Science.gov

Sample records for 177lu labeled antibody

  1. Realistic multi-cellular dosimetry for 177Lu-labelled antibodies: model and application

    NASA Astrophysics Data System (ADS)

    Marcatili, S.; Pichard, A.; Courteau, A.; Ladjohounlou, R.; Navarro-Teulon, I.; Repetto-Llamazares, A.; Heyerdahl, H.; Dahle, J.; Pouget, J. P.; Bardiès, M.

    2016-10-01

    Current preclinical dosimetric models often fail to take account of the complex nature of absorbed dose distribution typical of in vitro clonogenic experiments in targeted radionuclide therapy. For this reason, clonogenic survival is often expressed as a function of added activity rather than the absorbed dose delivered to cells/cell nuclei. We designed a multi-cellular dosimetry model that takes into account the realistic distributions of cells in the Petri dish, for the establishment of survival curves as a function of the absorbed dose. General-purpose software tools were used for the generation of realistic, randomised 3D cell culture geometries based on experimentally determined parameters (cell size, cell density, cluster density, average cluster size, cell cumulated activity). A mixture of Monte Carlo and analytical approaches was implemented in order to achieve as accurate as possible results while reducing calculation time. The model was here applied to clonogenic survival experiments carried out to compare the efficacy of Betalutin®, a novel 177Lu-labelled antibody radionuclide conjugate for the treatment of non-Hodgkin lymphoma, to that of 177Lu-labelled CD20-specific (rituximab) and non-specific antibodies (Erbitux) on lymphocyte B cells. The 3D cellular model developed allowed a better understanding of the radiative and non-radiative processes associated with cellular death. Our approach is generic and can also be applied to other radiopharmaceuticals and cell distributions.

  2. Realistic multi-cellular dosimetry for (177)Lu-labelled antibodies: model and application.

    PubMed

    Marcatili, S; Pichard, A; Courteau, A; Ladjohounlou, R; Navarro-Teulon, I; Repetto-Llamazares, A; Heyerdahl, H; Dahle, J; Pouget, J P; Bardiès, M

    2016-10-07

    Current preclinical dosimetric models often fail to take account of the complex nature of absorbed dose distribution typical of in vitro clonogenic experiments in targeted radionuclide therapy. For this reason, clonogenic survival is often expressed as a function of added activity rather than the absorbed dose delivered to cells/cell nuclei. We designed a multi-cellular dosimetry model that takes into account the realistic distributions of cells in the Petri dish, for the establishment of survival curves as a function of the absorbed dose. General-purpose software tools were used for the generation of realistic, randomised 3D cell culture geometries based on experimentally determined parameters (cell size, cell density, cluster density, average cluster size, cell cumulated activity). A mixture of Monte Carlo and analytical approaches was implemented in order to achieve as accurate as possible results while reducing calculation time. The model was here applied to clonogenic survival experiments carried out to compare the efficacy of Betalutin(®), a novel (177)Lu-labelled antibody radionuclide conjugate for the treatment of non-Hodgkin lymphoma, to that of (177)Lu-labelled CD20-specific (rituximab) and non-specific antibodies (Erbitux) on lymphocyte B cells. The 3D cellular model developed allowed a better understanding of the radiative and non-radiative processes associated with cellular death. Our approach is generic and can also be applied to other radiopharmaceuticals and cell distributions.

  3. Radiolanthanide-labeled monoclonal antibody CC49 for radioimmunotherapy of cancer: biological comparison of DOTA conjugates and 149Pm, 166Ho, and 177Lu.

    PubMed

    Mohsin, Huma; Jia, Fang; Sivaguru, Geethapriya; Hudson, Michael J; Shelton, Tiffani D; Hoffman, Timothy J; Cutler, Cathy S; Ketring, Alan R; Athey, Phillip S; Simón, Jaime; Frank, R Keith; Jurisson, Silvia S; Lewis, Michael R

    2006-01-01

    The radiolanthanides 149Pm, 166Ho, and 177Lu have decay characteristics suitable for radioimmunotherapy (RIT) of cancer. N-Hydroxysulfosuccinimidyl DOTA (DOTA-OSSu) and methoxy-DOTA (MeO-DOTA) were conjugated to the anti-TAG-72 monoclonal antibody CC49 for radiolabeling with 149Pm, 166Ho, and 177Lu. While both DOTA conjugates could be labeled to high specific activity with 177Lu, MeO-DOTA afforded superior conjugate stability, radiolabeling, and radiochemical purity. Pilot biodistributions in nude mice bearing LS174T human colon carcinoma xenografts demonstrated that MeO-DOTA afforded higher tumor uptake and lower kidney retention of 177Lu than DOTA-OSSu. The in vitro stability of 149Pm-, 166Ho-, and 177Lu-MeO-DOTA-CC49 was evaluated using serum and hydroxyapatite assays. Serum stability of radiolanthanide-labeled MeO-DOTA-CC49 followed a trend based on the coordination energies of the radiometals, with 177Lu showing the highest stability after 96 to 168 h at 37 C. In contrast, MeO-DOTA-CC49 labeled with all three radiolanthanides was >92% stable to hydroxyapatite challenge for 168 h at 37 C. Comprehensive biodistributions of 149Pm-, 166Ho-, and 177Lu-MeO-DOTA-CC49 were obtained in LS174T-bearing nude mice. Maximum tumor uptakes were 100.0% ID/g for 149Pm at 96 h, 69.5% ID/g for 166Ho at 96 h, and 132.4% ID/g for 177Lu at 168 h. Normal organ uptakes were generally low, except in the liver, spleen, and kidney at early time points. By 96 to 168 h postinjection, nontarget organ uptake decreased to approximately 7% ID/g (kidney), 12% ID/g (spleen), and 20% ID/g (liver) for each radiolanthanide. When labeled with 149Pm, 166Ho, and 177Lu, MeO-DOTA-CC49 has potential for RIT of colorectal cancer and other carcinomas.

  4. Sequential radioimmunotherapy with 177Lu- and 211At-labeled monoclonal antibody BR96 in a syngeneic rat colon carcinoma model.

    PubMed

    Eriksson, Sophie E; Elgström, Erika; Bäck, Tom; Ohlsson, Tomas; Jensen, Holger; Nilsson, Rune; Lindegren, Sture; Tennvall, Jan

    2014-08-01

    Alpha-particle emitters, such as astatine-211 (211At), are generally considered suitable for the treatment of small cell clusters due to their short path length, while beta-particle emitters, for example, Lutetium-177 (177Lu), have a longer path length and are considered better for small, established tumors. A combination of such radionuclides may be successful in regimens of radioimmunotherapy. In this study, rats were treated by sequential administration of first a 177Lu-labeled antibody, followed by a 211At-labeled antibody 25 days later. Rats bearing solid colon carcinoma tumors were treated with 400 MBq/kg body weight 177Lu-BR96. After 25 days, three groups of animals were given either 5 or 10 MBq/kg body weight of 211At-BR96 simultaneously with or without a blocking agent reducing halogen uptake in normal tissues. Control animals were not given any 211At-BR96. Myelotoxicity, body weight, tumor size, and development of metastases were monitored for 120 days. Tumors were undetectable in 90% of the animals on day 25, independent of treatment. Additional treatment with 211At-labeled antibodies did not reduce the proportion of animals developing metastases. The rats suffered from reversible myelotoxicity after treatment. Sequential administration of 177Lu-BR96 and 211At-BR96 resulted in tolerable toxicity providing halogen blocking but did not enhance the therapeutic effect.

  5. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model.

    PubMed

    Song, In Ho; Lee, Tae Sup; Park, Yong Serk; Lee, Jin Sook; Lee, Byung Chul; Moon, Byung Seok; An, Gwang Il; Lee, Hae Won; Kim, Kwang Il; Lee, Yong Jin; Kang, Joo Hyun; Lim, Sang Moo

    2016-07-01

    Immuno-PET provides valuable information about tumor location, phenotype, susceptibility to therapy, and treatment response, especially to targeted radioimmunotherapy. In this study, we prepared antiepidermal growth factor receptor (EGFR) antibody via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with (64)Cu or (177)Lu to evaluate the EGFR expression levels using immuno-PET and the feasibility of radioimmunotherapy in an esophageal squamous cell carcinoma (ESCC) model. Cetuximab was conjugated with p-SCN-Bn-PCTA and radiolabeled with (64)Cu or (177)Lu. In vitro EGFR expression levels were determined and compared using flow cytometry and cell binding assay. In vivo EGFR expression levels were evaluated via immuno-PET imaging of (64)Cu-cetuximab and biodistribution analysis. Micro-SPECT/CT imaging, biodistribution, and radioimmunotherapy studies of (177)Lu-cetuximab were performed in the ESCC model. Therapeutic responses were monitored using (18)F-FDG PET and immunohistochemical staining. (64)Cu- or (177)Lu-labeled antibodies showed high radiolabeling yield (>98%), stability (>90%), and favorable immunoreactivity. In vitro EGFR status measured by cell binding assay was correlated with the flow cytometry data. Immuno-PET, micro-SPECT/CT, and biodistribution demonstrated specific uptake in ESCC tumors depending on the EGFR expression levels. Tumor accumulation of (64)Cu- and (177)Lu-cetuximab was peaked at 48 and 120 h, respectively. Radioimmunotherapy with (177)Lu-cetuximab showed significant inhibition of tumor growth (P < 0.01) and marked reduction of (18)F-FDG SUV compared with that of control (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity and Ki-67 staining indices increased and decreased, respectively, in the radioimmunotherapy group compared with other groups (P < 0.01). (64)Cu-cetuximab immuno-PET represented EGFR expression levels in ESCC tumors, and

  6. Pretargeted Radioimmunotherapy of Prostate Cancer with an Anti-TROP-2×Anti-HSG Bispecific Antibody and a 177Lu-Labeled Peptide

    PubMed Central

    Frielink, Cathelijne; Goldenberg, David M.; Sharkey, Robert M.; Lütje, Susanne; McBride, William J.; Oyen, Wim J.G.; Boerman, Otto C.

    2014-01-01

    Abstract TROP-2 is a pancarcinoma marker that is expressed at high levels in many epithelial cancers, including prostate cancer (PC). The trivalent bispecific antibody TF12 (anti-TROP2×anti-HSG [histamine-succinyl-glycine]) has shown to effectively target PC. In this study, the efficacy of pretargeted radioimmunotherapy (PRIT) with multiple cycles of TF12 and 177Lu-labeled diHSG-peptide (IMP288) in mice with s.c. PC3 tumors was investigated and compared with that of conventional RIT with 177Lu-labeled anti-TROP-2 mAb hRS7. Methods: The potential of one, two, and three cycles of PRIT using the TF12 pretargeted 177Lu-IMP288 (41 MBq per cycle) was determined in mice with s.c. PC3 tumors, and compared with the efficacy and toxicity of RIT with 177Lu-hRS7 dosed at the maximum tolerated dose (11 MBq). Results: PRIT of two and three cycles showed significantly higher median survival (>150 days) compared with PRIT of one cycle of TF12 and 177Lu-IMP288 (111 days, p<0.001) or the controls (76 days, p<0.0001). All mice treated with the mAb 177Lu-hRS7 survived at the end of the experiment (150 days), compared with 80% in the mice that were treated with three cycles of PRIT and 70% in the group that received two cycles of PRIT. Clinically significant hematologic toxicity was found only in the groups that received either three cycles of PRIT (p<0.0009) or RIT (p<0.0001). Conclusions: TROP-2-expressing PC can be targeted efficiently with TF12 and radiolabeled IMP288. 177Lu-IMP288 accumulated rapidly in the tumors. PRIT of multiple cycles inhibited the growth of s.c. PC3 tumors. Clinically relevant hematological toxicity was observed in the group that received three cycles of PRIT; however, conventional RIT with the parent mAb 177Lu-hRS7 was at least as effective with similar toxicity. PMID:25226447

  7. 177Lu-labeled Gold Nanoparticles for Radiation Therapy of Locally Advanced Breast Cancer

    NASA Astrophysics Data System (ADS)

    Yook, Simmyung

    rapid, indicating that 177Lu-DOTA-PEG-OPSS-AuNP was less stable than two other forms of 177Lu-MCP-AuNP. Since MCP presenting a terminal multi-LA group provides the greatest stability, this conjugation chemistry is the most promising for construction of 177 Lu-labeled and antibody-targeted AuNP for neoadjuvant treatment of LABC.

  8. Biodistributions of 177Lu- and 111In- labeled 7E11 Antibodies to Prostate-Specific Membrane Antigen in Xenograft Model of Prostate Cancer and Potential Use of 111In-7E11 as a Pretherapeutic Agent for 177Lu-7E11 Radioimmunotherapy

    PubMed Central

    Pan, Mei-Hsiu; Gao, Dong-Wei; Feng, Jinjin; He, Jiang; Seo, Youngho; Tedesco, John; Wolodzko, John G.; Hasegawa, Bruce H.; Franc, Benjamin L.

    2010-01-01

    Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein highly expressed in many prostate cancers, and can be targeted with radiolabeled antibodies for diagnosis and treatment of this disease. To serve as a radioimmunotherapeutic agent, a kinetically inert conjugate is desired to maximize tumor uptake and tumor radiation dose with minimal nonspecific exposure to bone marrow and other major organs. In this study, we assessed the pharmacokinetics and biodistribution of the 7E11 monoclonal antibody (MAb) radiolabeled with the lutetium-177 (177Lu) - tetraazacyclododecanetetraacetic acid (DOTA) conjugate system (177Lu-7E11) versus those of the 7E11 MAb radiolabeled with the indium-111 (111In) – glycyl-tyrosyl-(N,-diethylenetriaminepentaacetic acid)-lysine hydrochloride (DTPA) conjugate system (111In-7E11, also known as ProstaScint®), to determine the feasibility of using 111In-7E11 as a pretherapeutic agent for 177Lu-7E11 radioimmunotherapy. Pharmacokinetic and biodistribution studies of 177Lu-7E11 in LNCaP xenograft mice were performed at 2, 8, 12, 24, 72, and 168 hours after radiopharmaceutical administration. For 111In-7E11, pharmacokinetic and biodistribution studies were performed at 8, 24, and 72 hours. Parallel studies of 177Lu-7E11 in nontumor bearing mice at 8, 24, and 72 hours postinjection served as controls. Gamma scintigraphy was performed, followed by autoradiography and tissue counting to demonstrate and quantify the distributions of radioconjugated MAb in the tumor and normal tissues. Both 177Lu- and 111In- 7E11 conjugates demonstrated an early blood pool phase in which uptake was dominated by the blood, lung, spleen and liver, followed by uptake and retention of the radiolabeled antibody in the tumor which was most prominent at 24 h. Total accumulation of radioconjugated MAb in tumor at 24 h was greater in the case of 177Lu-7E11 in comparison to that of 111In-7E11. Continued accumulation in tumor was observed for the entire time

  9. Anti-EGFRvIII monoclonal antibody armed with 177Lu: in vivo comparison of macrocyclic and acyclic ligands

    PubMed Central

    Hens, Marc; Vaidyanathan, Ganesan; Zhao, Xiao-Guang; Bigner, Darell D.; Zalutsky, Michael R.

    2010-01-01

    Introduction Monoclonal antibody (mAb) L8A4 binds specifically to the epidermal growth factor receptor variant III (EGFRvIII) that is present on gliomas but not normal tissues, and is internalized rapidly after receptor binding. Because of the short range of its β-emissions, labeling this mAb with177Lu would be an attractive approach for the treatment of residual tumor margins remaining after surgical debulking of brain tumors. Materials and Methods L8A4 mAb was labeled with 177Lu using the acyclic ligands [(R)-2-Amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine- pentaacetic acid (CHX-A″-DTPA) and 2-(4-Isothiocyanatobenzyl)-6-methyldiethylene- triaminepentaacetic acid (1B4M-DTPA), and the macrocyclic ligands S-2-(4- Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (C-DOTA) and α-(5-isothiocyanato-2-methoxyphenyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10- tetraacetic acid (MeO-DOTA). Paired-label tissue distribution experiments were performed in athymic mice bearing subcutaneous EGFRvIII-expressing U87.)EGFR glioma xenografts over a period of 1 to 8 days to directly compare 177Lu-labeled L8A4 to L8A4 labeled with 125I using N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB). Results Except with C-DOTA, tumor uptake for the 177Lu-labeled mAb was significantly higher than the co-administered radioiodinated preparation; however, this was also the case for spleen, liver, bone and kidneys. Tumor:normal tissue ratios for 177Lu-1B4M-DTPA-L8A4 and to an even greater extent, 177Lu-MeO-DOTA-L8A4, were higher than those for [125I]SGMIB-L8A4 in most other tissues. Conclusions Tumor and normal tissue distribution patterns for this anti-EGFRvIII mAb were dependent on the nature of the bifunctional chelate used for 177Lu labeling. Optimal results were obtained with 1B4M-DTPA and MeO-DOTA, suggesting no clear advantage for acyclic vs. macrocyclic ligands for this application. PMID:20870149

  10. A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti-PSMA Biochemically Monoclonal Antibody J591 in Patients with High-Risk Castrate, Biochemically Relapsed Prostate Cancer

    DTIC Science & Technology

    2010-09-01

    hypothesis is that the addition of 177Lu- J591 to ketoconazole will improve time to radiographically apparent metastases in men with biochemically...endpoint will be to compare the percentage of men with metastases at 18 months receiving ketoconazole plus 177Lu-J591 vs ketoconazole plus trace...phase II trial of 177lu radiolabeled monoclonal antibody J591 (177Lu-J591) and ketoconazole in patients (pts) with high-risk castrate biochemically

  11. Reducing renal uptake of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues

    SciTech Connect

    Miao, Yubin; Fisher, Darrell R.; Quinn, Thomas P.

    2006-06-15

    The purpose of this study was to improve the tumor-to-kidney uptake ratios of 90Y- and 177Lu-[1,2,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Re-Cys,D-Phe,Arg]alpha-melanocyte stimulating hormone (DOTA-RE(Arg)CCMSH), through coupling a negatively charged glutamic acid (Glu) to the peptide sequence. A new peptide of DOTA-Re(Glu,Arg)CCMSH was designed, synthesized and labeled with 90Y and 177Lu. Pharmacokinetics of 90Y- and 177Lu-DOTA-RE(Glu,Arg)CCNSH were determined in B16/F1 murine melanoma-bearing C57 mice. Both exhibited significantly less renal uptake than 90Y- and 177Lu-DOTA-Re(Arg)CCMSH at 30 min and at 2, 3, and 24 h after dose administration. The renal uptake values of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH were 28.16% and 28.81% of those of 90Y- and 177Lu-DOTA-RE(Arg)CCMSH, respectively, at 4 hr post-injection. We also showed higher tumor-to-kidney uptake ratios 2.28 and 1.69 times that of 90Y- and 177Lu-DOTA-Re(Arg)CCMSH, respectively, at 4 h post-injection. The90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH activity accumulation was low in normal organs except for kidneys. Coupling a negatively charged amino acid (Glu) to the CCMSH peptide sequence dramatically reduced the renal uptake values and increased the tumor-to-kidney uptake ratios of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH, facilitating their potential applications as radiopharmaceuticals for targeted radionuclide therapy of melanoma.

  12. Standardization of Procedures for the Preparation of (177)Lu- and (90)Y-labeled DOTA-Rituximab Based on the Freeze-dried Kit Formulation.

    PubMed

    Wojdowska, Wioletta; Karczmarczyk, Urszula; Maurin, Michal; Garnuszek, Piotr; Mikołajczak, Renata

    2015-01-01

    Rituximab when radiolabelled with (177)Lu or (90)Y has been investigated for the treatment of patients with Non-Hodgkin's Lymphoma. In this study, we optimized the preparation of antibody conjugates with chelating agent in the freeze-dried kit. It shortens procedures needed for the successful radiolabeling with lutetium-177 and yttrium-90 and assures reproducible labelling yields. Various molar ratios of Rituximab:DOTA (from 1:5 to 1:100) were used at the conjugation step and different purification method to remove unbound DOTA were investigated (size-exclusion chromatography, dialysis, ultrafiltration). The final monoclonal antibody concentration was quantified by Bradford method, and the number of DOTA molecules was determined by radiolabeling assay using (64)Cu. The specific activity of (177)Lu-DOTA-Rituximab and (90)Y-DOTA-Rituximab were optimized using various amounts of radiometal. Quality control (SE-HPLC, ITLC) and stability study were performed. An average of 4.2 ± 0.8 p-SCN-Bz-DOTA molecules could be randomly conjugated to a single molecule of Rituximab. The ultrafiltration system was the most efficient for purification and resulted in the highest recovery efficiency (77.2%). At optimized conditions the (177)Lu-DOTARituximab and (90)Y-DOTA-Rituximab were obtained with radiochemical purity >99% and specific activity ca. 600 MBq/mg. The radioimmunoconjugates were stable in human serum and 0.9% NaCl. After 72 h of incubation the radiochemical purity of (177)Lu-DOTA-Rituximab decreased to 94% but it was still more than 88% for (90)Y-DOTA-Rituximab. The radioimmunoconjugate showed stability after six months storage at 2 - 8(0)C, as a lyophilized formulation. Our study shows that Rituximab-DOTA can be efficiently radiolabeled with (177)Lu and (90)Y via p-SCN-Bn-DOTA using a freezedried kit.

  13. 177Lu-labeled HPMA Copolymers Utilizing Cathepsin B and S Cleavable Linkers: Synthesis, Characterization and Preliminary In Vivo Investigation in a Pancreatic Cancer Model

    PubMed Central

    Ogbomo, Sunny M.; Shi, Wen; Wagh, Nilesh K; Zhou, Zhengyuan; Brusnahan, Susan K.; Garrison, Jered C.

    2013-01-01

    Introduction A major barrier to the advancement of therapeutic nanomedicines has been the non-target toxicity caused by the accumulation of the drug delivery systems in organs associated with the reticuloendothelial system, particularly the liver and spleen. Herein, we report the development of peptide based metabolically active linkers (MALs) that are enzymatically cleaved by cysteine cathepsin B and S, two proteases highly expressed in the liver and spleen. The overall goal of this approach is to utilize the MALs to lower the non-target retention and toxicity of radiolabeled drug delivery systems, thus resulting in higher diagnostic and radiotherapeutic efficacy. Methods In this study three MALs (MAL0, MAL1 and MAL2) were investigated. MAL1 and MAL2 are composed of known substrates of cathepsin B and S, respectively, while MAL0 is a non-cleavable control. Both MAL1 and MAL2 were shown to undergo enzymatic cleavage with the appropriate cathepsin protease. Subsequent to conjugation to the HPMA copolymer and radiolabeling with 177Lu, the peptide-polymer conjugates were renamed 177Lu- metabolically active copolymers (177Lu-MACs) with the corresponding designation 177Lu-MAC0, 177Lu-MAC1 and 177Lu-MAC2. Results In vivo evaluation of the 177Lu-MACs was performed in a HPAC human pancreatic cancer xenograft mouse model. 177Lu-MAC1 and 177Lu-MAC2 demonstrated 3.1 and 2.1 fold lower liver retention, respectively, compared to control (177Lu-MAC0) at 72 h post-injection. With regard to spleen retention, 177Lu-MAC1 and 177Lu-MAC2 each exhibited a nearly fourfold lower retention, relative to control, at the 72 h time point. However, the tumor accumulation of the 177Lu-MAC0 was two to three times greater than 177Lu-MAC1 and 177Lu-MAC2 at the same time point. The MAL approach demonstrated the capability of substantially reducing the non-target retention of the 177Lu-labeled HPMA copolymers. Conclusions While further studies are needed to optimize the pharmacokinetics of the 177Lu

  14. Targeted Radionuclide Therapy with A 177Lu-labeled Anti-HER2 Nanobody

    PubMed Central

    D'Huyvetter, Matthias; Vincke, Cécile; Xavier, Catarina; Aerts, An; Impens, Nathalie; Baatout, Sarah; De Raeve, Hendrik; Muyldermans, Serge; Caveliers, Vicky; Devoogdt, Nick; Lahoutte, Tony

    2014-01-01

    RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MW < 15 kDa) functional antigen-binding fragments that are derived from heavy chain-only camelid antibodies. Here, we show that the extend of kidney retention of nanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70 % drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90 %. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88 % when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95 % with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide

  15. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.

    PubMed

    D'Huyvetter, Matthias; Vincke, Cécile; Xavier, Catarina; Aerts, An; Impens, Nathalie; Baatout, Sarah; De Raeve, Hendrik; Muyldermans, Serge; Caveliers, Vicky; Devoogdt, Nick; Lahoutte, Tony

    2014-01-01

    RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MW<15 kDa) functional antigen-binding fragments that are derived from heavy chain-only camelid antibodies. Here, we show that the extend of kidney retention of nanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70% drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90%. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88% when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95% with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy

  16. Preparation and Evaluation of (177)Lu-Labeled Gemcitabine: An Effort Toward Developing Radiolabeled Chemotherapeutics for Targeted Therapy Applications.

    PubMed

    Ghosh, Subhajit; Das, Tapas; Sarma, Haladhar D; Dash, Ashutosh

    2017-09-06

    Gemcitabine, a nucleoside analogue, is used as a chemotherapeutic drug for the treatment of a wide variety of cancers. Therefore, radiolabeled gemcitabine may have potential as a radiotherapeutic agent for the treatment of various types of cancers. In the present work, an attempt has been made to radiolabel gemcitabine with (177)Lu and study the preliminary biological behavior of (177)Lu-labeled gemcitabine in tumor-bearing animal model. Gemcitabine was coupled with p-NCS-benzyl-DOTA, a bifunctional chelating agent, to facilitate radiolabeling with (177)Lu. The p-NCS-benzyl-DOTA-gemcitabine conjugate was radiolabeled with (177)Lu, produced in-house and characterized by high-performance liquid chromatography. Tumor targeting potential of the radiolabeled agent was determined by biodistribution studies in Swiss mice bearing fibrosarcoma tumors. (177)Lu-gemcitabine was prepared with a radiochemical purity of 95.7% ± 0.3% under the optimized reaction conditions. The radiolabeled agent showed adequate in vitro stability in normal saline as well as in human blood serum. Preliminary biological studies revealed rapid and significant accumulation of the radiotracer in the tumorous lesions along with fast clearance of activity from blood and other vital organs/tissue. Although tumor uptake gradually reduced with time, tumor to blood and tumor to muscle ratios were improved due to the comparatively faster clearance of activity from the nontarget organs/tissue. The present study demonstrates the preliminary potential of (177)Lu-gemcitabine for targeted radiotherapy. However, further studies are warranted to assess its potential for radiotherapeutic applications.

  17. Biodistribution, Pharmacokinetics, and Dosimetry of (177)Lu-, (90)Y-, and (111)In-Labeled Somatostatin Receptor Antagonist OPS201 in Comparison to the Agonist (177)Lu-DOTATATE: The Mass Effect.

    PubMed

    Nicolas, Guillaume P; Mansi, Rosalba; McDougall, Lisa; Kaufmann, Jens; Bouterfa, Hakim; Wild, Damian; Fani, Melpomeni

    2017-09-01

    Radiolabeled somatostatin receptor (SSTR) antagonists have shown in vivo higher uptake in SSTR-expressing tumors than agonists. In this preclinical study, the SSTR2 antagonist OPS201 (DOTA-JR11; DOTA-[Cpa-c(DCys-Aph(Hor)-DAph(Cbm)-Lys-Thr-Cys)-DTyr-NH2]) labeled with (177)Lu, (90)Y, and (111)In was compared with the SSTR2 agonist (177)Lu-DOTATATE. Methods: Biodistribution, pharmacokinetics, SPECT/CT, and dosimetry studies were performed to assess the bioequivalence of all radiotracers. Use of escalated peptide mass and nephroprotective agents were systematically investigated. Results: The tumor residence time was 15.6 h (13.4-17.7) for (177)Lu-OPS201 (10 pmol) and 6.4 h (5.4-7.3) for (177)Lu-DOTATATE, resulting in a 2.5-times-higher tumor dose for the antagonist than for the agonist (0.854 vs. 0.333 mGy/MBq for a 4-cm tumor). The overall tumor-to-kidney dose ratio was approximately 24% and 32% higher for (177)Lu-OPS201 than for (90)Y-OPS201 and (177)Lu-DOTATATE, respectively. (111)In-OPS201 had a biodistribution significantly different from (90)Y-OPS201 and is therefore not a surrogate for (90)Y-OPS201 dosimetry studies. Importantly, and in contrast to (177)Lu-DOTATATE, injection of 10, 200, and 2,000 pmol of (177)Lu-OPS201 did not cause any relevant tumor saturation, with tumor uptake 4 h after injection: 23.9, 24.9, and 18.8 percentage of injected activity per gram of tissue (%IA/g), respectively, for the antagonist (P > 0.05), as compared with 17.8, 12.0, and 9.9 %IA/g for the agonist (P < 0.05). Increasing the peptide mass of (177)Lu-OPS201 from 10 to 200 pmol drastically decreased the effective dose from 0.0908 to 0.0184 mSv/MBq and decreased the uptake in the liver, bone marrow, and all SSTR2-expressing organs; thus, the therapeutic index improved considerably. Lysine and succinylated gelatine, alone or in combination, significantly reduced the renal dose of (177)Lu-OPS201 compared with the control group, by 45%, 25%, and 40%, respectively (P < 0.05). The

  18. An assessment tumor targeting ability of (177)Lu labeled cyclic CCK analogue peptide by binding with cholecystokinin receptor.

    PubMed

    Cho, Eun-Ha; Lim, Jae Cheong; Lee, So-Young; Jung, Sung-Hee

    2016-07-01

    The cholecystokinin (CCK) receptor is known as a receptor that is overexpressed in many human tumors. The present study was designed to investigate the targeting ability of cyclic CCK analogue in AR42J pancreatic cells. The CCK analogues, DOTA-K(glucose)-Gly-Trp-Nle-Asp-Phe (DOTA-glucose-CCK) and DOTA-Nle-cyclo(Glu-Trp-Nle-Asp-Phe-Lys-NH2) (DOTA-[Nle]-cCCK), were synthesized and radiolabeled with (177)Lu, and competitive binding was evaluated. The binding appearance of synthesized peptide with AR42J cells was evaluated by confocal microscopy. And bio-distribution was performed in AR42J xenografted mice. Synthesized peptides were prepared by a solid phase synthesis method, and their purity was over 98%. DOTA is the chelating agent for (177)Lu-labeling, in which the peptides were radiolabeled with (177)Lu by a high radiolabeling yield. A competitive displacement of (125)I-CCK8 on the AR42J cells revealed that the 50% inhibitory concentration value (IC50) was 12.3 nM of DOTA-glucose-CCK and 1.7 nM of DOTA-[Nle]-cCCK. Radio-labeled peptides were accumulated in AR42J tumor in vivo, and %ID/g of the tumor was 0.4 and 0.9 at 2 h p.i. It was concluded that (177)Lu-DOTA-[Nle]-cCCK has higher binding affinity than (177)Lu-DOTA-glucose-CCK and can be a potential candidate as a targeting modality for a CCK receptor over-expressing tumors. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Biodistribution and dosimetry results from a phase 1 trial of (177)Lu-lilotomab satetraxetan antibody-radionuclide conjugate therapy.

    PubMed

    Blakkisrud, Johan; Holtedahl, Jon Erik; Løndalen, Ayca; Dahle, Jostein; Bach-Gansmo, Tore; Holte, Harald; Nygaard, Stine; Kolstad, Arne; Stokke, Caroline

    2017-08-28

    (177)Lu-lilotomab satetraxetan is a novel antibody radionuclide conjugate (ARC) currently in a phase 1/2a first-in-human dosage escalation trial for patients with relapsed CD37+ indolent non-Hodgkin lymphoma. The aim of this study was to investigate biodistribution and absorbed doses to organs at risk. Methods: A total of seven patients treated with (177)Lu-lilotomab satetraxetan were included for dosimetry. Patients were grouped based on two different pre-dosing regimens (with and without pre-dosing with 40 mg lilotomab) and were treated with different levels of activity per body weight (10, 15 and 20 MBq/kg). All patients were pre-treated with rituximab. Serial planar and SPECT/CT-images were used to determine time activity curves and patient specific masses for organs with (177)Lu-lilotomab satetraxetan uptake. Doses were calculated with OLINDA/EXM. Results: Organs with distinct uptake of (177)Lu-lilotomab satetraxetan, in addition to red bone marrow and tumors, were liver, spleen and kidneys. Largest uptake was found in the spleen, where doses ranged from 1.54 to 3.60 mGy/MBq. The liver received 0.70 to 1.15 mGy/MBq. The kidneys received the lowest dose of the source organs investigated; 0.16 to 0.79 mGy/MBq. No statistical significant differences in soft tissue absorbed doses for the two pre-dosing regimens were found. Whole body dose ranged from 0.08 to 0.17 mGy/MBq. Conclusion: The biodistribution study for patients treated with (177)Lu-lilotomab satetraxetan revealed highest physiological uptake in liver and spleen, besides red marrow. For all dosage levels investigated, doses were found modest when compared to commonly assumed tolerance limits. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Theranostic Radiopharmaceuticals Based on Gold Nanoparticles Labeled with (177)Lu and Conjugated to Peptides.

    PubMed

    Ferro-Flores, Guillermina; Ocampo-García, Blanca E; Santos-Cuevas, Clara L; de María Ramírez, Flor; Azorín-Vega, Erika P; Meléndez-Alafort, Laura

    2015-01-01

    Gold nanoparticles (AuNPs) have been proposed for a variety of medical applications such as localized heat sources for cancer treatment and drug delivery systems. The conjugation of peptides to AuNPs produces stable multimeric systems with target-specific molecular recognition. Lutetium- 177 ((177)Lu) has been successfully used in peptide radionuclide therapy. Recently, (177)Lu-AuNPs conjugated to different peptides have been proposed as a new class of theranostic radiopharmaceuticals. These radioconjugates may function simultaneously as molecular imaging agents, radiotherapy systems and thermal-ablation systems. This article covers advancements in the design, synthesis, physicochemical characterization, molecular recognition assessment and preclinical therapeutic efficacy of gold nanoparticles radiolabeled with (177)Lu and conjugated to RGD (-Arg-Gly-Asp-), Lys(3)-Bombesin and Tat(49-57) peptides.

  1. Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer.

    PubMed

    Yook, Simmyung; Cai, Zhongli; Lu, Yijie; Winnik, Mitchell A; Pignol, Jean-Philippe; Reilly, Raymond M

    2016-06-01

    Improvements in the treatment of locally advanced breast cancer (LABC) are needed. Our objective was to study a radiation nanomedicine (gold nanoseeds) composed of 30-nm gold nanoparticles (AuNP) modified with polyethyleneglycol (PEG) chains linked to DOTA for complexing the β-particle emitter (177)Lu and to panitumumab for targeting epidermal growth factor receptors (EGFR) ((177)Lu-T-AuNP) as a novel neoadjuvant brachytherapy for LABC. Nontargeted gold nanoseeds ((177)Lu-NT-AuNP) were constructed without panitumumab for comparison. (177)Lu-T-AuNP or (177)Lu-NT-AuNP was injected intratumorally in CD-1 athymic mice bearing subcutaneous EGFR-positive MDA-MB-468 human breast cancer tumors. Biodistribution and small-animal SPECT/CT imaging studies were performed to evaluate tumor and normal organ localization. A short-term (15 d) study was conducted to select the most effective amount of (177)Lu-T-AuNP or (177)Lu-NT-AuNP for treatment with long-term observation (90-120 d). Normal organ toxicities were assessed by monitoring body weight, blood cell counts, and serum alanine aminotransferase and creatinine. Radiation-absorbed doses in the tumor and normal organs were estimated by Monte Carlo N-Particle version 5.0 modeling. Tumor radioactivity concentrations were high at 1 h after injection (>300-400 percentage injected dose per gram [%ID/g]) but decreased by 2-3-fold at 48 h after injection. Normal organ uptake was low (<0.5 %ID/g) except for the liver and spleen (<3 %ID/g), increasing by 2-5-fold at 48 h after injection. Treatment with 4.5 MBq (6 × 10(11) AuNP) of (177)Lu-T-AuNP or (177)Lu-NT-AuNP arrested tumor growth over 90 d without normal organ toxicity, whereas tumors continued to grow in mice treated with unlabeled T-AuNP or (177)Lu-labeled PEG polymer not linked to AuNP. Survival was prolonged up to 120 d in mice treated with (177)Lu-T-AuNP or (177)Lu-NT-AuNP. Radiation-absorbed doses to the tumor were 30 and 22 Gy for (177)Lu-T-AuNP and (177)Lu

  2. 177Lu-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo.

    PubMed

    Michel, Rosana B; Andrews, Philip M; Rosario, Adriane V; Goldenberg, David M; Mattes, M Jules

    2005-04-01

    Antibodies (Abs) conjugated to 177Lu, a relatively low-energy beta-particle emitter, were evaluated in vitro for their cytotoxic activity and in vivo for their therapeutic activity against disseminated B-cell lymphoma xenografts in SCID mice. 177Lu was compared with other beta-particle emitters ((131)I and 90Y), and also with emitters of low-energy electrons (LEEs, meaning Auger and conversion electrons of < 50 keV). The Abs used reacted with CD20, CD74 or HLA-DR, and the target cell was the Raji B lymphoma. Like the other beta-particle emitters, 177Lu was a potent and specific toxic agent in vitro, when conjugated to Abs recognizing high-density antigens. It appeared to be slightly less potent than (131)I per decay, but this difference was relatively small, and would not be a major factor in the selection of the optimal radionuclide for clinical use. The nonspecific toxicity from 177Lu was less than from 90Y, but 177Lu still produced greater nonspecific toxicity in vitro than LEE emitters. The maximum tolerated dose (MTD) of 177Lu-anti-CD74 in SCID mice was 1.81 MBq (49 microCi)/mouse. When this dose was administered on day 5 after tumor inoculation, significant protection was obtained, but considerably less than the protection obtained in previous experiments with LEE emitters (111)In and 67Ga. In conclusion, 177Lu has advantages over other available beta-particle emitters as a therapeutic agent, but its efficacy in the treatment of micrometastases seems to be less than that of LEE emitters, due to greater nonspecific toxicity. This conclusion, however, may not apply to therapy of macroscopic tumors.

  3. Evaluation of affibody molecule-based PNA-mediated radionuclide pretargeting: Development of an optimized conjugation protocol and (177)Lu labeling.

    PubMed

    Altai, Mohamed; Westerlund, Kristina; Velletta, Justin; Mitran, Bogdan; Honarvar, Hadis; Karlström, Amelie Eriksson

    2017-07-12

    We have previously developed a pretargeting approach for affibody-mediated cancer therapy based on PNA-PNA hybridization. In this article we have further developed this approach by optimizing the production of the primary agent, ZHER2:342-SR-HP1, and labeling the secondary agent, HP2, with the therapeutic radionuclide (177)Lu. We also studied the biodistribution profile of (177)Lu-HP2 in mice, and evaluated pretargeting with (177)Lu-HP2 in vitro and in vivo. The biodistribution profile of (177)Lu-HP2 was evaluated in NMRI mice and compared to the previously studied (111)In-HP2. Pretargeting using (177)Lu-HP2 was studied in vitro using the HER2-expressing cell lines BT-474 and SKOV-3, and in vivo in mice bearing SKOV-3 xenografts. Using an optimized production protocol for ZHER2:342-SR-HP1 the ligation time was reduced from 15h to 30min, and the yield increased from 45% to 70%. (177)Lu-labeled HP2 binds specifically in vitro to BT474 and SKOV-3 cells pre-treated with ZHER2:342-SR-HP1. (177)Lu-HP2 was shown to have a more rapid blood clearance compared to (111)In-HP2 in NMRI mice, and the measured radioactivity in blood was 0.22±0.1 and 0.68±0.07%ID/g for (177)Lu- and (111)In-HP2, respectively, at 1h p.i. In contrast, no significant difference in kidney uptake was observed (4.47±1.17 and 3.94±0.58%ID/g for (177)Lu- and (111)In-HP2, respectively, at 1h p.i.). Co-injection with either Gelofusine or lysine significantly reduced the kidney uptake for (177)Lu-HP2 (1.0±0.1 and 1.6±0.2, respectively, vs. 2.97±0.87%ID/g in controls at 4h p.i.). (177)Lu-HP2 accumulated in SKOV-3 xenografts in BALB/C nu/nu mice when administered after injection of ZHER2:342-SR-HP1. Without pre-injection of ZHER2:342-SR-HP1, the uptake of (177)Lu-HP2 was about 90-fold lower in tumor (0.23±0.08 vs. 20.7±3.5%ID/g). The tumor-to-kidney radioactivity accumulation ratio was almost 5-fold higher in the group of mice pre-injected with ZHER2:342-SR-HP1. In conclusion, (177)Lu-HP2 was shown to

  4. Fast voxel-level dosimetry for 177Lu labelled peptide treatments

    NASA Astrophysics Data System (ADS)

    Hippeläinen, E.; Tenhunen, M.; Sohlberg, A.

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for 177Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions. Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by 177Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared. The photon cross-fire dose from the kidney increased the background’s absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  5. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments.

    PubMed

    Hippeläinen, E; Tenhunen, M; Sohlberg, A

    2015-09-07

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for (177)Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by (177)Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background's absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  6. A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti-PSMA Monoclonal Antibody J591 in Patients with High-Risk Castrate Biochemically Relapsed Prostate Cancer

    DTIC Science & Technology

    2011-09-01

    3 mm tumors (those not seen on standard imaging modalities). The hypothesis is that the addition of 177Lu-J591 to ketoconazole will improve time...receiving ketoconazole plus 177Lu-J591 vs ketoconazole plus trace-labeled 111In-J591 (i.e. placebo). Secondary endpoints include PSA response...receive ketoconazole plus hydrocortisone. The primary endpoint of the study is 18-month met-free survival. 140 pts will be treated to allow 80% power with

  7. Targeted antisense radiotherapy and dose fractionation using a (177)Lu-labeled anti-bcl-2 peptide nucleic acid-peptide conjugate.

    PubMed

    Liu, Dijie; Balkin, Ethan R; Jia, Fang; Ruthengael, Varyanna C; Smith, C Jeffrey; Lewis, Michael R

    2015-09-01

    The overall goal of these studies was to test the hypothesis that simultaneous down-regulation of a tumor survival gene and delivery of internally emitted cytotoxic radiation will be more effective than either treatment modality alone. The objectives were to evaluate the therapeutic efficacy of a (177)Lu-labeled anti-bcl-2-PNA-Tyr(3)-octreotate antisense conjugate in a mouse model bearing human non-Hodgkin's lymphoma (NHL) tumor xenografts and to optimize targeted antisense radiotherapy by dose fractionation. In the initial therapy studies, tumor-bearing mice were given saline, nonradioactive DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate, (177)Lu-DOTA-Tyr(3)-octreotate, (177)Lu-DOTA-PNA-peptide alone, or (177)Lu-DOTA-PNA-peptide followed by a chase dose of nonradioactive PNA-peptide. The MTD of (177)Lu-DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate was then determined. Subsequently single dose MTD and four weekly fractionated doses were directly compared, followed by histopathologic evaluation. Antisense radiotherapy using 4.44 MBq of the (177)Lu-DOTA-PNA-peptide followed by nonradioactive PNA-peptide was significantly more effective than other low dose treatment regimens. A dose of 18.5 MBq of (177)Lu-DOTA-PNA-peptide was determined to be the approximate maximum tolerated dose (MTD). The median times to progression to a 1cm(3) tumor volume were 32 and 49 days for single dose MTD and fractionated dose (4 × 4.63 MBq) groups, respectively. Histopathology revealed metastases in the single dose groups, but not in the dose fractionation group. Targeted antisense radiotherapy using (177)Lu-DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate and DOTA-PNA-peptide conjugate effectively inhibited tumor progression in a mouse model of NHL. Furthermore, a dose fractionation regimen had a significant advantage over a single high dose, in terms of tumor growth inhibition and prevention of metastasis. Down-regulating bcl-2, an anti-apoptotic proto-oncogene, is a mechanism to reverse chemotherapy resistance or

  8. 177Lu-DOTA-HH1, a Novel Anti-CD37 Radio-Immunoconjugate: A Study of Toxicity in Nude Mice

    PubMed Central

    Repetto-Llamazares, Ada H. V.; Larsen, Roy H.; Giusti, Anna Maria; Riccardi, Elena; Bruland, Øyvind S.; Selbo, Pål Kristian; Dahle, Jostein

    2014-01-01

    Background CD37 is an internalizing B-cell antigen expressed on Non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia cells (CLL). The anti-CD37 monoclonal antibody HH1 was conjugated to the bifunctional chelator p-SCN-Bn-DOTA and labelled with the beta-particle emitting radionuclide 177Lu creating the radio-immunoconjugate (RIC) 177Lu-DOTA-HH1 (177Lu-HH1, trade name Betalutin). The present toxicity study was performed prior to initiation of clinical studieswith 177Lu-HH1. Methodology/Principal Findings Nude mice with or without tumor xenografts were treated with 50 to 1000 MBq/kg 177Lu- HH1 and followed for clinical signs of toxicity up to ten months. Acute, life threatening bone marrow toxicity was observed in animals receiving 800 and 1000 MBq/kg 177Lu-HH1. Significant changes in serum concentrations of liver enzymes were evident for treatment with 1000 MBq/kg 177Lu-HH1. Lymphoid depletion, liver necrosis and atrophy, and interstitial cell hyperplasia of the ovaries were also observed for mice in this dose group. Conclusions/Significance 177Lu-DOTA-HH1 was well tolerated at dosages about 10 times above those considered relevant for radioimmunotherapy in patients with B-cell derived malignancies.The toxicity profile was as expected for RICs. Our experimental results have paved the way for clinical evaluation of 177Lu-HH1 in NHL patients. PMID:25068508

  9. A potencial theranostic agent for EGF-R expression tumors: (177)Lu-DOTA-nimotuzumab.

    PubMed

    Calzada, Victoria; Zhang, Xiuli; Fernandez, Marcelo; Diaz-Miqueli, Arlhee; Iznaga-Escobar, Normando; Deutscher, Susan L; Balter, Henia; Quinn, Thomas P; Cabral, Pablo

    2012-10-01

    In this work Nimotuzumab (monoclonal antibody, recognizes the EGF-R) was radiolabeled with (177)Lu as a potential cancer therapy radiopharmaceutical. In-vitro cell binding studies and in-vivo biodistribution and imaging studies were performed to determine the radiochemical stability, targeting specificity and pharmacokinetics of the (177)Lu-labeled antibody. Nimotuzumab was derivatized with DOTA-NHS at room temperature for 2 hours. DOTA-Nimotuzumab was radiolabeled with (177)LuCl3 (15 MBq/mg) at 37°C for 1 h. The radiochemical purity was assessed by ITLC, silica gel and by RP-HPLC. Binding specificity studies were performed with EGF-R positive A431 human epithelial carcinoma and EGF-R negative MDA-MB-435 breast carcinoma cells. Biodistribution studies were performed in healthy female CD-1 mice at 1 h, 4 h, 24 h, and A431 xenografted nude mice at 10 min, 1 h, 4 h, 24 h, 48 h, and 96 h. SPECT-CT imaging studies were performed in A431 xenografted mice at 24 h post injection. DOTA-Nimotuzumab was efficiently labeled with (177) LuCl(3) at 37°C. The in vitro stability of labeled product was optimal over 24 h in buffered saline and mouse serum. Specific recognition of EGF-R by (177)Lu-DOTA-Nimotuzumab was observed in A431 cell binding studies. Biodistribution studies demonstrated increasing tumor uptake of (177)Lu-DOTA-Nimotuzumab over time, with tumor to muscle ratios of 6.26, 10.68, and 18.82 at 4 h, 24 h, and 96 h post injection. Imaging of A431 xenografted mice showed high uptake in the tumor. (177)Lu-DOTA-Nimotuzumab has the potential to be a promising therapy agent, which may be useful in the treatment of patients with EGF-R positive cancer.

  10. PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with 177Lu-Labeled PSMA-617.

    PubMed

    Kratochwil, Clemens; Giesel, Frederik L; Stefanova, Melsa; Benešová, Martina; Bronzel, Marcus; Afshar-Oromieh, Ali; Mier, Walter; Eder, Matthias; Kopka, Klaus; Haberkorn, Uwe

    2016-08-01

    Prostate-specific membrane antigen (PSMA) is an excellent target for radionuclide therapy of metastasized castration-resistant prostate cancer (mCRPC). Besides high affinity and long tumor retention, the DOTA-conjugated ligand PSMA-617 has low kidney uptake, making it an excellent choice for therapeutic application. We retrospectively report our experience with (177)Lu-PSMA-617-targeted radionuclide therapy in a case series of mCRPC patients resistant to other treatments. Patients with PSMA-positive tumor phenotypes were selected by molecular imaging. Thirty patients received 1-3 cycles of (177)Lu-PSMA-617. During therapy, pharmacokinetics and radiation dosimetry were evaluated. Blood cell count was checked every 2 wk after the first and every 4 wk after succeeding cycles. Prostate-specific antigen (PSA) was determined every 4 wk. Radiologic restaging was performed after 3 cycles. Twenty-one of 30 patients had a PSA response; in 13 of 30 the PSA decreased more than 50%. After 3 cycles, 8 of 11 patients achieved a sustained PSA response (>50%) for over 24 wk, which also correlated with radiologic response (decreased lesion number and size). Normally, acute hematotoxicity was mild. Diffuse bone marrow involvement was a risk factor for higher grade myelosuppression but could be identified by PSMA imaging in advance. Xerostomia, nausea, and fatigue occurred sporadically (<10%). Clearance of non-tumor-bound tracer was predominantly renal and widely completed by 48 h. Safety dosimetry revealed kidney doses of approximately 0.75 Gy/GBq, red marrow doses of 0.03 Gy/GBq, and salivary gland doses of 1.4 Gy/GBq, irrespective of tumor burden and consistent on subsequent cycles. Mean tumor-absorbed dose ranged from 6 to 22 Gy/GBq during cycle 1. (177)Lu-PSMA-617 is a promising new option for therapy of mCRPC and deserves more attention in larger prospective trials. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Therapeutic efficacy of 177Lu-CHX-A″-DTPA-hu3S193 radioimmunotherapy in prostate cancer is enhanced by EGFR inhibition or docetaxel chemotherapy

    PubMed Central

    Kelly, Marcus P; Lee, Sze Ting; Lee, F-T; Smyth, Fiona E; Davis, Ian D.; Brechbiel, Martin W; Scott, Andrew M

    2008-01-01

    Background This study investigated the biodistribution and therapeutic efficacy of Lutetium-177 (177Lu) radiolabeled anti-Lewis Y monoclonal antibody hu3S193 radioimmunotherapy (RIT) in mice bearing prostate cancer xenografts. The ability of Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitor AG1478 and docetaxel chemotherapy to enhance the efficacy of RIT was also assessed in vivo. Methods The in vitro cytotoxicity of 177Lu labeled hu3S193 on Ley positive DU145 prostate cancer cells was assessed using proliferation assays, with induction of apoptosis measured by ELISA. The in vivo biodistribution and tumor localization of 177Lu-hu3S193 was assessed in mice bearing established DU145 tumor xenografts. The efficacy and maximum tolerated dose of 177Lu-hu3S193 RIT in vivo was determined by a dose escalation study. EGFR inhibitor AG1478 or docetaxel chemotherapy was administered at sub-therapeutic doses in conjunction with RIT in vivo. Results 177Lu-hu3S193 mediated significant induction of cytotoxicity and apoptosis in vitro. In vivo analysis of 177Lu-hu3S193 biodistribution demonstrated specific targeting of DU145 prostate cancer xenografts, with maximal tumor uptake of 33.2 ± 3.9 %ID/g observed at 120 hr post injection. In RIT studies, 177Lu-hu3S193 caused specific and dose-dependent inhibition of prostate cancer tumor growth. A maximum tolerated dose of 350μCi was determined for 177Lu-hu3S193. Combination of 177Lu-hu3S193 RIT with EGFR inhibitor AG1478 or docetaxel chemotherapy both significantly improved efficacy. Conclusions 177Lu-hu3S193 RIT is effective as a single agent in the treatment of Ley positive prostate cancer models. The enhancement of RIT by AG1478 or docetaxel indicates the promise of combined modality strategies. PMID:18942092

  12. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    PubMed Central

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the

  13. Absorbed dose assessment of 177Lu-zoledronate and 177Lu-EDTMP for human based on biodistribution data in rats

    PubMed Central

    Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza

    2015-01-01

    Over the past few decades, several bone-seeking radiopharmaceuticals including various bisphosphonate ligands and β-emitting radionuclides have been developed for bone pain palliation. Recently, 177Lu was successfully labeled with zoledronic acid (177Lu-ZLD) as a new generation potential bisphosphonate and demonstrated significant accumulation in bone tissue. In this work, the absorbed dose to each organ of human for 177Lu-ZLD and 177Lu-ethylenediaminetetramethylene phosphonic acid (177Lu-EDTMP;as the only clinically bone pain palliation agent) was investigated based on biodistribution data in rats by medical internal radiation dosimetry (MIRD) method. 177Lu-ZLD and 177Lu-EDTMP were prepared in high radiochemical purity (>99%, instant thin layer chromatography (ITLC)) at the optimized condition. The biodistribution of the complexes demonstrated fast blood clearance and major accumulation in the bone tissue. The highest absorbed dose for both 177Lu-ZLD and 177Lu-EDTMP is observed in trabecular bone surface with 12.173 and 10.019 mSv/MBq, respectively. The results showed that 177Lu-ZLD has better characteristics compared to 177Lu-EDTMP and can be a good candidate for bone pain palliation. PMID:26170557

  14. A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti-PSMA Monoclonal Antibody J591 in Patients with High-Risk Castrate, Biochemically Relapsed Prostate Cancer

    DTIC Science & Technology

    2014-09-01

    hypothesis is that the addition of 177Lu-J591 to ketoconazole will improve time to radiographically apparent metastases in men with biochemically...primary endpoint will be to compare the percentage of men with metastases at 18 months receiving ketoconazole plus 177Lu-J591 vs ketoconazole plus trace

  15. A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti-PSMA Monoclonal Antibody J591 in Patients With High-Risk Castrate Biochemically Relapsed Prostate Cancer

    DTIC Science & Technology

    2015-09-01

    modalities). The hypothesis is that the addition of 177Lu-J591 to ketoconazole will improve time to radiographically apparent metastases in men with...The primary endpoint will be to compare the percentage of men with metastases at 18 months receiving ketoconazole plus 177Lu-J591 vs ketoconazole plus

  16. Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3) -bombesin internalized in nuclei of prostate cancer cells.

    PubMed

    Jiménez-Mancilla, Nallely; Ferro-Flores, Guillermina; Santos-Cuevas, Clara; Ocampo-García, Blanca; Luna-Gutiérrez, Myrna; Azorín-Vega, Erika; Isaac-Olivé, Keila; Camacho-López, Miguel; Torres-García, Eugenio

    2013-11-01

    Radiolabeled gold nanoparticles may function simultaneously as radiotherapy and thermal ablation systems. The gastrin-releasing peptide receptor (GRP-r) is overexpressed in prostate cancer, and Lys(3) -bombesin is a peptide that binds with high affinity to the GRP-r. HIV Tat(49-57) is a cell-penetrating peptide that reaches the DNA. In cancer cells, (177) Lu shows efficient crossfire effect, whereas (99m) Tc that is internalized in the cancer cell nuclei acts as an effective system of targeted radiotherapy because of the biological Auger effect. The aim of this research was to evaluate the in vitro potential of (99m) Tc-labeled and (177) Lu-labeled gold nanoparticles conjugated to Tat(49-57)-Lys(3) -bombesin peptides ((99m) Tc/(177) Lu-AuNP-Tat-BN) as a plasmonic photothermal therapy and targeted radiotherapy system in PC3 prostate cancer cells. Peptides were conjugated to AuNPs (5 nm) by spontaneous reaction with the thiol group of cysteine (Cys). The effect on PC3 cell viability after laser heating of the AuNP-Tat-BN incubated with the cancer cells was conducted using an Nd:YAG laser pulsed for 5 ns at 532 nm (0.65 W/cm(2) ). For the (99m) Tc/(177) Lu-AuNP-Tat-BN to be obtained, the (177) Lu-DOTA-Gly-Gly-Cys and (99m) Tc-HYNIC-octreotide radiopeptides were first prepared and added simultaneously to a solution of AuNP-Tat-BN. (99m) Tc/(177) Lu-AuNP-Tat-BN (20 Bq/cell) was incubated with PC3 cells, and the effect on the cell proliferation was evaluated after 3 days. Fluorescence images of (99m) Tc/(177) Lu-AuNP-Tat-BN internalized in nuclei of PC3 were also obtained. After laser irradiation, the presence of AuNP-Tat-BN caused a significant increase in the temperature of the medium (46.4 vs 39.5 °C of that without AuNP) resulting in a significant decrease in PC3 cell viability down to 1.3%. After treatment with (99m) Tc/(177) Lu-AuNP-Tat-BN, the PC3 cell proliferation was inhibited. The nanosystem exhibited properties suitable for plasmonic

  17. 177 Lu-Labeled Phosphoramidate-Based PSMA Inhibitors: The Effect of an Albumin Binder on Biodistribution and Therapeutic Efficacy in Prostate Tumor-Bearing Mice

    DOE PAGES

    Choy, Cindy J.; Ling, Xiaoxi; Geruntho, Jonathan J.; ...

    2017-04-27

    Prostate-specific membrane antigen (PSMA) continues to be an active biomarker for small-molecule PSMA-targeted imaging and therapeutic agents for prostate cancer and various non-prostatic tumors that are characterized by PSMA expression on their neovasculature. One of the challenges for small-molecule PSMA inhibitors with respect to delivering therapeutic payloads is their rapid renal clearance. In order to overcome this pharmacokinetic challenge, we outfitted a 177Lu-labeled phosphoramidate-based PSMA inhibitor (CTT1298) with an albumin-binding motif (CTT1403) and compared its in vivo performance with that of an analogous compound lacking the albumin-binding motif (CTT1401). The radiolabeling of CTT1401 and CTT1403 was achieved using click chemistrymore » to connect 177Lu-DOTA-N3 to the dibenzocyclooctyne (DBCO)-bearing CTT1298 inhibitor cores. A direct comparison in vitro and in vivo performance was made for CTT1401 and CTT1403; the specificity and efficacy by means of cellular uptake and internalization, biodistribution, and therapeutic efficacy were determined for both compounds. And while both compounds displayed excellent uptake and rapid internalization in PSMA+ PC3-PIP cells, the albumin binding moiety in CTT1403 conferred clear advantages to the PSMA-inhibitor scaffold including increased circulating half-life and prostate tumor uptake that continued to increase up to 168 h post-injection. This then increased tumor uptake translated into superior therapeutic efficacy of CTT1403 in PSMA+ PC3-PIP human xenograft tumors.« less

  18. Comparison of the Therapeutic Response to Treatment with a 177Lu-Labeled Somatostatin Receptor Agonist and Antagonist in Preclinical Models.

    PubMed

    Dalm, Simone U; Nonnekens, Julie; Doeswijk, Gabriela N; de Blois, Erik; van Gent, Dik C; Konijnenberg, Mark W; de Jong, Marion

    2016-02-01

    Peptide receptor scintigraphy and peptide receptor radionuclide therapy using radiolabeled somatostatin receptor (SSTR) agonists are successfully used in the clinic for imaging and treatment of neuroendocrine tumors. Contrary to the paradigm that internalization and the resulting accumulation of radiotracers in cells is necessary for efficient tumor targeting, recent studies have demonstrated the superiority of radiolabeled SSTR antagonists for imaging purposes, despite little to no internalization in cells. However, studies comparing the therapeutic antitumor effects of radiolabeled SSTR agonists versus antagonists are lacking. The aim of this study was to directly compare the therapeutic effect of (177)Lu-DOTA-octreotate, an SSTR agonist, and (177)Lu-DOTA-JR11, an SSTR antagonist. We analyzed radiotracer uptake (both membrane-bound and internalized fractions) and the produced DNA double-strand breaks, by determining the number of p53 binding protein 1 foci, after incubating SSTR2-positive cells with (177)Lu-diethylene triamine pentaacetic acid, (177)Lu-DOTA-octreotate, or (177)Lu-DOTA-JR11. Also, biodistribution studies were performed in tumor-xenografted mice to determine the optimal dose for therapy experiments. Afterward, in vivo therapy experiments comparing the effect of (177)Lu-DOTA-octreotate and (177)Lu-DOTA-JR11 were performed in this same animal model. We found a 5-times-higher uptake of (177)Lu-DOTA-JR11 than of (177)Lu-DOTA-octreotate. The major part (88% ± 1%) of the antagonist uptake was membrane-bound, whereas 74% ± 3% of the total receptor agonist uptake was internalized. Cells treated with (177)Lu-DOTA-JR11 showed 2 times more p53-binding protein 1 foci than cells treated with (177)Lu-DOTA-octreotate. Biodistribution studies with (177)Lu-DOTA-JR11 (0.5 μg/30 MBq) resulted in the highest tumor radiation dose of 1.8 ± 0.7 Gy/MBq, 4.4 times higher than the highest tumor radiation dose found for (177)Lu-DOTA-octreotate. In vivo therapy studies

  19. Therapeutic efficacy of a 177Lu-labeled DOTA conjugated alpha-melanocyte-stimulating hormone peptide in a murine melanoma-bearing mouse model.

    PubMed

    Miao, Yubin; Shelton, Tiffani; Quinn, Thomas P

    2007-06-01

    The aim of this study was to examine the therapeutic efficacy of (177)Lu-DOTA-Re(Arg(11))CCMSH in the B16/F1 murine melanoma-bearing mouse model. (177)Lu-DOTA-Re(Arg(11))CCMSH was prepared in 0.5 M NH(4)OAc at a pH of 5.4. Two (2) treatment groups of 10 melanoma-bearing C57 mice were administrated with 2 x 18.5 MBq and 1 x 37.0 MBq of (177)Lu-DOTA-Re(Arg(11))CCMSH through the tail vein, respectively. One (1) group of 10 melanoma-bearing C57 mice was injected with saline placebos as untreated melanoma-bearing controls. In contrast to the untreated melanoma-bearing control group, (177)Lu-DOTA-Re(Arg(11))CCMSH administration yielded rapid and lasting therapeutic effects in the treatment groups. (177)Lu-DOTA-Re(Arg(11))CCMSH treatment decreased the tumor growth rate and significantly (p > 0.05) prolonged the survival time of melanoma-bearing C57 mice. Treatment with 2 x 18.5 MBq or 1 x 37.0 MBq of (177)Lu-DOTA-Re(Arg(11))CCMSH significantly extended the mean survival of tumor-bearing mice from 13.3 to 15.1 and 16.2 days, respectively. (177)Lu-DOTA-Re(Arg(11))CCMSH treatment produced no observed acute renal toxicity. The therapy study results revealed that (177)Lu-DOTA-Re(Arg(11))CCMSH yielded quantitative therapeutic effects in B16/F1 melanoma-bearing mice and appeared to be a promising radiolabeled peptide for the targeted radionuclide therapy of melanoma.

  20. H4octapa-Trastuzumab: Versatile Acyclic Chelate System for 111In and 177Lu Imaging and Therapy

    PubMed Central

    Price, Eric W.; Zeglis, Brian M.; Cawthray, Jacqueline F.; Ramogida, Caterina F.; Ramos, Nicholas

    2013-01-01

    A bifunctional derivative of the versatile acyclic chelator H4octapa, p-SCNBn- H4octapa, has been synthesized for the first time. The chelator was conjugated to the HER2/neu-targeting antibody trastuzumab and labeled in high radiochemical purity and specific activity with the radioisotopes 111In and 177Lu. The in vivo behavior of the resulting radioimmunoconjugates was investigated in mice bearing ovarian cancer xenografts and compared to analogous radioimmunoconjugates employing the ubiquitous chelator DOTA. The H4octapa-trastuzumab conjugates displayed faster radiolabeling kinetics with more reproducible yields under milder conditions (15 min, RT, ~94–95%) than those based on DOTA-trastuzumab (60 min, 37 °C ~50–88%). Further, antibody integrity was better preserved in the 111In- and 177Lu-octapatrastuzumab constructs, with immunoreactive fractions of 0.99 for each compared to 0.93–0.95 for 111In- and 177Lu-DOTA-trastuzumab. These results translated to improved in vivo biodistribution profiles and SPECT imaging results for 111In- and 177Lu-octapa-trastuzumab compared to 111In- and 177Lu-DOTA-trastuzumab, with increased tumor uptake and higher tumor-to-tissue activity ratios. PMID:23901833

  1. A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti-PSMA Monoclonal Antibody J591in Patients with High-Risk Castrate, Biochemically Relapsed Prostate Cancer

    DTIC Science & Technology

    2012-09-01

    The hypothesis is that the addition of 177Lu-J591 to ketoconazole will improve time to radiographically apparent metastases in men with...primary endpoint will be to compare the percentage of men with metastases at 18 months receiving ketoconazole plus 177Lu-J591 vs ketoconazole plus...J951 vs 111In-J591 (control) and undergo planar gamma camera imaging with SPECT following infusion. All pts receive ketoconazole plus hydrocortisone

  2. The intratumoral distribution of radiolabeled 177Lu-BR96 monoclonal antibodies changes in relation to tumor histology over time in a syngeneic rat colon carcinoma model.

    PubMed

    Örbom, Anders; Eriksson, Sophie E; Elgström, Erika; Ohlsson, Tomas; Nilsson, Rune; Tennvall, Jan; Strand, Sven-Erik

    2013-08-01

    The therapeutic effect of radioimmunotherapy depends on the distribution of the absorbed dose in relation to viable cancer cells within the tumor, which in turn is a function of the activity distribution. The aim of this study was to investigate the distribution of (177)Lu-DOTA-BR96 monoclonal antibodies targeting the Lewis Y antigen over 7 d using a syngeneic rat model of colon carcinoma. Thirty-eight tumor-bearing rats were intravenously given 25 or 50 MBq of (177)Lu-DOTA-BR96 per kilogram of body weight and were sacrificed 2, 8, 24, 48, 72, 96, 120, or 168 h after injection, with activity measured in blood and tumor samples. Adjacent cryosections of each tumor were analyzed in 3 ways: imaging using a silicon-strip detector for digital autoradiography, staining for histologic characterization, or staining to determine the distribution of the antigen, vasculature, and proliferating cells using immunohistochemistry. Absorbed-dose rate distribution images at the moment of sacrifice were calculated using the activity distribution and a point-dose kernel. The correlations between antigen expression and both activity uptake and absorbed-dose rate were calculated for several regions of interest in each tumor. Nine additional animals with tumors were given unlabeled antibody to evaluate possible immunologic effects. At 2-8 h after injection, activity was found in the tumor margins; at 24 h, in viable antigen-expressing areas within the tumor; and at 48 h and later, increasingly in antigen-negative areas of granulation tissue. The correlation between antigen expression and both the mean activity and the absorbed-dose rate in regions of interest changed from positive to negative after 24 h after injection. Antigen-negative areas also increased over time in animals injected with unlabeled BR96, compared with untreated tumors. The results indicate that viable Lewis Y-expressing tumor cells are most efficiently treated during the initial uptake period. The activity then seems

  3. Novel series of (177)Lu-labeled bombesin derivatives with amino acidic spacers for selective targeting of human PC-3 prostate tumor cells.

    PubMed

    Pujatti, P B; Santos, J S; Couto, R M; Melero, L T U H; Suzuki, M F; Soares, C R J; Grallert, S R M; Mengatti, J; De Araújo, E B

    2011-06-01

    Bombesin (BBN) has demonstrated the ability to bind with high affinity and specificity to GRP receptor, overexpressed on human prostate cancer. A large number of BBN derivatives have been synthesized for this purpose but most of them exhibit high abdominal accumulation, which may represent a problem in their clinical use due to serious side effects to patients. In this study we describe the results of radiolabeling with lutetium-177, stability and in vivo studies of novel phenyl-glycine-extended bombesin derivatives. The spacers were inserted to improve bombesin in vivo properties and to reduce its target to non-tumor sites. Preliminary studies were done to establish the ideal conditions for labeling bombesin derivatives. Chromatography systems were applied to determine free lutetium and the stability of the preparations was evaluated either after storing at 2-8 ºC or incubation in human serum at 37 ºC. In vivo experiments included biodistribution, pharmacokinetics and SPECT images and were performed in Balb-c and Nude mice bearing PC-3 xenografts. The derivatives were labeled with high yield and kept stable at 2-8 ºC and are metabolized by human serum enzymes. In vivo studies showed fast blood clearance of labeled peptides and rapid excretion, performed mainly by renal pathway. In addition, biodistribution and imaging studies showed low abdominal accumulation and significant and specific tumor uptake of (177)Lu-labeled derivatives. The derivative with longer spacer holds a higher potential as radiopharmaceutical for prostate tumor diagnosis and the derivatives with shorter spacers are potential radiopharmaceuticals for prostate tumor treatment.

  4. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    PubMed Central

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark D.; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Bäck, Tom A.; Fisher, Darrell R.; Press, Oliver W.

    2015-01-01

    Purpose Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice. Methods Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent. Results The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. Conclusion 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in

  5. Comparative efficacy of 177Lu and 90Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models.

    PubMed

    Frost, Sofia H L; Frayo, Shani L; Miller, Brian W; Orozco, Johnnie J; Booth, Garrett C; Hylarides, Mark D; Lin, Yukang; Green, Damian J; Gopal, Ajay K; Pagel, John M; Bäck, Tom A; Fisher, Darrell R; Press, Oliver W

    2015-01-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice. Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent. The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft

  6. Influence of biological assay conditions on stability assessment of radiometal-labelled peptides exemplified using a 177Lu-DOTA-minigastrin derivative.

    PubMed

    Ocak, Meltem; Helbok, Anna; von Guggenberg, Elisabeth; Ozsoy, Y; Kabasakal, Levent; Kremser, Leopold; Decristoforo, Clemens

    2011-02-01

    Lack of correlation between in vitro and in vivo stability is a general problem for the development of radiopeptides especially in the case of minigastrin derivatives for therapeutic applications. In this study, we compared the influence of experimental conditions on radiopeptide stability results in vitro using a model Minigastrin (MG) analogue labelled with Lu-177. Additionally, we attempted to characterize the main serum enzymatic cleavage sites by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) analysis. In vitro stability of a DOTA-minigastrin derivative ((177)Lu-DOTA-His-His-Glu-Ala-Tyr-Gly-Trp-NIe-Asp-Phe-NH(2)) was tested in serum, rat tissue homogenates and two different standardised enzymatic mixtures. Quantification of the metabolised radiopeptides at different time intervals was performed using reversed-phase high-performance liquid chromatography (RP-HPLC). Metabolites were characterised by MALDI-TOF-MS. Urine was collected after 15 min p.i. into the mice and compared with in vitro metabolites by RP-HPLC. Faster degradation of the radiopeptide was found in blood in comparison with plasma and serum incubation and in components from rats faster than from human origin. Fast degradation was observed in kidney and liver homogenates as well as in standardised enzymatic mixtures, also revealing variations in the metabolic profile. In urine, no intact peptide was detected already 5 min post injection. MALDI-TOF-MS revealed major cleavage sites at the carboxy terminus of the peptide. Very variable results may be found when different kind of incubation media for testing radiopeptide stabilities is used. Serum incubation studies may overestimate stability; therefore, results should be interpreted with care and combined with alternative in vitro and in vivo investigations. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Radiolabeling of monoclonal anti-CD105 with (177)Lu for potential use in radioimmunotherapy.

    PubMed

    Lee, So-Young; Hong, Young-Don; Felipe, Penelope M; Pyun, Mi-Sun; Choi, Sun-Ju

    2009-01-01

    In this study, we carried out a radioimmunoconjugation using (177)Lu with anti-CD105 (endoglin) monoclonal antibody for an angiogenesis targeting. CD105 has been shown to be a more useful marker to identify proliferating endothelium involved in tumor angiogenesis than panendothelial markers. We optimized the labeling of the anti-CD105 monoclonal antibody with (177)Lu by using cysteine derivative isothiocyanatobenzyl-DTPA (DTPA-NCS) as BFCA. Under the optimal conditions, labeling yield was greater than 99%. Immunoactivity of the radioimmunoconjugate was investigated using combinations of radioanalytical and bioanalytical techniques (ITLC-SG, Cyclone phosphorimager, SDS-PAGE and ELISA). For the biological evaluations we carried out a cell binding assay and a biodistribution study using mice bearing Calu6 lung cancer cell xenografts. The tumor-to-blood ratio was 11.16:1 24h post-injection. In conclusion, the anti-CD105 monoclonal antibody for an angiogenesis targeting was effectively radioconjugated with (177)Lu. And the biodistribution study showed a high specificity for accumulating in tumor tissues. This radioimmunoconjugate is applicable to detect angiogenesis sites in various diseases and to treat tumors.

  8. Radiosynovectomy of Painful Synovitis of Knee Joints Due to Rheumatoid Arthritis by Intra-Articular Administration of (177)Lu-Labeled Hydroxyapatite Particulates: First Human Study and Initial Indian Experience.

    PubMed

    Shinto, Ajit S; Kamaleshwaran, K K; Chakraborty, Sudipta; Vyshakh, K; Thirumalaisamy, S G; Karthik, S; Nagaprabhu, V N; Vimalnath, K V; Das, Tapas; Banerjee, Sharmila

    2015-01-01

    The aim of this study is to assess the effectiveness of Radiosynovectomy (RSV) using (177)Lu-labeled hydroxyapatite ((177)Lu-HA) in the treatment of painful synovitis and recurrent joint effusion of knee joints in rheumatoid arthritis (RA). Ten patients, diagnosed with RA and suffering from chronic painful resistant synovitis of the knee joints were referred for RSV. The joints were treated with 333 ± 46 MBq of (177)Lu-HA particles administered intra-articularly. Monitoring of activity distribution was performed by static imaging of knee joint and whole-body gamma imaging. The patients were evaluated clinically before RSV and at 6 months after the treatment by considering the pain improvement from baseline values in terms of a 100-point visual analog scale (VAS), the improvement of knee flexibility and the pain remission during the night. RSV response was classified as poor (VAS < 25), fair (VAS ≥ 25-50), good (VAS ≥ 50-75) and excellent (VAS ≥ 75), with excellent and good results considered to be success, while fair and poor as failure and also by range of motion. Three phase bone scan (BS) was repeated after 6 months and changes in the second phase of BS3 were assessed visually, using a four-degree scale and in the third phase, semiquantitatively with J/B ratio to see the response. Biochemical analysis of C-reactive protein (CRP) and fibrinogen was repeated after 48 h, 4 and 24 weeks. In all 10 patients, no leakage of administered activity to nontarget organs was visible in the whole-body scan. Static scans of the joint at 1 month revealed complete retention of (177)Lu-HA in the joints. All patients showed decreased joint swelling and pains, resulting in increased joint motion after 6 months. The percentage of VAS improvement from baseline values was 79.5 ± 20.0% 6 months after RS and found to be significantly related to patients' age (P = 0.01) and duration of the disease (P = 0.03). Knees with Steinbrocker's Grades 0 and I responded better than those

  9. Radiosynovectomy of Painful Synovitis of Knee Joints Due to Rheumatoid Arthritis by Intra-Articular Administration of 177Lu-Labeled Hydroxyapatite Particulates: First Human Study and Initial Indian Experience

    PubMed Central

    Shinto, Ajit S.; Kamaleshwaran, K. K.; Chakraborty, Sudipta; Vyshakh, K.; Thirumalaisamy, S. G.; Karthik, S.; Nagaprabhu, V. N.; Vimalnath, K. V.; Das, Tapas; Banerjee, Sharmila

    2015-01-01

    The aim of this study is to assess the effectiveness of Radiosynovectomy (RSV) using 177Lu-labeled hydroxyapatite (177Lu-HA) in the treatment of painful synovitis and recurrent joint effusion of knee joints in rheumatoid arthritis (RA). Ten patients, diagnosed with RA and suffering from chronic painful resistant synovitis of the knee joints were referred for RSV. The joints were treated with 333 ± 46 MBq of 177Lu-HA particles administered intra-articularly. Monitoring of activity distribution was performed by static imaging of knee joint and whole-body gamma imaging. The patients were evaluated clinically before RSV and at 6 months after the treatment by considering the pain improvement from baseline values in terms of a 100-point visual analog scale (VAS), the improvement of knee flexibility and the pain remission during the night. RSV response was classified as poor (VAS < 25), fair (VAS ≥ 25-50), good (VAS ≥ 50-75) and excellent (VAS ≥ 75), with excellent and good results considered to be success, while fair and poor as failure and also by range of motion. Three phase bone scan (BS) was repeated after 6 months and changes in the second phase of BS3 were assessed visually, using a four-degree scale and in the third phase, semiquantitatively with J/B ratio to see the response. Biochemical analysis of C-reactive protein (CRP) and fibrinogen was repeated after 48 h, 4 and 24 weeks. In all 10 patients, no leakage of administered activity to nontarget organs was visible in the whole-body scan. Static scans of the joint at 1 month revealed complete retention of 177Lu-HA in the joints. All patients showed decreased joint swelling and pains, resulting in increased joint motion after 6 months. The percentage of VAS improvement from baseline values was 79.5 ± 20.0% 6 months after RS and found to be significantly related to patients' age (P = 0.01) and duration of the disease (P = 0.03). Knees with Steinbrocker's Grades 0 and I responded better than those with more

  10. Preparation of clinical-scale (177) Lu-Rituximab: Optimization of protocols for conjugation, radiolabeling and freeze-dried kit formulation.

    PubMed

    Guleria, Mohini; Das, Tapas; Kumar, Chandan; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Banerjee, Sharmila

    2017-02-08

    Rituximab is a monoclonal chimeric antibody which has been approved by US FDA for immunotherapy of Non-Hodgkins' lymphoma (NHL). Bexxar and Zevalin are the two other approved radiolabeled antibodies for radioimmunotherapy of NHL; however the fact that they are of murine origin reduces their treatment efficacy. To circumvent this, efforts have been made to radiolabel Rituximab with various therapeutic radioisotopes. In the present study, an effort has been made to optimize the conjugation (BFCA and antibody) and radiolabeling procedures for the preparation of clinical-scale (177) Lu-labeled Rituximab. An attempt was also made to prepare the freeze-dried Rituximab kit for the easy and convenient clinical translation of the agent. Clinical-scale (177) Lu-Rituximab (40 mCi, 1.48 GBq) was prepared with >95% radiochemical purity using the kit. Biological evaluation of (177) Lu-Rituximab was carried out by in-vitro cell binding studies in Raji cell lines, which showed satisfactory binding at 4 and 37 °C. Pharmacokinetic behaviour of the agent, evaluated by biodistribution studies in normal Swiss mice, revealed high blood and liver uptake at the initial time points; although it exhibited slow and gradual clearance with time. The study indicates that clinical-scale (177) Lu-Rituximab could be conveniently formulated using the methodology described in the present article.

  11. Biological evaluation of (177)Lu-labeled DOTA-Ala(SO3H)-Aminooctanoyl-Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH2 for gastrin-releasing peptide receptor-positive prostate tumor targeting.

    PubMed

    Lim, Jae Cheong; Cho, Eun Ha; Kim, Jin Joo; Choi, Sang Mu; Lee, So young; Nam, Sung Soo; Park, Ul Jae; Park, Soo Hyun

    2015-02-01

    Bombesin binds with selectivity and high affinity to a Gastrin-releasing peptide receptor (GRPR), which is highly overexpressed in prostate cancer cells. The present study describes the in vitro and in vivo biological characteristics of DOTA-Ala(SO3H)-Aminooctanoyl-Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH2 (DOTA-sBBNA), an antagonist analogue of bombesin peptide for the targeting of GRPR. DOTA-sBBNA was synthesized and labeled with (177)Lu as previously published. A saturation assay on PC-3 human prostate cancer cells revealed that the Kd value of the radiolabeled peptide was 1.88 nM with a maximum binding capacity (Bmax) of 289.3 fmol/10(6) cells. The radio-peptide slowly internalized, and 24.4±0.5% of the total binding was internalized in 4hr. Biodistribution studies were conducted in healthy and PC-3 xenografted balb/c mice, which showed high uptake and retention of tumor-associated radioactivity in PC-3 xenografted mice. The tumor-to-blood ratio was 126.02±9.36 at 1.5hr p.i., and was increased to 216.33±61.58 at 24hr p.i., which means that the radiolabeled peptide was highly accumulated in a tumor and rapidly cleared from the blood pool. The GRPR is also over-expressed in Korean prostate cancer patients. These results suggest that this (177)Lu-labeled peptide has promising characteristics for application in nuclear medicine, namely for the diagnosis and treatment of GRPR over-expressing prostate tumors. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Influence of cations on the complexation yield of DOTATATE with yttrium and lutetium: a perspective study for enhancing the 90Y and 177Lu labeling conditions.

    PubMed

    Asti, Mattia; Tegoni, Matteo; Farioli, Daniela; Iori, Michele; Guidotti, Claudio; Cutler, Cathy S; Mayer, Pat; Versari, Annibale; Salvo, Diana

    2012-05-01

    The DOTA macrocyclic ligand can form stable complexes with many cations besides yttrium and lutetium. For this reason, the presence of competing cationic metals in yttrium-90 and lutetium-177 chloride solutions can dramatically influence the radiolabeling yield. The aim of this study was to evaluate the coordination yield of yttrium- and lutetium-DOTATATE complexes when the reaction is performed in the presence of varying amounts of competing cationic impurities. In the first set of experiments, the preparation of the samples was performed by using natural yttrium and lutetium (20.4 nmol). The molar ratio between DOTATATE and these metals was 1 to 1. Metal competitors (Pb(2+), Zn(2+), Cu(2+), Fe(3+), Al(3+), Ni(2+), Co(2+), Cr(3+)) were added separately to obtain samples with varying molar ratio with respect to yttrium or lutetium (0.1, 0.5, 1, 2 and 10). The final solutions were analyzed through ultra high-performance liquid chromatography with an UV detector. In the second set of experiments, an amount of (90)Y or (177)Lu chloride (6 MBq corresponding to 3.3 and 45 pmol, respectively) was added to the samples, and a radio-thin layer chromatography analysis was carried out. The coordination of Y(3+) and Lu(3+) was dramatically influenced by low levels of Zn(2+), Cu(2+) and Co(2+). Pb(2+) and Ni(2+) were also shown to be strong competitors at higher concentrations. Fe(3+) was expected to be a strong competitor, but the effect on the incorporation was only partly dependent on its concentration. Al(3+) and Cr(3+) did not compete with Y(3+) and Lu(3+) in the formation of DOTATATE complexes. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Quantitative SPECT/CT reconstruction for 177Lu and 177Lu/90Y targeted radionuclide therapies

    NASA Astrophysics Data System (ADS)

    Shcherbinin, S.; Piwowarska-Bilska, H.; Celler, A.; Birkenfeld, B.

    2012-09-01

    We investigated the quantitative accuracy of SPECT/CT imaging studies as would be performed before and after targeted radionuclide therapy (TRT) using phantom experiments with (i) 99mTc, (ii) 177Lu and (iii) 90Y/177Lu. While the experiment with 99mTc imitated a diagnostic scan, the experiments with 177Lu and 90Y/177Lu modeled post-therapy acquisitions. At the next stage, we reconstructed images from pre- and post-therapy patient studies. The data were first reconstructed using two methods with limited corrections for the physics effects. Then, to generate quantitatively accurate absolute activity distributions, we applied a hybrid (model-based and window-based) reconstruction strategy where some of the physics effects were accurately modeled while corrections for other effects were empirical and based on information obtained from the projection data. The accuracies of absolute activity recovered by the hybrid method from the six phantom experiments were very similar to each other and acceptable for potential use in TRT. When measured in identical regions of interest, the 99mTc activity was reconstructed with errors ranging between -3.3% and 2.9%, while the 177Lu activity was reconstructed from experiments with 177Lu and 90Y/177Lu with errors ranging between -1.6% and 1.6%. The reconstruction algorithms with limited corrections led to larger and case-specific errors as might have been expected. From a clinical prospective, our results showed that physics-based reconstructions improved resolution of images corresponding to both diagnostic scans with 99mTc and post-therapy scans with 177Lu. Our analysis of patient study demonstrated that lack of corrections led to overestimation of activities in organs and tumor by 29-39% for the diagnostic scan with 99mTc and by 105-218% for post-therapy scan with 177Lu.

  14. [177Lu-PSMA-617 therapy, dosimetry and follow-up in patients with metastatic castration-resistant prostate cancer].

    PubMed

    Fendler, Wolfgang P; Kratochwil, Clemens; Ahmadzadehfar, Hojjat; Rahbar, Kambiz; Baum, Richard P; Schmidt, Matthias; Pfestroff, Andreas; Lützen, Ulf; Prasad, Vikas; Heinzel, Alexander; Heuschkel, Martin; Ruf, Juri; Bartenstein, Peter; Krause, Bernd J

    2016-06-28

    Radioligand therapy (RLT) using 177Lu labelled inhibitors of the prostate-specific membrane antigen (177Lu-PSMA) is performed in patients with metastatic castration-resistant prostate cancer (mCRPC) after exhaustion of other options. German University Clinics offer RLT since 2013 on a compassionate use basis. The present consensus document includes recommendations for RLT with 177Lu-PSMA-617. These consensus statements were developed by an expert panel formed by the German Society of Nuclear Medicine (DGN) in December 2015. Statements include recommendations for indication, baseline tests, therapy protocol, concomitant therapy, dosimetry, and follow-up. Consensus recommendations aim to inform the attending medical staff, standardize 177Lu-PSMA-617 RLT, and improve quality of individual patient care.

  15. First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease.

    PubMed

    Herrmann, Ken; Schottelius, Margret; Lapa, Constantin; Osl, Theresa; Poschenrieder, Andreas; Hänscheid, Heribert; Lückerath, Katharina; Schreder, Martin; Bluemel, Christina; Knott, Markus; Keller, Ulrich; Schirbel, Andreas; Samnick, Samuel; Lassmann, Michael; Kropf, Saskia; Buck, Andreas K; Einsele, Hermann; Wester, Hans-Juergen; Knop, Stefan

    2016-02-01

    Chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. Based on promising experiences with a radiolabeled CXCR4 ligand ((68)Ga-pentixafor) for diagnostic receptor targeting, (177)Lu- and (90)Y-pentixather were recently developed as endoradiotherapeutic vectors. Here, we summarize the first-in-human experience in 3 heavily pretreated patients with intramedullary and extensive extramedullary manifestations of multiple myeloma undergoing CXCR4-directed endoradiotherapy. CXCR4 target expression was demonstrated by baseline (68)Ga-pentixafor PET. Each treatment was approved by the clinical ethics committee. Pretherapeutic (177)Lu-pentixather dosimetry was performed before (177)Lu-pentixather or (90)Y-pentixather treatment. Subsequently, patients underwent additional chemotherapy and autologous stem cell transplantation for bone marrow rescue. A remarkable therapeutic effect was visualized in 2 patients, who showed a significant reduction in (18)F-FDG uptake. CXCR4-targeted radiotherapy with pentixather appears to be a promising novel treatment option in combination with cytotoxic chemotherapy and autologous stem cell transplantation, especially for patients with advanced multiple myeloma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Radiation Nanomedicine for EGFR-Positive Breast Cancer: Panitumumab-Modified Gold Nanoparticles Complexed to the β-Particle-Emitter, (177)Lu.

    PubMed

    Yook, Simmyung; Cai, Zhongli; Lu, Yijie; Winnik, Mitchell A; Pignol, Jean-Philippe; Reilly, Raymond M

    2015-11-02

    Our objective was to construct a novel radiation nanomedicine for treatment of breast cancer (BC) expressing epidermal growth factor receptors (EGFR), particularly triple-negative tumors (TNBC). Gold nanoparticles (AuNP; 30 nm) were modified with polyethylene glycol (PEG) chains (4 kDa) derivatized with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators for complexing the β-emitter, (177)Lu and with PEG chains (5 kDa) linked to panitumumab for targeting BC cells expressing EGFR. The AuNP were further coated with PEG chains (2 kDa) to stabilize the particles to aggregation. The binding and internalization of EGFR-targeted AuNP ((177)Lu-T-AuNP) into BC cells was studied and compared to nontargeted (177)Lu-NT-AuNP. The cytotoxicity of (177)Lu-T-AuNP and (177)Lu-NT-AuNP was measured in clonogenic assays using BC cells with widely different EGFR densities: MDA-MB-468 (10(6) receptors/cell), MDA-MB-231 (10(5) receptors/cell), and MCF-7 cells (10(4) receptors/cell). Radiation absorbed doses to the cell nucleus of MDA-MB-468 cells were estimated based on subcellular distribution. Darkfield and fluorescence microscopy as well as radioligand binding assays revealed that (177)Lu-T-AuNP were specifically bound by BC cells dependent on their EGFR density whereas the binding and internalization of (177)Lu-NT-AuNP was significantly lower. The affinity of binding of (177)Lu-T-AuNP to MDA-MB-468 cells was reduced by 2-fold compared to (123)I-labeled panitumumab (KD = 1.3 ± 0.2 nM vs 0.7 ± 0.4 nM, respectively). The cytotoxicity of (177)Lu-T-AuNP was dependent on the amount of radioactivity incubated with BC cells, their EGFR density and the radiosensitivity of the cells. The clonogenic survival (CS) of MDA-MB-468 cells overexpressing EGFR was reduced to <0.001% at the highest amount of (177)Lu-T-AuNP tested (4.5 MBq; 6 × 10(11) AuNP per 2.5 × 10(4)-1.2 × 10(5) cells). (177)Lu-T-AuNP were less effective for killing MDA-MB-231 cells or MCF-7 cells with

  17. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    DOE PAGES

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; ...

    2015-03-18

    Purpose Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targetingmore » either 90Y or 177Lu to human B-cell lymphoma xenografts in mice. Methods Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibodystreptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent. Results The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTAbiotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. Conclusion 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT

  18. Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of (90)Y and (177)Lu.

    PubMed

    Chong, Hyun-Soon; Sun, Xiang; Chen, Yunwei; Sin, Inseok; Kang, Chi Soo; Lewis, Michael R; Liu, Dijie; Ruthengael, Varyanna C; Zhong, Yongliang; Wu, Ningjie; Song, Hyun A

    2015-03-01

    Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin's lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides (90)Y and (177)Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with (90)Y and (177)Lu, and the corresponding (90)Y or (177)Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding (90)Y and (177)Lu, and the corresponding (90)Y- and (177)Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of (90)Y and (177)Lu. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthesis and Comparative Biological Evalution of Bifunctional Ligands for Radiotherapy Applications of 90Y and 177Lu

    PubMed Central

    Chong, Hyun-Soon; Sun, Xiang; Chen, Yunwei; Sin, Inseok; Kang, Chi Soo; Lewis, Michael R.; Liu, Dijie; Ruthengael, Varyanna C.; Zhong, Yongliang; Wu, Ningjie; Song, Hyun A

    2015-01-01

    Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope (90Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin’s lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides 90Y and 177Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with 90Y and 177Lu, and the corresponding 90Y or 177Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding 90Y and 177Lu, and the corresponding 90Y- and 177Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of 90Y and 177Lu. PMID:25648683

  20. Quantitative (177)Lu SPECT imaging using advanced correction algorithms in non-reference geometry.

    PubMed

    D'Arienzo, M; Cozzella, M L; Fazio, A; De Felice, P; Iaccarino, G; D'Andrea, M; Ungania, S; Cazzato, M; Schmidt, K; Kimiaei, S; Strigari, L

    2016-12-01

    Peptide receptor therapy with (177)Lu-labelled somatostatin analogues is a promising tool in the management of patients with inoperable or metastasized neuroendocrine tumours. The aim of this work was to perform accurate activity quantification of (177)Lu in complex anthropomorphic geometry using advanced correction algorithms. Acquisitions were performed on the higher (177)Lu photopeak (208keV) using a Philips IRIX gamma camera provided with medium-energy collimators. System calibration was performed using a 16mL Jaszczak sphere surrounded by non-radioactive water. Attenuation correction was performed using μ-maps derived from CT data, while scatter and septal penetration corrections were performed using the transmission-dependent convolution-subtraction method. SPECT acquisitions were finally corrected for dead time and partial volume effects. Image analysis was performed using the commercial QSPECT software. The quantitative SPECT approach was validated on an anthropomorphic phantom provided with a home-made insert simulating a hepatic lesion. Quantitative accuracy was studied using three tumour-to-background activity concentration ratios (6:1, 9:1, 14:1). For all acquisitions, the recovered total activity was within 12% of the calibrated activity both in the background region and in the tumour. Using a 6:1 tumour-to-background ratio the recovered total activity was within 2% in the tumour and within 5% in the background. Partial volume effects, if not properly accounted for, can lead to significant activity underestimations in clinical conditions. In conclusion, accurate activity quantification of (177)Lu can be obtained if activity measurements are performed with equipment traceable to primary standards, advanced correction algorithms are used and acquisitions are performed at the 208keV photopeak using medium-energy collimators. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. A Monte Carlo approach to small-scale dosimetry of solid tumour microvasculature for nuclear medicine therapies with (223)Ra-, (131)I-, (177)Lu- and (111)In-labelled radiopharmaceuticals.

    PubMed

    Amato, Ernesto; Leotta, Salvatore; Italiano, Antonio; Baldari, Sergio

    2015-07-01

    The small-scale dosimetry of radionuclides in solid-tumours is directly related to the intra-tumoral distribution of the administered radiopharmaceutical, which is affected by its egress from the vasculature and dispersion within the tumour. The aim of the present study was to evaluate the combined dosimetric effects of radiopharmaceutical distribution and range of the emitted radiation in a model of tumour microvasculature. We developed a computational model of solid-tumour microenvironment around a blood capillary vessel, and we simulated the transport of radiation emitted by (223)Ra, (111)In, (131)I and (177)Lu using the GEANT4 Monte Carlo. For each nuclide, several models of radiopharmaceutical dispersion throughout the capillary vessel were considered. Radial dose profiles around the capillary vessel, the Initial Radioactivity (IR) necessary to deposit 100 Gy of dose at the edge of the viable tumour-cell region, the Endothelial Cell Mean Dose (ECMD) and the Tumour Edge Mean Dose (TEMD), i.e. the mean dose imparted at the 250-μm layer of tissue, were computed. The results for beta and Auger emitters demonstrate that the photon dose is about three to four orders of magnitude lower than that deposited by electrons. For (223)Ra, the beta emissions of its progeny deliver a dose about three orders of magnitude lower than that delivered by the alpha emissions. Such results may help to characterize the dose inhomogeneities in solid tumour therapies with radiopharmaceuticals, taking into account the interplay between drug distribution from vasculature and range of ionizing radiations.

  2. Preclinical evaluation of (177)lu-nimotuzumab: a potential tool for radioimmunotherapy of epidermal growth factor receptor-overexpressing tumors.

    PubMed

    Vera, Denis Rolando Beckford; Eigner, Sebastian; Beran, Milos; Henke, Katerina Eigner; Laznickova, Alice; Laznicek, Milan; Melichar, Frantisek; Chinol, Marco

    2011-06-01

    The humanized monoclonal antibody Nimotuzumab (h-R3) has demonstrated an exceptional and better clinical profile than other monoclonal antibodies for immunotherapy of epidermal growth factor receptor-overexpressing tumors. This work deals with the preparation and radiolabeling optimization of (177)Lu-Nimotuzumab and their preclinical evaluation. Nimotuzumab was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), testing different molar ratios. The immunoconjugates were characterized. The radiolabeling with (177)Lu was optimized. Radioimmunoconjugates stability was tested in 2-[bis[2-[bis(carboxymethyl)amino]ethyl]amino]acetic acid (DTPA) excess and human serum. In vitro studies were performed in tumor model cell lines. Receptor-specific binding was tested by competitive inhibition. (177)Lu-Nimotuzumab in vivo studies were conducted in healthy and xenograft animals. Nimotuzumab conjugates were obtained with high purity. Radiolabeling yield and specific activities ranged from 63.6% to 94.5% and from 748 to 1142 MBq/mg, respectively. The stability in DTPA excess and human serum was 95.9% and 93.2% after 10 days, respectively. The radioimmunoconjugate showed specific receptor binding in tumor cell lines. Biodistribution in healthy animals showed the typical behavior of the immunoconjugates based on monoclonal antibodies. The study in xenografts mice demonstrated uptake of (177)Lu-Nimotuzumab in the tumor and reticuloendothelial organs. (177)Lu-Nimotuzumab was obtained with high purity and specific activities under optimal conditions without significant loss in immunoreactivity and might be a potential radioimmunoconjugate for radioimmunotherapy of tumors with epidermal growth factor receptor overexpression.

  3. (177)Lu-PSMA Radioligand Therapy for Prostate Cancer.

    PubMed

    Fendler, Wolfgang P; Rahbar, Kambiz; Herrmann, Ken; Kratochwil, Clemens; Eiber, Matthias

    2017-08-01

    (177)Lu-prostate-specific membrane antigen (PSMA) radioligand therapy (RLT) using inhibitors of PSMA is a novel therapeutic option in patients with metastatic castration-resistant prostate cancer. The current literature suggests that this therapy is well tolerated and effective. On the basis of clinical need and current evidence, the therapy is being implemented in a growing number of centers worldwide. Here, we review important aspects of (177)Lu-PSMA RLT, including patient stratification, the therapy protocol, concomitant medication, and follow-up, to inform medical staff involved in the RLT and care of patients with metastatic castration-resistant prostate cancer. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Method for preparing high specific activity 177Lu

    DOEpatents

    Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.

    2004-04-06

    A method of separating lutetium from a solution containing Lu and Yb, particularly reactor-produced .sup.177 Lu and .sup.177 Yb, includes the steps of: providing a chromatographic separation apparatus containing LN resin; loading the apparatus with a solution containing Lu and Yb; and eluting the apparatus to chromatographically separate the Lu and the Yb in order to produce high-specific-activity .sup.177 Yb.

  5. An approach for conjugation of 177Lu- DOTA-SCN- Rituximab (BioSim) & its evaluation for radioimmunotherapy of relapsed & refractory B-cell non Hodgkins lymphoma patients

    PubMed Central

    Thakral, Parul; Singla, Suhas; Yadav, Madhav Prasad; Vasisht, Atul; Sharma, Atul; Gupta, Santosh Kumar; Bal, C.S.; Snehlata; Malhotra, Arun

    2014-01-01

    Background & objectives: The prerequisite of radioimmunotherapy is stable binding of a radionuclide to monoclonal antibodies, which are specific to the tumour-associated antigen. Most B-cell lymphomas express CD20 antigen on the surface of the tumour cells, making it a suitable target for therapeutic radioactive monoclonal antibodies. In the present study, the immunoconjugate of biosimilar Rituximab (Reditux™) and macrocyclic chelator, p-SCN-Bz-DOTA, was prepared and radiolabelled with Lutetium-177 followed by quality control procedures. Methods: Rituximab(BioSim) was desalted with sodium bicarbonate (0.1M, pH 9.0) and incubated with DOTA-SCN (1:50). The effectiveness of the conjugation was evaluated by determining the number of chelators per antibody molecule. This conjugate was radiolabelled with Lutetium-177 and purified using PD10 column. The quality control parameters like pH, clarity, radiochemical purity, in vitro stability and sterility were studied. Immunoreactivity of 177Lu-DOTA-Rituximab (BioSim) was assessed using RAMOS cells. The radioimmunoconjugate (RIC) after stringent quality assurance was injected in three patients and the biodistribution profile was analysed. Results: An average of 4.25 ± 1.04 p-SCN-Bz-DOTA molecules could be randomly conjugated to a single molecule of Rituximab (BioSim). The radiochemical purity of the labelled antibody was > 95 per cent with preserved affinity for CD20 antigen. The final preparation was stable up to about 120 h when tested under different conditions. A favourable biodistribution profile was observed with liver showing the maximum uptake of the RIC. Interpretation & conclusions: A favourable radiochemical purity, stability and biodistribution of the radiolabelled immunoconjugate indicate that clinical trials for evaluation of toxicity and efficacy of 177Lu-DOTA-antiCD20 antibody-Rituximab (BioSim) in patients of relapsed and refractory non Hodgkin's lymphoma can be considered. PMID:24927340

  6. An approach for conjugation of (177) Lu- DOTA-SCN- Rituximab (BioSim) & its evaluation for radioimmunotherapy of relapsed & refractory B-cell non Hodgkins lymphoma patients.

    PubMed

    Thakral, Parul; Singla, Suhas; Yadav, Madhav Prasad; Vasisht, Atul; Sharma, Atul; Gupta, Santosh Kumar; Bal, C S; Malhotra, Arun

    2014-04-01

    The prerequisite of radioimmunotherapy is stable binding of a radionuclide to monoclonal antibodies, which are specific to the tumour-associated antigen. Most B-cell lymphomas express CD20 antigen on the surface of the tumour cells, making it a suitable target for therapeutic radioactive monoclonal antibodies. In the present study, the immunoconjugate of biosimilar Rituximab (Reditux™) and macrocyclic chelator, p-SCN-Bz-DOTA, was prepared and radiolabelled with Lutetium-177 followed by quality control procedures. Rituximab(BioSim) was desalted with sodium bicarbonate (0.1M, pH 9.0) and incubated with DOTA-SCN (1:50). The effectiveness of the conjugation was evaluated by determining the number of chelators per antibody molecule. This conjugate was radiolabelled with Lutetium-177 and purified using PD10 column. The quality control parameters like pH, clarity, radiochemical purity, in vitro stability and sterility were studied. Immunoreactivity of 177 Lu-DOTA-Rituximab (BioSim) was assessed using RAMOS cells. The radioimmunoconjugate (RIC) after stringent quality assurance was injected in three patients and the biodistribution profile was analysed. An average of 4.25 ± 1.04 p-SCN-Bz-DOTA molecules could be randomly conjugated to a single molecule of Rituximab (BioSim).The radiochemical purity of the labelled antibody was > 95 per cent with preserved affinity for CD20 antigen. The final preparation was stable up to about 120 h when tested under different conditions. A favourable biodistribution profile was observed with liver showing the maximum uptake of the RIC. A favourable radiochemical purity, stability and biodistribution of the radiolabelled immunoconjugate indicate that clinical trials for evaluation of toxicity and efficacy of 177 Lu-DOTA-antiCD20 antibody-Rituximab (BioSim) in patients of relapsed and refractory non Hodgkin's lymphoma can be considered.

  7. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients.

    PubMed

    Rahbar, Kambiz; Ahmadzadehfar, Hojjat; Kratochwil, Clemens; Haberkorn, Uwe; Schäfers, Michael; Essler, Markus; Baum, Richard P; Kulkarni, Harshad R; Schmidt, Matthias; Drzezga, Alexander; Bartenstein, Peter; Pfestroff, Andreas; Luster, Markus; Lützen, Ulf; Marx, Marlies; Prasad, Vikas; Brenner, Winfried; Heinzel, Alexander; Mottaghy, Felix M; Ruf, Juri; Meyer, Philipp Tobias; Heuschkel, Martin; Eveslage, Maria; Bögemann, Martin; Fendler, Wolfgang Peter; Krause, Bernd Joachim

    2017-01-01

    (177)Lu-labeled PSMA-617 is a promising new therapeutic agent for radioligand therapy (RLT) of patients with metastatic castration-resistant prostate cancer (mCRPC). Initiated by the German Society of Nuclear Medicine, a retrospective multicenter data analysis was started in 2015 to evaluate efficacy and safety of (177)Lu-PSMA-617 in a large cohort of patients. One hundred forty-five patients (median age, 73 y; range, 43-88 y) with mCRPC were treated with (177)Lu-PSMA-617 in 12 therapy centers between February 2014 and July 2015 with 1-4 therapy cycles and an activity range of 2-8 GBq per cycle. Toxicity was categorized by the common toxicity criteria for adverse events (version 4.0) on the basis of serial blood tests and the attending physician's report. The primary endpoint for efficacy was biochemical response as defined by a prostate-specific antigen decline ≥ 50% from baseline to at least 2 wk after the start of RLT. A total of 248 therapy cycles were performed in 145 patients. Data for biochemical response in 99 patients as well as data for physician-reported and laboratory-based toxicity in 145 and 121 patients, respectively, were available. The median follow-up was 16 wk (range, 2-30 wk). Nineteen patients died during the observation period. Grade 3-4 hematotoxicity occurred in 18 patients: 10%, 4%, and 3% of the patients experienced anemia, thrombocytopenia, and leukopenia, respectively. Xerostomia occurred in 8%. The overall biochemical response rate was 45% after all therapy cycles, whereas 40% of patients already responded after a single cycle. Elevated alkaline phosphatase and the presence of visceral metastases were negative predictors and the total number of therapy cycles positive predictors of biochemical response. The present retrospective multicenter study of (177)Lu-PSMA-617 RLT demonstrates favorable safety and high efficacy exceeding those of other third-line systemic therapies in mCRPC patients. Future phase II/III studies are warranted to

  8. Biodistribution and Dosimetry of 177Lu-tetulomab, a New Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma

    PubMed Central

    Repetto-Llamazares, Ada H V; Larsen, Roy H; Mollatt, Camilla; Lassmann, Michael; Dahle, Jostein

    2013-01-01

    The biodistribution of the anti-CD37 radioimmunoconjugate 177Lu-tetraxetan-tetulomab (177Lu-DOTA-HH1) was evaluated. Biodistribution of 177Lu-tetraxetan-tetulomab was compared with 177Lu-tetraxetan-rituximab and free 177Lu in nude mice implanted with Daudi lymphoma xenografts. The data showed that 177Lu-tetulomab had a relevant stability and tumor targeting properties in the human lymphoma model. The half-life of 177Lu allowed significant tumor to normal tissue ratios to be obtained indicating that 177Lu-tetraxetan-tetulomab could be suitable for clinical testing. The biological and effective half-life in blood was higher for 177Lu-tetraxetan-tetulomab than for 177Lu-tetraxetan-rituximab. The biodistribution of 177Lu-tetraxetan-tetulomab did not change significantly when the protein dose was varied from 0.01 to 1 mg/kg. Dosimetry calculations showed that the absorbed radiation doses to normal tissues and tumor in mice were not significantly different for 177Lu-tetraxetan-tetuloma b and 177Lu-tetraxetan-rituximab. The absorbed radiation doses were extrapolated to human absorbed radiation doses. These extrapolated absorbed radiation doses to normal tissues for 177Lu-tetraxetan-tetulomab at an injection of 40 MBq/kg were significantly lower than the absorbed radiation doses for 15 MBq/kg Zevalin, suggesting that higher tumor radiation dose can be reached with 177Lu-tetraxetan-tetulomab in the clinic. PMID:23256748

  9. Consequences of meta-stable (177m)Lu admixture in (177)Lu for patient dosimetry.

    PubMed

    Konijnenberg, Mark W

    2015-01-01

    Lutetium-177 ((177)Lu) is a rare earth metal in the lanthanides series which decays by beta emission with a half life of 6.647 days to three excited states and the ground state of (177)Hf. When (177)Lu is produced by neutron capture in (176)Lu, inevitably an admixture is formed of the long-lived isomer (177)mLu. As its half-life of 160.4 days is so much longer than that of (177)Lu, concerns are raised on its possible enhancement in radiation dose to the patient treated with (177)Lu-DOTA-octreotate. This report evaluates this possible enhancement of the absorbed dose, based on the published pharmacokinetic profile of (177)Lu-DOTA-octreotate and assuming an admixture of 1 kBq (177)mLu /MBq (177)Lu (0.1%).

  10. Mechanisms of Cell Killing Response from Low Linear Energy Transfer (LET) Radiation Originating from 177Lu Radioimmunotherapy Targeting Disseminated Intraperitoneal Tumor Xenografts

    PubMed Central

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2016-01-01

    Radiolabeled antibodies (mAbs) provide efficient tools for cancer therapy. The combination of low energy β−-emissions (500 keVmax; 130 keVave) along with a γ-emission for imaging makes 177Lu (T1/2 = 6.7 day) a suitable radionuclide for radioimmunotherapy (RIT) of tumor burdens possibly too large to treat with α-particle radiation. RIT with 177Lu-trastuzumab has proven to be effective for treatment of disseminated HER2 positive peritoneal disease in a pre-clinical model. To elucidate mechanisms originating from this RIT therapy at the molecular level, tumor bearing mice (LS-174T intraperitoneal xenografts) were treated with 177Lu-trastuzumab comparatively to animals treated with a non-specific control, 177Lu-HuIgG, and then to prior published results obtained using 212Pb-trastuzumab, an α-particle RIT agent. 177Lu-trastuzumab induced cell death via DNA double strand breaks (DSB), caspase-3 apoptosis, and interfered with DNA-PK expression, which is associated with the repair of DNA non-homologous end joining damage. This contrasts to prior results, wherein 212Pb-trastuzumab was found to down-regulate RAD51, which is involved with homologous recombination DNA damage repair. 177Lu-trastuzumab therapy was associated with significant chromosomal disruption and up-regulation of genes in the apoptotic process. These results suggest an inhibition of the repair mechanism specific to the type of radiation damage being inflicted by either high or low linear energy transfer radiation. Understanding the mechanisms of action of β−- and α-particle RIT comparatively through an in vivo tumor environment offers real information suitable to enhance combination therapy regimens involving α- and β−-particle RIT for the management of intraperitoneal disease. PMID:27196891

  11. Use of (177)Lu-dotatate in the treatment of iodine refractory thyroid carcinomas.

    PubMed

    Oliván-Sasot, P; Falgás-Lacueva, M; García-Sánchez, J; Vera-Pinto, V; Olivas-Arroyo, C; Bello-Arques, P

    In a patient with a differentiated thyroid cancer the standard treatment protocol to be followed is surgery, ablation of thyroid remnants with (131)Iodine ((131)I), and TSH suppression. However, the treatment with (131)I is not effective in some cases, and it no longer becomes a therapeutic option due to cell de-differentiation with loss of (131)I uptake. Systemic treatment can be used as other options, although patients are not always responsive; thus, the disease may progress and therapeutic options may run out. Endocrine tumours may express somatostatin receptors,and this characteristic has been used, not only for diagnosis, but also for their treatment through somatostatin analogue labelling with radioactive isotopes. This was the case of a patient suffering from iodine-refractory follicular thyroid carcinoma, with somatostatin receptors expression, treated with (177)Lu-DOTATATE, showing an excellent clinical and analytical response.

  12. H6phospa-Trastuzumab: Bifunctional Methylenephosphonate-based Chelator with 89Zr, 111In and 177Lu

    PubMed Central

    Price, Eric W.; Zeglis, Brian M.

    2013-01-01

    The acyclic chelator H6phospa and the bifunctional derivative p-SCN-Bn-H6phospa have been synthesized using nosyl protection chemistry and evaluated with 89Zr, 111In, and 177Lu. The p-SCN-Bn-H6phospa derivative was successfully conjugated to trastuzumab with isotopic dilution assays indicating 3.3 ± 0.1 chelates per antibody and in vitro cellular binding assays indicating an immunoreactivity value of 97.9 ± 2.6%. Radiolabeling of the H6phospa-trastuzumab immunoconjugate was achieved with 111In in 70–90% yields at room temperature in 30 minutes, while 177Lu under the same conditions produced more inconsistent yields of 40–80%. Stability experiments in human serum revealed the 111In-phospa-trastuzumab complex to be 52.0 ± 5.3% intact after 5 days at 37 °C, while the 177Lu-phospa-trastuzumab to be only 2.0 ± 0.3% intact. Small animal SPECT/CT imaging using mice bearing subcutaneous SKOV-3 ovarian cancer xenografts was performed, and it was found that 111In-phospa-trastuzumab successfully identified and delineated small (~2 mm in diameter) tumors from surrounding tissues, despite visible uptake in the kidneys and bone due to moderate chelate instability. As predicted from stability assays in serum, the 177Lu-phospa-trastuzumab conjugate served as a negative control and displayed no tumor uptake, with high uptake in bones indicating rapid and complete radiometal dissociation and suggesting a potential application of H6phospa in transient lanthanide chelation for bone-delivery. Radiolabeling with 89Zr was attempted, but even with elevated temperatures of 37 °C, the maximum observed radiometal incorporation over 18 hours was 12%. It can be concluded from this work that H6phospa is not superior to the previously studied H4octapa for use with 111In and 177Lu, but improvements in 89Zr radiolabeling were observed over H4octapa, suggesting H6phospa to be an excellent starting point for elaboration of 89Zr-based radiopharmaceutical development. To our knowledge, H6

  13. Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor

    SciTech Connect

    Lahodova, Z.; Viererbl, L.; Klupak, V.; Srank, J.

    2012-07-01

    The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

  14. Dosimetry of [177Lu]-DO3A-VS-Cys40-Exendin-4 – impact on the feasibility of insulinoma internal radiotherapy

    PubMed Central

    Velikyan, Irina; Bulenga, Thomas N; Selvaraju, Ramkumar; Lubberink, Mark; Espes, Daniel; Rosenström, Ulrika; Eriksson, Olof

    2015-01-01

    [68Ga]-DO3A-VS-Cys40-Exendin-4 has been shown to be a promising imaging candidate for targeting glucagon like peptide-1 receptor (GLP-1R). In the light of radiotheranostics and personalized medicine the 177Lu-labelled analogue is of paramount interest. In this study we have investigated the organ distribution of [177Lu]-DO3A-VS-Cys40-Exendin-4 in rat and calculated human dosimetry parameters in order to estimate the maximal acceptable administered radioactivity, and thus potential applicability of [177Lu]-DO3A-VS-Cys40-Exendin-4 for internal radiotherapy of insulinomas. Nine male and nine female Lewis rats were injected with [177Lu]-DO3A-VS-Cys40-Exendin-4 for ex vivo organ distribution study at nine time points. The estimation of human organ/total body absorbed and total effective doses was performed using Organ Level Internal Dose Assessment Code software (OLINDA/EXM 1.1). Six more rats (male: n = 3; female: n = 3) were scanned by single photon emission tomography and computed tomography (SPECT-CT). The renal function and potential cell dysfunction were monitored by creatinine ISTAT and glucose levels. The fine uptake structure of kidney and pancreas was investigated by ex vivo autoradiography. Blood clearance and washout from most of the organs was fast. The kidney was the dose-limiting organ with absorbed dose of 5.88 and 6.04 mGy/MBq, respectively for female and male. Pancreatic beta cells demonstrated radioactivity accumulation. Renal function and beta cell function remained unaffected by radiation. The absorbed dose of [177Lu]-DO3A-VS-Cys40-Exendin-4 to kidneys may limit the clinical application of the agent. However, hypothetically, kidney protection and peptidase inhibition may allow reduction of kidney absorbed dose and amplification of tumour absorbed doses. PMID:25973333

  15. Tumoral fibrosis effect on the radiation absorbed dose of (177)Lu-Tyr(3)-octreotate and (177)Lu-Tyr(3)-octreotate conjugated to gold nanoparticles.

    PubMed

    Azorín-Vega, E P; Zambrano-Ramírez, O D; Rojas-Calderón, E L; Ocampo-García, B E; Ferro-Flores, G

    2015-06-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals (177)Lu-Tyr(3)-octreotate (monomeric) and (177)Lu-Tyr(3)-octreotate-gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112Gy-multimeric vs. 43Gy-monomeric).

  16. Thermal neutron capture cross section for the K isomer {sup 177}Lu{sup m}

    SciTech Connect

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-15

    The thermal neutron radiative capture cross section for the K isomeric state in {sup 177}Lu has been measured for the first time. Several {sup 177}Lu{sup m} targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the {sup 178}Lu activity by {gamma}-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for {sup 177}Lu{sup m}. In addition, an indirect method leads to the determination of the {sup 177}Lu{sup g} neutron radiative capture cross section.

  17. The low-energy β(-) and electron emitter (161)Tb as an alternative to (177)Lu for targeted radionuclide therapy.

    PubMed

    Lehenberger, Silvia; Barkhausen, Christoph; Cohrs, Susan; Fischer, Eliane; Grünberg, Jürgen; Hohn, Alexander; Köster, Ulli; Schibli, Roger; Türler, Andreas; Zhernosekov, Konstantin

    2011-08-01

    The low-energy β(-) emitter (161)Tb is very similar to (177)Lu with respect to half-life, beta energy and chemical properties. However, (161)Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to (177)Lu. It also emits low-energy photons that are useful for gamma camera imaging. The (160)Gd(n,γ)(161)Gd→(161)Tb production route was used to produce (161)Tb by neutron irradiation of massive (160)Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) (161)Tb from the bulk of the (160)Gd target and from its stable decay product (161)Dy. (161)Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. (177)Lu. A (161)Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of (161)Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%-90% of the available (161)Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The (161)Tb obtained was of the quality required to prepare (161)Tb-DOTA-Tyr3-octreotate. We were able to produce (161)Tb in n.c.a. form by irradiating highly enriched (160)Gd targets; it can be obtained in the quantity and quality required for the preparation of (161)Tb-labeled therapeutic agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. 177Lu-DO3A-HSA-Z EGFR:1907: characterization as a potential radiopharmaceutical for radionuclide therapy of EGFR-expressing head and neck carcinomas.

    PubMed

    Hoppmann, Susan; Qi, Shibo; Miao, Zheng; Liu, Hongguang; Jiang, Han; Cutler, Cathy S; Bao, Ande; Cheng, Zhen

    2012-06-01

    Epidermal growth factor receptor 1 (EGFR) is an attractive target for radionuclide therapy of head and neck carcinomas. Affibody molecules against EGFR (Z(EGFR)) show excellent tumor localizations in imaging studies. However, one major drawback is that radiometal-labeled Affibody molecules display extremely high uptakes in the radiosensitive kidneys which may impact their use as radiotherapeutic agents. The purpose of this study is to further explore whether radiometal-labeled human serum albumin (HSA)-Z(EFGR) bioconjugates display desirable profiles for the use in radionuclide therapy of EGFR-positive head and neck carcinomas. The Z(EFGR) analog, Ac-Cys-Z(EGFR:1907), was site-specifically conjugated with HSA. The resulting bioconjugate 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A)-HSA-Z(EGFR:1907) was then radiolabeled with either (64)Cu or (177)Lu and subjected to in vitro cell uptake and internalization studies using the human oral squamous carcinoma cell line SAS. Positron emission tomography (PET), single photon emission computed tomography (SPECT), and biodistribution studies were conducted using SAS-tumor-bearing mice. Cell studies revealed a high (8.43 ± 0.55 % at 4 h) and specific (0.95 ± 0.09 % at 4 h) uptake of (177)Lu-DO3A-HSA-Z(EGFR:1907) as determined by blocking with nonradioactive Z(EGFR:1907). The internalization of (177)Lu-DO3A-HSA-Z(EGFR:1907) was verified in vitro and found to be significantly higher than that of (177)Lu-labeled Z(EFGR) at 2-24 h of incubation. PET and SPECT studies showed good tumor imaging contrasts. The biodistribution of (177)Lu-DO3A-HSA-Z(EGFR:1907) in SAS-tumor-bearing mice displayed high tumor uptake (5.1 ± 0.44 % ID/g) and liver uptake (31.5 ± 7.66 % ID/g) and moderate kidney uptake (8.5 ± 1.08 % ID/g) at 72 h after injection. (177)Lu-DO3A-HSA-Z(EGFR:1907) shows promising in vivo profiles and may be a potential radiopharmaceutical for radionuclide therapy of EGFR-expressing head and neck carcinomas.

  19. Biological comparison of 149Pm-, 166Ho-, and 177Lu-DOTA-biotin pretargeted by CC49 scFv-streptavidin fusion protein in xenograft-bearing nude mice.

    PubMed

    Lewis, Michael R; Zhang, Jiuli; Jia, Fang; Owen, Nellie K; Cutler, Cathy S; Embree, Mary F; Schultz, Jody; Theodore, Louis J; Ketring, Alan R; Jurisson, Silvia S; Axworthy, Donald B

    2004-02-01

    The radiolanthanides (149)Pm, (166)Ho, and (177)Lu possess a range of half-lives and alpha(-) beta(-) energies for targeted radiotherapy of cancer. (149)Pm-, (166)Ho-, and (177)Lu-DOTA-biotin were pretargeted to LS174T colorectal tumors in nude mice with CC49 scFvSA antibody-streptavidin fusion protein. Tumor uptakes of (149)Pm (22.9% ID/g), (166)Ho (30.2% ID/g), and (177)Lu (35.4% ID/g) peaked at 1-4 h. Rapid blood disappearance was accompanied by urinary excretion of 59-66% ID within 1 h. Biodistributions of these agents show promise for pretargeted radioimmunotherapy of cancer.

  20. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors.

    PubMed

    Strosberg, Jonathan; El-Haddad, Ghassan; Wolin, Edward; Hendifar, Andrew; Yao, James; Chasen, Beth; Mittra, Erik; Kunz, Pamela L; Kulke, Matthew H; Jacene, Heather; Bushnell, David; O'Dorisio, Thomas M; Baum, Richard P; Kulkarni, Harshad R; Caplin, Martyn; Lebtahi, Rachida; Hobday, Timothy; Delpassand, Ebrahim; Van Cutsem, Eric; Benson, Al; Srirajaskanthan, Rajaventhan; Pavel, Marianne; Mora, Jaime; Berlin, Jordan; Grande, Enrique; Reed, Nicholas; Seregni, Ettore; Öberg, Kjell; Lopera Sierra, Maribel; Santoro, Paola; Thevenet, Thomas; Erion, Jack L; Ruszniewski, Philippe; Kwekkeboom, Dik; Krenning, Eric

    2017-01-12

    Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 ((177)Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either (177)Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) ((177)Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the (177)Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the (177)Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the (177)Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the (177)Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame

  1. Evidence for inelastic neutron acceleration by the {sup 177}Lu isomer

    SciTech Connect

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.

    2006-11-15

    The neutron burnup cross section {sigma}{sub burnup}{sup m} on the long-lived metastable state of {sup 177}Lu has been measured from a specially designed isomeric target. The Maxwellian averaged cross section obtained for this reaction on {sup 177}Lu{sup m}(J{sup {pi}}=23/2{sup -}) is {sigma}{sub burnup}{sup m}=626{+-}45 b at the reactor temperature T=323 K. The difference between the burnup cross section and the previously measured capture cross section {sigma}{sub n,{gamma}} clearly shows a possible existence of {sup 177}Lu{sup m} deexcitation via (n,n{sup '}) inelastic neutron acceleration channels. The results are interpreted in terms of a statistical approach using parameters from a deformed optical potential calculation.

  2. Evaluation of two intraoperative gamma detectors for assessment of (177)Lu activity concentration in vivo.

    PubMed

    Sandblom, Viktor; Ståhl, Ingun; Olofsson Bagge, Roger; Forssell-Aronsson, Eva

    2017-12-01

    Patients with somatostatin receptor-expressing neuroendocrine tumours can be treated with intravenously administered (177)Lu-octreotate. Few patients are cured with the present protocol due to the current dose limitation of normal organs at risk, such as the kidneys. By locally administering (177)Lu-octreotate to the liver for the purpose of treating liver metastases, a substantially reduced absorbed dose to organs at risk could be achieved. The development of such a technique requires the capability of measuring the (177)Lu activity concentration in tissues in vivo. The aim of this study was to evaluate different performance parameters of two commercially available intraoperative gamma detectors in order to investigate whether intraoperative gamma detector measurements could be used to determine (177)Lu activity concentration in vivo. Measurements were made using different sources containing (177)Lu. Response linearity, sensitivity, spatial resolution and its depth dependence, organ thickness dependence of the measured count rate and tumour detectability were assessed for two intraoperative gamma detectors. The two detectors (a scintillation and a semiconductor detector) showed differences in technical performance. For example, the sensitivity was higher for the scintillation detector, while the spatial resolution was better for the semiconductor detector. Regarding organ thickness dependence and tumour detectability, similar results were obtained for both detectors, and even relatively small simulated tumours of low tumour-to-background activity concentration ratios could be detected. Acceptable results were obtained for both detectors, although the semiconductor detector proved more advantageous for our purpose. The measurements demonstrated factors that must be corrected for, such as organ thickness or dead-time effects. Altogether, intraoperative gamma detector measurements could be used to determine (177)Lu activity concentration in vivo.

  3. [177Lu]Bz-DTPA-EGF: Preclinical characterization of a potential radionuclide targeting agent against glioma.

    PubMed

    Sundberg, Asa Liljegren; Gedda, Lars; Orlova, Anna; Bruskin, Alexander; Blomquist, Erik; Carlsson, Jörgen; Tolmachev, Vladimir

    2004-04-01

    Patients with glioblastoma multiforme have a poor prognosis due to recurrences originating from spread cells. The use of radionuclide targeting might increase the chance of inactivating single tumor cells with minimal damage to surrounding healthy tissue. As a target, overexpressed epidermal growth factor receptors (EGFR) may be used. A natural ligand to EGFR, the epidermal growth factor (EGF) is an attractive targeting agent due to its low molecular weight (6 kDa) and high affinity for EGFR. 177Lu (T(1/2) = 6.7 days) is a radionuclide well suited for treatment of small tumor cell clusters, since it emits relatively low-energy beta particles. The goal of this study was to prepare and preclinically evaluate both in vitro and in vivo the [177Lu]Bz-DTPA-EGF conjugate. The conjugate was characterized in vitro for its cell-binding properties, and in vivo for its pharmacokinetics and ability to target EGFR. [177Lu]Bz-DTPA-EGF bound to cultured U343 glioblastoma cells with an affinity of 1.9 nM. Interaction with EGFR led to rapid internalization, and more than 70% of the cell-associated radioactivity was internalized after 30 minutes of incubation. The retention of radioactivity was good, with more than 65% of the 177Lu still cell-associated after 2 days. Biodistribution studies of i.v. injected [177Lu]Bz-DTPA-EGF in NMRI mice demonstrated a rapid blood clearance. Most of the radioactivity was found in the liver and kidneys. The liver uptake was receptor-mediated, since it could be significantly reduced by preinjection of unlabeled EGF. In conclusion, [177Lu]Bz-DTPA-EGF seems to be a promising candidate for locoregional treatment of glioblastoma due to its high binding affinity, low molecular weight, and ability to target EGFR in vivo.

  4. Esthesioneuroblastoma (olfactory neuroblastoma) treated with 111In-octreotide and 177Lu-DOTATATE PRRT.

    PubMed

    Makis, William; McCann, Karey; McEwan, Alexander J B

    2015-04-01

    A 51-year-old man with a recurrent metastatic esthesioneuroblastoma (olfactory neuroblastoma) was referred for peptide receptor radionuclide therapy (PRRT). He received 4 treatments of 111In-octreotide over 8 months and 3 treatments of 177Lu-DOTATATE over 4 months, which helped alleviate his symptoms and improved his quality of life; however, the tumor ultimately progressed and he passed away shortly thereafter. PRRT with 111In-octreotide or 177Lu-DOTATATE could play a role in the management of esthesioneuroblastoma.

  5. Camptothecin Enhances Cell Death Induced by (177)Lu-EDTMP in Osteosarcoma Cells.

    PubMed

    Kumar, Chandan; Vats, Kusum; Lohar, Sharad P; Korde, Aruna; Samuel, Grace

    2014-10-01

    Lutetium-177 is an assured therapeutic radionuclide with favorable half-life and suitable β(-) energy. Radiolabeled (177)Lu-EDTMP (Ethylenediamine tetramethylene phosphonic acid) is by and large used for bone pain palliation in cancer patients. In vitro cell studies are carried out in osteosarcoma cells MG-63 to evaluate the combined effect of anticancer drug camptothecin (CPT) and (177)Lu-EDTMP. Two concentrations of (177)Lu-EDTMP (3.7 and 37 MBq) were incubated with MG63 cell line for 48 hours with and without pretreatment of CPT (10 nM) for 1 hour. After completion of incubation, the cells were harvested and cellular toxicity was estimated by LDH, MTT, and trypan blue dye. Apoptotic DNA fragmentation was estimated by ELISA kit. The expression of proteins such as bcl2, PARP, and MAPK (mitogen-activated protein kinase) that were related to apoptotic signaling pathways was assessed by western blotting. The results indicated that cellular toxicity and apoptosis were relatively higher in MG63 cells that were treated with CPT prior to treating with (177)Lu-EDTMP in comparison with the corresponding individual controls.

  6. Direct evidence for inelastic neutron 'acceleration' by {sup 177}Lu{sup m}

    SciTech Connect

    Roig, O.; Meot, V.; Rosse, B.; Belier, G.; Daugas, J.-M.; Morel, P.; Letourneau, A.; Menelle, A.

    2011-06-15

    The inelastic neutron acceleration cross section on the long-lived metastable state of {sup 177}Lu has been measured using a direct method. High-energy neutrons have been detected using a specially designed setup placed on a cold neutron beam extracted from the ORPHEE reactor in Saclay. The 146{+-}19 b inelastic neutron acceleration cross section in the ORPHEE cold neutron flux confirms the high cross section for this process on the {sup 177}Lu{sup m} isomer. The deviation from the 258{+-}58 b previously published obtained for a Maxwellian neutron flux at a 323 K temperature could be explained by the presence of a low energy resonance. Resonance parameters are deduced and discussed.

  7. (44)Sc-PSMA-617 for radiotheragnostics in tandem with (177)Lu-PSMA-617-preclinical investigations in comparison with (68)Ga-PSMA-11 and (68)Ga-PSMA-617.

    PubMed

    Umbricht, Christoph A; Benešová, Martina; Schmid, Raffaella M; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P; Müller, Cristina

    2017-12-01

    The targeting of the prostate-specific membrane antigen (PSMA) is of particular interest for radiotheragnostic purposes of prostate cancer. Radiolabeled PSMA-617, a 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-functionalized PSMA ligand, revealed favorable kinetics with high tumor uptake, enabling its successful application for PET imaging ((68)Ga) and radionuclide therapy ((177)Lu) in the clinics. In this study, PSMA-617 was labeled with cyclotron-produced (44)Sc (T 1/2 = 4.04 h) and investigated preclinically for its use as a diagnostic match to (177)Lu-PSMA-617. (44)Sc was produced at the research cyclotron at PSI by irradiation of enriched (44)Ca targets, followed by chromatographic separation. (44)Sc-PSMA-617 was prepared under standard labeling conditions at elevated temperature resulting in a radiochemical purity of >97% at a specific activity of up to 10 MBq/nmol. (44)Sc-PSMA-617 was evaluated in vitro and compared to the (177)Lu- and (68)Ga-labeled match, as well as (68)Ga-PSMA-11 using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu prostate cancer cells. In these experiments it revealed similar in vitro properties to that of (177)Lu- and (68)Ga-labeled PSMA-617. Moreover, (44)Sc-PSMA-617 bound specifically to PSMA-expressing PC-3 PIP tumor cells, while unspecific binding to PC-3 flu cells was not observed. The radioligands were investigated with regard to their in vivo properties in PC-3 PIP/flu tumor-bearing mice. (44)Sc-PSMA-617 showed high tumor uptake and a fast renal excretion. The overall tissue distribution of (44)Sc-PSMA-617 resembled that of (177)Lu-PSMA-617 most closely, while the (68)Ga-labeled ligands, in particular (68)Ga-PSMA-11, showed different distribution kinetics. (44)Sc-PSMA-617 enabled distinct visualization of PC-3 PIP tumor xenografts shortly after injection, with increasing tumor-to-background contrast over time while unspecific uptake in the PC-3 flu tumors was not observed. The in vitro

  8. In Vivo Measurement and Characterization of a Novel Formulation of [177Lu]-DOTA-Octreotate

    PubMed Central

    Bailey, Dale L; Hennessy, Thomas M; Willowson, Kathy P; Henry, E Courtney; Chan, David LH; Aslani, Alireza; Roach, Paul J

    2016-01-01

    Objective(s): Lutetium-177 can be made with high specific activity and with no other isotopes of lutetium present, referred to as “No Carrier Added” (NCA) 177Lu. We have radiolabelled DOTA-conjugated peptide DOTA-(Tyr3)-octreotate with NCA 177Lu (“NCA-LuTATE”) and used it in nearly 40 therapeutic administrations for subjects with neuroendocrine tumours or meningiomas. In this paper, we report on our initial studies on aspects of the biodistribution and dosimetry of NCA-LuTATE from gamma camera 2D whole body (WB) and quantitative 3D SPECT (qSPECT) 177Lu imaging. Methods: Thirteen patients received 39 NCA-LuTATE injections. Extensive WB planar and qSPECT imaging was acquired at approximately 0.5, 4, 24 and 96 h to permit estimates of clearance and radiation dose estimation using MIRD-based methodology (OLINDA-EXM). Results: The average amount of NCA-Lutate administered per cycle was 7839±520 MBq. Bi-exponential modelling of whole body clearance showed half lives for the fast & slow components of t½=2.1±0.6 h and t½=58.1±6.6 h respectively. The average effective dose to kidneys was 3.1±1.0 Gy per cycle. In eight patients completing all treatment cycles the average total dose to kidneys was 11.7±3.6 Gy. Conclusions: We have shown that NCA-LuTATE has an acceptable radiation safety profile and is a suitable alternative to Carrier-Added 177Lu formulations. The fast component of the radiopharmaceutical clearance was closely correlated with baseline renal glomerular filtration rate, and this had an impact on radiation dose to the kidneys. In addition, it has less radioactive waste issues and requires less peptide per treatment. PMID:27904871

  9. Standardization and measurement of gamma-ray probability per decay of 177Lu.

    PubMed

    Dias, Mauro S; Silva, Fabrício F V; Koskinas, Marina F

    2010-01-01

    The procedure followed by the Nuclear Metrology Laboratory (LMN), at the Nuclear and Energy Research Institute (IPEN), for the primary standardization of (177)Lu is described. This radionuclide is widely used in radiopharmacy due to its convenient half-life and emitted beta ray energies. The (177)Lu solution was supplied during an international comparison sponsored by BIPM in 2009 and the primary standardization has been accomplished by the 4pibeta-gamma coincidence method using a proportional counter in 4pi geometry coupled with two NaI(Tl) scintillation counters. The beta efficiency was varied by placing Collodion and aluminum absorbers over and under the radioactive source. The (177)Lu calibrated sources were also measured in a previously calibrated HPGe spectrometer, in order to obtain the emission probability per decay for the selected gamma-ray transitions. The experimental extrapolation curves were also compared with Monte Carlo simulations by means of code ESQUEMA developed at the LMN. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. (177)Lu-DOTATATE treatment in neuroendocrine tumours. A preliminary study.

    PubMed

    Hervás, I; Bello, P; Falgas, M; Del Olmo, M I; Torres, I; Olivas, C; Vera, V; Oliván, P; Yepes, A M

    Therapy with radiolabelled somatostatin analogue peptides is a promising new therapy to treat neuroendocrine tumours. The aim of this preliminary study is to present our experience with (177)Lu-DOTATATE therapy, and evaluate tolerability and short-term efficacy in patients with tumours expressing somatostatin receptors. A total of 7 patients with metastatic neuroendocrine tumours were treated, each with 4 doses of (177)Lu-DOTATATE. The treatment response was evaluated in the form of biochemical response (tumour markers), imaging methods (somatostatin receptor scintigraphy, computed tomography, and magnetic resonance), and functional and quality of life responses using the Karnofsky performance status scale. Treatment toxicity was also evaluated. The results obtained were as follows: Biochemical response: 60% of patients showed tumour marker levels returning to normal, while they decreased significantly in the remaining 40%. Imaging response: 85.7% had a partial response, while 14.3% showed stable disease. All (100%) patients showed a significant improvement in quality of life, with increased Karnofsky scale scores. No patient had acute or chronic toxicity, and subacute transient haematological toxicity was observed in 42.8% of patients. Despite being a preliminary study, it was found that treatment with (177)Lu-DOTATATE is a safe treatment with few side effects, and an objective response was achieved in most patients. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  11. Half-life measurement of the medical radioisotope 177Lu produced from the 176Yb(n,γ) reaction

    NASA Astrophysics Data System (ADS)

    Ferreira, K. M.; Collins, S. M.; Fenwick, A. J.

    2017-09-01

    177Lu is a medium energy beta-emitter commonly used in Nuclear Medicine for radiotherapeutic applications. In this work, the half-life of 177Lu has been measured using a re-entrant ionisation chamber over a period of 82 days (approximately 12 half-lives). Unlike the majority of previous studies, the material used in this work was produced via the 176Yb(n,γ)177Yb reaction followed by the β-decay to 177Lu, producing insignificant quantities of 177mLu. This has resulted in the most precise half-life measurement of 177Lu to date. A half-life of 6.6430 (11) days has been determined. This value is in statistical agreement with the currently recommended half-life of 6.6463 (15) days (z-score = 1.8).

  12. Monte Carlo Calculation of Radioimmunotherapy with 90Y-, 177Lu-, 131I-, 124I-, and 188Re-Nanoobjects: Choice of the Best Radionuclide for Solid Tumour Treatment by Using TCP and NTCP Concepts

    PubMed Central

    Lucas, S.; Feron, O.; Gallez, B.; Masereel, B.; Michiels, C.; Vander Borght, T.

    2015-01-01

    Radioimmunotherapy has shown that the use of monoclonal antibodies combined with a radioisotope like 131I or 90Y still remains ineffective for solid and radioresistant tumour treatment. Previous simulations have revealed that an increase in the number of 90Y labelled to each antibody or nanoobject could be a solution to improve treatment output. It now seems important to assess the treatment output and toxicity when radionuclides such as 90Y, 177Lu, 131I, 124I, and 188Re are used. Tumour control probability (TCP) and normal tissue complication probability (NTCP) curves versus the number of radionuclides per nanoobject were computed with MCNPX to evaluate treatment efficacy for solid tumours and to predict the incidence of surrounding side effects. Analyses were carried out for two solid tumour sizes of 0.5 and 1.0 cm radius and for nanoobject (i.e., a radiolabelled antibody) distributed uniformly or nonuniformly throughout a solid tumour (e.g., Non-small-cell-lung cancer (NSCLC)). 90Y and 188Re are the best candidates for solid tumour treatment when only one radionuclide is coupled to one carrier. Furthermore, regardless of the radionuclide properties, high values of TCP can be reached without toxicity if the number of radionuclides per nanoobject increases. PMID:26136812

  13. Monte Carlo Calculation of Radioimmunotherapy with (90)Y-, (177)Lu-, (131)I-, (124)I-, and (188)Re-Nanoobjects: Choice of the Best Radionuclide for Solid Tumour Treatment by Using TCP and NTCP Concepts.

    PubMed

    Lucas, S; Feron, O; Gallez, B; Masereel, B; Michiels, C; Vander Borght, T

    2015-01-01

    Radioimmunotherapy has shown that the use of monoclonal antibodies combined with a radioisotope like (131)I or (90)Y still remains ineffective for solid and radioresistant tumour treatment. Previous simulations have revealed that an increase in the number of (90)Y labelled to each antibody or nanoobject could be a solution to improve treatment output. It now seems important to assess the treatment output and toxicity when radionuclides such as (90)Y, (177)Lu, (131)I, (124)I, and (188)Re are used. Tumour control probability (TCP) and normal tissue complication probability (NTCP) curves versus the number of radionuclides per nanoobject were computed with MCNPX to evaluate treatment efficacy for solid tumours and to predict the incidence of surrounding side effects. Analyses were carried out for two solid tumour sizes of 0.5 and 1.0 cm radius and for nanoobject (i.e., a radiolabelled antibody) distributed uniformly or nonuniformly throughout a solid tumour (e.g., Non-small-cell-lung cancer (NSCLC)). (90)Y and (188)Re are the best candidates for solid tumour treatment when only one radionuclide is coupled to one carrier. Furthermore, regardless of the radionuclide properties, high values of TCP can be reached without toxicity if the number of radionuclides per nanoobject increases.

  14. Internal radiotherapy and dosimetric study for 111In/ 177Lu-pegylated liposomes conjugates in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Ell; Yu, Hung-Man; Lu, Yi-Ching; Heish, Ning-Ning; Tseng, Yun-Long; Huang, Kuang-Liang; Chuang, Kuo-Tang; Chen, Chin-Hsiung; Hwang, Jeng-Jong; Lin, Wuu-Jyh; Wang, Shyh-Jen; Ting, Gann; Whang-Peng, Jacqueline; Deng, Win-Ping

    2006-12-01

    In vivo characterization and dosimetric analysis has been performed to evaluate the potential of pegylated liposomes as carriers of radionuclides in tumor internal radiotherapy. MethodsThe DTPA/PEG-liposomes were synthesized with a medium size of 110 nm, conjugated with 111In/ 177Lu-(oxine) 3 to afford 111In/ 177Lu-liposome. The stability of 111In/ 177Lu-liposome in serum was investigated. The biodistribution, scintigraphic imaging and pharmacokinetics of 111In/ 177Lu-liposomes after intravenous(i.v.) injection into C-26 tumor-bearing BALB/cByJ mice were studied. Radiation dose was estimated by MIRD-III program. ResultsThe incorporation efficiency of 111In/ 177Lu into liposomes was 95%. After incubation at 37 °C for 72 h in serum, more than 83% of radioactivity was still retained in the intact 111In/ 177Lu-liposomes. The biodistribution of 111In-liposomes showed that the radioactivity in the blood decreased from 23.14±8.16%ID/g at 1 h to 0.02±0.00%ID/g at 72 h post-injection (p.i.), while reaching its maximum accumulation in tumors at 48 h p.i., with half-life in blood of 10.2 h. The results were supported by that of 177Lu-liposomes. Scintigraphic imaging with 111In-liposomes showed unambiguous tumor images at 48 h p.i. Dose estimation showed that the absorbed dose in tumor from 177Lu-liposomes was 5.74×10 -5 Gy/MBq. ConclusionsThis study provides an in vivo characterization and dosimetric evaluation for the use of liposome systems as carriers in targeted radionuclide therapy. The results suggest that adequate tumor targeting as well as dose delivered to tumors could be achieved by the use of radionuclide targeted liposomes.

  15. Somatostatin-based radiopeptide therapy with [177Lu-DOTA]-TOC versus [90Y-DOTA]-TOC in neuroendocrine tumours.

    PubMed

    Romer, A; Seiler, D; Marincek, N; Brunner, P; Koller, M T; Ng, Q K T; Maecke, H R; Müller-Brand, J; Rochlitz, C; Briel, M; Schindler, C; Walter, M A

    2014-02-01

    Somatostatin-based radiopeptide treatment is generally performed using the β-emitting radionuclides (90)Y or (177)Lu. The present study aimed at comparing benefits and harms of both therapeutic approaches. In a comparative cohort study, patients with advanced neuroendocrine tumours underwent repeated cycles of [(90)Y-DOTA]-TOC or [(177)Lu-DOTA]-TOC until progression of disease or permanent adverse events. Multivariable Cox regression and competing risks regression were employed to examine predictors of survival and adverse events for both treatment groups. Overall, 910 patients underwent 1,804 cycles of [(90)Y-DOTA]-TOC and 141 patients underwent 259 cycles of [(177)Lu-DOTA]-TOC. The median survival after [(177)Lu-DOTA]-TOC and after [(90)Y-DOTA]-TOC was comparable (45.5 months versus 35.9 months, hazard ratio 0.91, 95% confidence interval 0.63-1.30, p = 0.49). Subgroup analyses revealed a significantly longer survival for [(177)Lu-DOTA]-TOC over [(90)Y-DOTA]-TOC in patients with low tumour uptake, solitary lesions and extra-hepatic lesions. The rate of severe transient haematotoxicities was lower after [(177)Lu-DOTA]-TOC treatment (1.4 vs 10.1%, p = 0.001), while the rate of severe permanent renal toxicities was similar in both treatment groups (9.2 vs 7.8%, p = 0.32). The present results revealed no difference in median overall survival after [(177)Lu-DOTA]-TOC and [(90)Y-DOTA]-TOC. Furthermore, [(177)Lu-DOTA]-TOC was less haematotoxic than [(90)Y-DOTA]-TOC.

  16. Gamma camera calibration and validation for quantitative SPECT imaging with (177)Lu.

    PubMed

    D'Arienzo, M; Cazzato, M; Cozzella, M L; Cox, M; D'Andrea, M; Fazio, A; Fenwick, A; Iaccarino, G; Johansson, L; Strigari, L; Ungania, S; De Felice, P

    2016-06-01

    Over the last years (177)Lu has received considerable attention from the clinical nuclear medicine community thanks to its wide range of applications in molecular radiotherapy, especially in peptide-receptor radionuclide therapy (PRRT). In addition to short-range beta particles, (177)Lu emits low energy gamma radiation of 113keV and 208keV that allows gamma camera quantitative imaging. Despite quantitative cancer imaging in molecular radiotherapy having been proven to be a key instrument for the assessment of therapeutic response, at present no general clinically accepted quantitative imaging protocol exists and absolute quantification studies are usually based on individual initiatives. The aim of this work was to develop and evaluate an approach to gamma camera calibration for absolute quantification in tomographic imaging with (177)Lu. We assessed the gamma camera calibration factors for a Philips IRIX and Philips AXIS gamma camera system using various reference geometries, both in air and in water. Images were corrected for the major effects that contribute to image degradation, i.e. attenuation, scatter and dead- time. We validated our method in non-reference geometry using an anthropomorphic torso phantom provided with the liver cavity uniformly filled with (177)LuCl3. Our results showed that calibration factors depend on the particular reference condition. In general, acquisitions performed with the IRIX gamma camera provided good results at 208keV, with agreement within 5% for all geometries. The use of a Jaszczak 16mL hollow sphere in water provided calibration factors capable of recovering the activity in anthropomorphic geometry within 1% for the 208keV peak, for both gamma cameras. The point source provided the poorest results, most likely because scatter and attenuation correction are not incorporated in the calibration factor. However, for both gamma cameras all geometries provided calibration factors capable of recovering the activity in

  17. Specific radioactivity of neutron induced radioisotopes: assessment methods and application for medically useful 177Lu production as a case.

    PubMed

    Le, Van So

    2011-01-19

    The conventional reaction yield evaluation for radioisotope production is not sufficient to set up the optimal conditions for producing radionuclide products of the desired radiochemical quality. Alternatively, the specific radioactivity (SA) assessment, dealing with the relationship between the affecting factors and the inherent properties of the target and impurities, offers a way to optimally perform the irradiation for production of the best quality radioisotopes for various applications, especially for targeting radiopharmaceutical preparation. Neutron-capture characteristics, target impurity, side nuclear reactions, target burn-up and post-irradiation processing/cooling time are the main parameters affecting the SA of the radioisotope product. These parameters have been incorporated into the format of mathematical equations for the reaction yield and SA assessment. As a method demonstration, the SA assessment of 177Lu produced based on two different reactions, 176Lu (n,γ)177Lu and 176Yb (n,γ) 177Yb (β- decay) 177Lu, were performed. The irradiation time required for achieving a maximum yield and maximum SA value was evaluated for production based on the 176Lu (n,γ)177Lu reaction. The effect of several factors (such as elemental Lu and isotopic impurities) on the 177Lu SA degradation was evaluated for production based on the 176Yb (n,γ) 177Yb (β- decay) 177Lu reaction. The method of SA assessment of a mixture of several radioactive sources was developed for the radioisotope produced in a reactor from different targets.

  18. Radiolabeling of monoclonal anti-vascular endothelial growth factor receptor 1 (VEGFR 1) with (177)Lu for potential use in radioimmunotherapy.

    PubMed

    Lee, So-Young; Hong, Young-Don; Pyun, Mi-Sun; Felipe, Penelope M; Choi, Sun-Ju

    2009-01-01

    The main goal of this study was to optimize the radioimmunoconjugation of monoclonal anti-vascular endothelial growth factor receptor 1 (VEGFR 1) with (177)Lu as a potential angiogenic molecular tracer for radioimmunotherapy (RIT). For a successful radiolabeling, we chose cysteine derivative DTPA-NCS as the bifunctional chelating agent and optimized radiolabeling condition with modifications on the factors such as the reaction time and molar ratio which are known to be very critical in radiolabeling. Under the optimized conditions, radiolabeling yield was greater than 99%. Immunoactivity of the radioimmunoconjugate was investigated using combinations of radioanalytical and bioanalytical techniques (ITLC-SG, Cyclone phosphorimager, and SDS-PAGE). For biological evaluations we carried out the cell binding assay and biodistribution study using mice bearing Calu6 non-small cell lung cancer xenografts. The biodistribution study showed high specificity in accumulating in tumor tissues where the tumor-to-blood ratio was 3.25:1 24h post-injection. In conclusion, the anti-VEGFR1 monoclonal antibody for angiogenesis targeting was effectively radioconjugated with (177)Lu. This radioimmunoconjugate is applicable to detect of angiogenesis sites in various diseases and treat tumors overexpressing VEGFR 1.

  19. Preclinical evaluation of a diabody-based (177)Lu-radioimmunoconjugate for CD22-directed radioimmunotherapy in a non-Hodgkin lymphoma mouse model.

    PubMed

    Weber, Tobias; Bötticher, Benedikt; Arndt, Michaela A E; Mier, Walter; Sauter, Max; Exner, Evelyn; Keller, Armin; Krämer, Susanne; Leotta, Karin; Wischnjow, Artjom; Grosse-Hovest, Ludger; Strumberg, Dirk; Jäger, Dirk; Gröne, Hermann-Josef; Haberkorn, Uwe; Brem, Gottfried; Krauss, Jürgen

    2016-10-28

    Radioimmunotherapy is considered as treatment option in recurrent and/or refractory B-cell non-Hodgkin lymphoma (B-NHL). To overcome the dose limiting bone marrow toxicity of IgG-based radioimmunoconjugates (RICs), we modified a humanized diabody with 5-, 10-, or 20-kDa polyethylene glycol (PEG) for CD22-targeted radioimmunotherapy using the low-energy β-emitter lutetium-177 ((177)Lu). A favorable pharmacokinetic profile was observed for the 10-kDa-PEG-diabody in nude mice being xenografted with subcutaneous human Burkitt lymphoma. Even at high doses of 16 MBq this diabody RIC was well tolerated by NOD Rag1(null) IL2rγ(null) (NRG) mice and did not reveal signs of organ long-term toxicity 80 days post injection. Combination therapy of the diabody RIC with unconjugated anti-CD20 Rituximab demonstrated therapeutic efficacy in established disseminated mantle cell lymphoma xenograft models. When compared with the combination of the IgG formatted (177)Lu anti-CD22 antibody and Rituximab, dual targeted therapy with the diabody RIC achieved an improved reduction of disease burden in the first nine days following treatment. The data indicate that the PEGylated anti-CD22 diabody may have potential for extending the repertoire of radiopharmaceuticals for the treatment of patients with B-NHL.

  20. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections.

    PubMed

    de Nijs, Robin; Lagerburg, Vera; Klausen, Thomas L; Holm, Søren

    2014-05-01

    Patient-specific dosimetry of lutetium-177 ((177)Lu)-DOTATATE treatment in neuroendocrine tumours is important, because uptake differs across patients. Single photon emission computer tomography (SPECT)-based dosimetry requires a conversion factor between the obtained counts and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. (177)Lu SPECT images of a phantom with known activity concentration ratio between the uniform background and filled hollow spheres were acquired for three different collimators: low-energy high resolution (LEHR), low-energy general purpose (LEGP) and medium-energy general purpose (MEGP). Counts were collected in several energy windows, and scatter correction was performed by applying different methods such as effective scatter source estimation (ESSE), triple-energy and dual-energy window, double-photopeak window and downscatter correction. The intensity ratio between the spheres and the background was measured and corrected for the partial volume effect and used to compare the performance of the methods. Low-energy collimators combined with 208 keV energy windows give rise to artefacts. For the 113 keV energy window, large differences were observed in the ratios for the spheres. For MEGP collimators with the ESSE correction technique, the measured ratio was close to the real ratio, and the differences between spheres were small. For quantitative (177)Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated and the real ratio is less than 10% for both energy windows.

  1. Improving quantitative dosimetry in 177Lu-DOTATATE SPECT by energy window-based scatter corrections

    PubMed Central

    Lagerburg, Vera; Klausen, Thomas L.; Holm, Søren

    2014-01-01

    Purpose Patient-specific dosimetry of lutetium-177 (177Lu)-DOTATATE treatment in neuroendocrine tumours is important, because uptake differs across patients. Single photon emission computer tomography (SPECT)-based dosimetry requires a conversion factor between the obtained counts and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. Materials and methods 177Lu SPECT images of a phantom with known activity concentration ratio between the uniform background and filled hollow spheres were acquired for three different collimators: low-energy high resolution (LEHR), low-energy general purpose (LEGP) and medium-energy general purpose (MEGP). Counts were collected in several energy windows, and scatter correction was performed by applying different methods such as effective scatter source estimation (ESSE), triple-energy and dual-energy window, double-photopeak window and downscatter correction. The intensity ratio between the spheres and the background was measured and corrected for the partial volume effect and used to compare the performance of the methods. Results Low-energy collimators combined with 208 keV energy windows give rise to artefacts. For the 113 keV energy window, large differences were observed in the ratios for the spheres. For MEGP collimators with the ESSE correction technique, the measured ratio was close to the real ratio, and the differences between spheres were small. Conclusion For quantitative 177Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated and the real ratio is less than 10% for both energy windows. PMID:24525900

  2. Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers.

    PubMed

    Villard, Linda; Romer, Anna; Marincek, Nicolas; Brunner, Philippe; Koller, Michael T; Schindler, Christian; Ng, Quinn K T; Mäcke, Helmut R; Müller-Brand, Jan; Rochlitz, Christoph; Briel, Matthias; Walter, Martin A

    2012-04-01

    Radiopeptide therapy is commonly performed with a single radioisotope. We aimed to compare the effectiveness of somatostatin-based radiopeptide therapy with a single versus a combination of radioisotopes. In a cohort study, patients with metastasized neuroendocrine cancer were treated with repeated cycles of (90)yttrium-labeled tetraazacyclododecane-tetraacetic acid modified Tyr-octreotide ([(90)Y-DOTA]-TOC) or with cycles alternating between [(90)Y-DOTA]-TOC and (177)lutetium-labeled DOTA-TOC ([(177)Lu-DOTA]-TOC) until tumor progression or permanent toxicity. Multivariable Cox regression and competing risk regression were used to study predictors of survival and renal toxicity in patients completing three or more treatment cycles. A total of 486 patients completed three or more treatment cycles; 237 patients received [(90)Y-DOTA]-TOC and 249 patients received [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC. Patients receiving [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC had a significantly longer survival than patients receiving [(90)Y-DOTA]-TOC alone (5.51 v 3.96 years; hazard ratio, 0.64; 95% CI, 0.47 to 0.88; P = .006). The rates of severe hematologic toxicities (6.3% v 4.4%; P = .25) and severe renal toxicity (8.9% v 11.2%; P = .47) were comparable in both groups. [(90)Y-DOTA]-TOC + [(177)Lu-DOTA]-TOC was associated with improved overall survival compared with [(90)Y-DOTA]-TOC alone in patients completing three or more cycles of treatment. Contrary to the current practice in radiopeptide therapy, our results suggest an advantage of using a combination of radioisotopes.

  3. Synthesis and Evaluation of a New Bifunctional NETA Chelate for Molecular Targeted Radiotherapy Using 90Y or 177Lu

    PubMed Central

    Kang, Chi Soo; Chen, Yunwei; Lee, Hyunbeom; Liu, Dijie; Sun, Xiang; Kweon, Junghun; Lewis, Michael R.; Chong, Hyun-Soon

    2015-01-01

    Introduction Therapeutic potential of β-emitting cytotoxic radionuclides 90Y and 177Lu have been demonstrated in numerous preclinical and clinical trials. A bifunctional chelate that can effectively complex with the radioisotopes is a critical component for molecular targeted radiotherapy 90Y and 177Lu. A new bifunctional chelate 5p-C-NETA with a relatively long alkyl spacer between the chelating backbone and the functional unit for conjugation to a tumor targeting moiety was synthesized. 5p-C-NETA was conjugated to a model targeting moiety, a cyclic Arg-Gly-Asp-D-Tyr-Lys (RGDyK) peptide binding integrin αvβ3 protein overexpressed on various cancers. 5p-C-NETA was conjugated to c(RGDyK) peptide and evaluated for potential use in molecular targeted radiotherapy of 90Y and 177Lu. Methods 5p-C-NETA conjugated with c(RGDyK) was evaluated in vitro for radiolabeling, serum stability, binding affinity, and the result of the in vitro studies of 5p-C-NETA-c(RGDyK) was compared to that of 3p-CNETA-c(RGDyK). 177Lu-5p-C-NETA-c(RGDyK) was further evaluated for in vivo biodistribution using gliobastoma bearing mice. Result The new chelate rapidly and tightly bound to a cytotoxic radioisotope for cancer therapy, 90Y or 177Lu with excellent radiolabeling efficiency and maximum specific activity under mild condition (>99%, RT, <1 min). 90Y- and 177Lu-radiolabeled complexes of the new chelator remained stable in human serum without any loss of the radiolanthanide for 14 days. Introduction of the tumor targeting RGD moiety to the new chelator made little impact on complexation kinetics and stability with 90Y or 177Lu. 177Lu-radiolabeled 5p-C-NETA-c(RGDyK) conjugate was shown to target tumors in mice and produced a favorable in vivo stability profile. Conclusion The results of in vitro and in vivo evaluation suggest that 5p-C-NETA is an effective bifunctional chelate of 90Y and 177Lu that can be applied for generation of versatile molecular targeted radiopharmaceuticals. PMID

  4. Synthesis and evaluation of a new bifunctional NETA chelate for molecular targeted radiotherapy using(90)Y or(177)Lu.

    PubMed

    Kang, Chi Soo; Chen, Yunwei; Lee, Hyunbeom; Liu, Dijie; Sun, Xiang; Kweon, Junghun; Lewis, Michael R; Chong, Hyun-Soon

    2015-03-01

    Therapeutic potential of β-emitting cytotoxic radionuclides (90)Y and (177)Lu has been demonstrated in numerous preclinical and clinical trials. A bifunctional chelate that can effectively complex with the radioisotopes is a critical component for molecular targeted radiotherapy (90)Y and (177)Lu. A new bifunctional chelate 5p-C-NETA with a relatively long alkyl spacer between the chelating backbone and the functional unit for conjugation to a tumor targeting moiety was synthesized. 5p-C-NETA was conjugated to a model targeting moiety, a cyclic Arg-Gly-Asp-D-Tyr-Lys (RGDyK) peptide binding integrin αvβ3 protein overexpressed on various cancers. 5p-C-NETA was conjugated to c(RGDyK) peptide and evaluated for potential use in molecular targeted radiotherapy of (90)Y and (177)Lu. 5p-C-NETA conjugated with c(RGDyK) was evaluated in vitro for radiolabeling, serum stability, binding affinity, and the result of the in vitro studies of 5p-C-NETA-c(RGDyK) was compared to that of 3p-C-NETA-c(RGDyK). (177)Lu-5p-C-NETA-c(RGDyK) was further evaluated for in vivo biodistribution using gliobastoma bearing mice. The new chelate rapidly and tightly bound to a cytotoxic radioisotope for cancer therapy, (90)Y or (177)Lu with excellent radiolabeling efficiency and maximum specific activity under mild condition (>99%, RT, <1 min). (90)Y- and (177)Lu-radiolabeled complexes of the new chelator remained stable in human serum without any loss of the radiolanthanide for 14 days. Introduction of the tumor targeting RGD moiety to the new chelator made little impact on complexation kinetics and stability with (90)Y or (177)Lu. (177)Lu-radiolabeled 5p-C-NETA-c(RGDyK) conjugate was shown to target tumors in mice and produced a favorable in vivo stability profile. The results of in vitro and in vivo evaluation suggest that 5p-C-NETA is an effective bifunctional chelate of (90)Y and (177)Lu that can be applied for generation of versatile molecular targeted radiopharmaceuticals. Copyright © 2014

  5. [(177)Lu-PSMA therapy : Current evidence for use in the treatment of patients with metastatic prostate cancer].

    PubMed

    Boegemann, M; Schrader, A J; Rahbar, K

    2017-10-06

    Despite significant progress in the treatment of metastatic castration-resistant prostate cancer (mCRPC) in recent years (including agents targeting androgen receptor signaling, chemotherapy, and (223)Ra), most of these patients still succumb to prostate cancer. Recently, (177)lutetium prostate-specific membrane antigen radioligand therapy ((177)Lu-PSMA-RLT) has been increasingly used within compassionate use provisions in these patients in Germany and showed promising efficacy. Establishment of the current position of (177)Lu-PSMA-RLT in mCRPC in 2017. Presentation of the therapy landscape in mCRPC and the current challenges within treatment and survey of the available data on (177)Lu-PSMA-RLT after PubMed-based research. In several larger retrospective studies, (177)Lu-PSMA-RLT seems to be an encouraging new option with the potential to extend overall survival while displaying a favorable toxicity profile. Prospective trials are urgently needed to confirm these encouraging results found in retrospective analyses with (177)Lu-PSMA-RLT in the treatment of mCRPC.

  6. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  7. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    SciTech Connect

    Frost, Sophia; Frayo, Shani; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Back, Tom; Fisher, Darrell R.; Press, Oliver W.

    2015-03-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

  8. Evaluation of (177)Lu-CHX-A''-DTPA-Bevacizumab as a radioimmunotherapy agent targeting VEGF expressing cancers.

    PubMed

    Kameswaran, Mythili; Pandey, Usha; Gamre, Naresh; Vimalnath, K V; Sarma, Haladhar Dev; Dash, Ashutosh

    2016-08-01

    This study aimed at the preparation and evaluation of (177)Lu-CHX-A''-DTPA-Bevacizumab for targeting VEGF over-expressing cancers. Bevacizumab conjugated to p-NCS-Bn-CHX-A''-DTPA was radiolabeled with (177)Lu. The radioimmunoconjugate characterized by SE-HPLC exhibited radiochemical purity of 98.0±0.6%. In vitro stability was retained upto 4 days at 37°C. In vitro cell binding studies showed good uptake by VEGF expressing U937 tumor cells. Biodistribution studies in melanoma model showed significant uptake and retention of (177)Lu-CHX-A''-DTPA-Bevacizumab in tumor with reduction in uptake in presence of cold Bevacizumab confirming its specificity to VEGF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice

    PubMed Central

    Schüler, Emil; Larsson, Maria; Parris, Toshima Z.; Johansson, Martin E.; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    The kidneys are one of the main dose-limiting organs in peptide receptor radionuclide therapy and due to large inter-individual variations in renal toxicity, biomarkers are urgently needed in order to optimize therapy and reduce renal tissue damage. The aim of this study was to investigate the transcriptional, functional, and morphological effects on renal tissue after 177Lu-octreotate administration in normal mice, and to identify biomarkers for radiation induced renal toxicity. Methods C57BL/6N mice were i.v. injected with 0, 30, 60, 90, 120, or 150 MBq 177Lu-octreotate (0, 16, 29, 40, 48, and 54 Gy to the kidneys). At 4, 8, and 12 months after administration, radiation-induced effects were evaluated in relation to (a) global transcriptional variations in kidney tissues, (b) morphological changes in the kidneys, (c) changes in white and red blood cell count as well as blood levels of urea, and (d) changes in renal function using 99mTc-DTPA/99mTc-DMSA scintigraphy. Results In general, the highest number of differentially regulated transcripts was observed at 12 months after administration. The Cdkn1a, C3, Dbp, Lcn2, and Per2 genes displayed a distinct dose-dependent regulation, with increased expression level with increasing absorbed dose. Ifng, Tnf, and Il1B were identified as primary up-stream regulators of the recurrently regulated transcripts. Furthermore, previously proposed biomarkers for kidney injury and radiation damage were also observed. The functional investigation revealed reduced excretion of 99mTc-DTPA after 150 MBq, an increased uptake of 99mTc-DMSA at all dose levels compared with the controls, and markedly increased urea level in blood after 150 MBq at 12 months. Conclusion Distinct dose-response relationships were found for several of the regulated transcripts. The Cdkn1a, Dbp, Lcn2, and Per2 genes are proposed as biomarkers for 177Lu-octreotate exposure of kidney. Correlations to functional and morphological effects further confirm

  10. A systematic study on the utility of CHX-A''-DTPA-NCS and NOTA-NCS as bifunctional chelators for (177)Lu radiopharmaceuticals.

    PubMed

    Pandey, Usha; Gamre, Naresh; Lohar, Sharad Pandurang; Dash, Ashutosh

    2017-09-01

    This paper describes the evaluation of [(R)-2-Amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-pentaacetic acid (CHX-A''-DTPA-NCS) and 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA-NCS) as bifunctional chelators for (177)Lu. While (177)Lu-CHX-A''-DTPA-NCS could be obtained in high yields at equimolar ratios of lutetium to CHX-A''-DTPA-NCS, >95% yield of (177)Lu-NOTA-NCS could be achieved at 1:2M ratio of lutetium to NOTA-NCS. Trace metals reduced the yields of (177)Lu-NOTA-NCS significantly as compared to (177)Lu-CHX-A''-DTPA-NCS. In vitro stability of (177)Lu-CHX-A''-DTPA-NCS was also superior to (177)Lu-NOTA-NCS. It could be concluded from this study that among the two chelators evaluated, CHX-A''-DTPA-NCS is more appropriate for preparation of (177)Lu radiopharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of amplified spontaneous emission on selectivity of laser photoionisation of the 177Lu radioisotope

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2016-06-01

    A significant deselecting effect of amplified spontaneous emission has been observed in the experiments on selective laser photoionisation of the 177Lu radioisotope according to the scheme 5d6s2 2D3/2 → 5d6s6p 4Fo5/2 (18505 cm-1) → 5d6s7s 4D3/2(37194 cm-1) → autoionisation state (53375 cm-1). The effect is conditioned by involvement of non-target isotopes from the lower metastable level 5d6s2 2D5/2(1994 cm-1) into the ionisation process. Spectral filtering of spontaneous emission has allowed us to significantly increase the selectivity of the photoionisation process of the radioisotope and to attain a selectivity value of 105 when using saturating light intensities.

  12. Aminocarboxylate complexes and octreotide complexes with no carrier added 177Lu, 166Ho and 149Pm.

    PubMed

    Li, Wen Ping; Smith, C Jeff; Cutler, Cathy S; Hoffman, Timothy J; Ketring, Alan R; Jurisson, Silvia S

    2003-04-01

    Several aminocarboxylate complexes of the "no carrier added" (NCA) radiolanthanides (149)Pm, (166)Ho and (177)Lu were evaluated using our in vitro hydroxyapatite and serum stability model and in vivo in normal CF-1 mice [10]. The aminocarboxylate chelates evaluated with the NCA radiolanthanides for in vitro stability were EDTA, CDTA, DTPA, MA-DTPA and DOTA. In addition, the NCA radiolanthanide complexes with DTPA-octreotide (DTPA-OCT) were synthesized and evaluated, as a model for a peptide conjugated aminocarboxylate complex. The biodistribution studies of the NCA complexes with DTPA, DOTA and DTPA-OCT showed that the in vitro model correctly predicted the in vivo stability of the radiolanthanide complexes, with Ln-DOTA > Ln-DTPA > Ln-DTPA-OCT.

  13. Assessment of cell death mechanisms triggered by (177)Lu-anti-CD20 in lymphoma cells.

    PubMed

    Azorín-Vega, E; Rojas-Calderón, E; Martínez-Ventura, B; Ramos-Bernal, J; Serrano-Espinoza, L; Jiménez-Mancilla, N; Ordaz-Rosado, D; Ferro-Flores, G

    2017-04-12

    The aim of this research was to evaluate the cell cycle redistribution and activation of early and late apoptotic pathways in lymphoma cells after treatment with (177)Lu-anti-CD20. Experimental and computer models were used to calculate the radiation absorbed dose to cancer cell nuclei. The computer model (Monte Carlo, PENELOPE) consisted of twenty spheres representing cells with an inner sphere (cell nucleus) embedded in culture media. Radiation emissions of the radiopharmaceutical located in cell membranes and in culture media were considered for nuclei dose calculations. Flow cytometric analyses demonstrated that doses as low as 4.8Gy are enough to induce cell cycle arrest and activate late apoptotic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Measurement of reaction kinetics of [(177)Lu]Lu-DOTA-TATE using a microfluidic system.

    PubMed

    Liu, Z; Schaap, K S; Ballemans, L; de Zanger, R; de Blois, E; Rohde, M; Oehlke, E

    2017-09-12

    Microfluidic synthesis techniques can offer improvement over batch syntheses which are currently used for radiopharmaceutical production. These improvements are, for example, better mixing of reactants, more efficient energy transfer, less radiolysis, faster reaction optimization, and overall improved reaction control. However, scale-up challenges hinder the routine clinical use, so the main advantage is currently the ability to optimize reactions rapidly and with low reactant consumption. Translating those results to clinical systems could be done based on calculations, if kinetic constants and diffusion coefficients were known. This study describes a microfluidic system with which it was possible to determine the kinetic association rate constants for the formation of [(177)Lu]Lu-DOTA-TATE under conditions currently used for clinical production. The kinetic rate constants showed a temperature dependence that followed the Arrhenius equation, allowing the determination of Arrhenius parameters for a Lu-DOTA conjugate (A = 1.24 ± 0.05 × 10(19) M(-1) s(-1), EA = 109.5 ± 0.1 × 10(3) J mol(-1)) for the first time. The required reaction time for the formation of [(177)Lu]Lu-DOTA-TATE (99% yield) at 80 °C was 44 s in a microfluidic channel (100 μm). Simulations done with COMSOL Multiphysics® indicated that processing clinical amounts (3 mL reaction solution) in less than 12 min is possible in a micro- or milli-fluidic system, if the diameter of the reaction channel is increased to over 500 μm. These results show that a continuous, microfluidic system can become a viable alternative to the conventional, batch-wise radiolabelling technique.

  15. Predictors of Response to Radioligand Therapy of Metastatic Castrate-Resistant Prostate Cancer with 177Lu-PSMA-617.

    PubMed

    Ferdinandus, Justin; Eppard, Elisabeth; Gaertner, Florian C; Kürpig, Stefan; Fimmers, Rolf; Yordanova, Anna; Hauser, Stefan; Feldmann, Georg; Essler, Markus; Ahmadzadehfar, Hojjat

    2017-02-01

    Radioligand therapy (RLT) with (177)Lu-PSMA-617 (PSMA is prostate-specific membrane antigen) is a novel targeted therapy for metastatic prostate cancer. In this study, we evaluated the effect of different pretherapeutic parameters on the therapeutic response measured by prostate-specific antigen (PSA) 2 mo after RLT.

  16. Formation of medical radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu in photonuclear reactions

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-01

    The possibility of the photonuclear production of radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes 112, 118Sn and Te and HfO2 of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes 111In and 117 mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO2 of natural isotopic composition and leading to the formation of 124Sb and 177Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  17. In vitro and in vivo evaluation of melanin-binding decapeptide 4B4 radiolabeled with 177Lu, 166Ho, and 153Sm radiolanthanides for the purpose of targeted radionuclide therapy of melanoma.

    PubMed

    Ballard, Beau; Jiang, Zewei; Soll, Clifford E; Revskaya, Ekaterina; Cutler, Cathy S; Dadachova, Ekaterina; Francesconi, Lynn C

    2011-10-01

    Melanoma is a malignancy with increasing incidence. Although primary tumors that are localized to the skin can be successfully treated by surgical removal, there is no satisfactory treatment for metastatic melanoma, a condition that has currently an estimated 5-year survival of just 6%. During the last decade, β- or α-emitter-radiolabeled peptides that bind to different receptors on a variety of tumors have been investigated as potential therapeutic agents in both the preclinical and clinical settings with encouraging results. A recent study demonstrated that 188-Rhenium ((188)Re)-labeled, via HYNIC ligand, fungal melanin-binding decapeptide 4B4 was effective against experimental MNT1 human melanoma and was safe to normal melanized tissues. The availability of radiolanthanides with diverse nuclear emission schemes and half-lives provides an opportunity to expand the repertoire of peptides for radionuclide therapy of melanoma. The melanin-binding decapeptide 4B4 was radiolabeled with (177)Lu, (166)Ho, and (153)Sm via a DO3A chelate. The stability studies of Ln*-DO3A-4B4 in phosphate-buffered saline, serum, and a hydroxyapatite assay demonstrated that (177)Lu-labeled peptide was more stable than (166)Ho- and (153)Sm-labeled peptides, most likely because of the smallest ionic radius of the former allowing for better complexation with DO3A. Binding of Ln*-DO3A-4B4 to the lysed highly melanized MNT1 melanoma cells demonstrated the specificity of peptides binding to melanin. In vivo biodistribution data for (177)Lu-DO3A-4B4 given by intraperitoneal administration to lightly pigmented human metastatic A2058 melanoma-bearing mice demonstrated very high uptake in the kidneys and low tumor uptake. Intravenous administration did not improve the tumor uptake. The plausible explanation of low tumor uptake of (177)Lu-DO3A-4B4 could be its decreased ability to bind to melanin during in vitro binding studies in comparison with (188)Re-HYNIC-4B4, exacerbated by the very fast

  18. Distinct microRNA Expression Profiles in Mouse Renal Cortical Tissue after 177Lu-octreotate Administration

    PubMed Central

    Schüler, Emil; Parris, Toshima Z.; Helou, Khalil; Forssell-Aronsson, Eva

    2014-01-01

    Aim The aim of this study was to investigate the variation of the miRNA expression levels in normal renal cortical tissue after 177Lu-octreotate administration, a radiopharmaceutical used for treatment of neuroendocrine cancers. Methods Female BALB/c nude mice were i.v. injected with 1.3, 3.6, 14, 45, or 140 MBq 177Lu-octreotate, while control animals received saline. The animals were killed at 24 h after injection and total RNA, including miRNA, was extracted from the renal cortical tissue and hybridized to the Mouse miRNA Oligo chip 4plex to identify differentially regulated miRNAs between exposed and control samples. Results In total, 57 specific miRNAs were differentially regulated in the exposed renal cortical tissues with 1, 29, 21, 27, and 31 miRNAs identified per dose-level (0.13, 0.34, 1.3, 4.3, and 13 Gy, respectively). No miRNAs were commonly regulated at all dose levels. miR-194, miR-107, miR-3090, and miR-3077 were commonly regulated at 0.34, 1.3, 4.3, and 13 Gy. Strong effects on cellular mechanisms ranging from immune response to p53 signaling and cancer-related pathways were observed at the highest absorbed dose. Thirty-nine of the 57 differentially regulated miRNAs identified in the present study have previously been associated with response to ionizing radiation, indicating common radiation responsive pathways. Conclusion In conclusion, the 177Lu-octreotate associated miRNA signatures were generally dose-specific, thereby illustrating transcriptional regulation of radiation responsive miRNAs. Taken together, these results imply the importance of miRNAs in early immunological responses in the kidneys following 177Lu-octreotate administration. PMID:25386939

  19. Estimation of Whole Body Radiation Exposure to Nuclear Medicine Personnel During Synthesis of (177)Lutetium-labeled Radiopharmaceuticals.

    PubMed

    Arora, Geetanjali; Mishra, Rajesh; Kumar, Praveen; Yadav, Madhav; Ballal, Sanjana; Bal, Chandrasekhar; Damle, Nishikant Avinash

    2017-01-01

    With rapid development in the field of nuclear medicine therapy, radiation safety of the personnel involved in synthesis of radiopharmaceuticals has become imperative. Few studies have been done on estimating the radiation exposure of personnel involved in the radio labeling of (177)Lu-compounds in western countries. However, data from the Indian subcontinent are limited. We have estimated whole body radiation exposure to the radiopharmacist involved in the labeling of: (177)Lu-DOTATATE, (177)Lu-PSMA-617, and (177)Lu-EDTMP. Background radiation was measured by keeping a pocket dosimeter around the workbench when no radioactive work was conducted. The same pocket dosimeter was given to the radiopharmacist performing the labeling of (177)Lu-compounds. All radiopharmaceuticals were synthesized by the same radiopharmacist with 3, 1 and 3 year experience, respectively, in radiolabeling the above compounds. One Curie (1 Ci) of (177)Lu was received fortnightly by our department. Data were collected for 12 syntheses of (177)Lu-DOTATATE, 8 syntheses of (177)Lu-PSMA-617, and 3 syntheses of (177)Lu-EDTMP. Mean time required to complete the synthesis was 0.81, 0.65, and 0.58 h, respectively. Mean whole body radiation exposure was 0.023 ± 0.01 mSv, 0.01 ± 0.002 mSv, and 0.002 ± 0.0006 mSv, respectively. Overall mean radiation dose for all the three (177)Lu-compounds was 0.014 mSv. Highest exposure was obtained during the synthesis of (177)Lu-DOTATATE. Our data suggest that the manual radiolabeling of (177)Lu compounds is safe, and the whole body radiation exposure to the involved personnel is well within prescribed limits.

  20. [177Lu-DOTA]0-D-Phe1-Tyr3-Octreotide (177Lu-DOTATOC) For Peptide Receptor Radiotherapy in Patients with Advanced Neuroendocrine Tumours: A Phase-II Study

    PubMed Central

    Baum, Richard P.; Kluge, Andreas W.; Kulkarni, Harshad; Schorr-Neufing, Ulrike; Niepsch, Karin; Bitterlich, Norman; van Echteld, Cees J.A.

    2016-01-01

    Purpose: To characterise efficacy and safety of 177Lu-DOTATOC as agent for peptide receptor radiotherapy (PRRT) of advanced neuroendocrine tumours (NET). Patients and methods: Fifty-six subjects with metastasized and progressive NET (50% gastroenteral, 26.8% pancreatic, 23.2% other primary sites) treated consecutively with 177Lu-DOTATOC were analysed retrospectively. Subjects were administered 177Lu-DOTATOC (mean 2.1 cycles; range 1-4) as 7.0GBq (median) doses at three-monthly intervals. Efficacy was analysed using CT and/or MRI according to RECIST 1.1 criteria and results were stratified for the number of administered cycles and the primary tumour origin. Results: In the total NET population (A), median progression-free (PFS) and overall survival (OS) were 17.4 and 34.2 months, respectively, assessed in a follow-up time (mean ± SD) of 16.1 ± 12.4 months. In patients receiving more than one cycle, mean follow-up time was 22.4 ± 11.0 months for all NETs (B) and PFS was 32.0 months for all NETs (B), 34.5 months for GEP-NET (C), and 11.9 months for other NETs (D). Objective response rates (Complete/Partial Responses) were 33.9%, 40.6%, 54.2%, and 0% for A, B, C, and D groups, respectively, while disease control rates in the same were 66.1%, 93.8%, 100%, and 75%. Complete responses (16.1%, 18.8% and 25.0% for groups A, B and C) were high, 78% of which were maintained throughout the follow up. There were no serious adverse events. One case of self-limiting grade 3 myelotoxicity was reported. Although 20% of patients had mild renal insufficiency at baseline, there was no evidence of exacerbated or de novo renal toxicity after treatment. Conclusion: 177Lu-DOTATOC is a novel agent for PRRT with major potential to induce objective tumour responses and sustained disease control in progressive neuroendocrine tumours, even when administered in moderate activities. The observed safety profile suggests a particularly favourable therapeutic index, including in patients with

  1. Biokinetics and dosimetry with 177Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cortés, J.; de Murphy, C. Arteaga; Ferro-Flores, Ge; Pedraza-López, M.; Murphy-Stack, E.

    Malignant pancreatic tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to determine biokinetic parameters in mice, in order to estimate the induced pancreatic tumour absorbed doses and to evaluate an `in house' 177Lu-DOTA-TATE radiopharmaceutical as part of preclinical studies for targeted therapy in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (nD22) to obtain biokinetic and dosimetric data of 177Lu-DOTA-TATE. The mean tumour uptake 2 h post injection was 14.76±1.9% I.A./g; kidney and pancreas uptake, at the same time, were 7.27±1.1% I.A./g (1.71±0.90%/organ) and 4.20±0.98% I.A./g (0.42±0.03%/organ), respectively. The mean absorbed dose to tumour, kidney and pancreas was 0.58±0.02 Gy/MBq; 0.23±0.01 Gy/MBq and 0.14±0.01 Gy/MBq, respectively. These studies justify further dosimetric estimations to ensure that 177Lu-DOTA-TATE will act as expected in humans.

  2. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in (177)Lu-DOTATATE peptide receptor radionuclide therapy.

    PubMed

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-08-07

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with (177)Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for (177)Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in (177)Lu PRRT.

  3. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with 177Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for 177Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in 177Lu PRRT.

  4. Characteristics of Bremsstrahlung emissions of (177)Lu, (188)Re, and (90)Y for SPECT/CT quantification in radionuclide therapy.

    PubMed

    Uribe, Carlos F; Esquinas, Pedro L; Gonzalez, Marjorie; Celler, Anna

    2016-05-01

    Beta particles emitted by radioisotopes used in targeted radionuclide therapies (TRT) create Bremsstrahlung (BRS) which may affect SPECT quantification when imaging these isotopes. The purpose of the current study was to investigate the characteristics of Bremsstrahlung produced in tissue by three β-emitting radioisotopes used in TRT. Monte Carlo simulations of (177)Lu, (188)Re, and (90)Y sources placed in water filled cylinders were performed. BRS yields, mean energies and energy spectra for (a) all photons generated in the decays, (b) photons that were not absorbed and leave the cylinder, and (c) photons detected by the camera were analyzed. Next, the results of simulations were compared with those from experiments performed on a clinical SPECT camera using same acquisition conditions and phantom configurations as in simulations. Simulations reproduced relatively well the shapes of the measured spectra, except for (90)Y which showed an overestimation in the low energy range. Detailed analysis of the results allowed us to suggest best collimators and imaging conditions for each of the investigated isotopes. Finally, our simulations confirmed that the BRS contribution to the energy spectra in quantitative imaging of (177)Lu and (188)Re could be ignored. For (177)Lu and (188)Re, BRS contributes only marginally to the total spectra recorded by the camera. Our analysis shows that MELP and HE collimators are the best for imaging these two isotopes. For (90)Y, HE collimator should be used. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Encapsulation of a radiolabeled cluster inside a fullerene cage, (177)Lu(x)Lu((3-x))N@C(80): an interleukin-13-conjugated radiolabeled metallofullerene platform.

    PubMed

    Shultz, Michael D; Duchamp, James C; Wilson, John D; Shu, Chun-Ying; Ge, Jiechao; Zhang, Jianyuan; Gibson, Harry W; Fillmore, Helen L; Hirsch, Jerry I; Dorn, Harry C; Fatouros, Panos P

    2010-04-14

    In this communication, we describe the successful encapsulation of (177)Lu into the endohedral metallofullerene (177)Lu(x)Lu(3-x)N@C(80) (x = 1-3) starting with (177)LuCl(3) in a modified quartz Kraschmer-Huffman electric generator. We demonstrate that the (177)Lu (beta-emitter) in this fullerene cage is not significantly released for a period of up to at least one-half-life (6.7 days). We also demonstrate that this agent can be conjugated with an interleukin-13 peptide that is designed to target an overexpressed receptor in glioblastoma multiforme tumors. This nanoparticle delivery platform provides flexibility for a wide range of radiotherapeutic and radiodiagnostic multimodal applications.

  6. Indirect Production of No Carrier Added (NCA) (177)Lu from Irradiation of Enriched (176)Yb: Options for Ytterbium/Lutetium Separation.

    PubMed

    Dash, Ashutosh; Chakravarty, Rubel; Knapp, Furn F Russ; Pillai, Ambikalmajan M R

    2015-01-01

    This article presents a concise review of the production of no-carrier-added (NCA) (177)Lu by the 'indirect' route by irradiating ytterbium-176 ((176)Yb)-enriched targets. The success of this production method depends on the ability to separate the microscopic amounts of NCA (177)Lu from bulk irradiated ytterbium targets. The presence of Yb(+3) from the target in the final processed (177)Lu will adversely affect the quality of (177)Lu by decreasing the specific activity and competing with Lu(+3) complexation since ytterbium will follow the same coordination chemistry. Ytterbium and lutetium are adjacent members of the lanthanide family with very similar chemical properties which makes the separation of one from the other a challenging task. This review provides a summary of the methods developed for the separation and purification of NCA (177)Lu from neutron irradiated (176)Yb-enriched targets, a critical assessment of recent developments and a discussion of the current status of this (177)Lu production method.

  7. Pre-therapeutic dosimetry of normal organs and tissues of (177)Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer.

    PubMed

    Kabasakal, Levent; AbuQbeitah, Mohammad; Aygün, Aslan; Yeyin, Nami; Ocak, Meltem; Demirci, Emre; Toklu, Turkay

    2015-12-01

    (177)Lu-617-prostate-specific membrane antigen (PSMA) ligand seems to be a promising tracer for radionuclide therapy of progressive prostate cancer. However, there are no published data regarding the radiation dose given to the normal tissues. The aim of the present study was to estimate the pretreatment radiation doses in patients who will undergo radiometabolic therapy using a tracer amount of (177)Lu-labeled PSMA ligand. The study included seven patients with progressive prostate cancer with a mean age of 63.9 ± 3.9 years. All patients had prior PSMA positron emission tomography (PET) imaging and had intense tracer uptake at the lesions. The injected (177)Lu-PSMA-617 activity ranged from 185 to 210 MBq with a mean of 192.6 ± 11.0 MBq. To evaluate bone marrow absorbed dose 2-cc blood samples were withdrawn in short variable times (3, 15, 30, 60, and 180 min and 24, 48, and 120 h) after injection. Whole-body images were obtained at 4, 24, 48, and 120 h post-injection (p.i.). The geometric mean of anterior and posterior counts was determined through region of interest (ROI) analysis. Attenuation correction was applied using PSMA PET/CT images. The OLINDA/EXM dosimetry program was used for curve fitting, residence time calculation, and absorbed dose calculations. The calculated radiation-absorbed doses for each organ showed substantial variation. The highest radiation estimated doses were calculated for parotid glands and kidneys. Calculated radiation-absorbed doses per megabecquerel were 1.17 ± 0.31 mGy for parotid glands and 0.88 ± 0.40 mGy for kidneys. The radiation dose given to the bone marrow was significantly lower than those of kidney and parotid glands (p < 0.05). The calculated radiation dose to bone marrow was 0.03 ± 0.01 mGy/MBq. Our first results suggested that (177)Lu-PSMA-617 therapy seems to be a safe method. The dose-limiting organ seems to be the parotid glands rather than kidneys and bone marrow. The lesion

  8. Use of Monte Carlo simulations with a realistic rat phantom for examining the correlation between hematopoietic system response and red marrow absorbed dose in Brown Norway rats undergoing radionuclide therapy with {sup 177}Lu- and {sup 90}Y-BR96 mAbs

    SciTech Connect

    Larsson, Erik; Ljungberg, Michael; Martensson, Linda; Nilsson, Rune; Tennvall, Jan; Strand, Sven-Erik; Joensson, Bo-Anders

    2012-07-15

    Purpose: Biokinetic and dosimetry studies in laboratory animals often precede clinical radionuclide therapies in humans. A reliable evaluation of therapeutic efficacy is essential and should be based on accurate dosimetry data from a realistic dosimetry model. The aim of this study was to develop an anatomically realistic dosimetry model for Brown Norway rats to calculate S factors for use in evaluating correlations between absorbed dose and biological effects in a preclinical therapy study. Methods: A realistic rat phantom (Roby) was used, which has some flexibility that allows for a redefinition of organ sizes. The phantom was modified to represent the anatomic geometry of a Brown Norway rat, which was used for Monte Carlo calculations of S factors. Kinetic data for radiolabeled BR96 monoclonal antibodies were used to calculate the absorbed dose. Biological data were gathered from an activity escalation study with {sup 90}Y- and {sup 177}Lu-labeled BR96 monoclonal antibodies, in which blood cell counts and bodyweight were examined up to 2 months follow-up after injection. Reductions in white blood cell and platelet counts and declines in bodyweight were quantified by four methods and compared to the calculated absorbed dose to the bone marrow or the total body. Results: A red marrow absorbed dose-dependent effect on hematological parameters was observed, which could be evaluated by a decrease in blood cell counts. The absorbed dose to the bone marrow, corresponding to the maximal tolerable activity that could safely be administered, was determined to 8.3 Gy for {sup 177}Lu and 12.5 Gy for {sup 90}Y. Conclusions: There was a clear correlation between the hematological effects, quantified with some of the studied parameters, and the calculated red marrow absorbed doses. The decline in body weight was stronger correlated to the total body absorbed dose, rather than the red marrow absorbed dose. Finally, when considering a constant activity concentration, the phantom

  9. MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy.

    PubMed

    Ljungberg, Michael; Celler, Anna; Konijnenberg, Mark W; Eckerman, Keith F; Dewaraja, Yuni K; Sjögreen-Gleisner, Katarina; Bolch, Wesley E; Brill, A Bertrand; Fahey, Frederic; Fisher, Darrell R; Hobbs, Robert; Howell, Roger W; Meredith, Ruby F; Sgouros, George; Zanzonico, Pat; Bacher, Klaus; Chiesa, Carlo; Flux, Glenn; Lassmann, Michael; Strigari, Lidia; Walrand, Stephan

    2016-01-01

    The accuracy of absorbed dose calculations in personalized internal radionuclide therapy is directly related to the accuracy of the activity (or activity concentration) estimates obtained at each of the imaging time points. MIRD Pamphlet no. 23 presented a general overview of methods that are required for quantitative SPECT imaging. The present document is next in a series of isotope-specific guidelines and recommendations that follow the general information that was provided in MIRD 23. This paper focuses on (177)Lu (lutetium) and its application in radiopharmaceutical therapy. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Dose Mapping after Endoradiotherapy with (177)Lu-DOTATATE/-TOC by One Single Measurement after Four Days.

    PubMed

    Hänscheid, Heribert; Lapa, Constantin; Buck, Andreas K; Lassmann, Michael; Werner, Rudolf A

    2017-06-06

    Dosimetry of organs and tumors helps to assess risks and benefit of treatment with (177)Lu-DOTATATE/ TOC. However, it is often not performed in clinical routine because of additional efforts, the complexity of data collection and analysis, and the additional burden for the patients. Aiming at a simplification of dosimetry, we analyzed the accuracy of a theoretically substantiated approximation, which allows to calculate absorbed doses from a single measurement of the abdominal activity distribution. Methods: Activity kinetics were retrospectively assessed from planar images in 29 patients with neuroendocrine tumors (NET, n = 21) or meningioma (n = 8) after the administration of (177)Lu-DOTATATE (n = 22) or (177)Lu-DOTATOC (n = 7). Mono- or bi-exponential functions were fitted to measured data in 54 kidneys, 25 livers, 27 spleens, and 30 NET lesions. It was evaluated for each fit function how well the integral over time was represented by an approximation calculated as the product of the time tl of a single measurement, the expected reading at time tl, and the factor 2/ln(2). Tissue specific deviations of the approximation from the time integral were calculated for time points tl = 24, 48, 72, 96, 120, and 144 hours. Results: Correlation between time integral and approximation improved with increasing time tl. Pearson's r exceeded 0.95 for tl ≥ 96 hours in all tissues. Lowest maximum errors were observed at tl = 96 hours with deviations of the approximation from the time integral of median +5% (range, -9% to +17%) for kidneys, +6% (range, -7% to +12%) for livers, +8% (range, +2% to +20%) for spleens, and +6% (range, -11% to +16%) for NET lesions. Accuracy is reduced for measurements after 72 or 120 hours. For measurements after 24, 48, and 144 hours, the approximation leads to large deviations for some of the patients, in particular unacceptable underestimates of the absorbed dose to the kidneys. Conclusion: A single quantitative measurement of the abdominal

  11. Dosimetry for (177)Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer.

    PubMed

    Delker, Andreas; Fendler, Wolfgang Peter; Kratochwil, Clemens; Brunegraf, Anika; Gosewisch, Astrid; Gildehaus, Franz Josef; Tritschler, Stefan; Stief, Christian Georg; Kopka, Klaus; Haberkorn, Uwe; Bartenstein, Peter; Böning, Guido

    2016-01-01

    Dosimetry is critical to achieve the optimal therapeutic effect of radioligand therapy (RLT) with limited side effects. Our aim was to perform image-based absorbed dose calculation for the new PSMA ligand (177)Lu-DKFZ-PSMA-617 in support of its use for the treatment of metastatic prostate cancer. Whole-body planar images and SPECT/CT images of the abdomen were acquired in five patients (mean age 68 years) for during two treatment cycles at approximately 1, 24, 48 and 72 h after administration of 3.6 GBq (range 3.4 to 3.9 GBq) (177)Lu-DKFZ-PSMA-617. Quantitative 3D SPECT OSEM reconstruction was performed with corrections for photon scatter, photon attenuation and detector blurring. A camera-specific calibration factor derived from phantom measurements was used for quantitation. Absorbed doses were calculated for various organs from the images using a combination of linear approximation, exponential fit, and target-specific S values, in accordance with the MIRD scheme. Absorbed doses to bone marrow were estimated from planar and SPECT images and with consideration of the blood sampling method according to the EANM guidelines. The average (± SD) absorbed doses per cycle were 2.2 ± 0.6 Gy for the kidneys (0.6 Gy/GBq), 5.1 ± 1.8 Gy for the salivary glands (1.4 Gy/GBq), 0.4 ± 0.2 Gy for the liver (0.1 Gy/GBq), 0.4 ± 0.1 Gy for the spleen (0.1 Gy/GBq), and 44 ± 19 mGy for the bone marrow (0.012 Gy/GBq). The organ absorbed doses did not differ significantly between cycles. The critical absorbed dose reported for the kidneys (23 Gy) was not reached in any patient. At 24 h there was increased uptake in the colon with 50 - 70 % overlap to the kidneys on planar images. Absorbed doses for tumour lesions ranged between 1.2 and 47.5 Gy (13.1 Gy/GBq) per cycle. The salivary glands and kidneys showed high, but not critical, absorbed doses after RLT with (177)Lu-DKFZ-PSMA-617. We suggest that (177)Lu-DKFZ-PSMA-617 is suitable for

  12. [Treatment of Gastroenteropancreatic Neuroendocrine Tumors with 177Lu-DOTA-TATE: Experience of the Portuguese Institute of Oncology in Porto].

    PubMed

    Sampaio, Inês Lucena; Luiz, Henrique Vara; Violante, Liliana Sobral; Santos, Ana Paula; Antunes, Luís; Torres, Isabel; Sanches, Cristina; Azevedo, Isabel; Duarte, Hugo

    2016-11-01

    Introdução: O objetivo deste artigo é rever a experiência do Instituto Português de Oncologia do Porto na terapêutica de tumores neuroendócrinos gastroenteropancreáticos com 177Lu-DOTA-TATE, tendo como principais pontos de análise a segurança e eficáciaterapêutica. Material e Métodos: Foi realizada uma análise retrospetiva dos processos clínicos de doentes com tumores neuroendócrinos gastroenteropancreáticos, submetidos a terapêutica com 177Lu-DOTA-TATE entre abril de 2011 e novembro de 2013. Resultados: Dos 36 casos revistos, 30 completaram os três ciclos de 177Lu-DOTA-TATE (83,3%). Nesses doentes foram registados: efeitos colaterais agudos em 8,9% dos ciclos; toxicidade hepática grau 3 CTCAE em 13,3% dos doentes (todos com alterações prévias da função hepática); ausência de toxicidade renal ou hematológica significativa; melhoria sintomática em 71,4% dos doentes; tempo mediano global desde o início da terapêutica até progressão de doença de 25,6 meses; tempo mediano global de sobrevivência desde o diagnóstico de 121,7 meses. Verificou-se um maior tempo livre de progressão de doença e de sobrevivência nos doentes com expressão elevada de recetores da somatostatina (p < 0,05). Discussão: A peptide receptor radionuclide therapy com 177Lu-DOTA-TATE apresenta respostas clínicas favoráveis com segurança e boa tolerabilidade terapêutica, conforme evidenciado no nosso estudo pelos seguintes achados: melhoria dos sintomas na maioria dos doentes e aumento significativo do tempo livre de progressão de doença e da sobrevivência (sobretudo nos doentes com expressão elevada de sstr), com efeitos colaterais agudos e subagudos/crónicos significativos numa minoria de doentes. Conclusão: A peptide receptor radionuclide therapy com 177Lu-DOTA-TATE é uma terapêutica promissora, com benefícios reais em termos de eficácia e segurança nos doentes com tumores neuroendócrinos gastroenteropancreáticos.

  13. (177)Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment.

    PubMed

    Yadav, Madhav Prasad; Ballal, Sanjana; Tripathi, Madhavi; Damle, Nishikant Avinash; Sahoo, Ranjit Kumar; Seth, Amlesh; Bal, Chandrasekhar

    2017-01-01

    The purpose of this study was to evaluate the efficacy and safety of a novel theranostic agent, (177)Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer (mCRPC). Thirty-one mCRPC patients with progressive disease despite second-line hormonal therapy and/or docetaxel chemotherapy were recruited for the study. All patients underwent diagnostic(68)Ga-PSMA-HBED-CCPET/CT, prior to inclusion for therapy. Included patients then underwent quarterly (177)Lu-DKFZ-PSMA-617 therapy. Hematological, kidney function, liver function tests, and serum PSA levels were recorded before and after therapy at 2 weeks, 4 weeks, and 3 month intervals. Biochemical response was assessed with trend in serum PSA levels. Metabolic response was assessed by PERCIST 1 criteria. Clinical response was assessed by visual analogue score (VASmax) analgesic score (AS), Karanofsky performance status (KPS), and ttoxicity and response criteria of the Eastern Cooperative Oncology Group (ECOG) criteria. The mean age of patients was 65.93 ± 9.77 years (range: 38-81 years). The mean activity administered in the 31 patients was 5069 ± 1845 MBq ranging from one to four cycles. There was a decline in the mean serum PSA levels from the baseline (baseline: 275 ng/mL, post 1st cycle therapy: 141.75 ng/mL). Based on biochemical response criteria 2/31, 20/31, 3/31, and 6/31 had complete response (CR), partial response(PR), stable disease (SD), and progressive disease (PD), respectively. Metabolic response revealed 2/6 patients with CR, and the remaining 3/6 patients with PR and 1/6 patients with SD. The mean VASmax score decreased from 7.5 to 3. The mean analgesic score decreased from 2.5 to 1.8 after therapy. The mean KPS score improved from 50.32 to 65.42 after therapies. The mean ECOG performance status improved from 2.54 to 1.78 after therapy. Two patients experienced grade I and grade II hemoglobin toxicity each. None of the patients experienced nephrotoxicity or

  14. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE.

    PubMed

    Ilan, Ezgi; Sandström, Mattias; Wassberg, Cecilia; Sundin, Anders; Garske-Román, Ulrike; Eriksson, Barbro; Granberg, Dan; Lubberink, Mark

    2015-02-01

    Peptide receptor radionuclide therapy (PRRT) is a promising treatment for patients with neuroendocrine tumors, giving rise to improved survival. Dosimetric calculations in relation to PRRT have been concentrated to normal organ dosimetry in order to limit side effects. However, the relation between the absorbed dose to the tumor and treatment response has so far not been established. Better knowledge in this respect may improve the understanding of treatment effects, allow for improved selection of those patients who are expected to benefit from PRRT, and avoid unnecessary treatments. The aim of the present work was to evaluate the dose-response relationship for pancreatic neuroendocrine tumors treated with PRRT using (177)Lu-DOTATATE. Tumor-absorbed dose calculations were performed for 24 lesions in 24 patients with metastasized pancreatic neuroendocrine tumors treated with repeated cycles of (177)Lu-DOTATATE at 8-wk intervals. The absorbed dose calculations relied on sequential SPECT/CT imaging at 24, 96, and 168 h after infusion of (177)Lu-DOTATATE. The unit density sphere model from OLINDA was used for absorbed dose calculations. The absorbed doses were corrected for partial-volume effect based on phantom measurements. On the basis of these results, only tumors larger than 2.2 cm in diameter at any time during the treatment were included for analysis. To further decrease the effect of partial-volume effect, a subgroup of tumors (>4.0 cm) was analyzed separately. Tumor response was evaluated by CT using Response Evaluation Criteria In Solid Tumors. Tumor-absorbed doses until best response ranged approximately from 10 to 340 Gy. A 2-parameter sigmoid fit was fitted to the data, and a significant correlation between the absorbed dose and tumor reduction was found, with a Pearson correlation coefficient (R(2)) of 0.64 for tumors larger than 2.2 cm and 0.91 for the subgroup of tumors larger than 4.0 cm. The largest tumor reduction was 57% after a total absorbed dose

  15. (177)Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer.

    PubMed

    Bräuer, Axel; Grubert, Lena Sophie; Roll, Wolfgang; Schrader, Andres Jan; Schäfers, Michael; Bögemann, Martin; Rahbar, Kambiz

    2017-09-01

    Radioligand therapies targeting prostate-specific membrane antigen (PSMA) have been established for the treatment of metastasized castration-resistant prostate cancer (mCRPC) in the last decade and show promising response rates and a favourable toxicity profile. The aim of this study was to evaluate the overall survival (OS) and to identify parameters predicting outcome in mCRPC patients treated with (177)Lu-PSMA-617. Between December 2014 and January 2017, 59 consecutive patients (median age 72 years; interquartile range, (IQR, 66-76 years) with mCRPC, who had been treated with at least one next-generation antihormonal drug as well as chemotherapy, were included in this study. Biochemical response was evaluated using Prostate Cancer Working Group 3 (PCWG3) criteria. Survival was evaluated using Kaplan-Meier estimates and Cox regression proportional hazards model. Toxicity was assessed using Common Toxicity Criteria for Adverse Events (CTCAE). The study was approved by the local ethics committee. The 59 patients were treated with a total of 159 cycles (median 3 cycles, range 1-7) of (177)Lu-PSMA-617 (median dose 6.11 GBq, IQR 5.9-6.3 GBq). The median follow-up was 24 weeks (IQR 15-36 weeks). Follow-up data for at least 12 weeks (PCWG3) were available in 76% (45) of the patients. For outcome results data from all patients treated with at least one cycle were analysed. A decline in prostate-specific antigen (PSA) of ≥50% occurred in 53%, and a decline in PSA of any amount in 91% of patients. The estimated median OS was 32 weeks. An initial alkaline phosphatase (ALP) level <220 U/L and a PSA decline after the first cycle were associated with a longer OS (56 vs. 28 weeks, p < 0.01, and 56 vs. 29 weeks, p = 0.04, respectively). The median estimated PSA progression-free survival (PPFS) was 18 weeks. Only ALP level <220 U/L was significantly associated with a longer PPFS (41 vs. 18 weeks, p < 0.01). A PSA decline after the first cycle of (177)Lu

  16. Organ doses from hepatic radioembolization with 90Y, 153Sm, 166Ho and 177Lu: A Monte Carlo simulation study using Geant4

    NASA Astrophysics Data System (ADS)

    Hashikin, N. A. A.; Yeong, C. H.; Guatelli, S.; Abdullah, B. J. J.; Ng, K. H.; Malaroda, A.; Rosenfeld, A. B.; Perkins, A. C.

    2016-03-01

    90Y-radioembolization is a palliative treatment for liver cancer. 90Y decays via beta emission, making imaging difficult due to absence of gamma radiation. Since post-procedure imaging is crucial, several theranostic radionuclides have been explored as alternatives. However, exposures to gamma radiation throughout the treatment caused concern for the organs near the liver. Geant4 Monte Carlo simulation using MIRD Pamphlet 5 reference phantom was carried out. A spherical tumour with 4.3cm radius was modelled within the liver. 1.82GBq of 90Y sources were isotropically distributed within the tumour, with no extrahepatic shunting. The simulation was repeated with 153Sm, 166Ho and 177Lu. The estimated tumour doses for all radionuclides were 262.9Gy. Tumour dose equivalent to 1.82GBq 90Y can be achieved with 8.32, 5.83, and 4.44GBq for 153Sm, 166Ho and 177Lu, respectively. Normal liver doses by the other radionuclides were lower than 90Y, hence beneficial for normal tissue sparing. The organ doses from 153Sm and 177Lu were relatively higher due to higher gamma energy, but were still well below 1Gy. 166Ho, 177Lu and 153Sm offer useful gamma emission for post-procedure imaging. They show potential as 90Y substitutes, delivering comparable tumour doses, lower normal liver doses and other organs doses far below the tolerance limit.

  17. Formulation, preclinical evaluation, and preliminary clinical investigation of an in-house freeze-dried EDTMP kit suitable for the preparation of 177Lu-EDTMP.

    PubMed

    Das, Tapas; Sarma, Haladhar D; Shinto, Ajit; Kamaleshwaran, Koramadai K; Banerjee, Sharmila

    2014-12-01

    The objective of the present work was to develop a freeze-dried ethylenediaminetetramethylene phosphonic acid (EDTMP) kit, suitable for the convenient and single-step preparation of (177)Lu-EDTMP, which is currently being evaluated as a promising radiopharmaceutical for providing palliative care to patients suffering from skeletal metastases and to assess the potential of the agent in human patients. Lyophilized EDTMP kits having identical composition with Quadramet(®) were prepared using EDTMP, NaOH, and anhydrous CaCO3. The (177)Lu-EDTMP patient dose was prepared by incubating the kit materials dissolved in 1 mL of water for injection and (177)LuCl3, produced in-house, at room temperature for 15 minutes. Pharmacokinetic behavior of the agent was studied by carrying out biodistribution and scintigraphic imaging studies in normal Wistar rats. Clinical studies were performed by administering the preparation in patients suffering from disseminated skeletal metastases. Five batches of freeze-dried EDTMP kits with 50 kit vials in each batch were prepared. Each kit vial comprised a lyophilized mixture of 35 mg EDTMP, 14.1 mg NaOH, and 5.8 mg of CaCO3. The (177)Lu-EDTMP complex was prepared with excellent radiochemical purity (>99%) and high stability (>98% until 9 days postpreparation) using these kits. Radiochemical studies showed that this kit could be used within a pH range of 6-9 and with (177)Lu having specific activity as low as 925 GBq · g(-1) (25 Ci · g(-1)) for the preparation of up to 3.7 GBq (100 mCi) of (177)Lu-EDTMP. Biodistribution studies in animals revealed selective accumulation of the agent in skeleton (∼ 60% of the injected activity) with major renal clearance. Preliminary clinical studies in 10 patients exhibited selective accumulation of the radiotracer in skeletal lesions and provided significant pain relief thereby improving the quality of life of the patients. Freeze-dried EDTMP kits, suitable for the preparation of patient doses of (177)Lu

  18. Clinical Efficacy and Safety Comparison of 177Lu-EDTMP with 153Sm-EDTMP on an Equidose Basis in Patients with Painful Skeletal Metastases.

    PubMed

    Thapa, Pradeep; Nikam, Dilip; Das, Tapas; Sonawane, Geeta; Agarwal, Jai Prakash; Basu, Sandip

    2015-10-01

    This prospective study compared 177Lu-ethylene diamine tetramethylene phosphonate (EDTMP) with 153Sm-EDTMP for painful skeletal metastases. Half of the 32 patients were treated with 177Lu-EDTMP and half with 153Sm-EDTMP, at 37 MBq/kg of body weight. Analgesic, pain, and quality-of-life scores (EORTC, Karnofsky, ECOG) and bone proliferation marker were used to examine efficacy. Hematologic toxicity was evaluated using NCI-CTCAE and compared between groups at baseline and each month till 3 mo after therapy. Pain relief was categorized as complete, partial, minimal, or none. Pain relief with 177Lu-EDTMP was 80%: 50% complete, 41.67% partial, and 8.33% minimal. Pain relief with 153Sm-EDTMP was 75%: 33.33% complete, 58.33% partial, and 8.33% minimal. The difference was not significant (P=1.000). Quality of life at 3 mo after therapy improved significantly in both groups as per ECOG score (P=0.014 and 0.005 for 177Lu-EDTMP and 153Sm-EDTMP, respectively), Karnofsky index (P=0.007 and 0.023 for 177Lu-EDTMP and 153Sm-EDTMP, respectively), and EORTC score (P=0.004 and <0.001 for 177Lu-EDTMP and 153Sm-EDTMP, respectively). Bone proliferation marker in responders of both groups dropped significantly (P=0.008 for 177Lu-EDTMP and P=0.019 for 153Sm-EDTMP), parallel to clinical response. For 177Lu-EDTMP, anemia, leukopenia, and thrombocytopenia were nonserious (grade I/II) in 46.67%, 46.67%, and 20%, respectively, and serious (grade III/IV) in 20%, 6.67%, and 0%, respectively. For 153Sm-EDTMP, anemia, leukopenia, and thrombocytopenia were nonserious (grade I/II) in 62.5%, 31.25%, and 18.75%, respectively, and serious (grade III/IV) in 18.75%, 0%, and 6.25%, respectively. One patient treated with 153Sm-EDTMP had grade IV thrombocytopenia but required no blood transfusion. Differences between groups were not significant for either nonserious or serious toxicity. For 177Lu-EDTMP, 3 of 12 responders experienced the flare phenomenon on the third day after therapy and one on the fifth

  19. Lutetium-labelled peptides for therapy of neuroendocrine tumours.

    PubMed

    Kam, B L R; Teunissen, J J M; Krenning, E P; de Herder, W W; Khan, S; van Vliet, E I; Kwekkeboom, D J

    2012-02-01

    Treatment with radiolabelled somatostatin analogues is a promising new tool in the management of patients with inoperable or metastasized neuroendocrine tumours. Symptomatic improvement may occur with (177)Lu-labelled somatostatin analogues that have been used for peptide receptor radionuclide therapy (PRRT). The results obtained with (177)Lu-[DOTA(0),Tyr(3)]octreotate (DOTATATE) are very encouraging in terms of tumour regression. Dosimetry studies with (177)Lu-DOTATATE as well as the limited side effects with additional cycles of (177)Lu-DOTATATE suggest that more cycles of (177)Lu-DOTATATE can be safely given. Also, if kidney-protective agents are used, the side effects of this therapy are few and mild and less than those from the use of (90)Y-[DOTA(0),Tyr(3)]octreotide (DOTATOC). Besides objective tumour responses, the median progression-free survival is more than 40 months. The patients' self-assessed quality of life increases significantly after treatment with (177)Lu-DOTATATE. Lastly, compared to historical controls, there is a benefit in overall survival of several years from the time of diagnosis in patients treated with (177)Lu-DOTATATE. These findings compare favourably with the limited number of alternative therapeutic approaches. If more widespread use of PRRT can be guaranteed, such therapy may well become the therapy of first choice in patients with metastasized or inoperable neuroendocrine tumours.

  20. ¹⁷⁷Lu-Labeled Agents for Neuroendocrine Tumor Therapy and Bone Pain Palliation in Uruguay.

    PubMed

    Balter, Henia; Victoria, Trindade; Mariella, Terán; Javier, Gaudiano; Rodolfo, Ferrando; Andrea, Paolino; Graciela, Rodriguez; Juan, Hermida; Eugenia, De Marco; Patricia, Oliver

    2016-01-01

    Lutetium-177 is an emerging radionuclide due its convenient chemical and nuclear properties. In this paper we describe the development and evaluation in Uruguay of the targeted 177Lu labelled radiopharmaceuticals EDTMP (for bone pain palliation) and DOTA-TATE (neuroendocrine tumors). We optimized the preparation of these 177Lu radiopharmaceuticals including radiolabelling, quality control methods, in vitro and in vivo stability and their therapeutic application in patients. Radiation dosimetry aspects of 177Lu are also included. Nine male patients with prostate cancer and four female patients with breast carcinoma with multiple bone metastatic lesions were treated with 177Lu-EDTMP. Four patients with gastroentheropancreatic neuroendocrine tumors (GEP-NET) and one patient with bronchial NET were treated with 1- 3 cycles with a cumulative dose of 4.44-22.2 GBq of 177Lu-DOTA-TATE. Scintigraphic images of the patients treated with 177Lu-EDTMP evidenced high and rapid uptake in bone metastasis, remaining after 7 days post administration. Images allow skeletal visualization with high definition and demonstrate increased uptake in bone metastases. For 177Lu-DOTA-TATE, partial remissions were obtained in 4 patients and the remaining patient did not show significant progression 3 months after the second cycle. No serious adverse effects were registered, even in two patients with confirmed renal disease and high risk for renal disease Dosimetry assessments confirm the predictive value of the personalized therapy with radiolabelled peptides. We found it is possible to accumulate high therapeutic doses in tumours in sequential administrations of 177Lu-DOTA-TATE, increasing the probability of biological response without significant impairment of the renal function in patients with risk factors. These results demonstrate the attractive therapeutic properties of these two 177Lu labelled agents and the feasibility of this metabolic therapy in regions far away from 177Lu producing

  1. Preparation of astatine-labeled monoclonal antibodies

    SciTech Connect

    Milesz, S.; Norseev, Yu.V.; Szucs, Z. |

    1995-07-01

    In the cationic state astatine forms a stable complex with diethylenetriaminepentaacetic acid. Thanks to this complex, astatine can be bound to monoclonal antibodies of the RYa{sub 1} type. The most favorable conditions for preparing astatine-labeled antibodies are established. The chromatographic analysis and electromigration experiments showed that astatine is firmly linked to a biomolecule in vitro and it did not escape from labeled monoclonal antibodies even under treatment with such highly effective astatine-complexing agent as thiourea. The immune activity of astatine-labeled antibodies did not change even after 20 h.

  2. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate.

    PubMed

    Forrer, Flavio; Krenning, Eric P; Kooij, Peter P; Bernard, Bert F; Konijnenberg, Mark; Bakker, Willem H; Teunissen, Jaap J M; de Jong, Marion; van Lom, Kirsten; de Herder, Wouter W; Kwekkeboom, Dik J

    2009-07-01

    Adequate dosimetry is mandatory for effective and safe peptide receptor radionuclide therapy (PRRT). Besides the kidneys, the bone marrow is a potentially dose-limiting organ. The radiation dose to the bone marrow is usually calculated according to the MIRD scheme, where the accumulated activity in the bone marrow is calculated from the accumulated radioactivity of the radiopharmaceutical in the blood. This may underestimate the absorbed dose since stem cells express somatostatin receptors. We verified the blood-based method by comparing the activity in the blood with the radioactivity in bone marrow aspirates. Also, we evaluated the absorbed cross-dose from the source organs (liver, spleen, kidneys and blood), tumours and the so-called "remainder of the body" to the bone marrow. Bone marrow aspirates were drawn in 15 patients after treatment with [(177)Lu-DOTA(0),Tyr(3)]octreotate. Radioactivity in the bone marrow was compared with radioactivity in the blood drawn simultaneously. The nucleated cell fraction was isolated from the bone marrow aspirate and radioactivity was measured. The absorbed dose to the bone marrow was calculated. The results were correlated to the change in platelet counts 6 weeks after treatment. A strong linear correlation and high agreement between the measured radioactivities in the bone marrow aspirates and in the blood was found (r=0.914, p<0.001). No correlation between the calculated absorbed dose in the bone marrow and the change in platelets was found. There was a considerable contribution from other organs and the remainder of the body to the bone marrow absorbed dose. (1) After PRRT with [(177)Lu-DOTA(0),Tyr(3)]octreotate, the radioactivity concentration in the bone marrow is identical to that in the blood; (2) There is no significant binding of the radiopharmaceutical to bone marrow precursor stem cells; (3) The contribution of the cross dose from source organs and tumours to the bone marrow dose is significant; and (4) There is

  3. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice.

    PubMed

    Müller, Cristina; Struthers, Harriet; Winiger, Christian; Zhernosekov, Konstantin; Schibli, Roger

    2013-01-01

    The folate receptor (FR) has proven a valuable target for nuclear imaging using folic acid radioconjugates. However, using folate-based radiopharmaceuticals for therapy has long been regarded as an unattainable goal because of their considerable renal accumulation. Herein, we present a novel strategy in which a DOTA-folate conjugate with an albumin-binding entity (cm09) was designed with the aim of prolonging circulation in the blood and therewith potentially improving tumor-to-kidney ratios. The folate conjugate cm09 was radiolabeled with (177)LuCl(3), and stability experiments were performed in plasma. Cell uptake studies were performed on FR-positive KB tumor cells, and an ultrafiltration assay was used to determine the plasma protein-binding properties of (177)Lu-cm09. In vivo, (177)Lu-cm09 was tested in KB tumor-bearing mice using SPECT/CT. The therapeutic anticancer effect of (177)Lu-cm09 (20 MBq) applied as a single injection or as fractionated injections was investigated in different groups of mice (n = 5) by monitoring tumor size and the survival time of treated mice, compared with untreated controls. Compound cm09 was radiolabeled at a specific activity of 40 MBq/nmol, a radiochemical yield of more than 98%, and a stability of more than 99% over 5 d in plasma. Ultrafiltration revealed significant binding of (177)Lu-cm09 to serum proteins (∼91%) in plasma, compared with folate radioconjugate without an albumin-binding entity. Cell uptake and internalization of (177)Lu-cm09 was FR-specific and comparable to other folate radioconjugates. In vivo studies resulted in high tumor uptake (17.56 percentage injected dose per gram [%ID/g] at 4 h after injection), which was almost completely retained for at least 72 h. Renal accumulation was significantly reduced (28 %ID/g at 4 h after injection), compared with folate conjugates that lack an albumin-binding entity (∼70 %ID/g at 4 h after injection). These circumstances enabled SPECT imaging of excellent quality

  4. Experimental limits for heavy neutrino admixture deduced from 177Lu β decay and constraints on the life time of a radiative neutrino decay mode

    NASA Astrophysics Data System (ADS)

    Schönert, S.; Oberauer, L.; Hagner, C.; Feilitzsch, F. v.; Schreckenbach, K.; Declais, Y.; Mayerhofer, U.

    1996-05-01

    From cosmological constraints, the requirement for stable neutrinos is to have masses less than 30 eV. In the case that neutrino masses exceed this bound, neutrinos must decay sufficiently fast in order to satisfy the presently observed energy density of the universe. The experiments presented in this contribution consist of the complementary search for heavy neutrino admixture in nuclear beta decay of 177Lu and of the search for a radiative neutrino decay mode at the nuclear power station in Bugey, France. The data obtained from the 177Lu beta decay restrict the mixing probability of a heavy neutrino to the electron | U eh| 2 < 0.2 - 0.3% (90% Cl) for neutrino masses between 10 and 95 keV. The radiative lifetime is constrained to exceed t/ m > 180 × | U eh| 2 sec/eV which is one order of magnitude more restrictive than previous laboratory limits.

  5. Up-regulation of somatostatin receptor density on rat CA20948 tumors escaped from low dose [177Lu-DOTA0,Tyr3]octreotate therapy.

    PubMed

    Melis, M; Forrer, F; Capello, A; Bijster, M; Bernard, B F; Reubi, J C; Krenning, E P; De Jong, M

    2007-12-01

    Peptide receptor radionuclide therapy using the somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate is a convincing treatment modality for metastasized neuroendocrine tumors. Therapeutic doses are administered in 4 cycles with 6-10 week intervals. A high somatostatin receptor density on tumor cells is a prerequisite at every administration to enable effective therapy. In this study, the density of the somatostatin receptor subtype 2 (sst2) was investigated in the rat CA20948 pancreatic tumor model after low dose [(177)Lu-DOTA(0), Tyr(3)]octreotate administration resulting in approximately 20 Gy tumor radiation absorbed dose, whereas 60 Gy is needed to induce complete tumor regression in these and the majority of tumors. Sixteen days after inoculation of the CA20948 tumor, male Lewis rats were injected with 185 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate to initiate a decline in tumor size. Approximately 40 days after injection, tumors re-grew progressively after initial response. Quantification of sst2 expression was performed using in vitro autoradiography on frozen sections of three groups: control (not-treated) tumors, tumors in regression and tumors in re-growth. Histology and proliferation were determined using HE- and anti-Ki-67-staining. The sst2 expression on CA20948 tumor cells decreased significantly after therapy to 5% of control level. However, tumors escaping from therapy showed an up-regulated sst2 level of 2-5 times higher sst2 density compared to control tumors. After a suboptimal therapeutic dose of [(177)Lu-DOTA(0),Tyr(3)]octreotate, escape of tumors is likely to occur. Since these cells show an up-regulated sst2 receptor density, a next therapeutic administration of radiolabelled sst2 analogue can be expected to be highly effective.

  6. Sci—Thur AM: YIS - 03: irtGPUMCD: a new GPU-calculated dosimetry code for {sup 177}Lu-octreotate radionuclide therapy of neuroendocrine tumors

    SciTech Connect

    Montégiani, Jean-François; Gaudin, Émilie; Després, Philippe; Jackson, Price A.; Beauregard, Jean-Mathieu

    2014-08-15

    In peptide receptor radionuclide therapy (PRRT), huge inter-patient variability in absorbed radiation doses per administered activity mandates the utilization of individualized dosimetry to evaluate therapeutic efficacy and toxicity. We created a reliable GPU-calculated dosimetry code (irtGPUMCD) and assessed {sup 177}Lu-octreotate renal dosimetry in eight patients (4 cycles of approximately 7.4 GBq). irtGPUMCD was derived from a brachytherapy dosimetry code (bGPUMCD), which was adapted to {sup 177}Lu PRRT dosimetry. Serial quantitative single-photon emission computed tomography (SPECT) images were obtained from three SPECT/CT acquisitions performed at 4, 24 and 72 hours after {sup 177}Lu-octreotate administration, and registered with non-rigid deformation of CT volumes, to obtain {sup 177}Lu-octreotate 4D quantitative biodistribution. Local energy deposition from the β disintegrations was assumed. Using Monte Carlo gamma photon transportation, irtGPUMCD computed dose rate at each time point. Average kidney absorbed dose was obtained from 1-cm{sup 3} VOI dose rate samples on each cortex, subjected to a biexponential curve fit. Integration of the latter time-dose rate curve yielded the renal absorbed dose. The mean renal dose per administered activity was 0.48 ± 0.13 Gy/GBq (range: 0.30–0.71 Gy/GBq). Comparison to another PRRT dosimetry code (VRAK: Voxelized Registration and Kinetics) showed fair accordance with irtGPUMCD (11.4 ± 6.8 %, range: 3.3–26.2%). These results suggest the possibility to use the irtGPUMCD code in order to personalize administered activity in PRRT. This could allow improving clinical outcomes by maximizing per-cycle tumor doses, without exceeding the tolerable renal dose.

  7. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  8. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  9. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  10. 177Lu-octreotate, alone or with radiosensitising chemotherapy, is safe in neuroendocrine tumour patients previously treated with high-activity 111In-octreotide.

    PubMed

    Hubble, Daniel; Kong, Grace; Michael, Michael; Johnson, Val; Ramdave, Shakher; Hicks, Rodney John

    2010-10-01

    The aim of this retrospective study was to determine whether patients with previous peptide receptor radionuclide therapy using high-activity (111)In-pentetreotide can be safely treated with (177)Lu-octreotate and whether addition of radiosensitising chemotherapy increases the toxicity of this agent. Records of 27 patients (aged 17-75) who received 69 (median 3 per patient) (177)Lu-octreotate administrations, including 29 in conjunction with radiosensitising infusional 5-fluorouracil (5-FU) (n = 27), or capecitabine (n = 2), between October 2005 and July 2007 subsequent to 1-8 prior cycles of (111)In-pentetreotide therapy were analysed. Toxicity was assessed during and at 8-12 weeks post-treatment, with further long-term assessments including survival status reviewed till death or study close-out date of 1 November 2009. Reduction in blood counts was most marked following the first dose of (177)Lu-octreotate but at early follow-up the only major haematological toxicity was a single case of grade 4 lymphopaenia. Both the presence of bone metastases and the administration of chemotherapy tended to result in greater reduction in blood counts, but these differences did not reach statistical significance. On long-term follow-up, 16 patients (59%) are alive with median overall survival of 36 months (32-44 months from first (177)Lu-octreotate therapy). None of the recorded deaths was directly related to treatment toxicity. One patient had late grade 4 anaemia and thrombocytopaenia secondary to bone marrow failure from progressive infiltration by tumour. No other significant long-term haematological toxicities were recorded and no leukaemia was observed. No renal toxicity was observed on serial serum creatinine or radionuclide glomerular filtration rate (GFR) determination on initial or long-term follow-up. (177)Lu-octreotate is a safe and well-tolerated therapy for patients who have previously been treated with (111)In-pentetreotide and can be safely combined with

  11. Extracorporeal adsorption therapy: A Method to improve targeted radiation delivered by radiometal-labeled monoclonal antibodies.

    SciTech Connect

    Nemecek, Eneida R.; Green, Damian J.; Fisher, Darrell R.; Pagal, John M.; Lin, Yukang; Gopal, A. K.; Durack, Lawrence D.; Rajendran, Joseph G.; Wilbur, D. S.; Nilsson, Rune; Sandberg, Bengt; Press, Oliver W.

    2008-04-01

    antibody labeled with indium-111 (111In), seven patients received RIT with anti-CD20 antibody labeled with indium-111 for biokinetics and dosimetry, and therapeutic doses of antibody labeled with yttrium-90 (90Y). Performing the ECAT procedure at a rate that such that one blood volume per hour were circulated for 3 hours, resulted in mean radioactivity depletion of 96% in whole blood, 49% in whole body 49%, 62% in the lungs and 40% in liver and kidneys. There was no sufficient data to determine whether there was an improvement in the relative delivery of radiation to the tumor compared to normal organs by performing ECAT, but pharmacokinetic modeling studies suggested a potential therapeutic advantage using this approach. [refs] To evaluate the potential therapeutic advantages of ECAT, we performed biodistribution studies in nonhuman primates comparing the therapeutic ratios of radiation delivered using this approach to those delivered by conventional RIT alone. In addition, we evaluated lutetium-177 (177Lu) as an alternative isotope to optimize the delivery of RIT by improving the therapeutic index (target to non-target ratio)

  12. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer.

    PubMed

    Tagawa, Scott T; Milowsky, Matthew I; Morris, Michael; Vallabhajosula, Shankar; Christos, Paul; Akhtar, Naveed H; Osborne, Joseph; Goldsmith, Stanley J; Larson, Steve; Taskar, Neeta Pandit; Scher, Howard I; Bander, Neil H; Nanus, David M

    2013-09-15

    To assess the efficacy of a single infusion of radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (lutetium-177; (177)Lu) by prostate-specific antigen (PSA) decline, measurable disease response, and survival. In this dual-center phase II study, two cohorts with progressive metastatic castration-resistant prostate cancer received one dose of (177)Lu-J591 (15 patients at 65 mCi/m(2), 17 at 70 mCi/m(2)) with radionuclide imaging. Expansion cohort (n = 15) received 70 mCi/m(2) to verify response rate and examine biomarkers. Forty-seven patients who progressed after hormonal therapies (55.3% also received prior chemotherapy) received (177)Lu-J591. A total of 10.6% experienced ≥50% decline in PSA, 36.2% experienced ≥30% decline, and 59.6% experienced any PSA decline following their single treatment. One of 12 with measurable disease experienced a partial radiographic response (8 with stable disease). Sites of prostate cancer metastases were targeted in 44 of 47 (93.6%) as determined by planar imaging. All experienced reversible hematologic toxicity, with grade 4 thrombocytopenia occurring in 46.8% (29.8% received platelet transfusions) without significant hemorrhage. A total of 25.5% experienced grade 4 neutropenia, with one episode of febrile neutropenia. The phase I maximum tolerated dose (70 mCi/m(2)) resulted in more 30% PSA declines (46.9% vs. 13.3%, P = 0.048) and longer survival (21.8 vs. 11.9 months, P = 0.03), but also more grade 4 hematologic toxicity and platelet transfusions. No serious nonhematologic toxicity occurred. Those with poor PSMA imaging were less likely to respond. A single dose of (177)Lu-J591 was well tolerated with reversible myelosuppression. Accurate tumor targeting and PSA responses were seen with evidence of dose response. Imaging biomarkers seem promising. ©2013 AACR.

  13. Preclinical evaluation of radiolabelled nimotuzumab, a promising monoclonal antibody targeting the epidermal growth factor receptor.

    PubMed

    Barta, Pavel; Laznickova, Alice; Laznicek, Milan; Vera, Denis Rolando Beckford; Beran, Milos

    2013-05-15

    Radiolabelled monoclonal antibodies with affinity towards tumour-associated antigens may enhance the efficacy of cancer treatment with targeted radiotherapy. The humanized antibody nimotuzumab represents a promising vector to deliver radioactivity to tumours overexpressing epidermal growth factor receptor type 1 (ErbB1). We analysed the effect of radiolabelling nimotuzumab on its uptake in cancer cells and its biodistribution profile in preclinical experiments. Nimotuzumab was labelled with (131) I by oxidative iodination and with (177) Lu using nimotuzumab conjugates with two different chelators (DTPA and DOTA) and two different spacers (p-SCN-Bn and NHS). For the receptor studies, two cell lines (HaCaT and A431) were used. Biodistribution studies were performed in male Wistar rats. The choice of radiolabel and the manner of its attachment to nimotuzumab had little effect on the internalization of the antibody into ErbB1-expressing cell lines. However, the type of radiolabel, the way in which it was attached to nimotuzumab and the radiolabelling procedure, significantly affected the blood clearance, liver uptake and liver persistence of radiolabelled nimotuzumab. (131) I-nimotuzumab had the longest elimination half-life and the lowest radioactivity uptake in the liver. (177) Lu-labelled nimotuzumab exhibited a shorter elimination half-life, high radioactivity and long-term retention in the liver. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Peptide receptor radionuclide therapy (PRRT) with [177Lu-DOTA0,Tyr3]octreotate in combination with RAD001 treatment: further investigations on tumor metastasis and response in the rat pancreatic CA20948 tumor model

    PubMed Central

    2014-01-01

    Background Previously, we reported on the unexpected development of distant metastases in the subcutaneous rat pancreas CA20948 tumor model after 4.5 weeks of treatment with RAD001-only or in combination with [177Lu-DOTA0,Tyr3]octreotate (177Lu-DOTATATE) (Cancer Res. 73:12-8, 2013). Moreover, the combination therapy was less effective compared to 177Lu-DOTATATE-only. In the current study, we address the following questions: (1) Why was the combination therapy less effective? Is 177Lu-DOTATATE tumor uptake affected by pretreatment with RAD001? (2) Could sudden cessation of RAD001 therapy cause the development of distant metastases? (3) Is 177Lu-DOTATATE an effective treatment option for these metastases? Methods Lewis rats (HanHsd or SsNHsd substrain with a slight difference in immune response) bearing subcutaneous CA20948 tumors were treated with either 125 or 275 MBq 177Lu-DOTATATE, RAD001, or their combination. RAD001 was given twice a week for 4.5 or 12 weeks, whereas 177Lu-DOTATATE was given as a single injection. When combined, RAD001 was started either 3 days prior to or 3 days post administration of 177Lu-DOTATATE. SPECT/CT was performed to quantify 177Lu-DOTATATE tumor uptake. Where indicated, primary tumors were surgically removed when tumor size is >6,000 mm3 to enable monitoring for possible metastasis. If metastases were suspected, an 111In-DTPA-octreotide SPECT/CT scan was performed. Seven rats with metastases were treated with 400 MBq 177Lu-DOTATATE. Results Lu-DOTATATE tumor uptake was not significantly affected by RAD001 pretreatment. The occurrence of metastases after RAD001 treatment was not dose dependent in the dose range tested, nor was it related to the duration of RAD001 treatment. In the experiment in which the LEW/SsNsd substrain was used, only 12.5% of RAD001-treated rats showed complete response (CR), compared to 50% tumor regression in the control group. Re-treatment with a high dose of 177Lu-DOTATATE resulted in CR in only two

  15. Metastatic Neuroendocrine Tumor with Extensive Bone Marrow Involvement at Diagnosis: Evaluation of Response and Hematological Toxicity Profile of PRRT with (177)Lu-DOTATATE.

    PubMed

    Basu, Sandip; Ranade, Rohit; Thapa, Pradeep

    2016-01-01

    The aim of this study was to evaluate the response and hematological toxicity in peptide receptor radionuclide therapy (PRRT) with lutetium ((177)Lu)-DOTA-octreotate (DOTATATE) in metastatic neuroendocrine tumor (NET) with extensive bone marrow metastasis at the initial diagnosis. A retrospective evaluation was undertaken for this purpose: Patients with NET with extensive diffuse bone marrow involvement at diagnosis who had received at least three cycles of PRRT with (177)Lu-DOTATATE were considered for the analysis. The selected patients were analyzed for the following: (i) Patient and lesional characteristics, (ii) associated metastatic burden, (iii) hematological parameters at diagnosis and during the course of therapy, (iv) response to PRRT (using a 3-parameter assessment: Symptomatic including Karnofsky/Lansky performance score, biochemical finding, and scan finding), (v) dual tracer imaging features [with somatostatin receptor imaging (SRI) and fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT)]. Based on the visual grading, tracer uptake in somatostatin receptor (SSTR)-positive bone marrow lesions were graded by a 4-point scale into four categories (0-III) in comparison with the hepatic uptake on the scan: 0 - no uptake; I - clear focus but less than liver uptake; II - equal to liver uptake; and III - higher than liver uptake]. Hematological toxicity was evaluated using National Cancer Institute (NCI)-Common Terminology Criteria for Adverse Events (CTCAE) version 4.0 score. A total of five patients (age range: 26-62 years; three males and two females) with diffuse bone marrow involvement at the diagnosis was encountered following analysis of the entire patient population of 250 patients. Based on the site of the primary, three had thoracic NET (two patients bronchial carcinoid and one pulmonary NET) and two gastroenteropancreatic NET (one in the duodenum and one patient of unknown primary with liver metastasis). Associated sites

  16. Metastatic Neuroendocrine Tumor with Extensive Bone Marrow Involvement at Diagnosis: Evaluation of Response and Hematological Toxicity Profile of PRRT with 177Lu-DOTATATE

    PubMed Central

    Basu, Sandip; Ranade, Rohit; Thapa, Pradeep

    2016-01-01

    The aim of this study was to evaluate the response and hematological toxicity in peptide receptor radionuclide therapy (PRRT) with lutetium (177Lu)-DOTA-octreotate (DOTATATE) in metastatic neuroendocrine tumor (NET) with extensive bone marrow metastasis at the initial diagnosis. A retrospective evaluation was undertaken for this purpose: Patients with NET with extensive diffuse bone marrow involvement at diagnosis who had received at least three cycles of PRRT with 177Lu-DOTATATE were considered for the analysis. The selected patients were analyzed for the following: (i) Patient and lesional characteristics, (ii) associated metastatic burden, (iii) hematological parameters at diagnosis and during the course of therapy, (iv) response to PRRT (using a 3-parameter assessment: Symptomatic including Karnofsky/Lansky performance score, biochemical finding, and scan finding), (v) dual tracer imaging features [with somatostatin receptor imaging (SRI) and fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT)]. Based on the visual grading, tracer uptake in somatostatin receptor (SSTR)-positive bone marrow lesions were graded by a 4-point scale into four categories (0-III) in comparison with the hepatic uptake on the scan: 0 - no uptake; I - clear focus but less than liver uptake; II - equal to liver uptake; and III - higher than liver uptake]. Hematological toxicity was evaluated using National Cancer Institute (NCI)-Common Terminology Criteria for Adverse Events (CTCAE) version 4.0 score. A total of five patients (age range: 26-62 years; three males and two females) with diffuse bone marrow involvement at the diagnosis was encountered following analysis of the entire patient population of 250 patients. Based on the site of the primary, three had thoracic NET (two patients bronchial carcinoid and one pulmonary NET) and two gastroenteropancreatic NET (one in the duodenum and one patient of unknown primary with liver metastasis). Associated sites of

  17. Multimodal Somatostatin Receptor Theranostics Using [64Cu]Cu-/[177Lu]Lu-DOTA-(Tyr3)octreotate and AN-238 in a Mouse Pheochromocytoma Model

    PubMed Central

    Ullrich, Martin; Bergmann, Ralf; Peitzsch, Mirko; Zenker, Erik F.; Cartellieri, Marc; Bachmann, Michael; Ehrhart-Bornstein, Monika; Block, Norman L.; Schally, Andrew V.; Eisenhofer, Graeme; Bornstein, Stefan R.; Pietzsch, Jens; Ziegler, Christian G.

    2016-01-01

    Pheochromocytomas and extra-adrenal paragangliomas (PHEO/PGLs) are rare catecholamine-producing chromaffin cell tumors. For metastatic disease, no effective therapy is available. Overexpression of somatostatin type 2 receptors (SSTR2) in PHEO/PGLs promotes interest in applying therapies using somatostatin analogs linked to radionuclides and/or cytotoxic compounds, such as [177Lu]Lu-DOTA-(Tyr3)octreotate (DOTATATE) and AN-238. Systematic evaluation of such therapies for the treatment of PHEO/PGLs requires sophisticated animal models. In this study, the mouse pheochromocytoma (MPC)-mCherry allograft model showed high tumor densities of murine SSTR2 (mSSTR2) and high tumor uptake of [64Cu]Cu-DOTATATE. Using tumor sections, we assessed mSSTR2-specific binding of DOTATATE, AN-238, and somatostatin-14. Therapeutic studies showed substantial reduction of tumor growth and tumor-related renal monoamine excretion in tumor-bearing mice after treatment with [177Lu]Lu-DOTATATE compared to AN-238 and doxorubicin. Analyses did not show agonist-dependent receptor downregulation after single mSSTR2-targeting therapies. This study demonstrates that the MPC-mCherry model is a uniquely powerful tool for the preclinical evaluation of SSTR2-targeting theranostic applications in vivo. Our findings highlight the therapeutic potential of somatostatin analogs, especially of [177Lu]Lu-DOTATATE, for the treatment of metastatic PHEO/PGLs. Repeated treatment cycles, fractionated combinations of SSTR2-targeting radionuclide and cytotoxic therapies, and other adjuvant compounds addressing additional mechanisms may further enhance therapeutic outcome. PMID:27022413

  18. Effectiveness of radiolabelled somatostatin analogues ((90)Y-DOTATOC and (177)Lu-DOTATATE) in patients with metastatic neuroendocrine tumours: a single centre experience in Mexico.

    PubMed

    Medina-Ornelas, S S; García-Pérez, F O

    To determine the effectiveness of therapy with the radiolabelled somatostatin analogues, (90)Y-DOTATOC and (177)Lu-DOTATATE, in the treatment of metastatic neuroendocrine tumours with progression to first-line treatment. A study was conducted on 30 patients diagnosed with neuroendocrine tumours (gastroenteropancreatic, bronchopulmonary, MEN2A, MEN2B, phaeochromocytoma, and paraganglioma) with metastatic disease diagnosed by the pathology department, with progression to first-line treatment, and recruited from December 2014 to February 2016. Efficacy was analysed using computed tomography (CT) according RECIST 1.1 criteria, and the molecular changes using the SUVmax of PET/CT with (68)Ga-DOTATOC. Safety was carried out with a renal scan with (99m)Tc-MAG3. The 30 patients received a total of 49 cycles (90)Y-DOTATOC (21 doses) and (177) Lu-DOTATATE (28 doses), with a mean of 1.5 cycles per patient. Of these, 17 (56.7%) showed a partial morphological response, 22 (73.3%) molecular and biochemical response, and 23 (76.6%) clinical response. One patient died during the median follow-up of 13 months. The median overall survival from diagnosis was 54 months (95% CI; 31.18-76.81), and median progression-free survival was 32 months (95% CI; 15.00-48.99). Therapy with (90)Y-DOTATOC and (177)Lu-DOTATATE is a promising therapy for patients with well and moderately differentiated neuroendocrine tumours. The efficacy is better the larger the number of cycles administered, inversely proportional to the number of metastases (<10), and is associated with the level of uptake according to the SUVmax by the metastases, regardless of metabolically active tumour volume. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  19. Multimodal Somatostatin Receptor Theranostics Using [(64)Cu]Cu-/[(177)Lu]Lu-DOTA-(Tyr(3))octreotate and AN-238 in a Mouse Pheochromocytoma Model.

    PubMed

    Ullrich, Martin; Bergmann, Ralf; Peitzsch, Mirko; Zenker, Erik F; Cartellieri, Marc; Bachmann, Michael; Ehrhart-Bornstein, Monika; Block, Norman L; Schally, Andrew V; Eisenhofer, Graeme; Bornstein, Stefan R; Pietzsch, Jens; Ziegler, Christian G

    2016-01-01

    Pheochromocytomas and extra-adrenal paragangliomas (PHEO/PGLs) are rare catecholamine-producing chromaffin cell tumors. For metastatic disease, no effective therapy is available. Overexpression of somatostatin type 2 receptors (SSTR2) in PHEO/PGLs promotes interest in applying therapies using somatostatin analogs linked to radionuclides and/or cytotoxic compounds, such as [(177)Lu]Lu-DOTA-(Tyr(3))octreotate (DOTATATE) and AN-238. Systematic evaluation of such therapies for the treatment of PHEO/PGLs requires sophisticated animal models. In this study, the mouse pheochromocytoma (MPC)-mCherry allograft model showed high tumor densities of murine SSTR2 (mSSTR2) and high tumor uptake of [(64)Cu]Cu-DOTATATE. Using tumor sections, we assessed mSSTR2-specific binding of DOTATATE, AN-238, and somatostatin-14. Therapeutic studies showed substantial reduction of tumor growth and tumor-related renal monoamine excretion in tumor-bearing mice after treatment with [(177)Lu]Lu-DOTATATE compared to AN-238 and doxorubicin. Analyses did not show agonist-dependent receptor downregulation after single mSSTR2-targeting therapies. This study demonstrates that the MPC-mCherry model is a uniquely powerful tool for the preclinical evaluation of SSTR2-targeting theranostic applications in vivo. Our findings highlight the therapeutic potential of somatostatin analogs, especially of [(177)Lu]Lu-DOTATATE, for the treatment of metastatic PHEO/PGLs. Repeated treatment cycles, fractionated combinations of SSTR2-targeting radionuclide and cytotoxic therapies, and other adjuvant compounds addressing additional mechanisms may further enhance therapeutic outcome.

  20. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  1. Studies on the Labeling of Ethylenediaminetetramethylene Phosphonic Acid, Methylene Diphosphonate, Sodium Pyrophosphate and Hydroxyapatite with Lutetium-177 for use in Nuclear Medicine

    PubMed Central

    Abbasi, Imtiaz Ahmed

    2015-01-01

    For the treatment of skeletal metastasis, a therapeutic radionuclide tagged with a bone seeking ligand is required, while for radiation synovectomy (RS), a therapeutic radionuclide irreversibly attached to pre-formed particles of appropriate size is required. Radio lanthanides are mostly therapeutic, and ligands containing phosphate groups are predominantly bone seekers. Exploiting these facts, number of new therapeutic radiopharmaceuticals could be developed. Labeling of four phosphate containing materials was pursued in the present study. It was hypothesized that various 177Lu-labeled bone-seeking complexes such as 177Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP), 177Lu-methylene diphosphonate (MDP) and 177Lu-pyrophosphate (PYP) could be developed as agents for palliative radiotherapy of bone pain due to skeletal metastases, and 177Lu-Hydroxyapatite (HA) could be developed as an agent for radiosynovectomy of small joints. Lyophilized kit vials of EDTMP, MDP and sodium pyrophosphate (Na-PYP) were formulated. HA particles were synthesized locally and purity was checked by high-performance liquid chromatography (HPLC). 177Lu was labeled with EDTMP, MDP, PYP, and HA and the behavior of all was studied by radio-thin layer chromatography (TLC) radio-HPLC and radio-electrophoresis. Radio-TLC confirmed the labeling. HPLC analysis too verified the labeling. Radio-electrophoresis results depicted peaks for 177Lu-MDP, 177Lu-EDTMP and 177Lu-PYP at 3.37 ± 0.06 cm, 5.53 ± 0.15 cm and 7.03 ± 0.06 cm respectively confirming negative charge on each specie as all migrated toward positive anode. All 3 methods verified the labeling. The study demonstrated that EDTMP, MDP and PYP form stable complexes with 177Lu in injectable solution form. HA particulates could too be labeled with 177Lu with high radiochemical yields (>98%) in suspension form. Former three could be utilized as bone-pain palliation agents for the treatment of bone metastases, and the later could be

  2. Studies on the Labeling of Ethylenediaminetetramethylene Phosphonic Acid, Methylene Diphosphonate, Sodium Pyrophosphate and Hydroxyapatite with Lutetium-177 for use in Nuclear Medicine.

    PubMed

    Abbasi, Imtiaz Ahmed

    2015-01-01

    For the treatment of skeletal metastasis, a therapeutic radionuclide tagged with a bone seeking ligand is required, while for radiation synovectomy (RS), a therapeutic radionuclide irreversibly attached to pre-formed particles of appropriate size is required. Radio lanthanides are mostly therapeutic, and ligands containing phosphate groups are predominantly bone seekers. Exploiting these facts, number of new therapeutic radiopharmaceuticals could be developed. Labeling of four phosphate containing materials was pursued in the present study. It was hypothesized that various (177)Lu-labeled bone-seeking complexes such as (177)Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP), (177)Lu-methylene diphosphonate (MDP) and (177)Lu-pyrophosphate (PYP) could be developed as agents for palliative radiotherapy of bone pain due to skeletal metastases, and (177)Lu-Hydroxyapatite (HA) could be developed as an agent for radiosynovectomy of small joints. Lyophilized kit vials of EDTMP, MDP and sodium pyrophosphate (Na-PYP) were formulated. HA particles were synthesized locally and purity was checked by high-performance liquid chromatography (HPLC). (177)Lu was labeled with EDTMP, MDP, PYP, and HA and the behavior of all was studied by radio-thin layer chromatography (TLC) radio-HPLC and radio-electrophoresis. Radio-TLC confirmed the labeling. HPLC analysis too verified the labeling. Radio-electrophoresis results depicted peaks for (177)Lu-MDP, (177)Lu-EDTMP and (177)Lu-PYP at 3.37 ± 0.06 cm, 5.53 ± 0.15 cm and 7.03 ± 0.06 cm respectively confirming negative charge on each specie as all migrated toward positive anode. All 3 methods verified the labeling. The study demonstrated that EDTMP, MDP and PYP form stable complexes with (177)Lu in injectable solution form. HA particulates could too be labeled with (177)Lu with high radiochemical yields (>98%) in suspension form. Former three could be utilized as bone-pain palliation agents for the treatment of bone metastases, and

  3. Formation of medical radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu in photonuclear reactions

    SciTech Connect

    Danagulyan, A. S.; Hovhannisyan, G. H. Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-15

    The possibility of the photonuclear production of radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes {sup 112,} {sup 118}Sn and Te and HfO{sub 2} of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes {sup 111}In and {sup 117}mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO{sub 2} of natural isotopic composition and leading to the formation of {sup 124}Sb and {sup 177}Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  4. Response and Tolerability of a Single Dose of 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer: A Multicenter Retrospective Analysis.

    PubMed

    Rahbar, Kambiz; Schmidt, Matthias; Heinzel, Alexander; Eppard, Elisabeth; Bode, Axel; Yordanova, Anna; Claesener, Michael; Ahmadzadehfar, Hojjat

    2016-09-01

    Radiolabeled prostate-specific membrane antigen (PSMA) ligands represent a true theranostic concept for diagnosis and therapy in patients with relapsed or metastatic prostate cancer. The aim of this study was to evaluate the response to and tolerability of a single dose of (177)Lu-PSMA-617 in a large cohort of patients with metastatic castration-resistant prostate cancer (mCRPC). The data of 82 consecutive patients (median age, 73 y; range, 43-87 y) with mCRPC who received a single dose of (177)Lu-PSMA-617 (mean, 5.9 ± 0.5 GBq) were retrospectively analyzed. Data were collected at baseline and 8 wk after therapy. (68)Ga-PSMA-11 PET/CT was performed on all patients to verify sufficient PSMA expression. Bone, lymph node, liver, and lung metastases were present in 99%, 65%, 17%, and 11% of the patients, respectively. Tolerability and response were evaluated using hematologic parameters, renal scintigraphy, clinical data, and the prostate-specific antigen (PSA) level at baseline and 8 wk after therapy application. Six patients died, and 2 patients dropped out because they were not willing to continue therapy and follow-up. The complete dataset of 74 patients was available for analysis. Forty-seven patients (64%) showed a PSA decline, including 23 (31%) with a decline by more than 50%. Thirty-five patients (47%) had stable disease: the change in their PSA level ranged from less than a 50% decline to less than a 25% rise. Seventeen patients (23%) had progressive disease: their PSA level rose by more than 25%. There were no significant changes in hemoglobin, white blood cells, creatinine, or tubular extraction rates indicative of toxicity. There was a significant but mild decrease in platelets, but the median value was still within the reference range. This retrospective multicenter analysis suggests that radioligand therapy with (177)Lu-PSMA-617 is safe and well tolerated and has a considerable effect on PSA level. Therefore, it offers an additional therapeutic option

  5. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis.

    PubMed

    Calopedos, R J S; Chalasani, V; Asher, R; Emmett, L; Woo, H H

    2017-09-01

    Promising therapeutic results of the prostate-specific membrane antigen (PSMA) ligand have been shown when labelling with lutetium-177 ((177)Lu). We performed a systematic review and meta-analysis to assess the therapeutic response of (177)Lu-PSMA in the treatment of metastatic castration-resistant prostate cancer (mCRPC). A systematic review was conducted using electronic databases up to December 2016. Two reviewers independently extracted data and assessed methodological quality. The main outcome of interest was antitumour biochemical response of (177)Lu-PSMA, analysing two measures: 'any PSA decline' and '>50% decline' from baseline. A random-effects meta-analysis was used to calculate the pooled proportion across studies. The I(2) statistic was calculated in each case to investigate the extent of heterogeneity across the studies. A sensitivity analysis was conducted removing two studies, which were presented as abstracts and proportions were summarised by chemical type ((177)Lu-J591/DKZ/I&T). All analyses were conducted using Stata v14. A total of 10 studies were included in the analysis giving a total sample size of 369, 220 (of 334 analysable) experienced any PSA decline. The pooled proportion of patients with any PSA decline was 68% (95% confidence interval (CI): 61-74). The I(2) statistic was 39.1% (P=0.11) suggesting minor heterogeneity between results. The pooled proportion of patients with >50% PSA decline was 37% (95% CI: 22-52). The I(2) statistic was 91.0% (P<0.001) suggesting substantial heterogeneity between results. On subgroup analysis, a higher proportion of patients in the (177)Lu-DKZ/I&T subgroup had a PSA decline >50%, however, it can be seen that the (177)Lu-DKZ/I&T subgroup had a substantial amount of heterogeneity across studies. This review suggests promising early results for the treatment of mCRPC, especially from patients treated with the more recently developed radioligands. Overall, our meta-analysis showed that approximately two

  6. Evaluation of Beta-Absorbed Fractions in a Mouse Model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu Radionuclides

    SciTech Connect

    Miller, William H.; Hartmann-Siantar, Christine; Fisher, Darrell R.; Descalle, Marie-Anne; Daly, Tom; Lehmann, Joerg; Lewis, Michael R.; Hoffman, Timothy J.; Smith, Jeff; Situ, Peter D.; Volkert, Wynn A.

    2005-08-01

    Several short-lived, high-energy beta emitters are being proposed as the radionuclide components for molecular-targeted potential cancer therapeutic agents. The laboratory mice used to determine the efficacy of these new agents have organs that are relatively small compared to the ranges of these high-energy particles. The dosimetry model developed by Hui et al. was extended to provide realistic beta-dose estimates for organs in mice that received therapeutic radiopharmaceuticals containing 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177 Lu. Major organs in this model included the liver, spleen, kidneys, lungs, heart, stomach, small and large bowel, thyroid, pancreas, bone, marrow, carcass, and a 0.025-g tumor. The study as reported in this paper verifies their results for 90Y and extends them by using their organ geometry factors combined with newly calculated organ self-absorbed fractions from PEREGRINE and MCNP. PEREGRINE and MCNP agree to within 8% for the worst-case organ with average differences (averaged over all organs) decreasing from 5% for 90Y to 1% for 177Lu. When used with typical biodistribution data, the three different models predict doses that are in agreement to within 5% for the worst-case organ. The beta-absorbed fractions and cross-organ-deposited energy provided in this paper can be used by researchers to predict mouse-organ doses and should contribute to an improved understanding of the relationship between dose and radiation toxicity in mouse models where use of these isotopes is favorable.

  7. Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu radionuclides.

    PubMed

    Miller, William H; Hartmann-Siantar, Christine; Fisher, Darrell; Descalle, Marie-Anne; Daly, Tom; Lehmann, Joerg; Lewis, Michael R; Hoffman, Timothy; Smith, Jeff; Situ, Peter D; Volkert, Wynn A

    2005-08-01

    Several short-lived, high-energy beta emitters are being proposed as the radionuclide components for molecular- targeted potential cancer therapeutic agents. The laboratory mice used to determine the efficacy of these new agents have organs that are relatively small compared to the ranges of these high-energy particles. The dosimetry model developed by Hui et al. was extended to provide realistic beta-dose estimates for organs in mice that received therapeutic radiopharmaceuticals containing (90)Y, (188)Re, (166)Ho, (149)Pm, (64)Cu, and (177)Lu. Major organs in this model included the liver, spleen, kidneys, lungs, heart, stomach, small and large bowel, thyroid, pancreas, bone, marrow, carcass, and a 0.025-g tumor. The study as reported in this paper verifies their results for (90)Y and extends them by using their organ geometry factors combined with newly calculated organ self-absorbed fractions from PEREGRINE and MCNP. PEREGRINE and MCNP agree to within 8% for the worst-case organ with average differences (averaged over all organs) decreasing from 5% for (90)Y to 1% for (177)Lu. When used with typical biodistribution data, the three different models predict doses that are in agreement to within 5% for the worst-case organ. The beta-absorbed fractions and cross-organ-deposited energy provided in this paper can be used by researchers to predict mouse-organ doses and should contribute to an improved understanding of the relationship between dose and radiation toxicity in mouse models where use of these isotopes is favorable.

  8. Dosimetric evaluation of 153Sm-EDTMP, 177Lu-EDTMP and 166Ho-EDTMP for systemic radiation therapy: Influence of type and energy of radiation and half-life of radionuclides

    NASA Astrophysics Data System (ADS)

    Ranjbar, Hassan; Ghannadi-Maragheh, Mohammad; Bahrami-Samani, Ali; Beiki, Davood

    2015-03-01

    In radiopharmaceutical therapy, delivered doses to critical organs must be below a certain threshold therefore internal radiation dosimetry of radiopharmaceuticals is essential. Advantages and disadvantages of radionuclides with different characteristics were evaluated for selection of appropriate radionuclide. The Monte Carlo MCNPX simulation program was used to obtain radial dose and cumulative dose of 153Sm, 177Lu and 166Ho used in radiotherapy of bone metastases. A cylindrical geometry with constant density materials was supposed for simulation of femur bone. The radius of bone marrow, bone, and surrounding soft tissue was considered 0.6 cm, 1.3 cm and 4 cm, respectively. It was assumed that the radionuclides were uniformly distributed throughout the tumor. "continuous energy spectrum" of beta particle was used instead of mean beta energy. Our simulations show that absorbed dose in target organ (bone) is greater than other organs and 166Ho gives a higher dose to the critical organ of bone marrow than either 153Sm or 177Lu. Absorbed dose versus time demonstrate faster dose delivery for the short half-life radionuclides (153Sm and 166Ho). These results are in good agreement with clinical observations which show a pain relief within 1 week after intravenous administration of 153Sm-EDTMP, whereas it occurs within 2 week in the case of 177Lu-EDTMP. According to the results, combination of different radionuclides with different characteristics such as 153Sm-EDTMP and 177Lu-EDTMP could be more advantageous to patients with painful bone metastasis.

  9. Magnetic bead assisted labeling of antibodies at nanogram scale.

    PubMed

    Dezfouli, Mahya; Vickovic, Sanja; Iglesias, Maria Jesus; Nilsson, Peter; Schwenk, Jochen M; Ahmadian, Afshin

    2014-01-01

    There are currently several initiatives that aim to produce binding reagents for proteome-wide analysis. To enable protein detection, visualization, and target quantification, covalent coupling of reporter molecules to antibodies is essential. However, current labeling protocols recommend considerable amount of antibodies, require antibody purity and are not designed for automation. Given that small amounts of antibodies are often sufficient for downstream analysis, we developed a labeling protocol that combines purification and modification of antibodies at submicrogram quantities. With the support of magnetic microspheres, automated labeling of antibodies in parallel using biotin or fluorescent dyes was achieved. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultrabright Fluorescein-Labeled Antibodies Near Silver Metallic Surfaces

    PubMed Central

    Lakowicz, Joseph R.; Malicka, Joanna; Huang, Jun; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2009-01-01

    Fluorescein-labeled antibodies are widely used in clinical assays and fluorescence microscopy. The fluorescent signal per labeled antibody is limited by fluorescein self-quenching, which occurs when the antibody is heavily labeled with multiple fluoresceins. We examined immunoglobulin G (IgG) when labeled with 0.7 to about 30 fluoresceins per antibody molecule. The extent of self-quenching was decreased, and the signal increased, when the labeled antibody was in close proximity to metallic silver particles. Time-resolved measurements showed that the intensity increase was due in part to a silver-induced increase in the radiative decay rate. These results suggest the use of labeled antibodies conjugated to silver particles as ultrabright probes for imaging or analytical applications. PMID:15274090

  11. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies.

    PubMed

    Sweeny, Larissa; Prince, Andrew; Patel, Neel; Moore, Lindsay S; Rosenthal, Eben L; Hughley, Brian B; Warram, Jason M

    2016-12-01

    Evaluate if vascular normalization with an antiangiogenic monoclonal antibody improves detection of melanoma using fluorescently labeled antibody-based imaging. Preclinical. Panitumumab and control IgG were covalently linked to a near-infrared fluorescent probe (IRDye800CW). Immunodeficient mice with ear xenografts of melanoma cell lines (A375 and SKMEL5) were systemically injected (200 μg, tail vein) with either IgG-IRDye800CW, panitumumab-IRDye800CW, or a combination (bevacizumab [5mg/kg], administered 72 hours prepanitumumab-IRDye800CW) (n = 5). Primary tumors were imaged with open-field (LUNA, Novadaq, Toronto, Ontario, Canada) and closed-field (Pearl, LI-COR Biosciences, Lincoln, NB) imaging devices. Postresection, the concentration of labeled antibody within the tumor (μg/g) was calculated using normalized standards. The mean fluorescence within the melanoma tumors was greater for the combination group compared to panitumumab alone for both cell lines (P < 0.001). The tumor-to-background ratio (TBR) for the A375 tumors was greater for the combination (3.4-7.1) compared to the panitumumab alone (3.2-5.0) (P = 0.04). The TBR for SKMEL5 tumors was greater for the combination (2.4-6.0) compared to the panitumumab alone (2.2-3.9) (P = 0.02). Within A375 tumors, the concentration was lower for panitumumab (0.51 μg/g) compared to combination group (0.68 μg/g) (P = 0.036). Within SKMEL5 tumors, the concentration was lower for panitumumab (0.0.17 μg/g) compared to combination group (0.35 μg/g) (P = 0.048). Residual tumor (1.0-0.2 mg) could be differentiated from background in both panitumumab and combination groups. For both cell lines, panitumumab and combination groups had greater mean fluorescence of the tumor compared to control IgG. The addition of antiangiogenic therapy improves uptake of fluorescently labeled monoclonal antibodies within melanoma tumors. Clinical translation could improve detection of melanoma intraoperatively, reducing positive margins

  12. Radiation Dosimetry for (177)Lu-PSMA I&T in Metastatic Castration-Resistant Prostate Cancer: Absorbed Dose in Normal Organs and Tumor Lesions.

    PubMed

    Okamoto, Shozo; Thieme, Anne; Allmann, Jakob; D'Alessandria, Calogero; Maurer, Tobias; Retz, Margitta; Tauber, Robert; Heck, Matthias M; Wester, Hans-Juergen; Tamaki, Nagara; Fendler, Wolfgang P; Herrmann, Ken; Pfob, Christian H; Scheidhauer, Klemens; Schwaiger, Markus; Ziegler, Sibylle; Eiber, Matthias

    2017-03-01

    Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy is increasingly used in metastatic castration-resistant prostate cancer. We aimed to estimate the absorbed doses for normal organs and tumor lesions using (177)Lu-PSMA I&T (I&T is imaging and therapy) in patients undergoing up to 4 cycles of radioligand therapy. Results were compared with pretherapeutic Glu-NH-CO-NH-Lys-(Ahx)-[(68)Ga(HBEDCC)] ((68)Ga-PSMA-HBED-CC) PET. Methods: A total of 34 cycles in 18 patients were analyzed retrospectively. In 15 patients the first, in 9 the second, in 5 the third, and in 5 the fourth cycle was analyzed, respectively. Whole-body scintigraphy was performed at least between 30-120 min, 24 h, and 6-8 d after administration. Regions of interest covering the whole body, organs, and up to 4 tumor lesions were drawn. Organ and tumor masses were derived from pretherapeutic (68)Ga-PSMA-HBED-CC PET/CT. Absorbed doses for individual cycles were calculated using OLINDA/EXM. SUVs from pretherapeutic PET were compared with absorbed doses and with change of SUV. Results: The mean whole-body effective dose for all cycles was 0.06 ± 0.03 Sv/GBq. The mean absorbed organ doses were 0.72 ± 0.21 Gy/GBq for the kidneys; 0.12 ± 0.06 Gy/GBq for the liver; and 0.55 ± 0.14 Gy/GBq for the parotid, 0.64 ± 0.40 Gy/GBq for the submandibular, and 3.8 ± 1.4 Gy/GBq for the lacrimal glands. Absorbed organ doses were relatively constant among the 4 different cycles. Tumor lesions received a mean absorbed dose per cycle of 3.2 ± 2.6 Gy/GBq (range, 0.22-12 Gy/GBq). Doses to tumor lesions gradually decreased, with 3.5 ± 2.9 Gy/GBq for the first, 3.3 ± 2.5 Gy/GBq for the second, 2.7 ± 2.3 Gy/GBq for the third, and 2.4 ± 2.2 Gy/GBq for the fourth cycle. SUVs of pretherapeutic PET moderately correlated with absorbed dose (r = 0.44, P < 0.001 for SUVmax; r = 0.43, P < 0.001 for SUVmean) and moderately correlated with the change of SUV (r = 0.478, P < 0.001 for SUVmax, and r = 0.50, P < 0

  13. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer.

    PubMed

    Ahmadzadehfar, Hojjat; Eppard, Elisabeth; Kürpig, Stefan; Fimmers, Rolf; Yordanova, Anna; Schlenkhoff, Carl Diedrich; Gärtner, Florian; Rogenhofer, Sebastian; Essler, Markus

    2016-03-15

    Prostate-specific membrane antigen (PSMA) is highly expressed on prostate epithelial cells and strongly up-regulated in prostate cancer (PC), making it an optimal target for the treatment of metastasized PC. Radioligand therapy (RLT) with 177Lu-PSMA-DKFZ-617 (Lu-PSMA) is a targeted therapy for metastatic PC. In this study, we retrospectively analyzed the side effects and the response rate of 24 hormone and/or chemorefractory PC patients with a mean age of 75.2 years (range: 64-82) with distant metastases and progressive disease according to the PSA level, who were treated with Lu-PSMA. Median PSA was 522 ng/ml (range: 17-2360). Forty-six cycles of Lu-PSMA were performed. Of the 24 patients, 22 received two cycles. Eight weeks after the first cycle of Lu-PSMA therapy 79.1% experienced a decline in PSA level. Eight weeks after the second cycle of Lu-PSMA therapy 68.2% experienced a decline in PSA relative to the baseline value. Apart from two cases of grade 3 anemia, there was no relevant hemato- or nephrotoxicity (grade 3 or 4). These results confirmed that Lu-PSMA is a safe treatment option for metastatic PC patients and has a low toxicity profile. A positive response to therapy in terms of decline in PSA occurs in about 70% of patients.

  14. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer

    PubMed Central

    Ahmadzadehfar, Hojjat; Eppard, Elisabeth; Kürpig, Stefan; Fimmers, Rolf; Yordanova, Anna; Schlenkhoff, Carl Diedrich; Gärtner, Florian; Rogenhofer, Sebastian; Essler, Markus

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is highly expressed on prostate epithelial cells and strongly up-regulated in prostate cancer (PC), making it an optimal target for the treatment of metastasized PC. Radioligand therapy (RLT) with 177Lu-PSMA-DKFZ-617 (Lu-PSMA) is a targeted therapy for metastatic PC. In this study, we retrospectively analyzed the side effects and the response rate of 24 hormone and/or chemorefractory PC patients with a mean age of 75.2 years (range: 64–82) with distant metastases and progressive disease according to the PSA level, who were treated with Lu-PSMA. Median PSA was 522 ng/ml (range: 17–2360). Forty-six cycles of Lu-PSMA were performed. Of the 24 patients, 22 received two cycles. Eight weeks after the first cycle of Lu-PSMA therapy 79.1% experienced a decline in PSA level. Eight weeks after the second cycle of Lu-PSMA therapy 68.2% experienced a decline in PSA relative to the baseline value. Apart from two cases of grade 3 anemia, there was no relevant hemato- or nephrotoxicity (grade 3 or 4). These results confirmed that Lu-PSMA is a safe treatment option for metastatic PC patients and has a low toxicity profile. A positive response to therapy in terms of decline in PSA occurs in about 70% of patients. PMID:26871285

  15. Optimization of GATE simulations for whole-body planar scintigraphic acquisitions using the XCAT male phantom with (177)Lu-DOTATATE biokinetics in a Siemens Symbia T2.

    PubMed

    Costa, G C A; Bonifácio, D A B; Sarrut, D; Cajgfinger, T; Bardiès, M

    2017-07-20

    Simulations of planar whole body acquisitions in therapeutic procedures are often extensively time-consuming and therefore rarely used. However, optimising tools and variance reduction techniques can be employed to overcome this problem. In this paper, a variety of features available in GATE are explored and their capabilities to reduce simulation time are evaluated. For this purpose, the male XCAT phantom was used as a virtual patient with (177)Lu-DOTATATE pharmacokinetic for whole body planar acquisition simulations in a Siemens Symbia T2 model. Activity distribution was divided into 8 compartments that were simulated separately. GATE optimization techniques included reducing the amount of time spent in both voxel and detector tracking. Some acceleration techniques led to a decrease of CPU-time by a factor of 167, while image statistics were kept constant. In that context, the simulation of therapeutic procedure imaging would still require 46days on a single CPU, but this could be reduced to hours on a dedicated cluster. Copyright © 2017. Published by Elsevier Ltd.

  16. Skin dose saving of the staff in 90Y/177Lu peptide receptor radionuclide therapy with the automatic dose dispenser.

    PubMed

    Fioroni, Federica; Grassi, Elisa; Giorgia, Cavatorta; Sara, Rubagotti; Piccagli, Vando; Filice, Angelina; Mostacci, Domiziano; Versari, Annibale; Iori, Mauro

    2016-10-01

    When handling Y-labelled and Lu-labelled radiopharmaceuticals, skin exposure is mainly due to β-particles. This study aimed to investigate the equivalent dose saving of the staff when changing from an essentially manual radiolabelling procedure to an automatic dose dispenser (ADD). The chemist and physician were asked to wear thermoluminescence dosimeters on their fingertips to evaluate the quantity of Hp(0.07) on the skin. Data collected were divided into two groups: before introducing ADD (no ADD) and after introducing ADD. For the chemist, the mean values (95th percentile) of Hp(0.07) for no ADD and ADD are 0.030 (0.099) and 0.019 (0.076) mSv/GBq, respectively, for Y, and 0.022 (0.037) and 0.007 (0.023) mSv/GBq, respectively, for Lu. The reduction for ADD was significant (t-test with P<0.05) for both isotopes. The relative differences before and after ADD collected for every finger were treated using the Wilcoxon test, proving a significantly higher reduction in extremity dose to each fingertip for Lu than for Y (P<0.05). For the medical staff, the mean values of Hp(0.07) (95th percentile) for no ADD and ADD are 0.021 (0.0762) and 0.0143 (0.0565) mSv/GBq, respectively, for Y, and 0.0011 (0.00196) and 0.0009 (0.00263) mSv/GBq, respectively, for Lu. The t-test provided a P-value less than 0.05 for both isotopes, making the difference between ADD and no ADD significant. ADD positively affects the dose saving of the chemist in handling both isotopes. For the medical staff not directly involved with the introduction of the ADD system, the analysis shows a learning curve of the workers over a 5-year period. Specific devices and procedures allow staff skin dose to be limited.

  17. Optimization of oxidized antibody labeling with lucifer yellow CH.

    PubMed

    Keener, C R; Wolfe, C A; Hage, D S

    1994-05-01

    The oxidation of antibody carbohydrate residues is a common approach used for the site-specific immobilization or modification of antibodies. One way of following this oxidation process is to label the resulting aldehyde groups with a dye such as Lucifer yellow CH (LyCH). This study examined the optimum conditions for preparing and purifying antibody-LyCH conjugates. A 250-fold excess of LyCH reacted with antibody at pH 6.5 for two or more hours gave maximum labeling. Nonreacted LyCH could be effectively removed by passing the labeled antibody through a size exclusion column, followed by one or two dialysis cycles. The LyCH antibody conjugates were found to be stable for at least three weeks when stored in pH 7.4 phosphate buffer.

  18. The impact of 177Lu-octreotide therapy on 99mTc-MAG3 clearance is not predictive for late nephropathy.

    PubMed

    Werner, Rudolf A; Beykan, Seval; Higuchi, Takahiro; Lückerath, Katharina; Weich, Alexander; Scheurlen, Michael; Bluemel, Christina; Herrmann, Ken; Buck, Andreas K; Lassmann, Michael; Lapa, Constantin; Hänscheid, Heribert

    2016-07-05

    Peptide Receptor Radionuclide Therapy (PRRT) for the treatment of neuroendocrine tumors may lead to kidney deterioration. This study aimed to evaluate the suitability of 99mTc-mercaptoacetyltriglycine (99mTc--MAG3) clearance for the early detection of PRRT-induced changes on tubular extraction (TE). TE rate (TER) was measured prior to 128 PRRT cycles (7.6±0.4 GBq 177Lu-octreotate/octreotide each) in 32 patients. TER reduction during PRRT was corrected for age-related decrease and analyzed for the potential to predict loss of glomerular filtration (GF). The GF rate (GFR) as measure for renal function was derived from serum creatinine. The mean TER was 234 ± 53 ml/min/1.73 m² before PRRT (baseline) and 221 ± 45 ml/min/1.73 m² after a median follow-up of 370 days. The age-corrected decrease (mean: -3%, range: -27% to +19%) did not reach significance (p=0.09) but significantly correlated with the baseline TER (Spearman p=-0.62, p<0.001). Patients with low baseline TER showed an improved TER after PRRT, high decreases were only observed in individuals with high baseline TER. Pre-therapeutic TER data were inferior to plasma creatinine-derived GFR estimates in predicting late nephropathy. TER assessed by 99mTc-MAG3-clearance prior to and during PRRT is not suitable as early predictor of renal injury and an increased risk for late nephropathy.

  19. The impact of 177Lu-octreotide therapy on 99mTc-MAG3 clearance is not predictive for late nephropathy

    PubMed Central

    Werner, Rudolf A.; Beykan, Seval; Higuchi, Takahiro; Lückerath, Katharina; Weich, Alexander; Scheurlen, Michael; Bluemel, Christina; Herrmann, Ken; Buck, Andreas K.; Lassmann, Michael

    2016-01-01

    Peptide Receptor Radionuclide Therapy (PRRT) for the treatment of neuroendocrine tumors may lead to kidney deterioration. This study aimed to evaluate the suitability of 99mTc-mercaptoacetyltriglycine (99mTc­-MAG3) clearance for the early detection of PRRT-induced changes on tubular extraction (TE). TE rate (TER) was measured prior to 128 PRRT cycles (7.6±0.4 GBq 177Lu-octreotate/octreotide each) in 32 patients. TER reduction during PRRT was corrected for age-related decrease and analyzed for the potential to predict loss of glomerular filtration (GF). The GF rate (GFR) as measure for renal function was derived from serum creatinine. The mean TER was 234 ± 53 ml/min/1.73 m2 before PRRT (baseline) and 221 ± 45 ml/min/1.73 m2 after a median follow-up of 370 days. The age-corrected decrease (mean: −3%, range: −27% to +19%) did not reach significance (p=0.09) but significantly correlated with the baseline TER (Spearman p=−0.62, p<0.001). Patients with low baseline TER showed an improved TER after PRRT, high decreases were only observed in individuals with high baseline TER. Pre-therapeutic TER data were inferior to plasma creatinine-derived GFR estimates in predicting late nephropathy. TER assessed by 99mTc-MAG3­clearance prior to and during PRRT is not suitable as early predictor of renal injury and an increased risk for late nephropathy. PMID:27259246

  20. Rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: preparation and evaluation.

    PubMed

    John, E; Thakur, M L; DeFulvio, J; McDevitt, M R; Damjanov, I

    1993-02-01

    Rhenium-186 has been determined to be a leading radionuclide for radioimmunotherapy. However, the use of 186Re has been limited due to the lack of a convenient and efficient method by which the radionuclide can be bound to monoclonal antibodies. We have developed a simple technique to label IgM, IgG, fragmented antibodies and tumor necrosis factor-alpha with 186Re. This technique uses ascorbic acid (AA) for controlled reduction of antibody disulfide groups to sulfhydryls and SnCl2 in citric acid for the reduction of 186ReO4-. The labeling yields as determined by instant thin-layer chromatography, molecular filtration and gel filtration were greater than 95% and the colloid formation was less than 5%. The labeled antibodies were stable when challenged with 100 and 250 molar excess of DTPA and HSA for 24 hr at 37 degrees C. SDS-PAGE analysis and autoradiography of labeled IgM, IgG and F(ab')2 monoclonal antibodies indicated uniform labeling and that no fragmentation of the monoclonal antibodies had taken place during the labeling procedure. Immunospecificity of 186Re-labeled human neutrophil specific IgM, as determined by in vitro antigen excess assay, was comparable to that of indium-111-labeled c-DTPA-IgM and technetium-99m-labeled-IgM. A nuclear histone specific 186Re-TNT-1-F(ab')2 was evaluated in mice bearing experimental tumors. The tumor/muscle ratios at 4 and 24 hr were 5.9 +/- 0.21 and 13.8 +/- 6.7, respectively compared to that of 2.4 +/- 0.3 at 4 hr p.i. with a nonspecific protein. The labeling technique is simple, reliable and has already been adapted to a single-vial kit preparation.

  1. Palladium-109 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    The invention consists of new monoclonal antibodies labelled with Palladium 109, a beta-emitting radionuclide, the method of preparing this material, and its use in the radiotherapy of melanoma. The antibodies are chelate-conjugated and demonstrate a high uptake in melanomas. (ACR)

  2. Semiautomated labelling and fractionation of yttrium-90 and lutetium-177 somatostatin analogues using disposable syringes and vials.

    PubMed

    Asti, Mattia; Atti, Giulia; Iori, Michele; Farioli, Daniela; Filice, Angelina; Versari, Annibale

    2012-11-01

    The treatment of tumours expressing somatostatin receptors with yttrium-90 (90Y)-labelled and lutetium-177 (177Lu)-labelled somatostatin analogues is one of the most interesting therapeutic approaches adopted in nuclear medicine in recent years. However, the process of synthesis and fractionation of these radiopharmaceuticals is still mainly carried out manually despite the high radiation exposure to the operators and the need to comply with good manufacturing practices. In this study a semiautomatic synthesizer [automatic dose dispenser (ADD-2)] using only disposable syringes and vials has been presented. Small-scale syntheses (185-555 MBq) of 90Y/177Lu-DOTATATE were performed by adding the appropriate amount of peptide to a 90Y/177Lu chloride solution (n=10). The radionuclide/peptide molar ratio was 1 : 17 and 1 : 2 for 90Y and 177Lu, respectively. The solutions were buffered to 4.6 pH by ascorbate buffer and heated at 90°C for 30 min. Radiochemical purity was assessed by two independent radio-thin-layer chromatography systems. The solutions were fractioned to mimic the preparation of patient doses. All synthesis and fractionation steps were performed using ADD-2. The radiochemical yield was 92 ± 3% for 90Y and 97 ± 1% for 177Lu labelling. Radiochemical purity was more than 99.5%. The accuracy and reproducibility of the instrument in transferring and fractionating radioactive solutions were high (maximal error ≈ 5%). ADD-2 appears suitable for use in clinical preparations of 90Y/177Lu-DOTATATE with therapeutic amounts of precursors (20-30 GBq). The operator's exposure to radiation by using ADD-2 in comparison with manual preparations is under investigation.

  3. Properties of technetium-99m labeled monoclonal antibodies

    SciTech Connect

    Rhodes, B.A.; Zamora, P.O.; Newell, K.D.; Reed, K.A.

    1984-01-01

    This study was designed to determine the chemical and immunochemical properties of monoclonal antibodies or fragments which have been labeled with Tc-99m using the pretinning method. The labeled proteins were evaluated using: Sephadex G-25 gel column scanning to determine percentage radiolabeled protein; HPLC to determine the molecular weight and purity of the proteins; reactivity with solid phase antigens to determine immunoreactivity under a variety of storage conditions; and the Tc-99m transchelation method of a previous study to determine the strength of the bonding. Percentage labeled protein ranges from 65 to 95%. Under certain labeling conditions small fractions of the F(ab')2 protein can be converted to aggregates of Fab fragments. Immunoreactivity depends on the purity and immunoreactivity of the original protein and is not changed by the labeling procedure. Transchelation is minimal (less than 5% at 4000 molar excess of EDTA). It is concluded that the pretinning method can be used to produce an extremely stable, immunoreactive, Tc-99m labeled antibody or antibody fragments. The labeled proteins retain their biologic activity during storage or during incubation with human plasma.

  4. The Influence of Linker Length on the Properties of Cathepsin S Cleavable 177Lu-labeled HPMA Copolymers for Pancreatic Cancer Imaging

    PubMed Central

    Shi, Wen; Wagh, Nilesh K.; Zhou, Zhengyuan; Jia, Yinnong; Brusnahan, Susan K.

    2014-01-01

    N-(2-hydroxypropyl)-methacrylamide (HPMA) copolymers have shown promise for application in the detection and staging of cancer. However, non-target accumulation, particularly in the liver and spleen, hinders the detection of resident or nearby metastatic lesions thereby decreasing diagnostic effectiveness. Our laboratory has pursued the development of cathepsin S susceptible linkers (CSLs) to reduce the non-target accumulation of diagnostic/radiotherapeutic HPMA copolymers. In this study, we ascertain if the length of the linking group impacts the cleavage and clearance kinetics, relative to each other and a non-cleavable control, due to a reduction in steric inhibition. Three different CSLs with linking groups of various lengths (0, 6 and 13 atoms) were conjugated to HPMA copolymers. In vitro cleavage studies revealed that the longest linking group (13 atoms) led to more rapid cleavage when challenged with cathepsin S. The CSL incorporated HPMA copolymers demonstrated significantly higher levels of excretion and a significant decrease in long-term hepatic and splenic retention relative to the non-cleavable control. Contrary to in vitro observations, the length of the linking group did not substantially impact the non-target in vivo clearance. In the case of HPAC tumor retention, the CSL with the null (0 atom) linker demonstrated significantly higher levels of retention relative to the other CSLs. Given these results, we find that the length of the linking group of the CSLs did not substantially impact non-target clearance, but did influence tumor retention. Overall, these results demonstrate that the CSLs can substantially improve the non-target clearance of HPMA copolymers thereby enhancing clinical potential. PMID:24755528

  5. Effectiveness of quenchers to reduce radiolysis of (111)In- or (177)Lu-labelled methionine-containing regulatory peptides. Maintaining radiochemical purity as measured by HPLC.

    PubMed

    de Blois, Erik; Chan, Ho Sze; Konijnenberg, Mark; de Zanger, Rory; Breeman, Wouter A P

    2012-01-01

    An overview how to measure and to quantify radiolysis by the addition of quenchers and to maintain Radio-Chemical Purity (RCP) of vulnerable methionine-containing regulatory peptides is presented. High RCP was only achieved with a combination of quenchers. However, quantification of RCP is not standardized, and therefore comparison of radiolabelling and RCP of regulatory peptides between different HPLC-systems and between laboratories is cumbersome. Therefore we suggest a set of standardized requirements to quantify RCP by HPLC for radiolabelled DTPA- or DOTA-peptides. Moreover, a dosimetry model was developed to calculate the doses in the reaction vials during radiolabelling and storage of the radiopeptides, and to predict RCP in the presence and absence of quenchers. RCP was measured by HPLC, and a relation between radiation dose and radiolysis of RCP was established. The here described quenchers are tested individually as ƒ(concentration) to investigate efficacy to reduce radiolysis of radiolabelled methionine-containing regulatory peptides.

  6. Radioimmunotherapy (RIT) Dose-Escalation Studies in Prostate Cancer Using Anti-PSMA Antibody 177Lu-J591: RIT Alone and RIT in Combination with Docetaxel

    DTIC Science & Technology

    2010-10-01

    count < 15,000 > 7 days or need for > 3 plt transfusions in 30 days • Gr 4 neutropenia > 7 days • Febrile neutropenia • Attributable Gr > 3...11% No febrile neutropenia (no growth factor use) • Transaminitis Transient Gr 1 AST 29% (1 Gr 2) Need for transfusions 6 pts...No pts had significant bleeding; 2 received plt transfusions (cohort 6) • Neutropenia Gr 0 = 40%; Gr 1-2 = 32%; Gr 3 = 29%; Gr 4

  7. Radioimmunotherapy (RIT) Dose-Escalation Studies in Prostate Cancer Using Anti-PSMA Antibody 177Lu-J591: RIT Alone and RIT in Combination with Docetaxel

    DTIC Science & Technology

    2008-10-01

    for > 3 platelet transfusion in 30 days • Gr 4 neutropenia • Febrile neutropenia • Attributable Gr > 3 non-hematologic toxicity (excluding infusion...0% No febrile neutropenia (no growth factor use) • Transaminitis (n=12 evaluable) Transient Gr 1 17% (no Gr > 1) Figure-1...therapies and 36% progressed on 1-4 lines of chemotherapy including docetaxel. No DLT’s have been seen. 2 pts experienced reversible Gr 3 neutropenia

  8. In Vitro Tritium Labeling of Anti-Sendai Virus Antibody

    PubMed Central

    Sanborn, Mark R.; Durand, Donald P.

    1974-01-01

    Anti-Sendai virus immunoglobulin G was tritium labeled in vitro by the borohydride exchange method. Tritium was incorporated into the antibody at 28.5 μCi per mg of protein, with little detectable loss of antiviral activity. Images PMID:4373399

  9. Cell-free measurements of brightness of fluorescently labeled antibodies

    PubMed Central

    Zhou, Haiying; Tourkakis, George; Shi, Dennis; Kim, David M.; Zhang, Hairong; Du, Tommy; Eades, William C.; Berezin, Mikhail Y.

    2017-01-01

    Validation of imaging contrast agents, such as fluorescently labeled imaging antibodies, has been recognized as a critical challenge in clinical and preclinical studies. As the number of applications for imaging antibodies grows, these materials are increasingly being subjected to careful scrutiny. Antibody fluorescent brightness is one of the key parameters that is of critical importance. Direct measurements of the brightness with common spectroscopy methods are challenging, because the fluorescent properties of the imaging antibodies are highly sensitive to the methods of conjugation, degree of labeling, and contamination with free dyes. Traditional methods rely on cell-based assays that lack reproducibility and accuracy. In this manuscript, we present a novel and general approach for measuring the brightness using antibody-avid polystyrene beads and flow cytometry. As compared to a cell-based method, the described technique is rapid, quantitative, and highly reproducible. The proposed method requires less than ten microgram of sample and is applicable for optimizing synthetic conjugation procedures, testing commercial imaging antibodies, and performing high-throughput validation of conjugation procedures. PMID:28150730

  10. Cell-free measurements of brightness of fluorescently labeled antibodies

    NASA Astrophysics Data System (ADS)

    Zhou, Haiying; Tourkakis, George; Shi, Dennis; Kim, David M.; Zhang, Hairong; Du, Tommy; Eades, William C.; Berezin, Mikhail Y.

    2017-02-01

    Validation of imaging contrast agents, such as fluorescently labeled imaging antibodies, has been recognized as a critical challenge in clinical and preclinical studies. As the number of applications for imaging antibodies grows, these materials are increasingly being subjected to careful scrutiny. Antibody fluorescent brightness is one of the key parameters that is of critical importance. Direct measurements of the brightness with common spectroscopy methods are challenging, because the fluorescent properties of the imaging antibodies are highly sensitive to the methods of conjugation, degree of labeling, and contamination with free dyes. Traditional methods rely on cell-based assays that lack reproducibility and accuracy. In this manuscript, we present a novel and general approach for measuring the brightness using antibody-avid polystyrene beads and flow cytometry. As compared to a cell-based method, the described technique is rapid, quantitative, and highly reproducible. The proposed method requires less than ten microgram of sample and is applicable for optimizing synthetic conjugation procedures, testing commercial imaging antibodies, and performing high-throughput validation of conjugation procedures.

  11. SU-E-I-14: Comparison of Iodine-Labeled and Indium-Labeled Antibody Biodistributions

    SciTech Connect

    Williams, L

    2014-06-01

    Purpose: It is often assumed that animal biodistributions of novel proteins are not dependent upon the radiolabel used in their determination. In units of percent injected dose per gram of tissue (%ID/g), organ uptake results (u) may be obtained using either iodine or metal as radioactive labels. Iodination is preferred as it is a one-step process whereas metal labeling requires two chemical procedures and therefore more protein material. It is important to test whether the radioactive tag leads to variation in the uptake value. Methods: Uptakes of 3antibodies to Carcinoembryonic Antigen (CEA) were evaluated in a nude mouse model bearing 150 to 300 mg LS174T human colon cancer xenografts. Antibodies included diabody (56 kDa), minibody (80kDa) and intact M5A (150 kDa) anti-CEA cognates. Both radioiodine and indium-111 labels were used with uptakes evaluated at 7 time(t) points out to 96 h. Ratios (R) of u(iodine-label)/u(indium-label) were determined for liver, spleen, kidneys, lung and tumor. Results: Hepatic loss was rapid for diabody and minibody; by 24 h their R values were only 2%; i.e., uptake of iodine was 2% of that of indium for these 2 antibodies. By contrast, R for the intact cognate was 50% at that time point. Splenic results were similar. Tumor uptake ratios did not depend upon the antibody type and were 50% at 24 h. Conclusions: Relatively rapid loss of iodine relative to indium in liver and spleen was observed in lower mass antibodies. Tumor ratios were larger and independent of antibody type. Aside from tumor, the R ratio of uptakes depended on the antibody type. R values decreased monotonically with time in all tissues and for all cognates. Using this ratio, one can possibly correct iodine-based u (t) results so that they resemble radiometal-derived biodistributions.

  12. Antibody mimetic receptor proteins for label-free biosensors.

    PubMed

    Raina, M; Sharma, R; Deacon, S E; Tiede, C; Tomlinson, D; Davies, A G; McPherson, M J; Wälti, C

    2015-02-07

    The development of high sensitivity biosensors, for example for clinical diagnostics, requires the identification of suitable receptor molecules which offer high stability, specificity and affinity, even when embedded into solid-state biosensor transducers. Here, we present an electrochemical biosensor employing small synthetic receptor proteins (Mw < 15 kDa) which emulate antibodies but with improved stability, sensitivity and molecular recognition properties, in particular when immobilized on a solid sensor surface. The synthetic receptor protein is a non-antibody-based protein scaffold with variable peptide regions inserted to provide the specific binding, and was designed to bind anti-myc tag antibody (Mw ∼ 150 kDa), as a proof-of-principle exemplar. Both the scaffold and the selected receptor protein were found to have high thermostability with melting temperatures of 101 °C and 85 °C, respectively. Furthermore, the secondary structures of the receptor protein were found to be very similar to that of the original native scaffold, despite the insertion of variable peptide loops that create the binding sites. A label-free electrochemical sensor was fabricated by functionalising a microfabricated gold electrode with the receptor protein. A change in the phase of the electrochemical impedance was observed when the biosensor was subjected to anti-myc tag antibodies at concentrations between 6.7 pM and 6.7 nM. These findings demonstrate that these non-antibody receptor proteins are excellent candidates for recognition molecules in label-free biosensors.

  13. Preparation of Drosophila Polytene Chromosome Squashes for Antibody Labeling

    PubMed Central

    Cai, Weili; Jin, Ye; Girton, Jack; Johansen, Jorgen; Johansen, Kristen M.

    2010-01-01

    Drosophila has long been a favorite model system for studying the relationship between chromatin structure and gene regulation due to the cytological advantages provided by the giant salivary gland polytene chromosomes of third instar larvae. In this tissue the chromosomes undergo many rounds of replication in the absence of cell division giving rise to approximately 1000 copies. The DNA remains aligned after each replicative cycle resulting in greatly enlarged chromosomes that provide a unique opportunity to correlate chromatin morphology with the localization of specific proteins. Consequently, there has been a high level of interest in defining the epigenetic modifications present at different genes and at different stages of the transcription process. An important tool for such studies is the labeling of polytene chromosomes with antibodies to the enzyme, transcription factor, or histone modification of interest. This video protocol illustrates the squash technique used in the Johansen laboratory to prepare Drosophila polytene chromosomes for antibody labeling. PMID:20145604

  14. Preparation of Drosophila polytene chromosome squashes for antibody labeling.

    PubMed

    Cai, Weili; Jin, Ye; Girton, Jack; Johansen, Jorgen; Johansen, Kristen M

    2010-02-09

    Drosophila has long been a favorite model system for studying the relationship between chromatin structure and gene regulation due to the cytological advantages provided by the giant salivary gland polytene chromosomes of third instar larvae. In this tissue the chromosomes undergo many rounds of replication in the absence of cell division giving rise to approximately 1000 copies. The DNA remains aligned after each replicative cycle resulting in greatly enlarged chromosomes that provide a unique opportunity to correlate chromatin morphology with the localization of specific proteins. Consequently, there has been a high level of interest in defining the epigenetic modifications present at different genes and at different stages of the transcription process. An important tool for such studies is the labeling of polytene chromosomes with antibodies to the enzyme, transcription factor, or histone modification of interest. This video protocol illustrates the squash technique used in the Johansen laboratory to prepare Drosophila polytene chromosomes for antibody labeling.

  15. Microdosimetric model of astatine-211 labeled antibodies for radioimmunotherapy

    SciTech Connect

    Humm, J.L.

    1987-11-01

    Astatine-211 is an alpha-emitter with a short half-life (7.2 hr). This paper discusses the potential of /sup 211/At targeted by antibodies for tumor therapy and the possible advantage of /sup 211/At over beta- and gamma-emitting radionuclides such as /sup 131/I currently employed in the field of radioimmunotherapy. Since the longest range alpha-particle from /sup 211/At is only 67 microns and the rate of energy loss is high (track averaged linear energy transfer LT approximately 120 keV/micron), a disintegration of /sup 211/At produces a large and extremely localized deposition of energy. A Monte-Carlo model has been developed for studying the stochastic fluctuation of alpha-particle hits and energy deposition in cell nuclei in an attempt to determine the efficacy of /sup 211/At-labeled antibodies for tumor cell inactivation. Calculations have been performed for 2 extreme conditions: (a) the case of /sup 211/At retained in the capillary, and (b) for a homogeneous distribution of /sup 211/At-labeled antibody in the tumor. The results of these two calculations represent the boundary conditions between which any real solution must lie. Finally, developments to the model to include antibody transport across the capillary membrane and through the tumor tissue are discussed.

  16. Passage of chromium-mordanted and rare earth-labeled fiber: time of dosing kinetics

    SciTech Connect

    Pond, K.R.; Ellis, W.C.; Matis, J.H.; Deswysen, A.G.

    1989-04-01

    Coastal bermudagrass hay was labeled with Cr by the Cr-mordant procedure and with /sup 177/Lu applied to the same fiber. Neutral detergent fiber prepared from the same Coastal bermudagrass hay was labeled with Yb, /sup 169/Yb, Tb and /sup 160/Tb by soaking overnight following by thorough washing and drying. Wood chips were similarly labeled with Sm or La, and Solka Floc was labeled with /sup 147/Nd and /sup 141/Ce. The carriers, labels and times of administration to cattle were: bermudagrass fiber with both Cr and /sup 177/Lu, bermudagrass fiber with /sup 169/Yb and Solka Floc labeled with /sup 147/Nd at 0 h; bermudagrass fiber with Yb, Solka Floc with /sup 141/Ce and wood chips with Sm at 24 h; wood chips with La at 48 h; and bermudagrass fiber labeled with /sup 160/Tb at the beginning and labeled with Tb at the end of a meal. Fecal collection followed and passage characteristics were determined with a two-compartment, age-dependent model. Markers labeling the different fiber sources had different (P less than .01) passage rates (Solka Floc greater than Coastal bermudagrass greater than wood chips), but there was no difference within fiber source for rare earth passage. There also was no difference between the passage characteristics of Cr-mordant and /sup 177/Lu. However, passage rate of particles administered at the beginning of the meal (160Tb) was 42% higher than for particles at the end of the meal (Tb).

  17. Lutetium-177 Labeled Bombesin Peptides for Radionuclide Therapy.

    PubMed

    Reynolds, Tamila Stott; Bandari, Rajendra P; Jiang, Zongrun; Smith, Charles J

    2016-01-01

    in 177Lu-labeled bombesin peptides for targeted radiotherapy that includes agonist, antagonist, and multivalent cell-targeting agents. In vitro, in vivo translational, and in vivo human clinical investigations are described.

  18. Antibody microarrays for label-free cell-based applications.

    PubMed

    Milgram, Sarah; Bombera, Radoslaw; Livache, Thierry; Roupioz, Yoann

    2012-02-01

    The recent advances in microtechnologies have shown the interest of developing microarrays dedicated to cell analysis. In this way, miniaturized cell analyzing platforms use several detection techniques requiring specific solid supports for microarray read-out (colorimetric, fluorescent, electrochemical, acoustic, optical…). Real-time and label-free techniques, such as Surface Plasmon Resonance imaging (SPRi), arouse increasing interest for applications in miniaturized formats. Thus, we focused our study on chemical methods for antibody-based microarray fabrication dedicated to the SPRi analysis of cells or cellular activity. Three different approaches were designed and developed for specific applications. In the first case, a polypyrrole-based chemistry was used to array antibody-microarray for specific capture of whole living cells. In the second case, the polypyrrole-based chemistry was complexified in a three molecular level assembly using DNA and antibody conjugates to allow the specific release of cells after their capture. Finally, in the third case, a thiol-based chemistry was developed for long incubation times of biological samples of high complexity. This last approach was focused on the simultaneous study of both cell type characterization and secretory activity (detection of proteins secreted by cells). This paper describes three original methods allowing a rapid and efficient analysis of cellular sample on-chip using immunoaffinity-based assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer

    SciTech Connect

    Wilbur, D.S.; Hadley, S.W.; Hylarides, M.D.; Abrams, P.G.; Beaumier, P.A.; Morgan, A.C.; Reno, J.M.; Fritzberg, A.R. )

    1989-02-01

    A method of radioiodinating monoclonal antibodies such that the labeled antibodies do not undergo in vivo deiodination has been studied. The method utilizes conjugation of succinimidyl para-iodobenzoate to the antibody. The iodobenzoate was radiolabeled by using an organometallic intermediate to facilitate the reaction. Thus, succinimidyl para-tri-n-butylstannylbenzoate was radiolabeled in 60-90% radiochemical yield and subsequently conjugated to the antibody in 80-90% yield. Animal biodistribution studies were carried out with two separate anti-melanoma antibodies (9.2.27 and NR-M1-05) labeled by this method, and examined in nude mice bearing human melanoma tumor xenografts. Very large differences in the localization of radioactivity were observed in the thyroids and stomachs of mice when the iodobenzoyl-labeled antibodies were compared with the same antibodies labeled using the chloramine-T method of radioiodination. Few other significant differences in the tissue distribution of the radioiodinated antibodies were seen.

  20. Neutralizing antibodies against rotavirus produced in transgenically labelled purple tomatoes.

    PubMed

    Juárez, Paloma; Presa, Silvia; Espí, Joaquín; Pineda, Benito; Antón, María T; Moreno, Vicente; Buesa, Javier; Granell, Antonio; Orzaez, Diego

    2012-04-01

    Edible fruits are inexpensive biofactories for human health-promoting molecules that can be ingested as crude extracts or partially purified formulations. We show here the production of a model human antibody for passive protection against the enteric pathogen rotavirus in transgenically labelled tomato fruits. Transgenic tomato plants expressing a recombinant human immunoglobulin A (hIgA_2A1) selected against the VP8* peptide of rotavirus SA11 strain were obtained. The amount of hIgA_2A1 protein reached 3.6 ± 0.8% of the total soluble protein in the fruit of the transformed plants. Minimally processed fruit-derived products suitable for oral intake showed anti-VP8* binding activity and strongly inhibited virus infection in an in vitro virus neutralization assay. In order to make tomatoes expressing hIgA_2A1 easily distinguishable from wild-type tomatoes, lines expressing hIgA_2A1 transgenes were sexually crossed with a transgenic tomato line expressing the genes encoding Antirrhinum majus Rosea1 and Delila transcription factors, which confer purple colour to the fruit. Consequently, transgenically labelled purple tomato fruits expressing hIgA_2A1 have been developed. The resulting purple-coloured extracts from these fruits contain high levels of recombinant anti-rotavirus neutralizing human IgA in combination with increased amounts of health-promoting anthocyanins.

  1. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of /sup 75/Se-, /sup 111/In-, and /sup 125/I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice

    SciTech Connect

    Koizumi, M.; Endo, K.; Watanabe, Y.; Saga, T.; Sakahara, H.; Konishi, J.; Yamamuro, T.; Toyama, S.

    1989-04-01

    In order to know the true biodistribution of anti-tumor monoclonal antibodies, three monoclonal antibodies (OST6, OST7, and OST15) against human osteosarcoma and control antibody were internally labeled with 75Se by incubating (75Se)methionine and hybridoma cells. 75Se-labeled monoclonal antibodies were evaluated both in vitro and in vivo using the human osteogenic sarcoma cell line KT005, and the results were compared with those of 125I- and 111In-labeled antibodies. 75Se-, 125I- and 111In-labeled monoclonal antibodies had identical binding activities to KT005 cells, and the immunoreactivity was in the decreasing order of OST6, OST7, and OST15. On the contrary, in vivo tumor uptake (% injected dose/g) of 75Se- and 125I-labeled antibodies assessed using nude mice bearing human osteosarcoma KT005 was in the order of OST7, OST6, and OST15. In the case of 111In, the order was OST6, OST7, and OST15. High liver uptake was similarly seen with 75Se- and 111In-labeled antibodies, whereas 125I-labeled antibodies showed the lowest tumor and liver uptake. These data indicate that tumor targeting of antibody conjugates are not always predictable from cell binding studies due to the difference of blood clearance of labeled antibodies. Furthermore, biodistribution of both 111In- and 125I-labeled antibodies are not identical with internally labeled antibody. Admitting that internally labeled antibody is a ''gold standard'' of biodistribution of monoclonal antibody, high liver uptake of 111In-radiolabeled antibodies may be inherent to antibodies. Little, if any, increase in tumor-to-normal tissue ratios of antibody conjugates will be expected compared to those of 111In-labeled antibodies if stably coupled conjugates are administered i.v.

  2. Investigations of ascorbate for direct labeling of antibodies with technetium-99m

    SciTech Connect

    Hnatowich, D.J.; Winnard, P. Jr.; Virzi, F.

    1994-01-01

    Recently, a method for the direct labeling of antibodies with {sup 99m}Tc was described in which sulfhydryls were reportedly generated by reduction of antibody disulfides with ascorbic acid. Thereafter, these proteins may be labeled at high efficiency with {sup 99m}Tc following reduction of pertechnetate with dithionite. This investigation was initially conducted to evaluate the mechanism of the increased stability towards cysteine challenge reported for the label and subsequently to determine the role of ascorbate in the labeling process. It was possible to reproduce the reported high labeling efficiencies by increasing the dithionite concentration fivefold, presumably because of variabilities among lots of commercial sodium dithionite. Despite success in labeling, it was not possible to confirm that antibody reduction followed the treatment with ascorbate. Using both Ellman`s reagent and 2,2`-dithiodipyridine as indicators, the authors were unable to detect sulfhydryls on one IgG antibody treated at ten times the suggested ascorbate-to-antibody molar ratio. It was estimated that the number of sulfhydryls generated could not have been more than 1% (dithiodipyridine) to 2% (Ellman`s). Furthermore, radiolabeling efficiencies for two IgG antibodies and stabilities of the label to cysteine challenge were unchanged when the ascorbate was eliminated. The number of sulfhydryls generated by treatment of the antibody with dithionite at 1-2 times the concentration required for adequate labeling was about 1% (dithiodipyridine) to 5% (Ellman`s). For the conditions of this investigation and for the antibodies employed, ascorbate apparently played no more than a minor role at best in the labeling process. If antibody reduction occurred, this most likely was a result of residual dithionite presented to the protein along with the reduced {sup 99m}Tc. 31 refs., 2 figs.

  3. Differential Labeling of Cell-surface and Internalized Proteins after Antibody Feeding of Live Cultured Neurons

    PubMed Central

    Munro, Kathryn M.; Kennedy, Matthew J.; Gunnersen, Jenny M.

    2014-01-01

    In order to demonstrate the cell-surface localization of a putative transmembrane receptor in cultured neurons, we labeled the protein on the surface of live neurons with a specific primary antibody raised against an extracellular portion of the protein. Given that receptors are trafficked to and from the surface, if cells are permeabilized after fixation then both cell-surface and internal protein will be detected by the same labeled secondary antibody. Here, we adapted a method used to study protein trafficking (“antibody feeding”) to differentially label protein that had been internalized by endocytosis during the antibody incubation step and protein that either remained on the cell surface or was trafficked to the surface during this period. The ability to distinguish these two pools of protein was made possible through the incorporation of an overnight blocking step with highly-concentrated unlabeled secondary antibody after an initial incubation of unpermeabilized neurons with a fluorescently-labeled secondary antibody. After the blocking step, permeabilization of the neurons allowed detection of the internalized pool with a fluorescent secondary antibody labeled with a different fluorophore. Using this technique we were able to obtain important information about the subcellular location of this putative receptor, revealing that it was, indeed, trafficked to the cell-surface in neurons. This technique is broadly applicable to a range of cell types and cell-surface proteins, providing a suitable antibody to an extracellular epitope is available. PMID:24561550

  4. Labeling and use of monoclonal antibodies in immunofluorescence: protocols for cytoskeletal and nuclear antigens.

    PubMed

    Bauer, Christoph R

    2014-01-01

    Antibodies are widely used to target and label specifically extra- or intracellular antigens within cells and tissues. Most protocols follow an indirect approach implying the successive incubation with primary and secondary antibodies. In these protocols the primary antibodies are specifically targeted against the antigen in question and are normally not labeled. The secondary antibodies come from a different species and are in contrast fluorescently labeled. The idea is that the primary antibodies specifically bind to their targets but cannot be visualized directly. Only binding of the secondary (fluorescent) antibodies to the constant region of the primary antibodies allows consecutively the visualization in a fluorescent microscope.Primary antibodies can be either of monoclonal (normally produced in mouse) or of polyclonal origin (normally produced in rabbit, goat, sheep, or donkey). Using (primary) monoclonal antibodies has the clear advantage that all antibodies used are identical in origin and behavior and should thus give a more clear-cut labeling result. On the other hand the demands towards labeling protocols might be concomitantly higher: Binding of primary antibodies will only occur if fixation and labeling protocols preserve the antigen sufficiently to keep its specific and unique target structure available. One could imagine that for polyclonal antibodies this demand is slightly lower as there is a pool of antibodies with varying specificities against multiple parts of their target antigens. Certain fractions of this pool might thus tolerate a larger variety of conditions, and consequently a larger variety of protocols might still result in successful labeling.Each step in a labeling protocol can be decisive for the outcome of an experiment especially if monoclonal antibodies are used. Especially critical are choice of buffer and fixation and permeabilization parameters of the protocol.In this chapter we discuss and detail proven protocols using

  5. Trace of antibody to myeloperoxidase with nanocrystal quantum dot labeled antibody recognizing activating neutrophils

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Nagao, Tomokazu; Yamamoto, Kenji; Suzuki, Kazuo

    2006-02-01

    It is assumed that activated neutrophils contribute to the development of anti-neutrophil cytoplasmic auto-antibody (ANCA)-associated vasculitis due to the association of myelopeoxidase(MPO)-ANCA with MPO expressed on the surface of activated neutrophils. FITC-labeled antibody (Ab) used widely are not suitable for neutrophil examination because of the labile fluorescence emission of FITC. Therefore, it is necessary to develop specific fluorescent probes for MPO detection in neutrophils in vivo. Recently, fluorescent nanocrystal quantum dots (QDs) have been used for biotechnological and medical applications because of their greater and far longer fluorescence in. QDs have several advantages over organic fluorophores: high luminescence, far longer stability against photobleaching, and a range of fluorescence wavelengths from blue to infrared, depending on particle size. Thus, we examined the role of MPO and the Ab to MPO in the pathogenesis of glomerulonephritis associated with MPO-ANCA in experimental glomerulonephritis mice using QDs. We demonstrated the QD-conjugated anti-MPO Ab visualized the expression of MPO on the neutrophil surface after stimulation with proinflammatory cytokines. In addition, QD immuno-conjugates with anti-recombinant murine MPO (rmMPO) Ab revealed the trafficking of MPO-ANCA in vivo. Deceleration of blood flow in kidney vessels occurred in model mice, in which serum proteins including anti-rmMPO Ab were leaked out from collapsed glomeruli into the proximal tubule. Thus, sustained MPO expression on the neutrophil surface was significantly related to glomerulonephritis. These results indicate that the expressed MPO on the activated neutrophils with anti-MPO Ab may coordinately play essential roles in the initial steps for the development of glomerulonephritis.

  6. Effect of labeling density and time post labeling on quality of antibody-based super resolution microscopy images

    NASA Astrophysics Data System (ADS)

    Bittel, Amy M.; Saldivar, Isaac; Dolman, Nicholas; Nickerson, Andrew K.; Lin, Li-Jung; Nan, Xiaolin; Gibbs, Summer L.

    2015-03-01

    Super resolution microscopy (SRM) has overcome the historic spatial resolution limit of light microscopy, enabling fluorescence visualization of intracellular structures and multi-protein complexes at the nanometer scale. Using single-molecule localization microscopy, the precise location of a stochastically activated population of photoswitchable fluorophores is determined during the collection of many images to form a single image with resolution of ~10-20 nm, an order of magnitude improvement over conventional microscopy. One of the key factors in achieving such resolution with single-molecule SRM is the ability to accurately locate each fluorophore while it emits photons. Image quality is also related to appropriate labeling density of the entity of interest within the sample. While ease of detection improves as entities are labeled with more fluorophores and have increased fluorescence signal, there is potential to reduce localization precision, and hence resolution, with an increased number of fluorophores that are on at the same time in the same relative vicinity. In the current work, fixed microtubules were antibody labeled using secondary antibodies prepared with a range of Alexa Fluor 647 conjugation ratios to compare image quality of microtubules to the fluorophore labeling density. It was found that image quality changed with both the fluorophore labeling density and time between completion of labeling and performance of imaging study, with certain fluorophore to protein ratios giving optimal imaging results.

  7. Novel Fitc-Labeled Igy Antibody: Fluorescence Imaging Toxoplasma Gondii In Vitro.

    PubMed

    Sert, Mehtap; Cakir Koc, Rabia; Budama Kilinc, Yasemin

    2017-04-12

    Toxoplasmosis is caused by T. gondii and can create serious health problems in humans and also worldwide economic harm. Because of the clinical and veterinary importance of toxoplasmosis, its timely and accurate diagnosis has a major impact on disease-fighting strategies. T. gondii surface antigen 1 (SAG1), an immunodominant-specific antigen, is often used as a diagnostic tool. Therefore, the aim of this study was the optimization of novel fluorescein isothiocyanate (FITC) labeling of the SAG1-specific IgY antibody to show the potential for immunofluorescence imaging of T. gondii in vitro. The specificity of IgY antibodies was controlled by an enzyme-linked immunosorbent assay (ELISA), and the concentration of the IgY antibody was detected using a spectrophotometer. The optimum incubation time and FITC concentration were determined with a fluorescence spectrometer. The obtained FITC-labeled IgY was used for marking T. gondii tachyzoites, which were cultured in vitro and viewed using light microscopy. The interaction of the fluorescence-labeled antibody and the T. gondii tachyzoites was examined with a fluorescence microscope. In this study, for the first time, a FITC-labeled anti-SAG1 IgY antibody was developed according to ELISA, fluorescence spectrometer, and fluorescence imaging of cell culture. In the future, the obtained FITC-labeled T. gondii tachyzoites' specific IgY antibodies may be used as diagnostic tools for the detection of T. gondii infections in different samples.

  8. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.

    PubMed

    Mason, John N; Tomlinson, Ian D; Rosenthal, Sandra J; Blakely, Randy D

    2005-01-01

    The quantum dot is a novel fluorescent platform that has the potential to become an alternative to conventional organic dyes used to label biological probes such as antibodies or ligands. Compared to typical fluorescent organic dyes, cadmium selenide/zinc sulfide core-shell nanocrystals, or quantum dots, have greater photostability, resist metabolic and chemical degradation, are nontoxic, and display broad emission and narrow excitation bands. When conjugated to generic adaptor molecules such as streptavidin, quantum dots can be used to label different biotinylated antibodies or ligands without having to customize the quantum dot surface chemistry for each antibody or ligand. In this chapter, we outline the methodology for using streptavidin quantum dots to label biotinylated antibodies that target cell-surface ectodomain proteins on both living and fixed cells.

  9. Lu-177-Labeled Zirconia Particles for Radiation Synovectomy.

    PubMed

    Polyak, Andras; Nagy, Lívia Naszályi; Drotár, Eszter; Dabasi, Gabriella; Jóba, Róbert P; Pöstényi, Zita; Mikolajczak, Renata; Bóta, Attila; Balogh, Lajos

    2015-12-01

    The present article describes the preparation of β-emitter lutetium-177-labeled zirconia colloid and its preliminary physicochemical and biological evaluation of suitability for local radionuclide therapy. The new (177)Lu-labeled therapeutic radiopharmaceutical candidate was based on the synthesis mode of a previously described zirconia nanoparticle system. The size and shape of the developed radiopharmaceutical compound were observed through a scanning electron microscope and dynamic light scattering methods. The radiocolloid had a 1.7 μm mean diameter and showed high in vitro radiochemical and colloid size stability at room temperature and during the blood sera stability test. After the in vitro characterizations, the product was investigated in the course of the treatment of a spontaneously diseased dog veterinary patient's hock joint completed with single-photon emission computed tomography (SPECT) imaging follow-up measurements and a dual-isotope SPECT imaging tests with conventional (99m)Tc-methanediphosphonic acid bone scintigraphy. In the treated dog, no clinical side-effects or signs of histopathological changes of the joints were recorded during the treatment. SPECT follow-up studies clearly and conspicuously showed the localization of the (177)Lu-labeled colloid in the hock joint as well as detectable but negligible leakages of the radiocolloid in the nearest lymph node. On the basis of biological follow-up tests, the orthopedic team assumed that the (177)Lu-labeled zirconia colloid-based local radionuclide therapy resulted in a significant and long-term improvement in clinical signs of the patient without any remarkable side-effects.

  10. In vivo biotinylation and incorporation of a photo-inducible unnatural amino acid to an antibody-binding domain improve site-specific labeling of antibodies.

    PubMed

    Kanje, Sara; Hober, Sophia

    2015-04-01

    Antibodies are important molecules in many research fields, where they play a key role in various assays. Antibody labeling is therefore of great importance. Currently, most labeling techniques take advantage of certain amino acid side chains that commonly appear throughout proteins. This makes it hard to control the position and exact degree of labeling of each antibody. Hence, labeling of the antibody may affect the antibody-binding site. This paper presents a novel protein domain based on the IgG-binding domain C2 of streptococcal protein G, containing the unnatural amino acid BPA, that can cross-link other molecules. This novel domain can, with improved efficiency compared to previously reported similar domains, site-specifically cross-link to IgG at the Fc region. An efficient method for simultaneous in vivo incorporation of BPA and specific biotinylation in a flask cultivation of Escherichia coli is described. In comparison to a traditionally labeled antibody sample, the C2-labeled counterpart proved to have a higher proportion of functional antibodies when immobilized on a solid surface and the same limit of detection in an ELISA. This method of labeling is, due to its efficiency and simplicity, of high interest for all antibody-based assays where it is important that labeling does not interfere with the antibody-binding site.

  11. Potential of palladium-109-labeled antimelanoma monoclonal antibody for tumor therapy

    SciTech Connect

    Fawwaz, R.A.; Wang, T.S.T.; Srivastava, S.C.; Rosen, J.M.; Ferrone, S.; Hardy, M.A.; Alderson, P.O.

    1984-07-01

    Palladium-109, a beta-emitting radionuclide, was chelated to the monoclonal antibody 225.28S to the high molecular weight antigen associated with human melanoma. Injection of the radiolabeled monoclonal antibody into nude mice bearing human melanoma resulted in significant accumulation of the radiolabel in the tumors: 19% injected dose/g; 38:1 and 61:1 tumor-to-blood ratios at 24 and 48 hr, respectively. The localization of the radiolabeled antibody in liver and kidney also was high, but appreciably lower than that achieved in tumor. These results suggest Pd-109-labeled monoclonal antibody to tumor-associated antigens may have potential applications in tumor immunotherapy.

  12. Direct labeling of serum proteins by fluorescent dye for antibody microarray.

    PubMed

    Klimushina, M V; Gumanova, N G; Metelskaya, V A

    2017-05-06

    Analysis of serum proteome by antibody microarray is used to identify novel biomarkers and to study signaling pathways including protein phosphorylation and protein-protein interactions. Labeling of serum proteins is important for optimal performance of the antibody microarray. Proper choice of fluorescent label and optimal concentration of protein loaded on the microarray ensure good quality of imaging that can be reliably scanned and processed by the software. We have optimized direct serum protein labeling using fluorescent dye Arrayit Green 540 (Arrayit Corporation, USA) for antibody microarray. Optimized procedure produces high quality images that can be readily scanned and used for statistical analysis of protein composition of the serum. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  14. Electron microscopic localization of cytoplasmic myosin with ferritin- labeled antibodies

    PubMed Central

    1981-01-01

    We localized myosin in vertebrate nonmuscle cells by electron microscopy using purified antibodies coupled with ferritin. Native and formaldehyde-fixed filaments of purified platelet myosin filaments each consisting of approximately 30 myosin molecules bound an equivalent number of ferritin-antimyosin conjugates. In preparations of crude platelet actomyosin, the ferritin-antimyosin bound exclusively to similar short, 10-15 nm wide filaments. In both cases, binding of the ferritin-antimyosin to the myosin filaments was blocked by preincubation with unlabeled antimyosin. With indirect fluorescent antibody staining at the light microscope level, we found that the ferritin-antimyosin and unlabeled antimyosin stained HeLa cells identically, with the antibodies concentrated in 0.5-microns spots along stress fibers. By electron microscopy, we found that the concentration of ferritin-antimyosin in the dense regions of stress fibers was five to six times that in the intervening less dense regions, 20 times that in the cytoplasmic matrix, and 100 times that in the nucleus. These concentration differences may account for the light microscope antibody staining pattern of spread interphase cells. Some, but certainly not all, of the ferritin-antimyosin was associated with 10-15-nm filaments. In mouse intestinal epithelial cells, ferritin- antimyosin was located almost exclusively in the terminal web. In isolated brush borders exposed to 5 mM MgCl2, ferritin-antimyosin was also concentrated in the terminal web associated with 10-15-nm filaments. PMID:7193682

  15. Gamma scintigraphy using Tc-99m labeled antibody to human chorionic gonadotropin

    SciTech Connect

    Morrison, R.T.; Lyster, D.M.; Alcorn, L.N.; Rhodes, B.A.; Breslow, K.; Burchiel, S.W.

    1984-01-01

    A case report is presented describing a 27-year-old woman with invasive trophoblastic hydatidiform mole metastatic to the lung. Gamma scintiscanning, using a polyclonal and monoclonal antibody specific to human chorionic gonadotropin, hCG, and labeled with Tc-99m, is described. The area of the primary lesion in the uterus was demonstrated with both antibodies tested without computer subtraction techniques; metastatic deposits in the lung were detected only with the aid of blood pool subtraction techniques.

  16. Biodistribution of Yttrium-90-Labeled Anti-CD45 Antibody in a Nonhuman Primate Model

    SciTech Connect

    Nemecek, Eneida; Hamlin, Donald K.; Fisher, Darrell R.; Krohn, Kenneth A.; Pagel, John M.; Applebaum, F. R.; Press, Oliver W.; Matthews, Dana C.

    2005-01-15

    Radioimmunotherapy may improve the outcome of hematopoietic cell transplantation for hematologic malignancies by delivering targeted radiation to hematopoietic organs while relatively sparing nontarget organs. We evaluated the organ localization of yttrium-90-labeled anti-CD45 (90Y-anti-CD45) antibody in macaques, a model that had previously predicted iodine-131-labeled anti-CD-45 (131I-anti-CD45) antibody biodistribution in humans. Experimental Design: Twelve Macaca nemestrina primates received anti-CD45 antibody labeled with 1 to 2 mCi of 90Y followed by serial blood sampling and marrow and lymph node biopsies, and necropsy. The content of 90Y per gram of tissue was determined by liquid scintillation spectrometry. Time-activity curves were constructed using average isotope concentrations in each tissue at measured time points to yield the fractional residence time and estimate radiation absorbed doses for each organ per unit of administered activity. The biodistribution of 90Y-anti-CD45 antibody was then compared with that previously obtained with 131I-anti-CD45 antibody in macaques. Results: The spleen received 2,120, marrow 1,060, and lymph nodes 315 cGy/mCi of 90Y injected. The liver and lungs were the nontarget organs receiving the highest radiation absorbed doses (440 and 285 cGy/mCi, respectively). Ytrrium-90-labeled anti-CD45 antibody delivered 2.5- and 3.7-fold more radiation to marrow than to liver and lungs, respectively. The ratios previously observed with 131I-antiCD45 antibody were 2.5-and 2.2-fold more radiation to marrow than to liver and lungs, respectively. Conclusions: This study shows that 90Y-anti-CD45 antibody can deliver relatively selective radiation to hematopoietic tissues, with similar ratios of radiation delivered to target versus nontarget organs, as compared with the 131I immunoconjugate in the same animal model.

  17. Chicken egg antibodies for immunohistochemical labeling of growth hormone and prolactin in bovine pituitary gland.

    PubMed

    Schmidt, P; Erhard, M H; Schams, D; Hafner, A; Folger, S; Lösch, U

    1993-09-01

    We describe the production of polyclonal chicken antibodies specific for bovine growth hormone (bGH) and prolactin (PRL). Antibodies were generated by immunization of laying hens with recombinant bGH (rbGH), pituitary derived bGH (pbGH), and ovine PRL (oPRL). After the lipoprotein fraction was removed by dextran sulfate precipitation the antibodies were isolated from the egg yolks by ammonium sulfate precipitation. Immunization with rbGH and oPRL generated large amounts of specific antibodies, as revealed by ELISA and Western blot analysis. Antibodies against pbGH showed pronounced crossreactions with oPRL. The antibodies against rbGH and oPRL were well suited for sensitive and specific labeling of the GH- and PRL-synthesizing cells in bovine pituitary glands by immunohistochemistry. In addition, a quick and sensitive procedure for demonstration of both bGH- and PRL-synthesizing cells in a single paraffin section by double immunohistochemistry is presented. The chicken anti-bGH antibodies showed excellent results in combination with rabbit anti-PRL antibodies. The main advantage of avian antibodies in double immunostaining methods is the lack of crossreactions between avian antibodies and mammalian immunoglobulins and receptors which bind to the crystalline fragment of mammalian immunoglobulins (Fc receptors).

  18. The use of antibodies labelled with dyes for fast and simple assay of some human proteins by immunofiltration technique.

    PubMed

    Szewczuk, A; Kuropatwa, M; Rapak, A

    1992-01-01

    Immunofiltration technique with polyclonal and monoclonal antibodies for semi-quantitative assays of human albumin, chorionic gonadotropin, immunoglobulin G and transferrin was elaborated. An amount of antibody was immobolized in the form of 6 radially located small bars on a dry test filter made of glass microfibre sheet. The other amount of antibody, used in solution, was labelled with some dyes like commercial disperse dyes, colloidal elements, formazans and polypyrrole. Number of colour bars appearing on the test filter showed ranged of analyte concentration. Good results were obtained using antibodies labelled with colloidal gold, Disperse Red 11 and formazan from MTT. Assays with monoclonal antibodies were more sensitive than with polyclonal antibodies.

  19. Considerations in the radioiodination and chelation labeling of an antiplatelet monoclonal antibody

    SciTech Connect

    Srivastava, S.C.; Meinken, G.E.; Scudder, L.E.; Coller, B.

    1985-05-01

    Radiolabeling of antibodies in particular with iodine nuclides frequently alters their biological behavior and compromises the specificity of binding to the in vivo antigens. Sensitivity to labeling chemistry however, is quite variable for different antibodies. This study was carried out to investigate the various factors affecting the binding to platelets (P) of an anti-P monoclonal antibody, 7E3, following iodination with I-123, I-125, I-131 and chelation labeling with In-111 and Tc-99m. Parameters such as the nature and amount of oxidant, reaction times, substitution level, specific activity etc., were studied. Results showed that each factor in addition to affecting chemical labeling yields also affected the binding of labeled 7E3 to P in whole blood and their blood clearance and clot uptake. With increasing I/7E3 or DTPA/7E3 molar ratios, a progressive decrease in binding to P resulted. Chloramine T (5-10 ..mu..g/100 ..mu..g 7E3) was superior to other oxidizing agents but the reaction times had to be less than or equal to2 min (labeling yields 70 +- 10%). 7E3 appeared unaffected by specific activities of up to 40 ..mu..Ci/..mu..g (I-131 and In-111) and 300 ..mu..Ci/..mu..g (I-123). Satisfactory In-111-, I-131-, or I-123-7E3-P preparations were obtained that show considerable promise for localizing in vivo thrombi. Results of this study and prior experience with other antibodies indicate that in order to achieve maximum efficacy in imaging or therapy applications, individual antibodies may require a careful optimization of labeling procedures with different radionuclides.

  20. Sequence of 12 Monoclonal Anti-Dinitrophenyl Spin-Label Antibodies for NMR Studies

    DTIC Science & Technology

    Eleven monoclonal antibodies specific for a spin-labeled dinitrophenyl hapten ( DNP -SL) have been produced for use in NMR studies. They have been...named AN01 and AN03-AN12. The stability constants for the association of these antibodies with DNP -SL and related haptens were measured by fluorescence...quenching and ranged from 50000/M to > 10 million/M. cDNA clones coding for the heavy and light chains of each antibody and of an additional anti- DNP -SL

  1. Structural analysis of covalently labeled estrogen receptors by limited proteolysis and monoclonal antibody reactivity

    SciTech Connect

    Katzenellenbogen, B.S.; Elliston, J.F.; Monsma, F.J. Jr.; Springer, P.A.; Ziegler, Y.S.

    1987-04-21

    The authors have used limited proteolysis of affinity-labeled estrogen receptors (ER), coupled with antireceptor antibody immunoreactivity, to assess structural features of ER and the relatedness of ER from MCF-7 human breast cancer and rat uterine cells. MCF-7 ER preparations covalently labeled with (/sup 3/H)tamoxifen aziridine ((/sup 3/H)TAZ) were treated with trypsin (T), ..cap alpha..-chymotrypsin (C), or Staphylococcus aureus V8 protease prior to electrophoresis on sodium dodecyl sulfate gels. Fluorography revealed a distinctive ladder of ER fragments containing TAZ for each protease generated from the M/sub r/ 66,000 ER. Immunoblot detection with the primate-specific antibody D75P3..gamma.. revealed that all immunoreactive fragments corresponded to TAZ-labeled fragments but that some small TAZ-labeled fragments were no longer immunoreactive. In contrast, use of the antibody H222SP..gamma.. revealed a correspondence between TAZ-labeled and immunoreactive fragments down to the smallest fragments generated, ca. 6K for T and C and 28K for V8. MCF-7 nuclear and cytosol ER showed very similar digest patterns, and there was a remarkable similarity in the TAZ-labeled and H222-immunoreactive fragments generated by proteolysis of both MCF-7 and rat uterine ER. These findings reveal great structural similarities between the human (breast cancer) and rat (uterine) ER and between nuclear and cytosol ER, indicate charge heterogeneity of ER, and allow a comparison of the immunoreactive and hormone attachment site domains of the ER. The observation that T and C generate a ca. 6K TAZ-labeled fragment that is also detectable with the H222 antibody should be of interest inn studies determining the hormone binding domain of the ER and in amino acid sequencing of this region.

  2. Improved method for the direct labeling of antibodies with Tc-99m

    SciTech Connect

    Rhodes, B.A.; Hawkins, E.; Budd, P. ); Deleide, G.; Seccamani, E.; Bonino, C. )

    1990-01-01

    Antibodies and antibody fragments have been treated with stannous chloride or organic reducing agents to reduce disulfide bonds, providing sulfhydryl groups for binding reduced Tc-99m. The reduced antibody, additives and stannous salts are lyophilized. To radiolabel, sodium pertechnetate solution is added, which dissolves the protein and other reagents. The pertechnetate is reduced by the stannous ions and becomes bound to the antibody. After radiolabeling the shelf-life of the product exceeds the half-life of the radionuclide. One of the more effective additives is human serum albumin, which serves as a carrier protein, agent to protect against autoradiolysis and possibly as a transfer ligand. Many different antibodies have been labeled using this method. The most widely studied antibody is an anti-melanoma fragment which has now been used clinically in more than 1000 cases and has been proven effective for the diagnostic localization of melanoma. In summary, a single vial, one step procedure for the direct labeling of antibodies in the presence of human serum albumin has been developed, extensively characterized, and clinically validated. The method is used with murine monoclonal IgG fragments, IgM and human gamma globulin. 4 refs., 10 figs.

  3. Tumor immunotherapy in the mouse with the use of 131I-labeled monoclonal antibodies

    SciTech Connect

    Zalcberg, J.R.; Thompson, C.H.; Lichtenstein, M.; McKenzie, I.F.

    1984-03-01

    This report describes the use of 131I-labeled monoclonal antibodies in two experimental models for tumor immunotherapy. In vitro treatment of the radiation-induced murine thymoma ITT-1-75NS with radiolabeled anti-Ly-2.1 significantly impaired subsequent tumor growth in vivo. However, in vivo treatment of this tumor, which previously had been injected into C57BL/6 mice, was unsuccessful. By contrast, in vitro treatment of a human colorectal tumor cell line (COLO 205) with 131I-labeled 250-30.6--a monoclonal antibody directed against a secretory component of normal and malignant gastrointestinal epithelium--completely inhibited subsequent tumor growth in BALB/c nude (nu/nu) mice. Furthermore, in vivo treatment of preexisting human colorectal tumor xenografts significantly impaired progressive tumor growth. Although some tumor inhibition was also produced by unlabeled 250-30.6 antibody, this response was considerably amplified by treatment with (131I)-labeled 250-30.6 (P less than .05), suggesting that in vivo treatment of human tumors with the use of 131I-labeled monoclonal antibodies may be clinically beneficial. The antithyroid drug propylthiouracil was used to reduce dehalogenation of the radiolabeled immunoglobulins in an attempt to improve their therapeutic efficacy.

  4. Rapid diagnosis of occult abscesses using sup 99m Tc-labeled monoclonal antibodies

    SciTech Connect

    Coons, T.A.; Rhodes, B.A. ); Thakur, M.L. ); Marcus, C.S. ); Ballou, B. )

    1991-01-01

    Acute infections, such as appendicitis and occult infections in AIDS patients, can be diagnosed within two hours by gamma scintigraphy after i.v. administration of {sup 99m}Tc labeled antibodies reactive with human granulocytes. The antibody, murine IgM anti-SSEA-1, is partially reduced using Sn(II) to expose and protect reactive sulfide groups. The antibody is then purified, stannous tartrate and stabilizers are added, and the mixture is lyophilized. To label, sodium pertechnetate is added. After a 15 minute incubation the tracer drug is injected. The rate of accumulation and degree of concentration at the site of infection is presumptively determinative of the severity of the infection. Acceptance criteria and tests for the {sup 99m}Tc labeled antibody product have been established and validated. Greater than 93% of the {sup 99m}Tc is firmly bound to the protein as determined by quantitative HPLC. Radiochemical impurities, colloidal {sup 99m}Tc and free pertechnetate are together less than 4% as determined by thin layer chromatography. The immunoreactive fraction, measured by binding to solid phase antigen, and affinity measured be ELISA, are unchanged by the {sup 99m}Tc-direct labeling process. Two hour blood clearance in rats is within 90% of the value of the {sup 125}I labeled analog. The immunoreactive fraction decreases less than 10% when incubated in human plasma for 24 hours. This method has been compared to other direct labeling methods, and found to give higher radiochemical yields. 5 figs.

  5. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma.

    PubMed

    Stillebroer, Alexander B; Boerman, Otto C; Desar, Ingrid M E; Boers-Sonderen, Marije J; van Herpen, Carla M L; Langenhuijsen, Johannes F; Smith-Jones, Peter M; Oosterwijk, Egbert; Oyen, Wim J G; Mulders, Peter F A

    2013-09-01

    Patients with metastatic clear cell renal cell carcinoma (ccRCC) have a dismal prognosis. Therefore, new and less toxic treatments are needed. We determined the maximum tolerated dose (MTD) and potential therapeutic efficacy of multiple infusions of lutetium 177 ((177)Lu)-girentuximab (cG250) on various dose levels in a phase 1 trial in patients with progressive metastasized ccRCC. In this uncontrolled case series in 23 patients with progressive ccRCC metastases, cG250 accumulation was verified by diagnostic indium 111-cG250 imaging. Patients then received a high-activity dose of (177)Lu-cG250. Groups of three patients received (177)Lu-cG250, starting at a dose level of 1110 MBq/m(2)(177)Lu-cG250, with dose increments of 370 MBq/m(2) per group. In the absence of persistent toxicity, progressive disease, and accelerated blood clearance, patients were eligible for retreatment after 3 mo with 75% of the previous activity dose. Patients could receive a total of three treatment cycles. Determination of the MTD was the primary and therapeutic efficacy was the secondary outcome measurement of the study. The MTD was 2405 MBq/m(2) because higher doses resulted in dose-limiting myelotoxicity. Some patients received second (13 of 23 [56%]) and third (4 of 23 [17%]) treatment cycles. Most patients (17 of 23 [74%]) demonstrated stable disease 3 mo after the first treatment, and one patient showed a partial response that lasted for 9 mo. Mean growth of target tumor lesions was reduced from 40.4% (95% confidence interval [CI], ± 17.0) during the last 3 mo before study entry to 5.5% (95% CI, ± 5.3; p<0.001) at 3 mo after the first treatment cycle. No major nonhematologic side effects were observed. (177)Lu-cG250 radioimmunotherapy in metastatic ccRCC patients is well tolerated at an activity dose level as high as 2405 MBq/m(2) (MTD). Radioimmunotherapy with (177)Lu-cG250 may stabilize previously progressive metastatic ccRCC. Copyright © 2012 European Association of Urology

  6. Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging

    PubMed Central

    Guo, Jia; Wang, Shenliang; Dai, Nan; Teo, Yin Nah; Kool, Eric T.

    2011-01-01

    Most current approaches to multiantigen fluorescent imaging require overlaying of multiple images taken with separate filter sets as a result of differing dye excitation requirements. This requirement for false-color composite imaging prevents the user from visualizing multiple species in real time and disallows imaging of rapidly moving specimens. To address this limitation, here we investigate the use of oligodeoxyfluoroside (ODF) fluorophores as labels for antibodies. ODFs are short DNA-like oligomers with fluorophores replacing the DNA bases and can be assembled in many colors with excitation at a single wavelength. A DNA synthesizer was used to construct several short ODFs carrying a terminal alkyne group and having emission maxima of 410–670 nm. We developed a new approach to antibody conjugation, using Huisgen–Sharpless cycloaddition, which was used to react the alkynes on ODFs with azide groups added to secondary antibodies. Multiple ODF-tagged secondary antibodies were then used to mark primary antibodies. The set of antibodies was tested for spectral characteristics in labeling tubulin in HeLa cells and revealed a wide spectrum of colors, ranging from violet-blue to red with excitation through a single filter (340–380 nm). Selected sets of the differently labeled secondary antibodies were then used to simultaneously mark four antigens in fixed cells, using a single image and filter set. We also imaged different surface tumor markers on two live cell lines. Experiments showed that all colors could be visualized simultaneously by eye under the microscope, yielding multicolor images of multiple cellular antigens in real time. PMID:21321224

  7. The use of 99mTc-HYNIC-TOC and 18F-FDG PET/CT in the evaluation of duodenal neuroendocrine tumor with atypical and extensive metastasis responding dramatically to a single fraction of PRRT with 177Lu-DOTATATE.

    PubMed

    Basu, Sandip; Abhyankar, Amit

    2014-12-01

    This report describes a case of extensive diffuse bone marrow involvement with bilateral breast metastases from duodenal neuroendocrine tumor giving rise to a superscan-like appearance on somatostatin receptor-targeted (99m)Tc-hydrazinonicotinamide-TOC scintigraphy. The metastatic lesions demonstrated partial concordance with (18)F-FDG PET/CT findings, signifying varying tumor biology and heterogeneity among metastatic lesions in the same individual, as illustrated with a dual-tracer approach. There was a dramatic symptomatic and biochemical response and better health-related quality of life with a single fraction of peptide receptor radionuclide therapy with (177)Lu-DOTATATE, and radiologically there was stable disease at that point. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Development of Quantum Dots-Labeled Antibody Fluorescence Immunoassays for the Detection of Morphine.

    PubMed

    Zhang, Can; Han, Yufeng; Lin, Li; Deng, Nannan; Chen, Bo; Liu, Yuan

    2017-02-15

    Quantum dots (QDs)-labeled antibody fluorescence immunoassays (FLISA) for the detection of morphine were developed. Quantum dots (CdSe/ZnS), which contained carboxyl, were used to label antimorphine antibody by 1-ethyl-3-(3-dimethylaminoprophyl) carbodiimide hydrochloride/N-hydroxysulfosuccinimide, which were used as coupling reagents. The CdSe/ZnS QDs labeled antimorphine antibody (QDs labeled Ab) was characterized by fluorescence spectrum and gel electrophoresis. Plate-based FLISA and nitrocellulose membrane-based flow-through FLISA were developed and applied to quantitative and qualitative detection of morphine. Under the optimal conditions for plate-based FLISA, the linear range spanned from 3.2 × 10(-4) to 1 mg/L (R(2) = 0.9905), and the detection limit was 2.7 × 10(-4) mg/L. The visual detection limit for morphine by membrane-based flow-through FLISA was 0.01 mg/L. These results demonstrated that the developed fluorescence immunoassays could be applied as highly sensitive and convenient tools for rapid detection of morphine, which make it ideally suited for on-site screening of poppy shell added illegally in hot pot soup base.

  9. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    SciTech Connect

    Page, R.L.; Garg, P.K.; Gard, S. ||

    1994-09-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the {sup 18}F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4{prime}-({sup 18}F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T{sub 1/2{beta}} = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of {sup 18}F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10{sup -3}% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of {sup 18}F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs.

  10. Radioimmunotherapy of human hepatocellular carcinoma xenografts with 131I-labelled antiferritin antibody.

    PubMed Central

    Saiful Alam, A. F.

    1991-01-01

    The effects of 131-labelled antiferritin polyclonal antibody for the treatment of established hepatocellular carcinoma (HC-04) in athymic nude mice were evaluated. 131I-labelled antiferritin antibody localised specifically to a subcutaneous tumour with a mean of 8.1% of the infused dose per gram of tumour at 24 h after infusion when the experiment was started 15 days after inoculation and with a mean of about 6.5% of the infused dose per gram of tumour when the experiment was started 30 days after tumour transplantation. The concentrations of 131I-antiferritin antibody in tumour delivered a mean of 1994 cGy to tumour following infusion of 500 microCi of radiolabelled antiferritin antibody in the early group and a mean of 1600 cGy in the late group. Treatment with 500 microCi led to regression of the tumour in 55% of animals in the early group and 44% in the late group. In contrast, unlabelled antiferritin and 131I-labelled IgG failed to exert any significant effect on tumour growth. The transplanted tumours in the early groups of animals had relatively higher concentration of ferritin than those in the late group. There was accelerated inhibition of tumour growth and prolonged survival in animals in the early group compared with those in the late group. PMID:2021533

  11. Immunoproteomics using polyclonal antibodies and stable isotope-labeled affinity-purified recombinant proteins.

    PubMed

    Edfors, Fredrik; Boström, Tove; Forsström, Björn; Zeiler, Marlis; Johansson, Henrik; Lundberg, Emma; Hober, Sophia; Lehtiö, Janne; Mann, Matthias; Uhlen, Mathias

    2014-06-01

    The combination of immuno-based methods and mass spectrometry detection has great potential in the field of quantitative proteomics. Here, we describe a new method (immuno-SILAC) for the absolute quantification of proteins in complex samples based on polyclonal antibodies and stable isotope-labeled recombinant protein fragments to allow affinity enrichment prior to mass spectrometry analysis and accurate quantification. We took advantage of the antibody resources publicly available from the Human Protein Atlas project covering more than 80% of all human protein-coding genes. Epitope mapping revealed that a majority of the polyclonal antibodies recognized multiple linear epitopes, and based on these results, a semi-automated method was developed for peptide enrichment using polyclonal antibodies immobilized on protein A-coated magnetic beads. A protocol based on the simultaneous multiplex capture of more than 40 protein targets showed that approximately half of the antibodies enriched at least one functional peptide detected in the subsequent mass spectrometry analysis. The approach was further developed to also generate quantitative data via the addition of heavy isotope-labeled recombinant protein fragment standards prior to trypsin digestion. Here, we show that we were able to use small amounts of antibodies (50 ng per target) in this manner for efficient multiplex analysis of quantitative levels of proteins in a human HeLa cell lysate. The results suggest that polyclonal antibodies generated via immunization of recombinant protein fragments could be used for the enrichment of target peptides to allow for rapid mass spectrometry analysis taking advantage of a substantial reduction in sample complexity. The possibility of building up a proteome-wide resource for immuno-SILAC assays based on publicly available antibody resources is discussed. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development

    NASA Astrophysics Data System (ADS)

    Pham, Van Dong; Hoang, Ha; Hoang Phan, Trong; Conrad, Udo; Chu, Hoang Ha

    2012-12-01

    Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody-colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus.

  13. Development of Fluorophore-Labeled Thailanstatin Antibody-Drug Conjugates for Cellular Trafficking Studies.

    PubMed

    Kulkarni, Chethana; Finley, James E; Bessire, Andrew J; Zhong, Xiaotian; Musto, Sylvia; Graziani, Edmund I

    2017-03-01

    As the antibody-drug conjugate (ADC) field grows increasingly important for cancer treatment, it is vital for researchers to establish a firm understanding of how ADCs function at the molecular level. To gain insight into ADC uptake, trafficking, and catabolism-processes that are critical to ADC efficacy and toxicity-imaging studies have been performed with fluorophore-labeled conjugates. However, such labels may alter the properties and behavior of the ADC under investigation. As an alternative approach, we present here the development of a "clickable" ADC bearing an azide-functionalized linker-payload (LP) poised for "click" reaction with alkyne fluorophores; the azide group represents a significantly smaller structural perturbation to the LP than most fluorophores. Notably, the clickable ADC shows excellent potency in target-expressing cells, whereas the fluorophore-labeled product ADC suffers from a significant loss of activity, underscoring the impact of the label itself on the payload. Live-cell confocal microscopy reveals robust uptake of the clickable ADC, which reacts selectively in situ with a derivatized fluorescent label. Time-course trafficking studies show greater and more rapid net internalization of the ADCs than the parent antibody. More generally, the application of chemical biology tools to the study of ADCs should improve our understanding of how ADCs are processed in biological systems.

  14. The preparation and properties of purified 125I-labelled antibodies to insulin

    PubMed Central

    Miles, L. E. M.; Hales, C. N.

    1968-01-01

    1. A procedure is described for the preparation of an insulin-immunoadsorbent containing 105–185mg. of insulin/g. of matrix, and with an antibody-binding capacity of 660mg./g. of insulin-immunoadsorbent. 2. Purified non-precipitating 125I-labelled antibodies were prepared by iodination of the antibodies while they were isolated on the insulin-immunoadsorbent in order to protect at least one antigen-binding site. 3. The radioactive antibody was simply and rapidly separated from other radioactive material and damaging reagents, and found to be up to 94% pure as judged by its reaction with insulin-immunoadsorbent and unfixed insulin. 4. The 125I-labelled antibody preparations had iodine contents of 0·5–64atoms/mol. of protein and specific radioactivities of 0·3–125mc/mg. of protein. 5. It is suggested that this is a simple method of producing a useful reagent. PMID:5667273

  15. Click-chemistry strategy for labeling antibodies with copper-64 via a cross-bridged tetraazamacrocyclic chelator scaffold.

    PubMed

    Kumar, Amit; Hao, Guiyang; Liu, Li; Ramezani, Saleh; Hsieh, Jer-Tsong; Öz, Orhan K; Sun, Xiankai

    2015-04-15

    We report a click-chemistry based modular strategy for antibody labeling with (64)Cu (t1/2 = 12.7 h; β(+) 0.656 MeV, 17.4%; β(-) 0.573 MeV, 39%; EC 43%) under ambient condition utilizing a cross-bridged tetraazamacrocyclic (CB-TE2A) analogue, which otherwise requires harsh conditions that make the CB-TE2A analogues under-utilized for protein labeling despite the fact that they form kinetically inert copper complexes with high in vivo stability. Our strategy involves prelabeling a CB-TE2A based scaffold (CB-TE2A-1C) with (64)Cu and its subsequent reaction with an antibody via the tetrazine-norbornene mediated click chemistry. The effectiveness of this strategy was demonstrated by labeling two monoclonal antibodies, an anti-PSMA antibody (YPSMA-1) and a chimeric anti-phosphatidylserine antibody (Bavituximab). The immunoreactivity of the antibodies remained unchanged after the tetrazine modification and click-chemistry (64)Cu labeling. To further demonstrate the practicality of the modular (64)Cu labeling strategy, we tested positron emission tomography (PET) imaging of tumor with the (64)Cu-labeled bavituximab in a mouse xenograft model. The tumor visualization and uptake of the labeled antibody exhibited the versatility of the click-chemistry strategy.

  16. Rhenium labeled peptides and antibodies for cancer therapy. CRADA final report

    SciTech Connect

    Knapp, Jr., F. F.; Rhodes, B. A.

    1996-08-12

    This CRADA involved development of optimal methods for attachment of rhenium radioisotopes to antibodies and peptides which can be used for cancer treatment. Rhenium-186 and the tungsten-188/rhenium-188 generators were provided from ORNL to RhoMed for peptide labeling studies. The rhenium-186 and carrier-free rhenium-188 were then used to optimize the labeling of various small peptides....A system has been developed at ORNL which provides the rhenium-188 radioisotope, which has excellent therapeutic properties for cancer treatment.

  17. Targeted α-Particle Radiotherapy with 211At-labeled Monoclonal Antibodies

    PubMed Central

    Zalutsky, Michael R.; Reardon, David A.; Pozzi, Oscar R.; Vaidyanathan, Ganesan; Bigner, Darell D.

    2007-01-01

    An attractive feature of targeted radionuclide therapy is the ability to select radionuclides and targeting vehicles with characteristics that are best suited for a particular clinical application. One combination that has been receiving increasing attention is the use of monoclonal antibodies specifically reactive to receptors and antigens that are expressed on tumor cells to selectively deliver the α-particle emitting radiohalogen 211At to malignant cell populations. Promising results have been obtained in preclinical models with multiple 211At-labeled mAbs; however, translation of concept to the clinic has been slow. Impediments to this process include limited radionuclide availability, the need for suitable radiochemistry methods operant at high activity levels, and the lack of data concerning toxicity of α-particle emitters in humans. Nonetheless, two clinical trials have been initiated to date with 211At-labeled monoclonal antibodies and others are planned for the near future. PMID:17921029

  18. Dye labelled monoclonal antibody assay for detection of Toxic Shock Syndrome Toxin -1 from Staphylococcus aureus

    PubMed Central

    Javid, Khojasteh V; Foster, HA

    2011-01-01

    Objective The aim of study was to develop a rapid assay, dye labelled monoclonal antibody assay (DLMAA), using non-radioactive organic synthetic dyes for identification of Toxic Shock Syndrome Toxin-1 (TSST-1) producing strains of Staphylococcus aureus. Materials and Methods The assay protocol required only two simple steps; addition of TSST-1 antigen to a nitrocellulose membrane and then adding a colloidal dye labelled antibody (D/A) suspension detection reagent. Results The sensitivity and specificity of the assay was determined relative to positive and negative strains compared to an ELISA assay. Overall 100% agreement was found between both assays. The sensitivity for detection of TSST-1 was 30 ng. Conclusion The DLMAA did not require handling and disposal of radioactive materials. It is a rapid qualitative technique for detection of TSST-1 toxin at room temperature within a short time. PMID:22530084

  19. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.

    PubMed

    Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B

    2016-11-25

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab')2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab')2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications.

  20. The in vivo fate of a /sup 211/At labelled monoclonal antibody with known specificity in a murine system

    SciTech Connect

    Vaughan, A.T.M.; Bateman, W.J.; Fisher, D.R.

    1982-11-01

    A monoclonal antibody reactive against the human transferrin receptor has been labelled with the alpha and X ray emitting isotope Astatine 211. The labelling procedure does not affect the ability of the product to bind to the transferrin receptor on the human leukemic cell line HL60. Using a direct binding assay, /sup 211/At labelled antibody can be specifically inhibited from binding to its target cells by excess unlabelled antibody. Furthermore, the binding inhibition demonstrated in this system correlates to enhanced clonogenic survival of these cells, indicating that very few atoms of /sup 211/At/cell are required for cell death. Data obtained from labelled antibody injected into mice show that the labelled product in serum retains the ability to bind to HL60 cells in vitro, although tissue distributions of the injected activity implies that some of the radiolabel is lost from the protein. Despite this loss of label, preliminary experiments on the localization of labelled antibody to HL60 cells growing s/c in nude mice show that tumor tissue has a higher specific activity than all other tissues, other than blood, after 12 hours. This suggests that further work on the nature of label degradation in vivo is warranted in the context of potential therapeutic and diagnostic studies.

  1. Radioimmunotherapy of peritoneal human colon cancer xenografts with site-specifically modified sup 212 Bi-labeled antibody

    SciTech Connect

    Simonson, R.B.; Ultee, M.E.; Hauler, J.A.; Alvarez, V.L. )

    1990-02-01

    212Bi is a radioisotope that emits highly cytotoxic alpha-particles. alpha-particles have a high linear energy transfer over a short path length. These properties and the 1-h half-life make this isotope suitable for radioimmunotherapy of peritoneal tumors. Therefore, we wanted to test whether monoclonal antibodies labeled with {sup 212}Bi would be effective in treating such tumors. We conjugated the antibody B72.3, which is reactive with many human adenocarcinomas, to the chelator linker glycyltyrosyl-lysyl-N-epsilon-diethylenetriaminepentaacetic acid, by reductive amination to the carbohydrate residues of the antibody. Athymic nude mice were injected i.p. with LS174T cells, a human colon cancer cell line. Seven to 13 days later the mice were treated with the {sup 212}Bi-labeled antibody. We treated the mice using single doses of 180-450 microCi or multiple doses of 80-180 microCi on consecutive days. Dissections were performed 9-16 days after the end of treatment. Both the single and multiple doses resulted in a decrease in tumor burden when compared to tumor from mice receiving unlabeled antibody. Mice in the optimum group showed tumor reductions of greater than 90%. Treatment with a {sup 212}Bi-labeled irrelevant antibody was significantly less effective than that with labeled B72.3 antibody. Survival studies showed that mice receiving the labeled antibody had a prolonged survival when compared to control mice.

  2. Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies.

    PubMed

    Ahlqvist, Josefin; Kumar, Ashok; Sundström, Heléne; Ledung, Erika; Hörnsten, E Gunnar; Enfors, Sven-Olof; Mattiasson, Bo

    2006-03-23

    A new chromatographic method based on affinity supermacroporous monolithic cryogels is developed for binding and analyzing inclusion bodies during fermentation. The work demonstrated that it is possible to bind specific IgG and IgY antibodies to the 15 and 17 amino acids at the terminus ends of a 33 kDa target protein aggregated as inclusion bodies. The antibody treated inclusion bodies from lysed fermentation broth can be specifically retained in protein A and pseudo-biospecific ligand sulfamethazine modified supermacroporous cryogels. The degree of binding of IgG and IgY treated inclusion bodies to the Protein A and sulfamethazine gels are investigated, as well as the influence of pH on the sulfamethazine ligand. Optimum binding of 78 and 72% was observed on both protein A and sulfamethazine modified cryogel columns, respectively, using IgG labeling of the inclusion bodies. The antibody treated inclusion bodies pass through unretained in the sulfamethazine supermacroporous gel at pH that does not favour the binding between the ligand on the gel and the antibodies on the surface of inclusion bodies. Also the unlabeled inclusion bodies went through the gel unretained, showing no non-specific binding or trapping within the gel. These findings may very well be the foundation for the building of a powerful analytical tool during fermentation of inclusion bodies as well as a convenient way to purify them from fermentation broth. These results also support our earlier findings [Kumar, A., Plieva, F.M., Galaev, I.Yu., Mattiasson, B., 2003. Affinity fractionation of lymphocytes using a monolithic cyogel. J. Immunol. Methods 283, 185-194] with mammalian cells that were surface labeled with specific antibodies and recognized on protein A supermacroporous gels. A general binding and separation system can be established on antibody binding cryogel affinity matrices.

  3. [Effects of pH on the properties of colloidal gold labeling monoclonal antibody].

    PubMed

    Sun, Yuanyuan; Wang, Yunlong; Li, Yulin; Wang, Jichuang; Cheng, Lei; Deng, Lili

    2014-11-01

    To investigate the influence of pH on the properties of colloidal gold labeling monoclonal antibody (mAb). The pH value of colloidal gold was adjusted by K(2)CO(3) solution. Then colloidal gold with a range of pH 5.0-9.0 labeled enterovirus 71 (EV71)-VP1 mAb respectively, and bovine serum albumin (BSA) was added to block the unreacted sites on the gold colloids for further experiments. The changes in the properties of colloidal gold in the progress of colloidal gold labeling mAb were monitored by UV/Vis spectroscopy. Finally, Mey's test was adopted to identify the stability of immunogold, and the sensitivity of the strip was evaluated by detecting gradual dilution of serum. EV71-VP1 mAb could be conjugated with colloidal gold at pH7.0-8.5, and at this optimal pH, the test strip presented a good sensitivity. pH is an important factor to ensure the stability of immunogold and to determine the conjugation effect between colloidal gold and mAb. The study confirmed that UV/Vis spectroscopy can evaluate the influence of pH on the properties of colloidal gold labeling mAb and set up an optimal pH for colloidal gold labeling using UV/Vis spectroscopy.

  4. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    PubMed

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy.

  5. Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies.

    PubMed

    de Diego-Castilla, Graciela; Cruz-Gil, Patricia; Mateo-Martí, Eva; Fernández-Calvo, Patricia; Rivas, Luis A; Parro, Víctor

    2011-10-01

    Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances.

  6. Dual isotope study of iodine-125 and indium-111-labeled antibody in athymic mice

    SciTech Connect

    Carney, P.L.; Rogers, P.E.; Johnson, D.K. )

    1989-03-01

    Monoclonal antibody B72.3 was coupled to a benzylisothiocyanate derivative of diethylenetriaminepentaacetic acid (DTPA). The maximum substitution achievable without loss of immunoreactivity was three DTPA groups per immunoglobulin molecule. The resulting conjugate was labeled with {sup 111}In by brief incubation with {sup 111}InCl{sub 3}, giving a mean radiochemical yield of {sup 111}In-labeled antibody of 96%. The ({sup 111}In)B72.3 preparation was mixed with an ({sup 125}I) B72.3 preparation, obtained by the chloramine-T method, and the mixture administered to athymic mice bearing subcutaneous LS174T colon carcinoma xenografts. There were no significant differences (p greater than 0.1) in the biodistributions of the two labels at 1, 2, 5, and 7 days postinjection. These results are contrasted with prior studies showing elevated levels of {sup 111}In in liver, spleen, and kidneys using B72.3-DTPA conjugates prepared via the bicyclic anhydride. It is concluded that protein cross-linking and/or the formation of unstable chelate sites in anhydride coupled conjugates underlie these disparities.

  7. Fragmentation, labeling and biodistribution studies of KS1/4, a monoclonal antibody

    SciTech Connect

    Mohd, S.B.

    1987-01-01

    In this study, an IgG2a (KS1/4), a monoclonal antibody (MoAb) specific against a human lung adenocarcinoma (UCLA P-3) was successfully fragmented enzymatically to yield F(ab')/sub 2/ and Fab by using pepsin and papain, respectively. The kinetic of fragmentation of the MoAb was compared to that of human immunoglobulin G (IgG). A similar pattern of fragmentation was observed with both antibodies with a higher percentage yield of the F(ab')/sub 2/ and Fab obtained upon the fragmentation of the IgG by the enzymes. The KS1/4 and the two fragments were labeled with three different radionuclides, namely iodine-131, indium-111 and selenium-75. The radioiodination of the MoAb and the fragments was carried out by using a modified chloramine-T method. Radiometal labeling of the MoAb and the fragments with indium-111 was performed by using DTPA as a bifunctional chelating agent, while intrinsic labeling of the MoAb was done by culturing the hybridoma in the presence of /sup 75/Se-methionine. The biodistribution of the radiolabeled MoAb, F(ab')/sub 2/ and Fab fragments were performed by injecting the preparations intravenously into nude mice bearing human lung adenocarcinoma.

  8. Labeling of Adenovirus Particles with PARACEST Agents

    PubMed Central

    Vasalatiy, Olga; Gerard, Robert D; Zhao, Piyu; Sun, Xiankai; Sherry, A. Dean

    2009-01-01

    Recombinant adenovirus type 5 particles (AdCMVLuc) were labeled with two different bifunctional ligands capable of forming stable complexes with paramagnetic lanthanide ions. The number of covalently attached ligands varied between 630 and 1960 per adenovirus particle depending upon the chemical reactivity of the bifunctional ligand (NHS ester versus isothiocyanide), the amount of excess ligand added, and the reaction time. The bioactivity of each labeled adenovirus derivative, as measured by the ability of the virus to infect cells and express luciferase, was shown to be highly dependent upon the number of covalently attached ligands. This indicates that certain amino groups, likely on the surface of the adenovirus fiber protein where cell binding is known to occur, are critical for viral attachment and infection. Addition of 177Lu3+ to chemically modified versus control viruses demonstrated a significant amount of nonspecific binding of 177Lu3+ to the virus particles that could not be sequestered by addition of excess DTPA. Thus, it became necessary to implement a prelabeling strategy for conjugation of preformed lanthanide ligand chelates to adenovirus particles. Using preformed Tm3+-L2, a large number of chelates having chemical exchange saturation transfer (CEST) properties were attached to the surface residues of AdCMVLuc without nonspecific binding of metal ions elsewhere on the virus particle. The potential of such conjugates to act as PARACEST imaging agents was tested using an on-resonance WALTZ sequence for CEST activation. A 12% decrease in bulk water signal intensity was observed relative to controls. This demonstrates that viral particles labeled with PARACEST-type imaging agents can potentially serve as targeted agents for molecular imaging. PMID:18254605

  9. Beta emitters rhenium-188 and lutetium-177 are equally effective in radioimmunotherapy of HPV-positive experimental cervical cancer.

    PubMed

    Phaeton, Rebecca; Jiang, Zewei; Revskaya, Ekaterina; Fisher, Darrell R; Goldberg, Gary L; Dadachova, Ekaterina

    2016-01-01

    Cervical cancer caused by the infection with the human papillomavirus (HPV) remains the fourth leading killer of women worldwide. Therefore, more efficacious treatments are needed. We are developing radioimmunotherapy (RIT) of HPV-positive cervical cancers by targeting E6 and E7 viral oncoproteins expressed by the cancer cells with the radiolabeled monoclonal antibodies (mAbs). To investigate the influence of different radionuclides on the RIT efficacy-we performed RIT of experimental cervical cancer with Rhenium-188 ((188) Re) and Lutetium-177 ((177) Lu)-labeled mAb C1P5 to E6. The biodistribution of (188) Re- and (177) Lu-labeled C1P5 was performed in nude female mice bearing CasKi cervical cancer xenografts and the radiation dosimetry calculations for the tumors and organs were carried out. For RIT the mice were treated with 7.4 MBq of either (188) Re-C1P5 or (177) Lu-C1P5 or left untreated, and observed for their tumor size for 28 days. The levels of (188) Re- and (177) Lu-C1P5 mAbs-induced double-strand breaks in CasKi tumors were compared on days 5 and 10 post treatment by staining with anti-gamma H2AX antibody. The radiation doses to the heart and lungs were similar for both (177) Lu-C1P5 and (188) Re-C1P5. The dose to the liver was five times higher for (177) Lu-C1P5. The doses to the tumor were 259 and 181 cGy for (177) Lu-C1P5 and (188) Re-C1P5, respectively. RIT with either (177) Lu-C1P5 or (188) Re-C1P5 was equally effective in inhibiting tumor growth when each was compared to the untreated controls (P = 0.001). On day 5 there was a pronounced staining for gamma H2AX foci in (177) Lu-C1P5 group only and on day 10 it was observed in both (177) Lu-C1P5 and (188) Re-C1P5 groups. (188) Re- and (177) Lu-labeled mAbs were equally effective in arresting the growth of CasKi cervical tumors. Thus, both of these radionuclides are candidates for the clinical trials of this approach in patients with advanced, recurrent or metastatic cervical cancer. © 2015 The

  10. Confirmation of Legionella pneumophila cultures with a fluorescein-labeled monoclonal antibody.

    PubMed Central

    Tenover, F C; Carlson, L; Goldstein, L; Sturge, J; Plorde, J J

    1985-01-01

    We compared a fluorescein-labeled monoclonal antibody directed against an outer membrane protein of Legionella pneumophila (Genetic Systems Corp. [GSC], Seattle, Wash.) with a similarly labeled polyclonal reagent (L. pneumophila serogroups 1 to 6, poly; BioDx, Inc., Denville, N.J.) for the confirmation of L. pneumophila isolates grown in culture. Duplicate suspensions of 52 organisms, including 21 L. pneumophila and 8 non-L. pneumophila species of legionella, were placed on individual glass slides, fixed, and stained with both reagents, and the results were compared. Both antisera correctly identified all L. pneumophila serogroups 1 to 6, but only the GSC reagent produced definitive staining of the L. pneumophila isolates of serogroups 7, 8, and 9. Additionally, the GSC reagent produced more uniform staining patterns around the legionella bacilli and displayed little background fluorescence when compared with the BioDx reagent. PMID:3891777

  11. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies.

    PubMed

    Zalutsky, Michael R; Reardon, David A; Pozzi, Oscar R; Vaidyanathan, Ganesan; Bigner, Darell D

    2007-10-01

    An attractive feature of targeted radionuclide therapy is the ability to select radionuclides and targeting vehicles with characteristics that are best suited for a particular clinical application. One combination that has been receiving increasing attention is the use of monoclonal antibodies (mAbs) specifically reactive to receptors and antigens that are expressed in tumor cells to selectively deliver the alpha-particle-emitting radiohalogen astatine-211 (211At) to malignant cell populations. Promising results have been obtained in preclinical models with multiple 211At-labeled mAbs; however, translation of the concept to the clinic has been slow. Impediments to this process include limited radionuclide availability, the need for suitable radiochemistry methods operant at high activity levels and lack of data concerning the toxicity of alpha-particle emitters in humans. Nonetheless, two clinical trials have been initiated to date with 211At-labeled mAbs, and others are planned for the near future.

  12. Efficacy of astatine-211-labeled monoclonal antibody in treatment of murine T-cell lymphoma

    SciTech Connect

    Harrison, A.; Royle, L.

    1987-01-01

    The short-lived isotope /sup 211/At (half-life, 7.2 hr), an alpha particle-emitting halogen, has been attached to a monoclonal antibody (anti-thy 1.1, IgG1, OX7) and used in mice in the treatment of a thy 1.1 T-cell lymphoma (A120). Forty-eight hours after receiving an iv injection of 10(3) or 10(5) A120 cells, mice were treated with phosphate-buffered saline, /sup 211/At-, antibody alone, or /sup 211/At conjugated to OX7. Treatment with the /sup 211/At-labeled OX7 conjugate increased the median survival time of mice and probably cured (survival at 200 days) 6 of the 15 mice given 10(5) cells and 21 of the 27 mice given 10(3) cells.

  13. Flexible Label-Free Quantitative Assay for Antibodies to Influenza Virus Hemagglutinins ▿

    PubMed Central

    Carney, Paul J.; Lipatov, Aleksandr S.; Monto, Arnold S.; Donis, Ruben O.; Stevens, James

    2010-01-01

    During the initial pandemic influenza H1N1 virus outbreak, assays such as hemagglutination inhibition and microneutralization provided important information on the relative protection afforded by the population's cross-reactivity from prior infections and immunizations with seasonal vaccines. However, these assays continue to be limited in that they are difficult to automate for high throughput, such as in pandemic situations, as well as to standardize between labs. Thus, new technologies are being sought to improve standardization, reliability, and throughput by using chemically defined reagents rather than whole cells and virions. We now report the use of a cell-free and label-free flu antibody biosensor assay (f-AbBA) for influenza research and diagnostics that utilizes recombinant hemagglutinin (HA) in conjunction with label-free biolayer interferometry technology to measure biomolecular interactions between the HA and specific anti-HA antibodies or sialylated ligands. We evaluated f-AbBA to determine anti-HA antibody binding activity in serum or plasma to assess vaccine-induced humoral responses. This assay can reveal the impact of antigenic difference on antibody binding to HA and also measure binding to different subtypes of HA. We also show that the biosensor assay can measure the ability of HA to bind a model sialylated receptor-like ligand. f-AbBA could be used in global surveillance laboratories since preliminary tests on desiccated HA probes showed no loss of activity after >2 months in storage at room temperature, indicating that the same reagent lots could be used in different laboratories to minimize interlaboratory assay fluctuation. Future development of such reagents and similar technologies may offer a robust platform for future influenza surveillance activities. PMID:20660137

  14. In vivo comparative study of hydroxyapatite labeled with different radioisotopes: evaluation of the scintigraphic images.

    PubMed

    Couto, R M; De Barboza, M F; De Souza, A A; Muramoto, E; Mengatti, J; De Araújo, E B

    2010-05-10

    Radyosinovectomy (RSV) is a radiotherapeutic modality where a beta-emitting radionuclide is administered locally by intra-articular injection on the form of a colloid or radiolabeled particulate. RSV is a well-accepted therapeutic procedure in inflammatory joint diseases and has been successfully employed for more than 50 years as a viable alternative to surgical and chemical synovectomy. The aim of this work is to compare the in vivo stability of hydroxyapatite labelled with (177)Lu, (90)Y and (153)Sm. All radionuclides were labelled with high yield and were retained in the joint for 7 days, showing stability and usefulness as tools in the RSV treatment. A similar retention of the products in the muscle was observed when the particles were administrated in the muscle. However, the pure form of the radionuclides were rapidly cleared from the blood and accumulated in the liver when injected i.v.. Although (153)Sm-HA is already available for nuclear medicine procedures and clinical studies with (90)Y-HA have been developed, (177)Lu-labeled RSV agents will be economically more viable and has not been studied yet. Its favorable characteristics contribute to follow, to predict and asses the success of RSV by bone scintigraphy studies.

  15. Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies.

    PubMed

    Mao, S J; Patton, J G; Badimon, J J; Kottke, B A; Alley, M C; Cardin, A D

    1983-11-01

    Four monoclonal antibodies (IgG2b) to human plasma low-density lipoproteins (LDL) have been characterized. The binding affinities of each monoclonal antibody to 125I-labeled LDL were moderately high, ranging from 10(8) to 10(10) L/mol at 4 degrees C, but were reduced by at least 50-70% at 37 degrees C. The maximum binding of each monoclonal antibody was unique, ranging from 20 to 95% of total 125I-labeled LDL, suggesting that LDL particles were immunochemically heterogeneous. One antibody, LP-34, had both high and low binding affinities to LDL. Another, LP-47, exhibited high affinity for isolated LDL, yet reacted poorly with native LDL in plasma, indicating that the conformation of isolated LDL differs from that of native LDL in plasma. Unlike polyclonal serum antibodies, a mixture of four monoclonal antibodies failed to precipitate LDL, but did show a drastic increase in binding to LDL. We found that only two of our monoclonal antibodies were necessary for such synergistic enhancement. We propose that one of the monoclonal antibodies may serve as a catalytic reagent, and discuss the clinical significance of this finding.

  16. Clinical observation of 125I-labeled anti-alpha fetoprotein antibody radioimmunotherapy in hepatocellular carcinoma

    PubMed Central

    Wu, Ying-De; Yang, Ke-Zeng; Zhou, De-Nan; Gang, You-Quan; Song, Xiang-Qun; Hu, Xiao-Hua; Huang, Bing-Yan

    1997-01-01

    AIM: To observe the therapeutic effects and toxic side effects of 125I labeled horse anti-human alpha fetoprotein (AFP) polyclonal antibodies in immune targeted therapy against hepatocellular carcinoma (HCC). METHODS: A modified chloramine-T method to produce nuclide 125I labeled horse anti-human AFP polyclonal antibodies was used to treat 22 cases of HCC. Drugs were administered by intravenous drip. The median dose of 125I in the whole group was 289.3 (100.3-708.9) MBq. In this series of 22 cases, 19 were evaluated. HCC cases of the same period treated by 131I anti AFP (A group), anti-cancer drugs and anti AFP conjugates (B group) and chemotherapy alone (C group) were used as controls. RESULTS: The effective rate (CR + PR) was 31.6%, tumor shrinkage rate was 63.2% (12/19), AFP descending rate 64.7% (11/17) and 6 cases became AFP negative. The post treatment 1 year survival rate was 47.1% (8/17). Seven cases are still alive. Five cases survived 14.33 mo, showing good therapeutic tolerance and minimal toxic side effects. CONCLUSION: The therapeutic effect in the treatment group was significantly better than that of the control groups. This may be due to the effect of the continuous radiation of the long half life 125I within the tumor cells. PMID:27006585

  17. Imaging endocarditis with Tc-99m-labeled antibody--an experimental study: concise communication

    SciTech Connect

    Wong, D.W.; Dhawan, V.K.; Tanaka, T.; Mishkin, F.S.; Reese, I.C.; Thadepalli, H.

    1982-03-01

    The sensitivity and specificity of Tc-99m-labeled antibacterial antibody (Tc-99m Ab) for detecting bacterial endocarditis were evaluated in an experimental model. Rabbit-produced antistaphylococcal antibody was extracted using Rivanol and chemically labeled with Tc-99m. This Tc-99m Ab was injected intravenously in New Zealand rabbits 24 hr after producing Staphylococcus aureus endocarditis of the aortic valve. Imaging and tissue analyses were performed on the following day. All 11 animals developed S. aureus aortic-valve vegetations and showed increased uptake of Tc-99m Ab at the aortic valve, 118 times higher than at the uninfected tricuspid valve. Although high hepatic radioactivity and anatomic uncertainties interfered with in vivo delineation of these lesions, images of the excised hearts showed all affected valves. Two rabbits inoculated with Escherichia coli did not develop endocarditis and had little uptake of Tc-99m Ab, while six rabbits with enterococcal endocarditis had no uptake of the Tc-99m Ab in their vegetations. The findings suggest potential value of Tc-99m Ab on the rapid diagnosis of endocarditis.

  18. Loss of immunoreactivity of I-131 labeled monoclonal antibody with storage is related to radiation damage

    SciTech Connect

    Reynolds, J.; Fejka, R.; Rotman, M.; Farkas, R.; Larson, S.

    1985-05-01

    In order to use a single preparation of I-131 monoclonal antibody on more than one day, it is important to determine the shelf life of these compounds. Fifteen I-131 (.128 to 15 mCi/ml) preparations of IgG or Fab fragments of antimelanoma antibody (96.5 or 48.7) were stored at 0-4/sup 0/C in pharmaceutical vials. Daily aliquots were tested for total immunoreactivity (IR) (JNM 24:123,1983), TCA precipitability and fractions using size exclusion HPLC. Loss of IR ranges from 0-54% during the first 24 hours to 0-92% over 6 days. Loss of IR occurred with both Fab and IgG. The rate of loss of IR correlated with the initial specific concentration (r = .8,p < .01) and specific activity (r = .78,p < .01) but dilution of the concentrated solution by 1000x or more stopped the deterioration process (p < .01) suggesting specific concentration to be the important variable. When mM cysteamine or cystamine were added to the concentrated solutions the loss of IR with time was inhibited (X/sup 2/,p < .001). TCA precipitation and HPLC analysis showed loss of antibody associated radioactivity but not to the extent of the change in IR. There can be significant loss of IR of I-131 monoclonal antibody during storage at 0-4/sup 0/C. and high concentration solutions (>5 mCi/ml.) must be used within 24 hours of labeling to assure an active preparation. The inhibition of IR loss by dilution or by addition of radioprotectors suggests that the process is due to radiation effects on the antibody.

  19. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    SciTech Connect

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Jr., Joseph J.

    2012-10-16

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.

  20. Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time

    SciTech Connect

    Kausaite, A.; van Dijk, M.; Castrop, J.; Ramanaviciene, A.; Baltrus, J.P.; Acaite, J.; Ramanavicius, A.

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without labeling. The system can therefore be used to determine both affinity and rate constants for interactions between various types of molecules. Here, we describe the application of a surface plasmon resonance biosensor for label-free investigation of the interaction between an immobilized antigen bovine serum albumin (BSA) and antibody rabbit anti-cow albumin IgG1 (anti-BSA). The formation of a self-assembled monolayer (SAM) over a gold surface is introduced into this laboratory training protocol as an effective immobilization method, which is very promising in biosensing systems based on detection of affinity interactions. In the next step, covalent attachment via artificially formed amide bonds is applied for the immobilization of proteins on the formed SAM surface. These experiments provide suitable experience for postgraduate students to help them understand immobilization of biologically active materials via SAMs, fundamentals of surface plasmon resonance biosensor applications, and determination of non-covalent biomolecular interactions. The experiment is designed for master and/or Ph.D. students. In some particular cases, this protocol might be adoptable for bachelor students that already have completed an extended biochemistry program that included a background in immunology.

  1. Excellent Response to 177Lu-PSMA-617 Radioligand Therapy in a Patient With Advanced Metastatic Castration Resistant Prostate Cancer Evaluated by 68Ga-PSMA PET/CT.

    PubMed

    Roll, Wolfgang; Bode, Axel; Weckesser, Matthias; Bögemann, Martin; Rahbar, Kambiz

    2017-02-01

    Recently radiolabeled ligands targeting prostate specific membrane antigen (PSMA) have been introduced for diagnostics and treatment of prostate cancer. Labeled with Lutetium, PSMA radioligand therapy (RLT) is one of the most promising new treatments of metastatic castration refractory prostate cancer. We present images of Ga-PSMA PET/CT and parameters of response of a 75-year-old heavily pretreated metastatic castration refractory prostate cancer patient with extended bone metastases, showing an extraordinary biochemical response in PSA-levels concordant to SUV decline in bone metastases. Furthermore, this case shows that CT is of no use in assessing response in bone metastases of prostate cancer.

  2. Use of 18F-2-Fluorodeoxyglucose to Label Antibody Fragments for Immuno-Positron Emission Tomography of Pancreatic Cancer

    PubMed Central

    2015-01-01

    We generated 18F-labeled antibody fragments for positron emission tomography (PET) imaging using a sortase-mediated reaction to install a trans-cyclooctene-functionalized short peptide onto proteins of interest, followed by reaction with a tetrazine-labeled-18F-2-deoxyfluoroglucose (FDG). The method is rapid, robust, and site-specific (radiochemical yields > 25%, not decay corrected). The availability of 18F-2-deoxyfluoroglucose avoids the need for more complicated chemistries used to generate carbon–fluorine bonds. We demonstrate the utility of the method by detecting heterotopic pancreatic tumors in mice by PET, using anti-Class II MHC single domain antibodies. We correlate macroscopic PET images with microscopic two-photon visualization of the tumor. Our approach provides easy access to 18F-labeled antibodies and their fragments at a level of molecular specificity that complements conventional 18F-FDG imaging. PMID:26955657

  3. Phase 2 Study of Lutetium 177-Labeled Anti-Carbonic Anhydrase IX Monoclonal Antibody Girentuximab in Patients with Advanced Renal Cell Carcinoma.

    PubMed

    Muselaers, Constantijn H J; Boers-Sonderen, Marye J; van Oostenbrugge, Tim J; Boerman, Otto C; Desar, Ingrid M E; Stillebroer, Alexander B; Mulder, Sasja F; van Herpen, Carla M L; Langenhuijsen, Johan F; Oosterwijk, Egbert; Oyen, Wim J G; Mulders, Peter F A

    2016-05-01

    Despite advances in the treatment of metastatic clear cell renal cell carcinoma (ccRCC), there is still an unmet need in the treatment of this disease. A phase 2 radioimmunotherapy (RIT) trial with lutetium 177 ((177)Lu)-girentuximab was initiated to evaluate the efficacy of this approach. In this nonrandomized single-arm trial, patients with progressive metastatic ccRCC who met the inclusion criteria received 2405 MBq/m(2) of (177)Lu-girentuximab intravenously. In the absence of persistent toxicity and progressive disease, patients were eligible for retreatment after 3 mo with 75% of the previous activity dose. A total of 14 patients were included. After the first therapeutic infusion, eight patients (57%) had stable disease (SD) and one (7%) had a partial regression. The treatment was generally well tolerated but resulted in grade 3-4 myelotoxicity in most patients. After the second cycle, continued SD was observed in five of six patients, but none were eligible for retreatment due to prolonged thrombocytopenia. In conclusion, RIT with (177)Lu-girentuximab resulted in disease stabilization in 9 of 14 patients with progressive metastatic ccRCC, but myelotoxicity prevented retreatment in some patients. We investigated the efficacy of lutetium 177-girentuximab radioimmunotherapy in patients with metastatic kidney cancer. The treatment resulted in disease stabilization in 9 of 14 patients. The main toxicity was prolonged low blood cell counts. ClinicalTrials.gov identifier: NCT02002312 (https://clinicaltrials.gov/ct2/show/NCT02002312). Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  4. Advantage of lutetium-177 versus radioiodine immunoconjugate in targeted radionuclide therapy of b-cell tumors.

    PubMed

    Repetto-Llamazares, Ada; Abbas, Nasir; Bruland, Øyvind S; Dahle, Jostein; Larsen, Roy H

    2014-07-01

    We herein report a comparison of the radiolabels 177Lu and 125I bound to the monoclonal antibody HH1 that targets the CD37 antigen expressed on non-Hodgkin B-cell lymphomas. Mixtures of 177Lu and 125I-labeled HH1 antibody were co-injected into nude mice carrying Ramos xenografts and the biodistribution using the paired label format allowing tracer comparisons in each individual mouse. Products of the two radionuclides had very similar immunoractivity in vitro but showed different properties in vivo. Both products had relevant stability in blood and most normal tissues in nude mice carrying subcutaneous Ramos xenografts. However, both the tumor uptake and retention were significantly higher for 177Lu vs. 125I labeled HH1. The tumor to normal tissue ratios were several-fold improved for 177Lu compared to radioiodine labeled antibodies. The data presented herein support the evaluation of CD37 as a target for clinical 177Lu-based radioimmunotherapy against b-cell malignancies. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Vascular Imaging of Solid Tumors in Rats with a Radioactive Arsenic-Labeled Antibody that Binds Exposed Phosphatidylserine

    PubMed Central

    Jennewein, Marc; Lewis, Matthew A.; Zhao, Dawen; Tsyganov, Edward; Slavine, Nikolai; He, Jin; Watkins, Linda; Kodibagkar, Vikram D.; O'Kelly, Sean; Kulkarni, Padmakar; Antich, Peter P.; Hermanne, Alex; Roösch, Frank; Mason, Ralph P.; Thorpe, Philip E.

    2012-01-01

    Purpose We recently reported that anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of vascular endothelial cells in tumors, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we tested the hypothesis that a chimeric monoclonal antibody that binds phosphatidylserine could be labeled with radioactive arsenic isotopes and used for molecular imaging of solid tumors in rats. Experimental Design Bavituximab was labeled with 74As (β+,T1/2 17.8 days) or 77As (β−,T1/2 1.6 days) using a novel procedure. The radionuclides of arsenic were selected because their long half-lives are consistent with the long biological half lives of antibodies in vivo and because their chemistry permits stable attachment to antibodies. The radiolabeled antibodies were tested for the ability to image subcutaneous Dunning prostate R3227-AT1 tumors in rats. Results Clear images of the tumors were obtained using planar γ-scintigraphy and positron emission tomography. Biodistribution studies confirmed the specific localization of bavituximab to the tumors. The tumor-to-liver ratio 72 h after injection was 22 for bavituximab compared with 1.5 for an isotype-matched control chimeric antibody of irrelevant specificity. Immunohistochemical studies showed that the bavituximab was labeling the tumor vascular endothelium. Conclusions These results show that radioarsenic-labeled bavituximab has potential as a new tool for imaging the vasculature of solid tumors. PMID:18316558

  6. Evaluating real-time immunohistochemistry on multiple tissue samples, multiple targets and multiple antibody labeling methods

    PubMed Central

    2013-01-01

    Background Immunohistochemistry (IHC) is a well-established method for the analysis of protein expression in tissue specimens and constitutes one of the most common methods performed in pathology laboratories worldwide. However, IHC is a multi-layered method based on subjective estimations and differences in staining and interpretation has been observed between facilities, suggesting that the analysis of proteins on tissue would benefit from protocol optimization and standardization. Here we describe how the emerging and operator independent tool of real-time immunohistochemistry (RT-IHC) reveals a time resolved description of antibody interacting with target protein in formalin fixed paraffin embedded tissue. The aim was to understand the technical aspects of RT-IHC, regarding generalization of the concept and to what extent it can be considered a quantitative method. Results Three different antibodies labeled with fluorescent or radioactive labels were applied on nine different tissue samples from either human or mouse, and the results for all RT-IHC analyses distinctly show that the method is generally applicable. The collected binding curves showed that the majority of the antibody-antigen interactions did not reach equilibrium within 3 hours, suggesting that standardized protocols for immunohistochemistry are sometimes inadequately optimized. The impact of tissue size and thickness as well as the position of the section on the glass petri dish was assessed in order for practical details to be further elucidated for this emerging technique. Size and location was found to affect signal magnitude to a larger extent than thickness, but the signal from all measurements were still sufficient to trace the curvature. The curvature, representing the kinetics of the interaction, was independent of thickness, size and position and may be a promising parameter for the evaluation of e.g. biopsy sections of different sizes. Conclusions It was found that RT-IHC can be used

  7. Evaluating real-time immunohistochemistry on multiple tissue samples, multiple targets and multiple antibody labeling methods.

    PubMed

    Dubois, Louise; Andersson, Karl; Asplund, Anna; Björkelund, Hanna

    2013-12-18

    Immunohistochemistry (IHC) is a well-established method for the analysis of protein expression in tissue specimens and constitutes one of the most common methods performed in pathology laboratories worldwide. However, IHC is a multi-layered method based on subjective estimations and differences in staining and interpretation has been observed between facilities, suggesting that the analysis of proteins on tissue would benefit from protocol optimization and standardization. Here we describe how the emerging and operator independent tool of real-time immunohistochemistry (RT-IHC) reveals a time resolved description of antibody interacting with target protein in formalin fixed paraffin embedded tissue. The aim was to understand the technical aspects of RT-IHC, regarding generalization of the concept and to what extent it can be considered a quantitative method. Three different antibodies labeled with fluorescent or radioactive labels were applied on nine different tissue samples from either human or mouse, and the results for all RT-IHC analyses distinctly show that the method is generally applicable. The collected binding curves showed that the majority of the antibody-antigen interactions did not reach equilibrium within 3 hours, suggesting that standardized protocols for immunohistochemistry are sometimes inadequately optimized. The impact of tissue size and thickness as well as the position of the section on the glass petri dish was assessed in order for practical details to be further elucidated for this emerging technique. Size and location was found to affect signal magnitude to a larger extent than thickness, but the signal from all measurements were still sufficient to trace the curvature. The curvature, representing the kinetics of the interaction, was independent of thickness, size and position and may be a promising parameter for the evaluation of e.g. biopsy sections of different sizes. It was found that RT-IHC can be used for the evaluation of a number

  8. Prospective study of /sup 123/I-labeled monoclonal antibody imaging in ovarian cancer

    SciTech Connect

    Granowska, M.; Britton, K.E.; Shepherd, J.H.; Nimmon, C.C.; Mather, S.; Ward, B.; Osborne, R.J.; Slevin, M.L.

    1986-05-01

    Thirty patients presenting with a pelvic mass were entered into a prospective study on the use of radioimmunoscintigraphy with the /sup 123/I-labeled monoclonal antibody HMFG2. The imaging data was obtained without knowledge of the clinical data and compared with subsequent surgical findings. A false-positive diagnosis of ovarian cancer was made in five of ten patients subsequently shown not to have ovarian cancer; thus the technique cannot be used as a screening test. A true-positive diagnosis was made in 19 out of 20 patients shown subsequently to have ovarian cancer. In 18 of these patients the distribution of uptake closely fitted the surgical findings. Methods of improving these results are described. In conclusion, radioimmunoscintigraphy is of no use in determining whether a pelvic mass is due to ovarian cancer, but has benefit in the evaluation of chemotherapy and may, in the future, prevent the need for second-look operations in some circumstances.

  9. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies

    PubMed Central

    Tillberg, Paul W.; Chen, Fei; Piatkevich, Kiryl D.; Zhao, Yongxin; Yu, Chih-Chieh (Jay); English, Brian P.; Gao, Linyi; Martorell, Anthony; Suk, Ho-Jun; Yoshida, Fumiaki; DeGennaro, Ellen M.; Roossien, Douglas H.; Gong, Guanyu; Seneviratne, Uthpala; Tannenbaum, Steven R.; Desimone, Robert; Cai, Dawen; Boyden, Edward S.

    2016-01-01

    Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first expansion microscopy method was unable to retain native proteins in the gel and used custom made reagents not widely available. Here, we describe protein retention ExM (proExM), a variant of ExM that anchors proteins to the swellable gel allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validate and demonstrate utility of proExM for multi-color super-resolution (~70 nm) imaging of cells and mammalian tissues on conventional microscopes. PMID:27376584

  10. Enhanced tumor retention of a radiohalogen label for site-specific modification of antibodies.

    PubMed

    Boswell, C Andrew; Marik, Jan; Elowson, Michael J; Reyes, Noe A; Ulufatu, Sheila; Bumbaca, Daniela; Yip, Victor; Mundo, Eduardo E; Majidy, Nicholas; Van Hoy, Marjie; Goriparthi, Saritha N; Trias, Anthony; Gill, Herman S; Williams, Simon P; Junutula, Jagath R; Fielder, Paul J; Khawli, Leslie A

    2013-12-12

    A known limitation of iodine radionuclides for labeling and biological tracking of receptor targeted proteins is the tendency of iodotyrosine to rapidly diffuse from cells following endocytosis and lysosomal degradation. In contrast, radiometal-chelate complexes such as indium-111-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (In-111-DOTA) accumulate within target cells due to the residualizing properties of the polar, charged metal-chelate-amino acid adduct. Iodine radionuclides boast a diversity of nuclear properties and chemical means for incorporation, prompting efforts to covalently link radioiodine with residualizing molecules. Herein, we describe the Ugi-assisted synthesis of [I-125]HIP-DOTA, a 4-hydroxy-3-iodophenyl (HIP) derivative of DOTA, and demonstration of its residualizing properties in a murine xenograft model. Overall, this study displays the power of multicomponent synthesis to yield a versatile radioactive probe for antibodies across multiple therapeutic areas with potential applications in both preclinical biodistribution studies and clinical radioimmunotherapies.

  11. [Pharmacokinetics of injection of iodine-131 labelling MEI-TUO-XI monoclonal antibody in human body].

    PubMed

    Li, Yunchun; Tan, Tianzhi; Mo, Tingshu; Lu, Wusheng; Deng, Houfu; Yang, Xiaochuan; Li, Xiao

    2007-08-01

    To study pharmacokinetics of injection of iodine-131 labelling MEI-TUO-XI monoclonal antibody (hepatoma monoclonal antibody HAb18 F(ab')2) in vivo. 24 cases of primary hepatocelluar carcinoma (PHC) were equally divided into the low dose group, middle dose group and high dose group. After the relevant injection was administrated into the hepatic artery of each case, intravenous blood and urine samples were separately collected at different time for determination of the radioactive count ratio (min(-1)). The proportion of 131I-HAb18 F(ab')2 in serum of each blood sample was determined, and the radioactive count ratio (min(-1)) of druggery for each blood sample was revised according to the proportion. The pharmacokinetic parameters were calculated using DAS ver 1.0 (Drug And Statistics for Windows) program. The component of urine radiomaterial was determined and the percentages of urine radioactivity in administration dosage were calculated. The catabolism of the injection with time accorded with dynamics two-compartment model. The catabolism product was mainly free-131I and was excreted via kidney; the urine radioactivity was 47.70%-51.16% of administration dosage during 120 h after administration of drug. Therefore, the pharmacokinetics of the injection can satisfy the clinical demands. The drug dose recommended for clinical use was 27.75 MBq of the injection for each kg of human body.

  12. Multiple immunoenzyme labeling using heat treatment combined with the polymer method: an analysis of the appropriate inactivation conditions of primary antibodies.

    PubMed

    Ikeda, Katsuhide; Suzuki, Takao; Tate, Genshu; Mitsuya, Toshiyuki

    2011-02-01

    Multiple immunoenzyme labeling is of considerable value to detect several antigens in the same specimen, although this technique is limited when the primary antibodies have been raised in the same animal species. Multiple immunoenzyme labeling using heat treatment is a simple, reliable and straightforward technique wherein the heat treatment prevents mixed labeling and cross-reaction. The present study determined the inactivation time for primary antibodies by heat treatment in order to apply this procedure to routine histopathological diagnosis and research, and found that the inactivation time differed among the primary antibodies. The secondary antibodies and the labeling enzyme were completely inactivated by heating for 10 min. Therefore, the inactivation of the primary antibodies is crucial to perform multiple immunoenzyme labeling using heat treatment. The sequential combination of the primary antibodies is also important; in the study presented here, an anti-thyroid transcription factor-1 (TTF-1) antibody should be used first and anti-cytokeratin AE1/AE3 antibody second, but not in the opposite sequence, to avoid a mixed-colour-labeling reaction. The present data provided the optimum combination of primary antibodies for multiple immunoenzyme labeling using heat treatment. Copyright © 2009 Elsevier GmbH. All rights reserved.

  13. Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody.

    PubMed

    Shirai, Akihiro; Henares, Terence G; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2016-05-23

    A single-step, easy-to-use, and fast capillary-type immunoassay device composed of a polyethylene glycol (PEG) coating containing two kinds of antibody-reagents, including an antibody-graphene oxide conjugate and fluorescently labelled antibody, was developed in this study. The working principle involved the spontaneous dissolution of the PEG coating, diffusion of reagents, and subsequent immunoreaction, triggered by the capillary action-mediated introduction of a sample solution. In a sample solution containing the target antigen, two types of antibody reagents form a sandwich-type antigen-antibody complex and fluorescence quenching takes place via fluorescence resonance energy transfer between the labelled fluorescent molecules and graphene oxide. Antigen concentration can be measured based on the decrease in fluorescence intensity. An antigen concentration-dependent response was obtained for the model target protein sample (human IgG, 0.2-10 μg mL(-1)). The present method can shorten the reaction time to within 1 min (approximately 40 s), while conventional methods using the same reagents require reaction times of approximately 20 min because of the large reaction scale. The proposed method is one of the fastest immunoassays ever reported. Finally, the present device was used to measure human IgG in diluted serum samples to demonstrate that this method can be used for fast medical diagnosis.

  14. Use of enzyme-labelled protein G assay for the detection of anti Borrelia burgdorferi antibodies in wild animal sera.

    PubMed

    Deruaz, D; Eid, P; Deruaz, J; Sempéré, A; Bourgouin, C; Rodhain, F; Pérez-Eid, C

    1996-10-01

    A modified ELISA was developed for the detection of anti-Borrelia burgdorferi (Bb) IgG antibodies in wild animal sera based on an Enzyme-Labelled-protein G Assay (ELGA). Microplates were coated with an extract of Bb sensu stricto strain (SVI) as antigen. Specific antibodies of the serum samples were detected by a peroxidase-labelled-protein G. Using comparative immunodiagnosis by means of a passive hemagglutination test (HA), ELGA was tested on 82 roe-deer blood samples. A correlation was found between the two methods (r = 0.66). Good reproducibility of titers was observed by ELGA technique. A minimal cross-reactivity was discovered with Leptospira. ELGA could facilitate the recognition of specific antibodies in collections of wild animal sera.

  15. Indium-111 labeled monoclonal antibodies (Ab): The effect of DTPA conjugation on the Ab activity and tissue distribution

    SciTech Connect

    Sakahara, H.; Endo, K.; Nakashima, T.; Ohta, H.; Okada, K.; Yoshida, O.; Ohmomo, Y.; Horiuchi, K.; Yokoyama, A.; Torizuka, K.

    1984-01-01

    Monoclonal antibodies (Ab) to human ..cap alpha..-fetoprotein (AFP) were conjugated with diethylenetriaminepentaacetic acid (DTPA) using cyclic DTPA anhydride and the obtained conjugates, DTPA-Ab, were labeled with In-111. The effect of DTPA conjugation on the affinity constant and the maximum binding capacity of Ab was evaluated by radioimmunoassay and Scatchard plot analysis and In-111 labeled DTPA-Ab were used for the radioimmunodetection of tumor. Ab containing 1.0 DTPA molecule per Ab showed almost full retention of both the affinity constant and the maximum binding capacity. Then, 40 ..mu..Ci of In-111 labeled DTPA-Ab were injected intravenously to nude mice bearing AFP-producing human testicular tumor and the resulted were compared with I-131 labeled Ab. Scintigraphy clearly revealed transplanted tumor. Localization of In-111 labeled DTPA-Ab was significantly higher than I-131 labeled Ab. Tumor to blood ratio obtained at 4 days after injection was 2.59 with In-111 labeled DTPA-Ab compared to 0.99 with I-131 labeled Ab. When more than 1.9 DTPA molecules were incorporated per Ab, the maximum binding capacity decreased, although the affinity constant was less affected. These In-111 labeled DTPA-Ab caused significantly higher liver accumulation. These results indicate that In-111 labeled DTPA-Ab at a cojugated DTPA to Ab molar ratio of 1.0 may be superior to I-131 labeled Ab for tumor imaging, but the maximum binding capacity and tissue distribution of In-111 labeled DTPA-AB are greatly dependent upon the number of DTPA molecules incorporated per Ab molecule.

  16. Differential signalling of NH2-terminal flag-labelled thrombopoietin receptor activated by TPO or anti-FLAG antibodies.

    PubMed

    Millot, Gaël A; Vainchenker, William; Duménil, Dominique; Svinarchuk, Fédor

    2004-03-01

    In this report, we compared activation of NH2-terminal FLAG-labelled thrombopoietin receptor (Mpl) by anti-FLAG antibodies and by thrombopoietin (TPO). We found that anti-FLAG monoclonal antibodies M1 dimerize FLAG-labelled receptor and trigger proliferation of BaF3/FLAG-Mpl cells. In UT7/FLAG-Mpl cells, activation of the FLAG-Mpl receptor by low TPO concentrations triggered proliferation, while high concentrations triggered differentiation. Activation of FLAG-Mpl receptors in these cells by all tested concentrations of M1 antibodies induced proliferation but not differentiation. Low TPO concentrations induced similar to M1 antibodies level of Jak2, Stat3, Stat5 and Akt phosphorylation. In contrast, only TPO and not M1 antibodies activated Erks phosphorylation. Since the anti-FLAG antibodies do not react with the TPO binding site of the receptor, we hypothesize that they can trigger a distinct signal by dimerizing Mpl in a manner different from that induced by TPO.

  17. Capture antibody targeted fluorescence in situ hybridization (CAT-FISH): dual labeling allows for increased specificity in complex samples.

    PubMed

    Stroot, Joyce M; Leach, Kelly M; Stroot, Peter G; Lim, Daniel V

    2012-02-01

    Pathogen detection using biosensors is commonly limited due to the need for sensitivity and specificity in detecting targets within mixed populations. These issues were addressed through development of a dual labeling method that allows for both liquid-phase fluorescence in situ hybridization (FISH) and capture antibody targeted detection (CAT-FISH). CAT-FISH was developed using Escherichia coli O157:H7 and Staphylococcus aureus as representative bacteria, and processing techniques were evaluated with regard to FISH intensities and antibody recognition. The alternative fixative solution, methacarn, proved to be superior to standard solid-phase paraformaldehyde fixation procedures, allowing both FISH labeling and antibody recognition. CAT-FISH treated cells were successfully labeled with FISH probes, captured by immunomagnetic separation using fluorescent cytometric array beads, and detected using a cytometric array biosensor. CAT-FISH treated cells were detectable with LODs comparable to the standard antibody-based technique, (~10(3)cells/ml in PBS), and the technique was also successfully applied to two complex matrices. Although immunomagnetic capture and detection using cytometric arrays were demonstrated, CAT-FISH is readily applicable to any antibody-based fluorescence detection platform, and further optimization for sensitivity is possible via inclusion of fluorescently tagged antibodies. Since the confidence level needed for positive identification of a detected target is often paramount, CAT-FISH was developed to allow two separate levels of specificity, namely nucleic acid and protein signatures. With proper selection of FISH probes and capture antibodies, CAT-FISH may be used to provide rapid detection of target pathogens from within complex matrices with high levels of confidence.

  18. Prediction of hematologic toxicity after radioimmunotherapy with (131)I-labeled anticarcinoembryonic antigen monoclonal antibodies.

    PubMed

    Juweid, M E; Zhang, C H; Blumenthal, R D; Hajjar, G; Sharkey, R M; Goldenberg, D M

    1999-10-01

    This study was undertaken to determine the factors affecting myelotoxicity after radioimmunotherapy (RAIT) with 131I-labeled anticarcinoembryonic antigen (anti-CEA) monoclonal antibodies (MAbs). Ninety-nine patients who received 131I-labeled MN-14 or NP-4 anti-CEA MAbs for the treatment of CEA-producing cancers were assessed for platelet and white blood cell (WBC) toxicity based on the common Radiation Therapy Oncology Group (RTOG) criteria. Univariate and multivariate regression analyses were used to identify the statistically significant factors affecting toxicity among the following variables: red marrow dose, baseline platelet and WBC counts, bone or marrow (or both) metastases, prior chemo- or radiotherapy, timing of prior chemo- or radiotherapy in relation to RAIT, type and number of prior chemotherapeutic regimens, age, sex, antibody form and cancer type. Red marrow dose, baseline platelet or WBC counts and multiple bone or marrow (or both) metastases were the only significant factors affecting hematologic toxicity according to both univariate and multivariate analyses, whereas chemotherapy, 3-6 mo before RAIT, was significant according to multivariate analysis. In this retrospective study, the multivariate regression equations using these four variables provided an exact fit for postRAIT platelet toxicity grade (PltGr) and WBC toxicity grade (WBCGr) in 40% and 46%, respectively, of the 99 patients included in the analysis. Moreover, severe (grade 3 or 4) PltGr and WBCGr could be classified accurately in all cases, whereas nonsevere (grade 0, 1, or 2) PltGr and WBCGr could be classified accurately in all but 6 of 13 cases of grade 2 toxicity, in which a severe toxicity grade was estimated using the regression equations. Red marrow dose, baseline blood counts, multiple bone or marrow (or both) metastases and recent chemotherapy are the most important factors related to hematologic toxicity after RAIT. This study provides a simple model for predicting

  19. Mechanism of surface plasmon resonance sensing by indirect competitive inhibition immunoassay using Au nanoparticle labeled antibody.

    PubMed

    Kabiraz, Dulal C; Morita, Kinichi; Sakamoto, Kazuhira; Kawaguchi, Toshikazu

    2017-09-01

    We investigated the use of a surface plasmon resonance (SPR) biosensor using an antibody (Ab) labeled with Au-nanoparticle (Ab-AuNP conjugate). As clenbuterol is a small molecule, an indirect competitive inhibition immunoassay was used. The SPR immunoassay using Ab-AuNP conjugate had an extremely low limit of the detection (LOD) with a magnitude of 0.05 ppt (0.05pgmL(-1)), which was 40 times lower than that of unlabeled Ab. To identify the key factor in determining the LOD of the indirect competitive inhibition immunoassay, affinity constants of the surface immunoreaction (K1) and of the premixed solution (αK2) were evaluated. We found that the dielectric constant change due to AuNP labeling of Ab did not affect on the affinity constants, because all the amplification magnitude terms canceled out in the equations. Thus, the K1 and αK2 values were determined to 3.0×10(11)M(-1) and 2.9×10(12)M(-1), respectively, which were three and four orders of magnitude higher, respectively, than those of unlabeled Ab. The simulation plot of LOD with respect to K1 and αK2 showed that a K1 one order of magnitude lower than αK2 produced a ppt level LOD. Because the affinity constants are determined by the molar concentrations of reactant and product, the molar mass of the Ab or Ab-AuNP conjugate in the sample solution containing 1ppm (1μgmL(-1)) highly affects the constants. Consequently, molar mass adjustment can be used to adjust the LOD in an indirect competitive inhibition immunoassay as needed for a practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Radiotherapy of CD19 expressing Daudi tumors in nude mice with Yttrium-90-labeled anti-CD19 antibody.

    PubMed

    Vallera, Daniel A; Elson, Michael; Brechbiel, Martin W; Dusenbery, Kathryn E; Burns, Linda J; Jaszcz, Waclaw B; Ramsay, Norma K; Panoskaltsis-Mortar, Angela; Kuroki, David W; Wagner, John E; Vitetta, Ellen S; Kersey, John H

    2004-02-01

    Studies were performed to determine the suitability of using two different anti-CD19 monoclonal antibodies to deliver the high energy beta-particle emitting isotope 90Y to B-cell lymphoma grown as flank tumors in athymic nude mice. The antibodies BU12 and HD37, both of the IgG1 subclass, recognize CD19, an internalizing B-lineage-specific membrane glycoprotein and member of the Ig supergene family. The antibodies were readily labeled with 90Y using the highly stable chelate, 1B4M-MX-DTPA. The radioimmunoconjugates selectively bound to the CD19 expressing B cell line Daudi, but not to CD19 negative control cells. Significantly more 90Y anti-CD19 bound to Daudi tumors growing in nude mice than did a control non-binding antibody (p = 0.001). The biodistribution data correlated with an anti-tumor effect. Anti-tumor activity was dose dependent and the best results were observed in mice receiving a single dose of approximately 300 uCi. The anti-CD19 antibody had significantly better anti-tumor activity as compared to a control 90Y-labeled antibody and most mice survived over 119 days with no evidence of tumor (p < 0.003). Histology studies showed no significant injury to the kidney, liver, or small intestine. Because radiolabeled anti-CD19 antibody can be used to deliver radiation selectively to lymphohematopoietic tissue, these data support the use of 90Y anti-CD19 antibodies in treating B-cell malignancies.

  1. Label Free QCM Immunobiosensor for AFB1 Detection Using Monoclonal IgA Antibody as Recognition Element

    PubMed Central

    Ertekin, Özlem; Öztürk, Selma; Öztürk, Zafer Ziya

    2016-01-01

    This study introduces the use of an IgA isotype aflatoxin (AF) specific monoclonal antibody for the development of a highly sensitive Quartz Crystal Microbalance (QCM) immunobiosensor for the detection of AF in inhibitory immunoassay format. The higher molecular weight of IgA antibodies proved an advantage over commonly used IgG antibodies in label free immunobiosensor measurements. IgA and IgG antibodies with similar affinity for AF were used in the comparative studies. Sensor surface was prepared by covalent immobilization of AFB1, using self assembled monolayer (SAM) formed on gold coated Quartz Crystal, with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) method using a diamine linker. Nonspecific binding to the surface was decreased by minimizing the duration of EDC/NHS activation. Sensor surface was chemically blocked after AF immobilization without any need for protein blocking. This protein free sensor chip endured harsh solutions with strong ionic detergent at high pH, which is required for the regeneration of the high affinity antibody-antigen interaction. According to the obtained results, the detection range with IgA antibodies was higher than IgG antibodies in QCM immunosensor developed for AFB1. PMID:27529243

  2. Chemistry and bifunctional chelating agents for binding (177)Lu.

    PubMed

    Parus, Józef L; Pawlak, Dariusz; Mikolajczak, Renata; Duatti, Adriano

    2015-01-01

    A short overview of fundamental chemistry of lutetium and of structural characteristics of lutetium coordination complexes, as relevant for understanding the properties of lutetium-177 radiopharmaceuticals, is presented. This includes basic concepts on lutetium electronic structure, lanthanide contraction, coordination geometries, behavior in aqueous solution and thermodynamic stability. An illustration of the structure and binding properties of the most important chelating agents for the Lu(3+) ion in aqueous solution is also reported with specific focus on coordination complexes formed with linear and macrocyclic polydentate amino-carboxylate donor ligands.

  3. Antigen-Antibody Affinity for Dry Eye Biomarkers by Label Free Biosensing. Comparison with the ELISA Technique

    PubMed Central

    Laguna, Maríafe; Holgado, Miguel; Hernandez, Ana L.; Santamaría, Beatriz; Lavín, Alvaro; Soria, Javier; Suarez, Tatiana; Bardina, Carlota; Jara, Mónica; Sanza, Francisco J.; Casquel, Rafael

    2015-01-01

    The specificity and affinity of antibody-antigen interactions is a fundamental way to achieve reliable biosensing responses. Different proteins involved with dry eye dysfunction: ANXA1, ANXA11, CST4, PRDX5, PLAA and S100A6; were validated as biomarkers. In this work several antibodies were tested for ANXA1, ANXA11 and PRDX5 to select the best candidates for each biomarker. The results were obtained by using Biophotonic Sensing Cells (BICELLs) as an efficient methodology for label-free biosensing and compared with the Enzyme-Linked Immuno Sorbent Assay (ELISA) technique. PMID:26287192

  4. Antigen-Antibody Affinity for Dry Eye Biomarkers by Label Free Biosensing. Comparison with the ELISA Technique.

    PubMed

    Laguna, Maríafe; Holgado, Miguel; Hernandez, Ana L; Santamaría, Beatriz; Lavín, Alvaro; Soria, Javier; Suarez, Tatiana; Bardina, Carlota; Jara, Mónica; Sanza, Francisco J; Casquel, Rafael

    2015-08-13

    The specificity and affinity of antibody-antigen interactions is a fundamental way to achieve reliable biosensing responses. Different proteins involved with dry eye dysfunction: ANXA1, ANXA11, CST4, PRDX5, PLAA and S100A6; were validated as biomarkers. In this work several antibodies were tested for ANXA1, ANXA11 and PRDX5 to select the best candidates for each biomarker. The results were obtained by using Biophotonic Sensing Cells (BICELLs) as an efficient methodology for label-free biosensing and compared with the Enzyme-Linked Immuno Sorbent Assay (ELISA) technique.

  5. Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach.

    PubMed

    Vugts, Danielle J; Vervoort, Annelies; Stigter-van Walsum, Marijke; Visser, Gerard W M; Robillard, Marc S; Versteegen, Ron M; Vulders, Roland C M; Herscheid, J Koos D M; van Dongen, Guus A M S

    2011-10-19

    The application of intact monoclonal antibodies (mAbs) as targeting agents in nuclear imaging and radioimmunotherapy is hampered by the slow pharmacokinetics of these molecules. Pretargeting with mAbs could be beneficial to reduce the radiation burden to the patient, while using the excellent targeting capacity of the mAbs. In this study, we evaluated the applicability of the Staudinger ligation as pretargeting strategy using an antibody-azide conjugate as tumor-targeting molecule in combination with a small phosphine-containing imaging/therapeutic probe. Up to 8 triazide molecules were attached to the antibody without seriously affecting its immunoreactivity, pharmacokinetics, and tumor uptake in tumor bearing nude mice. In addition, two (89)Zr- and (67/68)Ga-labeled desferrioxamine (DFO)-phosphines, a (177)Lu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-phosphine and a (123)I-cubyl phosphine probe were synthesized and characterized for their pharmacokinetic behavior in nude mice. With respect to the phosphine probes, blood levels at 30 min after injection were <5% injected dose per gram tissue, indicating rapid blood clearance. In vitro Staudinger ligation of 3.33 μM antibody-azide conjugate with 1 equiv of radiolabeled phosphine, relative to the azide, in aqueous solution resulted in 20-25% efficiency after 2 h. The presence of 37% human serum resulted in a reduced ligation efficiency (reduction max. 30% at 2 h), while the phosphines were still >80% intact. No in vivo Staudinger ligation was observed in a mouse model after injection of 500 μg antibody-azide, followed by 68 μg DFO-phosphine at t = 2 h, and evaluation in blood at t = 7 h. To explain negative results in mice, Staudinger ligation was performed in vitro in mouse serum. Under these conditions, a side product with the phosphine was formed and ligation efficiency was severely reduced. It is concluded that in vivo application of the Staudinger ligation in a pretargeting approach in

  6. Lutetium-177 Labeled Peptides: The European Institute of Oncology Experience.

    PubMed

    Carollo, Angela; Papi, Stefano; Chinol, Marco

    2016-01-01

    Peptide receptor radionuclide therapy (PRRT) using radiolabeled somatostatin analogues has shown encouraging results in various somatostatin receptor positive tumors. Partial remission rates up to 30% have been documented as well as significant improvements in quality of life and survival. This treatment takes advantage of the high specific binding of the radiolabeled peptide to somatostatin receptors overexpressed by the tumors thus being more effective on the tumor cells with less systemic side-effects. The development of macrocyclic chelators conjugated to peptides made possible the stable binding with various radionuclides. In particular 177Lu features favourable physical characteristics with a half-life of 6.7 days, emission of β- with energy of 0.5 MeV for treatment and γ-emissions suitable for imaging. The present contribution describes the learning process achieved at the European Institute of Oncology (IEO) since the first application of 90Y labeled peptides to the therapy of neuroendocrine tumors back in 1997. Continuous improvements led to the preparation of a safe 177Lu labeled peptide for human use. Our learning curve began with the identification of the optimal characteristics of the isotope paying attention to its chemical purity and specific activity along with the optimization of the parameters involved in the radiolabeling procedure. Also the radiation protection issues have been improved along the years and recently more and more attention has been devoted to the pharmaceutical aspects involved in the preparation. The overall issue of the quality has now been completed by drafting an extensive documentation with the goal to deliver a safe and reliable product to our patients.

  7. Synthesis and characterization of colloidal gold particles as labels for antibodies as used in lateral flow devices.

    PubMed

    Cvak, Barbara; Pum, Dietmar; Molinelli, Alexandra; Krska, Rudolf

    2012-04-21

    Based on well established citrate reduction protocols for the synthesis of colloidal gold particles, this work focuses on the characterization of these colloids for further use as color labels in lateral flow devices. A reproducible production method has been developed for the synthesis of well characterized colloidal gold particles to be employed in Lateral Flow Devices (LFDs). It has been demonstrated that when undertaking chemical reduction of gold salts with sodium citrate, the amount of reducing agent employed could be used to directly control the size of the resultant particles. A protocol was thereby developed for the synthesis of colloidal gold particles of pre-defined diameters in the range of 15 to 60 nm and of consistent size distribution. The absorption maxima (λ(max)) of the reaction solutions were analyzed by UV/VIS measurements to determine approximate particle sizes, which were confirmed with transmission electron microscopy (TEM) measurements. Colloidal gold particles of about 40 nm in diameter were synthesized and used for labeling monoclonal anti-mycotoxin antibodies (e.g. zearalenone). To deduce the extent of antibody coupling to these particles, smaller colloids with 15 nm diameter were labeled with anti-species specific antibodies. Both solutions were mixed and then scanned by TEM to obtain information about the success of coupling.

  8. (89)Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: implications for future cancer therapy.

    PubMed

    Karmani, Linda; Bouchat, Virginie; Bouzin, Caroline; Levêque, Philippe; Labar, Daniel; Bol, Anne; Deumer, Gladys; Marega, Riccardo; Bonifazi, Davide; Haufroid, Vincent; Michiels, Carine; Grégoire, Vincent; Feron, Olivier; Lucas, Stéphane; Vander Borght, Thierry; Gallez, Bernard

    2014-09-01

    Antibody-labeled gold nanoparticles represent an attractive tool for cancer imaging and therapy. In this study, the anti-CD105 antibody was conjugated with gold nanoparticles (AuNPs) for the first time. The antibody biodistribution in mice before and after conjugation to AuNPs was studied, with a focus on tumor targeting. Antibodies were radiolabeled with 89Zr before conjugation to AuNPs (5 nm). Immunonanoconjugates were characterized in vitro in terms of size, stability in plasma and binding to the target. Quantitative PET imaging and ICP-MS analysis assessed in vivo distribution and specific tumor targeting of tracers. The tumor uptake of immunoconjugates was preserved up to 24 h after injection, with high tumor contrast and selective tumor targeting. No major tracer accumulation was observed over time in nonspecific organs. ICP-MS analysis confirmed the antibody specificity after nanoparticle conjugation. The anti-CD105 antibody conjugation to AuNPs did not greatly affect CD105-dependent tumor uptake and the efficacy of tumor targeting for cancer detection.

  9. Analysis of binding of a technetium-99m-labeled monoclonal antibody to lentivirus-infected cells

    SciTech Connect

    Papageorges, M.; Gavin, P.R.; Adams, D.S.; Cheevers, W.P.; Barbee, D.D.; Sande, R.D. )

    1990-11-01

    Caprine arthritis-encephalitis (CAE) is a model for the study of lentiviral infections. The authors' hypothesis is that radioimmunodetection has the potential to detect lentiviral proteins at the surface of infected cells. A monoclonal antibody (CAEV92A1) specific for a CAE virus (CAEV)-associated glycoprotein and a control antibody were radiolabeled with technetium-99m ({sup 99m}Tc) using the pretinning method. Cell binding assays were used to evaluate immunoreactivity and binding properties of {sup 99m}Tc-labeled antibodies to CAEV-infected cells. {sup 99m}Tc-CAEV92A1 bound preferentially to paraformaldehyde-fixed and live CAEV-infected cells. {sup 99m}Tc-CAEV92A1 did not appear to be shed rapidly from its binding site.

  10. Antibodies raised against tobacco aquaporins of the PIP2 class label viscin tissue of the explosive dwarf mistletoe fruit.

    PubMed

    Ross Friedman, C M; Ross, B N; Martens, G D

    2010-01-01

    Dwarf mistletoes, genus Arceuthobium, are parasitic flowering plants and forest pests. In western North America, Arceuthobium americanum (lodgepole pine dwarf mistletoe) is principally found on Pinus contorta var. latifolia (lodgepole pine). Dwarf mistletoes disperse their seeds by an explosive process that involves the buildup of hydrostatic pressure within a mucilaginous fruit tissue called the 'viscin'. Living viscin tissue envelops the discharged seeds. This study examined the possibility that aquaporins, critical in plant water relations, might be found in the dwarf mistletoe fruit, specifically the viscin cells. An antibody raised against a tobacco plasma membrane intrinsic 2 (PIP2) aquaporin was used with a gold-labeled secondary antibody to probe dwarf mistletoe fruit at various developmental stages. Viscin cell plasma membranes were successfully labeled with the anti-tobacco probe, and the validity of the immunolabeling was supported by Western blot analysis, showing a strong signal at about 30 kDa, which is at the expected size of a PIP2. A definitive immunolabeling pattern, supported by quantification of gold signal per membrane length, was observed: viscin cells sampled early in development had abundant gold label at their plasma membranes (1.93 +/- 0.13 to 2.13 +/- 0.33 gold particles per microm membrane), while other areas of the cells had no discernible label. Viscin cells sampled near the time of explosive discharge had significantly less label at the plasma membrane (0.21 gold particles +/- 0.11 per microm membrane, P < 0.05), and label was seen at vesicular membranes. Aquaporins likely have a role in directing water to the viscin mucilage early in development, but are retrieved via endocytosis to prevent excess water loss from viscin cells when discharge is imminent.

  11. A method for triple fluorescence labeling with Vicia villosa agglutinin, an anti-parvalbumin antibody and an anti-G-protein-coupled receptor antibody.

    PubMed

    Bausch, S B

    1998-06-01

    The aim of the original study [S.B. Bausch, C. Chavkin, Vicia villosa agglutinin labels a subset of neurons coexpressing both the mu opioid receptor and parvalbumin in the developing rat subiculum, Dev. Brain Res., 97, 1996, 169-177] [3] was to develop a method for identifying a subset of mu opioid receptor-expressing interneurons in the rat subiculum for electrophysiological studies. Previous studies had shown that a subset of parvalbumin-positive neurons in the rat subiculum could be labeled with the lectin, Vicia villosa agglutinin (VVA) [C.T. Drake, K.A. Mulligan, T.L. Wimpey, A. Hendrickson, C. Chavkin, Characterization of Vicia villosa agglutinin-labeled GABAergic neurons in the hippocampal formation and in acutely dissociated hippocampus, Brain Res., 554, 1991, 176-185] [11], and that mu opioid receptor immunoreactivity (-IR) and parvalbumin-IR were colocalized in a subset of neurons in the hippocampus and dentate gyrus [S.B. Bausch, C. Chavkin, Colocalization of mu and delta opioid receptors with GABA, parvalbumin and a G-protein-coupled inwardly rectifying potassium channel in the rodent brain, Analgesia, 1, 1995, 282-285] [2]. We hypothesized that a subset of mu opioid receptor-expressing neurons in the subiculum also would express the calcium binding protein, parvalbumin, and could be labeled with VVA. Labeling of live neurons with VVA [11] then could be used to identify these neurons. This protocol was designed to triple-label neurons expressing the mu opioid receptor, parvalbumin and the carbohydrate group, N-acetylgalactosamine (which binds VVA [S.E. Tollefsen, R. Kornfeld, The B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine residues alpha-linked to serine or threonine residues in cell surface glycoproteins, J. Biol. Chem., 258, 1983, 5172-5176][M.P. Woodward, W.W. Young, R.A. Bloodgood, Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation, J. Immunol. Methods, 78, 1985, 143-153] [25

  12. Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer.

    PubMed

    Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C

    2012-01-27

    In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling

  13. Development and biological studies of ¹⁷⁷Lu-DOTA-rituximab for the treatment of Non-Hodgkin's lymphoma.

    PubMed

    Massicano, Adriana V F; Pujatti, Priscilla B; Alcarde, Lais F; Suzuki, Miriam F; Spencer, Patrick J; Araújo, Elaine B

    2016-01-01

    The optimization of DOTA-NHS-ester conjugation to Rituximab using different Ab:DOTA molar ratios (1:10, 1:20, 1:50 and 1:100) was studied. High radiochemical yield, in vitro stability and immunoreactive fraction were obtained for the Rituximab conjugated at 1:50 molar ratio, resulting in the incorporation of an average number of 4.9 ± 1.1 DOTA per Rituximab molecule. Labeling with 177Lu was performed in high specific activity with great in vitro stability. Biodistribution in healthy and xenographed mice showed tumor uptake and high in vivo stability as evidenced by low uptake in bone. The properties of 177Lu-DOTA-Rituximab prepared from DOTA-NHS-ester suggest the potential for the application of the 177Lu-labeled antibody in preliminary clinical studies.

  14. Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5, and Cy7.

    PubMed

    Ballou, B; Fisher, G W; Deng, J S; Hakala, T R; Srivastava, M; Farkas, D L

    1998-01-01

    Monoclonal antibodies to two different targetable antigens were conjugated to each of four commercially available cyanine fluorochromes. Equal amounts of all four antibodies were coinjected into tumor-bearing animals and imaged. Small, superficial tumors were adequately labeled using all four fluorochromes. Large tumors were labeled well only by Cy7, probably due to self-masking and dilution effects. Cy7 was superior to other cyanine fluorochromes for visualizing structures located deep within the animal.

  15. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform.

    PubMed

    Landry, J P; Ke, Yaohuang; Yu, Guo-Liang; Zhu, X D

    2015-02-01

    Monoclonal antibodies (mAbs) are major reagents for research and clinical diagnosis. For their inherently high specificities to intended antigen targets and thus low toxicity in general, they are pursued as one of the major classes of new drugs. Yet binding properties of most monoclonal antibodies are not well characterized in terms of affinity constants and how they vary with presentations and/or conformational isomers of antigens, buffer compositions, and temperature. We here report a microarray-based label-free assay platform for high-throughput measurements of monoclonal antibody affinity constants to antigens immobilized on solid surfaces. Using this platform we measured affinity constants of over 1410 rabbit monoclonal antibodies and 46 mouse monoclonal antibodies to peptide targets that are immobilized through a terminal cysteine residue to a glass surface. The experimentally measured affinity constants vary from 10 pM to 200 pM with the median value at 66 pM. We compare the results obtained from the microarray-based platform with those from a benchmarking surface-plasmon-resonance-based (SPR) sensor (Biacore 3000).

  16. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging.

    PubMed

    Massa, Sam; Xavier, Catarina; De Vos, Jens; Caveliers, Vicky; Lahoutte, Tony; Muyldermans, Serge; Devoogdt, Nick

    2014-05-21

    Site-specific labeling of molecular imaging probes allows the development of a homogeneous tracer population. The resulting batch-to-batch reproducible pharmacokinetic and pharmacodynamic properties are of great importance for clinical translation. Camelid single-domain antibody-fragments (sdAbs)-the recombinantly produced antigen-binding domains of heavy-chain antibodies, also called Nanobodies-are proficient probes for molecular imaging. To safeguard their intrinsically high binding specificity and affinity and to ensure the tracer's homogeneity, we developed a generic strategy for the site-specific labeling of sdAbs via a thio-ether bond. The unpaired cysteine was introduced at the carboxyl-terminal end of the sdAb to eliminate the risk of antigen binding interference. The spontaneous dimerization and capping of the unpaired cysteine required a reduction step prior to conjugation. This was optimized with the mild reducing agent 2-mercaptoethylamine in order to preserve the domain's stability. As a proof-of-concept the reduced probe was subsequently conjugated to maleimide-DTPA, for labeling with indium-111. A single conjugated tracer was obtained and confirmed via mass spectrometry. The specificity and affinity of the new sdAb-based imaging probe was validated in a mouse xenograft tumor model using a modified clinical lead compound targeting the human epidermal growth factor receptor 2 (HER2) cancer biomarker. These data provide a versatile and standardized strategy for the site-specific labeling of sdAbs. The conjugation to the unpaired cysteine results in the production of a homogeneous group of tracers and is a multimodal alternative to the technetium-99m labeling of sdAbs.

  17. Astatine-211-labeled antibodies for treatment of disseminated ovarian cancer: an overview of results in an ovarian tumor model.

    PubMed

    Andersson, Håkan; Elgqvist, Jörgen; Horvath, György; Hultborn, Ragnar; Jacobsson, Lars; Jensen, Holger; Karlsson, Börje; Lindegren, Sture; Palm, Stig

    2003-09-01

    The aim of the study was to establish and refine a preclinical model to alpha-immunoradiotherapy of ovarian cancer. At-211 was produced by cyclotron irradiation of a bismuth-209 target and isolated using a novel dry distillation procedure. Monoclonal antibodies were radiohalogenated with the intermediate reagent N-succinimidyl 3-(trimethylstannyl)benzoate and characterized in terms of radiochemical yield and in vitro binding properties. In vitro OVCAR-3 cells were irradiated using an external Cobalt-60 beam, as reference, or At-211-albumin and labeled antibody. Growth assays were used to establish cell survival. A Monte Carlo program was developed to simulate the energy imparted and the track length distribution. Nude mice were used for studies of WBC depression, with various activities of Tc-99m antibodies, as reference, and At-211 antibodies. In efficacy studies, OVCAR-3 cells were inoculated i.p., and animals were treated 2 weeks later. The animals were either dissected 6 weeks later or followed-up for long-term survival. A rapid distillation procedure, as well as a rapid and high-yield, single-pot labeling procedure, was achieved. From growth inhibition data, the relative biological effectiveness of the alpha-emission for OVCAR-3 cells was estimated to be approximately 5, which is in the same range as found in vivo for hematological toxicity. At-211 MOv18 was found to effectively inhibit the development of tumors and ascites, also resulting in long-term survival without significant toxic effect. Use of the short-range, high-linear energy transfer alpha-emitter At-211 conjugated to a surface epitope-recognizing monoclonal antibody appears to be highly efficient without significant toxicity in a mouse peritoneal tumor model, urging a Phase I clinical trial.

  18. Immunoscintigraphy and radioimmunotherapy in Cuba: experiences with labeled monoclonal antibodies for cancer diagnosis and treatment (1993-2013).

    PubMed

    Peña, Yamilé; Perera, Alejandro; Batista, Juan F

    2014-01-01

    INTRODUCTION The availability of monoclonal antibodies in Cuba has facilitated development and application of innovative techniques (immunoscintigraphy and radioimmunotherapy) for cancer diagnosis and treatment. Objective Review immunoscintigraphy and radioimmunotherapy techniques and analyze their use in Cuba, based on the published literature. In this context, we describe the experience of Havana's Clinical Research Center with labeled monoclonal antibodies for cancer diagnosis and treatment during the period 1993-2013. EVIDENCE ACQUISITION Basic concepts concerning cancer and monoclonal antibodies were reviewed, as well as relevant international and Cuban data. Forty-nine documents were reviewed, among them 2 textbooks, 34 articles by Cuban authors and 13 by international authors. All works published by the Clinical Research Center from 1993 through 2013 were included. Bibliography was obtained from the library of the Clinical Research Center and Infomed, Cuba's national health telematics network, using the following keywords: monoclonal antibodies, immunoscintigraphy and radioimmunotherapy. RESULTS Labeling the antibodies (ior t3, ior t1, ior cea 1, ior egf/r3, ior c5, h-R3, 14F7 and rituximab) with radioactive isotopes was a basic line of research in Cuba and has fostered their use as diagnostic and therapeutic tools. The studies conducted demonstrated the good sensitivity and diagnostic precision of immunoscintigraphy for detecting various types of tumors (head and neck, ovarian, colon, breast, lymphoma, brain). Obtaining different radioimmune conjugates with radioactive isotopes such as 99mTc and 188Re made it possible to administer radioimmunotherapy to patients with several types of cancer (brain, lymphoma, breast). The objective of 60% of the clinical trials was to determine pharmacokinetics, internal dosimetry and adverse effects of monoclonal antibodies, as well as tumor response; there were few adverse effects, no damage to vital organs, and a positive

  19. 125I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma

    PubMed Central

    Hu, Peng-Hui; Pan, Lan-Hong; Wong, Patrick Ting-Yat; Chen, Wen-Hui; Yang, Yan-Qing; Wang, Hong; Xiang, Jun-Jian; Xu, Meng

    2016-01-01

    AIM: To investigate the inhibitory efficacy of 125I-labeled anti-basic fibroblast growth factor (bFGF) monoclonal antibody (mAb) in hepatocellular carcinoma (HCC). METHODS: bFGF mAb was prepared by using the 1G9B9 hybridoma cell line with hybridization technology and extracted from ascites fluid through a Protein G Sepharose affinity column. After labeling with 125I through the chloramine-T method, bFGF mAb was further purified by a Sephadex G-25 column. Gamma radiation counter GC-1200 detected radioactivity of 125I-bFGF mAb. The murine H22 HCC xenograft model was established and randomized to interventions with control (phosphate-buffered saline), 125I-bFGF mAb, 125I plus bFGF mAb, bFGF mAb, or 125I. The ratios of tumor inhibition were then calculated. Expression of bFGF, fibroblast growth factor receptor (FGFR), platelet-derived growth factor, and vascular endothelial growth factor (VEGF) mRNA was determined by quantitative reverse transcriptase real-time polymerase chain reaction. RESULTS: The purified bFGF mAb solution was 8.145 mg/mL with a titer of 1:2560000 and was stored at -20 °C. After coupling, 125I-bFGF mAb was used at a 1: 1280000 dilution, stored at 4 °C, and its specific radioactivity was 37 MBq/mg. The corresponding tumor weight in the control, 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 1.88 ± 0.25, 1.625 ± 0.21, 1.5 ± 0.18, 1.41 ± 0.16, and 0.98 ± 0.11 g, respectively. The tumor inhibition ratio in the 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 13.6%, 20.2%, 25.1%, and 47.9%, respectively. Growth of HCC xenografts was inhibited significantly more in the 125I-bFGF mAb group than in the other groups (P < 0.05). Expression of bFGF and FGFR mRNA in the 125I-bFGF mAb group was significantly decreased in comparison with other groups (P < 0.05). Groups under interventions revealed increased expression of VEGF mRNA (except for 125I group) compared with the control group. CONCLUSION: 125I-bFGF m

  20. A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for ToRCH-Related Antibodies

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Guo, Qing; He, Rong; Li, Ding; Zhang, Xueqing; Bao, Chenchen; Hu, Hengyao; Cui, Daxiang

    2009-12-01

    Quantum dot is a special kind of nanomaterial composed of periodic groups of II-VI, III-V or IV-VI materials. Their high quantum yield, broad absorption with narrow photoluminescence spectra and high resistance to photobleaching, make them become a promising labeling substance in biological analysis. Here, we report a quick and parallel analytical method based on quantum dots for ToRCH-related antibodies including Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes simplex virus type 1 (HSV1) and 2 (HSV2). Firstly, we fabricated the microarrays with the five kinds of ToRCH-related antigens and used CdTe quantum dots to label secondary antibody and then analyzed 100 specimens of randomly selected clinical sera from obstetric outpatients. The currently prevalent enzyme-linked immunosorbent assay (ELISA) kits were considered as “golden standard” for comparison. The results show that the quantum dots labeling-based ToRCH microarrays have comparable sensitivity and specificity with ELISA. Besides, the microarrays hold distinct advantages over ELISA test format in detection time, cost, operation and signal stability. Validated by the clinical assay, our quantum dots-based ToRCH microarrays have great potential in the detection of ToRCH-related pathogens.

  1. Dual-color labeled anti-mucin 1 antibody for imaging of ovarian cancer: A preliminary animal study

    PubMed Central

    ZHANG, QIONG; WANG, FAN; WU, YAO-SEN; ZHANG, KE-KE; LIN, YAN; ZHU, XUE-QIONG; LV, JIE-QIANG; LU, XIAO-SHENG; ZHANG, XIAO-LEI; HU, YUE; HUANG, YIN-PING

    2015-01-01

    To investigate the feasibility of the anti-mucin 1 (anti-MUC1/CD227) antibody in the fluorescent imaging of ovarian cancer, the CD227 antibody and a control IgG antibody were labeled with a near-infrared dye [Cy5.5-N-hydroxysuccinimide (NHS)] and a green dye (fluorescein-NHS). In vivo fluorescence images were obtained at 4, 12 and 36 h after injection of the probes into OVCAR3 tumor-bearing mice. The tumor to background ratios were calculated for both probes. Ex vivo fluorescence images were obtained following sacrifice at 36 h. After conjugation to Cy5.5 and fluorescein, the dual-color labeled CD227 probe (Ab-FL-Cy5.5) could be visualized by both green and near-infrared fluorescence. Uptake by the tumors was higher for the Ab-FL-Cy5.5 than for the IgG-Cy5.5 probe. All tumors could be visualized by in vivo imaging with an acceptable tumor to background ratio. Ex vivo studies demonstrated the advantages of using green fluorescence imaging to guide the resection of tumor tissues. These preliminary data indicate that the Ab-FL-Cy5.5 probe is promising for further tumor imaging applications and clinical translation. PMID:25663888

  2. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy

    SciTech Connect

    Kozak, R.W.; Atcher, R.W.; Gansow, O.A.; Friedman, A.M.; Hines, J.J.; Waldmann, T.A.

    1986-01-01

    Anti-Tac, a monoclonal antibody directed to the human interleukin 2 (IL-2) receptor, has been successfully conjugated to the alpha-particle-emitting radionuclide bismuth-212 by use of a bifunctional ligand, the isobutylcarboxycarbonic anhydride of diethylenetriaminepentaacetic acid. The physical properties of 212Bi are appropriate for radioimmunotherapy in that it has a short half-life, deposits its high energy over a short distance, and can be obtained in large quantities from a radium generator. Antibody specific activities of 1-40 microCi/microgram (1 Ci = 37 GBq) were achieved. Specificity of the 212Bi-labeled anti-Tac was demonstrated for the IL-2 receptor-positive adult T-cell leukemia line HUT-102B2 by protein synthesis inhibition and clonogenic assays. Activity levels of 0.5 microCi or the equivalent of 12 rad/ml of alpha radiation targeted by anti-Tac eliminated greater than 98% the proliferative capabilities of HUT-102B2 cells with more modest effects on IL-2 receptor-negative cell lines. Specific cytotoxicity was blocked by excess unlabeled anti-Tac but not by human IgG. In addition, an irrelevant control monoclonal antibody of the same isotype labeled with 212Bi was unable to target alpha radiation to cell lines. Therefore, 212Bi-labeled anti-Tac is a potentially effective and specific immunocytotoxic reagent for the elimination of IL-2 receptor-positive cells. These experiments thus provide the scientific basis for use of alpha-particle-emitting radionuclides in immunotherapy.

  3. Radioimmunoimaging of metastatic medullary carcinoma of the thyroid gland using an indium-111-labeled monoclonal antibody to CEA

    SciTech Connect

    Edington, H.D.; Watson, C.G.; Levine, G.; Tauxe, W.N.; Yousem, S.A.; Unger, M.; Kowal, C.D.

    1988-12-01

    Elevated levels of carcinoembryonic antigen (CEA) or calcitonin after surgical therapy for medullary carcinoma of the thyroid gland (MCT) indicate the presence of residual or metastatic disease. CEA elevations appear to be prognostically more reliable in patients with metastatic disease and suggest a more virulent tumor. Attempts to stage the disease with use of conventional imaging techniques are usually inadequate, as is the therapy for disseminated or recurrent MCT. An indium-111-labeled anti-CEA monoclonal antibody (ZCE-025) was used to image metastases in a patient with MCT. Potential applications of monoclonal antibody technology in the management of MCT would include (1) preoperative differentiation of unicentric from multicentric thyroid gland involvement, (2) detection of regional or distant metastases or both, (3) measurement of response to systemic therapy, and (4) the facilitation of radionuclide immunoconjugate therapy.

  4. A Novel PET Imaging Using 64Cu-Labeled Monoclonal Antibody against Mesothelin Commonly Expressed on Cancer Cells

    PubMed Central

    Kobayashi, Kazuko; Sasaki, Takanori; Takenaka, Fumiaki; Yakushiji, Hiromasa; Fujii, Yoshihiro; Kishi, Yoshiro; Kita, Shoichi; Shen, Lianhua; Kumon, Hiromi; Matsuura, Eiji

    2015-01-01

    Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb to in vivo imaging to detect MSLN-expressing tumors. In in vitro and ex vivo immunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with 64Cu via a chelating agent DOTA and was used in both in vitro cell binding assay and in vivo positron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that 64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The 64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than 18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions. PMID:25883990

  5. Quinone-Based Polymers for Label-Free and Reagentless Electrochemical Immunosensors: Application to Proteins, Antibodies and Pesticides Detection

    PubMed Central

    Piro, Benoit; Reisberg, Steeve; Anquetin, Guillaume; Duc, Huynh-Thien; Pham, Minh-Chau

    2013-01-01

    Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective. PMID:25587398

  6. Preparation of (212)Pb-labeled monoclonal antibody using a novel (224)Ra-based generator solution.

    PubMed

    Westrøm, Sara; Generalov, Roman; Bønsdorff, Tina B; Larsen, Roy H

    2017-08-01

    Alpha-emitting radionuclides have gained considerable attention as payloads for cancer targeting molecules due to their high cytotoxicity. One attractive radionuclide for this purpose is (212)Pb, which by itself is a β-emitter, but acts as an in vivo generator for its short-lived α-emitting daughters. The standard method of preparing (212)Pb-labeled antibodies requires handling and evaporation of strong acids containing high radioactivity levels by the end user. An operationally easier and more rapid process could be useful since the 10.6h half-life of (212)Pb puts time constraints on the preparation protocol. In this study, an in situ procedure for antibody labeling with (212)Pb, using a solution of the generator nuclide (224)Ra, is proposed as an alternative protocol for preparing (212)Pb-radioimmunoconjugates. Radium-224, the generator radionuclide of (212)Pb, was extracted from its parent nuclide, (228)Th. Lead-212-labeling of the TCMC-chelator conjugated monoclonal antibody trastuzumab was carried out in a solution containing (224)Ra in equilibrium with progeny. Subsequently, the efficiency of separating the (212)Pb-radioimmunoconjugate from (224)Ra and other unconjugated daughter nuclides in the solution using either centrifugal separation or a PD-10 desalting size exclusion column was evaluated and compared. Radiolabeling with (212)Pb in (224)Ra-solutions was more than 90% efficient after only 30min reaction time at TCMC-trastuzumab concentrations from 0.15mg/mL and higher. Separation of (212)Pb-labeled trastuzumab from (224)Ra using a PD-10 column was clearly superior to centrifugal separation. This method allowed recovery of approximately 75% of the (212)Pb-antibody-conjugate in the eluate, and the remaining amount of (224)Ra was only 0.9±0.8% (n=7). The current work demonstrates a novel method of producing (212)Pb-based radioimmunoconjugates from a (224)Ra-solution, which may be simpler and less time-consuming for the end user compared with the method

  7. A rapid radioimmunoassay using /sup 125/I-labeled staphylococcal protein A for antibody to varicella-zoster virus

    SciTech Connect

    Richman, D.D.; Cleveland, P.H.; Oxman, M.N.; Zaia, J.A.

    1981-05-01

    A sensitive radioimmunoassay for serum antibody to varicella-zoster virus is described; it uses 125I-labeled staphylococcal protein A and a specially designed immunofiltration apparatus. The assay accurately distinguishes between individuals who are susceptible and those who are immune to infection with varicella-zoster virus. In addition, it can detect passive antibody in recipients of varicella-zoster immune globulin. This radioimmunoassay also detects the heterologous antibody responses that occasionally occur in patients infected with herpes simplex virus, which also have been detected by other antibody assays. The particular advantages of this assay are the use of noninfectious reagents, the speed of execution (less than 3 hr), the requirement for only small quantities of serum (30 microliters), the objectivity of end-point determination, and the capability of screening large numbers of sera. Consequently, this radioimmunoassay is especially useful for the rapid identification of susceptible individuals, which is essential for the appropriate management of patients and hospital personnel after exposure to varicella.

  8. Thaw-and-use target cells pre-labeled with calcein AM for antibody-dependent cell-mediated cytotoxicity assays.

    PubMed

    Chung, Shan; Nguyen, Van; Lin, Yuwen Linda; Kamen, Lynn; Song, An

    2017-08-01

    In vitro antibody-dependent cell-mediated cytotoxicity (ADCC) assays are routinely performed to support the research and development of therapeutic antibodies. In ADCC assays, target cells bound by the antibodies are lysed by activated effector cells following interactions between the Fc region of the bound antibody and Fcγ receptors on effector cells. Target cell lysis is typically measured by quantification of released endogenous enzymes, e.g., lactate dehydrogenase, or measurement of released exogenous labels, e.g., (51)Cr, europium or calcein. ADCC assays based on the detection of exogenous labels released from lysed target cells generally show higher sensitivity and require shorter incubation times. However, target cells are usually labeled immediately prior to assay, which inadvertently introduces additional assay variations due to differences in target cell conditions and labeling/handling processes. In this report, we describe the use of thaw-and-use pre-labeled target cells for ADCC assays. Thaw-and-use target cells in our experiments were pre-labeled with the fluorescent dye calcein AM, cryopreserved in single-use aliquots and used directly in assays after thawing. Upon thaw, the pre-labeled cells displayed viability and label retention comparable to freshly labeled cells, responded to ADCC mediated by both peripheral blood mononuclear cells and engineered natural killer cells, performed stably for at least 3 years and provided favorable precision and accuracy to ADCC assays. Implementation of thaw-and-use pre-labeled target cells in ADCC assays can help to alleviate both cell culture and dye labeling derived variability, increase the flexibility of assay scheduling and improve assay consistency and robustness. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A CCD-based reader combined quantum dots-labeled lateral flow strips for ultrasensitive quantitative detection of anti-HBs antibody.

    PubMed

    Zhang, Xueqing; Li, Ding; Wang, Can; Zhi, Xiao; Zhang, Chunlei; Wang, Kan; Cui, Daxiang

    2012-06-01

    Herein we reported a CCD-based reader combined quantum dots-labeled lateral flow strips for ultrasensitive quantitative detection of anti-HBs antibody. The CdTe quantum dots were prepared, then were used to label Hepatitis B Virus surface antigen, and then were fabricated into lateral flow strips. The as-prepared lateral flow strips were used to test different concentration of anti-HBV surface antibodies. The CCD-based reader was designed and fabricated, the quantitative analysis software was compiled, and resultant CCD-based reader system was used for quantitative analysis of examined anti-HBs antibodies on the strips. Results showed that the quantum dots-labeled lateral flow strips could detect the anti-HBs antibody with the limitation concentration of 200 pg/mL, the CCD-based reader system could detect anti-HBs antibody with the sensitivity of 2 pg/mL. In conclusion, the prepared CCD-based reader combined quantum dots-labeled lateral flow strips can be used for quantitative detection of anti-HBs antibody in sera with the sensitivity of 2 pg/mL, and has great potential in applications such as ultrasensitive detection of HBV antigens or antibodies, and other tumor biomarkers in near future.

  10. Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: Imaging of tumors hosted in nude mice

    SciTech Connect

    Le Doussal, J.M.; Gruaz-Guyon, A.; Martin, M.; Gautherot, E.; Delaage, M.; Barbet, J. )

    1990-06-01

    Antibody conjugates were prepared by coupling F(ab')2 or Fab' fragments of an antibody specific for the human high molecular weight-melanoma associated antigen to Fab' fragments of an antibody specific for indium-diethylenetriaminepentaacetate complexes. Monovalent and bivalent haptens were synthesized by reacting the dipeptide tyrosyl-lysine with diethylenetriaminepentaacetic cyclic anhydride. In vitro, the antibody conjugate mediated binding of the 111In-labeled haptens to melanoma cells. In vivo, it allowed specific localization of the haptens in A375 tumors. The bivalent hapten exhibited much higher efficiency at targeting 111In onto cells, both in vitro and in vivo. Antibody conjugate and hapten doses (2 micrograms and 1 pmol, respectively) and the delay between antibody conjugate and tracer injections (24 h) were adjusted to maximize tumor uptake (4% injected dose/g) and tumor to normal tissue contrast (greater than 3) obtained 3 h after injection of the 111In-labeled bivalent hapten. This two-step technique, when compared to direct targeting of 111In-labeled F(ab')2 fragments, provided lower localization of injected activity into the tumor (x 0.25), but higher tumor/tissue ratios, especially with respect to liver (x 7), spleen (x 8), and kidneys (x 10). In addition, high contrast images were obtained within 3 hours, instead of days. Thus, antibody conjugate-mediated targeting of small bivalent haptens, labeled with short half-life isotopes, is proposed as a general method for improving tumor radioimmunolocalization.

  11. Effect of leukocyte antibodies on the fate in vivo of indium-111-labeled granulocytes

    SciTech Connect

    McCullough, J.; Weiblen, B.J.; Clay, M.E.; Forstrom, L.

    1981-07-01

    The effect of different leukocyte antibodies on the fate in vivo of granulocytes is not known. Thus, the optimum in vitro serologic tests to determine a safe and effective granulocyte transfusion or to diagnose immune destruction of granulocytes in other clinical situations have not been identified. We have studied the effect of granulocyte agglutinating (GA), granulocytotoxic (GC), and lymphocytotoxic (LC) antibodies on the intravascular recovery and half-life (t 1/2) and the extravascular localization of Indium-111-granulocytes in 50 patients. GA antibodies caused reduced granulocyte recovery and t 1/2 in three of three non-neutropenic patients (one with anti-NB1), increased sequestration of cells in the liver, and failure of granulocytes to localize at sites of infection in two of two patients (one with anti-NA1). In contrast, GC antibodies in five patients and LC antibodies in one patient did not cause reduced intravascular recovery or t 1/2 of granulocytes. In nine patients with GC and six patients with LC antibodies, incompatible granulocytes localized at known sites of infection. It appears that GA, but not GC nor LC, antibodies alter the fate in vivo of granulocytes.

  12. 177 Lu-Labeled Phosphoramidate-Based PSMA Inhibitors: The Effect of an Albumin Binder on Biodistribution and Therapeutic Efficacy in Prostate Tumor-Bearing Mice

    SciTech Connect

    Choy, Cindy J.; Ling, Xiaoxi; Geruntho, Jonathan J.; Beyer, Sophia K.; Latoche, Joseph D.; Langton-Webster, Beatrice; Anderson, Carolyn J.; Berkman, Clifford E.

    2017-01-01

    Prostate-specific membrane antigen (PSMA) continues to be an active biomarker for small-molecule PSMA-targeted imaging and therapeutic agents for prostate cancer and various non-prostatic tumors that are characterized by PSMA expression on their neovasculature. One of the challenges for small-molecule PSMA inhibitors with respect to delivering therapeutic payloads is their rapid renal clearance. In order to overcome this pharmacokinetic challenge, we outfitted a 177Lu-labeled phosphoramidate-based PSMA inhibitor (CTT1298) with an albumin-binding motif (CTT1403) and compared its in vivo performance with that of an analogous compound lacking the albumin-binding motif (CTT1401). The radiolabeling of CTT1401 and CTT1403 was achieved using click chemistry to connect 177Lu-DOTA-N3 to the dibenzocyclooctyne (DBCO)-bearing CTT1298 inhibitor cores. A direct comparison in vitro and in vivo performance was made for CTT1401 and CTT1403; the specificity and efficacy by means of cellular uptake and internalization, biodistribution, and therapeutic efficacy were determined for both compounds. While both compounds displayed excellent uptake and rapid internalization in PSMA+ PC3-PIP cells, the albumin binding moiety in CTT1403 conferred clear advantages to the PSMA-inhibitor scaffold including increased circulating half-life and prostate tumor uptake that continued to increase up to 168 h post-injection. This increased tumor uptake translated into superior therapeutic efficacy of CTT1403 in PSMA+ PC3-PIP human xenograft tumors.

  13. Composition and method for detecting cancer with technetium labeled antibody fragments

    SciTech Connect

    Burchiel, S. W.; Crockford, D. R.; Rhodes, B. A.

    1984-10-23

    F(ab')/sub 2/ or Fab fragments of antibodies to: (a) human chorionic gonadotropin (hCG), hCG alpha subunit, hCG beta subunit, or an hCG-like material; or (b) other tumor specific or tumor associated molecules, to include carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), human melanoma associated antigens, human sarcoma associated antigens or other antigens, are radiolabeled with technetium-99m (Tc-99m). When the F(ab')/sub 2/ or Fab fragments of antibody to such tumor associated antigens are injected intravenously into a patient, the radiolabeled composition accumulates at tumor sites. The accumulation of the cancer seeking radiopharmaceutical at tumor sites permits detection by external gamma scintigraphy. Thus, the composition is useful in the monitoring, localization and detection of cancer in the body. In an alternative composition, a double antibody approach to tumor localization using radiolabeled F(ab')/sub 2/ or Fab fragments is utilized. In this approach, a tumor specific antibody in the form of IgG, F(ab')/sub 2/ or Fab is first administered to a patient intravenously. Following a sufficient period of time, a second antibody in the form of F(ab')/sub 2/ or Fab is administered. The second antibody is radiolabeled with Tc-99m and has the property that it is reactive with the first antibody. This double antibody method has the advantage over a single antibody approach in that smaller tumors can be localized and detected and that the total amount of radioactive trace localized at the cancer site is increased.

  14. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  15. Detection of fluorophore-labeled antibodies by surface-enhanced fluorescence on metal nanoislands

    NASA Astrophysics Data System (ADS)

    Schalkhammer, Thomas G. M.; Aussenegg, Franz R.; Leitner, Alfred; Brunner, Harald; Hawa, Gerhard; Lobmaier, Christina; Pittner, Fritz

    1997-06-01

    In fluorescence labelled immunosensing the discrimination of labels remaining in the bulk solution from labels bound to the analyte at the sensor surface is a basic optical problem. It is shown that application of surface enhanced fluorescence at a layer of noble metal nano-particles can increase the surface-to-background signal ratio. We explain the enhancement mechanism by an electrodynamic model and discuss the interaction between metal particle and fluorophore for the excitation and emission process. We show the principal guidelines for optimization of that processes. We find that the obtained discrimination power increases with decreasing intrinsic quantum efficiency of the fluorophore, suggesting the application of new classes of labels, namely low-quantum efficiency fluorophores. This theoretical finding is shown by a practical model experiment.

  16. A Reproducible Technique for Specific Labeling of Antigens Using Preformed Fluorescent Molecular IgG-F(ab’)2 Complexes From Primary Antibodies of the Same Species

    PubMed Central

    OWEN, GETHIN RH.; HÄKKINEN, LARI; WU, CHUANYUE; LARJAVA, HANNU

    2011-01-01

    Immunolabeling two different antigens using the indirect approach with antibodies from the same species is not possible as secondary antibodies can bind to either primary target antibodies. In this study, we describe how preformed complexes of primary and secondary labeled antibodies can be used in such circumstances. In this situation, the first antigen is labeled using the conventional indirect method followed by incubation with the preformed primary–secondary antibody complex against the second antigen. To prevent unbound secondary antibody from binding the indirectly-labeled antibodies, resulting in a false positive, we quenched excess secondary antibody with nonimmune murine serum from the species of the primary antibody. Before the formation of the preformed complex, the optimum dilution of both primary and secondary antibodies was determined. Once these concentrations were established, the concentration of nonimmune murine serum required to quench excess unbound secondary was determined. This step was accomplished by first incubating the sample with an antibody against an antigen known to be localized away from the antigen of interest, followed by the preformed complex. If specific staining was seen, other than that expected from the preformed complex, then the concentration of the serum was deemed insufficient for quenching, and increased accordingly. We demonstrate that this approach is successful in determining the optimum conditions for the preformation of ascites and purified monoclonal primary IgG with fluorescently conjugated F(ab’)2. Double immunolabelling of two focal adhesion antigens and two cytoskeletal proteins, with two murine primary antibodies, are presented as examples of the methodology. PMID:20025053

  17. Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model.

    PubMed

    Grünberg, Jürgen; Lindenblatt, Dennis; Dorrer, Holger; Cohrs, Susan; Zhernosekov, Konstantin; Köster, Ulli; Türler, Andreas; Fischer, Eliane; Schibli, Roger

    2014-10-01

    The L1 cell adhesion molecule (L1CAM) is considered a valuable target for therapeutic intervention in different types of cancer. Recent studies have shown that anti-L1CAM radioimmunotherapy (RIT) with (67)Cu- and (177)Lu-labelled internalising monoclonal antibody (mAb) chCE7 was effective in the treatment of human ovarian cancer xenografts. In this study, we directly compared the therapeutic efficacy of anti-L1CAM RIT against human ovarian cancer under equitoxic conditions with the radiolanthanide (177)Lu and the potential alternative (161)Tb in an ovarian cancer therapy model. Tb was produced by neutron bombardment of enriched (160)Gd targets. (161)Tb and (177)Lu were used for radiolabelling of DOTA-conjugated antibodies. The in vivo behaviour of the radioimmunoconjugates (RICs) was assessed in IGROV1 tumour-bearing nude mice using biodistribution experiments and SPECT/CT imaging. After ascertaining the maximal tolerated doses (MTD) the therapeutic impact of 50 % MTD of (177)Lu- and (161)Tb-DOTA-chCE7 was evaluated in groups of ten mice by monitoring the tumour size of subcutaneous IGROV1 tumours. The average number of DOTA ligands per antibody was 2.5 and maximum specific activities of 600 MBq/mg were achieved under identical radiolabelling conditions. RICs were stable in human plasma for at least 48 h. (177)Lu- and (161)Tb-DOTA-chCE7 showed high tumour uptake (37.8-39.0 %IA/g, 144 h p.i.) with low levels in off-target organs. SPECT/CT images confirmed the biodistribution data. (161)Tb-labelled chCE7 revealed a higher radiotoxicity in nude mice (MTD: 10 MBq) than the (177)Lu-labelled counterpart (MTD: 12 MBq). In a comparative therapy study with equitoxic doses, tumour growth inhibition was better by 82.6 % for the (161)Tb-DOTA-chCE7 than the (177)Lu-DOTA-chCE7 RIT. Our study is the first to show that anti-L1CAM (161)Tb RIT is more effective compared to (177)Lu RIT in ovarian cancer xenografts. These results suggest that (161)Tb is a promising candidate for

  18. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications.

    PubMed

    Oltolina, Francesca; Gregoletto, Luca; Colangelo, Donato; Gómez-Morales, Jaime; Delgado-López, José Manuel; Prat, Maria

    2015-02-10

    Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.

  19. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Radioiodinated iodobenzoyl conjugates of a monoclonal antibody Fab fragment. In vivo comparisons with chloramine-T-labeled Fab

    SciTech Connect

    Wilbur, D.S.; Hadley, S.W.; Grant, L.M.; Hylarides, M.D. )

    1991-03-01

    A comparative investigation of the biodistributions of radioiodinated p- and m-iodobenzoyl conjugates of a monoclonal antibody Fab fragment, NR-LU-10 Fab, and the same antibody Fab fragment radioiodinated by the chloramine-T (ChT) method has been carried out in mice. Coinjected, dual-isotope studies in athymic mice with tumor xenografts have demonstrated that there are only minor differences in the in vivo distributions of the iodobenzoyl-labeled Fabs, except in the excretory organs, kidneys, and intestines, where major differences were observed. Similarly, coinjection of either the p-iodobenzoyl or m-iodobenzoyl conjugate of NR-LU-10 Fab with the Fab radioiodinated with ChT/radioiodide into BALB/c mice provided additional data that indicated that the two iodobenzoyl conjugates distributed similar in a number of selected tissues. The tissue-distribution differences of the regioisomeric iodobenzoyl conjugates in relation to the ChT-radioiodinated Fab were large for the stomach and neck, consistent with previous studies. The most notable difference between the two iodobenzoyl conjugates was the kidney activity, where the m-iodobenzoyl conjugate was similar to the directly labeled Fab, but the p-iodobenzoyl-conjugated Fab was higher by nearly a factor of 2.

  1. An Ultrasensitive Electrochemical Immunosensor for Alpha-Fetoprotein Using an Envision Complex-Antibody Copolymer as a Sensitive Label

    PubMed Central

    Xiong, Ping; Gan, Ning; Cao, Yuting; Hu, Futao; Li, Tianhua; Zheng, Lei

    2012-01-01

    A novel strategy is presented for sensitive detection of alfa-fetoprotein (AFP), using a horseradish peroxidase (HRP)-functionalized Envision antibody complex (EVC) as the label. The Envision-AFP signal antibody copolymer (EVC-AFP Ab2) was composed of a dextran amine skeleton anchoring more than 100 molecules of HRP and 15 molecules of secondary antibody, and acted as a signal tag in the immunosensor. The sensor was constructed using the following steps: First, gold electrode (GE) was modified with nano-gold (AuNPs) by electro-deposition in HAuCl4 solution. The high affinity of the AuNPs surface facilitates direct formation of a self-assembled thiolated protein G layer. Next, the coated GE was incubated in a solution of AFP capture antibody (AFP Ab1); these antibodies attach to the thiolated protein G layer through their non-antigenic regions, leaving the antigen binding sites for binding of target analyte. Following a sandwich immunoreaction, an EVC-AFP Ab2-AFP-AFP Ab1 immunocomplex was formed on the electrode surface, allowing large amounts of HRP on the complex to produce an amplified electrocatalytic current of hydroquinone (HQ) in the presence of hydrogen peroxide (H2O2). Highly amplified detection was achieved, with a detection limit of 2 pg/mL and a linear range of 0.005–0.2 ng/mL for AFP in 10 μL undiluted serum; this is near or below the normal levels of most cancer biomarker proteins in human serum. Measurements of AFP in the serum of cancer patients correlated strongly with standard enzyme-linked immunosorbent assays. These easily fabricated EVC-modified immunosensors show excellent promise for future fabrication of bioelectronic arrays. By varying the target biomolecules, this technique may be easily extended for use with other immunoassays, and thus represents a versatile design route.

  2. Pharmacokinetics of /sup 99m/Tc(Sn)- and /sup 131/I-labeled anti-carcinoembryonic antigen monoclonal antibody fragments in nude mice

    SciTech Connect

    Zimmer, A.M.; Kazikiewicz, J.M.; Rosen, S.T.; Spies, S.M.

    1987-03-15

    The biodistribution, radioimmunoimaging, and high pressure liquid chromatography activity profiles of /sup 99m/Tc(Sn) and /sup 131/I-labeled anti-carcinoembryonic antigen monoclonal antibody fragments were compared. Nude mice, bearing specific (colon carcinoma, LS174T) and nonspecific (pancreatic carcinoma, MIA) xenografts were given injections of the respective radiolabeled antibody fragments and also of irrelevant /sup 125/I-labeled antibody fragments (MOPC-21). The animals were imaged at 24 h after being given injections, they were sacrificed, and biodistribution studies were performed. Results of the study showed high kidney uptake (48.6% injected dose (ID)/g +/- 8.1% (SD)) and low tumor uptake (1.5% ID/g +/- 0.6%) for /sup 99m/Tc(Sn)-labeled fragments and higher uptake (4.4% ID/g +/- 0.6%) for /sup 131/I-labeled fragments, resulting in a higher localization index for the radioiodinated monoclonal antibody fragments. Imaging results showed good tumor visualization at 24 h after injection for the /sup 131/I-labeled fragments and poor tumor visualization with predominant kidney uptake for /sup 99m/Tc(Sn)-labeled fragments. After radiolabeling, high pressure liquid chromatography analysis indicated that 131I was primarily associated with F(ab')2 fragments, whereas 99mTc was mostly associated with Fab' fragments.

  3. 90Y-Labeled Anti-ROBO1 Monoclonal Antibody Exhibits Antitumor Activity against Small Cell Lung Cancer Xenografts

    PubMed Central

    Fujiwara, Kentaro; Koyama, Keitaro; Suga, Kosuke; Ikemura, Masako; Saito, Yasutaka; Hino, Akihiro; Iwanari, Hiroko; Kusano-Arai, Osamu; Mitsui, Kenichi; Kasahara, Hiroyuki; Fukayama, Masashi; Kodama, Tatsuhiko; Hamakubo, Takao; Momose, Toshimitsu

    2015-01-01

    Introduction ROBO1 is a membrane protein that contributes to tumor metastasis and angiogenesis. We previously reported that 90Y-labeled anti-ROBO1 monoclonal antibody (90Y-anti-ROBO1 IgG) showed an antitumor effect against ROBO1-positive tumors. In this study, we performed a biodistribution study and radioimmunotherapy (RIT) against ROBO1-positive small cell lung cancer (SCLC) models. Methods For the biodistribution study, 111In-labeled anti-ROBO1 monoclonal antibody (111In-anti-ROBO1 IgG) was injected into ROBO1-positive SCLC xenograft mice via the tail vein. To evaluate antitumor effects, an RIT study was performed, and SCLC xenograft mice were treated with 90Y-anti-ROBO1 IgG. Tumor volume and body weight were periodically measured throughout the experiments. The tumors and organs of mice were then collected, and a pathological analysis was carried out. Results As a result of the biodistribution study, we observed tumor uptake of 111In-anti-ROBO1 IgG. The liver, kidney, spleen, and lung showed comparably high accumulation of 111In-labeled anti-ROBO1. In the RIT study, 90Y-anti-ROBO1 IgG significantly reduced tumor volume compared with baseline. Pathological analyses of tumors revealed coagulation necrosis and fatal degeneration of tumor cells, significant reduction in the number of Ki-67-positive cells, and an increase in the number of apoptotic cells. A transient reduction of hematopoietic cells was observed in the spleen, sternum, and femur. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 IgG is a promising treatment for ROBO1-positive SCLC. PMID:26017283

  4. Two- and three-color immunofluorescence using aminocoumarin, fluorescein, and phycoerythrin-labelled antibodies and single laser flow cytometry.

    PubMed

    Delia, D; Martinez, E; Fontanella, E; Aiello, A

    1991-01-01

    Antibodies coupled to 7-aminocoumarin (AMCA) emit a bright blue fluorescence under ultraviolet (UV) excitation and are therefore ideal for three-color immunofluorescence (IF) with fluorescein (FITC) and phycoerythrin (PE) labeled reagents; however, due to the different absorption spectra, the use of these fluorophores for multicolor flow-cytometric analysis requires a double light excitation source (e.g., two-laser system). We report a strategy which uses a single argon-ion laser to simultaneously excite AMCA, FITC, and PE, thus allowing the flow cytometric analysis of three immunological parameters. When the UV-visible argon-ion laser is fitted with an appropriate set of mirrors, the 35.1-363.8 nm (UV) and 488 nm wavelengths (accounting for 80 mW and 520 mW, respectively) are simultaneously generated; these lines can then be exactly focused on the same observation point by an achromatic cylindrical lens. A number of comparative analysis were performed with this instrumental set up to verify the sensitivity of AMCA IF and its possible application for multicolor immunophenotypic evaluation of blood cell subsets. When AMCA- and FITC-labeled antimouse Ig antibodies were assessed for their ability to detect limiting amounts of mouse monoclonal antibody bound to cells, the former was less sensitive than the latter. A number of factors, including differences in excitation energy (80 mW for AMCA and 520 mw for FITC) and extinction coefficients (1.9 x 10(4) for AMCA and 6 x 10(4) for FITC) could explain this result.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Polarization-based immunoassay in aqueous solution using Au nanoparticle-labeled antibody

    NASA Astrophysics Data System (ADS)

    Mizuno, N.; Takeshita, Y.; Kobayashi, J.; Esashika, K.; Saiki, T.

    2014-04-01

    Here we describe an ultrasensitive antigen-antibody immunoassay using gold nanoparticles (AuNPs). Polarization microscopy is used to discriminate individual AuNP dimers from isolated single AuNPs by means of their Brownian motion in aqueous solution. The optical anisotropy and rotational diffusion time were measured to provide accurate and robust discrimination. Since the size of a naked antibody is comparable to that of an AuNP, the distance between two AuNPs (inter-dimer distance) is rather large, and therefore the optical anisotropy is seriously degraded. To address this problem, we digested the antibody with the protease pepsin to reduce the distance. Autocorrelation analysis allowed discrimination of the difference in optical anisotropy and rotational diffusion time. Setting an appropriate threshold for the measurement enabled sufficient accuracy in the discrimination.

  6. Nanocrystal clusters in combination with spectral imaging to improve sensitivity in antibody labeling applications of fluorescent nanocrystals

    NASA Astrophysics Data System (ADS)

    Maier, John S.; Panza, Janice L.; Bootman, Matt

    2007-02-01

    Composition-tunable nanocrystals are fluorescent nanoparticles with a uniform particle size and with adjustable optical characteristics. When used for optical labeling of biomolecular targets these and other nanotechnology solutions have enabled new approaches which are possible because of the high optical output, narrow spectral signal, consistent quantum efficiency across a broad emission range and long lived fluorescent behavior of the nanocrystals. When coupled with spectral imaging the full potential of multiplexing multiple probes in a complex matrix can be realized. Spectral imaging can be used to improve sensitivity of narrowband fluorophores through application of chemometric image processing techniques used to reduce the influence of autofluorescence background. Composition-tunable nanocrystals can be complexed together to form nanoclusters which have the advantage of significantly stronger signal and therefore a higher sensitivity. These nanoclusters can be targeted in biomolecular systems using standard live-cell labeling and immunohistochemistry based techniques. Composition-tunable nanocrystals and nanoclusters have comparable mass and brightness across a wide emission range. This enables the production of nanocrystal-based probes that have comparable reactivity and sensitivity over a large color range. We present spectral imaging results of antibody targeted nanocrystal cluster labeling of target proteins in cultured cells and a Western blot experiment. The combination of spectral imaging with the use of clusters of nanocrystals further improves the sensitivity over either of the approaches independently.

  7. An ellipsoidal mirror for detection of laser-induced fluorescence in capillary electrophoresis system: applications for labelled antibody analysis.

    PubMed

    Rodat, Audrey; Kalck, Fabien; Poinsot, Véréna; Feurer, Bernard; Couderc, François

    2008-02-01

    An LIF detector was integrated into a CE system which uses a ball lens to focus the laser beam on the CE capillary. The detector employs an ellipsoid that is glued on the capillary window, to permit the collection of the fluorescence in the capillary. This 'trapped' fluorescence stays in the capillary because the angle of the silica/air interface is greater than the critical angle. The performance of this new detector setup is found to be identical to the collinear setup using the same ball lens. An application to the analysis of FITC-labeled IgG was optimized using a 14 cm effective length capillary. The LOD of an FITC-labeled IgG2 at an excitation wavelength of 488 nm was 150 pg/mL, which was 10 times better than the LOD recorded with slab gel silver staining. Using a tetramethylrhodamine (TAMRA)-labeled IgG2 and a 532 nm excitation wavelength the LOD is 50 pg/mL. The electropherograms of four different commercial FITC conjugates of IgG were studied. The presence of aggregates was observed in two samples while close kinetics of reduction was observed between free aggregates and high aggregates concentration samples. The integrated LIF detector provides an extremely powerful and convenient tool for antibody analysis and should be useful for therapeutic MAb control in pharmaceutical facilities.

  8. A new application of scanning electrochemical microscopy for the label-free interrogation of antibody-antigen interactions: Part 2.

    PubMed

    Holmes, Joanne L; Davis, Frank; Collyer, Stuart D; Higson, Séamus P J

    2012-09-05

    Within this paper we describe the use of scanning electrochemical microscopy (SECM) to fabricate a dotted array of biotinylated polyethyleneimine which was then used to immobilise first neutravidin and then a biotinylated antibody towards a relevant antigen of interest (PSA, NTx, ciprofloxacin). These antigens were selected both for their clinical relevance but also since they display a broad range of molecular weights, to determine whether the size of the antigen used effects the sensitivity of this approach. The SECM was then used to image the binding of both complementary and non-complementary antigens in a label-free assay. Imaging of the arrays before and following exposure to various concentrations of antigen in buffer showed clear evidence for specific binding of the complementary antigens to the antibody functionalised dots. Non-specific binding was also quantified by control experiments with other antigens. This demonstrated non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen of interest at the surface of the dots. The binding of ciprofloxacin was investigated both in simple buffer solution and in a more complex media, bovine milk. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    ERIC Educational Resources Information Center

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  10. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    ERIC Educational Resources Information Center

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  11. Biodistributions, Myelosuppression, and Toxicities in Mice Treated with an Anti-CD45 Antibody Labeled with the alpha-Emitting Radionuclides Bismuth-213 or Astatine-211

    SciTech Connect

    Nakamae, Hirohisa; Wilbur, D. Scott; Hamlin, Donald K.; Thakar, Monica S.; Santos, E. B.; Fisher, Darrell R.; Kenoyer, Aimee L.; Pagel, John M.; Press, Oliver W.; Storb, Rainer; Sandmaier, B. M.

    2009-03-15

    We previously investigated 213Bi-labeled anti-CD45 antibody to replace total body irradiation as conditioning for hematopoietic cell transplantation in a canine model. While this allowed sustained engraftment of marrow, limited availability and high cost of 213Bi led to a preliminary investigation in mice of 211At-labeled antibody for the same application. To gain an understanding of the differences between the two radionuclides, biodistribution and myelosuppression/toxicity studies were conducted with 213Bi- and 211At-labeled rat anti-murine CD45 antibody, 30F11, conjugates. After injecting mice with 2-50 μCi on 10 μg 30F11 conjugate or 20 μCi on 2 or 40 μg conjugate, biodistributions, myelosuppression and non-hematological toxicities were evaluated. Biodistribution studies showed that the spleen had the highest concentration of radioactivity, ranging from167-417 % injected dose/gram (%ID/g) at 24 h after injection in the 211At studies and 45-166 %ID/g at 3 h after injection in the 213Bi studies. The higher concentrations observed for 211At-labeled 30F11 was likely due to its longer half-life which, permitted more localization of antibody to the spleen before decay. 211At was more effective at myelosuppression for the same (mCi) quantity of injected radioactivity. Injection of only 20 or 50 μCi 211At resulted in lethal myeloablation. There was severe reversible acute hepatic toxicity with 50 μCi 213Bi, but not with lower doses or any dose of 211At. No significant renal toxicity occurred with either radionuclide. The data suggested that considerably lower quantities of 211At-labeled anti-CD45 antibody than 213Bi-labeled antibody might be effective for myelosuppression.

  12. Dynamic studies of lymphocytes labelled with indium-111 during and after treatment with monoclonal anti-idiotype antibody in advanced B cell lymphoma.

    PubMed Central

    Rankin, E M; Hekman, A; Hardeman, M R; Hoefnagel, C A

    1984-01-01

    The migration pattern of lymphocytes labelled with indium-111 was followed in a patient with B cell non-Hodgkin's lymphoma treated with a murine monoclonal anti-idiotype antibody. During the early phase of continuous infusion of antibody rapid fluxes of labelled lymphocytes into and out of the blood were seen. Dynamic scanning showed immediate uptake in the lungs; thereafter activity decreased in the lungs and increased in the liver. Studies of labelled and unlabelled cells in the circulation showed that treatment resulted in the removal of lymphocytes from the blood which was repopulated from an extravascular compartment. Tumour cells were shown to be cleared from the blood by the reticuloendothelial system in the liver. Indium-111 should be used circumspectly because it may cause chromosomal damage in labelled cells, but it is clearly useful as a radiolabel for following the migration pathways of lymphocytes in vivo. Images FIG 4 FIG 5 FIG 6 PMID:6435791

  13. Enzyme-labeled Antigen Method: Development and Application of the Novel Approach for Identifying Plasma Cells Locally Producing Disease-specific Antibodies in Inflammatory Lesions

    PubMed Central

    Mizutani, Yasuyoshi; Shiogama, Kazuya; Onouchi, Takanori; Sakurai, Kouhei; Inada, Ken-ichi; Tsutsumi, Yutaka

    2016-01-01

    In chronic inflammatory lesions of autoimmune and infectious diseases, plasma cells are frequently observed. Antigens recognized by antibodies produced by the plasma cells mostly remain unclear. A new technique identifying these corresponding antigens may give us a breakthrough for understanding the disease from a pathophysiological viewpoint, simply because the immunocytes are seen within the lesion. We have developed an enzyme-labeled antigen method for microscopic identification of the antigen recognized by specific antibodies locally produced in plasma cells in inflammatory lesions. Firstly, target biotinylated antigens were constructed by the wheat germ cell-free protein synthesis system or through chemical biotinylation. Next, proteins reactive to antibodies in tissue extracts were screened and antibody titers were evaluated by the AlphaScreen method. Finally, with the enzyme-labeled antigen method using the biotinylated antigens as probes, plasma cells producing specific antibodies were microscopically localized in fixed frozen sections. Our novel approach visualized tissue plasma cells that produced 1) autoantibodies in rheumatoid arthritis, 2) antibodies against major antigens of Porphyromonas gingivalis in periodontitis or radicular cyst, and 3) antibodies against a carbohydrate antigen, Strep A, of Streptococcus pyogenes in recurrent tonsillitis. Evaluation of local specific antibody responses expectedly contributes to clarifying previously unknown processes in inflammatory disorders. PMID:27006517

  14. Labeling monoclonal antibodies and F(ab')2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity.

    PubMed Central

    Zalutsky, M R; Garg, P K; Friedman, H S; Bigner, D D

    1989-01-01

    alpha-Particles such as those emitted by 211At may be advantageous for radioimmunotherapy since they are radiation of high linear energy transfer, depositing high energy over a short distance. Here we describe a strategy for labeling monoclonal antibodies and F(ab')2 fragments with 211At by means of the bifunctional reagent N-succinimidyl 3-(trimethylstannyl)benzoate. An intact antibody, 81C6, and the F(ab')2 fragment of Me1-14 (both reactive with human gliomas) were labeled with 211At in high yield and with a specific activity of up to 4 mCi/mg in a time frame compatible with the 7.2-hr half-life of 211At. Quantitative in vivo binding assays demonstrated that radioastatination was accomplished with maintenance of high specific binding and affinity. Comparison of the biodistribution of 211At-labeled Me1-14 F(ab')2 to that of a nonspecific antibody fragment labeled with 211At and 131I in athymic mice bearing D-54 MG human glioma xenografts demonstrated selective and specific targeting of 211At-labeled antibody in this human tumor model. PMID:2476813

  15. In situ visualization of plasma cells producing antibodies reactive to Porphyromonas gingivalis in periodontitis: the application of the enzyme-labeled antigen method

    PubMed Central

    Mizutani, Y; Tsuge, S; Takeda, H; Hasegawa, Y; Shiogama, K; Onouchi, T; Inada, K; Sawasaki, T; Tsutsumi, Y

    2014-01-01

    Porphyromonas gingivalis is a keystone periodontal pathogen. Histologocally, the gingival tissue in periodontitis shows dense infiltration of plasma cells. However, antigens recognized by antibodies secreted from the immunocytes remain unknown. The enzyme-labeled antigen method was applied to detecting plasma cells producing P. gingivalis-specific antibodies in biopsied gingival tissue of periodontitis. N-terminally biotinylated P. gingivalis antigens, Ag53 and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro and Lys-hgp) were prepared by the cell-free protein synthesis system using wheatgerm extract. With these five labeled proteins as probes, 20 lesions of periodontitis were evaluated. With the AlphaScreen method, antibodies against any one of the five P. gingivalis antigens were detected in 11 (55%) serum samples and 17 (85%) tissue extracts. Using the enzyme-labeled antigen method on paraformaldehyde-fixed frozen sections of gingival tissue, plasma cells were labeled with any one of the five antigens in 17 (94%) of 18 specimens, in which evaluable plasma cells were detected. The positivity rates in periodontitis were significantly higher than those found previously in radicular cysts (20% in sera and 33% in tissue extracts with the AlphaScreen method, and 25% with the enzyme-labeled antigen method). Our findings directly indicate that antibodies reactive to P. gingivalis are locally produced in the gingival lesions, and that inflammatory reactions against P. gingivalis are involved in periodontitis. PMID:24698402

  16. Efficient and Site-specific Antibody Labeling by Strain-promoted Azide-alkyne Cycloaddition.

    PubMed

    Kim, Sanggil; Ko, Wooseok; Park, Hyunji; Lee, Hyun Soo

    2016-12-23

    There are currently many chemical tools available to introduce chemical probes into proteins to study their structure and function. A useful method is protein conjugation by genetically introducing an unnatural amino acid containing a bioorthogonal functional group. This report describes a detailed protocol for site-specific antibody conjugation. The protocol includes experimental details for the genetic incorporation of an azide-containing amino acid, and the conjugation reaction by strain-promoted azide-alkyne cycloaddition (SPAAC). This strain-promoted reaction proceeds by simple mixing of the reacting molecules at physiological pH and temperature, and does not require additional reagents such as copper(I) ions and copper-chelating ligands. Therefore, this method would be useful for general protein conjugation and development of antibody drug conjugates (ADCs).

  17. Dipeptide-Based Metabolic Labeling of Bacterial Cells for Endogenous Antibody Recruitment

    PubMed Central

    2016-01-01

    The number of antibiotic-resistant bacterial infections has increased dramatically over the past decade. To combat these pathogens, novel antimicrobial strategies must be explored and developed. We previously reported a strategy based on hapten-modified cell wall analogues to induce recruitment of endogenous antibodies to bacterial cell surfaces. Cell surface remodeling using unnatural single d-amino acid cell wall analogues led to modification at the C-terminus of the peptidoglycan stem peptide. During peptidoglycan processing, installed hapten-displaying amino acids can be subsequently removed by cell wall enzymes. Herein, we disclose a two-step dipeptide peptidoglycan remodeling strategy aimed at introducing haptens at an alternative site within the stem peptide to improve retention and diminish removal by cell wall enzymes. Through this redesigned strategy, we determined size constraints of peptidoglycan remodeling and applied these constraints to attain hapten–linker conjugates that produced high levels of antibody recruitment to bacterial cell surfaces. PMID:27294199

  18. Radioimmunodetection of cutaneous T-cell lymphoma with 111In-labeled T101 monoclonal antibody

    SciTech Connect

    Carrasquillo, J.A.; Bunn, P.A. Jr.; Keenan, A.M.; Reynolds, J.C.; Schroff, R.W.; Foon, K.A.; Su, M.H.; Gazdar, A.F.; Mulshine, J.L.; Oldham, R.K.

    1986-09-11

    T101 monoclonal antibody recognizes a pan-T-cell antigen present on normal T cells and also found in high concentrations in cutaneous T-cell lymphoma. We used this antibody, radiolabeled with 111In, in gamma-camera imaging to detect sites of metastatic cutaneous T-cell lymphoma in 11 patients with advanced disease. In all patients, (/sup 111/In)T101 concentrated in pathologically or clinically detected nodes, including those in several previously unsuspected nodal regions. Concentrations (per gram of tissue) ranged from 0.01 to 0.03 percent of the injected dose and were consistently 10 to 100 times higher than previously reported on radioimmunodetection. Focal uptake was seen in skin tumors and heavily infiltrated erythroderma but not in skin plaques. The specificity of tumor targeting was documented by control studies with (/sup 111/In)chloride or (/sup 111/In)9.2.27 (anti-melanoma) monoclonal antibody. Increasing the T101 dose (1 to 50 mg) altered distribution in nontumor tissues. These studies suggest that imaging with (/sup 111/In)T101 may be of value in identifying sites of cutaneous T-cell lymphoma. In contrast to the targeting of solid tumors, the mechanism of localization appears to be related to binding to T cells, which can then carry the radioactivity to involved sites.

  19. Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation.

    PubMed

    Zhou, Zhengyuan; Vaidyanathan, Ganesan; McDougald, Darryl; Kang, Choong Mo; Balyasnikova, Irina; Devoogdt, Nick; Ta, Angeline N; McNaughton, Brian R; Zalutsky, Michael R

    2017-04-13

    Our previous studies with F-18-labeled anti-HER2 single-domain antibodies (sdAbs) utilized 5F7, which binds to the same epitope on HER2 as trastuzumab, complicating its use for positron emission tomography (PET) imaging of patients undergoing trastuzumab therapy. On the other hand, sdAb 2Rs15d binds to a different epitope on HER2 and thus might be a preferable vector for imaging in these patients. The aim of this study was to evaluate the tumor targeting of F-18 -labeled 2Rs15d in HER2-expressing breast carcinoma cells and xenografts. sdAb 2Rs15d was labeled with the residualizing labels N-succinimidyl 3-((4-(4-[(18)F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([(18)F]RL-I) and N-succinimidyl 4-guanidinomethyl-3-[(125)I]iodobenzoate ([(125)I]SGMIB), and the purity and HER2-specific binding affinity and immunoreactivity were assessed after labeling. The biodistribution of I-125- and F-18-labeled 2Rs15d was determined in SCID mice bearing subcutaneous BT474M1 xenografts. MicroPET/x-ray computed tomograph (CT) imaging of [(18)F]RL-I-2Rs15d was performed in this model and compared to that of nonspecific sdAb [(18)F]RL-I-R3B23. MicroPET/CT imaging was also done in an intracranial HER2-positive breast cancer brain metastasis model after administration of 2Rs15d-, 5F7-, and R3B23-[(18)F]RL-I conjugates. [(18)F]RL-I was conjugated to 2Rs15d in 40.8 ± 9.1 % yield and with a radiochemical purity of 97-100 %. Its immunoreactive fraction (IRF) and affinity for HER2-specific binding were 79.2 ± 5.4 % and 7.1 ± 0.4 nM, respectively. [(125)I]SGMIB was conjugated to 2Rs15d in 58.4 ± 8.2 % yield and with a radiochemical purity of 95-99 %; its IRF and affinity for HER2-specific binding were 79.0 ± 12.9 % and 4.5 ± 0.8 nM, respectively. Internalized radioactivity in BT474M1 cells in vitro for [(18)F]RL-I-2Rs15d was 43.7 ± 3.6, 36.5 ± 2.6, and 21.7 ± 1.2 % of initially bound radioactivity at 1, 2, and 4 h, respectively

  20. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    PubMed Central

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  1. Direct procedure for the production of 211At-labeled antibodies with an epsilon-lysyl-3-(trimethylstannyl)benzamide immunoconjugate.

    PubMed

    Lindegren, Sture; Frost, Sofia; Bäck, Tom; Haglund, Elin; Elgqvist, Jörgen; Jensen, Holger

    2008-09-01

    (211)At-labeled tumor-specific antibodies have long been considered for the treatment of disseminated cancer. However, the limited availability of the nuclide and the poor efficacy of labeling procedures at clinical activity levels present major obstacles to their use. This study evaluated a procedure for the direct astatination of antibodies for the production of clinical activity levels. The monoclonal antibody trastuzumab was conjugated with the reagent N-succinimidyl-3-(trimethylstannyl)benzoate, and the immunoconjugate was labeled with astatine. Before astatination of the conjugated antibody, the nuclide was activated with N-iodosuccinimide. The labeling reaction was evaluated in terms of reaction time, volume of reaction solvent, immunoconjugate concentration, and applied activity. The quality of the astatinated antibodies was determined by in vitro analysis and biodistribution studies in nude mice. The reaction proceeded almost instantaneously, and the results indicated a low dependence on immunoconjugate concentration and applied activity. Radiochemical labeling yields were in the range of 68%-81%, and a specific radioactivity of up to 1 GBq/mg could be achieved. Stability and radiochemical purity were equal to or better than those attained with a conventional 2-step procedure. Dissociation constants for directly astatinated, conventionally astatinated, and radioiodinated trastuzumab were 1.0+/-0.06 (mean+/-SD), 0.44+/-0.06, and 0.29+/-0.02 nM, respectively. The tissue distribution in non-tumor-bearing nude mice revealed only minor differences in organ uptake relative to that obtained with the conventional method. The direct astatination procedure enables the high-yield production of astatinated antibodies with radioactivity in the amounts required for clinical applications.

  2. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, B.F.; Chen, B.X.

    1997-07-22

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest. 8 figs.

  3. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, Bernard F.; Chen, Bi-Xing

    1997-01-01

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest.

  4. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, Bernard F.; Chen, Bi-Xing

    1999-01-01

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example, detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest, detecting a polypeptide such as those expressed by infectious agents, fungi or parasites.

  5. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, B.F.; Chen, B.

    1999-07-20

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example, detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest, detecting a polypeptide such as those expressed by infectious agents, fungi or parasites. 25 figs.

  6. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Liu, J Q; Zhang, Y; Wang, N N; Hu, P; Lu, S Y; Ren, H L; Liu, Z S

    2014-11-15

    A dual labeled probe was synthesized by coating gold nanoparticles (AuNPs) with anti-κ-CN monoclonal antibody (McAb) and horseradish peroxidase (HRP) enzyme on their surface. The McAb was used as detector and HRP was used as label for signal amplification catalytically oxidize the substrate. AuNPs were used as bridges between the McAb and HRP. Based on the probe, an immunoassay was developed for ultrasensitive detection of κ-CN in bovine milk samples. The assay has a linear response range within 4.2-560 ng mL(-1). The limit of detection (LOD) was 4.2 ng mL(-1) which was 10 times lower than that of traditional McAb-HRP based ELISA. The recoveries of κ-CN from three brand bovine milk samples were from 95.8% to 111.0% that had a good correlation (R(2)=0.998) with those obtained by official standard Kjeldahl method. For higher sensitivity and as simple as the traditional ELISA, the developed immunoassay could provide an alternative approach for ultrasensitive detection of κ-CN in bovine milk sample.

  7. Optimization of hapten-peptide labeling for pretargeted immunoPET of bispecific antibody using generator-produced 68Ga.

    PubMed

    Karacay, Habibe; Sharkey, Robert M; McBride, William J; Rossi, Edmund A; Chang, Chien-Hsing; Goldenberg, David M

    2011-04-01

    Bispecific antibody pretargeting is highly sensitive and specific for cancer detection by PET. In this study, the preparation of a high-specific-activity (68)Ga-labeled hapten-peptide, IMP288, was evaluated. IMP288 (DOTA-D-Tyr-D-Lys(histamine-succinyl-glycine [HSG])-D-glu-D-Lys(HSG)-NH(2)) was added to buffered (68)Ga and then heated in boiling water and purified on a reversed-phase cartridge. Tumor-bearing nude mice were used for biodistribution and tumor localization studies. (68)Ga-IMP288 was prepared at a starting specific activity up to 1.78 GBq/nmol, with final yields of 0.74 GBq/nmol (decay-corrected) and less than 1% unbound (68)Ga. Purification was essential to remove unbound (68)Ga and (68)Ge breakthrough. Pretargeted animals showed a high (68)Ga-IMP288 uptake (27.5 ± 5.8 percentage injected dose per gram), with ratios of 13.6 ± 4.8, 66.8 ± 14.5, and 325.9 ± 61.9 for the kidneys, liver, and blood, respectively, at 1.5 h after peptide injection. High-specific-activity labeling of DOTA-hapten-peptide was obtained from the (68)Ga/(68)Ge generator for approximately 1 y, yielding products suitable for immunoPET.

  8. Pharmacokinetics and radiation dosimetry of 99Tcm-labelled monoclonal antibody B43.13 in ovarian cancer patients.

    PubMed

    McQuarrie, S A; Baum, R P; Niesen, A; Madiyalakan, R; Korz, W; Sykes, T R; Sykes, C J; Hör, G; McEwan, A J; Noujaim, A A

    1997-09-01

    OVAREX MAb B43.13 is a new radiopharmaceutical based on a monoclonal antibody (MAb-B43.13) known to recognize CA 125, a tumour antigen associated with epithelial ovarian cancer. This MAb is capable of facile radiolabelling with 99Tcm and has been shown previously to localize in the tumours of ovarian cancer patients. The present study was initiated to measure the pharmacokinetics of this MAb in the serum of 10 patients with primary or metastatic ovarian cancer. A two-compartment model was found to be best at representing the biodistribution of the 99Tcm-labelled MAb, yielding a 2.6 h distribution phase half-life and a 31.3 h elimination phase half-life. The serum and renal clearances for 99Tcm-MAb-B43.13 were 121 and 53 ml h-1 respectively. These parameters were compared with a similar model developed from the serum values of the MAb itself (determined using an ELISA detection method). Based on the serum pharmacokinetics of 99Tcm-MAb-B43.13 and whole-body planar gamma camera images, an estimate of the radiation dose from 99Tcm was calculated using standard MIRD schema. The organs demonstrating significant 99Tcm uptake included the liver, kidneys, heart and spleen. The whole-body dose was similar to other 99Tcm-labelled MAbs.

  9. Therapy to target renal cell carcinoma using 131I-labeled B7-H3 monoclonal antibody

    PubMed Central

    Li, Xueqin; Zhang, Guangbo; Hou, Jianquan

    2016-01-01

    B7-H3 is a tumor-associated antigen that plays a critical role in potential tumor-targeted therapy. In this study, we aimed to assess the radiobiological effect of 131I-labeled B7-H3 monoclonal antibody (131I-4H7) in nude mice with human renal cell carcinoma (RCC) and evaluate the effect of 131I-4H7 on RCC treatment. The radiobiological activity and tumor uptake of 131I-4H7, and its effect on tumor growth were measured. 131I-4H7 was absorbed by the tumor and reached its maximal uptake rate (3.32% injected dose [ID]/g) at 24 h, at which point the drug concentration in the tumor was 7.36-, 2.06-, 1.80-, and 2.78-fold higher than that in muscle, kidneys, liver, and heart, respectively. Measurements and positron emission tomography–computed tomography imaging showed that tumor development was significantly inhibited by 131I-4H7. HE staining revealed that 131I-4H7 significantly injures tumor cells. Our results suggest that 131I-4H7 is markedly absorbed by the tumor and did suppress the development of RCC xenografted tumors in nude mice, which might provide a new candidate for antibody-mediated targeted radiotherapy in human RCC. PMID:27058890

  10. Immunoassay of 5-methyltetrahydrofolate: use of /sup 125/I-labeled protein A as the tracer molecule for specific antibody

    SciTech Connect

    Langone, J.J.

    1980-05-15

    A sensitive and specific solid-phase radioimmunoassay for 5-methyltetrahydrofolate (5-MTHFA) has been developed. /sup 125/I-Labeled staphylococcal Protein A (/sup 125/I-PA) was used as the tracer molecule for rabbit IgG antibodies bound to 5-MTHFA immobilized on polyacrylamide beads. The dose-dependent inhibition of antibody binding by fluid-phase drug was reflected in decreased binding of /sup 125/I-PA. This inhibition, determined in the presence of known amounts of 5-MTHFA, served as the basis for quantification of 5-MTHFA in test samples. An early bleeding was relatively specific; 4.5 ng 5-MTHFA inhibited immune binding by 50% compared to 7700 ng folinic acid or 1200 ng tetrahydrofolate. Other folic acid analogs, including methotrexate, failed to inhibit significantly. The assay using a later bleeding was more sensitive since 1.6 ng 5-MTHFA gave 50% inhibition (detection limit 0.2 ng), but folinic acid cross-reacted significantly. Absorption with immobilized folinic acid markedly enhanced the specificity of this antiserum and resulted in a 15 to 20% increase in maximum inhibition by 5-MTHFA. The assay could be carried out in the presence of 0.025 ml human serum or urine without affecting the standard curve, and was used to determine levels of 5-MTHFA in serum of drug-treated rabbits.

  11. [Immunochromatographic analysis of 2,4-dichlorophenoxyacetic acid and simazine using monoclonal antibodies labelled with colloidal gold].

    PubMed

    Liubavina, I A; Zinchenko, A A; Salomatina, I S; Zherdev, A V; Dzantiev, B B

    2004-01-01

    A method of the competitive immunochromatographic assay of the pesticides 2,4-D (2,4-dichlorophenoxyacetic acid) and simazine (2-chloro-4,6-bis(N-ethylamino)-1,2,5-triazine) in aqueous samples was developed. Monoclonal antibodies to these pesticides labeled with colloidal gold were used to visualize the results. The sensitivity of the 2,4-D and simazine assay is 12 ng/ml, and the time of analysis is 3-7 min. The method does not differ in sensitivity from the competitive EIA using conjugates of monoclonal antibodies to the pesticides with horseradish peroxidase; however, the time of the EIA is 1.5 h. The immunochromatographic method of the pesticide detection is available and simple and may be recommended for the development of assays of any other low-molecular compounds. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 2; see also http://www.maik.ru.

  12. A Label-Free Electrochemical Immunosensor for Carbofuran Detection Based on a Sol-Gel Entrapped Antibody

    PubMed Central

    Sun, Xia; Du, Shuyuan; Wang, Xiangyou; Zhao, Wenping; Li, Qingqing

    2011-01-01

    In this study, an anti-carbofuran monoclonal antibody (Ab) was immobilized on the surface of a glassy carbon electrode (GCE) using silica sol-gel (SiSG) technology. Thus, a sensitive, label-free electrochemical immunosensor for the direct determination of carbofuran was developed. The electrochemical performance of immunoreaction of antigen with the anti-carbofuran monoclonal antibody was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), in which phosphate buffer solution containing [Fe(CN)6]3−/4− was used as the base solution for test. Because the complex formed by the immunoreaction hindered the diffusion of [Fe(CN)6]3−/4− on the electrode surface, the redox peak current of the immunosensor in the CV obviously decreased with the increase of the carbofuran concentration. The pH of working solution, the concentration of Ab and the incubation time of carbofuran were studied to ensure the sensitivity and conductivity of the immunosensor. Under the optimal conditions, the linear range of the proposed immunosensor for the determination of carbofuran was from 1 ng/mL to 100 μg/mL and from 50 μg/mL to 200 μg/mL with a detection limit of 0.33 ng/mL (S/N = 3). The proposed immunosensor exhibited good high sensitivity and stability, and it was thus suitable for trace detection of carbofuran pesticide residues. PMID:22163709

  13. Treatment of (131)I-labeled anti-CD147 monoclonal antibody in VX2 carcinoma-induced liver tumors.

    PubMed

    Niu, Huanzhang; Wang, Ruihua; Cheng, Jingliang; Gao, Shegan; Liu, Baoping

    2013-07-01

    Hepatocellular carcinoma (HCC) is a major health problem worldwide. CD147 has been reported to be overexpressed in HCC and blocking CD147 expression can decrease tumor growth. (131)I is often used in combination with other drugs to treat HCC and yields positive results. In this study, we combined the (131)I and CD147 monoclonal antibody to treat HCC in a rabbit VX2 animal model. In the (131)I-labeled CD147 antibody ((131)I-CD147-Ab) treatment group, the animals lived considerably longer than the animals in the other treatment groups. Metastasis and tumor growth in the (131)I-CD147-Ab treatment group were also inhibited. MMP2 and CD31 expression were significantly lower in the treatment group, whereas Tunel staining was overexpressed. These findings suggest that (131)I-CD147-Ab is a promising drug in the treatment of HCC, by inhibiting metastasis and growth and by decreasing the expression of MMP2 and CD31 or by inducing tumor necrosis. After testing the biochemical parameters, (131)I-CD147-Ab caused fewer side-effects in the animals.

  14. Impact of surface defects and denaturation of capture surface proteins on nonspecific binding in immunoassays using antibody-coated polystyrene nanoparticle labels.

    PubMed

    Näreoja, Tuomas; Määttänen, Anni; Peltonen, Jouko; Hänninen, Pekka E; Härmä, Harri

    2009-08-15

    Microtiter wells are commonly used for bioassays. The sensitivity of such an assay depends on several instrumental and biochemical parameters such as the signal-to-background ratio and nonspecific binding of the label molecules. In this study, we have investigated the possible effects of well surface defects, well edges and denaturation of capture antibodies on the assay sensitivity. We used internally dyed Eu(III) chelate polystyrene nanoparticles as high specific activity labels in a thyroid stimulating hormone (TSH) sandwich-type model assay. The nanoparticle labels provide a high signal-to-background ratio in assays but the major limiting factor of the assay sensitivity is nonspecific binding of the labels. In our model assay the capture monoclonal antibodies were immobilized on microtiter wells passively or through streptavidin (SA)-biotin linkage. At first, commercially manufactured microtiter well surfaces were probed with an atomic force microscopy and significant structural inhomogeneities were found. The nonspecific binding of the nanoparticle conjugates did not appear to follow any of the microtiter well surface defect patterns in a number of experiments. In addition, the microtiter well edges did not increase the nonspecific binding. Denaturation of capture antibodies on solid surfaces has been proposed to expose amino acid sequences promoting nonspecific binding. This was studied by intentionally denaturing the surface capture antibodies by heat, detergent or acid treatment prior to the assay. Although specific signal was almost entirely lost no significant effect on nonspecific binding was observed. The passively adsorbed antibodies denatured at lower temperatures than those captured through streptavidin-biotin linkage. Evidently, the additional protein (SA) layer protected the capture antibody from denaturation whereas the solid surface appeared to act as a "catalyst" making the passively adsorbed antibody more susceptible to denaturation.

  15. Radioimmunoscintigraphy of colorectal carcinoma using technetium-99m-labeled, totally human monoclonal antibody 88BV59H21-2.

    PubMed

    Gulec, S A; Serafini, A N; Moffat, F L; Vargas-Cuba, R D; Sfakianakis, G N; Franceschi, D; Crichton, V Z; Subramanian, R; Klein, J L; De Jager, R L

    1995-12-01

    Radioimmunoscintigraphy (RIS) using human monoclonal antibodies offers the important clinical advantage of repeated imaging over murine monoclonal antibodies by eliminating the cross-species antibody response. This article reports a Phase I-II clinical trial with Tc-99m-labeled, totally human monoclonal antibody 88BV59H21-2 in patients with colorectal carcinoma. The study population consisted of 34 patients with colorectal cancer (20 men and 14 women; age range, 44-81 years). Patients were administered 5-10 mg antibody labeled with 21-41 mCi Tc-99m by the i.v. route and imaged at 3-10 and 16-24 h after infusion using planar and single-photon emission computed tomographic (CT) techniques. Pathological confirmation was obtained in 25 patients who underwent surgery. Human antihuman antibody (HAHA) titers were checked prior to and 1 and 3 months after the infusion. RIS with Tc-99m-labeled 88BV59H21-2 revealed a better detection rate in the abdomen-pelvis region compared with axial CT. The combined use of both modalities increased the sensitivity in both the liver and abdomen-pelvis regions. Ten patients developed mild adverse reactions (chills and fever). No HAHA response was detected in this series. Tc-99m-labeled human monoclonal antibody 88BV59H21-2 RIS shows promise as a useful diagnostic modality in patients with colorectal cancer. RIS alone or in combination with CT is more sensitive than CT in detecting tumor within the abdomen and pelvis. Repeated RIS studies may be possible, due to the lack of a HAHA response.

  16. Accelerated removal of antibody-coated red blood cells from the circulation is accurately tracked by a biotin label

    PubMed Central

    Mock, Donald M.; Lankford, Gary L.; Matthews, Nell I.; Burmeister, Leon F.; Kahn, Daniel; Widness, John A.; Strauss, Ronald G.

    2013-01-01

    BACKGROUND Safe, accurate methods to reliably measure circulating red blood cell (RBC) kinetics are critical tools to investigate pathophysiology and therapy of anemia, including hemolytic anemias. This study documents the ability of a method using biotin-labeled RBCs (BioRBCs) to measure RBC survival (RCS) shortened by coating with a highly purified monomeric immunoglobulin G antibody to D antigen. STUDY DESIGN AND METHODS Autologous RBCs from 10 healthy D+ subjects were labeled with either biotin or 51Cr (reference method), coated (opsonized) either lightly (n = 4) or heavily (n = 6) with anti-D, and transfused. RCS was determined for BioRBCs and for 51Cr independently as assessed by three variables: 1) posttransfusion recovery at 24 hours (PTR24) for short-term RCS; 2) time to 50% decrease of the label (T50), and 3) mean potential life span (MPL) for long-term RCS. RESULTS BioRBCs tracked both normal and shortened RCS accurately relative to 51Cr. For lightly coated RBCs, mean PTR24, T50, and MPL results were not different between BioRBCs and 51Cr. For heavily coated RBCs, both short-term and long-term RCS were shortened by approximately 17 and 50%, respectively. Mean PTR24 by BioRBCs (84 ± 18%) was not different from 51Cr (81 ± 10%); mean T50 by BioRBCs (23 ± 17 days) was not different from 51Cr (22 ± 18 days). CONCLUSION RCS shortened by coating with anti-D can be accurately measured by BioRBCs. We speculate that BioRBCs will be useful for studying RCS in conditions involving accelerated removal of RBCs including allo- and autoimmune hemolytic anemias. PMID:22023312

  17. Small-Animal PET Imaging of Pancreatic Cancer Xenografts Using a 64Cu-Labeled Monoclonal Antibody, MAb159.

    PubMed

    Wang, Hui; Li, Dan; Liu, Shuanglong; Liu, Ren; Yuan, Hong; Krasnoperov, Valery; Shan, Hong; Conti, Peter S; Gill, Parkash S; Li, Zibo

    2015-06-01

    Overexpression of the GRP78 receptor on cell surfaces has been linked with tumor growth, metastasis, and resistance to therapy. We developed a (64)Cu-labeled probe for PET imaging of tumor GRP78 expression based on a novel anti-GRP78 monoclonal antibody, MAb159. MAb159 was conjugated with the (64)Cu-chelator DOTA through lysines on the antibody. DOTA-human IgG was also prepared as a control that did not bind to GRP78. The resulting PET probes were evaluated in BXPC3 pancreatic cancer xenografts in athymic nude mice. The radiotracer was synthesized with a specific activity of 0.8 MBq/μg of antibody. In BXPC3 xenografts, (64)Cu-DOTA-MAb159 demonstrated prominent tumor accumulation (4.3 ± 1.2, 15.4 ± 2.6, and 18.3 ± 1.0 percentage injected dose per gram at 1, 17, and 48 after injection, respectively). In contrast, (64)Cu-DOTA-human IgG had low BXPC3 tumor accumulation (4.8 ± 0.5, 7.5 ± 0.7, and 4.6 ± 0.8 percentage injected dose per gram at 1, 17, and 48 h after injection, respectively). We demonstrated that GRP78 can serve as a valid target for pancreatic cancer imaging. The success of this approach will be valuable for evaluating disease course and therapeutic efficacy at the earliest stages of anti-GRP78 treatment. Moreover, these newly developed probes may have important applications in other types of cancer overexpressing GRP78. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Bcl-xl-specific antibody labels activated microglia associated with Alzheimer's disease and other pathological states.

    PubMed

    Drache, B; Diehl, G E; Beyreuther, K; Perlmutter, L S; König, G

    1997-01-01

    This report describes the production of a monoclonal antibody raised against Bcl-xl, and includes an initial study of bcl-xl expression in neuropathology including Alzheimer's disease (AD). Bcl-xl is a potent apoptotic inhibitor and is known to be the predominant Bcl-x isoform in brain. To examine the expression of bcl-xl in aged brain and neurodegenerative disease, we raised a Bcl-xl-specific monoclonal antibody. In aged human brain, the highest bcl-xl expression was observed in cerebellum. By immunohistochemistry, significant bcl-xl expression was detected in reactive microglia of patients with AD and other neurological diseases such as progressive supranuclear palsy. Bcl-xl-positive microglia frequently colocalized with beta-amyloid plaques in AD and with activated astrocytes in non-AD and AD brains, suggesting a general role for Bcl-xl in regions of pathology. High levels of Bcl-xl protein might render microglia more resistant to cytotoxic environments such as areas of neurodegeneration and astrogliosis.

  19. Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent.

    PubMed

    Blend, Michael J; Stastny, Jerry J; Swanson, Steven M; Brechbiel, Martin W

    2003-06-01

    The goal of this investigation was to develop stable radioimmunoconjugates (RICs) of anti-HER2/neu monoclonal antibodies (MoAbs) for imaging and therapy in an animal model bearing human breast tumor xenografts that express normal (MCF-7 cells) and increased amounts of HER2/neu receptors (HCC-1954, BT-474, SKBR-3 cells) on their cell surface membranes. Pharmacy-grade Herceptin, a murine anti-HER2/neu MoAb, and nonspecific mouse IgG protein were conjugated with the recently developed DTPA linker known as CHX-A"-DTPA. These immunoconjugates were labeled with (111)InCl(3) and (90)YCl(3). Using a molar excess of 10:1 CHX-A"-DTPA to immunoglobulin, average specific activities of 1.87 microCi (111)In/microg RIC and 2.71 microCi (90)Y/microg RIC were obtained. The purity of RICs was 96%+ for (111)In and 99%+ for (90)Y. Stability in human plasma at 37 degrees C for both RICs ranged from 98% at 24 h to 85% at 96 h. Binding capacity of the RICs was tested with human cancer cell lines MCF-7, HCC-1954, BT-474, and SKBR-3. Using (111)In-labeled nonspecific IgG protein as a control, (111)In-Herceptin RIC was found to bind to MCF-7 cells with a ratio of 2.5:1 and to SKBR-3 cells with a ratio of 85:1 after 3 h of incubation. (111)In anti-HER2/neu RIC bound to MCF-7 cells with a ratio of 6:1 and to SKBR-3 cells with a ratio of 115:1 after 3 h of incubation. (90)Y-anti-HER2/neu RIC bound 10-times greater to BT-474 cells than to MCF-7 cells. Thus, these MoAbs can be labeled with (111)In and (90)Y using the CHX-A"-DTPA linker. The resulting RICs ((111)In- and (90)Y-anti HER2/neu antibodies) are stable and bind significantly to HER2 overexpressing tumor cell lines.

  20. A label-free immunosensor array using single-chain antibody fragments.

    PubMed

    Backmann, Natalija; Zahnd, Christian; Huber, Francois; Bietsch, Alexander; Plückthun, Andreas; Lang, Hans-Peter; Güntherodt, Hans-Joachim; Hegner, Martin; Gerber, Christoph

    2005-10-11

    We report a microcantilever-based immunosensor operated in static deflection mode with a performance comparable with surface plasmon resonance, using single-chain Fv (scFv) antibody fragments as receptor molecules. As a model system scFv fragments with specificity to two different antigens were applied. We introduced a cysteine residue at the C terminus of each scFv construct to allow covalent attachment to gold-coated sensor interfaces in directed orientation. Application of an array enabled simultaneous deflection measurements of sensing and reference cantilevers. The differential deflection signal revealed specific antigen binding and was proportional to the antigen concentration in solution. Using small, oriented scFv fragments as receptor molecules we increased the sensitivity of microcantilevers to approximately 1 nM.

  1. A label-free immunosensor array using single-chain antibody fragments

    PubMed Central

    Backmann, Natalija; Zahnd, Christian; Huber, Francois; Bietsch, Alexander; Plückthun, Andreas; Lang, Hans-Peter; Güntherodt, Hans-Joachim; Hegner, Martin; Gerber, Christoph

    2005-01-01

    We report a microcantilever-based immunosensor operated in static deflection mode with a performance comparable with surface plasmon resonance, using single-chain Fv (scFv) antibody fragments as receptor molecules. As a model system scFv fragments with specificity to two different antigens were applied. We introduced a cysteine residue at the C terminus of each scFv construct to allow covalent attachment to gold-coated sensor interfaces in directed orientation. Application of an array enabled simultaneous deflection measurements of sensing and reference cantilevers. The differential deflection signal revealed specific antigen binding and was proportional to the antigen concentration in solution. Using small, oriented scFv fragments as receptor molecules we increased the sensitivity of microcantilevers to ≈1 nM. PMID:16192357

  2. Effect of chloramine-T labeling conditions on the stability of monoclonal antibodies and their fragments

    SciTech Connect

    DeNardo, G.L.; DeNardo, S.J.; Miyao, N.P.; Peng, J.S.; Epstein, A.L.; Cardiff, R.D.

    1985-05-01

    Rapid in vivo degradation of radioiodinated monoclonal antibodies (MAb) has been reported. Conditions for radioiodination have varied. The purposes of this study were to compare the stability of MAb and their fragments when iodinated with chloramine-T (CT) under different conditions, and to compare methods for quality assessment of the radioiodinated molecules. A B-cell lymphoma MAb (Lym-1, IgG2a) and its FAb fragment, and a mammary cancer MAb(B6.01, IgG1) and its F(Ab')/sub 2/ fragment were iodinated with I-125 at CT:AB and I:Ab ratios of 1:1 and 1:10. Molecular sieving (TSK-3000) high performance liquid chromatography (HPLC), cellulose acetate electrophoresis (CAE) at 11 and 45 minutes and solid phase immunoreactivity (IRA) were used to observe stability of the molecules when stored at 4/sup 0/C. Radiochemical yield was greater than 95% in all instances. Iodination at CT:Ab and I:Ab ratios of 1:1 induced progressive degradation in all species which was most marked for the fragments. Iodination at CT:Ab and I:Ab ratios of 1:10 resulted in no observable degradation over 21 days. There was no significant difference in degradation between the IgG2a and IgG1 antibody when iodinated under identical circumstances. HPLC, CAE for 11 minutes and IRA, but not CAE for 45 minutes, revealed comparable changes. The authors conclude that lesser amounts of chloramine-T can be used to iodinate MAb and their fragments without loss of radiochemical efficiency and with improved stability of the species. MAb fragments are more vulnerable to chloramine-T. These observations may explain, at least in part, rapid in vivo degradation of radioiodinated MAb.

  3. Rapid hydrophobic grid membrane filter-enzyme-labeled antibody procedure for identification and enumeration of Escherichia coli O157 in foods.

    PubMed Central

    Todd, E C; Szabo, R A; Peterkin, P; Sharpe, A N; Parrington, L; Bundle, D; Gidney, M A; Perry, M B

    1988-01-01

    An O-antigen-specific monoclonal antibody, labeled by horseradish peroxidase-protein A, was used in a hydrophobic grid membrane filter-enzyme-labeled antibody method for rapid detection of Escherichia coli O157 in foods. The method yielded presumptive identification within 24 h and recovered, on average, 95% of E. coli O157:H7 artificially inoculated into comminuted beef, veal, pork, chicken giblets, and chicken carcass washings. In food samples from two outbreaks involving E. coli O157:H7, the organism was isolated at levels of up to 10(3)/g. The lower limit of sensitivity was 10 E. coli O157 per g of meat. Specific typing for E. coli O157:H7 can be achieved through staining with labeled H7 antiserum or tube agglutination. Images PMID:3060018

  4. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography.

    PubMed

    Danila, Delia; Partha, Ranga; Elrod, Don B; Lackey, Melinda; Casscells, S Ward; Conyers, Jodie L

    2009-01-01

    We evaluated the specific binding of anti-intercellular adhesion molecule 1 (ICAM-1) conjugated liposomes (immunoliposomes, or ILs) to activated human coronary artery endothelial cells (HCAEC) with the purpose of designing a computed tomographic imaging agent for early detection of atherosclerotic plaques. Covalent attachment of anti-ICAM-1 monoclonal antibodies to pre-formed liposomes stabilized with polyethylene glycol yielded ILs, with a coupling efficiency of the ICAM-1 to the liposomes of 10% to 24%. The anti-ICAM-1-labeled ILs had an average diameter of 136 nm as determined by dynamic light-scattering and cryogenic electron microscopy. The ILs' encapsulation of 5-[N-acetyl-(2,3-dihydroxypropyl)-amino)-N, N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-benzene-1,3-dicarboxamide (iohexol) was determined to be 18% to 19% by a dialysis technique coupled with ultraviolet detection of free iohexol. This encapsulation corresponded to 30 to 38 mg iodine per mL IL solution, and the ILs exhibited 91% to 98.5% iohexol retention at room temperature and under physiologic conditions. The specific binding of the ILs to cultured, activated HCAEC was measured using flow cytometry, enzyme-linked immunosorbent assays, and fluorescence microscopy. The immunosorbent assays demonstrated the specificity of binding of anti-ICAM-1 to ICAM-1 compared with control studies using nonspecific immunoglobulin G-labeled ILs. Flow cytometry and fluorescence microscopy experiments demonstrated the expression of ICAM-1 on the surface of activated HCAEC. Therefore, our iohexol-filled ILs demonstrated potential for implementation in computed tomographic angiography to noninvasively detect atherosclerotic plaques that are prone to rupture.

  5. Evaluation of indium-111-labeled antifibrin monoclonal antibody for the diagnosis of venous thrombotic disease

    SciTech Connect

    De Faucal, P.; Peltier, P.; Planchon, B.; Dupas, B.; Touze, M.D.; Baron, D.; Scaible, T.; Berger, H.J.; Chatal, J.F. )

    1991-05-01

    The potential advantage of using {sup 111}In-antifibrin ({sup 111}In-AF) monoclonal antibody for the diagnosis of deep venous thrombosis (DVT) was studied in 44 patients with suspected DVT (27 underwent heparin therapy before {sup 111}In-AF injection). All patients had contrast venography (considered as the gold standard) and {sup 111}In-AF scintigraphy within 24 hr. Two to 3 mCi of {sup 111}In-AF were injected intravenously, and planar scintigraphy of the limbs was recorded within 10 min (17 times), 3 hr (44 times), and 18 hr (39 times). Indium-111-AF images were then interpreted without knowledge of the results of the other examinations. The DVT diagnostic accuracy of {sup 111}In-AF was greater when interpretation was based on images recorded at different time periods after injection. Indium-111-AF sensitivity for diagnosis of DVT was 85% (29/34) and was not apparently decreased by heparin therapy. None of the 10 patients with negative contrast venography had a positive {sup 111}In-AF scan. The results demonstrate the importance of recording serial images and the excellent accuracy of {sup 111}In-AF for diagnosing DVT.

  6. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody

    PubMed Central

    Hernandez, Reinier; Sun, Haiyan; England, Christopher G.; Valdovinos, Hector F.; Ehlerding, Emily B.; Barnhart, Todd E.; Yang, Yunan; Cai, Weibo

    2016-01-01

    Overexpression of CD146 has been correlated with aggressiveness, recurrence rate, and poor overall survival in hepatocellular carcinoma (HCC) patients. In this study, we set out to develop a CD146-targeting probe for high-contrast noninvasive in vivo positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of HCCs. YY146, an anti-CD146 monoclonal antibody, was employed as a targeting molecule to which we conjugated the zwitterionic near-infrared fluorescence (NIRF) dye ZW800-1 and the chelator deferoxamine (Df). This enabled labeling of Df-YY146-ZW800 with 89Zr and its subsequent detection using PET and NIRF imaging, all without compromising antibody binding properties. Two HCC cell lines expressing high (HepG2) and low (Huh7) levels of CD146 were employed to generate subcutaneous (s.c.) and orthotopic xenografts in athymic nude mice. Sequential PET and NIRF imaging performed after intravenous injection of 89Zr-Df-YY146-ZW800 into tumor-bearing mice unveiled prominent and persistent uptake of the tracer in HepG2 tumors that peaked at 31.65 ± 7.15 percentage of injected dose per gram (%ID/g; n=4) 72 h post-injection. Owing to such marked accumulation, tumor delineation was successful by both PET and NIRF, which facilitated the fluorescence image-guided resection of orthotopic HepG2 tumors, despite the relatively high liver background. CD146-negative Huh7 and CD146-blocked HepG2 tumors exhibited significantly lower 89Zr-Df-YY146-ZW800 accretion (6.1 ± 0.5 and 8.1 ± 1.0 %ID/g at 72 h p.i., respectively; n=4), demonstrating the CD146-specificity of the tracer in vivo. Ex vivo biodistribution and immunofluorescent staining corroborated the accuracy of the imaging data and correlated tracer uptake with in situ CD146 expression. Overall, 89Zr-Df-YY146-ZW800 showed excellent properties as a PET/NIRF imaging agent, including high in vivo affinity and specificity for CD146-expressing HCC. CD146-targeted molecular imaging using dual-labeled YY146

  7. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays.

    PubMed

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-04-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the 'liquid biopsy' was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ∼100% sensitivity, ∼91% specificity and ∼96% accuracy. In the blinded test, the signals were classified with ∼91% sensitivity, ∼82% specificity and ∼86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ∼1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.

  8. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

    PubMed Central

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-01-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ~100% sensitivity, ~91% specificity and ~96% accuracy. In the blinded test, the signals were classified with ~91% sensitivity, ~82% specificity and ~86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ~1—17 cells per 5 µl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays. PMID:26901310

  9. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N.; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-04-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ˜100% sensitivity, ˜91% specificity and ˜96% accuracy. In the blinded test, the signals were classified with ˜91% sensitivity, ˜82% specificity and ˜86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ˜1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.

  10. Evaluation of 68Ga-Labeled MG7 Antibody: A Targeted Probe for PET/CT Imaging of Gastric Cancer

    PubMed Central

    Xu, Bing; Li, Xiaowei; Yin, Jipeng; Liang, Cong; Liu, Lijuan; Qiu, Zhaoyan; Yao, Liping; Nie, Yongzhan; Wang, Jing; Wu, Kaichun

    2015-01-01

    MG7-Ag, a specific gastric cancer-associated antigen, can be used to non-invasively monitor gastric cancer by molecular imaging with positron emission tomography/computed tomography (PET/CT). In this study, we prepared and evaluated a 68Ga-labeled MG7 antibody as a molecular probe for nanoPET/CT imaging of gastric cancer in a BGC-823 tumor xenografted mouse model. Macrocyclic chelator 1,4,7-triazacyclononane-N,N0,N00-triacetic acid (NOTA)-conjugated MG7 antibody was synthesized and radiolabeled with 68Ga (t1/2 = 67.71 min). Then, 68Ga-NOTA-MG7 was tested using in vitro cytological studies, in vivo nanoPET/CT and Cerenkov imaging studies as well as ex vivo biodistribution and histology studies. The in vitro experiments demonstrated that 68Ga-NOTA-MG7 has an excellent radiolabeling efficiency of approximately 99% without purification, and it is stable in serum after 120 min of incubation. Cell uptake and retention studies confirmed that 68Ga-NOTA-MG7 has good binding affinity and tumor cell retention. For the nanoPET imaging study, the predominant uptake of 68Ga-NOTA-MG7 was visualized in tumor, liver and kidneys. The tumor uptake reached at its peak (2.53 ± 0.28%ID/g) at 60 min pi. Cherenkov imaging also confirmed the specificity of tumor uptake. Moreover, the biodistribution results were consistent with the quantification data of nanoPET/CT imaging. Histologic analysis also demonstrated specific staining of BGC-823 tumor cell lines. PMID:25733152

  11. Human biodistribution of sup 111 In-labeled B72. 3 monoclonal antibody

    SciTech Connect

    Harwood, S.J.; Carroll, R.G.; Webster, W.B.; Zangara, L.M.; Laven, D.L.; Morrissey, M.A.; Sinni, B.J. )

    1990-02-01

    The murine IgG1 monoclonal antibody B72.3 reacts with human colorectal, breast, lung, pancreatic, gastric, and ovarian tumors. Human biodistribution studies using intact {sup 131}I-B72.3 have been reported by Carrasquillo et al.. We have performed similar studies on five patients using i.v. infusion of 20 mg of intact {sup 111}In-B72.3 (Cytogen Corp.). Serum clearance is similar with a t1/2 of 64.2 h (range, 44-80) for {sup 111}In-B72.3 and 65 h (range, 32-106) for {sup 131}I-B72.3. However, organ biodistribution is markedly different. For {sup 131}I-B72.3, hepatic and splenic clearance mirrors blood pool clearance. For {sup 111}In-B72.3, there is rapid uptake in tumor, liver, spleen, kidney, lumbar spine, and testes by 2-6 h with no significant clearance over the next 9 days. For {sup 111}In-B72.3, quantitative analysis of liver (from biopsy specimens), spleen, kidney, and lumbar spine (from scintiphoto regions of interest after background subtraction and attenuation correction) shows the following peak organ biodistributions in percentage infused dose: liver, 32%; spleen, 3.9%; kidneys, 3.5%; and lumbar vertebral bodies (marrow sample), 2.7%. For both {sup 111}In-B72.3 and {sup 131}I-B72.3, the principal route of excretion from the body is urinary with excretion rate of {sup 131}I faster than {sup 111}In. The marked differences between {sup 111}In-B72.3 and {sup 131}I-B72.3 biodistribution and clearance strongly influence the dosimetry, immunodetection, and immunotherapeutic potentials of B72.3 MoAb.

  12. LIGHT AND ELECTRON MICROSCOPE LOCALIZATION OF BINDING SITES OF ANTIBODIES AGAINST OVINE LUTEINIZING HORMONE AND ITS TWO SUBUNITS IN RAT ADENOHYPOPHYSIS USING PEROXIDASE-LABELED ANTIBODY TECHNIQUE

    PubMed Central

    Tougard, C.; Kerdelhue, B.; Tixier-Vidal, A.; Jutisz, M.

    1973-01-01

    The binding sites of antisera generated in the guinea pig against ovine luteinizing hormone (oLH) and its two subunits (oLHα and oLHβ) have been localized in rat anterior pituitaries taken from normal or castrated males and from ovariectomized females with the peroxidase-labeled antibody method, using light and electron microscopy. With the light microscope, the cells positive with antiserum to ovine luteinizing hormone (A-oLH) were violet after the Alcian blue-periodic acid-Schiff (AB-PAS) staining; they were also positive for A-oLHα and for A-oLHβ and, from castrated males, they displayed an increased affinity for A-oLHβ. Another cell type which was blue after the AB-PAS method reacted with the A-oLHα only; these cells, presumably thyrotropic cells, were retracted after castration and, besides their affinity for A-oLHα, acquired an affinity for A-oLHβ. As seen through the electron microscope, two cell types were positive for A-oLH, A-oLHβ, and A-oLHα and may be identified as luteinizing hormone-secreting cells. Type A cells were characterized by two classes of rounded, secretory granules. Type B cells were smaller and contained only small secretory granules. 1 mo after the rats were castrated the type A cells were hypertrophied and vacuolized. In both cases the secretory granules were the main sites of the antigenicity with the three antisera. A positive reaction was also found in the cytoplasm, particularly in hypertrophied cells from ovariectomized females and with A-oLHβ. The cisternae of the rough endoplasmic reticulum were usually negative, except in highly degranulated cells from ovariectomized females and with A-oLHβ. PMID:4583879

  13. An investigation of microtubule organization and functions in living Drosophila embryos by injection of a fluorescently labeled antibody against tyrosinated alpha-tubulin

    PubMed Central

    1987-01-01

    Rhodamine-labeled monoclonal antibodies, which react with tyrosinated alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) and label microtubules in vivo (Wehland, J., M. C. Willingham, and I. Sandoval, 1983, J. Cell Biol., 97:1467-1475) were microinjected into syncytial stage Drosophila embryos. At 1 mg/ml antibody concentration, the microtubule arrays of the surface caps became labeled by YL 1/2 but normal development was found to continue. The results are compared with the data from fixed material particularly with regard to interphase microtubules, centrosome separation, and spindle and midbody formation. At 5 mg/ml antibody concentration the microtubules took up larger quantities of antibodies and clumped around the nuclei. Nuclei with clumped microtubules lost their position in the surface layer and moved into the interior. As a result, the F-actin cap meshwork associated with such nuclei either failed to form or subsided. It is concluded that microtubule activity is required to maintain the nuclei in the surface layer and organize the F-actin meshwork of the caps. PMID:3117804

  14. ImmunoPET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer with a Dual-Labeled Bispecific Antibody Fragment.

    PubMed

    Luo, Haiming; England, Christopher G; Goel, Shreya; Graves, Stephen A; Ai, Fanrong; Liu, Bai; Theuer, Charles P; Wong, Hing C; Nickles, Robert J; Cai, Weibo

    2017-03-24

    Dual-targeted imaging agents have shown improved targeting efficiencies in comparison to single-targeted entities. The purpose of this study was to quantitatively assess the tumor accumulation of a dual-labeled heterobifunctional imaging agent, targeting two overexpressed biomarkers in pancreatic cancer, using positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging modalities. A bispecific immunoconjugate (heterodimer) of CD105 and tissue factor (TF) Fab' antibody fragments was developed using click chemistry. The heterodimer was dual-labeled with a radionuclide ((64)Cu) and fluorescent dye. PET/NIRF imaging and biodistribution studies were performed in four-to-five week old nude athymic mice bearing BxPC-3 (CD105/TF(+/+)) or PANC-1 (CD105/TF(-/-)) tumor xenografts. A blocking study was conducted to investigate the specificity of the tracer. Ex vivo tissue staining was performed to compare TF/CD105 expression in tissues with PET tracer uptake to validate in vivo results. PET imaging of (64)Cu-NOTA-heterodimer-ZW800 in BxPC-3 tumor xenografts revealed enhanced tumor uptake (21.0 ± 3.4%ID/g; n = 4) compared to the homodimer of TRC-105 (9.6 ± 2.0%ID/g; n = 4; p < 0.01) and ALT-836 (7.6 ± 3.7%ID/g; n = 4; p < 0.01) at 24 h postinjection. Blocking studies revealed that tracer uptake in BxPC-3 tumors could be decreased by 4-fold with TF blocking and 2-fold with CD105 blocking. In the negative model (PANC-1), heterodimer uptake was significantly lower than that found in the BxPC-3 model (3.5 ± 1.1%ID/g; n = 4; p < 0.01). The specificity was confirmed by the successful blocking of CD105 or TF, which demonstrated that the dual targeting with (64)Cu-NOTA-heterodimer-ZW800 provided an improvement in overall tumor accumulation. Also, fluorescence imaging validated the PET imaging, allowing for clear delineation of the xenograft tumors. Dual-labeled heterodimeric imaging agents, like (64)Cu-NOTA-heterodimer-ZW800, may increase the overall tumor

  15. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody

    NASA Astrophysics Data System (ADS)

    Schwartz, J.; Jaggi, J. S.; O'Donoghue, J. A.; Ruan, S.; McDevitt, M.; Larson, S. M.; Scheinberg, D. A.; Humm, J. L.

    2011-02-01

    Clinical therapeutic studies using 225Ac-labeled antibodies have begun. Of major concern is renal toxicity that may result from the three alpha-emitting progeny generated following the decay of 225Ac. The purpose of this study was to determine the amount of 225Ac and non-equilibrium progeny in the mouse kidney after the injection of 225Ac-huM195 antibody and examine the dosimetric consequences. Groups of mice were sacrificed at 24, 96 and 144 h after injection with 225Ac-huM195 antibody and kidneys excised. One kidney was used for gamma ray spectroscopic measurements by a high-purity germanium (HPGe) detector. The second kidney was used to generate frozen tissue sections which were examined by digital autoradiography (DAR). Two measurements were performed on each kidney specimen: (1) immediately post-resection and (2) after sufficient time for any non-equilibrium excess 213Bi to decay completely. Comparison of these measurements enabled estimation of the amount of excess 213Bi reaching the kidney (γ-ray spectroscopy) and its sub-regional distribution (DAR). The average absorbed dose to whole kidney, determined by spectroscopy, was 0.77 (SD 0.21) Gy kBq-1, of which 0.46 (SD 0.16) Gy kBq-1 (i.e. 60%) was due to non-equilibrium excess 213Bi. The relative contributions to renal cortex and medulla were determined by DAR. The estimated dose to the cortex from non-equilibrium excess 213Bi (0.31 (SD 0.11) Gy kBq-1) represented ~46% of the total. For the medulla the dose contribution from excess 213Bi (0.81 (SD 0.28) Gy kBq-1) was ~80% of the total. Based on these estimates, for human patients we project a kidney-absorbed dose of 0.28 Gy MBq-1 following administration of 225Ac-huM195 with non-equilibrium excess 213Bi responsible for approximately 60% of the total. Methods to reduce renal accumulation of radioactive progeny appear to be necessary for the success of 225Ac radioimmunotherapy.

  16. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody.

    PubMed

    Schwartz, J; Jaggi, J S; O'Donoghue, J A; Ruan, S; McDevitt, M; Larson, S M; Scheinberg, D A; Humm, J L

    2011-02-07

    Clinical therapeutic studies using (225)Ac-labeled antibodies have begun. Of major concern is renal toxicity that may result from the three alpha-emitting progeny generated following the decay of (225)Ac. The purpose of this study was to determine the amount of (225)Ac and non-equilibrium progeny in the mouse kidney after the injection of (225)Ac-huM195 antibody and examine the dosimetric consequences. Groups of mice were sacrificed at 24, 96 and 144 h after injection with (225)Ac-huM195 antibody and kidneys excised. One kidney was used for gamma ray spectroscopic measurements by a high-purity germanium (HPGe) detector. The second kidney was used to generate frozen tissue sections which were examined by digital autoradiography (DAR). Two measurements were performed on each kidney specimen: (1) immediately post-resection and (2) after sufficient time for any non-equilibrium excess (213)Bi to decay completely. Comparison of these measurements enabled estimation of the amount of excess (213)Bi reaching the kidney (γ-ray spectroscopy) and its sub-regional distribution (DAR). The average absorbed dose to whole kidney, determined by spectroscopy, was 0.77 (SD 0.21) Gy kBq(-1), of which 0.46 (SD 0.16) Gy kBq(-1) (i.e. 60%) was due to non-equilibrium excess (213)Bi. The relative contributions to renal cortex and medulla were determined by DAR. The estimated dose to the cortex from non-equilibrium excess (213)Bi (0.31 (SD 0.11) Gy kBq(-1)) represented ∼46% of the total. For the medulla the dose contribution from excess (213)Bi (0.81 (SD 0.28) Gy kBq(-1)) was ∼80% of the total. Based on these estimates, for human patients we project a kidney-absorbed dose of 0.28 Gy MBq(-1) following administration of (225)Ac-huM195 with non-equilibrium excess (213)Bi responsible for approximately 60% of the total. Methods to reduce renal accumulation of radioactive progeny appear to be necessary for the success of (225)Ac radioimmunotherapy.

  17. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody

    PubMed Central

    Schwartz, J; Jaggi, J S; O’Donoghue, J A; Ruan, S; McDevitt, M; Larson, S M; Scheinberg, D A; Humm, J L

    2011-01-01

    Clinical therapeutic studies using 225Ac-labeled antibodies have begun. Of major concern is renal toxicity that may result from the three alpha-emitting progeny generated following the decay of 225Ac. The purpose of this study was to determine the amount of 225Ac and non-equilibrium progeny in the mouse kidney after the injection of 225Ac-huM195 antibody and examine the dosimetric consequences. Groups of mice were sacrificed at 24, 96 and 144 h after injection with 225Ac-huM195 antibody and kidneys excised. One kidney was used for gamma ray spectroscopic measurements by a high-purity germanium (HPGe) detector. The second kidney was used to generate frozen tissue sections which were examined by digital autoradiography (DAR). Two measurements were performed on each kidney specimen: (1) immediately post-resection and (2) after sufficient time for any non-equilibrium excess 213Bi to decay completely. Comparison of these measurements enabled estimation of the amount of excess 213Bi reaching the kidney (γ-ray spectroscopy) and its sub-regional distribution (DAR). The average absorbed dose to whole kidney, determined by spectroscopy, was 0.77 (SD 0.21) Gy kBq−1, of which 0.46 (SD 0.16) Gy kBq−1 (i.e. 60%) was due to non-equilibrium excess 213Bi. The relative contributions to renal cortex and medulla were determined by DAR. The estimated dose to the cortex from non-equilibrium excess 213Bi (0.31 (SD 0.11) Gy kBq−1) represented ~46% of the total. For the medulla the dose contribution from excess 213Bi (0.81 (SD 0.28) Gy kBq−1) was ~80% of the total. Based on these estimates, for human patients we project a kidney-absorbed dose of 0.28 Gy MBq−1 following administration of 225Ac-huM195 with non-equilibrium excess 213Bi responsible for approximately 60% of the total. Methods to reduce renal accumulation of radioactive progeny appear to be necessary for the success of 225Ac radioimmunotherapy. PMID:21220845

  18. BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer's disease: differential Aβ antibody labeling of early-onset axon terminal pathology.

    PubMed

    Cai, Yan; Zhang, Xue-Mei; Macklin, Lauren N; Cai, Huaibin; Luo, Xue-Gang; Oddo, Salvatore; Laferla, Frank M; Struble, Robert G; Rose, Gregory M; Patrylo, Peter R; Yan, Xiao-Xin

    2012-02-01

    β-amyloid precursor protein (APP) and presenilins mutations cause early-onset familial Alzheimer's disease (FAD). Some FAD-based mouse models produce amyloid plaques, others do not. β-Amyloid (Aβ) deposition can manifest as compact and diffuse plaques; it is unclear why the same Aβ molecules aggregate in different patterns. Is there a basic cellular process governing Aβ plaque pathogenesis? We showed in some FAD mouse models that compact plaque formation is associated with a progressive axonal pathology inherent with increased expression of β-secretase (BACE1), the enzyme initiating the amyloidogenic processing of APP. A monoclonal Aβ antibody, 3D6, visualized distinct axon terminal labeling before plaque onset. The present study was set to understand BACE1 and axonal changes relative to diffuse plaque development and to further characterize the novel axonal Aβ antibody immunoreactivity (IR), using triple transgenic AD (3xTg-AD) mice as experimental model. Diffuse-like plaques existed in the forebrain in aged transgenics and were regionally associated with increased BACE1 labeled swollen/sprouting axon terminals. Increased BACE1/3D6 IR at axon terminals occurred in young animals before plaque onset. These axonal elements were also co-labeled by other antibodies targeting the N-terminal and mid-region of Aβ domain and the C-terminal of APP, but not co-labeled by antibodies against the Aβ C-terminal and APP N-terminal. The results suggest that amyloidogenic axonal pathology precedes diffuse plaque formation in the 3xTg-AD mice, and that the early-onset axonal Aβ antibody IR in transgenic models of AD might relate to a cross-reactivity of putative APP β-carboxyl terminal fragments.

  19. Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.

    PubMed Central

    Hauck, M. L.; Larsen, R. H.; Welsh, P. C.; Zalutsky, M. R.

    1998-01-01

    The high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids. Images Figure 4 Figure 5 PMID:9514054

  20. Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.

    PubMed

    Hauck, M L; Larsen, R H; Welsh, P C; Zalutsky, M R

    1998-03-01

    The high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids.

  1. Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine.

    PubMed

    Stafford, Jason H; Hao, Guiyang; Best, Anne M; Sun, Xiankai; Thorpe, Philip E

    2013-01-01

    Phosphatidylserine (PS) is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab')2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab')2 was labeled with the positron-emitting isotope iodine-124 ((124)I) and the resulting probe was injected into nude mice bearing subcutaneous or orthotopic human PC3 prostate tumors. Biodistribution studies showed that (124)I-PGN635 F(ab')2 localized with remarkable specificity to the tumors with little uptake in other organs, including the liver and kidneys. Clear delineation of the tumors was achieved by PET 48 hours after injection. Radiation of the tumors with 15 Gy or systemic treatment of the mice with 10 mg/kg docetaxel increased localization in the tumors. Tumor-to-normal (T/N) ratios were inversely correlated with tumor growth measured over 28 days. These data indicate that (124)I-PGN635 F(ab')2 is a promising new imaging agent for predicting tumor response to therapy.

  2. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles.

    PubMed

    Zhu, Gangbing; Lee, Hye Jin

    2017-03-15

    A novel sandwich-type biosensor was developed for the electrochemical detection of α-1 antitrypsin (AAT, a recognized biomarker for Alzheimer's disease). The biosensor was composed of 3, 4, 9, 10-perylene tetracarboxylic acid/carbon nanotubes (PTCA-CNTs) as a sensing platform and alkaline phosphatase-labeled AAT antibody functionalized silver nanoparticles (ALP-AAT Ab-Ag NPs) as a signal enhancer. CNTs offer high surface area and good electrical conductivity. Importantly, Ag NPs could increase the amount of ALP on the sensing surface and the ALP could dephosphorylate 4-amino phenyl phosphate (APP) enzymatically to produce electroactive species 4-aminophenol (AP). For detecting AAT based on the sandwich-type biosensor, the results show that the peak current value of AP using ALP-AAT Ab-Ag NPs as signal enhancer is much higher than that by using ALP-AAT Ab bioconjugate (without Ag NPs), the biosensor exhibited desirable performance for AAT determination with a wide linearity in the range from 0.05 to 20.0pM and a low detection limit of 0.01pM. Finally, the developed sensor was successfully applied to the analysis of AAT concentration in serum samples.

  3. Application of an enzyme-labeled antigen method for visualizing plasma cells producing antibodies against Strep A, a carbohydrate antigen of Streptococcus pyogenes, in recurrent tonsillitis.

    PubMed

    Onouchi, Takanori; Mizutani, Yasuyoshi; Shiogama, Kazuya; Inada, Ken-ichi; Okada, Tatsuyoshi; Naito, Kensei; Tsutsumi, Yutaka

    2015-01-01

    Streptococcus pyogenes is the main causative pathogen of recurrent tonsillitis. Histologically, lesions of recurrent tonsillitis contain numerous plasma cells. Strep A is an antigenic carbohydrate molecule on the cell wall of S. pyogenes. As expected, plasma cells in subjects with recurrent tonsillitis secrete antibodies against Strep A. The enzyme-labeled antigen method is a novel histochemical technique that visualizes specific antibody-producing cells in tissue sections by employing a biotin-labeled antigen as a probe. The purpose of the present study was to visualize plasma cells producing antibodies reactive with Strep A in recurrent tonsillitis. Firstly, the lymph nodes of rats immunized with boiled S. pyogenes were paraformaldehyde-fixed and specific plasma cells localized in frozen sections with biotinylated Strep A. Secondly, an enzyme-labeled antigen method was used on human tonsil surgically removed from 12 patients with recurrent tonsillitis. S. pyogenes genomes were PCR-detected in all 12 specimens. The emm genotypes belonged to emm12 in nine specimens and emm1 in three. Plasma cells producing anti-Strep A antibodies were demonstrated in prefixed frozen sections of rat lymph nodes, 8/12 human specimens from patients with recurrent tonsillitis but not in two control tonsils. In human tonsils, Strep A-reactive plasma cells were observed within the reticular squamous mucosa and just below the mucosa, and the specific antibodies belonged to either IgA or IgG classes. Our technique is effective in visualizing immunocytes producing specific antibodies against the bacterial carbohydrate antigen, and is thus a novel histochemical tool for analyzing immune reactions in infectious disorders. © 2014 The Authors. Microbiology and Immunology Published by The Societies and Wiley Publishing Asia Pty Ltd.

  4. Tumor immunolocalization using 124 I-iodine-labeled JAA-F11 antibody to Thomsen-Friedenreich alpha-linked antigen.

    PubMed

    Chaturvedi, Richa; Heimburg, Jamie; Yan, Jun; Koury, Stephen; Sajjad, Munawwar; Abdel-Nabi, Hani H; Rittenhouse-Olson, Kate

    2008-03-01

    Clinical immunolocalization has been attempted by others with an anti-Thomsen-Friedenreich antigen (TF-Ag) mAb that bound both alpha- and beta-linked TF-Ag. In this report, 124 I-labeled mAb JAA-F11 specific for alpha-linked TF-Ag showed higher tumor specificity in in vivo micro-positron emission tomography (micro-PET) of the mouse mammary adenocarcinoma line, 4T1, showing no preferential uptake by the kidney. Labeled product remained localized in the tumor for at least 20 days. Glycan array analysis showed structural specificity of the antibody.

  5. Label-Free and Real-Time Detection of Antigen-Antibody Capture Processes Using the Oblique-Incidence Reflectivity Difference Technique

    NASA Astrophysics Data System (ADS)

    He, Li-Ping; Dai, Jun; Sun, Yue; Wang, Jing-Yi; Lü, Hui-Bin; Wang, Shu-Fang; Jin, Kui-Juan; Zhou, Yue-Liang; Yang, Guo-Zhen

    2012-07-01

    We successfully label-free and real-time detect the capture processes of human immunoglobulin G (IgG)/goat anti-human IgG and mouse IgG/goat anti-mouse IgG antigen-antibody pairs with different concentrations using the oblique-incidence reflectivity difference (OIRD) method, and obtain the interaction kinetics curves and the interaction times. The experimental results prove that the OIRD method is a promising technique for label-free and real-time detection of the biomolecular interaction processes and achieving the quantitative information of interaction kinetics.

  6. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model.

    PubMed

    Muselaers, Constantijn H J; Oosterwijk, Egbert; Bos, Desirée L; Oyen, Wim J G; Mulders, Peter F A; Boerman, Otto C

    2014-01-01

    A new approach in the treatment of clear cell renal carcinoma (ccRCC) is radioimmunotherapy (RIT) using anti-carbonic anhydrase IX (CAIX) antibody G250. To investigate the potential of RIT with lutetium 177 (177Lu)-labeled G250, we conducted a protein dose escalation study and subsequently an RIT study in mice with intraperitoneally growing ccRCC lesions. Mice with intraperitoneal xenografts were injected with 1, 3, 10, 30, or 100 μg of G250 labeled with 10 MBq indium 111 (111In) to determine the optimal protein dose. The optimal protein dose determined with imaging and biodistribution studies was used in a subsequent RIT experiment in three groups of 10 mice with intraperitoneal SK-RC-52 tumors. One group received 13 MBq 177Lu-DOTA-G250, a control group received 13 MBq nonspecific 177Lu-MOPC21, and the second control group was not treated and received 20 MBq 111In-DOTA-G250. The optimal G250 protein dose to target ccRCC in this model was 10 μg G250. Treatment with 13 MBq 177Lu-DOTA-G250 was well tolerated and resulted in significantly prolonged median survival (139 days) compared to controls (49-53 days, p  =  .015), indicating that RIT has potential in this metastatic ccRCC model.

  7. Biodistributions, Myelosuppression and Toxicities in Mice Treated with an Anti-CD45 Antibody Labeled with the α-Emitting Radionuclides Bismuth-213 or Astatine-211

    PubMed Central

    Nakamae, Hirohisa; Wilbur, D. Scott; Hamlin, Donald K.; Thakar, Monica S.; Santos, Erlinda B.; Fisher, Darrell R.; Kenoyer, Aimee L.; Pagel, John M.; Press, Oliver W.; Storb, Rainer; Sandmaier, Brenda M.

    2009-01-01

    We previously investigated the potential of targeted radiotherapy using a bismuth-213-labeled anti-CD45 antibody to replace total body irradiation as conditioning for hematopoietic cell transplantation in a canine model. While this approach allowed sustained marrow engraftment, limited availability, high cost and short half-life of bismuth-213 induced us to investigate an alternative α-emitting radionuclide, astatine-211, for the same application. Biodistribution and toxicity studies were conducted with conjugates of the anti-murine CD45 antibody 30F11 with either bismuth-213 or astatine-211. Mice were injected with 2−50 μCi on 10 μg or 20 μCi on 2 or 40 μg 30F11 conjugate. Biodistribution studies showed that the spleen contained the highest concentration of radioactivity, ranging from 167±23 to 417±109 % injected dose/gram (%ID/g) after injection of the astatine-211 conjugate and 45±9 to 166±11 %ID/g after injection of the bismuth-213 conjugate. The higher concentrations observed for astatine-211-labeled 30F11 were due to its longer half-life, which permitted better localization of isotope to the spleen before decay. Astatine-211 was more effective at producing myelosuppression for the same quantity of injected radioactivity. All mice injected with 20 or 50 μCi astatine-211 but none with the same quantities of bismuth-213 had lethal myeloablation. Severe reversible acute hepatic toxicity occurred with 50 μCi bismuth-213, but not with lower doses of bismuth-213 or with any dose of astatine-211. No renal toxicity occurred with either radionuclide. The data suggest that smaller quantities of astatine-211-labeled anti-CD45 antibody are sufficient to achieve myelosuppression and myeloablation with less non-hematological toxicity compared with bismuth-213-labeled antibody. PMID:19244101

  8. Biodistributions, myelosuppression, and toxicities in mice treated with an anti-CD45 antibody labeled with the alpha-emitting radionuclides bismuth-213 or astatine-211.

    PubMed

    Nakamae, Hirohisa; Wilbur, D Scott; Hamlin, Donald K; Thakar, Monica S; Santos, Erlinda B; Fisher, Darrell R; Kenoyer, Aimee L; Pagel, John M; Press, Oliver W; Storb, Rainer; Sandmaier, Brenda M

    2009-03-15

    We previously investigated the potential of targeted radiotherapy using a bismuth-213 ((213)Bi)-labeled anti-CD45 antibody to replace total body irradiation as conditioning for hematopoietic cell transplantation in a canine model. Although this approach allowed sustained marrow engraftment, limited availability, high cost, and short half-life of (213)Bi induced us to investigate an alternative alpha-emitting radionuclide, astatine-211 ((211)At), for the same application. Biodistribution and toxicity studies were conducted with conjugates of the anti-murine CD45 antibody 30F11 with either (213)Bi or (211)At. Mice were injected with 2 to 50 muCi on 10 microg or 20 muCi on 2 or 40 microg of 30F11 conjugate. Biodistribution studies showed that the spleen contained the highest concentration of radioactivity, ranging from 167 +/- 23% to 417 +/- 109% injected dose/gram (% ID/g) after injection of the (211)At conjugate and 45 +/- 9% to 166 +/- 11% ID/g after injection of the (213)Bi conjugate. The higher concentrations observed for (211)At-labeled 30F11 were due to its longer half-life, which permitted better localization of isotope to the spleen before decay. (211)At was more effective at producing myelosuppression for the same quantity of injected radioactivity. All mice injected with 20 or 50 muCi (211)At, but none with the same quantities of (213)Bi, had lethal myeloablation. Severe reversible acute hepatic toxicity occurred with 50 muCi (213)Bi, but not with lower doses of (213)Bi or with any dose of (211)At. No renal toxicity occurred with either radionuclide. The data suggest that smaller quantities of (211)At-labeled anti-CD45 antibody are sufficient to achieve myelosuppression and myeloablation with less nonhematologic toxicity compared with (213)Bi-labeled antibody.

  9. The cytotoxicity and microdosimetry of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro.

    PubMed

    Larsen, R H; Akabani, G; Welsh, P; Zalutsky, M R

    1998-02-01

    The cytotoxicity of alpha-particle-emitting endoradiotherapeutic compounds is of increasing interest because clinical evaluation of these potential therapeutic agents is commencing. Astatine-211 is a radionuclide with a 7.2-h half-life that emits 5.87 and 7.45 MeV alpha particles. In the present work, we have investigated the in vitro cytotoxicity of 211At-labeled chimeric monoclonal antibodies (mAbs) in monolayers of D-247 MG human glioma cells and SK-MEL-28 human melanoma cells. The mAbs studied were 81C6, reactive with the extracellular matrix antigen tenascin, Mel-14, directed against the cell membrane antigen proteoglycan chondroitin sulfate, and a nonspecific control mAb, TPS3.2. Cell uptake increased as a function of activity concentration after a 1-h exposure to the 211At-labeled mAbs. The retention of activity was also measured to calculate cumulative activity associated with the cells and the medium. The clonogenic survival as a function of activity concentration was linear in all cases with no detectable shoulder. Microdosimetric analyses were performed based on measured cell geometry, cumulative activity and Monte Carlo transport of alpha particles. Using 18 kBq/ml activity concentration and 1 h of incubation, a two to five times higher activity bound to the microcolonies was found for the specific mAbs compared to the nonspecific mAb. These calculations indicated that a survival fraction of 0.37 was achieved with 0.24-0.28 Gy for D-247 MG cells and 0.27-0.29 Gy for SK-MEL-28 cells. The microdosimetric cell sensitivity, z0, for D-247 MG cells was significantly lower than for SK-MEL-28 cells (0.08 compared to 0.15 Gy). For both cell lines, reduction in survival to 0.37 required an average of only 1-2 alpha-particle hits to the cell nucleus.

  10. PET Imaging of Abdominal Aortic Aneurysm with 64Cu-Labeled Anti-CD105 Antibody Fab Fragment

    PubMed Central

    Shi, Sixiang; Orbay, Hakan; Yang, Yunan; Graves, Stephen A.; Nayak, Tapas R.; Hong, Hao; Hernandez, Reinier; Luo, Haiming; Goel, Shreya; Theuer, Charles P.; Nickles, Robert J.; Cai, Weibo

    2015-01-01

    The critical challenge in abdominal aortic aneurysm (AAA) research is the accurate diagnosis and assessment of AAA progression. Angiogenesis is a pathological hallmark of AAA, and CD105 is highly expressed on newly formed vessels. Our goal was to use 64Cu-labeled anti-CD105 antibody Fab fragment for noninvasive assessment of angiogenesis in the aortic wall in a murine model of AAA. Methods Fab fragment of TRC105, a mAb that specifically binds to CD105, was generated by enzymatic papain digestion and conjugated to NOTA for 64Cu-labeling. Binding affinity/specificity of NOTA-TRC105-Fab was evaluated by flow cytometry and various ex vivo studies. BALB/c mice were anesthetized and treated with calcium phosphate to induce AAA, which underwent weekly PET scans using 64Cu-NOTA-TRC105-Fab. Biodistribution and autoradiography studies were also performed to confirm the accuracy of PET results. Results NOTA-TRC105-Fab exhibited high purity and specifically bound to CD105 in vitro. Uptake of 64Cu-NOTA-TRC105-Fab increased from a control level of 3.4 ± 0.1 to 9.5 ± 0.4 %ID/g at 6 h p.i. on Day 5, and decreased to 7.2 ± 1.4 %ID/g on Day 12 which correlated well with biodistribution and autoradiography studies (i.e. much higher tracer uptake in AAA than normal aorta). Of note, enhanced AAA contrast was achieved, due to the minimal background in the abdominal area of mice. Degradation of elastic fibers and highly expressed CD105 were observed in ex vivo studies. Conclusion 64Cu-NOTA-TRC105-Fab cleared rapidly through kidneys, which enabled noninvasive PET imaging of the aorta with enhanced contrast and showed increased angiogenesis (CD105 expression) during AAA. 64Cu-NOTA-TRC105-Fab PET may potentially be used for future diagnosis and prognosis of AAA. PMID:25883125

  11. Biodistribution of indium-111-labeled OC 125 monoclonal antibody after intraperitoneal injection in nude mice intraperitoneally grafted with ovarian carcinoma

    SciTech Connect

    Thedrez, P.; Saccavini, J.C.; Nolibe, D.; Simoen, J.P.; Guerreau, D.; Gestin, J.F.; Kremer, M.; Chatal, J.F. )

    1989-06-01

    The purpose of this work was to study the biodistribution of 111In-labeled OC 125 monoclonal antibody (MAb) with known affinity for ovarian carcinomas in a nude mouse model grafted i.p. with a human ovarian cancer (NIH:OVCAR-3). Tumor uptake 24 h after i.p. injection was higher with intact 111In-labeled OC 125 MAb than with 111In-nonspecific immunoglobulin. The kinetics of tumor uptake also differed, showing a plateau followed by a drop at Day 7 with 111In-OC 125 MAb and a decrease beginning at 24 h with 111In-nonspecific immunoglobulin. Tumor-to-normal tissue ratios ranged between 29.91 +/- 11.85 and 0.68 +/- 0.15 with 111In-OC 125 MAb and between 4.50 +/- 1.06 and 0.53 +/- 0.04 with 111In-nonspecific immunoglobulin according to the normal tissues and the time points considered. Tumor uptake 2 h after injection was the same for F(ab')2 fragments as for intact MAb, whereas maximum uptake at 24 h was lower and was followed by a decrease at Day 4. Tumor-to-normal tissue ratios were in the same range, except for the tumor to blood ratio which was higher and the tumor to kidney ratio which was lower at 24 and 96 h. Maximum tumor uptake was higher after i.p. than i.v. injection. Instead of attaining the plateau noted after i.p. injection, tumor uptake after i.v. injection remained low at 2 h, reaching its peak only after 96 h. 131I-OC 125 injected i.p., which reached maximum tumor uptake at 2 h, showed tumor-to-tissue ratios ranging between 15.98 +/- 2.63 and 0.96 +/- 0.86, i.e., not very different from those with 111In. After i.p. injection of a radiolabeled colloid solution, maximum tumor uptake was reached at 96 h, but with very high nonspecific uptake in liver and spleen. These results indicate high, selective tumor uptake of 111In-OC 125 after i.p.

  12. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer.

    PubMed

    LeBeau, Aaron M; Duriseti, Sai; Murphy, Stephanie T; Pepin, Francois; Hann, Byron; Gray, Joe W; VanBrocklin, Henry F; Craik, Charles S

    2013-04-01

    Components of the plasminogen activation system, which are overexpressed in aggressive breast cancer subtypes, offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared imaging and (111)In single-photon emission computed tomography. Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard (18)F-fluorodeoxyglucose at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. In addition, a radioimmunotherapy study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope (177)Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology.

  13. Establishment of intein-mediated protein ligation under denaturing conditions: C-terminal labeling of a single-chain antibody for biochip screening.

    PubMed

    Sydor, Jens R; Mariano, Maria; Sideris, Steve; Nock, Steffen

    2002-01-01

    Intein-mediated protein ligation is a recently developed method that enables the C-terminal labeling of proteins. This technique requires a correctly folded intein mutant that is fused to the C-terminus of a target protein to create a thioester, which allows the ligation of a peptide with an N-terminal cysteine (1, 2). Here we describe the establishment of this method for the labeling, under denaturing conditions, of target proteins that are expressed insolubly as intein fusion proteins. A GFPuv fusion protein with the Mycobacterium xenopi gyrA intein was expressed in inclusion bodies in Escherichia coli and initially used as a model protein to verify intein cleavage activity under different refolding conditions. The intein showed activity after refolding in nondenaturing and slightly denaturing conditions. A construct of the same intein with an anti-neutravidin single-chain antibody was also expressed in an insoluble form. The intein-mediated ligation was established for this single chain antibody-intein fusion protein under denaturing conditions in 4 M urea to prevent significant precipitation of the fusion protein during the first refolding step. Under optimized conditions, the single-chain antibody was labeled with a fluorescent peptide and used for antigen screening on a biochip after final refolding. This screening procedure allowed the determination of binding characteristics of the scFv for avidin proteins in a miniaturized format.

  14. Astatine-211 labeling of internalizing anti-EGFRvIII monoclonal antibody using N-succinimidyl 5-[211At]astato-3-pyridinecarboxylate.

    PubMed

    Reist, C J; Foulon, C F; Alston, K; Bigner, D D; Zalutsky, M R

    1999-05-01

    Monoclonal antibodies (MAbs) such as the anti-epidermal growth factor variant III (EGFRvIII) MAb L8A4 are rapidly internalized, which can lead to rapid loss of radioactivity from the tumor cell. The aim of this study was to evaluate the potential utility of N-succinimidyl 5-[211At]astato-3-pyridinecarboxylate ([211At]SAPC) for labeling murine L8A4 with 211At. SAPC was synthesized by astatodestannylation of N-succinimidyl 5-tri-n-butylstannyl 3-pyridinecarboxylate and then coupled to L8A4 in approximately 50% yield. The affinity and immunoreactive fraction for 211At-labeled L8A4 were comparable to those obtained when the MAb was labeled with 131I via N-succinimidyl 5-[131I]iodo-3-pyridinecarboxylate (SIPC). Paired-label comparisons of the 211At- and 131I-labeled MAbs demonstrated similar internalization and catabolism by EGFRvIII-positive cells in vitro, and with the exception of the stomach, similar tissue distribution in athymic mice with EGFRvIII-expressing U87MGdeltaEGFR xenografts. These results suggest that SAPC may be a useful reagent for labeling L8A4, and possibly other internalizing proteins, with 211At.

  15. Increased sensitivity of the rapid hydrophobic grid membrane filter enzyme-labeled antibody procedure for Escherichia coli O157 detection in foods and bovine feces.

    PubMed Central

    Szabo, R; Todd, E; MacKenzie, J; Parrington, L; Armstrong, A

    1990-01-01

    Several strains of Escherichia coli O157:H7 artificially inoculated into vegetables and dairy products were recovered on hydrophobic grid membrane filters and enumerated by an enzyme-labeled antibody assay. The mean of the recoveries from 12 fresh vegetables was 108.8%, whereas that from 10 dairy products was 93.2%. Modified tryptic soy broth at 43 degrees C with shaking at 100 rpm provided optimum recovery of the organism from meat, with a sensitivity of less than or equal to 1 CFU/g, which is 10 times more sensitive than direct plating. The method performed equally well with vegetable and dairy products. Tryptic soy broth, however, under the same conditions gave the best results for fecal samples. Of 22 asymptomatic dairy cattle, reported as having positive Brucella titers when assayed with polyclonal antibodies, eight were found to contain E. coli O157 in their feces as demonstrated by the enzyme-labeled antibody assay by using monoclonal antibodies. This finding may explain some of the false-positive Brucella tests. PMID:2268161

  16. Neutron-capture therapy of human cancer: in vitro results on the preparation of boron-labeled antibodies to carcinoembryonic antigen.

    PubMed Central

    Mizusawa, E; Dahlman, H L; Bennett, S J; Goldenberg, D M; Hawthorne, M F

    1982-01-01

    Two samples of 2-phenyl-1,2-dicarba-closo-[1-3H]dodecaborane(12) were prepared by treating 1-lithio-2-phenyl-1,2-dicarba-closo-dodecaborane(12) with 3H2O (0.1 and 5.0 Ci/ml, respectively). These tritiated phenylcarborane samples were subsequently converted to corresponding samples of p-[1,2-dicarba-closo-[1-3H]dodecaboran(12)-2-yl]benzenediazonium ion ([3H]DBD) suitable for azo-coupling reactions. Reaction of the two tritiated diazonium ion samples with 2-napthol resulted in the formation of an azo dye (epsilon = 1.98 X 10(4) M-1 cm-1 at 485 nm). Experiments relating absorbance to 3H activity proved the two [3H]DBD sources to have 3.81 X 10(11) and 2.45 X 10(13) cpm of 3H per mol of tritiated carborane substituent. Purified antibodies to carcinoembryonic antigen were coupled to the [3H]DBD and, after extensive dialysis, the average number of carborane moieties per antibody molecule was determined by measuring the 3H activity associated with a known protein concentration. Further examination of these tritiated carborane-labeled antibodies by affinity chromatography proved that boron labeling did not destroy their immunoreactivity. Correlations of azo-coupling conditions (reactant ratios, pH) with immunoreactivity and antibody protein recovery are presented. Images PMID:6953444

  17. Immunologic studies of autoimmune disease in NZB-NZW F1 mice. I. Binding of fluorescein-labeled antinucleoside antibodies in lesions of lupus-like nephritis.

    PubMed

    Seegal, B C; Accinni, L; Andres, G A; Beiser, S M; Christian, C L; Erlanger, B F; Hsu, K

    1969-08-01

    For the past 3 years NZB and NZW mice have been maintained by sister-brother matings from English breeder stock. NZB/NZW F(1) hybrids developed lupus-like nephritis during the 6th to 7th month and few survived beyond the 8th month. Renal tissues of these animals were examined with fluorescein-labeled antinucleoside sera, specific for thymine and cytosine, for the presence of denatured DNA in GCW, and with labeled antibody to mouse IgG for the presence of excess host globulin in the same areas. The following results have been obtained: (a) All 51 hybrids, over 5 months of age, had an excess of mouse globulin in GCW. 40 animals between the ages of 5 and 12 months showed, in the same areas, antigens which bound one or both of the antinucleoside antibodies. (b) Renal tissues of 19 NZB mice, 5-19 months old, and 27 NZW mice, 2-18 months old, were examined. Excess host globulin was seen in GCW of 13 NZB and 20 NZW animals. The tissues of only two old NZB mice, 14 months of age, bound antinucleoside antibody but none of the other animals did. The association of rapidly fatal lupus-like nephritis in NZB/NZW F(1) mice with denatured DNA and mouse globulin in GCW supports the hypothesis involving this antigen-antibody complex in the pathogenesis of the disease.

  18. Evaluation of I-123 and In-111 labeled anti-platelet monoclonal antibody for the scintigraphic localization of in vivo thrombi

    SciTech Connect

    Srivastava, S.C.; Meinken, G.E.; Oster, Z.H.; Som, P.; Coller, B.; Atkins, H.L.; Scudder, L.E.; Mausner, L.F.; Yamamoto, K.; Brill, A.B.

    1984-01-01

    Development of a method to selectively label platelets in whole blood in vitro or in vivo is a highly desirable goal. The authors have investigated the labeling with I-123, I-131, and In-111 of an IgG/sub 1/ monoclonal antibody, 7E3 (MAb) that specifically inhibits the interaction of dog platelets with fibrinogen-coated beads and blocks ADP-induced aggregation of dog platelets. The MAb, typically 100 ..mu..g, was radioiodinated using the chloramine T method. Following a G-25 or P-6 column purification, labeling yields of approx. =70% were achieved (2 I/MAb). The MAb-DTPA conjugate was labeled with In-111 in >80% yields with a specific activity of 10-30 ..mu..Ci/..mu..g (approx. =0.1 In/MAb). Retention of inhibiting activity in the fibrinogen-coated bead assay was excellent for both I-123 and In-111 labeled 7E3. In dogs, the blood pool activity persisted for up to 24 hr and some urinary excretion (In-111) and deiodination (I-123) were observed in vivo. When In-111-MAb was incubated with whole blood (0.13 ..mu..g/ml) and the mixture then clotted with thrombin (l..mu../ml), 68% of the radioactivity remained with the clot despite repeated washing. Preliminary in vivo data in dogs suggest that the label becomes localized at the site of vascular injury and/or thrombus formation. The authors conclude that radiolabeled monoclonal anti-platelet antibodies may show promise for imaging vascular lesions and thrombi.

  19. Label free checkerboard assay to determine overlapping epitopes of Ebola virus VP-40 antibodies using surface plasmon resonance.

    PubMed

    Anderson, George P; Liu, Jinny L; Zabetakis, Dan; Legler, Patricia M; Goldman, Ellen R

    2017-03-01

    Immunoassay formats, in which antibodies provide sensitivity and specificity, are often utilized to provide rapid and simple diagnostic tests. Surface plasmon resonance is frequently used to evaluate the suitability of antibodies by determining binding kinetics to agents or surrogate antigens. We used SPR to evaluate a number of commercial monoclonal antibodies as well as single domain antibodies produced in-house. All the antibodies targeted the Ebola virus viral protein 40 (VP40). We determined the ability of each antibody to bind to immobilized VP40, and ensured they did not bind Ebola glycoprotein or the nucleoprotein. A subset of the monoclonal antibodies was immobilized to characterize antigen capture in solution. It can be advantageous to utilize antibodies that recognize distinct epitopes when choosing reagents for detection and diagnostic assays. We determined the uniqueness of the epitope recognized by the anti-VP40 antibodies using a checkerboard format that exploits the 6×6 array of interactions monitored by the Bio-Rad ProteOn XPR36 SPR instrument. The results demonstrate the utility of surface plasmon resonance to characterize monoclonal and recombinant antibodies. Additionally, the analysis presented here enabled the identification of pairs of anti-VP40 antibodies which could potentially be utilized in sandwich type immunoassays for the detection of Ebola virus.

  20. 166Ho and 90Y labeled 6D2 monoclonal antibody for targeted radiotherapy of melanoma: comparison with 188Re radiolabel

    PubMed Central

    Thompson, S.; Ballard, B.; Jiang, Z.; Revskaya, E.; Sisay, N.; Miller, W.H.; Cutler, C. S.; Dadachova, E.; Francesconi, L.C.

    2017-01-01

    Introduction An approach to radioimmunotherapy (RIT) of metastatic melanoma is the targeting of melanin pigment with monoclonal antibodies to melanin radiolabeled with therapeutic radionuclides. The proof of principle experiments were performed using a melanin-binding antibody 6D2 of IgM isotype radiolabeled with a β emitter 188Re and demonstrated the inhibition of tumor growth. In this study we investigated the efficacy 6D2 antibody radiolabeled with two other longer lived β emitters 90Y and 166Ho in treatment of experimental melanoma, with the objective to find a possible correlation between the efficacy and half-life of the radioisotopes which possess the same high energy β emission properties. Methods 6D2 was radiolabeled with two other longer lived β emitters 90Y and 166Ho in treatment of experimental melanoma in A2058 melanoma tumor-bearing nude mice, with the objective to find a possible correlation between the efficacy and half-life of the radioisotopes which possess the same high energy β emission properties. Results When labeled with the longer lived 90Y radionuclide – the 6D2 mAb did not produce any therapeutic effect in tumor bearing mice and while the slowing down of the tumor growth by 166Ho-6D2 was very similar to the previously reported therapy results for 188Re-6D2. In addition, 166Ho-labeled mAb produced the therapeutic effect on the tumor without any toxic effects while the administration of the 90Y-labeled radioconjugate was toxic to mice with no appreciable anti-tumor effect. Conclusions We concluded that it is very important to match the serum half-life of the carrier antibody with the physical half-life of the radionuclide to deliver the tumoricidal absorbed dose to the tumor. PMID:24533987

  1. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip.

    PubMed

    Endo, Tatsuro; Kerman, Kagan; Nagatani, Naoki; Hiepa, Ha Minh; Kim, Do-Kyun; Yonezawa, Yuji; Nakano, Koichi; Tamiya, Eiichi

    2006-09-15

    In this research, a localized surface plasmon resonance (LSPR)-based bioanalysis method for developing multiarray optical nanochip suitable for screening bimolecular interactions is described. LSPR-based label-free monitoring enables to solve the problems of conventional methods that require large sample volumes and time-consuming labeling procedures. We developed a multiarray LSPR-based nanochip for the label-free detection of proteins. The multiarray format was constructed by a core-shell-structured nanoparticle layer, which provided 300 nanospots on the sensing surface. Antibodies were immobilized onto the nanospots using their interaction with Protein A. The concentrations of antigens were determined from the peak absorption intensity of the LSPR spectra. We demonstrated the capability of the array measurement using immunoglobulins (IgA, IgD, IgG, IgM), C-reactive protein, and fibrinogen. The detection limit of our label-free method was 100 pg/mL. Our nanochip is readily transferable to monitor the interactions of other biomolecules, such as whole cells or receptors, with a massively parallel detection capability in a highly miniaturized package. We anticipate that the direct label-free optical immunoassay of proteins reported here will revolutionize clinical diagnosis and accelerate the development of hand-held and user-friendly point-of-care devices.

  2. Astatine-211 labeling of an anti-melanoma antibody and its Fab fragment using N-succinimidyl para[{sup 211} At]astatobenzoate : comparisons In Vivo with the para-[{sup 125}1]iodobenzoyl conjugate.

    SciTech Connect

    Hadley, S. W.; Wilbur, D. S.; Gray, M. A.; Atcher, R. W.; Chemistry; NeoRx Corp.; Univ. of Washington Medical Center

    1991-01-01

    Astatine-211 labeling of an anti-melanoma antibody, NR-ML-05, and its Fab fragment using N-succinimidyl para[{sup 211} At]astatobenzoate has been described. Preparation of the astatinated intermediate 2a was accomplished by distilling astatine-211 from an irradiated bismuth target directly into a reaction mixture containing an organometallic compound, N-succinimidyl p-(tri-n-butylstannyl)benzoate (1), and an oxidant, N-chlorosuccinimide, in 5% HOAc/MeOH. Trapping of distilled astatine as 2a was found to be efficient, resulting in 70-90% yields based on the amount of astatine-211 which ranged from 20% to 75%. Conjugation of 2a to NR-ML-05 and its Fab fragment was accomplished in 40-60% yields. The [{sup 211}At]astatobenzoyl-conjugated antibodies were found to be stable in vitro when challenged by strong denaturants and nucleophilic reagents. Coinjected dual-labeled studies of the 2a astatinated antibodies and the same antibodies labeled with N-succinimidyl p-[{sup 125}I]iodobenzoate (2b) in athymic mice bearing the human tumor xenograft A375 Met/Mix demonstrated that both radiolabeled antibodies had equivalent tumor localization. Data from the dual-labeled biodistribution of the intact antibody suggests that the astatine is stably attached. Data from the dual-labeled Fab fragment suggests that a portion of the astatine label is released as astatide, either from the astatinated Fab or from a catabolite.

  3. Measuring Affinity Constants of 1,450 Monoclonal Antibodies to Peptide Targets with a Microarray-based Label-Free Assay Platform

    PubMed Central

    Landry, J. P.; Ke, Yaohuang; Yu, Guo-Liang; Zhu, X. D.

    2014-01-01

    Monoclonal antibodies (mAbs) are major reagents for research and clinical diagnosis. For their inherently high specificities to intended antigen targets and thus low toxicity in general, they are pursued as one of the major classes of new drugs. Yet binding properties of most monoclonal antibodies are not well characterized in terms of affinity constants and how they vary with presentations and/or conformational isomers of antigens, buffer compositions, and temperature. We here report a microarray-based label-free assay platform for high-throughput measurements of monoclonal antibody affinity constants to antigens immobilized on solid surfaces. Using this platform we measured affinity constants of over 1,410 rabbit monoclonal antibodies and 46 mouse monoclonal antibodies to peptide targets that are immobilized through a terminal cysteine residue to a glass surface. The experimentally measured affinity constants vary from 10 pM to 200 pM with the median value at 66 pM. We compare results of the microarray-based platform with those of a benchmarking surface-plasmon-resonance-based (SPR) sensor (Biacore 3000). PMID:25536073

  4. Simultaneous detection and semiquantification of DNA damage in normal and apoptotic cells: triple-immunofluorescent labeling using DAPI, antibodies, and TUNEL.

    PubMed

    Agrawal, Anant; Godar, Dianne E

    2012-07-01

    We developed a triple-labeling immunofluorescence technique that simultaneously identifies total DNA (DAPI), DNA damage (antibodies), and dead cells [terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells] and a method that semiquantifies DNA damage in paraffin-embedded tissues. Using this technique in combination with our analysis method, scientists can now simultaneously detect and compare the relative amounts of DNA damage of almost any kind (except single-strand and double-strand breaks), using indirect fluorescent antibody labeling, in both normal and dying cells of different tissues. Simultaneous labeling of DNA damage and dead or TUNEL-positive cells can reduce processing costs and analysis time, and can lead to discoveries concerning how cells die from different DNA damages. We used increasing doses of UV (290 to 400 nm) radiation to create DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts that kill some of the cells in 3-dimensional tissue-engineered skin and vaginal samples. We describe a protocol that reliably detects and semiquantifies DNA damage in both normal and apoptotic cells. We show this triple-labeling immunofluorescence technique and analysis method yields linear UV dose response curves for damage to DNA bases that allows semiquantification of cyclobutane pyrimidine dimers and calculation of its repair rate (T=1 and 24 h), whereas TUNEL allows quantification of the number of apoptotic cells. Scientists can now create beautiful fluorescent pictures that simultaneously detect DNA damage in both normal and apoptotic cells to assess and semiquantify the damage to understand better how different insults lead to the cell's demise.

  5. The influence of proteasome inhibitor MG132, external radiation, and unlabeled antibody on the tumor uptake and biodistribution of (188)re-labeled anti-E6 C1P5 antibody in cervical cancer in mice.

    PubMed

    Phaeton, Rébécca; Wang, Xing Guo; Einstein, Mark H; Goldberg, Gary L; Casadevall, Arturo; Dadachova, Ekaterina

    2010-02-15

    Human papillomavirus (HPV) infection is considered a necessary step for the development of cervical cancer, and >95% of all cervical cancers have detectable HPV sequences. The authors of this report recently demonstrated the efficacy of radioimmunotherapy (RIT) targeting viral oncoprotein E6 in the treatment of experimental cervical cancer. They hypothesized that the pretreatment of tumor cells with various agents that cause cell death and/or elevation of E6 levels would increase the accumulation of radiolabeled antibodies to E6 in cervical tumors. HPV type 16 (HPV-16)-positive CasKi cells were treated in vitro with up to 6 grays of external radiation, or with the proteasome inhibitor MG-132, or with unlabeled anti-E6 antibody C1P5; and cell death was assessed. The biodistribution of (188)Re-labeled C1P5 antibody was determined in both control and radiation MG-132-treated CasKi tumor-bearing nude mice. (188)Re-C1P5 antibody demonstrated tumor specificity, very low uptake, and fast clearance from the major organs. The amount of tumor uptake was enhanced by MG-132 but was unaffected by pretreatment with radiation. In addition, in vitro studies demonstrated an unanticipated effect of unlabeled antibody on the amount of cell death, a finding that was suggested by the authors' previous in vivo studies in a CasKi tumor model. The current results indicated that pretreatment of cervical tumors with the proteasome inhibitor MG-132 and with unlabeled antibody to E6 can serve as a means to generate nonviable cancer cells and to elevate the levels of target oncoproteins in the cells for increasing the accumulation of targeted radiolabeled antibodies in tumors. These results favor the further development of RIT for cervical cancers targeting viral antigens. (c) 2010 American Cancer Society.

  6. The influence of proteasome inhibitor MG132, external radiation and unlabeled antibody on the tumor uptake and biodistribution of 188Re-labeled anti-E6 C1P5 antibody in cervical cancer in mice

    PubMed Central

    Phaeton, Rébécca; Wang, Xing Guo; Einstein, Mark H.; Goldberg, Gary L.; Casadevall, Arturo; Dadachova, Ekaterina

    2009-01-01

    Background Human Papillomavirus (HPV) infection is considered a necessary step for the development of cervical cancer and >95% of all cervical cancers have detectable HPV sequences. We have recently demonstrated the efficacy of radioimmunotherapy (RIT) which targeted viral oncoprotein E6 in treatment of experimental cervical cancer We hypothesized that pre-treatment of tumor cells with various agents which cause cell death and/or elevation of E6 levels would increase the accumulation of radiolabeled antibodies to E6 in cervical tumors. Methods HPV-16 positive CasKi cells were treated in vitro with up to 6 Gy of external radiation, or proteasome inhibitor MG-132 or unlabeled anti-E6 antibody C1P5 and cell death was assessed. Biodistribution of 188Rhenium (188Re)-labeled C1P5 antibody was performed in both control and radiation MG-132 treated CasKi tumor-bearing nude mice. Results . 188Re-C1P5 antibody demonstrated tumor specificity and very low uptake and fast clearance from the major organs. The amount of tumor uptake was enhanced by MG-132 but was unaffected by pre-treatment with radiation. In addition, in vitro studies demonstrated an unanticipated effect of unlabeled antibody on the amount of cell death, a finding that was suggested by our previous in vivo studies in CasKi tumor model. Conclusion We demonstrated that pre-treatment of cervical tumors with proteasome inhibitor MG-132 and with unlabeled antibody to E6 can serve as a means to generate non-viable cancer cells and to elevate the levels of target oncoproteins in the cells for increasing the accumulation of targeted radiolabeled antibodies in tumors. These results favor further development of RIT of cervical cancers targeting viral antigens. PMID:20127955

  7. Administration guidelines for radioimmunotherapy of non-Hodgkin's lymphoma with (90)Y-labeled anti-CD20 monoclonal antibody.

    PubMed

    Wagner, Henry N; Wiseman, Gregory A; Marcus, Carol S; Nabi, Hani A; Nagle, Conrad E; Fink-Bennett, Darlene M; Lamonica, Dominick M; Conti, Peter S

    2002-02-01

    90Y-ibritumomab tiuxetan is a novel radioimmunotherapeutic agent recently approved for the treatment of relapsed or refractory low-grade, follicular, or CD20+ transformed non-Hodgkin's lymphoma (NHL). (90)Y-ibritumomab tiuxetan consists of a murine monoclonal antibody covalently attached to a metal chelator, which stably chelates (111)In for imaging and (90)Y for therapy. Both health care workers and patients receiving this therapy need to become familiar with how it differs from conventional chemotherapy and what, if any, safety precautions are necessary. Because (90)Y is a pure beta-emitter, the requisite safety precautions are not overly burdensome for health care workers or for patients and their families. (90)Y-ibritumomab tiuxetan is dosed on the basis of the patient's body weight and baseline platelet count; dosimetry is not required for determining the therapeutic dose in patients meeting eligibility criteria similar to those used in clinical trials, such as <25% lymphomatous involvement of the bone marrow. (111)In- and (90)Y-ibritumomab tiuxetan are labeled at commercial radiopharmacies and delivered for on-site dose preparation and administration. Plastic and acrylic materials are appropriate for shielding during dose preparation and administration; primary lead shielding should be avoided because of the potential exposure risk from bremsstrahlung. Because there are no penetrating gamma-emissions associated with the therapy, (90)Y-ibritumomab tiuxetan is routinely administered on an outpatient basis. Furthermore, the risk of radiation exposure to patients' family members has been shown to be in the range of background radiation, even without restrictions on contact. There is therefore no need to determine activity limits or dose rate limits before patients who have been treated with (90)Y radioimmunotherapy are released, as is necessary with patients who have been treated with radiopharmaceuticals that contain (131)I. Standard universal precautions for

  8. Radioimmunoimaging of experimental thrombi in dogs using Tc-99m labeled monoclonal antibody fragments (MAPab-F(ab')/sub 2/) reactive with human platelets

    SciTech Connect

    Som, P.; Oster, Z.H.; Yamamoto, K.; Sacker, D.F.; Brill, A.B.; Zamora, P.O.; Newell, K.D.; Rhodes, B.A.

    1985-05-01

    Radioimmunoimaging of thrombi could have great clinical value in the management of coronary artery and thromboembolic disease. In-111-oxine-labeled platelets currently used require platelet isolation, delayed imaging, background subtraction and there is also potential for damaging or contaminating platelets during labeling. Murine monoclonal antibody (IgG/sub 2/a) fragments directed against human platelet membrane components (cross-reactive with dog platelets) were labeled with Tc-99m and repurified from ''kits''. After radiolabeling, 91.5-93.3% of the Tc-99m was antibody-associated. The preparations retained immunoreactivity, as determined by the ratio of cell to plasma-associated radioactivity (ratios 54.7-63.8). Tc-99m-MAPAb-F(ab')/sub 2/ were injected i.v. into dogs with thrombi produced in peripheral and pulmonary veins and arteries. About 50% of the radioactivity was cleared from the blood in 3-6 min. and 18-24% was excreted in the urine within 3 hrs. The thrombi were consistently and easily visible within 1-3 hrs. with no need for blood pool subtraction. In some cases, intimal damage along the path of catheters was seen. No adverse side effects were observed. The advantages of this method are: short and simple preparation, no need for blood pool subtraction and early visualization of thrombi. Human studies are warranted to determine its clinical efficacy.

  9. Visualization of high-throughput and label-free antibody-polypeptide binding for drug screening based on microarrays and surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Chen, Shengyi; Deng, Tao; Wang, Tongzhou; Wang, Jia; Li, Xin; Li, Qiang; Huang, Guoliang

    2012-01-01

    This work presents a visualization method for the high-throughput monitoring of antibody-polypeptide binding by integrating a microarray chip with surface plasmon resonance imaging (SPRi). A prism-coupled SPRi system with smart images processing software and a 5×5 polypeptide microarray was developed. The modeling analysis was performed to optimize the system and the materials of prism and chip, looking for the optimal incident wavelength and angle of incidence for dynamic SPRi detection in solution. The system can dynamically monitor 25 tunnels of biomolecule interactions in solution without secondary tag reactants. In addition, this system can determine the specific profile of antibody-polypeptide binding in each tunnel and yield a visual three-dimensional histogram of dynamic combinations in all microarray tunnels. Furthermore, the detection limit of the label-free antibody-polypeptide binding reached 1 pg/μL in a one-step binding test, and an ultrasensitive detection of 10 fg/μL was obtained using three-step cascade binding. Using the peptide microarray, the amount of sample and reagents used was reduced to 80 nL per tunnel, and 20×20 tunnels of biomolecule interactions could be analyzed in parallel in a 7 mm×7 mm microreaction cells. This device and method offer a potential platform for high-throughput and label-free dynamic monitoring multiple biomolecule interactions for drug discovery and basic biomedical research.

  10. Evaluation of the 323/A3 monoclonal antibody and the use of technetium-99m-labeled 323/A3 Fab' for the detection of pan adenocarcinoma.

    PubMed

    Pak, K Y; Nedelman, M A; Fogler, W E; Tam, S H; Wilson, E; Van Haarlem, L J; Colognola, R; Warnaar, S O; Daddona, P E

    1991-01-01

    The 323/A3 murine monoclonal antibody, initially described as reactive to breast carcinomas, is found by immunohistological analyses to have broad cross reactivity with adenocarcinomas of diverse histologic origin. The 323/A3 antigen is similar to the tumor-associated 17-1A antigen as revealed by immunoblot and cross-competition cell binding studies. We have investigated the potential use of the 323/A3 monoclonal antibody for tumor imaging as a Fab' molecule labeled with 99mTc. In vitro studies demonstrate that 323/A3 Fab' has high affinity (2-3 x 10(9) M-1) with no significant loss of immunoreactivity compared to the intact IgG. In vivo studies demonstrate that 99mTc 323/A3 Fab' can rapidly detect human breast and colon tumor xenografts growing in athymic nude mice. Distinct breast tumor visualization is observed as early as 1 h post intravenous administration with the 99mTc 323/A3 Fab'. Distinct colon tumor visualization is observed by 3 h (the earliest time point imaged). Tumor-to-blood ratios are higher for 99mTc 323/A3 Fab' than with a 99mTc-labeled nonspecific isotype-matched Fab' antibody. These results suggest that 99mTc 323/A3 Fab' can detect 17-1A antigen and may have potential clinical utility for the rapid diagnostic imaging of adenocarcinomas.

  11. Development of a 124I-labeled version of the anti-PSMA monoclonal antibody capromab for immunoPET staging of prostate cancer: Aspects of labeling chemistry and biodistribution.

    PubMed

    Tolmachev, Vladimir; Malmberg, Jennie; Estrada, Sergio; Eriksson, Olof; Orlova, Anna

    2014-06-01

    Correct staging of prostate cancer is an unmet clinical need. Radionuclide targeting of prostate-specific membrane antigen (PSMA) with 111In-labeled capromab pendetide (ProstaScint) is a clinical option for prostate cancer staging. We propose the use of 124I-labeled capromab to decrease the retention of radioactivity in healthy organs (due to the non-residualizing properties of the radiolabel). The use of 124I as a label should increase imaging sensitivity due to the advantages of PET as an imaging modality. Capromab targets the intracellular domain of PSMA; accumulation of radioactivity in the tumor should not depend on internalization of the antigen/antibody complex. Capromab was iodinated, and its targeting properties were compared with indium labeled counterpart in LNCaP xenografts in dual isotope mode. PSMA-negative xenografts (PC3) were used as a negative control. Radioiodinated capromab bound to PSMA specifically. Biodistribution of 125I/111In-capromab showed a more rapid clearance of iodine radioactivity from liver, spleen, kidneys, bones, colon tissue, as well as tumors. Maximum tumor uptake (13±8% ID/g for iodine and 29±9% ID/g for indium) and tumor-to-non-tumor ratios for both agents were measured 5 days post-injection (pi). High tumor accumulation and low uptake of radioactivity in normal organs were confirmed using microPET/CT 5 days pi of 124I-capromab.

  12. Design of a single-step immunoassay principle based on the combination of an enzyme-labeled antibody release coating and a hydrogel copolymerized with a fluorescent enzyme substrate in a microfluidic capillary device.

    PubMed

    Wakayama, Hideki; Henares, Terence G; Jigawa, Kaede; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-11-21

    A combination of an enzyme-labeled antibody release coating and a novel fluorescent enzyme substrate-copolymerized hydrogel in a microchannel for a single-step, no-wash microfluidic immunoassay is demonstrated. This hydrogel discriminates the free enzyme-conjugated antibody from an antigen-enzyme-conjugated antibody immunocomplex based on the difference in molecular size. A selective and sensitive immunoassay, with 10-1000 ng mL(-1) linear range, is reported.

  13. Synthesis and application of a novel cysteine-based DTPA-NCS for targeted radioimmunotherapy.

    PubMed

    Lee, So-Young; Hong, Young Don; Kim, Hak-Sung; Choi, Sun-Ju

    2013-04-01

    For the development of safe and effective protein-based radiolabeled complexes such as radioimmunotherapy (RIT), the selection of the radionuclides and the chelating agents used for the radiolabeling of tumor-targeting molecules is a critical factor. We aim to synthesize a novel bifunctional chelating agent containing the isothiocyanate group for easy conjugation with antibodies having the characteristics of high stable chelation with therapeutic radionuclides. We have synthesized the DTPA analogue retaining L-cysteine as a core ligand of the thiol group. The chelating power of cysteine-based DTPA-NCS (cys-DTPA-NCS) was compared with that of commercial ρ-SCN-Bn-DTPA. In an application, the cetuximab was radioimmunoconjugated with (177)Lu using cys-DTPA-NCS. The affinity was tested in a cell line overexpressing EGFR. A therapy study was conducted in nude mice with subcutaneous HT-29 xenografts. The cys-DTPA-NCS presents an excellent ability to chelate as compared to the ρ-SCN-Bn-DTPA. For mean ratio chemical labeling yields of 95%, the result was 0.97. (177)Lu-cys-DTPA-NCS-cetuximab was prepared under ambient condition with a high radiolabeling yield and the radiochemical purity was sustained for at least 6days. The IC50 value of the (177)Lu-labeled cetuximab was 10nM (95% confidence). The stability and therapeutic efficacy of the candidate radiopharmaceutical were verified. The new DTPA derivative, cys-DTPA-NCS, is a good bifunctional chelating agent that can be used for protein-based radiopharmaceutical using lanthanides such as (177)Lu and (90)Y. The prepared (177)Lu-cys-DTPA-NCS-cetuximab can be used for the diagnosis and treatment of human colorectal tumor. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Biodistribution, pharmacokinetic, and imaging studies with sup 186 Re-labeled NR-LU-10 whole antibody in LS174T colonic tumor-bearing mice

    SciTech Connect

    Goldrosen, M.H.; Biddle, W.C.; Pancook, J.; Bakshi, S.; Vanderheyden, J.L.; Fritzberg, A.R.; Morgan, A.C. Jr.; Foon, K.A. )

    1990-12-15

    Biodistribution, pharmacokinetic, and radioimaging studies were performed with 186Re-labeled NR-LU-10 whole antibody in athymic nude mice bearing the LS174T tumor growing either s.c. or in an experimental hepatic metastasis model. NR-LU-10 is an IgG2b murine monoclonal antibody (MAb) that reacts with virtually all human tumors of epithelial origin. NR-BC-1, a IgG2b murine MAb that reacts with normal human B-cell and B malignancies, was used as an isotype-matched control. These MAbs were radiolabeled with 186Re by a preformed chelate approach by using the triamide thiolate ligand system. 186Re-labeled NR-LU-10 (50 microCi) was injected into nude mice bearing LS174T tumors growing s.c. Biodistribution studies revealed that the LS174T tumor retained the highest concentration of 186Re-labeled NR-LU-10 at day 6. The tumor:blood ratio ranged from 0.1:1 to 10.8:1 by day 6, the last day of analysis. In contrast the tumor:blood ratio of 186Re-labeled NR-BC-1, the isotype-matched MAb control, was 1:1 on day 6. Pharmacokinetic analysis indicated that the t1/2 beta of NR-LU-10 for blood and other tissues ranged from 21 to 25 h, while the t1/2 beta for the LS174T tumor averaged 52 h. The area under the curve for tumor compared to blood was 2.8- to 5.7-fold higher than the area under the curve for all other tissues and organs. The mean residence time for NR-LU-10 in blood and all other organs ranged from 23 to 26 h, while the mean residence time for NR-LU-10 in the LS174T tumor was 72 h. Scintigraphic images revealed selective uptake of the 186Re-labeled NR-LU-10, but not of the 186Re-labeled NR-BC-1, at the LS174T tumor site. Studies in an experimental model of hepatic metastasis revealed a similar selective pattern of 186Re-labeled NR-LU-10 accumulation. Scintigraphic images of the LS174T tumor growing within the athymic nude mouse liver were obtained.

  15. Interferon-induced changes in pharmacokinetics and tumor uptake of 111In-labeled antimelanoma antibody 96. 5 in melanoma patients

    SciTech Connect

    Rosenblum, M.G.; Lamki, L.M.; Murray, J.L.; Carlo, D.J.; Gutterman, J.U.

    1988-04-06

    The type I interferons (both partially purified human leukocyte interferon (HuIFN-alpha) and recombinant alpha interferon) and the type II interferons have been shown to increase the expression of tumor-associated antigens in vitro. To determine whether HuIFN-alpha could increase tumor acquisition of the antimelanoma antibody 96.5 in vivo, five patients with metastatic malignant melanoma were treated with HuIFN-alpha at a dose of 3 X 10(6) units daily by im administration. Twenty-four hours after the first dose of HuIFN-alpha, 1 mg of antibody 96.5 labeled with 5 mCi of /sup 111/In was coadministered with 19 mg of unlabeled 96.5. Five patients matched for metastatic site and lesion size who had not received HuIFN-alpha were also given a dose of 5 mCi of radiolabeled 96.5 at the same total antibody dose (20 mg). In patients treated with HuIFN-alpha, there was a statistically significant increase in the plasma half-life of the /sup 111/In label (39.7 +/- 3.3 hr) compared to the untreated control group (29.8 +/- 3.2 hr). In addition, there was an increase in the apparent volume of distribution of the antibody in the HuIFN-alpha group (5.56 +/- 0.67 L) compared to controls (3.15 +/- 0.5 L) suggesting both an increased immediate extravascular distribution of radiolabeled antibody and a decrease in the subsequent rate of clearance of antibody from plasma. These two phenomena result in a 28% decrease in the area under the concentration curve in the HuIFN-alpha-treated group compared to controls. Computer analysis of whole-body scans from patients showed a threefold increase in radiolabeled antibody distributed to tumor relative to blood pool but no change in organ:blood ratios for liver, spleen, bone, or kidney compared to controls.

  16. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime.

    PubMed

    García-Rupérez, Jaime; Toccafondo, Veronica; Bañuls, María José; Castelló, Javier García; Griol, Amadeu; Peransi-Llopis, Sergio; Maquieira, Ángel

    2010-11-08

    We report experimental results of label-free anti-bovine serum albumin (anti-BSA) antibody detection using a SOI planar photonic crystal waveguide previously bio-functionalized with complementary BSA antigen probes. Sharp fringes appearing in the slow-light regime near the edge of the guided band are used to perform the sensing. We have modeled the presence of these band edge fringes and demonstrated the possibility of using them for sensing purposes by performing refractive index variations detection, achieving a sensitivity of 174.8 nm/RIU. Then, label-free anti-BSA biosensing experiments have been carried out, estimating a surface mass density detection limit below 2.1 pg/mm2 and a total mass detection limit below 0.2 fg.

  17. Label-free and real-time detection of antigen-antibody interactions by Oblique-incidence Reflectivity Difference (OIRD) method

    NASA Astrophysics Data System (ADS)

    He, LiPing; Sun, Yue; Dai, Jun; Wang, JingYi; Lü, HuiBin; Wang, ShuFang; Jin, KuiJuan; Zhou, YueLiang; Yang, GuoZhen

    2012-09-01

    We label-free and real-time detected three interaction processes of antigen-antibodies, Human Immunoglobulin G (IgG), Rabbit IgG, and Mouse IgG as the targets, and Goat Anti-human IgG, Goat Anti-rabbit IgG, and Goat Anti-mouse IgG as the probe, by the Oblique-incidence Reflectivity Difference (OIRD) method. The interaction dynamic curves of the OIRD signal, corresponding to the interaction processes of antigen-antibodies, are generated. The reaction times from beginning to equilibrium state are about 1800, 900, and 1200 s for Human IgG, Rabbit IgG, and Mouse IgG, respectively. The experimental results demonstrate that the OIRD method not only can distinguish biomolecular interactions, but also can be used in real-time detection of interactions and dynamic processes of biomolecules.

  18. Preparation and Evaluation of 99mTc-labeled anti-CD11b Antibody Targeting Inflammatory Microenvironment for Colon Cancer Imaging.

    PubMed

    Cheng, Dengfeng; Zou, Weihong; Li, Xiao; Xiu, Yan; Tan, Hui; Shi, Hongcheng; Yang, Xiangdong

    2015-06-01

    CD11b, an active constituent of innate immune response highly expressed in myeloid-derived suppressor cells (MDSCs), can be used as a marker of inflammatory microenvironment, particularly in tumor tissues. In this research, we aimed to fabricate a (99m)Tc-labeled anti-CD11b antibody as a probe for CD11b(+) myeloid cells in colon cancer imaging with single-photon emission computed tomography (SPECT). In situ murine colon tumor model was established in histidine decarboxylase knockout (Hdc(-/-)) mice by chemicals induction. (99m)Tc-labeled anti-CD11b was obtained with labeling yields of over 30% and radiochemical purity of over 95%. Micro-SPECT/CT scans were performed at 6 h post injection to investigate biodistributions and targeting of the probe. In situ colonic neoplasma as small as 3 mm diameters was clearly identified by imaging; after dissection of the animal, anti-CD11b immunofluorescence staining was performed to identify infiltration of CD11b+ MDSCs in microenvironment of colonic neoplasms. In addition, the images displayed intense signal from bone marrow and spleen, which indicated the origin and migration of CD11b(+) MDSCs in vivo, and these results were further proved by flow cytometry analysis. Therefore, (99m)Tc-labeled anti-CD11b SPECT displayed the potential to facilitate the diagnosis of colon tumor in very early stage via detection of inflammatory microenvironment.

  19. Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies

    SciTech Connect

    Schlimok, G.; Funke, I.; Holzmann, B.; Goettlinger, G.; Schmidt, G.; Haeser, H.; Swierkot, S.; Warnecke, H.H.; Schneider, B.; Koprowski, H.; Riethmueller, G.

    1987-12-01

    The detection of early micrometastasis or disseminated single tumor cells poses a problem for conventional diagnosis procedures. Using a panel of monoclonal antibodies against cytokeratin and the 17-1A epithelial antigen the authors identified immunocytochemically tumor cells in bone marrow of patients with breast cancer and colorectal cancer at the time of surgery of the primary tumor. Monoclonal antibody CK2, recognizing the human cytokeratin component 18 in simple epithelia, appeared to be the most suitable reagent because of its negative reaction with bone marrow samples of the noncarcinoma patients. Its specificity was further demonstrated in a double-marker staining procedure using an anti-leukocyte common antigen monoclonal antibody (T200) as counterstain. A comparative analysis showed that immunocytology was clearly superior to conventional cytology and histology. In 9.5-20.5% of patients without distant metastasis, tumor cells could be detected in bone marrow. They found a significant correlation between tumor cells in bone marrow and conventional risk factors, such as distant metastasis or lymph node involvement. In a first approach toward immunotherapy they demonstrated in 3 patients that infused monoclonal antibody 17-1A can label single tumor cells in bone marrow in vivo. They then used this single approach to follow up on 7 patients undergoing 17-1A therapy in an adjuvant clinical trial.

  20. Site-specific scFv labelling with invertase via Sortase A mechanism as a platform for antibody-antigen detection using the personal glucose meter

    PubMed Central

    Ismail, Nur Faezee; Lim, Theam Soon

    2016-01-01

    Antibody labelling to reporter molecules is gaining popularity due to its many potential applications for diagnostics and therapeutics. However, non-directional bioconjugation methods which are commonly used often results in the loss of target binding capabilities. Therefore, a site-specific enzymatic based bioconjugation such as sortase-mediated transpeptidation allows for a more rapid and efficient method of antibody conjugation for diagnostic applications. Here we describe the utilization of sortase A bioconjugation to conjugate a single chain fragment variable (scFv) to the extracellular invertase (invB) from Zymomonas mobilis with the aim of developing an invertase based immunoassay. In addition, conjugation to enhanced green fluorescent protein (eGFP) was also validated to show the flexibility of the method. The invertase conjugated complex was successfully applied for the detection of antibody-antigen interaction using a personal glucose meter (PGM) for assay readout. The setup was used in both a direct and competitive assay highlighting the robustness of the conjugate for assay development. The method provides an alternative conjugation process to allow easy exchange of antibodies to facilitate rapid development of diagnostic assays for various diseases on the PGM platform. PMID:26782912

  1. Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells.

    PubMed

    Mazzucchelli, Serena; Colombo, Miriam; De Palma, Clara; Salvadè, Agnese; Verderio, Paolo; Coghi, Maria D; Clementi, Emilio; Tortora, Paolo; Corsi, Fabio; Prosperi, Davide

    2010-10-26

    Highly monodisperse magnetite nanocrystals (MNC) were synthesized in organic media and transferred to the water phase by ultrasound-assisted ligand exchange with an iminodiacetic phosphonate. The resulting biocompatible magnetic nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, and magnetorelaxometry, indicating that this method allowed us to obtain stable particle dispersions with narrow size distribution and unusually high magnetic resonance T(2) contrast power. These nanoparticles were conjugated to a newly designed recombinant monodomain protein A variant, which exhibited a convincingly strong affinity for human and rabbit IgG molecules. Owing to the nature of antibody-protein A binding, tight antibody immobilization occurred through the Fc fragment thus taking full advantage of the targeting potential of bound IgGs. If necessary, monoclonal antibodies could be removed under controlled conditions regenerating the original IgG-conjugatable MNC. As a proof of concept of the utility of our paramagnetic labeling system of human IgGs for biomedical applications, anti-HER-2 monoclonal antibody trastuzumab was immobilized on hybrid MNC (TMNC). TMNC were assessed by immunoprecipitation assay and confocal microscopy effected on HER-2-overexpressing MCF-7 breast cancer cells, demonstrating excellent recognition capability and selectivity for the target membrane receptor.

  2. Cocktail Therapy of 177Lu-PSMA-617 and 177Lu-EDTMP in Patients With mCRPC: A Proof-of-Principle Application.

    PubMed

    Bal, Chandrasekhar; Yadav, Madhav Prasad; Ballal, Sanjana

    2016-08-01

    Prostate cancer is the second most common primary tumor affecting men worldwide. Among them, 10-20% develop castration resistant prostate cancer (CRPC). Ga-PSMA-PET/CT is an important theranostic agent for the evaluation of CRPC to assess the feasibility of treatment with Lu-PSMA-617 which is a novel therapeutic agent. Interestingly, in certain cases, we have observed non-PSMA-avid lesions despite raised sPSA levels. In this regard, we present a case of cocktail therapy applied using Lu-PSMA-617 and Lu-EDTMP therapy in a 38-year-old male CRPC patient with both soft tissue and extensive skeletal metastases.

  3. Correlation between positron emission tomography and Cerenkov luminescence imaging in vivo and ex vivo using 64Cu-labeled antibodies in a neuroblastoma mouse model

    PubMed Central

    Maier, Florian C.; Schmitt, Julia; Maurer, Andreas; Ehrlichmann, Walter; Reischl, Gerald; Nikolaou, Konstantin; Handgretinger, Rupert; Pichler, Bernd J.; Thaiss, Wolfgang M.

    2016-01-01

    Antibody-based therapies gain momentum in clinical therapy, thus the need for accurate imaging modalities with respect to target identification and therapy monitoring are of increasing relevance. Cerenkov luminescence imaging (CLI) are a novel method detecting charged particles emitted during radioactive decay with optical imaging. Here, we compare Position Emission Tomography (PET) with CLI in a multimodal imaging study aiming at the fast and efficient screening of monoclonal antibodies (mAb) designated for targeting of the neuroblastoma-characteristic epitope disialoganglioside GD2. Neuroblastoma-bearing SHO mice were injected with a 64Cu-