CP violation.

  15. Spectra and decay rates of bb¯ meson using Gaussian wave function

    NASA Astrophysics Data System (ADS)

    Rai, Ajay Kumar; Devlani, Nayneshkumar; Kher, Virendrasinh H.

    2015-05-01

    Using the Gaussian wave function mass spectra and decay rates of bb¯ meson are investigated in the framework of phenomenological quark anti-quark potential (coulomb plus power) model consisting of relativistic corrections to the kinetic energy term. The spin-spin, spin-orbit and tensor interactions are employed to obtain the pseudoscalar and vector meson masses. The decay constants (fP/V) are computed using the wave function at the origin. The di-gamma and di-leptonic decays of the bb¯ meson are investigated using Van-Rayan Weisskopf formula as well as in the NRQCD formalism.

  16. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10‑25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10‑26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  17. Prompt neutron decay for an unreflected and unmoderated uranium (HEU) metal sphere

    SciTech Connect

    Mihalczo, J.T.

    1996-08-01

    Prompt neutron decay constants were measured for a delayed critical, unmoderated and unreflected U metal sphere at the Oak Ridge Critical Experiments Facility. Prompt neutron decay constant was 1.1095{+-}0.0013 {mu}s{sup -1}. This can be used to verify calculational methods, both deterministic and Monte Carlo neutron transport methods. This value is in agreement with the value from GODIVA I data corrected for effects of support structure (1.10{+-}0.01 {mu}s{sup -1}) but has a much smaller error as a result of the large number (167) of the measurements here and the high degree of sphericity of the sphere.

  18. Quenching rate constants of excited halogen atoms in quartet states

    NASA Astrophysics Data System (ADS)

    Mizuta, K.; Kuramasu, T.; Ishikawa, Y.; Arai, S.

    1994-04-01

    Excited halogen atoms in quartet spin states F*(2p43s, 4P5/2), Cl*(3p44s, 4P5/2), and Br*(4p45s, 4P5/2) were produced from helium sensitized radiation chemical decomposition of SF6, CF3Cl, CF3Br, and CF2Br2. Quenching rate constants of these excited halogen atoms by simple gas molecules such as O2, N2, H2, CO, CO2, NO, NO2, N2O, CH4, C2H6, and Xe including parent molecules were determined from absorption decay curves at 685.8 nm for F*, 837.5 nm for Cl*, and 827.4 nm for Br*. The optical densities were assumed to be proportional to (number of excited atoms per one cubic centimeter)0.9. The quenching rate constants obtained here were compared to those reported of metastable rare-gas atoms and an excited oxygen atom O*(2p33s, 5S2), and further discussed in terms of several theoretical kinetic models.

  19. Brane induced gravity, its ghost and the cosmological constant problem

    SciTech Connect

    Hassan, S.F.; Strauss, Mikael von; Hofmann, Stefan E-mail: stefan.hofmann@physik.lmu.de

    2011-01-01

    ''Brane Induced Gravity'' is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.

  20. Vacuum energy and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Bass, Steven D.

    2015-06-01

    The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.

  1. Cosmological constant from the emergent gravity perspective

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.; Padmanabhan, Hamsa

    2014-05-01

    Observations indicate that our universe is characterized by a late-time accelerating phase, possibly driven by a cosmological constant Λ, with the dimensionless parameter Λ {LP2} ˜= 10-122, where LP = (Għ/c3)1/2 is the Planck length. In this review, we describe how the emergent gravity paradigm provides a new insight and a possible solution to the cosmological constant problem. After reviewing the necessary background material, we identify the necessary and sufficient conditions for solving the cosmological constant problem. We show that these conditions are naturally satisfied in the emergent gravity paradigm in which (i) the field equations of gravity are invariant under the addition of a constant to the matter Lagrangian and (ii) the cosmological constant appears as an integration constant in the solution. The numerical value of this integration constant can be related to another dimensionless number (called CosMIn) that counts the number of modes inside a Hubble volume that cross the Hubble radius during the radiation and the matter-dominated epochs of the universe. The emergent gravity paradigm suggests that CosMIn has the numerical value 4π, which, in turn, leads to the correct, observed value of the cosmological constant. Further, the emergent gravity paradigm provides an alternative perspective on cosmology and interprets the expansion of the universe itself as a quest towards holographic equipartition. We discuss the implications of this novel and alternate description of cosmology.

  2. Performance of a constant torque pedal device.

    PubMed Central

    Sherwin, K.

    1979-01-01

    A constant-torque oscillatory pedal-crank device using vertical movement of the feet is described and its performance compared to a conventional rotational cycle. Using a generator to measure the power output the constant-torque device produced 33% less power and thus has no practical value as an alternative to the conventional pedal-crank system. Images Figure 3 PMID:526783

  3. Regularizing cosmological singularities by varying physical constants

    SciTech Connect

    Dąbrowski, Mariusz P.; Marosek, Konrad E-mail: k.marosek@wmf.univ.szczecin.pl

    2013-02-01

    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.

  4. The method of constant stimuli is inefficient

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Fitzhugh, Andrew

    1990-01-01

    Simpson (1988) has argued that the method of constant stimuli is as efficient as adaptive methods of threshold estimation and has supported this claim with simulations. It is shown that Simpson's simulations are not a reasonable model of the experimental process and that more plausible simulations confirm that adaptive methods are much more efficient that the method of constant stimuli.

  5. Air kerma rate constants for radionuclides.

    PubMed

    Wasserman, H; Groenewald, W

    1988-01-01

    Conversion to SI units requires that the exposure rate constant which was usually quoted in R.h-1.mCi-1.cm2 be replaced by the air kerma rate constant with units m2.Gy.Bq-1.s-1. The conversion factor is derived and air kerma rate constants for 30 radionuclides used in nuclear medicine and brachytherapy are listed. A table for calculation of air kerma rates for other radionuclides is also given. To calculate absorbed dose to tissue, the air kerma rate has to be multiplied by approximately 1.1. A dose equivalent rate constant is thus listed which allows direct calculation of dose equivalent rate to soft tissue without resorting to exposure rate constants tabulated in the special units R.m2.mCi-1.h-1 which should no longer be used. PMID:3208786

  6. Elastic constants of layers in isotropic laminates.

    PubMed

    Heyliger, Paul R; Ledbetter, Hassel; Kim, Sudook; Reimanis, Ivar

    2003-11-01

    The individual laminae elastic constants in multilayer laminates composed of dissimilar isotropic layers were determined using ultrasonic-resonance spectroscopy and the linear theory of elasticity. Ultrasonic resonance allows one to measure the free-vibration response spectrum of a traction-free solid under periodic vibration. These frequencies depend on pointwise density, laminate dimensions, layer thickness, and layer elastic constants. Given a material with known mass but unknown constitution, this method allows one to extract the elastic constants and density of the constituent layers. This is accomplished by measuring the frequencies and then minimizing the differences between these and those calculated using the theory of elasticity for layered media to select the constants that best replicate the frequency-response spectrum. This approach is applied to a three-layer, unsymmetric laminate of WpCu, and very good agreement is found with the elastic constants of the two constituent materials. PMID:14649998

  7. Proof of the feasibility of coherent and incoherent schemes for pumping a gamma-ray laser. Annual technical progress report, 1 April 1988-31 March 1989

    SciTech Connect

    Collins, C.B.

    1989-06-01

    This report continues to focus upon the authors approach that is the nuclear analog to the ruby laser. It embodies the simplest concepts for a gamma-ray laser and, not surprisingly, the greatest rate of achievement in the quest for a subAngstrom laser continues in that direction. For ruby the identification and exploitation of a band-width funnel were the critical keys in the development of the first laser. There was a broad absorption band linked through efficient cascading to the narrow laser level. topics discussed include: Determination of Gateway States in {sup 197}Au with a Compton Gamma Ray; Determination of Photoexcitation Cross Sections for {sup 176}Lu (Gamma, Gamma) {sup 176}Lu(m) using A 6 MeV Bremsstrahlung Source; Accelerated Decay of 180a (m) and {sup 176}Lu in Stellar Interiors through (Gamma, Gamma) Reactions; Spectral Characterization of Intense, Short Duration Bremsstrahlung Pulses with Nuclear Photoactivation Techniques; The use of a Compton Spectrograph/Monochromator for the Photoactivation of Nuclei into Metastable States; Photoexcitation of Nuclear Isomers by (Gamma Gamma) Reactions through Relatively Unhindered Transitions Accessed with Bremsstrahlung from Medical Linear Accelerators; and Limits on Neutron Activation Interferences in Photoactivation Cross-Section Measurements in the 1.5-6 MeV Range.

  8. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.898 Section 51.898 Agriculture Regulations... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.898 Decay. Decay means.... Slight surface development of green mold (Cladosporium) shall not be considered decay....

  9. Single and Double Beta-Decay Q Values among the Triplet 96Zr, 96Nb, and 96Mo

    NASA Astrophysics Data System (ADS)

    Alanssari, M.; Frekers, D.; Eronen, T.; Canete, L.; Dilling, J.; Haaranen, M.; Hakala, J.; Holl, M.; Ješkovský, M.; Jokinen, A.; Kankainen, A.; Koponen, J.; Mayer, A. J.; Moore, I. D.; Nesterenko, D. A.; Pohjalainen, I.; Povinec, P.; Reinikainen, J.; Rinta-Antila, S.; Srivastava, P. C.; Suhonen, J.; Thompson, R. I.; Voss, A.; Wieser, M. E.

    2016-02-01

    The atomic mass relations among the mass triplet 96Zr, 96Nb, and 96Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the 96Zr single and double β decays to 96Nb and 96decay to 96Mo, which are Qβ(96Zr)=163.96 (13 ) , Qβ β(96Zr)=3356.097 (86 ) , and Qβ(96Nb)=3192.05 (16 ) keV . Of special importance is the 96Zr single β -decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the 96Zr β β decay, and its observation can provide one of the most direct tests of the neutrinoless β β -decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single β -decay rate has been re-evaluated using a shell-model approach, which indicates a 96Zr single β -decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant gA.

  10. Decay properties of the 1{sup -+} hybrid state

    SciTech Connect

    Chen Huaxing; Cai Zixing; Huang Pengzhi; Zhu Shilin

    2011-01-01

    Within the framework of the QCD sum rules, we consider the three-point correlation function, work at the limit q{sup 2}{yields}0 and m{sub {pi}}{yields}0, and pick out the singular term {approx}(1/q{sup 2}) to extract the pionic coupling constants of the 1{sup -+} hybrid meson. Then, we calculate the decay widths of different modes. The decay width of the S-wave modes b{sub 1{pi}}, f{sub 1{pi}} increases quickly as the hybrid meson mass and decay momentum increase. But for the low mass hybrid meson around 1.6 GeV, the P-wave decay mode {rho}{pi} is very important and its width is around 180 MeV, while the widths of {eta}{pi} and {eta}{sup '{pi}} are strongly suppressed. We suggest the experimental search of {pi}{sub 1}(1600) through the decay chains at the Beijing Spectrometer: J/{psi}({psi}{sup '}){yields}{pi}{sub 1}+{gamma} or J/{psi}({psi}{sup '}){yields}{pi}{sub 1}+{rho}, where the {pi}{sub 1} state can be reconstructed through the decay modes {pi}{sub 1}{yields}{rho}{pi}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} or {pi}{sub 1}{yields}f{sub 1}(1285){pi}{sup 0}. It is also interesting to look for {pi}{sub 1} using the available BELLE/BABAR data through the process e{sup +}e{sup -}{yields}{gamma}*{yields}{rho}{pi}{sub 1}, b{sub 1}{pi}{sub 1}, {gamma}{pi}{sub 1}, etc.

  11. Decay of magnetic fields in de Sitter and FRW universes

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.; Ferrández, A.

    2011-11-01

    Magnetic curvature effects, investigated by Barrow and Tsagas (Phys. Rev. D 77, 107302 (2008)), as a mechanism for magnetic field decay in open Friedmann universes ( Λ < 0), are applied to dynamo geometric Ricci flows in 3D curved substrate in laboratory. By simple derivation, a covariant three-dimensional magnetic self-induction equation is obtained. The presence of these curvature effects indicates that de Sitter cosmological constant ( Λ ≥ 0 leads to enhancement in the fast kinematic dynamo action which induces a stretching in plasma flows. From the magnetic growth rate, the strong shear case implies an anti-de Sitter case ( Λ < 0) where BT magnetic decaying fields are possible. For weak shear, fast dynamos are possible. The self-induced equation in Ricci flows is similar to the equation derived by BT in the (3 + 1)-spacetime continuum. Lyapunov-de Sitter metric is obtained from Ricci flow eigenvalue problem. In the de Sitter analogue there is a decay rate of γ ≈ - Λ ≈ -10-35 s-2 from the corresponding cosmological constant Λ. This shows that, even in the dynamo case, the magnetic field growth is slower than de Sitter inflation, which renders strongly support to BT result.

  12. Unsolved problems in hadronic charm decay

    SciTech Connect

    Browder, T.E.

    1989-08-01

    This paper describes several outstanding problems in the study of hadronic decays of charmed mesons where further experimental work and theoretical understanding is needed. Four topics are stressed: double Cabibbo suppressed decays (DCSD) of D/sup +/ mesons, hadronic D/sub s/ decays, weak hadronic quasi-two-body decays to pairs of vector mesons, and penguin decays of D mesons. 24 refs., 10 figs., 5 tabs.

  13. Decay curve study in a standard electron capture decay

    SciTech Connect

    Nishimura, D.; Fukuda, M.; Kisamori, K.; Kuwada, Y.; Makisaka, K.; Matsumiya, R.; Matsuta, K.; Mihara, M.; Takagi, A.; Yokoyama, R.; Izumikawa, T.; Ohtsubo, T.; Suzuki, T.; Yamaguchi, T.

    2010-05-12

    We have searched for a time-modulated decay in a standard electron capture experiment for {sup 140}Pr, in order to confirm a report from GSI, where an oscillatory decay has been observed for hydrogen-like {sup 140}Pr and {sup 142}Pm ions in the cooler storage ring. {sup 140}Pr has been produced with the {sup 140}Ce(p, n) reaction by a pulsed proton beam accelerated from the Van de Graaff accelerator at Osaka University. Resultant time dependence of the K{sub a}lpha and K{sub b}eta X-ray intensities from the daughter shows no oscillatory behavior.

  14. Direct expressions for magnetic anisotropy constants

    NASA Astrophysics Data System (ADS)

    Miura, Daisuke; Sasaki, Ryo; Sakuma, Akimasa

    2015-11-01

    Direct expressions for the magnetic anisotropy constants are given at a finite temperature from a microscopic viewpoint. The present derivation assumes that the Hamiltonian is a linear function with respect to the magnetization direction. We discuss in detail the first-order anisotropy constant K1 and show that our present results reproduce previous results. We applied our method to Nd2Fe14B compounds and confirmed that the present method can reproduce the temperature dependence of the magnetocrystalline anisotoropy constants K1, K2, and K3 well.

  15. Latest rocket measurements of the solar constant

    NASA Technical Reports Server (NTRS)

    Duncan, C. H.; Willson, R. C.; Kendall, J. M.; Harrison, R. G.; Hickey, J. R.

    1982-01-01

    Three rocket flights which carried a payload of absolute radiometers to measure the solar constant with an accuracy of plus or minus 0.5 per cent have been accomplished. Several of the rocket radiometers were duplicates of those aboard the Solar Maximum Mission and Nimbus spacecrafts. The values for the solar constant obtained by the rocket sensors for the three flight dates indicate an increase between the first and latter two flights approximately equivalent to the uncertainty of the measurements. The values for the solar constant for the three flights are 1367, 1372 and 1374 W/sq m.

  16. Marshak waves: Constant flux vs constant T-a (slight) paradigm shift

    SciTech Connect

    Rosen, M.D.

    1994-12-22

    We review the basic scaling laws for Marshak waves and point out the differences in results for wall loss, albedo, and Marshak depth when a constant absorbed flux is considered as opposed to a constant absorbed temperature. Comparisons with LASNEX simulations and with data are presented that imply that a constant absorbed flux is a more appropriate boundary condition.

  17. Flavor symmetry analysis of charmless B → VP decays

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Zhou, Yu-Feng

    2009-03-01

    Based upon flavor SU(3) symmetry, we perform global fits to charmless B decays into one pseudoscalar meson and one vector meson in the final state. We consider different symmetry breaking schemes and find that the one implied by na{ïve scaling, where strangeness-conserving and strangeness-changing amplitudes are related by the ratio of appropriate decay constants, is slightly favored over the exact symmetry case. The (bar rho,bar eta) vertex of the unitarity triangle (UT) constrained by our fits is consistent with other methods within errors. We have found large color-suppressed, electroweak penguin and singlet penguin amplitudes when the spectator quark ends up in the final-state vector meson. Nontrivial relative strong phases are also required to explain the data. The best-fit parameters are used to compute branching ratio and CP asymmetry observables in all of the decay modes, particularly those in the Bs decays to be measured at the Tevatron and LHC experiments.

  18. Search for anomalies in the decay of radioactive Mn-54

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    2016-06-01

    Recent papers have reported that 54Mn, which decays by electron capture (a weak nuclear interaction) with half-life ∼312 days, is influenced by solar activity. Should this actually occur, new physics would be needed to explain it. This paper reports results of an analysis of 54Mn activity measured over a time interval of ∼3.6 half-lives. If standard nuclear physics applies, the logarithmic residuals of 54Mn activities should form a stationary set of independent random variables whose statistics are determined solely by a constant decay rate λ and initial mean count μ. Analysis of the time-variation, autocorrelation, and power spectra of the 54Mn logarithmic residuals agrees exquisitely with standard nuclear physics. Computer-simulated activities exhibiting periodic decay of amplitude A=αλ show that anomalies would be detectable by these statistical tests for values of α as low as ∼1 part in 104. This limit is about 10 times lower than reported deviations from exponential decay.

  19. Decay Power Law in, High Intensity, Isotropic Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Koster, Timothy; Puga, Alejandro; Larue, John

    2014-11-01

    In the study reported here, isotropy is determined using the measure proposed by George (1992), where isotropy corresponds to those downstream positions where the product of the Taylor Reynolds number and the skewness of the velocity derivative is a constant. Straight forward approach can be used which is based on the observation of Batchelor (1953), that the square of the Talor micorscale is linearly related to downstream distance relative to the virtual origin. The fact that the decay of downstream velocity variance is described by a power law is shown to imply power law behavior for various other parameters such as the dissipation, the integral length scale, the Taylor microscale, the Kolmogorov microscale and the Taylor Reynolds number and that there is an algebraic relationship between the various power law exponents. Results are presented for mean velocities of 6 and 8 m/s for the downstream decay of the parameters listed in the preceding. The corresponding values of the Taylor Reynolds number at the start of the isotropic region are 290 and 400, and the variance decay exponent and virtual origin are found to be respectively -1.707 and -1.298 and -27.95 and -5.757. The exponents in the decay law for the other parameters are found to be within +/- 3% of the expected values. University of California Irvine Research Funds.

  20. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  1. Selective decay by Casimir dissipation in inviscid fluids

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2013-02-01

    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional (2D) incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in three-dimensional flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in Sadourny and Basdevant (1981 C. R. Acad. Sci. Paris 292 1061-4, 1985 J. Atm. Sci. 2.0.CO2"42 1353-63). Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parametrizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies.

  2. The search for proton decay

    SciTech Connect

    Haines, T.; Kaneyuki, K.; McGrew, C.; Mohapatra, R.; Peterson, E.; Cline, D.B.

    1994-12-31

    The conservation of the quantum number called baryon number, like lepton (or family) number, is an empirical fact even though there are very good reasons to expect otherwise. Experimentalists have been searching for baryon number violating decays of the proton and neutron for decades now without success. Theorists have evolved deep understanding of the relationship between the natural forces in the development of various Grand Unified Theories (GUTs) that nearly universally predict baryon number violating proton decay, or related phenomena like n-{bar n} oscillations. With this in mind, the Proton Decay Working Group reviewed the current experimental and theoretical status of the search for baryon number violation with an eye to the advancement in the next decade.

  3. Tunneling decay of false kinks

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan

    2015-07-01

    We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.

  4. Observable signatures of inflaton decays

    SciTech Connect

    Battefeld, Diana; Battefeld, Thorsten; Giblin, John T. Jr.; Pease, Evan K. E-mail: tbattefe@astro.physik.uni-goettingen.de E-mail: peasee@kenyon.edu

    2011-02-01

    We numerically compute features in the power-spectrum that originate from the decay of fields during inflation. Using a simple, phenomenological, multi-field setup, we increase the number of fields from a few to thousands. Whenever a field decays, its associated potential energy is transferred into radiation, causing a jump in the equation of state parameter and mode mixing at the perturbed level. We observe discrete steps in the power-spectrum if the number of fields is low, in agreement with analytic arguments in the literature. These features become increasingly smeared out once many fields decay within a given Hubble time. In this regime we confirm the validity of the analytic approach to staggered inflation, which is based on a coarse-graining procedure. Our numerical approach bridges the aforementioned analytic treatments, and can be used in more complicated scenarios.

  5. Free radical decay in adamantane

    SciTech Connect

    Tegowski, A.T.; Pratt, D.W.

    1984-01-11

    Kinetic electron paramagnetic resonance (EPR) techniques have been used to characterize the decay behavior of the ''stable'' free radical 2-cyclohexanonyl in the plastic crystal phase f an adamantane matrix over the temperature range 257-313 K. Typical plots of the EPR signal intensity as a function of time are biexponential in nature, suggesting the existence of at least two channels for free radical decay. The activation parameters for both processes have been measured in both protonated and deuterated samples. A comparison of these results with those in other systems suggests that the host does, as expected, considerably reduce the pre-exponential factors for decay of the radical by bimolecular processes but has relatively little influence on the corresponding activation energies. 3 figures.

  6. EC decay of 244Bk

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Pujari, P. K.; Palit, R.; Mukhopadhyay, S.

    2014-12-01

    Berkelium isotopes have been produced in 11B-induced reaction on 238U. The EC decay of 244Bk → 244Cm has been studied by carrying out the single and coincidence measurements of the γ-rays emitted during the de-excitation of the 244Cm levels. Radiochemical separations have been carried out to minimize the contribution from the fission products and target. The new half-life of 244Bk is obtained as 5.02 ± 0.03 h, which is close to the theoretically calculated value. The relative intensities of the decay γ-rays have been re-evaluated. Based on the coincidence measurements, a tentative partial level scheme for 244Bk → 244Cm decay has been proposed.

  7. Heavy quark spectroscopy and decay

    SciTech Connect

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  8. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  9. The Cosmological Constant in Quantum Cosmology

    SciTech Connect

    Wu Zhongchao

    2008-10-10

    Hawking proposed that the cosmological constant is probably zero in quantum cosmology in 1984. By using the right configuration for the wave function of the universe, a complete proof is found very recently.

  10. The Solar Constant: A Take Home Lab

    ERIC Educational Resources Information Center

    Eaton, B. G.; And Others

    1977-01-01

    Describes a method that uses energy from the sun, absorbed by aluminum discs, to melt ice, and allows the determination of the solar constant. The take-home equipment includes Styrofoam cups, a plastic syringe, and aluminum discs. (MLH)

  11. How the cosmological constant affects gravastar formation

    SciTech Connect

    Chan, R.; Silva, M.F.A. da; Rocha, P. E-mail: mfasnic@gmail.com

    2009-12-01

    Here we generalized a previous model of gravastar consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with an equation of state, but now we consider an external de Sitter-Schwarzschild spacetime. We have shown explicitly that the final output can be a black hole, a ''bounded excursion'' stable gravastar, a stable gravastar, or a de Sitter spacetime, depending on the total mass of the system, the cosmological constants, the equation of state of the thin shell and the initial position of the dynamical shell. We have found that the exterior cosmological constant imposes a limit to the gravastar formation, i.e., the exterior cosmological constant must be smaller than the interior cosmological constant. Besides, we have also shown that, in the particular case where the Schwarzschild mass vanishes, no stable gravastar can be formed, but we still have formation of black hole.

  12. Constant-amplitude, frequency- independent phase shifter

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1971-01-01

    Electronic circuit using operational amplifiers provides output with constant phase shift amplitude, with respect to sinusoidal input, over wide range of frequencies. New circuit includes field effect transistor, Q, operational amplifiers, A1 and A2, and phase detector.

  13. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  14. Dielectric constant of water in the interface

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V.

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ˜5 to 18 Å.

  15. Dielectric constant of water in the interface.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å. PMID:27394114

  16. Holographic dark energy with varying gravitational constant

    NASA Astrophysics Data System (ADS)

    Jamil, Mubasher; Saridakis, Emmanuel N.; Setare, M. R.

    2009-08-01

    We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.

  17. Simple constant-current-regulated power supply

    NASA Technical Reports Server (NTRS)

    Priebe, D. H. E.; Sturman, J. C.

    1977-01-01

    Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.

  18. A model for solar constant secular changes

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    In this paper, contrast models for solar active region and global photospheric features are used to reproduce the observed Active Cavity Radiometer and Earth Radiation Budget secular trends in reasonably good fashion. A prediction for the next decade of solar constant variations is made using the model. Secular trends in the solar constant obtained from the present model support the view that the Maunder Minimum may be related to the Little Ice Age of the 17th century.

  19. Optical constants of concentrated aqueous ammonium sulfate.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.

  20. Divergences and involution-dependent constants

    SciTech Connect

    Nagao, G.

    1989-01-01

    The authors show the cancellation of the dilation divergence in the 1-loop open bosonic string vacuum and N-tachyon scattering amplitude depends upon a set of involution-dependent constants. Such a set of constants exists at each loop level and thus provides a means with which to study the connection between the cancellation of divergences and anomalies for the gauge group SO(2/sup D/2/).

  1. Effective optical constants of anisotropic materials

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.

    1980-01-01

    The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.

  2. RNA structure and scalar coupling constants

    SciTech Connect

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  3. The study of rare decays

    NASA Astrophysics Data System (ADS)

    Ju, Wan-Li; Wang, Guo-Li; Fu, Hui-Feng; Wang, Tian-Hong; Jiang, Yue

    2014-04-01

    In this paper, we study rare decays within the Standard Model. The penguin, box, annihilation, color-favored cascade and color-suppressed cascade contributions are included. Based on our calculation, the annihilation and color-favored cascade diagrams play important roles in the differential branching fractions, forward-backward asymmetries, longitudinal polarizations of the final vector mesons and leptonic longitudinal polarization asymmetries. More importantly, color-favored cascade decays largely enhance the resonance cascade contributions. To avoid the resonance cascade contribution pollution, new cutting regions are put forward.

  4. Laser-Assisted Muon Decay

    SciTech Connect

    Liu Aihua; Li Shumin; Berakdar, Jamal

    2007-06-22

    We show theoretically that the muon lifetime can be changed dramatically by embedding the decaying muon in a strong linearly polarized laser field. Evaluating the S-matrix elements taking all electronic multiphoton processes into account we find that a CO{sub 2} laser with an electric field amplitude of 10{sup 6} V cm{sup -1} results in an order of magnitude shorter lifetime of the muon. We also analyze the dependencies of the decay rate on the laser frequency and intensity.

  5. Higgs boson decay to two photons and dispersion relations

    NASA Astrophysics Data System (ADS)

    Melnikov, Kirill; Vainshtein, Arkady

    2016-03-01

    We discuss the computation of the Higgs boson decay amplitude to two photons through the W -loop using dispersion relations. The imaginary part of the form factor FW(s ) that parametrizes this decay is unambiguous in four dimensions. When it is used to calculate the unsubtracted dispersion integral, the finite result for the form factor FW(s ) is obtained. However, the FW(s ) obtained in this way differs by a constant term from the result of a diagrammatic computation, based on dimensional regularization. It is easy to accommodate the missing constant by writing a once-subtracted dispersion relation for FW(s ) but it is unclear why the subtraction needs to be done. The goal of this paper is to investigate this question in detail. We show that the correct constant can be recovered within a dispersive approach in a number of ways that, however, either require an introduction of an ultraviolet regulator or unphysical degrees of freedom; unregulated and unsubtracted computations in the unitary gauge are insufficient, in spite of the fact that such computations give a finite result.

  6. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005. PMID:16574422

  7. Quantitative imaging of disease signatures through radioactive decay signal conversion

    PubMed Central

    Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan

    2013-01-01

    In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701

  8. Competing bounds on the present-day time variation of fundamental constants

    SciTech Connect

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2009-04-15

    We compare the sensitivity of a recent bound on time variation of the fine structure constant from optical clocks with bounds on time-varying fundamental constants from atomic clocks sensitive to the electron-to-proton mass ratio, from radioactive decay rates in meteorites, and from the Oklo natural reactor. Tests of the weak equivalence principle also lead to comparable bounds on present variations of constants. The 'winner in sensitivity' depends on what relations exist between the variations of different couplings in the standard model of particle physics, which may arise from the unification of gauge interactions. Weak equivalence principle tests are currently the most sensitive within unified scenarios. A detection of time variation in atomic clocks would favor dynamical dark energy and put strong constraints on the dynamics of a cosmological scalar field.

  9. Radiative Corrections to Asymmetry Parameter in the {Omega}{sup -{yields}{Lambda}}+K{sup -} Decay

    SciTech Connect

    Queijeiro, A.

    2010-07-29

    We compute the radiative corrections, to first order in the fine structure constant {alpha}, to the asymmetry parameter {alpha}{sub {Omega}}of the {Omega}{sup -{yields}{Lambda}}+K{sup -} decay. We use previous results where Sirlin's procedure is used to separate the radiative corrections into two parts, one independent model contribution and a model dependent one.

  10. {alpha}-decay half-lives for neutral atoms and bare nuclei

    SciTech Connect

    Patyk, Zygmunt; Geissel, Hans; Litvinov, Yuri A.; Nociforo, Chiara; Musumarra, Agatino

    2008-11-15

    The influence of the electron cloud on the {alpha} decay constant is estimated by using relativistic electron binding energies to be a few per mil with an uncertainty of about one per mil. A few nuclides are suggested for measuring this influence in a storage ring.

  11. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  12. Rare B decays at CDF

    SciTech Connect

    Farrington, Sinead M.; /Liverpool U.

    2006-10-01

    The confidence level limits of the CDF search for the B{sub s}{sup 0} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} rare decays and the branching ratio measurement of B{sub s}{sup 0} {yields} D{sub s}{sup +} D{sub s}{sup -} are presented.

  13. Fermi's β-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 β-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  14. Review of tau lepton decays

    SciTech Connect

    Stoker, D.P.

    1991-07-01

    Measurements of the {tau} decay modes are reviewed and compared with the predictions of the Standard Model. While the agreement is generally good, the status of the 1-prong puzzle'' remains controversial and a discrepancy between the measured leptonic branching fractions and the {tau} lifetime persists. Prospects for precision measurements at a Tau-Charm Factory are also reviewed. 20 refs., 2 tabs.

  15. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  16. Entanglement entropy in particle decay

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Holman, Richard

    2013-11-01

    The decay of a parent particle into two or more daughter particles results in an entangled quantum state as a consequence of conservation laws in the decay process. Recent experiments at Belle and BaBar take advantage of quantum entanglement and the correlations in the time evolution of the product particles to study CP and T violations. If one (or more) of the product particles are not observed, their degrees of freedom are traced out of the pure state density matrix resulting from the decay, leading to a mixed state density matrix and an entanglement entropy. This entropy is a measure of the loss of information present in the original quantum correlations of the entangled state. We use the Wigner-Weisskopf method to construct an approximation to this state that evolves in time in a manifestly unitary way. We then obtain the entanglement entropy from the reduced density matrix of one of the daughter particles obtained by tracing out the unobserved states, and follow its time evolution. We find that it grows over a time scale determined by the lifetime of the parent particle to a maximum, which when the width of the parent particle is narrow, describes the phase space distribution of maximally entangled Bell-like states. The method is generalized to the case in which the parent particle is described by a wave packet localized in space. Possible experimental avenues to measure the entanglement entropy in the decay of mesons at rest are discussed.

  17. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation

    PubMed Central

    Ilmoniemi, Risto J.; Mäki, Hanna; Saari, Jukka; Salvador, Ricardo; Miranda, Pedro C.

    2016-01-01

    Background: The behavior of the dendritic or axonal membrane voltage due to transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial decay of the membrane voltage in the case of constant applied electric field. In TMS, however, the induced electric field waveform is typically a segment of a sinusoidal wave, with characteristic frequencies of the order of several kHz. Objective: To show that the high frequency content of the stimulation pulse causes deviations in the spatial profile of the membrane voltage as compared to the steady state. Methods: We derive the cable equation in complex form utilizing the complex frequency-dependent representation of the membrane conductivity. In addition, we define an effective length constant λeff, which governs the spatial decay of the membrane voltage. We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with the complex cable equation and by solving the traditional cable equation numerically. Results: The effective length constant decreases as a function of frequency. For a model dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is decreased by a factor 10 to 0.13 mm. Conclusion: The frequency dependency of the neuronal length constant has to be taken into account when predicting the spatial behavior of the membrane voltage as a response to TMS. PMID:27555808

  18. The investigation of CP violation through the decay of polarized tau leptons II

    SciTech Connect

    Tsai, Y.S.

    1996-05-01

    Under the assumption that CP violation is caused by exchange of anew boson, the authors propose to measure the magnitudes and CP-violating phases of the coupling constants of this boson to five different vertices in tau decay. This can be accomplished by studying the decay of polarized tau leptons produced at an e{sup +}e{sup {minus}} collider whose beams are polarized. These five coupling constants could be used to construct a future theory of CP violation. If CP is violated in any channel of tau decay, it will imply that there exists a new charged boson other than the W boson responsible for CP violation. It will also imply that CP violation is much more prevalent than the standard theory predicts and this may enable one to understand the preponderance of matter over antimatter in the present universe.

  19. Mechanism of the Decay of Thymine Triplets in DNA Single Strands.

    PubMed

    Pilles, Bert M; Bucher, Dominik B; Liu, Lizhe; Clivio, Pascale; Gilch, Peter; Zinth, Wolfgang; Schreier, Wolfgang J

    2014-05-01

    The decay of triplet states and the formation of cyclobutane pyrimidine dimers (CPDs) after UV excitation of the all-thymine oligomer (dT)18 and the locked dinucleotide TLpTL were studied by nanosecond IR spectroscopy. IR marker bands characteristic for the CPD lesion and the triplet state were observed from ∼1 ns (time resolution of the setup) onward. The amplitudes of the CPD marker bands remain constant throughout the time range covered (up to 10 μs). The triplet decays with a time constant of ∼10 ns presumably via a biradical intermediate (lifetime ∼60 ns). This biradical has often been invoked as an intermediate for CPD formation via the triplet channel. The present results lend strong support to the existence of this intermediate, yet there is no indication that its decay contributes significantly to CPD formation. PMID:26270105

  20. Mathematical analysis of the Photovoltage Decay (PVD) method for minority carrier lifetime measurements

    NASA Technical Reports Server (NTRS)

    Vonroos, O. H.

    1982-01-01

    When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.

  1. (In)validity of the constant field and constant currents assumptions in theories of ion transport.

    PubMed Central

    Syganow, A; von Kitzing, E

    1999-01-01

    Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480

  2. Constant crunch coordinates for black hole simulations

    NASA Astrophysics Data System (ADS)

    Gentle, Adrian P.; Holz, Daniel E.; Kheyfets, Arkady; Laguna, Pablo; Miller, Warner A.; Shoemaker, Deirdre M.

    2001-03-01

    We reinvestigate the utility of time-independent constant mean curvature foliations for the numerical simulation of a single spherically symmetric black hole. Each spacelike hypersurface of such a foliation is endowed with the same constant value of the trace of the extrinsic curvature tensor K. Of the three families of K-constant surfaces possible (classified according to their asymptotic behaviors), we single out a subfamily of singularity-avoiding surfaces that may be particularly useful, and provide an analytic expression for the closest approach such surfaces make to the singularity. We then utilize a nonzero shift to yield families of K-constant surfaces which (1) avoid the black hole singularity, and thus the need to excise the singularity, (2) are asymptotically null, aiding in gravity wave extraction, (3) cover the physically relevant part of the spacetime, (4) are well behaved (regular) across the horizon, and (5) are static under evolution, and therefore have no ``grid stretching/ sucking'' pathologies. Preliminary numerical runs demonstrate that we can stably evolve a single spherically symmetric static black hole using this foliation. We wish to emphasize that this coordinatization produces K-constant surfaces for a single black hole spacetime that are regular, static, and stable throughout their evolution.

  3. Athermal nonlinear elastic constants of amorphous solids.

    PubMed

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place. PMID:20866874

  4. Athermal nonlinear elastic constants of amorphous solids

    NASA Astrophysics Data System (ADS)

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.

  5. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  6. Clusters of Galaxies and the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Falcon, N.

    2008-09-01

    The expansion rate, at height scale, of the Universe, is given for the value of the Hubble constant (H0). Several methods have used by determinations of the Hubble constant: CMB anisotropy's, Supernovae observation and AGN at height red-shift. In this work, we used the Grainge et al (3) method by estimated of the Hubble constant thought of the Sunyaev-Zel'dovich effect and the result of the VSA interferometer (Teide Observatory) and the X-ray data by ROSAT. We obtain, h ? 0,78, in accord with other report by cluster of galaxies (Mason et al, 2001) as higher than of the standard value h =0,71 obtain by other method. We discussed the systematic fount of error and possible discrepant by assumptions of the spheroid and isothermal in cluster and the Sunyaev- Zel'dovich Kinetic effect.

  7. Binary Solid Propellants for Constant Momentum Missions

    SciTech Connect

    Pakhomov, Andrew V.; Mahaffy, Kevin E.

    2008-04-28

    A constant momentum mission is achieved when the speed of the vehicle in the inertial frame of reference is equal to the speed of exhaust relative to the vehicle. Due to 100% propulsive efficiency such missions are superior to traditional constant specific impulse missions. A new class of solid binary propellants for constant momentum missions is under development. A typical propellant column is prepared as a solid solution of two components, with composition gradually changing from 100% of a propellant of high coupling coefficient (C{sub m}) to one which has high specific impulse (I{sub sp}). The high coupling component is ablated first, gradually giving way to the high I{sub sp} component, as the vehicle accelerates. This study opens new opportunities for further design of complex propellants for laser propulsion, providing variable C{sub m} and I{sub sp} during missions.

  8. Femtosecond decay dynamics of intact adenine and thymine base pairs in a supersonic jet.

    PubMed

    Kim, Nam Joon; Chang, Jinyoung; Kim, Hyung Min; Kang, Hyuk; Ahn, Tae Kyu; Heo, Jiyoung; Kim, Seong Keun

    2011-07-11

    We investigated the decay dynamics of the DNA base pairs adenine-adenine (A(2)), adenine-thymine (AT), and thymine-thymine (T(2)) produced in a supersonic jet by femtosecond (fs) time-resolved photoionization spectroscopy. The base pair was excited by a fs pump pulse at 267 nm and the population change of its excited state was monitored by non-resonant three-photon ionization using a fs probe pulse at 800 nm after a certain time delay. All of the transients recorded in the mass channel of the parent ion exhibited a tri-exponential decay, with time constants ranging from 100 fs to longer than 100 ps. Most of these time constants coincide well with the previous values deduced indirectly from the transients of protonated adenine (AH(+)) and thymine (TH(+)), which were assumed to be produced by fragmentation of the base-pair ions. Notably, for the transient of T(2), we observed a new decay component with a time constant of 2.3 ps, which was absent in the transient of TH(+). We suggest that the new decay component arises from the decay of stacked T(2) dimers that are mostly ionized to T(2)(+), whereas the decay signal recorded in the mass channel of TH(+) is merely from the relaxation of hydrogen-bonded T(2) dimers. From the amplitude of the new decay component, the population of the stacked T(2) dimers relative to the hydrogen-bonded dimers was estimated to be ∼2 % in the supersonic jet, which is about fifteen times higher than the theoretical value. PMID:21710523

  9. Extraction of {gamma} from charmless hadronic B {yields} PP decays using SU(3) flavor symmetry

    SciTech Connect

    Suprun, Denis A.

    2006-07-11

    The decays of B mesons to a pair of charmless pseudoscalar mesons (PP decays) have been analyzed within the framework of flavor SU(3) symmetry and quark-diagrammatic topological approach. Flavor symmetry breaking is taken into account in tree (T) amplitudes through ratios of decay constants fK and f{pi}; exact SU(3) is assumed elsewhere. Acceptable fits to B {yields} PP branching ratios and CP asymmetries are obtained with tree, color-suppressed and QCD penguin amplitudes. Singlet penguin amplitude was introduced to describe decay amplitudes of the modes with {eta} and {eta}' mesons in the final state. Electroweak penguin amplitudes were expressed in terms of the corresponding tree-level diagrams. Values of the weak phase {gamma} were found to be consistent with the current indirect bounds from other analyses of CKM parameters.

  10. Decays Z → γγ and Z → gg in the Standard Model Extension

    NASA Astrophysics Data System (ADS)

    Castro-Medina, J.; Novales-Sanchez, H.; Toscano, J. J.; Tututi, E. S.

    2015-12-01

    The Z → γγ and Z → gg decays are studied in the context of the renormalizable version of the Standard Model Extension. The CPT-odd ψ¯γ5/bψ bilinear interaction, which involves the constant background field bα and which has been a subject of interest in literature, is considered. It is shown that the Z → γγ and Z → gg decays, which are strictly zero in the standard model, can be generated radiatively at the one-loop level. It is found that these decays are gauge invariant and free of ultraviolet divergences, and that the corresponding decay widths only depend on the spatial component of the background field b.

  11. Aggregate Fission-Product Decay Data Based on ENDF/B-IV and -V.

    1982-10-12

    Version 02 The ENDF/B-IV fission-product files contain neutron cross sections, decay constants, decay energies, and other decay data for 824 important fission products. They also contain fission yields for these fission products produced by one or more fission-neutron energies (14 MeV, fast, and thermal fission). Also, spectral data exist for the most important decay-heat contributors among the 824 nuclides. Because the spectra are based on fission pulses, the libraries have a general utility. The exponentialmore » fits, for example, can be folded into any power (fission) history that can be described analytically or by a histogram representation. The effects of neutron absorption are also treated and approximately accounted for in the methodology.« less

  12. Power-law decay of the view times of scientific courses on YouTube

    NASA Astrophysics Data System (ADS)

    Gao, Lingling

    2012-11-01

    The temporal power-law decay is one class of interesting decay processes, usually indicating a long-time correlation and benefiting for a system to perform functions in various time-scales. In this work, I collect the data of the view times versus lectures of some scientific courses on YouTube, according to some special principles. These data can reflect the dynamical property of the spontaneous learning behavior, influenced by the decay of learning interest. The view times versus lectures show an obviously power-law decay process. The power approximates to 1, a universal constant. This finding brings the learning process into the interesting power-law family. It will be of interest in the fields of the human dynamics, psychology and education.

  13. Decay Characteristics of Surface Mounds with Contrasting Interlayer Mass Transport Channels

    SciTech Connect

    Li, Maozhi; Wendelken, J. F.; Liu, Bang-Gui; Wang, E. G.; Zhang, Zhenyu

    2001-03-12

    The decay characteristics of three-dimensional (3D) islands formed on surfaces are investigated theoretically considering two types of interlayer mass transport mechanisms. If an adatom on a given layer can easily descend from any site along the periphery of the layer, an optimal island slope and a constant terrace width will be selected during the decay. In contrast, if the adatom can descend primarily through selective (such as kinked) sites, the decay will be accompanied by a gradual increase in the island slope. These generic conclusions provide the basis for a microscopic understanding of the decay of nanostructures in fcc(111) and fcc(100) metal homoepitaxy and are applicable to other systems as well.

  14. Optimizing constant wavelength neutron powder diffractometers

    NASA Astrophysics Data System (ADS)

    Cussen, Leo D.

    2016-06-01

    This article describes an analytic method to optimize constant wavelength neutron powder diffractometers. It recasts the accepted mathematical description of resolution and intensity in terms of new variables and includes terms for vertical divergence, wavelength and some sample scattering effects. An undetermined multiplier method is applied to the revised equations to minimize the RMS value of resolution width at constant intensity and fixed wavelength. A new understanding of primary spectrometer transmission (presented elsewhere) can then be applied to choose beam elements to deliver an optimum instrument. Numerical methods can then be applied to choose the best wavelength.

  15. Environmental dependence of masses and coupling constants

    SciTech Connect

    Olive, Keith A.; Pospelov, Maxim

    2008-02-15

    We construct a class of scalar field models coupled to matter that lead to the dependence of masses and coupling constants on the ambient matter density. Such models predict a deviation of couplings measured on the Earth from values determined in low-density astrophysical environments, but do not necessarily require the evolution of coupling constants with the redshift in the recent cosmological past. Additional laboratory and astrophysical tests of {delta}{alpha} and {delta}(m{sub p}/m{sub e}) as functions of the ambient matter density are warranted.

  16. Dielectric constants of soils at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Williams, D.

    1972-01-01

    A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.

  17. TOPICAL REVIEW The cosmological constant puzzle

    NASA Astrophysics Data System (ADS)

    Bass, Steven D.

    2011-04-01

    The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of general relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 1056 times smaller than the value expected from quantum fields and standard model particle physics. Is the vacuum energy density time dependent? We give an introduction to the cosmological constant puzzle and ideas how to solve it.

  18. Coulomb field in a constant electromagnetic background

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

    2016-06-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with a Euler-Heisenberg (EH) effective Lagrangian. The linear electric response to an imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field and corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants. These are specialized for the EH Lagrangian.

  19. Image segmentation via piecewise constant regression

    NASA Astrophysics Data System (ADS)

    Acton, Scott T.; Bovik, Alan C.

    1994-09-01

    We introduce a novel unsupervised image segmentation technique that is based on piecewise constant (PICO) regression. Given an input image, a PICO output image for a specified feature size (scale) is computed via nonlinear regression. The regression effectively provides the constant region segmentation of the input image that has a minimum deviation from the input image. PICO regression-based segmentation avoids the problems of region merging, poor localization, region boundary ambiguity, and region fragmentation. Additionally, our segmentation method is particularly well-suited for corrupted (noisy) input data. An application to segmentation and classification of remotely sensed imagery is provided.

  20. Black hole constraints on varying fundamental constants.

    PubMed

    MacGibbon, Jane H

    2007-08-10

    We apply the generalized second law of thermodynamics and derive upper limits on the variation in the fundamental constants. The maximum variation in the electronic charge permitted for black holes accreting and emitting in the present cosmic microwave background corresponds to a variation in the fine-structure constant of Deltaalpha/alpha approximately 2 x 10(-23) per second. This value matches the variation measured by Webb et al. [Phys. Rev. Lett. 82, 884 (1999); Phys. Rev. Lett. 87, 091301 (2001)] using absorption lines in the spectra of distant quasars and suggests the variation mechanism may be a coupling between the electron and the cosmic photon background. PMID:17930813

  1. Atomic weights: no longer constants of nature

    USGS Publications Warehouse

    Coplen, Tyler B.; Holden, Norman E.

    2011-01-01

    Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature

  2. Atomic Weights No Longer Constants of Nature

    SciTech Connect

    Coplen, T.B.; Holden, N.

    2011-03-01

    Many of us grew up being taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis has changed the way we view atomic weights and why they are no longer constants of nature.

  3. Microfabricated microengine with constant rotation rate

    DOEpatents

    Romero, Louis A.; Dickey, Fred M.

    1999-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  4. Our Universe from the cosmological constant

    SciTech Connect

    Barrau, Aurélien; Linsefors, Linda E-mail: linda.linsefors@lpsc.in2p3.fr

    2014-12-01

    The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.

  5. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  6. Multicomponent and multistep radioactive decay modeling module for groundwater flow and contaminant transport computer code

    NASA Astrophysics Data System (ADS)

    Kharkhordin, I. L.

    2013-12-01

    Correct calculations of multistep radioactive decay is important for radionuclide transport forecast at contaminated sites and designing radionuclide storage facilities as well as for a number applications of natural radioactive tracers for understanding of groundwater flow in complex hydrogeological systems. Radioactive chains can involves a number of branches with certain probabilities of decay and up to fourteen steps. General description of radioactive decay in complex system could be presented as a system of linear differential equations. Numerical solution of this system encounters a difficulties connected with wide rage of radioactive decay constants variations. In present work the database with 1253 records of radioactive isotope decay parameters for 97 elements was created. An algorithm of analytical solution construction and solving was elaborated for arbitrary radioactive isotope system taking into account the possible chain branching and connection. The algorithm is based on radionuclide decay graphs. The main steps of algorithm is as follows: a) searching of all possible isotopes in database, creation full isotope list; b) looking for main parent isotopes; c) construction of all possible radioactive chains; d) looking for branching and connections in decay chains, marking of links as primary (left chain in graph for main parent isotope), secondary (after connection), and recurring (before branching); e) construction and calculation the coefficients for analytical solutions. The developed computer code was tested on a few simple systems like follows: Cs-135 - one step decay, Sr-90 (Y-90) - two steps decay, U-238+U-235 mixture - complex decay with branching. Calculation of radiogenic He-4 is also possible witch could be important application for groundwater flow and transport model calibration using natural tracers. The computer code for multistep radioactive calculation was elaborated for incorporation into NIMFA code. NIMFA is a parallel computer code

  7. Decays of near BPS heterotic strings

    SciTech Connect

    Gutperle, Michael; Krym, Darya

    2006-10-15

    The decay of highly excited massive string states in compactified heterotic string theories is discussed. We calculate the decay rate and spectrum of states carrying momentum and winding in the compactified direction. The longest lived states in the spectrum are near Bogomol'nyi-Prasad-Sommerfield (BPS) states whose decay is dominated by a single decay channel of massless radiation which brings the state closer to being BPS.

  8. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests.

    PubMed

    Fravolini, Giulia; Egli, Markus; Derungs, Curdin; Cherubini, Paolo; Ascher-Jenull, Judith; Gómez-Brandón, María; Bardelli, Tommaso; Tognetti, Roberto; Lombardi, Fabio; Marchetti, Marco

    2016-11-01

    Deadwood is known to significantly contribute to global terrestrial carbon stocks and carbon cycling, but its decay dynamics are still not thoroughly understood. Although the chemistry of deadwood has been studied as a function of decay stage in temperate to subalpine environments, it has generally not been related to time. We therefore studied the decay (mass of deadwood, cellulose and lignin) of equal-sized blocks of Picea abies wood in soil-mesocosms over two years in the Italian Alps. The 8 sites selected were along an altitudinal sequence, reflecting different climate zones. In addition, the effect of exposure (north- and south-facing slopes) was taken into account. The decay dynamics of the mass of deadwood, cellulose and lignin were related to soil parameters (pH, soil texture, moisture, temperature) and climatic data. The decay rate constants of Picea abies deadwood were low (on average between 0.039 and 0.040y(-1)) and of lignin close to zero (or not detectable), while cellulose reacted much faster with average decay rate constants between 0.110 and 0.117y(-1). Our field experiments showed that local scale factors, such as soil parameters and topographic properties, influenced the decay process: higher soil moisture and clay content along with a lower pH seemed to accelerate wood decay. Interestingly, air temperature negatively correlated with decay rates or positively with the amount of wood components on south-facing sites. It exerted its influence rather on moisture availability, i.e. the lower the temperature the higher the moisture availability. Topographic features were also relevant with generally slower decay processes on south-facing sites than on north-facing sites owing to the drier conditions, the higher pH and the lower weathering state of the soils (less clay minerals). This study highlights the importance of a multifactorial consideration of edaphic parameters to unravel the complex dynamics of initial wood decay. PMID:27373380

  9. Penguin and rare decays in BABAR

    NASA Astrophysics Data System (ADS)

    Akar, Simon; Babar Collaboration

    2014-11-01

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ-π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xsl+l- inclusive decays.

  10. Weak radiative baryonic decays of B mesons

    SciTech Connect

    Kohara, Yoji

    2004-11-01

    Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.

  11. Review of B and Bs decays

    NASA Astrophysics Data System (ADS)

    Bozzi, Concezio

    2014-05-01

    A review of B and Bs decays is presented. Emphasis is given to processes most sensitive to physics beyond the Standard Model, such as radiative, electroweak and "Higgs" penguin decays, and tree-level decays involving tau leptons in the final state. An outlook on future perspectives is also given.

  12. Beauty baryon decays: a theoretical overview

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming

    2014-11-01

    I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.

  13. 7 CFR 51.2087 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2087 Section 51.2087 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2087 Decay. Decay means that part or all...

  14. 7 CFR 51.2962 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2962 Section 51.2962 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2962 Decay. Decay means that any portion...

  15. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.490 Section 51.490 Agriculture Regulations... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type...

  16. 7 CFR 51.2962 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2962 Section 51.2962 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2962 Decay. Decay means that any portion...

  17. 7 CFR 51.2120 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2120 Section 51.2120 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2120 Decay. Decay means that part or all of...

  18. 7 CFR 51.2120 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2120 Section 51.2120 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2120 Decay. Decay means that part or all of...

  19. 7 CFR 51.2087 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2087 Section 51.2087 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2087 Decay. Decay means that part or all...

  20. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.490 Section 51.490 Agriculture Regulations... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type...

  1. Determination of the electron–phonon coupling constant in tungsten

    SciTech Connect

    Daraszewicz, Szymon L.; Duffy, Dorothy M.; Shluger, Alexander L.; Giret, Yvelin; Tanimura, Hiroshi; Tanimura, Katsumi

    2014-07-14

    We used two methods to determine the effective electron-phonon coupling constant (G{sub 0}) in tungsten. Our first principles calculations predict G{sub 0} = 1.65 × 10{sup 17 }W m{sup −3} K{sup −1}. The temporal decay of the femtosecond-resolution optical reflectivity for a (100) surface of bulk W was measured using a pump-probe scheme and analysed using ab initio parameterised two temperature model, which includes both the effects of the electron-phonon coupling and thermal conduction into bulk. This analysis gives G{sub 0} = 1.4(3) × 10{sup 17 }W m{sup −3} K{sup −1}, in good agreement with the theoretical prediction. The described effective method of calculating and measuring G{sub 0} in bulk materials can be easily extended to other metals.

  2. Can compactifications solve the cosmological constant problem?

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Masoumi, Ali

    2016-06-01

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.

  3. Damping constant estimation in magnetoresistive readers

    SciTech Connect

    Stankiewicz, Andrzej Hernandez, Stephanie

    2015-05-07

    The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ∼0.03.

  4. Man's Size in Terms of Fundamental Constants.

    ERIC Educational Resources Information Center

    Press, William H.

    1980-01-01

    Reviews calculations that derive an order of magnitude expression for the size of man in terms of fundamental constants, assuming that man satifies these three properties: he is made of complicated molecules; he requires an atmosphere which is not hydrogen and helium; he is as large as possible. (CS)

  5. Teaching Nanochemistry: Madelung Constants of Nanocrystals

    ERIC Educational Resources Information Center

    Baker, Mark D.; Baker, A. David

    2010-01-01

    The Madelung constants for binary ionic nanoparticles are determined. The computational method described here sums the Coulombic interactions of each ion in the particle without the use of partial charges commonly used for bulk materials. The results show size-dependent lattice energies. This is a useful concept in teaching how properties such as…

  6. CONSTANT VOLUME SAMPLING SYSTEM WATER CONDENSATION

    EPA Science Inventory

    Combustion of organic motor vehicle fuels produces carbon dioxide and water (H2O) vapor (and also products of incomplete combustion, e.g. hydrocarbons and carbon monoxide, at lower concentrations). he Constant Volume Sampling (CVS) system, commonly used to condition auto exhaust ...

  7. Unified Technical Concepts. Module 12: Time Constants.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  8. Double well isomerization rate constants in solution

    NASA Astrophysics Data System (ADS)

    Zawadzki, Anthony G.; Hynes, James T.

    1985-02-01

    The rate constant k for a double well isomerization in solution is calculated over the entire friction range. The importance of frequency-dependent friction for both the vibrational energy transfer (VET) and barrier passage components of k is described. Rapid suppression of the VET transfer component with increasing degrees of freedom is discussed.

  9. Stokes constants for a singular wave equation

    SciTech Connect

    Linnaeus, Staffan

    2005-05-01

    The Stokes constants for arbitrary-order phase-integral approximations are calculated when the square of the wave number has either two simple zeros close to a second-order pole or one simple zero close to a first-order pole. The treatment is based on uniform approximations. All parameters may assume general complex values.

  10. Variations of the Solar Constant. [conference

    NASA Technical Reports Server (NTRS)

    Sofia, S. (Editor)

    1981-01-01

    The variations in data received from rocket-borne and balloon-borne instruments are discussed. Indirect techniques to measure and monitor the solar constant are presented. Emphasis is placed on the correlation of data from the Solar Maximum Mission and the Nimbus 7 satellites.

  11. The ideal Kolmogorov inertial range and constant

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1993-01-01

    The energy transfer statistics measured in numerically simulated flows are found to be nearly self-similar for wavenumbers in the inertial range. Using the measured self-similar form, an 'ideal' energy transfer function and the corresponding energy flux rate were deduced. From this flux rate, the Kolmogorov constant was calculated to be 1.5, in excellent agreement with experiments.

  12. Mars Pathfinder Project: Planetary Constants and Models

    NASA Technical Reports Server (NTRS)

    Lyons, D.; Vaughn, R.

    1999-01-01

    This document provides a common set of astrodynamic constants and planetary models for use by the Mars pathfinder Project. It attempts to collect in a single reference all the quantities and models in use across the project during development and for mission operations.

  13. Bouncing models with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Maier, Rodrigo; Pereira, Stella; Pinto-Neto, Nelson; Siffert, Beatriz B.

    2012-01-01

    Bouncing models have been proposed by many authors as a completion of, or even as an alternative to, inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a scalar field with a potential allowing background solutions with pressure and energy density satisfying p=wɛ, w being a constant. An initial adiabatic vacuum state can be set at the end of domination by the cosmological constant, and an almost scale-invariant spectrum of perturbations is obtained for w≈0, which is the usual result for bouncing models. However, the presence of the cosmological constant induces oscillations and a running towards a tiny red-tilted spectrum for long-wavelength perturbations.

  14. Damping constant estimation in magnetoresistive readers

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Andrzej; Hernandez, Stephanie

    2015-05-01

    The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ˜0.03.

  15. Spray Gun With Constant Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Simpson, William G.

    1987-01-01

    Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.

  16. FATE, THE ENVIRONMENTAL FATE CONSTANTS INFORMATION DATABASE

    EPA Science Inventory

    An online database, FATE, has been developed for the interactive retrieval of kinetic and equilibrium constants that are needed for assessing the fate of chemicals in the environment. he database contains values for up to 12 parameters for each chemical. s of December 1991, FATE ...

  17. Lyapunov decay in quantum irreversibility.

    PubMed

    García-Mata, Ignacio; Roncaglia, Augusto J; Wisniacki, Diego A

    2016-06-13

    The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime. PMID:27140966

  18. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  19. Decay of /sup 150/Er

    SciTech Connect

    Moltz, D.M.; Toth, K.S.; Ellis-Akovali, Y.A.; Cole, J.D.

    1982-09-01

    A new activity, T/sub 1/2/ = 20 +- 2 sec, was observed in /sup 12/C bombardments of /sup 144/Sm. Only one ..gamma.. ray, 476.0 +- 0.1 keV, was found to be associated with this nuclide. We identify the new isotope as /sup 150/Er and propose that it decays mainly to one level in /sup 150/Ho at an excitation energy of approx.476 keV by an allowed ..beta.. transition which connects states with the following configurations: O/sup +/(..pi..h/sub 11/2/, ..pi..h/sub 11/2/)..-->..1/sup +/(..pi..h/sub 11/2/,..nu..h/sub 9/2/). As part of the investigation, the decay properties of the high- and low-spin /sup 150/Ho isomers were reexamined.

  20. Decaying two-dimensional turbulence with circular rigid walls

    NASA Astrophysics Data System (ADS)

    Li, Shuojun

    Most theoretical and computational studies of turbulence in Navier-Stokes fluids and/or guiding-center plasmas have been carried out in the presence of spatially periodic boundary conditions. In view of the frequently- reproduced result that two-dimensional and/or MHD decaying turbulence leads to structures comparable in length scale to a box dimension, it is natural to ask if periodic boundary conditions are an adequate representation of any physical situation. Here, we study, computationally, the decay of two-dimensional turbulence in a Navier-Stokes fluid or guiding-center plasma in the presence of circular rigid walls with either no-slip or stress-free boundary conditions. The method is wholly spectral, and relies on a Galerkin approximation by a set of functions which obey two boundary conditions at the wall radius (closely related to 'Stokes eigenfunctions' of the slow flow equation, and analogues of the Chandrasekhar-Reid functions). It is possible to explore Reynolds numbers up to the order of 1250, based on an rms velocity and a box radius. It is found that decaying turbulence is altered significantly by the rigid boundaries. First, strong boundary layers serve as sources of vorticity and enstrophy and enhance the early- time energy decay rate, for a given Reynolds number, well above the periodic boundary condition values. More importantly, in the no-slip case angular momentum turns out to be an even more slowly decaying ideal invariant than energy, and to a considerable extent governs the dynamics of the decay. Angular momentum must be taken into account, for example, in order to achieve quantitative agreement with the prediction of maximum entropy, or 'most probable,' states. These are predictions of conditions that are established after several eddy turnover times but before the energy has decayed away. Angular momentum will cascade to lower azimuthal mode numbers, even if absent there initially, and the angular momentum modal spectrum is eventually

  1. Flavor mixing and quark decay

    NASA Astrophysics Data System (ADS)

    Chu Wang, Ling-Lie

    1981-01-01

    Since this is an experimental conference I shall begin my talk with that spirit. We can view that the subject of my talk as a result of ''the ORY Collaboration'' with more than fifty theorists involved. The topics covered are the results of four task forces: I. The mixing Matrix Task Force, II.. The D-decay Task Force, III. the Boredom-Escaping Group and IV. the Far-and-Beyond Group.

  2. Optical spectroscopy and tooth decay

    NASA Astrophysics Data System (ADS)

    Misra, P.; De, T.; Singh, R.

    2005-11-01

    Optical spectroscopy in the ultraviolet, visible and mid-infrared spectral regions has been used to discriminate between healthy and diseased teeth of patients in the age range 15-75 years. Spectral scans of absorbance versus wavenumber and fluorescence intensity versus wavelength have been recorded and investigated for caries and periodontal disease. Such optical diagnostics can prove very useful in the early detection and treatment of tooth decay.

  3. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  4. Tunneling decay of false vortices

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-10-01

    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.

  5. Spectrometers for Beta Decay Electrons

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Hirshfield, Jay

    2015-04-01

    Inspired by the neutrino mass direct measurement experiment Project 8, precision spectrometers are proposed to simultaneously measure energy and momentum of beta-decay electrons produced in rare nuclear events with improved energy resolution. For detecting single beta decay electrons near the end-point from a gaseous source such as tritium, one type of spectrometer is proposed to utilize stimulated cyclotron resonance interaction of microwaves with electrons in a waveguide immersed in a magnetic mirror. In the external RF fields, on-resonance electrons will satisfy both the cyclotron resonance condition and waveguide dispersion relationship. By correlating the resonances at two waveguide modes, one can associate the frequencies with both the energy and longitudinal momentum of an on-resonance electron to account for the Doppler shifts. For detecting neutrino-less double-beta decay, another spectrometer is proposed with thin foil of double-beta-allowed material immersed in a magnetic field, and RF antenna array for detection of synchrotron radiation from electrons. It utilizes the correlation between the antenna signals including higher harmonics of radiation to reconstruct the total energy distribution.

  6. Radiative decay of nonstationary system.

    PubMed

    Banerjee, Sumana; Gangopadhyay, Gautam

    2004-04-01

    When a finite quantum system, say a fluorescent molecule is attached to a bulk surface and excited by a short laser pulse, the decay dynamics of the system is modulated by the surface and the signal is enhanced due to the bulk surface. We have considered the decay dynamics of a model of displaced distorted molecule whose excited potential surface is coupled to a continuum and then this first continuum is in turn coupled to a second continuum. In the short time scale there is a coherent exchange of energy between the system molecule and the first continuum states. In the long time scale the energy of the whole system plus first continuum drains out to the final continuum states. A dendrimer nanocomposite with the gold surface shows an enhanced light emission. This can be qualitatively understood from the model we proposed here. We have numerically studied the various potential parameters of the molecule which can affect the signal. When the potential surfaces are flat, the band structure of the first continuum states along with its initial excitation has some nontrivial effect on the profile of the radiative decay. PMID:15267501

  7. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  8. Nuclear Decay Data: On-going Studies to Address and Improve Radionuclide Decay Characteristics

    NASA Astrophysics Data System (ADS)

    Nichols, Alan L.

    2005-05-01

    Representative decay data studies are described and reviewed, ranging from various measurement programmes to the maintenance of evaluated decay-data libraries. Gross beta-decay measurements are essential to address the decay-data requirements for short-lived fission products, well-defined half-lives are required in assessments of the storage of long-lived radionuclides in waste depositories, and improved decay data continue to be demanded in safeguards, to improve detector-calibration standards, and for medical and analytical applications. Such needs require the measurement of good quality decay data, along with multinational evaluations of decay schemes by means of agreed procedures.

  9. Constraints on hadronically decaying dark matter

    SciTech Connect

    Garny, Mathias; Ibarra, Alejandro; Tran, David E-mail: alejandro.ibarra@ph.tum.de

    2012-08-01

    We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons. We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.

  10. Doubly charmful baryonic B decays

    SciTech Connect

    Cheng, H.-Y.; Chua, C.-K.; Tsai, S.-Y.

    2006-04-01

    There are two apparent puzzles connected with the two-body and three-body doubly charmed baryonic B decays. First, earlier calculations based on QCD sum rules or the diquark model predict B(B{sup 0}{yields}{xi}{sub c}{sup +}{lambda}{sub c}{sup -}){approx_equal}B(B{sup 0}{yields}B{sub c}N), while experimentally the former has a rate 2 orders of magnitude larger than the latter. Second, a naive estimate of the branching ratio O(10{sup -9}) for the color-suppressed three-body decay B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K, which is highly suppressed by phase space, is too small by 5 to 6 orders of magnitude compared to the experiment. We show that the great suppression for the {lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K production can be alleviated provided that there exists a narrow hidden charm bound state with a mass near the {lambda}{sub c}{lambda}{sub c} threshold. This new state that couples strongly to the charmed baryon pair can be searched for in B decays and in pp collisions by studying the mass spectrum of D{sup (*)}D{sup (*)} or {lambda}{sub c}{lambda}{sub c}. The doubly charmful decay B{yields}{xi}{sub c}{lambda}{sub c} has a configuration more favorable than the singly charmful one such as B{sup 0}{yields}{lambda}{sub c}p since no hard gluon is needed to produce the energetic {xi}{sub c}{lambda}{sub c} pair in the former decay, while two hard gluons are needed for the latter process. Assuming that a soft qq quark pair is produced through the {sigma} and {pi} meson exchanges in the configuration for B{yields}{xi}{sub c}{lambda}{sub c}, it is found that its branching ratio is of order 10{sup -3}, in agreement with the experiment.

  11. Radiative lifetime and quenching constants of the PF(A3II) state

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Raybone, D.; Setser, Donald W.

    1993-06-01

    The radiative lifetime and the quenching rate constants of the PF(A3PI0,1,2) state have been measured using a microwave discharge to generate PF(X3(Sigma) -) in a flow reactor incorporating laser-induced fluorescence. A radiative lifetime of 4.2 +/- 0.2 microsecond(s) has been determined for a 300 K Boltzmann distribution of rotational and spin- orbit states of PF(A,v' equals 0). The two-body quenching rate constants for PF(A3PI) by diatomic and polyatomic molecules and rare gases were determined at 300 K from the pressure dependence of the first-order decay constants. Electronic quenching by He, Ar, CF4 and SF6 is inefficient and upper limits to these deactivation rate constants are 2 - 4 X 10-14 cm3 molecule-1 s-1. Except for highly fluorinated molecules, the quenching constants for most molecules are in the range of 0.05 - 4.0 X 10-10 cm3 molecule-1 s-1. The available data suggest that the PF(A3$PI0,1,2) state has some promise as a potential UV laser candidate, providing that an efficient excitation method can be discovered.

  12. Sinks in the landscape, Boltzmann brains and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    2007-01-01

    This paper extends a recent investigation of the string theory landscape (Ceresole et al 2006 Phys. Rev. D 74 086010), where it was found that the decay rate of de Sitter (dS) vacua to a collapsing space with a negative vacuum energy can be quite large. The parts of space that experience a decay to a collapsing space, or to a Minkowski vacuum, never return back to dS space. The channels of irreversible vacuum decay serve as sinks for the probability flow. The existence of such sinks is a distinguishing feature of the string theory landscape. We describe relations between several different probability measures for eternal inflation taking into account the existence of the sinks. The local (comoving) description of the inflationary multiverse suffers from the so-called Boltzmann brain (BB) problem unless the probability of the decay to the sinks is sufficiently large. We show that some versions of the global (volume-weighted) description do not have this problem even if one ignores the existence of the sinks. We argue that if the number of different vacua in the landscape is large enough, the anthropic solution of the cosmological constant problem in the string landscape scenario should be valid for a broad class of the probability measures which solve the BB problem. If this is correct, the solution of the cosmological constant problem may be essentially measure-independent. Finally, we describe a simplified approach to the calculations of anthropic probabilities in the landscape, which is less ambitious but also less ambiguous than other methods. To the memory of Eugene Feinberg, who was trying to make a bridge between science, philosophy and art.

  13. Lifetime constraints for late dark matter decay

    SciTech Connect

    Bell, Nicole F.; Galea, Ahmad J.; Petraki, Kalliopi

    2010-07-15

    We consider a class of late-decaying dark matter models, in which a dark matter particle decays to a heavy stable daughter of approximately the same mass, together with one or more relativistic particles which carry away only a small fraction of the parent rest mass. Such decays can affect galactic halo structure and evolution, and have been invoked as a remedy to some of the small-scale structure formation problems of cold dark matter. There are existing stringent limits on the dark matter lifetime if the decays produce photons. By considering examples in which the relativistic decay products instead consist of neutrinos or electron-position pairs, we derive stringent limits on these scenarios for a wide range of dark matter masses. We thus eliminate a sizable portion of the parameter space for these late-decay models if the dominant decay channel involves standard model final states.

  14. Factorization for radiative heavy quarkonium decays into scalar Glueball

    NASA Astrophysics Data System (ADS)

    Zhu, Ruilin

    2015-09-01

    We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ ψ, ψ(2 S) and Υ( nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f 0(1370), f 0(1500) and f 0(1710).

  15. Decay of the standard model Higgs field after inflation

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; García-Bellido, Juan; Torrentí, Francisco

    2015-10-01

    We study the nonperturbative dynamics of the standard model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3 +1 ) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different postinflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into Z and W± bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on, the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its dominant decay products until equipartition is established. We provide a useful mapping between simulations with different parameters, from which we derive a master formula for the Higgs decay time as a function of the coupling constants, Higgs initial amplitude and postinflationary expansion rate.

  16. Shell-model study of the 4th- and 6th-forbidden β-decay branches of Ca48

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Horoi, M.; Suhonen, J.

    2014-03-01

    The highly forbidden β- decay of Ca48 is reexamined by performing shell-model calculations with the GXPF1A effective interaction. We examine the three available decay branches to the lowest 6+, 5+, and 4+ states of 48Sc, and extract a theoretical half-life of T1/2β=5.2-1.3+1.7×1020gA-2 yr for the β- decay, where gA is the value of the axial-vector coupling constant. The current half-life estimate suggests stronger competition between the single-β-decay and double-β-decay branches of Ca48 than previously expected on theoretical grounds.

  17. Phase-space factors and half-life predictions for Majoron-emitting β-β- decay

    NASA Astrophysics Data System (ADS)

    Kotila, J.; Barea, J.; Iachello, F.

    2015-06-01

    A complete calculation of phase space factors (PSFs) for Majoron-emitting 0 ν β-β- decay modes is presented. The calculation makes use of exact Dirac wave functions with finite nuclear size and electron screening and includes lifetimes, single-electron spectra, summed electron spectra, and angular electron correlations. Combining these results with recent microscopic interacting boson model nuclear matrix elements (NMEs) we make half-life predictions for the ordinary Majoron decay (spectral index n =1 ). Furthermore, comparing theoretical predictions with the obtained experimental lower bounds for this decay mode we are able to set limits on the effective Majoron-neutrino coupling constant .

  18. Hyperscaling violation and the shear diffusion constant

    NASA Astrophysics Data System (ADS)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2016-09-01

    We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating exponents z , θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d - z - θ > - 1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d - z - θ = - 1, we find logarithmic behaviour. This relation is equivalent to z = 2 +deff where deff =di - θ is the effective boundary spatial dimension (and di = d - 1 the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.

  19. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Some Dynamical Effects of the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.

    Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.

  1. Superintegrable systems on spaces of constant curvature

    NASA Astrophysics Data System (ADS)

    Gonera, Cezary; Kaszubska, Magdalena

    2014-07-01

    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand's theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay-Turbine-Winternitz (TTW) and Post-Winternitz (PW) models which have recently attracted some interest).

  2. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, O.A.

    1988-07-13

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.

  3. Molecular dynamics at constant temperature and pressure

    NASA Astrophysics Data System (ADS)

    Toxvaerd, S.

    1993-01-01

    Algorithms for molecular dynamics (MD) at constant temperature and pressure are investigated. The ability to remain in a regular orbit in an intermittent chaotic regime is used as a criterion for long-time stability. A simple time-centered algorithm (leap frog) is found to be the most stable of the commonly used algorithms in MD. A model of N one-dimensional dimers with a double-well intermolecular potential, for which the distribution functions at constant temperature T and pressure P can be calculated, is used to investigate MD-NPT dynamics. A time-centered NPT algorithm is found to sample correctly and to be very robust with respect to volume scaling.

  4. Dielectric Constant Measurements for Characterizing Lunar Soils

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.

    2005-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.

  5. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  6. Pole placement with constant gain output feedback

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Lindorff, D. P.

    1972-01-01

    Given a linear time invariant multivariable system with m inputs and p outputs, it was shown that p closed loop poles of the system can be preassigned arbitrarily using constant gain output feedback provided (A circumflex, B circumflex) is controllable. These data show that if (A circumflex, B circumflex, C circumflex) is controllable and observable, and Rank B circumflex = m, Rank C circumflex = p, then max (m,p) poles of the system can be assigned arbitarily using constant gain output feedback. Further, it is shown that in some cases more than max (m,p) poles can be arbitrarily assigned. A least square design technique is outlined to approximate the desired pole locations when it is not possible to place all the poles.

  7. SU(2) Low-Energy Constants from Mixed-Action Lattice QCD

    SciTech Connect

    Silas Beane, William Detmold, Parikshit Junnarkar, T.C. Luu, Konstantinos Orginos, Assumpta Parreno, Martin Savage, Aaron Torok, Andre Walker-Loud

    2012-11-01

    An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 <= m_l / m_s <= 0.6, while pion masses are in the range 235 < m_\\pi < 680 MeV. A two-flavor chiral perturbation theory analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients bar{l}_3 and bar{l}_4 to be bar{l}_3 = 4.04(40)(+73-55) and bar{l}_4 = 4.30(51)(+84-60). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f_\\pi / f = 1.062(26)(+42-40) where f is the decay constant in the chiral limit. The most recent scale setting by the MILC Collaboration yields a postdiction of f_\\pi = 128.2(3.6)(+4.4-6.0)(+1.2-3.3) MeV at the physical pion mass.

  8. Dynamical Cosmological Constant in R 3 Gravity

    NASA Astrophysics Data System (ADS)

    Zare, Nasser; Fathi, Mohsen

    2015-03-01

    In this paper, we go through the famous f( R) theories of gravity, but keeping a peculiar one, namely R 3 modification. Moreover, instead of a coordinate free cosmological parameter, we take it to be a function of time. Having all these stuff, we investigate the notions of standard cosmology model, in the context of R 3 modification to general relativity, and in various regimes, we study the dynamical cosmological constant.

  9. Potentiometric determination of aminal stability constants.

    PubMed

    Taylor, P D

    1995-02-01

    Potentiometric titration was used to determine the logarithms of the stepwise equilibrium constants for the species formed between morpholine and formaldehyde in aqueous solution, ionic strength 0.5 and 2.5M (KCl) at 25 degrees C. The instrumental and computational techniques developed for metal-ligand stability constant determination were applied. Formaldehyde is equivalent to the metal-ion and is represented by M while neutral morpholine is equivalent to the ligand and is represented by L. The stability constants of the following equilibria were determined by non-linear regression (figures in parentheses are at ionic strength 2.5 M KCl): M + L left arrow over right arrow ML (hemi-aminal) logK(1) = 2.90 +/- 0.02 (2.980 +/- 0.004); ML + L left arrow over right arrow ML(2) (bis-aminal); log K(2) = 1.3 +/- 0.2 (1.41 +/- 0.07); MLH left arrow over right arrow ML + H(+) (protonated hemi-aminal) pK(a) = 5.87 +/- 0.01 (6.411 +/- 0.005); ML(2)H left arrow over right arrow ML(2) + H(+) (protonated bis-aminal) pK(a) = (7.6 +/- 0.2). the pK(a) of the protonated bis-aminal could only be determined at the higher ionic strength. The results are in good agreement with reported values determined using the classic formol titration. The automated titration system acquired the full time course of the pH change upon each titrant addition allowing a kinetic analysis to be performed as well as an equilibrium analysis. The forward and reverse rate constants for M + L left arrow over right arrow ML were 0.77M(-1) sec(-1) and 8.1 x 10(-4) sec(-1). respectively. PMID:18966223

  10. Bose-Einstein condensation at constant temperature

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Schmaljohann, H.; Kronjäger, J.; Bongs, K.; Sengstock, K.

    2004-09-01

    We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular, the emergence of a new condensate is observed in multicomponent F=1 spinor condensates of Rb87 . Furthermore, we develop a simple rate-equation model for multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the measured effects.

  11. Mars Pathfinder Project: Planetary Constants and Models

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin

    1995-01-01

    This document provides a common set of astrodynamic constants and planetary models for use by the Mars Pathfinder Project. It attempts to collect in a single reference all the quantities and models in use across the project during development and for mission operations. These models are central to the navigation and mission design functions, but they are also used in other aspects of the project such as science observation planning and data reduction.

  12. Dielectric Constant of Suspensions of Blood Cells

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth; Ackmann, James

    1996-03-01

    Measurements of the complex dielectric constant of suspensions of blood cells have recently been reported by Ackmann, et al.(J. J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). At frequencies below 100 kHz, the real part of the dielectric constant (ɛ') goes through a maximum at a blood cell volume fraction of about 70%. Effective medium approximations do not agree well with this behavior. As a more realistic model, we are studying the grain consolidation model of Roberts and Schwartz(J. N. Roberts and L. M. Schwartz, Phys. Rev. B 31), 5990 (1985). We have used a finite element method to calculate the dielectric constant of this model for a cubic array of spheres. The simulations agree remarkably well with experiment. They suggest, however, that ɛ' may be showing oscillations rather than a simple maximum. Comparison of the simulated and experimental points suggests that this is not an artifact of the periodic array used in the model. Furthermore the simulations indicate that the maximum (or oscillations) disappears at low conductivities of the suspending fluid.

  13. What is Fine-structure Constant?

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2008-10-01

    Equation in [1] α>= 1/ ln λ, linking fine-structure constant and cosmological constant derived by using S = k ln W, the total number of microstates used (W) is 10^60, justified based on a unique age tag attached to each Planck time. The OPEN and CLOSED states of the particle's mouth illustrated in [1] could be two different types of entropic repositioning pulses, say attractive and repulsive. They need not be confused as affecting the number of microstates. The characteristics of a microstate need not change the number of microstates. Mathematically then, W = N! / n!(N-n)!; where N = 10^60 and n =1; giving W = 10^60, used in [1]. There are reasons to consider each Planck time as unique microstate based on its unique age. While investigating the proposal in terms of other theories, one has to be to keep in mind that the knowledge that created one problem cannot solve another. Refer to [1] Goradia, Shantilal, ``What is Fine-structure Constant?'' http://www.arXiv.org/pdf/physics/0210040v3.

  14. Time constants of flat superconducting cables

    SciTech Connect

    Takacs, S.; Yamamoto, J.

    1997-06-01

    The frequency dependence of coupling losses is calculated for flat superconducting cables, including the electromagnetic coupling between different current loops on the cable. It is shown that there are two characteristic time constants for both parallel and transverse coupling losses. The values of these time constants {tau}{sub 0} and {tau}{sub 1} are calculated by introducing effective inductances for the current loops. In both cases, {tau}{sub 1} is considerably smaller than {tau}{sub 0}. As the most important methods of determining {tau}{sub 0} from AC losses - namely, the limiting slope of loss/cycle at zero frequency and the position of the maximum loss/cycle vs. frequency - estimate {tau}{sub 0} and {tau}{sub 1}, respectively, the results are important for practical measurements and evaluation of time constants from AC losses. At larger frequencies, the losses are more likely to those in normal conductors (skin effect). The calculation schemes can be applied to cables with closely wound strands (like the cable-in-conduit conductors), too. However, several other effects should be considered being different and/or more important with respect to other cable types (demagnetization factor of strands and cables, larger regions near the cable edges, smaller number of strands and subcables, etc.).

  15. A constant current source for extracellular microiontophoresis.

    PubMed

    Walker, T; Dillman, N; Weiss, M L

    1995-12-01

    A sophisticated constant-current source suitable for extracellular microiontophoresis of tract-tracing substances, such as Phaseolus vulgaris leucoagglutinin, Biocytin or Fluoro-Gold, is described. This design uses a flyback switched-mode power supply to generate controllable high-voltage and operational amplifier circuitry to regulate current and provide instrumentation. Design features include a fast rise time, +/- 2000 V supply (stable output in < 250 ms), simultaneous load current and voltage monitoring, and separate pumping and holding current settings. Three features of this constant-current source make it especially useful for extracellular microiontophoresis. First, the output voltage monitor permits one to follow changes in the microelectrode resistance during current injection. Second, the voltage-limit (or out-of-compliance) indicator circuitry will sound an alarm when the iontophoretic pump is unable to generate the desired current, such as when the micropipette is blocked. Third, the high-compliance voltage power supply insures up to +/- 20 microA of current through 100 M omega resistance. This device has proven itself to be a reliable constant-current source for extracellular microiontophoresis in the laboratory. PMID:8788057

  16. Bouncing Models with a Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Pinto-Neto, Nelson; Siffert, Beatriz B.; Maier, Rodrigo; Pereira, Stella

    2011-06-01

    Most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role. If this is that case, the presence of dark energy can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this work, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and study its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, containing also a perfect fluid with constant equation of state parameter w. We show that, due to the vacuum state choice we have to make when a cosmological constant is present, the spectrum of the perturbations are substantially altered. We conclude that, in this case, the presence of a stiff matter fluid in the contracting phase is needed in order to have a scale invariant spectrum of perturbations in the expanding phase.

  17. Thermodynamic binding constants for gallium transferrin

    SciTech Connect

    Harris, W.R.; Pecoraro, V.L.

    1983-01-18

    Gallium-67 is widely used as an imaging agent for tumors and inflammatory abscesses. It is well stablished that Ga/sup 3 +/ travels through the circulatory system bound to the serum iron transport protein transferrin and that this protein binding is an essential step in tumor localization. However, there have been conflicting reports on the magnitude of the gallium-transferrin binding constants. Therefore, thermodynamic binding constants for gallium complexation at the two specific metal binding sites of human serum transferrin at pH 7.4 and 5 mM NaHCO/sub 3/ have been determined by UV difference spectroscopy. The conditional constants calculated for 27 mM NaHCO/sub 3/ are log K/sub 1/* = 20.3 and log K/sub 2/* = 19.3. These results are discussed in relation to the thermodynamics of transferrin binding of Fe/sup 3 +/ and to previous reports on gallium binding. The strength of transferrin complexation is also compared to that of a series of low molecular weight ligands by using calculated pM values (pM = -log (Ga(H/sub 2/O)/sub 6/)) to express the effective binding strength at pH 7.4.

  18. Planck Constant Determination from Power Equivalence

    NASA Astrophysics Data System (ADS)

    Newell, David B.

    2000-04-01

    Equating mechanical to electrical power links the kilogram, the meter, and the second to the practical realizations of the ohm and the volt derived from the quantum Hall and the Josephson effects, yielding an SI determination of the Planck constant. The NIST watt balance uses this power equivalence principle, and in 1998 measured the Planck constant with a combined relative standard uncertainty of 8.7 x 10-8, the most accurate determination to date. The next generation of the NIST watt balance is now being assembled. Modification to the experimental facilities have been made to reduce the uncertainty components from vibrations and electromagnetic interference. A vacuum chamber has been installed to reduce the uncertainty components associated with performing the experiment in air. Most of the apparatus is in place and diagnostic testing of the balance should begin this year. Once a combined relative standard uncertainty of one part in 10-8 has been reached, the power equivalence principle can be used to monitor the possible drift in the artifact mass standard, the kilogram, and provide an accurate alternative definition of mass in terms of fundamental constants. *Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce. Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.

  19. Determining the Orthotropic Properties of Gerbil Basilar Membrane from Space Constant Measurements

    NASA Astrophysics Data System (ADS)

    Liu, Shuangqin; White, Robert

    2011-11-01

    A geometrically nonlinear composite orthotropic plate finite element model is developed to analyze two sets of experimental results in order to extract the two effective elastic moduli, the effective shear modulus and the effective Poisson's ratio for the gerbil cochlea partition. It is shown that the spatial decay rate (the space constant) for the in-plane deflection is different than for the out-of-plane deflection, which has a significant effect on the derived partition properties. Orthotropy ratios (the ratio of the two elastic moduli) are approximately 65 close to the base to 10 in the upper middle turn of the cochlea.

  20. Proton decay studies at HRIBF

    SciTech Connect

    Batchelder, J. C.; Bingham, C. R.; Rykaczewski, K.; Toth, K. S.; Mas, J. F.; McConnell, J. W.; Yu, C.-H.; Davinson, T.; Slinger, R. C.; Woods, P. J.; Ginter, T. N.; Gross, C. J.; Grzywacz, R.; Kim, S. H.; Weintraub, W.; Janas, Z.; Karny, M.; MacDonald, B. D.; Piechaczek, A.; Zganjar, E. F.

    1998-12-21

    A double-sided Si-strip detector system has been installed and commissioned at the focal plane of the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. The system can be used for heavy charged particle emission studies with half-lives as low as a few {mu}sec. In this paper we present identification and study of the decay properties of the five new proton emitters: {sup 140}Ho, {sup 141m}Ho, {sup 145}Tm, {sup 150m}Lu and {sup 151m}Lu.

  1. Gravitational effects on inflaton decay

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori

    2015-05-22

    We point out that the inflaton inevitably couples to all non-conformally coupled matters gravitationally through an oscillation in the Hubble parameter or the cosmic scale factor. It leads to particle production during the inflaton oscillation regime, which is most efficient just after inflation. Moreover, the analysis is extended to the model with non-minimal inflaton couplings to gravity, in which the Hubble parameter oscillates more violently. We apply our results to the graviton production by the inflaton: gravitons are also produced just after inflation, but the non-minimal coupling does not induce inflaton decay into the graviton pair.

  2. Proton decay studies at HRIBF

    SciTech Connect

    Batchelder, J.C.; Bingham, C.R.; Rykaczewski, K.; Toth, K.S.; Mas, J.F.; McConnell, J.W.; Yu, C.; Bingham, C.R.; Grzywacz, R.; Kim, S.H.; Weintraub, W.; Rykaczewski, K.; Janas, Z.; Karny, M.; Davinson, T.; Slinger, R.C.; Woods, P.J.; Ginter, T.N.; Gross, C.J.; MacDonald, B.D.; Piechaczek, A.; Zganjar, E.F.; Ressler, J.J.; Walters, W.B.; Szerypo, J.

    1998-12-01

    A double-sided Si-strip detector system has been installed and commissioned at the focal plane of the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. The system can be used for heavy charged particle emission studies with half-lives as low as a few {mu}sec. In this paper we present identification and study of the decay properties of the five new proton emitters: {sup 140}Ho, {sup 141m}Ho, {sup 145}Tm, {sup 150m}Lu and {sup 151m}Lu. {copyright} {ital 1998 American Institute of Physics.}

  3. Bremsstrahlung in {alpha} Decay Reexamined

    SciTech Connect

    Boie, H.; Scheit, H.; Jentschura, U. D.; Koeck, F.; Lauer, M.; Schwalm, D.; Milstein, A. I.; Terekhov, I. S.

    2007-07-13

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed, which allows us to follow the photon spectra up to energies of {approx}500 keV. The measured differential emission probability is in good agreement with our theoretical results obtained within the quasiclassical approximation as well as with the exact quantum mechanical calculation. It is shown that, due to the small effective electric dipole charge of the radiating system, a significant interference between the electric dipole and quadrupole contributions occurs, which is altering substantially the angular correlation between the {alpha} particle and the emitted photon.

  4. Tau decays into K* mesons

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Frankl, C.; Reßing, D.; Schmidtler, M.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Schechelnitsky, S.; Danilov, M.; Doutskoy, A.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.

    1995-06-01

    Using the ARGUS detector at the storage ring DORIS II we have measured τ decays into three charged mesons containing K * mesons. Exploiting the good particle identification capabilities of the detector we have determined the following branching ratios:Brleft( {tau ^ - to overline {K^{*0} } π ^ - v_tau } right) = left( {0.25 ± 0.10 ± 0.05} right)% , B r (τ-→ K *0 K - v τ)= (0.20±0.05±0.04)%, and B r (τ-→ K *- X 0 v τ) =(1.15±0.15-0.18 +0.13)%.

  5. New predictions for inclusive heavy-quarkonium P-wave decays.

    PubMed

    Brambilla, Nora; Eiras, Dolors; Pineda, Antonio; Soto, Joan; Vairo, Antonio

    2002-01-01

    We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data. PMID:11800937

  6. Exploring the simplest purely baryonic decay processes

    NASA Astrophysics Data System (ADS)

    Geng, C. Q.; Hsiao, Y. K.; Rodrigues, Eduardo

    2016-07-01

    Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. We propose to search for purely baryonic decay processes at the LHCb experiment. No such type of decay has ever been observed. In particular, we concentrate on the decay Λb0→p p ¯n , which is the simplest purely baryonic decay mode, with solely spin-1 /2 baryons involved. We predict its decay branching ratio to be B (Λb0→p p ¯ n )=(2. 0-0.2+0.3)×10-6 , which is sufficiently large to make the decay mode accessible to LHCb. Our study can be extended to other purely baryonic decays such as Λb0→p p ¯ Λ , Λb0→Λ p ¯ Λ , and Λb0→Λ Λ ¯Λ , as well as to similar decays of antitriplet b baryons such as Ξb0 ,-.

  7. Nuclear vertex constants and asymptotic normalization coefficients for the tritium nucleus

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2009-12-15

    The properties of the nuclear vertex constant for virtual triton decay to a deuteron and a neutron (T {sup {yields}} d + n) are investigated along with the properties of the asymptotic normalization coefficient defined for the triton wave function and related to this constant. These quantities are calculated numerically on the basis of an equation that relates the asymptotic normalization coefficient to the triton effective radius {rho}{sub T}, which was introduced in the present study. The values of G{sub T}{sup 2} = 1.244(68) fm and C{sub T}{sup 2} = 2.958(162) found from our calculations are in good agreement with experimental and theoretical estimates obtained for these quantities in other studies. Physical properties of the triton virtual state are also discussed.

  8. Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.

  9. Rate constant for formation of chlorine nitrate by the reaction ClO + NO2 + M

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Lin, C. L.; Demore, W. B.

    1977-01-01

    The pseudo-first-order decay of ClO in a large excess of NO2 was monitored in a discharge flow/mass-spectrometer apparatus in order to measure the rate constant of the reaction ClO + NO2 + M yields ClONO2 + M for M = He, Ar, and N2 over the temperature range from 248 to 417 K. Numerical results are given for He at 248, 299, 360, and 417 K (1 to 9 torr); for Ar at 298 K (1 to 4 torr); and for N2 at 299, 360, and 417 K (1 to 6 torr). Systematic errors are estimated, and identification of the reaction product is discussed. The results obtained are shown to be in excellent agreement with other recent measurements of the same rate constant.

  10. Cascade decays of hollow ions

    SciTech Connect

    Omar, G. ); Hahn, Y. )

    1991-05-01

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe{sup 14+} ions with the initial 1{ital s}, 2{ital s}, and 2{ital p} vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1{ital s} holes is analyzed, and the result compared with that for the case of one 1{ital s} hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts.

  11. Bs decays at the Tevatron

    SciTech Connect

    Giurgiu, Gavril; /Johns Hopkins U.

    2010-09-01

    The authors present measurements of the branching ratio and of the polarization amplitudes in charmless B{sub s} {yields} {phi}{phi} decays using data corresponding to 2.9 fb{sup -1} of integrated luminosity, collected by the CDF experiment at the Tevatron. The branching ratio in B{sub s} {yields} {phi}{phi} decays is measured relative to the normalization mode B{sub s} {yields} J/{Psi}{phi} be {Beta}(B{sub s} {yields} {phi}{phi})/{Beta}(B{sub s} {yields} J/{Psi}{phi}) = [1.78 {+-} 0.14(stat) {+-} 0.20(syst)] x 10{sup -2}. Using the experimental value of {Beta}(B{sub s} {yields} J/{Psi}{phi}) they determine the B{sub s} {yields} {phi}{phi} branching ratio {Beta}(B{sub s} {yields} {phi}{phi}) = 2.40 {+-} 0.21(stat) {+-} 0.27(syst) {+-} 0.82(BR) x 10{sup -5}. The polarization fractions are measured for the first time in this analysis and found to be: |A{sub 0}|{sup 2} = 0.348 {+-} 0.041(stat) {+-} 0.021(syst); |A{sub {parallel}}|{sup 2} = 0.287 {+-} 0.043(stat) {+-} 0.011(syst); and |A{sub {perpendicular}}|{sup 2} = 0.365 {+-} 0.044(stat) {+-} 0.027(syst).

  12. Constant mean curvature foliations in cosmological spacetimes.

    NASA Astrophysics Data System (ADS)

    Rendall, A. D.

    1996-11-01

    Foliations by constant mean curvature hypersurfaces provide a possibility of defining a preferred time coordinate in general relativity. In the following various conjectures are made about the existence of foliations of this kind in spacetimes satisfying the strong energy condition and possessing compact Cauchy hypersurfaces. Recent progress on proving these conjectures under supplementary assumptions is reviewed. The method of proof used is explained and the prospects for generalizing it discussed. The relations of these questions to cosmic censorship and the closed universe recollapse conjecture are pointed out.

  13. Noncommutative approach to the cosmological constant problem

    SciTech Connect

    Garattini, Remo; Nicolini, Piero

    2011-03-15

    In this paper, we study the cosmological constant emerging from the Wheeler-DeWitt equation as an eigenvalue of the related Sturm-Liouville problem. We employ Gaussian trial functionals and we perform a mode decomposition to extract the transverse-traceless component, namely, the graviton contribution, at one loop. We implement a noncommutative-geometry-induced minimal length to calculate the number of graviton modes. As a result, we find regular graviton fluctuation energies for the Schwarzschild, de Sitter, and anti-de Sitter backgrounds. No renormalization scheme is necessary to remove infinities, in contrast to what happens in conventional approaches.

  14. Quantum coherence, wormholes, and the cosmological constant

    SciTech Connect

    Unruh, W.G. )

    1989-08-15

    Coleman has argued that if wormhole solutions to the Euclidean action coupled to matter dominate the Euclidean path integral for quantum gravity, they do not lead to a loss of quantum coherence for wave functions in our Universe. Furthermore, they also lead to the prediction that the ultimate'' cosmological constant is zero. I analyze the assumptions that go into this result and argue that the presence of wormhole solutions does lead to a loss of quantum coherence and, furthermore, completely destroys the Euclidean quantum theory by producing a highly nonlocal effective Euclidean action which is violently unbounded from below.

  15. The Boltzmann constant from a snifter

    NASA Astrophysics Data System (ADS)

    Tyukodi, B.; Sárközi, Zs; Néda, Z.; Tunyagi, A.; Györke, E.

    2012-03-01

    Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments.

  16. Radiation balances and the solar constant

    NASA Technical Reports Server (NTRS)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  17. The fine structure constant and habitable planets

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α‑1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  18. Radiation balances and the solar constant

    NASA Astrophysics Data System (ADS)

    Crommelynck, D.

    1981-07-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  19. TASI Lectures on the cosmological constant

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael

    2007-08-30

    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.

  20. Scalar field collapse with negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Baier, R.; Nishimura, H.; Stricker, S. A.

    2015-07-01

    The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four-dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter, which determines the equation of state and decides the fate of the spacetime. Without fine tuning the value of this parameter the collapse ends in a generic formation of a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.

  1. Optical constants of minerals and rocks.

    PubMed

    Aronson, J R; Strong, P F

    1975-12-01

    Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function of frequency and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found. PMID:20155132

  2. Dark Decay of the Top Quark

    SciTech Connect

    Kong, Kyoungchul; Lee, Hye-Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. The top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6sigma deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t-->bW+Z's. This is the same as the dominant top quark decay (t-->bW) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. We discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  3. Dark decay of the top quark

    SciTech Connect

    Kong, Kyoungchul; Lee, Hye -Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 σ deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t → b W + Z's. This is the same as the dominant top quark decay (t → b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. In addition, we discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  4. Rate Constant for the OH + CO Reaction at Low Temperatures.

    PubMed

    Liu, Yingdi; Sander, Stanley P

    2015-10-01

    Rate constants for the reaction of OH + CO → products (1) have been measured using laser photolysis/laser-induced fluorescence (LP/LIF) over the temperature range 193–296 K and at pressures of 50–700 Torr of Ar and N2. The reaction was studied under pseudo-first-order conditions, monitoring the decay of OH in the presence of a large excess of CO. The rate constants can be expressed as a combination of bimolecular and termolecular components. The bimolecular component was found to be temperature-independent with an expression given by kbi(T) = (1.54 ± 0.14) × 10(–13)[e(–(13±17)/T)] cm(3) molecule(–1) s(–1), with an error of one standard deviation. The termolecular component was fitted to the expression, kter = k0(T)[M]/[1 + (k0(T)[M]/k∞(T)] × 0.6({1+[log10(k0(T)[M]/k∞(T))]2}−1) where k0(T) = k0(300)(T/300)(−n) and k∞(T) = k∞(300)(T/300)(−m). The parameters for k0(T) were determined to be k0(300) = (6.0±0.5) × 10(−33) cm(6) molecule(–2) s(–1) in N2 and k0(300) = (3.4 ± 0.3) × 10(–33) cm(6) molecule(–2) s(–1) in Ar, with n = 1.9±0.5 and 2.0±0.4 in N2 and Ar, respectively. These parameters were determined using k0(T) and m from the NASA kinetics data evaluation (JPL Publication No. 10-6) since the experimental pressure range was far from the high-pressure limit. Addition of low concentrations of O2 had no discernible effect on the mechanism of the OH + CO reaction but resulted in secondary reactions which regenerated OH. PMID:26305192

  5. Measurements of Rare B Decays at BABAR

    SciTech Connect

    Bloom, Paul C.

    2003-03-05

    We present the results of searches for rare B meson decays. The measurements use all or part of a data sample of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric energy B Factory at the Stanford Linear Accelerator Center. We study a variety of decays dominated by electromagnetic, electroweak and gluonic penguin transitions, and report measurements of branching fractions.

  6. Rare Z decays and neutrino flavor universality

    NASA Astrophysics Data System (ADS)

    Durieux, Gauthier; Grossman, Yuval; König, Matthias; Kuflik, Eric; Ray, Shamayita

    2016-05-01

    We study rare four-body decays of the Z -boson involving at least one neutrino and one charged lepton. Large destructive interferences make these decays very sensitive to the Z couplings to neutrinos. As the identified charged leptons can determine the neutrino flavors, these decays probe the universality of the Z couplings to neutrinos. The rare four-body processes could be accurately measured at future lepton colliders, leading to percent level precision.

  7. Charm nonleptonic decays and final state interactions

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Lusignoli, M.; Pugliese, A.

    1996-02-01

    A global previous analysis of two-body nonleptonic decays of D mesons has been extended to the decays involving light scalar mesons. The allowance for final state interaction also in nonresonant channels provides a fit of much improved quality and with less symmetry breaking in the axial charges. We give predictions for about 50 decay branching ratios yet to be measured. We also discuss long distance contributions to the difference ΔΓ between the DS and DL widths.

  8. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  9. Constant Domain-regulated Antibody Catalysis*

    PubMed Central

    Sapparapu, Gopal; Planque, Stephanie; Mitsuda, Yukie; McLean, Gary; Nishiyama, Yasuhiro; Paul, Sudhir

    2012-01-01

    Some antibodies contain variable (V) domain catalytic sites. We report the superior amide and peptide bond-hydrolyzing activity of the same heavy and light chain V domains expressed in the IgM constant domain scaffold compared with the IgG scaffold. The superior catalytic activity of recombinant IgM was evident using two substrates, a small model peptide that is hydrolyzed without involvement of high affinity epitope binding, and HIV gp120, which is recognized specifically by noncovalent means prior to the hydrolytic reaction. The catalytic activity was inhibited by an electrophilic phosphonate diester, consistent with a nucleophilic catalytic mechanism. All 13 monoclonal IgMs tested displayed robust hydrolytic activities varying over a 91-fold range, consistent with expression of the catalytic functions at distinct levels by different V domains. The catalytic activity of polyclonal IgM was superior to polyclonal IgG from the same sera, indicating that on average IgMs express the catalytic function at levels greater than IgGs. The findings indicate a favorable effect of the remote IgM constant domain scaffold on the integrity of the V-domain catalytic site and provide a structural basis for conceiving antibody catalysis as a first line immune function expressed at high levels prior to development of mature IgG class antibodies. PMID:22948159

  10. Simple liquid models with corrected dielectric constants.

    PubMed

    Fennell, Christopher J; Li, Libo; Dill, Ken A

    2012-06-14

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations--water, carbon tetrachloride, chloroform, and dichloromethane. Normally, such solvent models are parametrized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parametrizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parametrizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577

  11. A Constant-Force Resistive Exercise Unit

    NASA Technical Reports Server (NTRS)

    Colosky, Paul; Ruttley, Tara

    2010-01-01

    A constant-force resistive exercise unit (CFREU) has been invented for use in both normal gravitational and microgravitational environments. In comparison with a typical conventional exercise machine, this CFREU weighs less and is less bulky: Whereas weight plates and associated bulky supporting structures are used to generate resistive forces in typical conventional exercise machines, they are not used in this CFREU. Instead, resistive forces are generated in this CFREU by relatively compact, lightweight mechanisms based on constant-torque springs wound on drums. Each such mechanism is contained in a module, denoted a resistive pack, that includes a shaft for making a torque connection to a cable drum. During a stroke of resistive exercise, the cable is withdrawn from the cable drum against the torque exerted by the resistance pack. The CFREU includes a housing, within which can be mounted one or more resistive pack(s). The CFREU also includes mechanisms for engaging any combination of (1) one or more resistive pack(s) and (2) one or more spring(s) within each resistive pack to obtain a desired level of resistance.

  12. Superintegrable systems on spaces of constant curvature

    SciTech Connect

    Gonera, Cezary Kaszubska, Magdalena

    2014-07-15

    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

  13. Constantly energized no-load tension packer

    SciTech Connect

    Preston, D.C.; Reiter, K.C.

    1981-12-29

    A retrievable, constantly energized, no-load packer is securable within a well and removable by application of tension. Upper and lower slip means are expandable into gripping engagement with the casing. A control body extends to the upper and lower slips and is encircled by packing means. A release housing extends from the lower expansion means with latch means being provided for securing the control body with the release housing, the latch means being shiftable to disengage the control body from the release housing for retrieval of the apparatus. Lock sleeve means are connected to the release housing for securing the latch means and one of the control body and release housing and are shearably releasable therefrom for disengagement of the control body and the release housing, the application of tension through the control string being carried by the control body without being transmitted through the lock sleeve means to set the apparatus. A tubular member securable to the running string is telescopically manipulatable within the body of the apparatus to provide a conventional slick joint upon selective release from the body of the apparatus. Effective pressure area means are provided for transmitting to the packer means a compressive force resulting from a differential pressure from above or below across the packing means when the slip means are in expanded position and the packing means are sealed relative to the casing whereby the packing means are constantly energized and maintained in sealed relation with the casing.

  14. Exercise Device Would Exert Selectable Constant Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Damon C.

    2003-01-01

    An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.

  15. Do Wormholes Fix the Coupling Constants?

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2004-05-01

    If Newtonian gravitation is modified to use surface-to-surface separation between particles, it can have the strength of nuclear force between nucleons. This may be justified by possible existence of quantum wormholes in particles. All gravitational interactions would be between coupled wormholes, emitting 1/r graviton flux from their exit mouths as a function of the particle size, allowing the point-like treatment above. When the wormhole exit mouths are 1 Planck length apart, the resultant force is the known strong force coupling constant with an order of magnitude of 40 compared to the normal gravitational strength for nucleons. In addition to being mathematically simple, the above finding is consistent with observations of other coupling constants, Feynman's speculation of "transfusion" of two particles into spin 2 gravitons (published in 1962), Hawking radiation, big-bang theory abundance of quantum wormholes, wormhole theory fine-tuned by Kip S. Thorne and Matt Visser, and recent microscopic gravity measurements. It potentially leads to the holographic principle being promoted by Dr. G. t' Hooft, by naturally pointing out that the mass of the particles is proportional to their diameter squared.

  16. Holographic dark energy with cosmological constant

    NASA Astrophysics Data System (ADS)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  17. Modified large number theory with constant G

    SciTech Connect

    Recami, E.

    1983-03-01

    The inspiring ''numerology'' uncovered by Dirac, Eddington, Weyl, et al. can be explained and derived when it is slightly modified so to connect the ''gravitational world'' (cosmos) with the ''strong world'' (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the ''Large Number Theory,'' cosmos and hadrons are considered to be (finite) similar systems, so that the ratio R-bar/r-bar of the cosmos typical length R-bar to the hadron typical length r-bar is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle: according to the ''cyclical big-bang'' hypothesis: then R-bar and r-bar can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constant G results to be independent of time. The present note is based on work done in collaboration with P.Caldirola, G. D. Maccarrone, and M. Pavsic.

  18. Effects of Neutrino Decay on Oscillation Probabilities

    NASA Astrophysics Data System (ADS)

    Leonard, Kayla; de Gouvêa, André

    2016-01-01

    It is now well accepted that neutrinos oscillate as a quantum mechanical result of a misalignment between their mass-eigenstates and the flavor-eigenstates. We study neutrino decay—the idea that there may be new, light states that the three Standard Model flavors may be able to decay into. We consider what effects this neutrino decay would have on the observed oscillation probabilities.The Hamiltonian governs how the states change with time, so we use it to calculate an oscillation amplitude, and from that, the oscillation probability. We simplify the theoretical probabilities using results from experimental data, such as the neutrino mixing angles and mass differences. By exploring what values of the decay parameters are physically allowable, we can begin to understand just how large the decay parameters can be. We compare the probabilities in the case of no neutrino decay and in the case of maximum neutrino decay to determine how much of an effect neutrino decay could have on observations, and discuss the ability of future experiments to detect these differences.We also examine neutrino decay in the realm of CP invariance, and found that it is a new source of CP violation. Our work indicates that there is a difference in the oscillation probabilities between particle transitions and their corresponding antiparticle transitions. If neutrino decay were proven true, it could be an important factor in understanding leptogenesis and the particle-antiparticle asymmetry present in our Universe.

  19. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States.... Slight surface development of green mold (Cladosporium) shall not be considered decay....

  20. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States.... Slight surface development of green mold (Cladosporium) shall not be considered decay....

  1. Unique forbidden beta decays and neutrino mass

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-01

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  2. Tensor mesons produced in tau lepton decays

    SciTech Connect

    Lopez Castro, G.; Munoz, J. H.

    2011-05-01

    Light tensor mesons (T=a{sub 2}, f{sub 2} and K{sub 2}*) can be produced in decays of {tau} leptons. In this paper we compute the branching ratios of {tau}{yields}T{pi}{nu} decays by assuming the dominance of intermediate virtual states to model the form factors involved in the relevant hadronic matrix elements. The exclusive f{sub 2}(1270){pi}{sup -} decay mode turns out to have the largest branching ratio, of O(10{sup -4}). Our results indicate that the contribution of tensor meson intermediate states to the three-pseudoscalar channels of {tau} decays are rather small.

  3. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  4. Spectroscopy of element 115 decay chains

    SciTech Connect

    Rudolph, Dirk; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L.-L.; Di Nitto, A.; Duehllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; Gross, Carl J; Hessberger, F. P.; Herzberg, R.-D; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, Krzysztof Piotr; Schaedel, M.; Aberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; Jaeger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Thoerle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Tuerler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2013-01-01

    A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  5. Effects of a decaying cosmological fluctuation.

    PubMed

    Amendola, Luca; Finelli, Fabio

    2005-06-10

    We present the initial conditions for a decaying cosmological perturbation and study its signatures in the cosmic microwave background anisotropies and matter power spectra. An adiabatic decaying mode in the presence of components that are not described as perfect fluids (such as collisionless matter) decays slower than in a perfect-fluid dominated Universe and displays super-Hubble oscillations. Wilkinson Microwave Anisotropy Probe first year data constrain the decaying to growing ratio of scale invariant adiabatic fluctuations at the matter-radiation equality to less than 10%. PMID:16090380

  6. PREFACE: Fundamental Constants in Physics and Metrology

    NASA Astrophysics Data System (ADS)

    Klose, Volkmar; Kramer, Bernhard

    1986-01-01

    This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and

  7. Analysis of B→a1(1260)(b1(1235))K* decays in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qing; Fu, Jian-Hua

    2015-03-01

    Within the framework of the perturbative quantum chromodynamics (PQCD) approach, we study the charmless two-body decays B→a1(1260)K*, b1(1235)K*. Using the decay constants and the light-cone distribution amplitudes for these mesons derived from the QCD sum rule method, we find the following results. (a) Our predictions for the branching ratios are consistent with the QCD factorization (QCDF) results within errors, but much larger than the naive factorization approach calculation values. (b) We predict that the anomalous polarizations occurring in the decays B→φK*, rHK* also happen in B→a1K* decays, while they do not happen in B→b1K* decays. Here the contributions from the annihilation diagrams play an important role in explaining the larger transverse polarizations in the B→a1K* decays, while they are not sensitive to the polarizations for the B→b1K* decays. (c) Our predictions for the direct CP-asymmetries agree well with the QCDF results within errors. The decays B¯0 → b+1K*-, B- → b01K*- have larger direct CP-asymmetries, which could be measured by the present LHCb experiment and the forthcoming Super-B experiment. Supported by National Natural Science Foundation of China (11147004, 11347030), Program of Youthful Key Teachers in University of Henan Province (001166), and by Foundation of Henan Educational Committee (14HASTIT037)

  8. Computing the dielectric constant of liquid water at constant dielectric displacement

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Sprik, Michiel

    2016-04-01

    The static dielectric constant of liquid water is computed using classical force field based molecular dynamics simulation at fixed electric displacement D . The method to constrain the electric displacement is the finite-temperature classical variant of the constant D method developed by Stengel, Spaldin, and Vanderbilt [Nat. Phys. 5, 304 (2009), 10.1038/nphys1185]. There is also a modification of this scheme imposing fixed values of the macroscopic field E . The method is applied to the popular SPC/E model of liquid water. We compare four different estimates of the dielectric constant, two obtained from fluctuations of the polarization at D =0 and E =0 and two from the variation of polarization with finite D and E . It is found that all four estimates agree when properly converged. The computational effort to achieve convergence varies, however, with constant D calculations being substantially more efficient. We attribute this difference to the much shorter relaxation time of longitudinal polarization compared to transverse polarization accelerating constant D calculations.

  9. Single and Double Beta-Decay Q Values among the Triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo.

    PubMed

    Alanssari, M; Frekers, D; Eronen, T; Canete, L; Dilling, J; Haaranen, M; Hakala, J; Holl, M; Ješkovský, M; Jokinen, A; Kankainen, A; Koponen, J; Mayer, A J; Moore, I D; Nesterenko, D A; Pohjalainen, I; Povinec, P; Reinikainen, J; Rinta-Antila, S; Srivastava, P C; Suhonen, J; Thompson, R I; Voss, A; Wieser, M E

    2016-02-19

    The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16)  keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the ^{96}Zr ββ decay, and its observation can provide one of the most direct tests of the neutrinoless ββ-decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single β-decay rate has been re-evaluated using a shell-model approach, which indicates a ^{96}Zr single β-decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant g_{A}. PMID:26943530

  10. Search for a Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Ubachs, W.

    2013-06-01

    Since the days of Dirac scientists have speculated about the possibility that the laws of nature, and the fundamental constants appearing in those laws, are not rock-solid and eternal but may be subject to change in time or space. Such a scenario of evolving constants might provide an answer to the deepest puzzle of contemporary science, namely why the conditions in our local Universe allow for extreme complexity: the fine-tuning problem. In the past decade it has been established that spectral lines of atoms and molecules, which can currently be measured at ever-higher accuracies, form an ideal test ground for probing drifting constants. This has brought this subject from the realm of metaphysics to that of experimental science. In particular the spectra of molecules are sensitive for probing a variation of the proton-electron mass ratio μ, either on a cosmological time scale, or on a laboratory time scale. A comparison can be made between spectra of molecular hydrogen observed in the laboratory and at a high redshift (z=2-3), using the Very Large Telescope (Paranal, Chile) and the Keck telescope (Hawaii). This puts a constraint on a varying mass ratio Δμ/μ at the 10^{-5} level. The optical work can also be extended to include CO molecules. Further a novel direction will be discussed: it was discovered that molecules exhibiting hindered internal rotation have spectral lines in the radio-spectrum that are extremely sensitive to a varying proton-electron mass ratio. Such lines in the spectrum of methanol were recently observed with the radio-telescope in Effelsberg (Germany). F. van Weerdenburg, M.T. Murphy, A.L. Malec, L. Kaper, W. Ubachs, Phys. Rev. Lett. 106, 180802 (2011). A. Malec, R. Buning, M.T. Murphy, N. Milutinovic, S.L. Ellison, J.X. Prochaska, L. Kaper, J. Tumlinson, R.F. Carswell, W. Ubachs, Mon. Not. Roy. Astron. Soc. 403, 1541 (2010). E.J. Salumbides, M.L. Niu, J. Bagdonaite, N. de Oliveira, D. Joyeux, L. Nahon, W. Ubachs, Phys. Rev. A 86, 022510

  11. Testing Supersymmetry with Neutron Decay

    NASA Astrophysics Data System (ADS)

    Wilburn, W. S.; Cirigliano, V.; Klein, A.; McGaughey, P. L.; Makela, M. F.; Morris, C. L.; Ramsey, J.; Salas-Bacci, A.; Saunders, A.; Broussard, L. J.; Young, A. R.

    2009-10-01

    It has been recently realized that the neutrino correlation parameter B in neutron decay is sensitive to Minimal Supersymmetric Models for the case of maximal mixing. B is currently known to a precision of 3x10-3, but a precision of better than 1x10-3 is required to test these models. Improvements in experimental techniques developed for the ongoing UCNA experiment and the planned abBA experiment may allow an improved measurement of B with a precision approaching 1x10-4. An emerging concept for combining these techniques into an experiment to measure B using ultracold neutrons and large-area silicon detectors will be discussed.

  12. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1994-01-01

    Davidsen et al. (1991) have argued that the failure to detect UV photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  13. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1993-01-01

    The DM profile in clusters of galaxies was studied and simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations and in agreement with microwave background fluctuations. Neutrino DM densities, with this amplitude normalization cluster, are comparable to observed cluster DM values. It was concluded that given this normalization, the cluster DM should be al least largely composed of neutrinos. The constraint of Davidson et al., who argued that the failure to detect uv photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis, could be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  14. Properties of a Decaying Sunspot

    NASA Astrophysics Data System (ADS)

    Balthasar, H.; Beck, C.; Gömöry, P.; Muglach, K.; Puschmann, K. G.; Shimizu, T.; Verma, M.

    A small decaying sunspot was observed with the Vacuum Tower Telescope (VTT) on Tenerife and the Japanese Hinode satellite. We obtained full Stokes scans in several wavelengths covering different heights in the solar atmosphere. Imaging time series from Hinode and the Solar Dynamics Observatory (SDO) complete our data sets. The spot is surrounded by a moat flow, which persists also on that side of the spot where the penumbra already had disappeared. Close to the spot, we find a chromospheric location with downflows of more than 10 km s^{-1} without photospheric counterpart. The height dependence of the vertical component of the magnetic field strength is determined in two different ways that yielded different results in previous investigations. Such a difference still exists in our present data, but it is not as pronounced as in the past.

  15. Predicting neutrinoless double beta decay

    SciTech Connect

    Hirsch, M.; Villanova del Moral, A.; Valle, J.W.F.

    2005-11-01

    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A{sub 4} family symmetry model. We show that there is a lower bound for the {beta}{beta}{sub 0{nu}} amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter vertical bar m{sub ee} vertical bar {>=}0.17{radical}({delta}m{sub ATM}{sup 2}). This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on vertical bar m{sub ee} vertical bar is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, {beta}{beta}{sub 0{nu}} may be accessible to the next generation of high sensitivity experiments.

  16. Laser Measurements of the H Atom + Ozone Rate Constant at Mesospheric Temperatures.

    PubMed

    Liu, Yingdi; Peng, Jian; Reppert, Kelsey; Callahan, Sara; Smith, Gregory P

    2016-06-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We remeasured its rate constant to reduce its uncertainty and extended the measurements to lower mesospheric temperatures using modern laser-induced fluorescence (LIF) techniques. H atoms were produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O((1)D) with added H2. A second, delayed, frequency-mixed dye laser measured the reaction decay rate with the remaining ozone using LIF. We monitored either the H atom decay by two photon excitation at 205 nm and detection of red fluorescence, or the OH (v = 9) product time evolution with excitation of the B(2)Σ(+)-X(2)Π (0,9) band at 237 nm and emission in the blue B(2)Σ(+)-A(2)Σ(+) (0,7) band. By cooling the enclosed low pressure flow cell we obtained measurements from 140 to 305 K at 20 to 200 Torr in Ar. Small kinetic modeling corrections were made for secondary regeneration of H atoms. The results are consistent with the current NASA JPL recommendation for this rate constant and establish its extrapolation down to the lower temperatures of the mesosphere. PMID:27193050

  17. New Physics in B decays

    NASA Astrophysics Data System (ADS)

    Crivellin, Andreas

    2016-04-01

    While the LHC did not observe direct evidence for physics beyond the standard model, indirect hints for new physics were uncovered in the flavour sector in the decays B → K*µ+ µ-, B → Kµ+ µ-/B → Ke+e-, Bs → øµ+µ-, B → D(*) τv and h → τ±µ∓. Each observable deviates from the SM predictions at the 2 - 3σ level only, but combining all b → sµ+µ- data via a global fit, one finds 4 - 5 σ difference for NP compared to the SM and combining B → D* τv with B → Dτv one obtains 3:9 σ. While B → D(*) τv and h → τv can be naturally explained by an extended Higgs sector, the b → sµ+µ- anomalies point at a Z' gauge boson. However, it is also possible to explain B → D(*) τv and b → sµ+ µ- simultaneously with leptoquarks while their effect in h → τ±µ∓ is far too small to account for current data. Combining a 2HDM with a gauged Lµ - Lτ symmetry allows for explaining the b → sµ+ µ- anomalies in combination with h → τ±µ∓, predicting interesting correlations with τ → 3µ. In the light of these deviations from the SM we also discuss the possibilities of observing lepton flavour violating B decays (e.g. B → K(*) τ±µ∓ and Bs → τ±µ∓).

  18. Kaluza-Klein Bulk Viscous Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Jain, Namrata I.; Bhoga, Shyamsunder S.

    2015-08-01

    Cosmological models with time varying gravitational constant G and cosmological constant Λ in the presence of viscous fluid in Kaluza-Klein metric were investigated. The solutions to Einstein Field Equation were obtained for different types of G, with bulk coefficient ξ = ξ 0 ρ d (where ρ is density of the Universe, d is some constant) and lambda Λ = α H 2 + β R -2 where H and R are Hubble parameter and scale factor respectively. Two possible models are suggested, one where G is proportional to H and, the other where G is inversely proportional to H. While the former leads to a non-singular model, the latter results in an inflationary model. Both Cosmological models show that the Universe is accelerating; but at the early stage of the Universe the behaviour of both models is quite different,which has been studied through the variation of decelerating parameter q with time.

  19. Numerical results on the transcendence of constants involving pi, e, and Euler's constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1988-01-01

    The existence of simple polynomial equations (integer relations) for the constants e/pi, e + pi, log pi, gamma (Euler's constant), e exp gamma, gamma/e, gamma/pi, and log gamma is investigated by means of numerical computations. The recursive form of the Ferguson-Fourcade algorithm (Ferguson and Fourcade, 1979; Ferguson, 1986 and 1987) is implemented on the Cray-2 supercomputer at NASA Ames, applying multiprecision techniques similar to those described by Bailey (1988) except that FFTs are used instead of dual-prime-modulus transforms for multiplication. It is shown that none of the constants has an integer relation of degree eight or less with coefficients of Euclidean norm 10 to the 9th or less.

  20. Molecular dynamics at constant Cauchy stress

    NASA Astrophysics Data System (ADS)

    Miller, Ronald E.; Tadmor, Ellad B.; Gibson, Joshua S.; Bernstein, Noam; Pavia, Fabio

    2016-05-01

    The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.