Science.gov

Sample records for 17alpha-estradiol arrests cell

  1. 17{alpha}-Estradiol arrests cell cycle progression at G{sub 2}/M and induces apoptotic cell death in human acute leukemia Jurkat T cells

    SciTech Connect

    Jun, Do Youn; Park, Hae Sun; Kim, Jun Seok; Kim, Jong Sik; Park, Wan; Song, Bang Ho; Kim, Hee-Sook; Taub, Dennis; Kim, Young Ho

    2008-09-15

    A pharmacological dose (2.5-10 {mu}M) of 17{alpha}-estradiol (17{alpha}-E{sub 2}) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17{alpha}-E{sub 2} was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G{sub 2}/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56 phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17{alpha}-E{sub 2}-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G{sub 2}/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17{alpha}-E{sub 2}-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G{sub 1}/S boundary, 17{alpha}-E{sub 2} failed to induce the G{sub 2}/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17{alpha}-E{sub 2} toward Jurkat T cells is attributable to apoptosis mainly induced in G{sub 2}/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.

  2. In vitro and in vivo estrogenic effects of 17alpha-estradiol in medaka (Oryzias latipes).

    PubMed

    Huang, Chong; Zhang, Zhaobin; Wu, Shimin; Zhao, Yanbin; Hu, Jianying

    2010-07-01

    17alpha-Estradiol (17alpha-E2), the stereoisomer of 17beta-estradiol (17beta-E2), is considered a weak estrogen in mammals. However, little is known about its estrogenic potency in teleost fish, even though 17alpha-E2 has been frequently detected in aquatic environment. To investigate the estrogenic activity of 17alpha-E2, an in vitro assay based on the ligand-dependent interaction between medaka estrogen receptor alpha (med-ERalpha) and coactivator was conducted. Japanese medaka (Oryziaslatipes) were exposed to 1, 10, 100, 1000 and 10000ng L(-1) 17alpha-E2 (actual concentrations of 1.91, 12.81, 96.24, 1045.15, and 9320.81ng L(-1), respectively) for 3 weeks, and expression for vitellogenins (VTG-I), Choriogenin H (CHG-H) and estrogen receptor alpha (ERalpha) mRNA in the livers was analyzed by quantitative real-time RT-PCR (Q-RT-PCR). The in vitro study showed that the EC(50) of 17alpha-E2 was 114.10nM, which was 30 times less potent than that of 17beta-E2 (3.80nM). Dose-dependent induction of gene expression of VTG-I, CHG-H and ERalpha were observed. The benchmark dose (BMD) values for VTG-I, CHG-H and ERalpha were 44.16ng L(-1), 15.25ng L(-1) and 66.03ng L(-1), which were about 11-, 17- and 14-times less potent than that of 17beta-E2, respectively. Comparing this study with those reported previously in mammals, it is suggested that fish species may be more susceptive to 17alpha-E2 than mammals.

  3. The effects of 17beta estradiol, 17alpha estradiol and progesterone on oxidative stress biomarkers in ovariectomized female rat brain subjected to global cerebral ischemia.

    PubMed

    Ozacmak, V H; Sayan, H

    2009-01-01

    Neuroprotective effects of estrogens and progesterone have been widely studied in various experimental models. The present study was designed to compare possible neuroprotective effects of 17alpha-estradiol, 17beta-estradiol, and progesterone on oxidative stress in rats subjected to global cerebral ischemia. Global cerebral ischemia was induced in ovariectomized female rats by four vessel occlusion for 10 min. Following 72 h of reperfusion, levels of malondialdehyde (MDA, oxidative stress marker), and reduced glutathione (GSH, major endogenous antioxidant) were assessed in hippocampus, striatum and cortex of rats treated with either 17alpha-estradiol, 17beta-estradiol, progesterone or estradiol + progesterone beforehand. Steroid administration ameliorated ischemia-induced decrease in GSH and increase in MDA levels. Our data offers additional evidence that estrogens and progesterone or combination of two exert a remarkable neuroprotective effect reducing oxidative stress.

  4. Gene copy number and cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Ghosh, Bhaswar; Bose, Indrani

    2006-03-01

    The cell cycle is an orderly sequence of events which ultimately lead to the division of a single cell into two daughter cells. In the case of DNA damage by radiation or chemicals, the damage checkpoints in the G1 and G2 phases of the cell cycle are activated. This results in an arrest of the cell cycle so that the DNA damage can be repaired. Once this is done, the cell continues with its usual cycle of activity. We study a mathematical model of the DNA damage checkpoint in the G2 phase which arrests the transition from the G2 to the M (mitotic) phase of the cell cycle. The tumor suppressor protein p53 plays a key role in activating the pathways leading to cell cycle arrest in mammalian systems. If the DNA damage is severe, the p53 proteins activate other pathways which bring about apoptosis, i.e., programmed cell death. Loss of the p53 gene results in the proliferation of cells containing damaged DNA, i.e., in the growth of tumors which may ultimately become cancerous. There is some recent experimental evidence which suggests that the mutation of a single copy of the p53 gene (in the normal cell each gene has two identical copies) is sufficient to trigger the formation of tumors. We study the effect of reducing the gene copy number of the p53 and two other genes on cell cycle arrest and obtain results consistent with experimental observations.

  5. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  6. [Cell cycle arrest at M phase induced by vinblastine in MOLT-4 cells].

    PubMed

    Zhong, Yi-Sheng; Pan, Chang-Chuan; Jin, Chang-Nan; Li, Jian-Jun; Xiong, Gong-Peng; Zhang, Jian-Xi; Gong, Jian-Ping

    2009-04-01

    This study was purposed to investigate the biological effect of vinblastine (VLS), usually known as inductor of mitotic arrest, on MOLT-4 of ALL cells and to evaluate its significance. The cell arrest in M phase and/or cell apoptosis were induced by treatment of MOLT-4 cells with 0.05 microg/ml VLS for 0 - 12 hours; the DNA histogram was detected by flow cytometry; the morphological changes of cells were observed by confocal microscopy; the cell cycle distribution, cell apoptosis and morphological changes of cells before and after arrest were analyzed by using arrest increasing rate (AIR), arrest efficiency (AE), apoptosis rate (AR) and morphologic parameters respectively. The results indicated that the cell arrest did not accompanied by significant increase of apoptosis rate; the DNA histogram of cell arrest showed dynamic change of cell cycle in time-dependent manner; the arrest efficiency could be quantified. The cell arrest at M phase was accompanied by cell stack in S phase, the cell proliferation rate dropped after cell arrest occurred. The cells arrested at M phase possessed of characteristic morphologic features in cell mitosis. It is concluded that the vinblastine can solely induce arrest of MOLT-4 cells at M phase. This study provides experimental basis for further investigating the relation of cell cycle arrest to apoptosis, mechanism of checkpoint and development of new anticancer drugs.

  7. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  8. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  9. Digital Holographic Microscopy for Non-Invasive Monitoring of Cell Cycle Arrest in L929 Cells

    PubMed Central

    Falck Miniotis, Maria; Mukwaya, Anthonny; Gjörloff Wingren, Anette

    2014-01-01

    Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells. PMID:25208094

  10. Arresting cell cycles and the effect on wound healing.

    PubMed

    Vande Berg, Jerry S; Robson, Martin C

    2003-06-01

    Wounds that contain a significant number of fibroblasts that are arrested because of senescence, damaged DNA, or enduring quiescence do not heal. As the arrested population of cells decreases and more cells that divide and contribute to wound repair populate the wound, the wound is more likely to achieve closure. Having an understanding of the regulatory mechanisms within the cell cycle is important to wound repair, particularly chronic wounds. The theory of cellular senescence in chronic wounds is new and has never been tested. Studies seem to show that senescent cells in chronic wounds are a significant part of the wounding process. Senescence is irreversible, and senescent cells are refractory to growth factor therapy. Future growth factor therapies or genetic transfections that are capable of repairing the short circuit in cycling cells or overriding the senescent condition will be important partners in the successful treatment of chronic wound patients.

  11. Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    PubMed Central

    Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.

    2011-01-01

    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058

  12. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  13. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  14. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  15. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    PubMed Central

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  16. Leukemia: stem cells, maturation arrest, and differentiation therapy.

    PubMed

    Sell, Stewart

    2005-01-01

    Human myeloid leukemias provide models of maturation arrest and differentiation therapy of cancer. The genetic lesions of leukemia result in a block of differentiation (maturation arrest) that allows myeloid leukemic cells to continue to proliferate and/or prevents the terminal differentiation and apoptosis seen in normal white blood cells. In chronic myeloid leukemia, the bcr-abl (t9/22) translocation produces a fusion product that is an activated tyrosine kinase resulting in constitutive activation cells at the myelocyte level. This activation may be inhibited by imatinib mesylate (Gleevec, STI-571), which blocks the binding of ATP to the activated tyrosine kinase, prevents phosphorylation, and allows the leukemic cells to differentiate and undergo apoptosis. In acute promyelocytic leukemia, fusion of the retinoic acid receptor-alpha with the gene coding for promyelocytic protein, the PML-RAR alpha (t15:17) translocation, produces a fusion product that blocks the activity of the promyelocytic protein, which is required for formation of the granules of promyelocytes and prevents further differentiation. Retinoic acids bind to the retinoic acid receptor (RAR alpha) component of the fusion product, resulting in degradation of the fusion protein by ubiquitinization. This allows normal PML to participate in granule formation and differentiation of the promyelocytes. In one common type of acute myeloid leukemia, which results in maturation arrest at the myeloid precursor level, there is a mutation of FLT3, a transmembrane tyrosine kinase, which results in constitutive activation of the IL-3 receptor. This may be blocked by agents that inhibit farnesyl transferase. In each of these examples, specific inhibition of the genetically altered activation molecules of the leukemic cells allows the leukemic cells to differentiate and die. Because acute myeloid leukemias usually have mutation of more than one gene, combinations of specific inhibitors that act on the effects of

  17. Lithium causes G2 arrest of renal principal cells.

    PubMed

    de Groot, Theun; Alsady, Mohammad; Jaklofsky, Marcel; Otte-Höller, Irene; Baumgarten, Ruben; Giles, Rachel H; Deen, Peter M T

    2014-03-01

    Vasopressin-regulated expression and insertion of aquaporin-2 channels in the luminal membrane of renal principal cells is essential for urine concentration. Lithium affects urine concentrating ability, and approximately 20% of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder characterized by polyuria and polydipsia. Lithium-induced NDI is caused by aquaporin-2 downregulation and a reduced ratio of principal/intercalated cells, yet lithium induces principal cell proliferation. Here, we studied how lithium-induced principal cell proliferation can lead to a reduced ratio of principal/intercalated cells using two-dimensional and three-dimensional polarized cultures of mouse renal collecting duct cells and mice treated with clinically relevant lithium concentrations. DNA image cytometry and immunoblotting revealed that lithium initiated proliferation of mouse renal collecting duct cells but also increased the G2/S ratio, indicating G2/M phase arrest. In mice, treatment with lithium for 4, 7, 10, or 13 days led to features of NDI and an increase in the number of principal cells expressing PCNA in the papilla. Remarkably, 30%-40% of the PCNA-positive principal cells also expressed pHistone-H3, a late G2/M phase marker detected in approximately 20% of cells during undisturbed proliferation. Our data reveal that lithium treatment initiates proliferation of renal principal cells but that a significant percentage of these cells are arrested in the late G2 phase, which explains the reduced principal/intercalated cell ratio and may identify the molecular pathway underlying the development of lithium-induced renal fibrosis.

  18. Lithium Causes G2 Arrest of Renal Principal Cells

    PubMed Central

    de Groot, Theun; Alsady, Mohammad; Jaklofsky, Marcel; Otte-Höller, Irene; Baumgarten, Ruben; Giles, Rachel H.

    2014-01-01

    Vasopressin-regulated expression and insertion of aquaporin-2 channels in the luminal membrane of renal principal cells is essential for urine concentration. Lithium affects urine concentrating ability, and approximately 20% of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder characterized by polyuria and polydipsia. Lithium-induced NDI is caused by aquaporin-2 downregulation and a reduced ratio of principal/intercalated cells, yet lithium induces principal cell proliferation. Here, we studied how lithium-induced principal cell proliferation can lead to a reduced ratio of principal/intercalated cells using two-dimensional and three-dimensional polarized cultures of mouse renal collecting duct cells and mice treated with clinically relevant lithium concentrations. DNA image cytometry and immunoblotting revealed that lithium initiated proliferation of mouse renal collecting duct cells but also increased the G2/S ratio, indicating G2/M phase arrest. In mice, treatment with lithium for 4, 7, 10, or 13 days led to features of NDI and an increase in the number of principal cells expressing PCNA in the papilla. Remarkably, 30%–40% of the PCNA-positive principal cells also expressed pHistone-H3, a late G2/M phase marker detected in approximately 20% of cells during undisturbed proliferation. Our data reveal that lithium treatment initiates proliferation of renal principal cells but that a significant percentage of these cells are arrested in the late G2 phase, which explains the reduced principal/intercalated cell ratio and may identify the molecular pathway underlying the development of lithium-induced renal fibrosis. PMID:24408872

  19. Adaptive responses of cell hydration to a low temperature arrest

    PubMed Central

    Christmann, Jens; Azer, Lale; Dörr, Daniel; Fuhr, Günter R.; Bastiaens, Philippe I. H.

    2015-01-01

    Key points Na+ conducting cation channels are key players in the volume restoration of osmotically shrunken cells. Accordingly, they are potential candidates for the compensation of water loss during slow‐freezing procedures.Cells were subjected to different levels of hypertonic stress, aiming to disturb cell water content and to define the energy demands of water channels and Na+ channels in the process of rehydration.Activation of Na+ channels was clearly the rate‐limiting step in the restoration of cell volume post‐cryo, whereas water channels merely played a permissive role.Low temperatures increased cell viscosity with a remarkable hysteresis; furthermore, increasing cell viscosity experimentally was shown to stimulate Na+ channels.The peptide hormone vasopressin was a further activator of Na+ channels and increased the viability of post‐cryo cells considerably. This opens the path for a new class of cryo‐protectants with an intrinsic biological activity. Abstract Slow cooling leads to a passive dehydration of cells, whereas rehydration during warming reflects the active regain of functionality. The ability to modulate such an energy demanding process could be instrumental in optimizing the cryo‐arrest of living systems. In the present study, various levels of hypertonic stress were used to disturb the water content of cells and to define the energy profiles of aquaporins and (Na+ conducting) cation channels during rehydration. Na+ import was found to be the rate‐limiting step in water restoration, whereas aquaporins merely played a permissive role. Indeed, regulated Na+ import was increased 2‐fold following cryo‐arrests, thus facilitating the osmotic rehydration of cells. Freezing temperatures increased cell viscosity with a remarkable hysteresis and viscosity was a trigger of cation channels. The peptide hormone vasopressin was a further activator of channels, increasing the viability of post‐cryo cells considerably. Hence, the hormone

  20. Pseudolaric acid B induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell.

    PubMed

    Yu, Jing hua; Liu, Chun yu; Zheng, Gui bin; Zhang, Li Ying; Yan, Ming hui; Zhang, Wen yan; Meng, Xian ying; Yu, Xiao fang

    2013-01-01

    PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC.

  1. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  2. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  3. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  4. Sonoporation-Induced Apoptosis and Cell Cycle Arrest: Initial Findings

    NASA Astrophysics Data System (ADS)

    Zhong, Wenjing; Sit, Wai Hung; Wan, Jennifer M. F.; Yu, Alfred C. H.

    2011-09-01

    Sonoporation is known to be able to temporarily permeabilize cells, but during this process it may have traumatic impact on cell viability. In this work, we found that sonoporation may induce apoptosis and G2/M-phase cell cycle arrest in some cells hours after ultrasonic exposure in vitro. Methods: Suspensions of HL-60 leukemia cells were prepared (106 cells/ml), and a 1% v/v microbubble solution was added to induce sonoporation during ultrasound exposure. They were then placed 7 cm away from a 2.54 cm-diameter, 1 MHz unfocused ultrasound probe, and these samples were insonated for 1 min with ultrasound pulses (10% duty cycle, 1 kHz pulse repetition frequency). In this study, two levels of peak negative ultrasound pressure were used: 0.3 MPa and 0.5 MPa. After exposure, the cell suspensions were further incubated. They were harvested after 4 h, 8 h, 12 h and 24 h to analyze the cell-cycle distribution (sub-G1, G0/G1, S, G2/M) at these time points using propidium iodide staining and flow cytometry. Results: Some sonoporation-treated cells had undergone apoptosis by 4h, and the largest number of apoptotic cells (sub-G1 phase) was observed after 12h (0.3 MPa group: 25.0%; 0.5 MPa group: 27.2%). Also, after experiencing sonoporation, some viable cells were stopped in the G2/M phase without undergoing cytokinesis, and the maximum G2/M population rise was seen after 12h (0.3 MPa group: +12.2%; 0.5 MPa group: +14.7%). This was accompanied by decreases in the populations of G0/G1-phase and S-phase.

  5. Mechanics of motility initiation and motility arrest in crawling cells

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Putelat, Thibaut; Truskinovsky, Lev

    2015-11-01

    Motility initiation in crawling cells requires transformation of a symmetric state into a polarized state. In contrast, motility arrest is associated with re-symmetrization of the internal configuration of a cell. Experiments on keratocytes suggest that polarization is triggered by the increased contractility of motor proteins but the conditions of re-symmetrization remain unknown. In this paper we show that if adhesion with the extra-cellular substrate is sufficiently low, the progressive intensification of motor-induced contraction may be responsible for both transitions: from static (symmetric) to motile (polarized) at a lower contractility threshold and from motile (polarized) back to static (symmetric) at a higher contractility threshold. Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the direction of locomotion. In the interest of analytical transparency we also neglect active protrusion and view adhesion as passive. Despite the unavoidable oversimplifications associated with these assumptions, the model reproduces quantitatively the motility initiation pattern in fish keratocytes and reveals a crucial role played in cell motility by the nonlocal feedback between the mechanics and the transport of active agents. A prediction of the model that a crawling cell can stop and re-symmetrize when contractility increases sufficiently far beyond the motility initiation threshold still awaits experimental verification.

  6. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  7. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs.

    PubMed

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-11-26

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.

  8. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  9. Reversible cryo-arrest for imaging molecules in living cells at high spatial resolution

    PubMed Central

    Sabet, Ola; Wehner, Frank; Konitsiotis, Antonios; Fuhr, Günther R.; Bastiaens, Philippe I. H.

    2016-01-01

    The dynamics of molecules in living cells hamper precise imaging of molecular patterns by functional and super resolution microscopy. Circumventing lethal chemical fixation, an on-stage cryo-arrest was developed for consecutive imaging of molecular patterns within the same living, but arrested cells. The reversibility of consecutive cryo-arrests was demonstrated by the high survival rate of different cell lines and intact growth factor signaling that was not perturbed by stress response. Reversible cryo-arrest was applied to study the evolution of ligand-induced receptor tyrosine kinase activation at different scales. The nanoscale clustering of epidermal growth factor receptor (EGFR) in the plasma membrane was assessed by single molecule localization microscopy and endosomal microscale activity patterns of ephrin receptor type-A (EphA2) by fluorescence lifetime imaging microscopy. We thereby demonstrate that reversible cryo-arrest allows the precise determination of molecular patterns while conserving the dynamic capabilities of living cells. PMID:27400419

  10. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells.

    PubMed

    Catalano, Maria G; Fortunati, Nicoletta; Pugliese, Mariateresa; Costantino, Lucia; Poli, Roberta; Bosco, Ornella; Boccuzzi, Giuseppe

    2005-03-01

    Poorly differentiated thyroid carcinoma is an aggressive human cancer that is resistant to conventional therapy. Histone deacetylase inhibitors are a promising class of drugs, acting as antiproliferative agents by promoting differentiation, as well as inducing apoptosis and cell cycle arrest. Valproic acid (VPA), a class I selective histone deacetylase inhibitor widely used as an anticonvulsant, promotes differentiation in poorly differentiated thyroid cancer cells by inducing Na(+)/I(-) symporter and increasing iodine uptake. Here, we show that it is also highly effective at suppressing growth in poorly differentiated thyroid cancer cell lines (N-PA and BHT-101). Apoptosis induction and cell cycle arrest are the underlying mechanisms of VPA's effect on cell growth. It induces apoptosis by activating the intrinsic pathway; caspases 3 and 9 are activated but not caspase 8. Cell cycle is selectively arrested in G(1) and is associated with the increased expression of p21 and the reduced expression of cyclin A. Both apoptosis and cell cycle arrest are induced by treatment with 1 mm VPA, a dose that promotes cell redifferentiation and that is slightly above the serum concentration reached in patients treated for epilepsy. These multifaceted properties make VPA of clinical interest as a new approach to treating poorly differentiated thyroid cancer.

  11. Human immunodeficiency virus infection of cells arrested in the cell cycle.

    PubMed Central

    Lewis, P; Hensel, M; Emerman, M

    1992-01-01

    Cell proliferation is necessary for proviral integration and productive infection of most retroviruses. Nevertheless, the human immunodeficiency virus (HIV) can infect non-dividing macrophages. This ability to grow in non-dividing cells is not specific to macrophages because, as we show here, CD4+ HeLa cells arrested at stage G2 of the cell cycle can be infected by HIV-1. Proliferation is necessary for these same cells to be infected by a murine retrovirus, MuLV. HIV-1 integrates into the arrested cell DNA and produces viral RNA and protein in a pattern similar to that in normal cells. In addition, our data suggest that the ability to infect non-dividing cells is due to one of the HIV-1 core virion proteins. HIV infection of non-dividing cells distinguishes lentiviruses from other retroviruses and is likely to be important in the natural history of HIV infection. Images PMID:1322294

  12. Differential arrest and adhesion of tumor cells and microbeads in the microvasculature.

    PubMed

    Guo, Peng; Cai, Bin; Lei, Ming; Liu, Yang; Fu, Bingmei M

    2014-06-01

    To investigate the mechanical mechanisms behind tumor cell arrest in the microvasculature, we injected fluorescently labeled human breast carcinoma cells or similarly sized rigid beads into the systemic circulation of a rat. Their arrest patterns in the microvasculature of mesentery were recorded and quantified. We found that 93% of rigid beads were arrested either at arteriole-capillary intersections or in capillaries. Only 3% were at the capillary-postcapillary venule intersections and in postcapillary venules. In contrast, most of the flexible tumor cells were either entrapped in capillaries or arrested at capillary or postcapillary venule-postcapillary venule intersections and in postcapillary venules. Only 12% of tumor cells were arrested at the arteriole-capillary intersections. The differential arrest and adhesion of tumor cells and microbeads in the microvasculature was confirmed by a χ(2) test (p < 0.001). These results demonstrate that mechanical trapping was responsible for almost all the arrest of beads and half the arrest of tumor cells. Based on the measured geometry and blood flow velocities at the intersections, we also performed a numerical simulation using commercial software (ANSYS CFX 12.01) to depict the detailed distribution profiles of the velocity, shear rate, and vorticity at the intersections where tumor cells preferred to arrest and adhere. Simulation results reveal the presence of localized vorticity and shear rate regions at the turning points of the microvessel intersections, implying that hemodynamic factors play an important role in tumor cell arrest in the microcirculation. Our study helps elucidate long-debated issues related to the dominant factors in early-stage tumor hematogenous metastasis.

  13. G2/M cell cycle arrest in the life cycle of viruses.

    PubMed

    Davy, Clare; Doorbar, John

    2007-11-25

    There is increasing evidence that viral infection, expression of viral protein or the presence of viral DNA causes the host cell cycle to arrest during G2/M. The mechanisms used by viruses to cause arrest vary widely; some involve the activation of the cellular pathways that induce arrest in response to DNA damage, while others use completely novel means. The analysis of virus-mediated arrest has not been proven easy, and in most cases the consequences of arrest for the virus life cycle are not well defined. However, a number of effects of arrest are being investigated and it will be interesting to see to what extent perturbation of the G2/M transition is involved in viral infections.

  14. Analysis of the G1 arrest position of senescent WI38 cells by quinacrine dihydrochloride nuclear fluorescence: evidence for a late G1 arrest

    SciTech Connect

    Gorman, S.D.; Cristofalo, V.J.

    1986-11-01

    Senescence of the human diploid fibroblast-like cell line, W138, is characterized by a loss of proliferative activity and an arrest of cells with a 2C DNA content (G1 or G0). To examine the specific region within G1 in which senescent cells arrest, senescent cells were stained with quinacrine dihydrochloride (QDH) and their nuclear fluorescence was compared with that of young cultures arrested in early and late G1 by serum deprivation and hydroxyurea exposure, respectively. Release of these G1-arrested young cultures from their blocking conditions and timing the kinetics of their entry into the S phase by autoradiographic detection of (/sup 3/H)thymidine incorporation revealed that serum-deprived cells entered the S phase within 15-18h, whereas hydroxyurea-exposed cells entered the S phase within 1.5h, thus confirming their relative G1-arrest positions. QDH-stained, serum-deprived and hydroxyurea-exposed young cells exhibited relative nuclear fluorescence intensities of 51.7 and 23.9, respectively. Senescent cells exhibited a relative nuclear fluorescence intensity of 17.4, closely resembling the fluorescence of young cultures arrested in late G1 by hydroxyurea exposure. These data support the concept that senescent cells are arrested from further progression in the cell cycle in late G1.

  15. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    PubMed

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    PubMed

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  18. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    SciTech Connect

    Chetty, Chandramu; Dontula, Ranadheer; Gujrati, Meena; Lakka, Sajani S.

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  19. AMPK Causes Cell Cycle Arrest in LKB1-deficient Cells via Activation of CAMKK2

    PubMed Central

    Fogarty, Sarah; Ross, Fiona A.; Ciruelos, Diana Vara; Gray, Alexander; Gowans, Graeme J.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is activated by phosphorylation at Thr172, either by the tumor suppressor kinase LKB1 or by an alternate pathway involving the Ca2+/calmodulin-dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP ratios, signifying energy deficit, promote allosteric activation and net Thr172 phosphorylation mediated by LKB1, so that the LKB1-AMPK pathway acts as an energy sensor. Many tumor cells carry loss-of-function mutations in the STK11 gene encoding LKB1, but LKB1 re-expression in these cells causes cell cycle arrest. Therefore, it was investigated as to whether arrest by LKB1 is caused by activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2. In three LKB1-null tumor cell lines, treatment with the Ca2+ ionophore A23187 caused a G1-arrest that correlated with AMPK activation and Thr172 phosphorylation. In G361 cells, expression of a truncated, CAMKK2 mutant also caused G1-arrest similar to that caused by expression of LKB1, while expression of a dominant negative AMPK mutant, or a double knockout of both AMPK-α subunits, also prevented the cell cycle arrest caused by A23187. These mechanistic findings confirm that AMPK activation triggers cell cycle arrest, and also suggest that the rapid proliferation of LKB1-null tumor cells is due to lack of the restraining influence of AMPK. However, cell cycle arrest can be restored by re-expressing LKB1 or a constitutively active CAMKK2, or by pharmacological agents that increase intracellular Ca2+ and thus activate endogenous CAMKK2. Implications Evidence here reveals that the rapid growth and proliferation of cancer cells lacking the tumor suppressor LKB1 is due to reduced activity of AMPK, and suggests a therapeutic approach by which this block might be circumvented. PMID:27141100

  20. Prp19 Arrests Cell Cycle via Cdc5L in Hepatocellular Carcinoma Cells

    PubMed Central

    Huang, Renzheng; Xue, Ruyi; Qu, Di; Yin, Jie; Shen, Xi-Zhong

    2017-01-01

    Pre-mRNA processing factor 19 (Prp19) is involved in many cellular events including pre-mRNA processing and DNA damage response. Recently, it has been identified as a candidate oncogene in hepatocellular carcinoma (HCC). However, the role of Prp19 in tumor biology is still elusive. Here, we reported that Prp19 arrested cell cycle in HCC cells via regulating G2/M transition. Mechanistic insights revealed that silencing Prp19 inhibited the expression of cell division cycle 5-like (Cdc5L) via repressing the translation of Cdc5L mRNA and facilitating lysosome-mediated degradation of Cdc5L in HCC cells. Furthermore, we found that silencing Prp19 induced cell cycle arrest could be partially resumed by overexpressing Cdc5L. This work implied that Prp19 participated in mitotic progression and thus could be a promising therapeutic target of HCC. PMID:28387715

  1. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    PubMed Central

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  2. AMBIENT PARTICULATE MATTER INDUCES ALVEOLAR EPITHELIAL CELL CYCLE ARREST: ROLE OF G1 CYCLINS

    PubMed Central

    Zhang, Jingmei; Ghio, Andrew J.; Gao, Mingxing; Wei, Ke; Rosen, Glenn D.; Upadhyay, Daya

    2007-01-01

    We hypothesized that the ambient air pollution particles (PM) induce cell cycle arrest in alveolar epithelial cells (AEC). Exposure of PM (25μg/cm2) to AEC induced cells cycle arrest in G1 phase, inhibited DNA synthesis, blocked cell proliferation and caused decrease in cyclin E, A, D1 and Cyclin E- cyclin-dependent kinase(CDK)-2 kinase activity after 4h. PM induced upregulation of CDK inhibitor, p21 protein and p21 activity in AEC. SiRNAp21 blocked PM–induced downregulation of cyclins and AEC G1 arrest. Accordingly, we provide the evidence that PM induces AEC G1 arrest by altered regulation of G1 cyclins and CDKs. PMID:17977533

  3. Ambient particulate matter induces alveolar epithelial cell cycle arrest: role of G1 cyclins.

    PubMed

    Zhang, Jingmei; Ghio, Andrew J; Gao, Mingxing; Wei, Ke; Rosen, Glenn D; Upadhyay, Daya

    2007-11-13

    We hypothesized that the ambient air pollution particles (particulate matter; PM) induce cell cycle arrest in alveolar epithelial cells (AEC). Exposure of PM (25microg/cm(2)) to AEC induced cells cycle arrest in G1 phase, inhibited DNA synthesis, blocked cell proliferation and caused decrease in cyclin E, A, D1 and Cyclin E- cyclin-dependent kinase (CDK)-2 kinase activity after 4h. PM induced upregulation of CDK inhibitor, p21 protein and p21 activity in AEC. SiRNAp21 blocked PM-induced downregulation of cyclins and AEC G1 arrest. Accordingly, we provide the evidence that PM induces AEC G1 arrest by altered regulation of G1 cyclins and CDKs.

  4. Adenosine induces G2/M cell-cycle arrest by inhibiting cell mitosis progression.

    PubMed

    Jia, Kun-Zhi; Tang, Bo; Yu, Lu; Cheng, Wei; Zhang, Rong; Zhang, Jian-Fa; Hua, Zi-Chun

    2009-12-16

    Cellular adenosine accumulates under stress conditions. Few papers on adenosine are concerned with its function in the cell cycle. The cell cycle is the essential mechanism by which all living things reproduce and the target machinery when cells encounter stresses, so it is necessary to examine the relationship between adenosine and the cell cycle. In the present study, adenosine was found to induce G-2/M cell-cycle arrest. Furthermore, adenosine was found to modulate the expression of some important proteins in the cell cycle, such as cyclin B and p21, and to inhibit the transition of metaphase to anaphase in mitosis.

  5. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    PubMed

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  6. Middle Infrared Radiation Induces G2/M Cell Cycle Arrest in A549 Lung Cancer Cells

    PubMed Central

    Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3–5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G2/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G2/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression. PMID:23335992

  7. Involvement of Mcl1 in diallyl disulfide-induced G2/M cell cycle arrest in HL-60 cells.

    PubMed

    Yi, Lan; Ji, Xiao-Xia; Tan, Hui; Feng, Mei-Yan; Tang, Yi; Wen, Ling; Su, Qi

    2012-06-01

    Diallyl disulfide (DADS) has shown potential as a therapeutic agent in various cancers. Previously, we found that myeloid cell leukemia sequence 1 (Mcl1) was downregulated in DADS-induced cell cycle arrest in HL-60 human leukemia cells. Here, we investigated the role of this protein in DADS-induced G2/M cell cycle arrest in HL-60 cells. We demonstrated that DADS treatment significantly increased the proportion of G2/M phase HL-60 cells (P<0.05) and caused a time-dependent significant downregulation of Mcl1 and the cell cycle-related proteins PCNA and CDK1 (P<0.05). Small interfering RNA-mediated knockdown of Mcl1 expression in HL-60 cells arrested the cell cycle in G2/M phase. By co-immunoprecipitation, we demonstrated that Mcl1 associated with PCNA and CDK1 in G2/M cell cycle arrest in DADS-treated HL-60 cells. DADS decreased the interaction of Mcl1 with PCNA and CDK1, leading to G2/M cell cycle arrest in HL-60 cells. Mcl1 plays an important role in DADS-induced G2/M cell cycle arrest in HL-60 human leukemia cells.

  8. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  9. Nonylphenol decreases viability and arrests cell cycle via reactive oxygen species in Raji cells.

    PubMed

    Qi, Yongmei; Zhang, Yingmei; Liu, Yingxia; Zhang, Wenya

    2013-01-01

    4-Nonylphenol (NP), an environmental contaminant commonly found in water systems, has been documented to have adverse effects on human health. In the current study, the effects of NP on the survival, reactive oxygen species (ROS) production and cell cycle distribution of human Raji cells, a human lymphoblastoid cell line with B cell characteristics, were investigated. Furthermore, N-Acetyl-Cysteine (NAC) was used to explore the underlying mechanisms. The results showed that NP dramatically reduced cell viability along with the induction of ROS in a dose dependent manner, and cell survival was recovered by NAC pretreatment. Most strikingly, NP exposure altered the cell cycle profile, mainly leading to the accumulation of cells in the G2/M phase. Pretreatment of Raji cells with NAC attenuated the NP-induced G2/M cell cycle arrest. Taken together, the results suggest NP exhibits cytotoxic effects on Raji cells by decreasing cell viability and inducing G2/M cell cycle arrest, in a ROS dependent manner. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Cell cycle arrest and activation of development in marine invertebrate deuterostomes.

    PubMed

    Costache, Vlad; McDougall, Alex; Dumollard, Rémi

    2014-08-01

    Like most metazoans, eggs of echinoderms and tunicates (marine deuterostomes, there is no data for the cephalochordates) arrest awaiting fertilization due to the activity of the Mos/MEK/MAPK cascade and are released from this cell cycle arrest by sperm-triggered Ca2+ signals. Invertebrate deuterostome eggs display mainly three distinct types of cell cycle arrest before fertilization mediated by potentially different cytostatic factors (CSF): one CSF causes arrest during meiotic metaphase I (MI-CSF in tunicates and some starfishes), another CSF likely causes arrest during meiotic metaphase II (amphioxus), and yet another form of CSF causes arrest to occur after meiotic exit during G1 of the first mitotic cycle (G1-CSF). In tunicates and echinoderms these different CSF activities have been shown to rely on the Mos//MAPK pathway for establishment and on Ca2+ signals for their inactivation. Despite these molecular similarities, release of MI-CSF arrest is caused by APC/C activation (to destroy cyclin B) whereas release from G1-CSF is caused by stimulating S phase and the synthesis of cyclins. Further research is needed to understand how both the Mos//MAPK cascade and Ca2+ achieve these tasks in different marine invertebrate deuterostomes. Another conserved feature of eggs is that protein synthesis of specific mRNAs is necessary to proceed through oocyte maturation and to maintain CSF-induced cell cycle arrest. Then activation of development at fertilization is accompanied by an increase in the rate of protein synthesis but the mechanisms involved are still largely unknown in most of the marine deuterostomes. How the sperm-triggered Ca2+ signals cause an increase in protein synthesis has been studied mainly in sea urchin eggs. Here we review these conserved features of eggs (arrest, activation and protein synthesis) focusing on the non-vertebrate deuterostomes.

  11. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin.

    PubMed

    Lee, Yeo Myeong; Lim, Do Young; Choi, Hyun Ju; Jung, Jae In; Chung, Won-Yoon; Park, Jung Han Yoon

    2009-02-01

    Isoliquiritigenin (ISL), a flavonoid chalcone that is present in licorice, shallot, and bean sprouts, is known to have antitumorigenic activities. The present study examined whether ISL alters prostate cancer cell cycle progression. DU145 human and MatLyLu (MLL) rat prostate cancer cells were cultured with various concentrations of ISL. In both DU145 and MLL cells treated with ISL, the percentage of cells in the G1 phase increased, and the incorporation of [(3)H]thymidine decreased. ISL decreased the protein levels of cyclin D1, cyclin E, and cyclin-dependent kinase (CDK) 4, whereas cyclin A and CDK2 expressions were unaltered in cells treated with ISL. The expression of the CDK inhibitor p27(KIP1) was increased in cells treated with 20 micromol/L ISL. In addition, treatment of cells with 20 micromol/L ISL for 24 hours led to G2/M cell cycle arrest. Cell division control (CDC) 2 protein levels remained unchanged. The protein levels of phospho-CDC2 (Tyr15) and cyclin B1 were increased, and the CDC25C level was decreased by ISL dose-dependently. We demonstrate that ISL promotes cell cycle arrest in DU145 and MLL cells, thereby providing insights into the mechanisms underlying its antitumorigenic activities.

  12. Honokiol induces cell cycle arrest and apoptosis in human gastric carcinoma MGC-803 cell line.

    PubMed

    Yan, Bin; Peng, Zhi-Yong

    2015-01-01

    Gastric carcinoma is a malignant tumor that responds poorly to both chemotherapy and radiation therapy. In our study, we investigated the anti-cancer effect of honokiol, an active component isolated and purified from the Magnolia officinalis, in human gastric carcinoma MGC-803 cell line. The cell viability was detected by the CCK8 assay. The cell apoptosis and cell cycle arrest were assessed by flow cytometer. The protein expression of cell cycle regulators and tumor suppressors were analyzed by western blotting. Treatment of human gastric carcinoma cells with honokiol induced cell death in a dose-and time-dependent manner by using CCK8 assay. Consistent with the CCK8 assay, the flow cytometry results showed that the proportion of apoptosis cells had gained when the cells were exposed to honokiol. Moreover, Cyclin B1, CDC2 and cdc25C were downregulated, and the expression of p-CDC2 and p-cdc25c was significantly upregulated upon honokiol treatment. P53 and p21 were significantly upregulated by honokiol treatment. Treatment of MGC-803 cells with honokiol significantly increased the pro-apoptotic Bax level and decreased the anti-apoptotic Bcl-2 level. These results confirmed that honokiol could induce apoptosis and cell cycle arrest, the underlying molecular mechanisms, at least partially, through activation p53 signaling and downregulation CDC2/cdc25C expression.

  13. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    PubMed

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-04-23

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  14. Cell Division and Targeted Cell Cycle Arrest Opens and Stabilizes Basement Membrane Gaps

    PubMed Central

    Matus, David Q.; Chang, Emily; Makohon-Moore, Sasha C.; Hagedorn, Mary A.; Chi, Qiuyi; Sherwood, David R.

    2014-01-01

    Large gaps in basement membrane (BM) occur during organ remodeling and cancer cell invasion. Whether dividing cells, which temporarily reduce their attachment to BM, influence these breaches is unknown. Here we analyse uterine-vulval attachment during development across 21 species of rhabditid nematodes and find that the BM gap that forms between these organs is always bounded by a non-dividing vulval cell. Through cell cycle manipulation and live cell imaging in Caenorhabditis elegans, we show that actively dividing vulval cells facilitate enlargement of this breach by promoting BM movement. In contrast, targeted cell-cycle arrest halts BM movement and limits gap opening. Further, we demonstrate that the BM component laminin accumulates at the BM gap edge and promotes increased integrin levels in non-dividing vulval cells, stabilizing gap position. Together, these studies reveal that cell division can be used as a mechanism to regulate BM breaches, thus controlling the exchange of cells between tissues. PMID:24924309

  15. Resveratrol modulates roscovitine-mediated cell cycle arrest of human MCF-7 breast cancer cells.

    PubMed

    Wesierska-Gadek, Józefa; Kramer, Matthias P; Maurer, Margarita

    2008-04-01

    Human MCF-7 breast cancer cells are relatively resistant to anti-cancer drugs. Recently, we reported that roscovitine (ROSC), a selective cyclin-dependent kinase (CDK) inhibitor, arrested human MCF-7 breast cancer cells in G2 phase of the cell cycle and concomitantly induced apoptosis. Moreover, we observed that the effect of the CDK inhibitor was dependent on the content of the culture medium. The cell cycle inhibiting action of ROSC was markedly diminished in human MCF-7 cells cultivated in medium supplemented with phenol red. These observations indicated that the therapeutic effects of ROSC can be affected by the components of the tissue medium. Recently, a number of epidemiological and experimental studies indicated that polyphenols (e.g. resveratrol, epicatechins etc.), abundant micronutrients in food, are anti-oxidant agents and could have strong anti-mitotic as well as pro-apoptotic activities. In the present contribution we raised the question whether the ROSC-mediated cell cycle arrest could be additionally modulated by compounds of natural origin, especially by polyphenols. Considering the potential benefits of the dietary components during the post-chemotherapy period, we focused our attention on the effects of resveratrol administration after treatment with ROSC. We analyzed whether the combined treatment with resveratrol would exert any additional effect on the cell cycle status of ROSC-treated human cancer cells. Resveratrol exhibited low direct cytotoxicity. The combined treatment with ROSC enhanced the ROSC-mediated inhibition of cell proliferation and cell cycle arrest. These results indicate that targeted combination of anti-cancer drugs with distinct naturally occurring compounds could increase the efficacy of the therapy and concomitantly reduce the undesired side effects exerted by cytostatic drugs.

  16. Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells.

    PubMed

    Zeng, Guofang; Liu, Jie; Chen, Hege; Liu, Bin; Zhang, Qingyu; Li, Mingyi; Zhu, Runzhi

    2014-06-01

    Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.

  17. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  18. Recovery of Saccharomyces cerevisiae mating-type a cells from G1 arrest by alpha factor.

    PubMed Central

    Chan, R K

    1977-01-01

    Mating-type a cells of the yeast Saccharomyces cerevisiae that had been specifically arrested in the G1 phase of the cell cycle by alpha factor, an oligopeptide pheromone made by alpha cells, recovered and resumed cell division after a period of inhibition which was dependent on the concentration of alpha factor used. These treated a cells were more resistant to alpha factor than untreated a cells, but lost their resistance upon further cell division. However, cells arrested for 6 h were no more resistant to alpha factor than cells arrested for only 2.5 h. Mating-type a strains could inactivate or remove alpha factor from the culture fluid, but two a sterile (nonmating) mutants and an a/alpha diploid strain could not. These results suggest that a cells have a mechanism, which may involve uptake or inactivation of alpha factor, for recovering from alpha factor arrest. However, the results do not distinguish between a recovery mechanism which is constitutive and one which is induced by alpha factor. The loss of alpha factor activity during recovery appeared to be primarily cell contact mediated, although an extracellular, diffusible inhibitor of alpha factor that is labile or that functions stoichiometrically could not be ruled out. PMID:400792

  19. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    SciTech Connect

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias; Santos, Jennifer; Li, Xuejun; Peehl, Donna M.; Knox, Susan J.

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  20. Radiation-induced senescence-like terminal growth arrest in thyroid cells.

    PubMed

    Podtcheko, Alexei; Namba, Hiroyuki; Saenko, Vladimir; Ohtsuru, Akira; Starenki, Dmitriy; Meirmanov, Serik; Polona, Iryna; Rogounovitch, Tatiana; Yamashita, Shunichi

    2005-04-01

    Premature senescence may play an important role as an acute, drug-, or ionizing radiation (IR)-inducible growth arrest program along with interphase apoptosis and mitotic catastrophe. The aim of the study was to evaluate whether IR can induce senescence-like phenotype (SLP) associated with terminal growth arrest in the thyroid cells, and if so, to evaluate impact of terminal growth arrest associated with SLP in intrinsic radiosensitivity of various thyroid carcinomas. The induction of SLP in thyroid cells were identified by: (1) senescence associated beta-galactosidase (SA-beta-Gal) staining method, (2) dual-flow cytometric analysis of cell proliferation and side light scatter using vital staining with PKH-2 fluorescent dye, (3) double labeling for 5-bromodeoxyuridine and SA- beta-Gal, (4) Staining for SA-beta-Gal with consequent antithyroglobulin immunohistochemistry. IR induced SLP associated with terminal growth arrest in four thyroid cancer cells lines and in primary thyrocytes in time- and dose-dependent manner. Analysis of relationship between induction of SLP and radiosensitivity revealed a trend in which more radioresistant cell lines strongly tended to show lower specific SLP yields (r = -0.93, p = 0.068). We find out that SA-beta-Gal staining is detectable in irradiated ARO xenotransplants, but not in control tumors. We, therefore, conclude that induction of SLP with terminal growth arrest contribute to the elimination of clonogenic populations after IR.

  1. The Oxygen Rich Postnatal Environment Induces Cardiomyocyte Cell Cycle Arrest Through DNA Damage Response

    PubMed Central

    Puente, Bao N.; Kimura, Wataru; Muralidhar, Shalini A.; Moon, Jesung; Amatruda, James F.; Phelps, Kate L.; Grinsfelder, David; Rothermel, Beverly A.; Chen, Rui; Garcia, Joseph A.; Santos, Celio X.; Thet, SuWannee; Mori, Eiichiro; Kinter, Michael T.; Rindler, Paul M.; Zacchigna, Serena; Mukherjee, Shibani; Chen, David J.; Mahmoud, Ahmed I.; Giacca, Mauro; Rabinovitch, Peter S.; Aroumougame, Asaithamby; Shah, Ajay M.; Szweda, Luke I.; Sadek, Hesham A.

    2014-01-01

    Summary The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary post-natal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen rich postnatal environment is the upstream signal that results in cell cycle arrest of cardiomyocytes. Here we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, while hyperoxemia and ROS generators shorten it. These findings uncover a previously unrecognized protective mechanism that mediates cardiomyocyte cell cycle arrest in exchange for utilization of oxygen dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be important component of cardiomyocyte proliferation-based therapeutic approaches. PMID:24766806

  2. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response.

    PubMed

    Puente, Bao N; Kimura, Wataru; Muralidhar, Shalini A; Moon, Jesung; Amatruda, James F; Phelps, Kate L; Grinsfelder, David; Rothermel, Beverly A; Chen, Rui; Garcia, Joseph A; Santos, Celio X; Thet, SuWannee; Mori, Eiichiro; Kinter, Michael T; Rindler, Paul M; Zacchigna, Serena; Mukherjee, Shibani; Chen, David J; Mahmoud, Ahmed I; Giacca, Mauro; Rabinovitch, Peter S; Aroumougame, Asaithamby; Shah, Ajay M; Szweda, Luke I; Sadek, Hesham A

    2014-04-24

    The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.

  3. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells.

    PubMed

    Kim, Chul-Ho; Bahn, Jae Hoon; Lee, Seong-Ho; Kim, Gye-Yeop; Jun, Seung-Ik; Lee, Keunho; Baek, Seung Joon

    2010-12-01

    Plasma is generated by ionizing neutral gas molecules, resulting in a mixture of energy particles, including electrons and ions. Recent progress in the understanding of non-thermal atmospheric plasma has led to applications in biomedicine. However, the exact molecular mechanisms involved in plasma-induced cell growth arrest are unclear. In this study, we investigated the feasibility of non-thermal atmospheric plasma treatment for cancer therapy and examined the mechanism by which plasma induces anti-proliferative properties and cell death in human colorectal cancer cells. Non-thermal atmospheric plasma induced cell growth arrest and induced apoptosis. In addition, plasma reduced cell migration and invasion activities. As a result, we found that plasma treatment to the cells increases β-catenin phosphorylation, suggesting that β-catenin degradation plays a role at least in part in plasma-induced anti-proliferative activity. Therefore, non-thermal atmospheric plasma constitutes a new biologic tool with the potential for therapeutic applications that modulate cell signaling and function. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Isoalantolactone inhibits UM-SCC-10A cell growth via cell cycle arrest and apoptosis induction.

    PubMed

    Wu, Minjun; Zhang, Hua; Hu, Jiehua; Weng, Zhiyong; Li, Chenyuan; Li, Hong; Zhao, Yan; Mei, Xifan; Ren, Fu; Li, Lihua

    2013-01-01

    Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC). In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A). Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to up-regulation of pro-apoptotic protein expression (Bax), down-regulation of anti-apoptotic protein expression (Bcl-2), mitochondrial release of cytochrome c (Cyto c), reduction of mitochondrial membrane potential (MMP) and activation of caspase-3 (Casp-3). Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.

  5. Caudatin Inhibits Human Glioma Cells Growth Through Triggering DNA Damage-Mediated Cell Cycle Arrest.

    PubMed

    Fu, Xiao-yan; Zhang, Shuai; Wang, Kun; Yang, Ming-feng; Fan, Cun-dong; Sun, Bao-liang

    2015-10-01

    Caudatin, one of the species of C-21 steroidal glycosides mainly isolated from the root of Cynanchum bungei Decne, exhibits potent anticancer activities. However, the mechanism remains poorly defined. In the present study, the growth inhibitory effect and mechanism of caudatin on human glioma cells were evaluated in vitro. The results revealed that caudatin time- and dose-dependently inhibited U251 and U87 cells growth. Flow cytometry analysis indicated that caudatin-induced growth inhibition against U251 and U87 cells was mainly achieved by the induction of G0/G1 and S-phase cell cycle arrest through triggering DNA damage, as convinced by the up-regulation of p53, p21, and histone phosphorylation, as well as the down-regulation of cyclin D1. Moreover, caudatin treatment also triggered the activation of ERK and inactivation of AKT pathway. LY294002 (an AKT inhibitor) addition enhanced caudation-induced AKT inhibition, indicating that caudatin inhibited U251 cells growth in an AKT-dependent manner. Taken together, these results indicate that caudatin may act as a novel cytostatic reagent against human glioma cells through the induction of DNA damage-mediated cell cycle arrest with the involvement of modulating MAPK and AKT pathways.

  6. Grape Seed Extract Induces Cell Cycle Arrest and Apoptosis in Human Colon Carcinoma Cells

    PubMed Central

    Kaur, Manjinder; Mandair, Reinuka; Agarwal, Rajesh; Agarwal, Chapla

    2008-01-01

    One approach to control colorectal cancer (CRC) is its preventive intervention by dietary agents or those consumed as supplements. However, since most of these products are often consumed by patients as an alternative and complementary medicine (CAM) practice, a scientific base such as efficacy, mechanism and standardized preparation, needs to be developed. Grape seed extract (GSE) is one such supplement widely consumed by humans for its several health benefits. We reported recently that GSE inhibits CRC cell HT29 growth in culture and nude mice xenograft. Since GSE is available commercially through different vendors, here we assessed whether GSE from two different manufacturers produces comparable biological effects in a panel of human CRC cell lines. Our results show that irrespective of source, GSE strongly inhibits LoVo, HT29 and SW480 cell growth, with a G1 arrest in LoVo and HT29 cells, but an S and/or G2/M arrest in SW480 cell cycle progression. GSE also induced Cip/p21 levels in all three cell lines. Furthermore, an induction of apoptosis was observed in all three cell lines by GSE. Taken together, our findings suggest that GSE could be an effective CAM agent against CRC possibly due to its strong growth inhibitory and apoptosis inducing effects. PMID:19003575

  7. Grape seed extract induces cell cycle arrest and apoptosis in human colon carcinoma cells.

    PubMed

    Kaur, Manjinder; Mandair, Reinuka; Agarwal, Rajesh; Agarwal, Chapla

    2008-01-01

    One approach to control colorectal cancer (CRC) is its preventive intervention by dietary agents or those consumed as supplements. However, because most of these products are often consumed by patients as an complementary and alternative medicine practice, a scientific base such as efficacy, mechanism, and standardized preparation needs to be developed. Grape seed extract (GSE) is one such supplement widely consumed by humans for its several health benefits. We reported recently that GSE inhibits CRC cell HT29 growth in culture and nude mice xenograft. Because GSE is available commercially through different vendors, here we assessed whether GSE from 2 different manufacturers produces comparable biological effects in a panel of human CRC cell lines. Our results show that irrespective of source, GSE strongly inhibits LoVo, HT29, and SW480 cell growth, with a G1 arrest in LoVo and HT29 cells but an S and/or G2/M arrest in SW480 cell cycle progression. GSE also induced Cip/p21 levels in all 3 cell lines. Furthermore, an induction of apoptosis was observed in all 3 cell lines by GSE. Taken together, our findings suggest that GSE could be an effective CAM agent against CRC possibly due to its strong growth inhibitory and apoptosis-inducing effects.

  8. Cell cycle age dependence for radiation-induced G/sub 2/ arrest: evidence for time-dependent repair

    SciTech Connect

    Rowley, R.

    1985-09-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G/sub 2/. The sensitivity of Chinese hamster ovary cells to G/sub 2/ arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G/sub 2/. This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G/sub 2/ arrest and/or by changes in capability for postirradiation recovery from G/sub 2/ arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G/sub 2/ arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G/sub 2/ arrest, while inhibiting repair of G/sub 2/ arrest-causing damage makes such an analysis possible. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G/sub 2/ arrest was expressed. The duration of G/sub 2/ arrest was independent of the length of the prior caffeine exposure. This finding indicates that the target for G/sub 2/ arrest induction is present throughout the cell cycle and that the level of G/sub 2/ arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G/sub 2/ arrest.

  9. Growth-Arrest-Specific Protein 2 Inhibits Cell Division in Xenopus Embryos

    PubMed Central

    Zhang, Tong; Dayanandan, Bama; Rouiller, Isabelle; Lawrence, Elizabeth J.; Mandato, Craig A.

    2011-01-01

    Background Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported. Methodology and Principal Findings To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures. Conclusion and Significance Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest. PMID:21931817

  10. Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells

    PubMed Central

    Kong, Yuanyuan; Chen, Gege; Xu, Zhijian; Yang, Guang; Li, Bo; Wu, Xiaosong; Xiao, Wenqin; Xie, Bingqian; Hu, Liangning; Sun, Xi; Chang, Gaomei; Gao, Minjie; Gao, Lu; Dai, Bojie; Tao, Yi; Zhu, Weiliang; Shi, Jumei

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Pterostilbene, a natural dimethylated analog of resveratrol, has been shown to possess diverse pharmacological activities, including anti-inflammatory, antioxidant and anticancer properties. However, to the best of our knowledge, there has been no study of the effects of pterostilbene upon hematological malignancies. Herein, we report the antitumor activity and mechanism of pterostilbene against DLBCL cells both in vitro and in vivo. We found that pterostilbene treatment resulted in a dose-dependent inhibition of cell viability. In addition, pterostilbene exhibited a strong cytotoxic effect, as evidenced not only by reductions of mitochondrial membrane potential (MMP) but also by increases in cellular apoptotic index and reactive oxygen species (ROS) levels, leading to arrest in the S-phase of the cell cycle. Furthermore, pterostilbene treatment directly up-regulated p-p38MAPK and down-regulated p-ERK1/2. In vivo, intravenous administration of pterostilbene inhibited tumor development in xenograft mouse models. Overall, the results suggested that pterostilbene is a potential anti-cancer pharmaceutical against human DLBCL by a mechanism involving the suppression of ERK1/2 and activation of p38MAPK signaling pathways. PMID:27869173

  11. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan

    PubMed Central

    Masuda, Fumie; Ishii, Mahiro; Mori, Ayaka; Uehara, Lisa; Yanagida, Mitsuhiro; Takeda, Kojiro; Saitoh, Shigeaki

    2016-01-01

    While glucose is the fundamental source of energy in most eukaryotes, it is not always abundantly available in natural environments, including within the human body. Eukaryotic cells are therefore thought to possess adaptive mechanisms to survive glucose-limited conditions, which remain unclear. Here, we report a novel mechanism regulating cell cycle progression in response to abrupt changes in extracellular glucose concentration. Upon reduction of glucose in the medium, wild-type fission yeast cells undergo transient arrest specifically at G2 phase. This cell cycle arrest is dependent on the Wee1 tyrosine kinase inhibiting the key cell cycle regulator, CDK1/Cdc2. Mutant cells lacking Wee1 are not arrested at G2 upon glucose limitation and lose viability faster than the wild-type cells under glucose-depleted quiescent conditions, suggesting that this cell cycle arrest is required for extension of chronological lifespan. Our findings indicate the presence of a novel cell cycle checkpoint monitoring glucose availability, which may be a good molecular target for cancer therapy. PMID:26804466

  12. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health

  13. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb

  14. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    PubMed Central

    Lin, Jing-Pin; Yang, Jai-Sing; Lee, Jau-Hong; Hsieh, Wen-Tsong; Chung, Jing-Gung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting. RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis. CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis. PMID:16440412

  15. Mitochondrial uncoupling protein 2 induces cell cycle arrest and necrotic cell death.

    PubMed

    Palanisamy, Arun P; Cheng, Gang; Sutter, Alton G; Evans, Zachary P; Polito, Carmen C; Jin, Lan; Liu, John; Schmidt, Michael G; Chavin, Kenneth D

    2014-03-01

    Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that regulates energy metabolism and reactive oxygen species (ROS) production. We generated mouse carboxy- and amino-terminal green fluorescent protein (GFP)-tagged UCP2 constructs to investigate the effect of UCP2 expression on cell proliferation and viability. UCP2-transfected Hepa 1-6 cells did not show reduced cellular adenosine triphosphate (ATP) but showed increased levels of glutathione. Flow cytometry analysis indicated that transfected cells were less proliferative than nontransfected controls, with most cells blocked at the G1 phase. The effect of UCP2 on cell cycle arrest could not be reversed by providing exogenous ATP or oxidant supply, and was not affected by the chemical uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). However, this effect of UCP2 was augmented by treatment with genistein, a tyrosine kinase inhibitor, which by itself did not affect cell proliferation on control hepatocytes. Western blotting analysis revealed decreased expression levels of CDK6 but not CDK2 and D-type cyclins. Examination of cell viability in UCP2-transfected cells with Trypan Blue and Annexin-V staining revealed that UCP2 transfection led to significantly increased cell death. However, characteristics of apoptosis were absent in UCP2-transfected Hepa 1-6 cells, including lack of oligonucleosomal fragmentation (laddering) of chromosomal DNA, release of cytochrome c from mitochondria, and cleavage of caspase-3. In conclusion, our results indicate that UCP2 induces cell cycle arrest at G1 phase and causes nonapoptotic cell death, suggesting that UCP2 may act as a powerful influence on hepatic regeneration and cell death in the steatotic liver.

  16. Alantolactone Induces Apoptosis and Cell Cycle Arrest on Lung Squamous Cancer SK-MES-1 Cells.

    PubMed

    Zhao, Peng; Pan, Zhenxiang; Luo, Yungang; Zhang, Leilei; Li, Xin; Zhang, Guangxin; Zhang, Yifan; Cui, Ranji; Sun, Mei; Zhang, Xingyi

    2015-05-01

    Alantolactone, a sesquiterpene lactone compound, has variety of pharmacological properties, including anti-inflammatory and antineoplastic effects. In our study, alantolactone inhibited cancer cell proliferation. To explore the mechanisms underlying its antitumor action, we further examined apoptotic cells and cell cycle distribution using flow cytometry analysis. Alantolactone triggered apoptosis and induced cell cycle G1/G0 phase arrest. Furthermore, the expressions of caspases-8, -9, -3, PARP, and Bax were significantly upregulated, while antiapoptotic factor Bcl-2 expression was inhibited. In addition, the expressions of cyclin-dependent kinase 4 (CDK4), CDK6, cyclin D3, and cyclin D1 were downregulated by alantolactone. Therefore, our findings indicated that alantolactone has an antiproliferative role on lung squamous cancer cells, and it may be a promising chemotherapeutic agent for squamous lung cancer SK-MES-1 cells. © 2015 Wiley Periodicals, Inc.

  17. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer.

  18. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest

    PubMed Central

    ZHANG, YUSONG; ZHUANG, ZHIXIANG; MENG, QINGHUI; JIAO, YANG; XU, JIAYING; FAN, SAIJUN

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  19. Role of DNA methylation in cell cycle arrest induced by Cr (VI) in two cell lines.

    PubMed

    Lou, Jianlin; Wang, Yu; Yao, Chunji; Jin, Lingzhi; Wang, Xiuzhi; Xiao, Yun; Wu, Nanxiang; Song, Peng; Song, Yang; Tan, Yufeng; Gao, Ming; Liu, Kecheng; Zhang, Xing

    2013-01-01

    Hexavalent chromium [Cr(IV)], a well-known industrial waste product and an environmental pollutant, is recognized as a human carcinogen. But its mechanisms of carcinogenicity remain unclear, and recent studies suggest that DNA methylation may play an important role in the carcinogenesis of Cr(IV). The aim of our study was to investigate the effects of Cr(IV) on cell cycle progress, global DNA methylation, and DNA methylation of p16 gene. A human B lymphoblastoid cell line and a human lung cell line A549 were exposed to 5-15 µM potassium dichromate or 1.25-5 µg/cm² lead chromate for 2-24 hours. Cell cycle was arrested at G₁ phase by both compounds in 24 hours exposure group, but global hypomethylation occurred earlier than cell cycle arrest, and the hypomethylation status maintained for more than 20 hours. The mRNA expression of p16 was significantly up-regulated by Cr(IV), especially by potassium dichromate, and the mRNA expression of cyclin-dependent kinases (CDK4 and CDK6) was significantly down-regulated. But protein expression analysis showed very little change of p16 gene. Both qualitative and quantitative results showed that DNA methylation status of p16 remained unchanged. Collectively, our data suggested that global hypomethylation was possibly responsible for Cr(IV)-induced G₁ phase arrest, but DNA methylation might not be related to up-regulation of p16 gene by Cr(IV).

  20. Role of DNA Methylation in Cell Cycle Arrest Induced by Cr (VI) in Two Cell Lines

    PubMed Central

    Lou, Jianlin; Wang, Yu; Yao, Chunji; Jin, Lingzhi; Wang, Xiuzhi; Xiao, Yun; Wu, Nanxiang; Song, Peng; Song, Yang; Tan, Yufeng; Gao, Ming; Liu, Kecheng; Zhang, Xing

    2013-01-01

    Hexavalent chromium [Cr(IV)], a well-known industrial waste product and an environmental pollutant, is recognized as a human carcinogen. But its mechanisms of carcinogenicity remain unclear, and recent studies suggest that DNA methylation may play an important role in the carcinogenesis of Cr(IV). The aim of our study was to investigate the effects of Cr(IV) on cell cycle progress, global DNA methylation, and DNA methylation of p16 gene. A human B lymphoblastoid cell line and a human lung cell line A549 were exposed to 5–15 µM potassium dichromate or 1.25–5 µg/cm2 lead chromate for 2–24 hours. Cell cycle was arrested at G1 phase by both compounds in 24 hours exposure group, but global hypomethylation occurred earlier than cell cycle arrest, and the hypomethylation status maintained for more than 20 hours. The mRNA expression of p16 was significantly up-regulated by Cr(IV), especially by potassium dichromate, and the mRNA expression of cyclin-dependent kinases (CDK4 and CDK6) was significantly down-regulated. But protein expression analysis showed very little change of p16 gene. Both qualitative and quantitative results showed that DNA methylation status of p16 remained unchanged. Collectively, our data suggested that global hypomethylation was possibly responsible for Cr(IV) - induced G1 phase arrest,but DNA methylation might not be related to up-regulation of p16 gene by Cr(IV). PMID:23940686

  1. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4.

    PubMed

    Wang, H; Iakova, P; Wilde, M; Welm, A; Goode, T; Roesler, W J; Timchenko, N A

    2001-10-01

    The transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha) is a strong inhibitor of cell proliferation. We found that C/EBPalpha directly interacts with cdk2 and cdk4 and arrests cell proliferation by inhibiting these kinases. We mapped a short growth inhibitory region of C/EBPalpha between amino acids 175 and 187. This portion of C/EBPalpha is responsible for direct inhibition of cyclin-dependent kinases and causes growth arrest in cultured cells. C/EBPalpha inhibits cdk2 activity by blocking the association of cdk2 with cyclins. Importantly, the activities of cdk4 and cdk2 are increased in C/EBPalpha knockout livers, leading to increased proliferation. Our data demonstrate that the liver-specific transcription factor C/EBPalpha brings about growth arrest through direct inhibition of cdk2 and cdk4.

  2. Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1.

    PubMed

    Brady, Gareth; Boggan, Louise; Bowie, Andrew; O'Neill, Luke A J

    2005-09-02

    Schlafen-1 (Slfn-1), the prototypic member of the Schlafen family of proteins, was described as an inducer of growth arrest in T-lymphocytes and causes a cell cycle arrest in NIH3T3 fibroblasts prior to the G1/S transition. How Slfn-1 exerts its effects on the cell cycle is not currently known. We report that synchronized murine fibroblasts expressing Slfn-1 do not exit G1 when stimulated with fetal calf serum, platelet-derived growth factor BB (PDGF-BB) or epidermal growth factor (EGF). The induction of cyclin D1 by these stimuli was blocked in the presence of Slfn-1 as were all downstream cell cycle processes. Overexpression of cyclin D1 in growth-arrested, Slfn-1-expressing cells induced an increase in cell growth consistent with this protein being the biological target of Slfn-1. Activation of the mitogen-activated protein kinase pathway by EGF or phorbol 12-myristate 13-acetate was unaffected by Slfn-1 expression. PDGF signaling was, however, almost completely blocked. This was due to a lack of PDGF receptor expression in Slfn-1-expressing cells consistent with Slfn-1 blocking the cell cycle in G1 where PDGF receptor expression is normally down-regulated. Finally, overexpression of Slfn-1 inhibited the activation of the cyclin D1 promoter. Slfn-1 therefore causes a cell cycle arrest during G1 by inhibiting induction of cyclin D1 by mitogens.

  3. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  4. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    PubMed

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles.

    PubMed

    Huang, Can; Sun, Ying; Shen, Ming; Zhang, Xiangyu; Gao, Pei; Duan, Yourong

    2016-01-20

    cRGD-targeting matrix metalloproteinase (MMP)-sensitive nanoparticles [PLGA-PEG1K-cRGD/PLGA-peptide-PEG5K (NPs-cRGD)] were successfully developed. Au-Pt(IV) nanoparticles, PTX, and ADR were encapsulated into NPs-RGD separately. The effects of the drug-loaded nanoparticles on the cell cycle were investigated. Here, we showed that higher cytotoxicity of drug-loaded nanoparticles was related to the cell cycle arrest, compared to that of free drugs. The NPs-cRGD studied here did not disrupt cell cycle progression. The cell cycle of Au-Pt(IV)@NPs-cRGD showed a main S phase arrest in all phases of the cell cycle phase, especially in G0/G1 phase. PTX@NPs-cRGD and ADR@NPs-cRGD showed a higher ratio of G2/M and S phase arrest than the free drugs, respectively. Cells in G0/G1 and S phases of the cell cycle had a higher uptake ratio of NPs-cRGD. A nutrient deprivation or an increase in the requirement of nutrients in tumor cells could promote the uptake of nanoparticles from the microenvironments. In vivo, NPs-cRGD could efficiently accumulate at tumor sites. The inhibition of tumor growth coupled with cell cycle arrest is in line with that in vitro. On the basis of our results, we propose that future studies on nanoparticle action mechanism should consider the cell cycle, which could be different from free drugs. Understanding the actions of cell cycle arrest could affect the application of nanomedicine in the clinic.

  6. Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells.

    PubMed

    Shyam, Hari; Singh, Neetu; Kaushik, Shweta; Sharma, Ramesh; Balapure, Anil K

    2017-04-01

    Centchroman (CC) or Ormeloxifene has been shown to induce apoptosis and cell cycle arrest in various types of cancer cells. This has, however, not been addressed for endometrial cancer cells where its (CC) mechanism of action remains unclear. This study focuses on the basis of antineoplasticity of CC by blocking the targets involved in the cell cycle, survival and apoptosis in endometrial cancer cells. Ishikawa Human Endometrial Cancer Cells were cultured under estrogen deprived medium, exposed to CC and analyzed for proliferation and apoptosis. Additionally, we also analyzed oxidative stress induced by CC. Cell viability studies confirmed the IC50 of CC in Ishikawa cells to be 20 µM after 48 h treatment. CC arrests the cells in G0/G1 phase through cyclin D1 and cyclin E mediated pathways. Phosphatidylserine externalization, nuclear morphology changes, DNA fragmentation, PARP cleavage, and alteration of Bcl-2 family protein expression clearly suggest ongoing apoptosis in the CC treated cells. Activation of caspase 3 & 9, up-regulation of AIF and inhibition of apoptosis by z-VAD-fmk clearly explains the participation of the intrinsic pathway of programmed cell death. Further, the increase of ROS, loss of MMP, inhibition of antioxidant (MnSOD, Cu/Zn-SOD and GST) and inhibition of apoptosis with L-NAC suggests CC induced oxidative stress leading to apoptosis via mitochondria mediated pathway. Therefore, CC could be a potential therapeutic agent for the treatment of Endometrial Cancer adjunct to its utility as a contraceptive and an anti-breast cancer agent.

  7. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  8. Parthenolide induces apoptosis and cell cycle arrest of human 5637 bladder cancer cells in vitro.

    PubMed

    Cheng, Guang; Xie, Liping

    2011-08-09

    Parthenolide, the principal component of sesquiterpene lactones present in medical plants such as feverfew (Tanacetum parthenium), has been reported to have anti-tumor activity. In this study, we evaluated the therapeutic potential of parthenolide against bladder cancer and its mechanism of action. Treatment of bladder cancer cells with parthenolide resulted in a significant decrease in cell viability. Parthenolide induced apoptosis through the modulation of Bcl-2 family proteins and poly (ADP-ribose) polymerase degradation. Treatment with parthenolide led to G1 phase cell cycle arrest in 5637 cells by modulation of cyclin D1 and phosphorylated cyclin-dependent kinase 2. Parthenolide also inhibited the invasive ability of bladder cancer cells. These findings suggest that parthenolide could be a novel therapeutic agent for treatment of bladder cancer.

  9. Cinobufacini induced MDA-MB-231 cell apoptosis-associated cell cycle arrest and cytoskeleton function.

    PubMed

    Ma, Lina; Song, Bing; Jin, Hua; Pi, Jiang; Liu, Li; Jiang, Jinhuan; Cai, Jiye

    2012-02-01

    Cinobufacini is a traditional Chinese anti-tumor drug and widely used in clinic experiences. But little is known about its effect on the cells. In this study, the effects of cinobufacini on breast cancer MDA-MB-231 cell were evaluated by CCK-8 assay, and the data showed cinobufacini could inhibit the MDA-MB-231 cells growth effectively in dose-dependent and time-dependent manners. Cell apoptosis and cell cycle were detected by flow cytometry analysis. After the cells being treated with 50 μg/mL cinobufacini for 48 h, the early apoptosis percentage (20.45 ± 1.46%) is much higher than the normal group (7.73 ± 1.21%). The cell cycle data indicated that cinobufacini caused a cell cycle arrest at S phase. What's more, cinobufacini can affect the disruption of cytoskeleton, and these alterations changed the cell-surface ultrastructure and the cell morphology which were detected by atomic force microscopy (AFM) at nanoscale level. It indicated that the cell membrane structure and cytoskeleton networks were destroyed and the cell tails were narrowed after the cell being treated with cinobufacini. The present study is to provide valuable new insights to understand the mechanism of the drug in anti-tumor process. Furthermore, the knowledge concerning the signaling of cell cycle is potentially important to clinical utility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  11. Cell-cycle arrest and acute kidney injury: the light and the dark sides

    PubMed Central

    Kellum, John A.; Chawla, Lakhmir S.

    2016-01-01

    Acute kidney injury (AKI) is a common consequence of systemic illness or injury and it complicates several forms of major surgery. Two major difficulties have hampered progress in AKI research and clinical management. AKI is difficult to detect early and its pathogenesis is still poorly understood. We recently reported results from multi-center studies where two urinary markers of cell-cycle arrest, tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) were validated for development of AKI well ahead of clinical manifestations—azotemia and oliguria. Cell-cycle arrest is known to be involved in the pathogenesis of AKI and this ‘dark side’ may also involve progression to chronic kidney disease. However, cell-cycle arrest has a ‘light side’ as well, since this mechanism can protect cells from the disastrous consequences of entering cell division with damaged DNA or insufficient bioenergetic resources during injury or stress. Whether we can use the light side to help prevent AKI remains to be seen, but there is already evidence that cell-cycle arrest biomarkers are indicators of both sides of this complex physiology. PMID:26044835

  12. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    SciTech Connect

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  13. Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation.

    PubMed

    Hudson, Wes; Collins, Maria C; deFreitas, Dorian; Sun, You S; Muller-Borer, Barbara; Kypson, Alan P

    2007-10-01

    Cellular cardiomyoplasty is emerging as a potentially novel therapeutic option for heart failure and typically involves direct intramyocardial injection of donor cells into a beating heart. Yet, limited rates of cell engraftment remain an obstacle to be overcome before cell therapy is fully recognized. Mechanical and biological mechanisms may account for observed donor cell loss. This study examines acute mechanical loss during intramyocardial injections in beating and arrested hearts. A porcine cardiopulmonary bypass model was used. Animals underwent either beating (n = 5) or arrested (n = 5) intramyocardial injections into the left ventricle. Fluorescent microspheres were used in lieu of cells because they are biologically inert. Thirty minutes after delivery, animals were euthanized. Microspheres in cardiac and peripheral tissues were quantified using flow cytometry. Approximately 10% of microspheres were retained within the site of injection in both groups. There was no statistical difference between microsphere retention rates in either the beating or the arrested heart group. Microspheres were found in peripheral organs, pericardial fluid, and the delivery device. The majority of microspheres injected intramyocardially are lost in both beating and arrested hearts. Cardiac standstill does not enhance microsphere retention. Possible mechanisms include leakage from the injection site and washout via the cardiac venous/lymphatic system. Delivery strategy will need to be modified if more cells are to be retained within the target organ.

  14. Bcl-xL controls a switch between cell death modes during mitotic arrest

    PubMed Central

    Bah, N; Maillet, L; Ryan, J; Dubreil, S; Gautier, F; Letai, A; Juin, P; Barillé-Nion, S

    2014-01-01

    Antimitotic agents such as microtubule inhibitors (paclitaxel) are widely used in cancer therapy while new agents blocking mitosis onset are currently in development. All these agents impose a prolonged mitotic arrest in cancer cells that relies on sustained activation of the spindle assembly checkpoint and may lead to subsequent cell death by incompletely understood molecular events. We have investigated the role played by anti-apoptotic Bcl-2 family members in the fate of mitotically arrested mammary tumor cells treated with paclitaxel, or depleted in Cdc20, the activator of the anaphase promoting complex. Under these conditions, a weak and delayed mitotic cell death occurs that is caspase- and Bax/Bak-independent. Moreover, BH3 profiling assays indicate that viable cells during mitotic arrest are primed to die by apoptosis and that Bcl-xL is required to maintain mitochondrial integrity. Consistently, Bcl-xL depletion, or treatment with its inhibitor ABT-737 (but not with the specific Bcl-2 inhibitor ABT-199), during mitotic arrest converts cell response to antimitotics to efficient caspase and Bax-dependent apoptosis. Apoptotic priming under conditions of mitotic arrest relies, at least in part, on the phosphorylation on serine 62 of Bcl-xL, which modulates its interaction with Bax and its sensitivity to ABT-737. The phospho-mimetic S62D-Bcl-xL mutant is indeed less efficient than the corresponding phospho-deficient S62A-Bcl-xL mutant in sequestrating Bax and in protecting cancer cells from mitotic cell death or yeast cells from Bax-induced growth inhibition. Our results provide a rationale for combining Bcl-xL targeting to antimitotic agents to improve clinical efficacy of antimitotic strategy in cancer therapy. PMID:24922075

  15. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    SciTech Connect

    Suzuki, Kanayo; Sakaguchi, Minoru; Tanaka, Satoshi; Yoshimoto, Tadashi; Takaoka, Masanori

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  16. Effects of hormone agonists on Sf9 cells, proliferation and cell cycle arrest.

    PubMed

    Giraudo, Maeva; Califano, Jérôme; Hilliou, Frédérique; Tran, Trang; Taquet, Nathalie; Feyereisen, René; Le Goff, Gaëlle

    2011-01-01

    Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.

  17. Effects of Hormone Agonists on Sf9 Cells, Proliferation and Cell Cycle Arrest

    PubMed Central

    Giraudo, Maeva; Califano, Jérôme; Hilliou, Frédérique; Tran, Trang; Taquet, Nathalie; Feyereisen, René; Le Goff, Gaëlle

    2011-01-01

    Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells. PMID:21991338

  18. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells.

    PubMed

    Lee, Min Ho; Cho, Yoonjung; Jung, Byung Chul; Kim, Sung Hoon; Kang, Yeo Wool; Pan, Cheol-Ho; Rhee, Ki-Jong; Kim, Yoon Suk

    2015-08-14

    Parkin is a known tumor suppressor. However, the mechanism by which parkin acts as a tumor suppressor remains to be fully elucidated. Previously, we reported that parkin expression induces caspase-dependent apoptotic cell death in TNF-α-treated HeLa cells. However, at that time, we did not consider the involvement of parkin in cell cycle control. In the current study, we investigated whether parkin is involved in cell cycle regulation and suppression of cancer cell growth. In our cell cycle analyses, parkin expression induced G2/M cell cycle arrest in TNF-α-treated HeLa cells. To elucidate the mechanism(s) by which parkin induces this G2/M arrest, we analyzed cell cycle regulatory molecules involved in the G2/M transition. Parkin expression induced CDC2 phosphorylation which is known to inhibit CDC2 activity and cause G2/M arrest. Cyclin B1, which is degraded during the mitotic transition, accumulated in response to parkin expression, thereby indicating parkin-induced G2/M arrest. Next, we established that Myt1, which is known to phosphorylate and inhibit CDC2, increased following parkin expression. In addition, we found that parkin also induces increased Myt1 expression, G2/M arrest, and reduced cell viability in TNF-α-treated HCT15 cells. Furthermore, knockdown of parkin expression by parkin-specific siRNA decreased Myt1 expression and phosphorylation of CDC2 and resulted in recovered cell viability. These results suggest that parkin acts as a crucial molecule causing cell cycle arrest in G2/M, thereby suppressing tumor cell growth.

  19. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells.

    PubMed

    Lin, Renyu; Zhang, Ziheng; Chen, Lingfeng; Zhou, Yunfang; Zou, Peng; Feng, Chen; Wang, Li; Liang, Guang

    2016-10-10

    Head and neck cancer is the sixth most common cancer worldwide. Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, exhibits a wide range of biological roles including a highly efficient and specific anti-tumor activity. Here, we aimed to examine the effect of DHA on head and neck carcinoma cells and elucidate the potential mechanisms. We used five head and neck carcinoma cell lines and two non-tumorigenic normal epithelial cell lines to achieve our goals. Cells were exposed to DHA and subjected to cellular activity assays including viability, cell cycle analysis, cell death, and angiogenic phenotype. Our results show that DHA causes cell cycle arrest which is mediated through Forkhead box protein M1 (FOXM1). We also demonstrate that DHA induces ferroptosis and apoptosis in head and neck carcinoma cells. Lastly, our results show that DHA alters the angiogenic phenotype of cancer cells by reducing the expression of angiogenic factors and the ability of cancer cells to support endothelial cell tubule formation. Our study suggests that DHA specifically causes head and neck cancer cell death through contribution from both ferroptosis and apoptosis. DHA may represent an effective strategy in head and neck cancer treatment.

  20. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells.

    PubMed

    Stan, Silvia D; Zeng, Yan; Singh, Shivendra V

    2008-01-01

    Withaferin A (WA) is derived from the medicinal plant Withania somnifera that has been safely used for centuries in the Indian Ayurvedic medicine for treatment of various ailments. We now demonstrate that WA treatment causes G2 and mitotic arrest in human breast cancer cells. Treatment of MDA-MB-231 (estrogen-independent) and MCF-7 (estrogen-responsive) cell lines with WA resulted in a concentration- and time-dependent increase in G2-M fraction, which correlated with a decrease in levels of cyclin-dependent kinase 1 (Cdk1), cell division cycle 25C (Cdc25C) and/or Cdc25B proteins, leading to accumulation of Tyrosine15 phosphorylated (inactive) Cdk1. Ectopic expression of Cdc25C conferred partial yet significant protection against WA-mediated G2-M phase cell cycle arrest in MDA-MB-231 cells. The WA-treated MDA-MB-231 and MCF-7 cells were also arrested in mitosis as judged by fluorescence microscopy and analysis of Ser10 phosphorylated histone H3. Mitotic arrest resulting from exposure to WA was accompanied by an increase in the protein level of anaphase promoting complex/cyclosome substrate securin. In conclusion, the results of this study suggest that G2-M phase cell cycle arrest may be an important mechanism in antiproliferative effect of WA against human breast cancer cells.

  1. Isoprenoid geranylgeranylacetone inhibits human colon cancer cells through induction of apoptosis and cell cycle arrest.

    PubMed

    Yoshikawa, Naoyuki; Tsuno, Nelson H; Okaji, Yurai; Kawai, Kazushige; Shuno, Yasutaka; Nagawa, Hirokazu; Oshima, Noriko; Takahashi, Koki

    2010-10-01

    Geranylgeranylacetone (GGA), an isoprenoid compound, is a widely used antiulcer drug developed in Japan. GGA is structurally similar to plaunotol and geranylgeraniol, another isoprenoid reported to exert strong anticancer effects. In an earlier study, GGA was shown to inhibit ovarian cancer invasion by attenuating not only Rho activation, but also Ras-MAPK activation. In this study, we aimed to test whether GGA could have a therapeutic effect on colon cancer cells. As a result, we found that GGA induced a dose-dependent decrease in the proliferative activity through induction of cell apoptosis and cell cycle arrest in the G1 phase. The induction of apoptosis was mediated by the activation of both caspase-8 and caspase-9 pathways. The induction of G1 arrest was mediated by the increase of p21 and p27, and also the decrease of phosphorylated retinoblastoma protein levels. This study showed the potential anticancer activity of GGA. As this drug is already available in Japan for clinical use as an antiulcer/antigastritis agent, clinical trials will be designed to confirm its potential usefulness for cancer patients.

  2. Evodiamine Prevents Glioma Growth, Induces Glioblastoma Cell Apoptosis and Cell Cycle Arrest through JNK Activation.

    PubMed

    Wu, Wen-Shin; Chien, Chih-Chiang; Liu, Kao-Hui; Chen, Yen-Chou; Chiu, Wen-Ta

    2017-01-01

    Evodiamine (EVO) is an active medicinal compound derived from the traditional herbal medicine Evodia rutaecarpa. It has been reported that evodiamine has several beneficial biological properties, including anticancer and anti-inflammatory activities. However, the in vitro and in vivo anticancer activities of EVO against the growth of glioblastoma cells remain undefined. EVO induced significant decreases in the viability of U87 and C6 glioma cells, but not of primary astrocytes, according with the occurrence of apoptotic characteristics including DNA ladders, caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage, and hypodiploid cells. The disruption of the mitochondrial membrane potential (MMP) was detected, and it was found that the peptidyl caspase-9 inhibitor, Z-LEHD-FMK, significantly prevented glioma cells from EVO-induced apoptosis. Increased c-Jun N-terminal kinase (JNK) protein phosphorylation by EVO was observed, and the addition of JNK inhibitors, SP600125 and JNKI inhibited the EVO-induced apoptosis was inhibited. Additionally, EVO treatment induced G2/M arrest with increased polymerized tubulin protein expression in U87 and C6 cells. Elevated expressions of the cyclin B1, p53, and phosphorylated (p)-p53 proteins were detected in EVO-treated glioma cells, and these were inhibited by JNK inhibitors. An in vivo study showed that EVO significantly reduced the growth of gliomas elicited by the subcutaneous injection of U87 cells with increases in cyclin B1, p53, and p-p53 protein expressions in tumors. An analysis of eight EVO-related chemicals showed that alkyl groups at position 14 in EVO are important for its anti-glioma effects which involve both apoptosis and G2/M arrest. Evidence is provided that supports EVO induction of apoptosis and G2/M arrest via the activation of JNK-mediated gene expression and disruption of MMP in glioblastoma cells. EVO was shown to penetrate the blood-brain barrier; EVO is therefore predicted to be a promising

  3. Nucleolar asymmetry and the importance of septin integrity upon cell cycle arrest

    PubMed Central

    Rai, Urvashi; Najm, Fadi

    2017-01-01

    Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle. PMID:28339487

  4. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    SciTech Connect

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  5. Oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation.

    PubMed

    Zheng, Mingxing; Zhu, Zhibing; Zhao, Yongzhao; Yao, Da; Wu, Maoqing; Sun, Gengyun

    2017-01-01

    Previous studies have demonstrated that oridonin, a tetracyclic diterpenoid compound extracted from Rabdosia rubescens, inhibits proliferation and induces apoptosis in several tumor cell lines. However, the mechanism by which oridonin inhibits the cell cycle remains poorly understood. In the present study, possible mechanisms by which oridonin affects cell cycle progression were explored in A549 lung cancer cells. Flow cytometry analysis indicated that oridonin inhibited the proliferation of A549 cells by inducing G2/M cell cycle arrest in a dose‑dependent manner. Western blot analysis revealed that in oridonin treated cells, phosphorylated (p‑)ATM serine/threonine kinase (S1981), p‑checkpoint kinase 2 (CHK2) (T68), p‑p53, and phosphorylated H2A histone family member X protein levels were visibly increased, indicating that oridonin promoted G2/M arrest in A549 cells through the ATM‑p53‑CHK2 pathway. This data suggests that oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation, which is likely a common mechanism in other tumor cell types when using this drug for cancer treatment.

  6. Calcium and S100B Regulation of p53-Dependent Cell Growth Arrest and Apoptosis

    PubMed Central

    Scotto, Christian; Deloulme, Jean Christophe; Rousseau, Denis; Chambaz, Edmond; Baudier, Jacques

    1998-01-01

    In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis. PMID:9632811

  7. Cimicifuga foetida extract inhibits proliferation of hepatocellular cells via induction of cell cycle arrest and apoptosis.

    PubMed

    Tian, Ze; Pan, Ruile; Chang, Qi; Si, Jianyong; Xiao, Peigen; Wu, Erxi

    2007-11-01

    The purpose of this study is to determine whether the ethyl acetate fraction (EAF) from the aerial part of Cimicifuga foetida Linnaeus possesses the anti-tumor action on hepatoma, and therefore, provide evidence for the traditional use of the plant as a detoxification agent. EAF was extracted and its cytotoxicity was evaluated on a panel of Hepatocytes by MTT assay. The IC(50) values of EAF on HepG2, R-HepG2 and primary cultured normal mouse hepatocytes were 21, 43 and 80 microg/mL, respectively. Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were used to further elucidate the cytotoxic mechanism of EAF. EAF induced G(0)/G(1)cell cycle arrest at lower concentration (25 microg/mL), and triggered G(2)/M arrest and apoptosis at higher concentrations (50 and 100 microg/mL, respectively). An increase in the ratio of Bax/Bcl-2, activation of downstream effector Caspase 3, and cleavage of poly-ADP-ribose polymerase (PARP) were implicated in EAF-induced apoptosis. In addition, EAF inhibited the growth of the implanted mouse H(22) tumor in a dose-dependent manner with the growth inhibitory rate of 63.32% at 200 mg/kg. In conclusion, EAF may potentially find use as a new therapy for the treatment of hepatoma.

  8. Molecular interplay between cdk4 and p21 dictates G0/G1 cell cycle arrest in prostate cancer cells

    PubMed Central

    Gulappa, Thippeswamy; Reddy, Ramadevi Subramani; Suman, Suman; Nyakeriga, Alice M.; Damodaran, Chendil

    2013-01-01

    This study examined the effect of 3, 9-dihydroxy-2-prenylcoumestan (pso), a furanocoumarin, on PC-3 and C4-2B castration-resistant prostate cancer (CRPC) cell lines. Pso caused significant G0/G1 cell cycle arrest and inhibition of cell growth. Molecular analysis of cyclin (D1, D2, D3, and E), cyclin-dependent kinase (cdk) (cdks 2, 4, and 6), and cdk inhibitor (p21 and p27) expression suggested transcriptional regulation of the cdk inhibitors and more significant downregulation of cdk4 than of cyclins or other cdks. Overexpression of cdk4, or silencing of p21 or p27, overcame pso-induced G0/G1 arrest, suggesting that G0/G1 cell cycle arrest is a potential mechanism of growth inhibition in CRPC cells. PMID:23684928

  9. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  10. Icarisid II inhibits the proliferation of human osteosarcoma cells by inducing apoptosis and cell cycle arrest.

    PubMed

    Tang, Yuanyuan; Xie, Mao; Jiang, Neng; Huang, Feifei; Zhang, Xiao; Li, Ruishan; Lu, Jingjing; Liao, Shijie; Liu, Yun

    2017-06-01

    Icarisid II, one of the main active components of Herba Epimedii extracts, shows potent antitumor activity in various cancer cell lines, including osteosarcoma cells. However, the anticancer mechanism of icarisid II against osteosarcoma U2OS needs further exploration. This study aims to investigate further antitumor effects of icarisid II on human osteosarcoma cells and elucidate the underlying mechanism. We cultivated human osteosarcoma USO2 cells in vitro using different concentrations of icarisid II (0-30 µM). Cell viability was detected at 24, 48, and 72 h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis. Cell cycle was tested by flow cytometry after treatment with icarisid II for 48 h. Annexin V-allophycocyanin and 7-aminoactinomycin D staining were conducted to detect cell apoptosis. Quantitative real-time polymerase chain reaction and Western blot assay were performed to measure the levels of genes and proteins related to cell cycle and apoptosis. Results showed that icarisid II significantly inhibited the proliferation and induced apoptosis of human osteosarcoma U2OS cells. The half maximal inhibitory concentration values were 14.44, 11.02, and 7.37 µM at 24, 48, and 72 h, respectively. Cell cycle was arrested in the G2/M phase in vitro. In addition, icarisid II upregulated the expression levels of P21 and CyclinB1 whereas downregulated the expression levels of CyclinD1, CDC2, and P-Cdc25C, which were related to cell cycle arrest in U2OS cells. The cell apoptotic rate increased in a dose-dependent manner after treatment with icarisid II for 48 h. Icarisid II induced apoptosis by upregulating Bax, downregulating Bcl-2, and activating apoptosis-related proteins, including cleaved caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase. These data indicate that icarisid II exhibits an antiproliferation effect on human osteosarcoma cells and induces apoptosis by activating the caspase family in a time- and dose

  11. Resveratrol causes cell cycle arrest, decreased collagen synthesis, and apoptosis in rat intestinal smooth muscle cells

    PubMed Central

    Garcia, Patricia; Schmiedlin-Ren, Phyllissa; Mathias, Jason S.; Tang, Huaijing; Christman, Gregory M.

    2012-01-01

    One of the most difficult and treatment-resistant complications of Crohn's disease is the development of fibrotic intestinal strictures due to mesenchymal cell hyperplasia and collagen deposition. Resveratrol, a phytoalexin found in berries, peanuts, grapes, and red wine, has been shown to inhibit fibrosis in vasculature, heart, lung, kidney, liver, and esophagus in animal models. Resveratrol has also been shown to inhibit oxidation, inflammation, and cell proliferation and to decrease collagen synthesis in several cell types or animal models. The aim of this study was to determine whether resveratrol has antifibrotic effects on intestinal smooth muscle cells. Responses to resveratrol by cultured smooth muscle cells isolated from colons of untreated Lewis rats were examined; this rat strain is used in a model of Crohn's disease with prominent intestinal fibrosis. A relative decrease in cell numbers following treatment with 50 and 100 μM resveratrol was evident at 24 h (P ≤ 0.005). This effect was largely due to cell cycle arrest, with an increase in the percent of cells in S phase from 8 to 25–35% (P < 0.05). Cell viability was unchanged until 2–3 days of treatment when there was a 1.2- to 5.0-fold increase in the percent of apoptotic cells, depending on the assay (P < 0.05). Expression of collagen type I protein was decreased following treatment with resveratrol for 24 h (to 44 and 25% of control levels with 50 and 100 μM resveratrol, respectively; P < 0.05). Expression of procollagen types I and III mRNA was also decreased with resveratrol treatment. Resveratrol (50 μM) diminished the proliferative response to TGF-β1 (P = 0.02) as well as IGF-I-stimulated collagen production (P = 0.02). Thus resveratrol decreases intestinal smooth muscle cell numbers through its effects on cell cycle arrest and apoptosis and also decreases collagen synthesis by the cells. These effects could be useful in preventing the smooth muscle cell hyperplasia and collagen

  12. Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers.

    PubMed

    Piette, Jacques; Volanti, Cédric; Vantieghem, Annelies; Matroule, Jean-Yves; Habraken, Yvette; Agostinis, Patrizia

    2003-10-15

    Photodynamic therapy (PDT) is a treatment for cancer and for certain benign conditions that is based on the use of a photosensitizer and light to produce reactive oxygen species in cells. Many of the photosensitizers currently used in PDT localize in different cell compartments such as mitochondria, lysosomes, endoplasmic reticulum and generate cell death by triggering necrosis and/or apoptosis. Efficient cell death is observed when light, oxygen and the photosensitizer are not limiting ("high dose PDT"). When one of these components is limiting ("low dose PDT"), most of the cells do not immediately undergo apoptosis or necrosis but are growth arrested with several transduction pathways activated. This commentary will review the mechanism of apoptosis and growth arrest mediated by two important PDT agents, i.e. pyropheophorbide and hypericin.

  13. Cell cycle arrest and clonogenic tumor cell kill by divergent chemotherapeutic drugs.

    PubMed

    Mastbergen, S C; Duivenvoorden, I; Versteegh, R T; Geldof, A A

    2000-01-01

    Regulators of cell cycle phase transitions could be important targets for cancer treatment using cytostatic chemotherapy. Therefore, the extent of cell cycle arrest induced by different cytostatic agents has to be correlated with ultimate clonogenic tumor cell death. Especially the value of early cell cycle perturbations as indicators for the clinical efficacy of drugs should be a matter of investigation. In vitro PC-3 human prostate carcinoma cells were incubated for 24 hours with a panel of six different chemotherapeutic drugs in various concentrations (Aplidine, Cisplatin, Isohomohalichondrin B (IHB), Taxol, Vincristine and Vinorelbine). The short term effects on the cell cycle distribution were determined by DNA flowcytometry while the clonogenic capacity of these cells was quantitated to measure the cytotoxic treatment efficacy. Significant decreases of clonogenic survival proved to be strongly correlated with cell cycle perturbations. IHB, Taxol, Vincristine and Vinorelbine resulted in accumulation (up to 87-92%) in the G2M phase, while Cisplatin and Aplidine led to increases in the S-phase fraction and in both G2M- as well as S-phase fractions, respectively. Cell cycle phase perturbations appear to be suitable, early markers for cytotoxic drug efficacy.

  14. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  15. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  16. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    PubMed

    Shim, Hee Jin; Lee, Eun-Mi; Nguyen, Long Duy; Shim, Jaekyung; Song, Young-Han

    2014-01-01

    Ionizing radiation (IR) treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs) generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  17. Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad

    PubMed Central

    Chang, Shun-Fu; Chang, Cheng Allen; Lee, Ding-Yu; Lee, Pei-Ling; Yeh, Yu-Ming; Yeh, Chiuan-Ren; Cheng, Cheng-Kung; Chien, Shu; Chiu, Jeng-Jiann

    2008-01-01

    Interstitial flow in and around tumor tissue affects the mechanical microenvironment to modulate tumor cell growth and metastasis. We investigated the roles of flow-induced shear stress in modulating cell cycle distribution in four tumor cell lines and the underlying mechanisms. In all four cell lines, incubation under static conditions for 24 or 48 h led to G0/G1 arrest; in contrast, shear stress (12 dynes/cm2) induced G2/M arrest. The molecular basis of the shear effect was analyzed, and the presentation on molecular mechanism is focused on human MG63 osteosarcoma cells. Shear stress induced increased expressions of cyclin B1 and p21CIP1 and decreased expressions of cyclins A, D1, and E, cyclin-dependent protein kinases (Cdk)-1, -2, -4, and -6, and p27KIP1 as well as a decrease in Cdk1 activity. Using specific antibodies and small interfering RNA, we found that the shear-induced G2/M arrest and corresponding changes in G2/M regulatory protein expression and activity were mediated by αvβ3 and β1 integrins through bone morphogenetic protein receptor type IA-specific Smad1 and Smad5. Shear stress also down-regulated runt-related transcription factor 2 (Runx2) binding activity and osteocalcin and alkaline phosphatase expressions in MG63 cells; these responses were mediated by αvβ3 and β1 integrins through Smad5. Our findings provide insights into the mechanism by which shear stress induces G2/M arrest in tumor cells and inhibits cell differentiation and demonstrate the importance of mechanical microenvironment in modulating molecular signaling, gene expression, cell cycle, and functions in tumor cells. PMID:18310319

  18. G1-arrested newborn cells are the predominant infectious form of the pathogen Brucella abortus

    PubMed Central

    Deghelt, Michaël; Mullier, Caroline; Sternon, Jean-François; Francis, Nayla; Laloux, Géraldine; Dotreppe, Delphine; Van der Henst, Charles; Jacobs-Wagner, Christine; Letesson, Jean-Jacques; De Bolle, Xavier

    2014-01-01

    Several intracellular pathogens, such as Brucella abortus, display a biphasic infection process starting with a non-proliferative stage of unclear nature. Here, we study the cell cycle of B. abortus at the single-cell level, in culture and during infection of HeLa cells and macrophages. The localization of segregation and replication loci of the two bacterial chromosomes indicates that, immediately after being engulfed by host-cell endocytic vacuoles, most bacterial cells are newborn. These bacterial cells do not initiate DNA replication for the next 4 to 6 h, indicating a G1 arrest. Moreover, growth is completely stopped during that time, reflecting a global cell cycle block. Growth and DNA replication resume later, although bacteria still reside within endosomal-like compartments. We hypothesize that the predominance of G1-arrested bacteria in the infectious population, and the bacterial cell cycle arrest following internalization, may constitute a widespread strategy among intracellular pathogens to colonize new proliferation niches. PMID:25006695

  19. Swelling of capillary endothelial cells and cardiomyocytes in the ischaemic myocardium of artificially arrested canine hearts.

    PubMed

    Schmiedl, A; Schnabel, P A; Kausch Blecken von Schmeling, H; Marten, K; Richter, J

    2001-01-01

    To establish whether coronary perfusion with cardioplegic solutions results in better intraischaemic structural preservation of endothelial cells than of cardiomyocytes, we determined intraischaemic swelling of these two cell types in hearts differently arrested during global ischaemia at 5 degrees C. Cardiac arrest was induced in situ by aortic cross clamping or by additional coronary perfusion with various cardioplegic solutions. Parameters for cellular swelling were determined, i.e. barrier thickness of capillary endothelial cells and sum of the volume fractions (V(V)) of free sarcoplasm and mitochondria (V(VSp) + V(VMi)) in cardiomyocytes. In order to test the intraischaemic relative increase of cellular volume in both cell types, regression analyses were performed. The results show that the relative intraischaemic volume increase was similar in both cell types after perfusion with histidine-tryptophan-ketoglutarate solution, and significantly less pronounced in capillary endothelial cells after perfusion with University of Wisconsin solution. In hearts arrested with St. Thomas' Hospital solution, a significantly higher volume increase was determined in capillary endothelial cells. Thus, capillary endothelium does not generally show a higher structural preservation than cardiomyocytes during ischaemia. Instead, volume regulation in both types of cells depends on the type of cardioplegic solution used. These results should be taken into consideration in human transplantation medicine.

  20. Bracken-fern extracts induce cell cycle arrest and apoptosis in certain cancer cell lines.

    PubMed

    Roudsari, Motahhareh Tourchi; Bahrami, Ahmad Reza; Dehghani, Hesam

    2012-01-01

    Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations (200 μg/mL) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and 30 μg/mL) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

  1. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    PubMed

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  2. Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis

    PubMed Central

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; Patel, Neil K; Lu, Hua; Zeng, Shelya X; Wang, Guangdi; Zhang, Changde; You, Zongbing

    2014-01-01

    Methoxyacetic acid (MAA) is a primary metabolite of ester phthalates that are used in production of consumer products and pharmaceutical products. MAA causes embryo malformation and spermatocyte death through inhibition of histone deacetylases (HDACs). Little is known about MAA’s effects on cancer cells. In this study, two immortalized human normal prostatic epithelial cell lines (RWPE-1 and pRNS-1-1) and four human prostate cancer cell lines (LNCaP, C4-2B, PC-3, and DU-145) were treated with MAA at different doses and for different time periods. Cell viability, apoptosis, and cell cycle analysis were performed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR, Western blot, and chromatin immunoprecipitation analyses. We found that MAA dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. MAA-induced apoptosis was due to down-regulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, also named cIAP1), leading to activation of caspases 7 and 3 and turning on the downstream apoptotic events. MAA-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and CDK2 expression at the late time. MAA up-regulated p21 expression through inhibition of HDAC activities, independently of p53/p63/p73. These findings demonstrate that MAA suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which suggests that MAA could be used as a potential therapeutic drug for prostate cancer. PMID:25606576

  3. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells.

    PubMed

    Solc, Petr; Schultz, Richard M; Motlik, Jan

    2010-09-01

    Mammalian oocytes are arrested at prophase I until puberty when luteinizing hormone (LH) induces resumption of meiosis of follicle-enclosed oocytes. Resumption of meiosis is tightly coupled with regulating cyclin-dependent kinase 1 (CDK1) activity. Prophase I arrest depends on inhibitory phosphorylation of CDK1 and anaphase-promoting complex-(APC-CDH1)-mediated regulation of cyclin B levels. Prophase I arrest is maintained by endogenously produced cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) that in turn phosphorylates (and activates) the nuclear kinase WEE2. In addition, PKA-mediated phosphorylation of the phosphatase CDC25B results in its cytoplasmic retention. The combined effect maintains low levels of CDK1 activity that are not sufficient to initiate resumption of meiosis. LH triggers synthesis of epidermal growth factor-like factors in mural granulosa cells and leads to reduced cGMP transfer from cumulus cells to oocytes via gap junctions that couple the two cell types. cGMP inhibits oocyte phosphodiesterase 3A (PDE3A) and a decline in oocyte cGMP results in increased PDE3A activity. The ensuing decrease in oocyte cAMP triggers maturation by alleviating the aforementioned phosphorylations of WEE2 and CDC25B. As a direct consequence CDC25B translocates into the nucleus. The resulting activation of CDK1 also promotes extrusion of WEE2 from the nucleus thereby providing a positive amplification mechanism for CDK1 activation. Other kinases, e.g. protein kinase B, Aurora kinase A and polo-like kinase 1, also participate in resumption of meiosis. Mechanisms governing meiotic prophase I arrest and resumption of meiosis share common features with DNA damage-induced mitotic G2-checkpoint arrest and checkpoint recovery, respectively. These common features include CDC14B-dependent activation of APC-CDH1 in prophase I arrested oocytes or G2-arrested somatic cells, and CDC25B-dependent cell cycle resumption in both oocytes and somatic

  4. Synthesis, characterization, cytotoxicity, a poptosis and cell cycle arrest of dibenzoxanthenes derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Zhen; Yao, Jun-Hua; Jiang, Guang-Bin; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2014-12-01

    Two new dibenzoxanthenes compounds 1 and 2 have been synthesized and characterized by analytical and spectral methods. The crystal structure of compound 2 informs that the five rings of compound are almost planar. The DNA binding properties of two compounds were studied by absorption titration, viscosity measurement and luminescence. These results indicate that two compounds interact with calf thymus DNA through intercalative mode. Agarose gel electrophoresis experiment shows that PBR 322 DNA can be induced to cleave by two compounds under photoactivated condition. Compound 1 exhibits higher cytotoxicity than compound 2 toward MG-63, BEL-7402 and A549 cells. The apoptosis and cellular uptake of MG-63 cells were studied by fluorescence microscopy. Two compounds can also enhance the level of reactive oxygen species (ROS) and decrease the mitochondrial membrane potential. Compound 1 induces cell cycle arrest in G2/M phase and compound 2 induces cell cycle arrest in G0/G1 phase in MG-63.

  5. Desacetyluvaricin induces S phase arrest in SW480 colorectal cancer cells through superoxide overproduction.

    PubMed

    Xue, Jun-Yi; Zhou, Guang-Xiong; Chen, Tianfeng; Gao, Si; Choi, Mei-Yuk; Wong, Yum-Shing

    2014-03-01

    Annonaceous acetogenins (ACGs) are a group of fatty acid-derivatives with potent anticancer effects. In the present study, we found desacetyluvaricin (Dau) exhibited notable in vitro antiproliferative effect on SW480 human colorectal carcinoma cells with IC50 value of 14 nM. The studies on the underlying mechanisms revealed that Dau inhibited the cancer cell growth through induction of S phase cell cycle arrest from 11.3% (control) to 33.2% (160 nM Dau), which was evidenced by the decreased protein expression of cyclin A Overproduction of superoxide, intracellular DNA damage, and inhibition of MEK/ERK signaling pathway, were also found involved in cells exposed to Dau. Moreover, pre-treatment of the cells with ascorbic acid significantly prevented the Dau-induced overproduction of superoxide, DNA damage and cell cycle arrest. Taken together, our results suggest that Dau induces S phase arrest in cancer cells by firstly superoxide overproduction and subsequently the involvement of various signaling pathways.

  6. Telomere loss in somatic cells of Drosophila causes cell cycle arrest and apoptosis.

    PubMed Central

    Ahmad, K; Golic, K G

    1999-01-01

    Checkpoint mechanisms that respond to DNA damage in the mitotic cell cycle are necessary to maintain the fidelity of chromosome transmission. These mechanisms must be able to distinguish the normal telomeres of linear chromosomes from double-strand break damage. However, on several occasions, Drosophila chromosomes that lack their normal telomeric DNA have been recovered, raising the issue of whether Drosophila is able to distinguish telomeric termini from nontelomeric breaks. We used site-specific recombination on a dispensable chromosome to induce the formation of a dicentric chromosome and an acentric, telomere-bearing, chromosome fragment in somatic cells of Drosophila melanogaster. The acentric fragment is lost when cells divide and the dicentric breaks, transmitting a chromosome that has lost a telomere to each daughter cell. In the eye imaginal disc, cells with a newly broken chromosome initially experience mitotic arrest and then undergo apoptosis when cells are induced to divide as the eye differentiates. Therefore, Drosophila cells can detect and respond to a single broken chromosome. It follows that transmissible chromosomes lacking normal telomeric DNA nonetheless must possess functional telomeres. We conclude that Drosophila telomeres can be established and maintained by a mechanism that does not rely on the terminal DNA sequence. PMID:10049921

  7. The phytohormone auxin induces G1 cell-cycle arrest of human tumor cells.

    PubMed

    Ester, Katja; Curković-Perica, Mirna; Kralj, Marijeta

    2009-10-01

    The plant hormone auxin is the key regulator of plant growth and development. Auxin regulates transcription of plant genes by targeting degradation of transcriptional repressor proteins Aux/IAA. While there are many reports describing its potential to modulate human cell functions, the majority are based on auxin action following enzymatic activation. A study focused on auxin alone and its antiproliferative potential, with emphasis on modulation of the cell cycle, has not been performed. Therefore, we analyzed tumor growth inhibitory effects and the cell-cycle perturbations of natural (IAA, IBA) and synthetic (NAA, 2,4-D) auxins. All derivatives showed cytostatic effects on selected human tumor cell lines. The cell-cycle analysis revealed that IAA and 2,4-D induce strong G1 arrest, along with a drastic decrease in the percentage of S-phase cells in MCF-7 cell line. This phenomenon demonstrates that auxins may have novel, unexploited antitumor potential and should be further investigated. Georg Thieme Verlag KG Stuttgart-New York.

  8. Mechanism of T-oligo-induced cell cycle arrest in Mia-PaCa pancreatic cancer cells.

    PubMed

    Rankin, Andrew M; Sarkar, Sibaji; Faller, Douglas V

    2012-06-01

    DNA oligonucleotides with sequence homology to human telomeric DNA (T-oligo) induce cell cycle arrest, followed by apoptosis, senescence, or autophagy in a human cancer cell type-specific manner. T-oligo has potential as a new therapeutic strategy in oncology because of its ability to target certain types of tumor cells while sparing normal ones. In the present study, we demonstrate the T-oligo-induced S-phase cell cycle arrest in four pancreatic cancer cell lines. To further contribute to the mechanistic understanding of T-oligo, we also identify cyclin dependent kinase 2 (cdk2) as a functional mediator in the T-oligo-induced cell cycle arrest of pancreatic cancer cells. Ectopic expression of a constitutively active cdk2 mutant abrogates T-oligo-induced cell cycle arrest in these tumor cells while knockdown of cdk2 expression alone recapitulates the T-oligo effect. Finally, we demonstrate the dispensability of T-oligo-induced ATM/ATR-mediated DNA damage response-signaling pathways, which have long been considered functional in the T-oligo signaling mechanism.

  9. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    PubMed

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-02-20

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10(3) or 2×10(4) NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag(+) release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10(4) AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag(+) release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation.

  10. Invasive Cell Fate Requires G1 Cell-Cycle Arrest and Histone Deacetylase-Mediated Changes in Gene Expression.

    PubMed

    Matus, David Q; Lohmer, Lauren L; Kelley, Laura C; Schindler, Adam J; Kohrman, Abraham Q; Barkoulas, Michalis; Zhang, Wan; Chi, Qiuyi; Sherwood, David R

    2015-10-26

    Despite critical roles in development and cancer, the mechanisms that specify invasive cellular behavior are poorly understood. Through a screen of transcription factors in Caenorhabditis elegans, we identified G1 cell-cycle arrest as a precisely regulated requirement of the anchor cell (AC) invasion program. We show that the nuclear receptor nhr-67/tlx directs the AC into G1 arrest in part through regulation of the cyclin-dependent kinase inhibitor cki-1. Loss of nhr-67 resulted in non-invasive, mitotic ACs that failed to express matrix metalloproteinases or actin regulators and lack invadopodia, F-actin-rich membrane protrusions that facilitate invasion. We further show that G1 arrest is necessary for the histone deacetylase HDA-1, a key regulator of differentiation, to promote pro-invasive gene expression and invadopodia formation. Together, these results suggest that invasive cell fate requires G1 arrest and that strategies targeting both G1-arrested and actively cycling cells may be needed to halt metastatic cancer.

  11. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone

    PubMed Central

    Gonçalves, António Pedro; Máximo, Valdemar; Lima, Jorge; Singh, Keshav K.; Soares, Paula; Videira, Arnaldo

    2011-01-01

    In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppressor p53 is involved in rotenone-induced cell death, since the drug treatment results in increased expression, phosphorylation and nuclear localization of the protein. The evaluation of the effects of rotenone on a p53-deficient cell line revealed that although not required for the promotion of mitotic catastrophe, functional p53 appears to be essential for the extensive cell death that occurs afterwards. Our results suggest that mitotic slippage also occurs subsequently to the rotenone-induced mitotic arrest and cells treated with the drug for a longer period become senescent. Treatment of mtDNA-depleted cells with rotenone induces cell death and cell cycle arrest as in cells containing wild type mtDNA, but not formation of reactive oxygen species. This suggests that the effects of rotenone are not dependent from the production of reactive oxygen species. This work highlights the multiple effects of rotenone in cancer cells related to its action as an anti-mitotic drug. PMID:21223980

  12. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone.

    PubMed

    Gonçalves, António Pedro; Máximo, Valdemar; Lima, Jorge; Singh, Keshav K; Soares, Paula; Videira, Arnaldo

    2011-03-01

    In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppressor p53 is involved in rotenone-induced cell death, since the drug treatment results in increased expression, phosphorylation and nuclear localization of the protein. The evaluation of the effects of rotenone on a p53-deficient cell line revealed that although not required for the promotion of mitotic catastrophe, functional p53 appears to be essential for the extensive cell death that occurs afterwards. Our results suggest that mitotic slippage also occurs subsequently to the rotenone-induced mitotic arrest and cells treated with the drug for a longer period become senescent. Treatment of mtDNA-depleted cells with rotenone induces cell death and cell cycle arrest as in cells containing wild-type mtDNA, but not formation of reactive oxygen species. This suggests that the effects of rotenone are not dependent from the production of reactive oxygen species. This work highlights the multiple effects of rotenone in cancer cells related to its action as an anti-mitotic drug.

  13. Huaier Aqueous Extract Induces Hepatocellular Carcinoma Cells Arrest in S Phase via JNK Signaling Pathway

    PubMed Central

    Zhang, Chengshuo; Zhang, Jialin; Li, Xin; Sun, Ning; Yu, Rui; Zhao, Bochao; Yu, Dongyang; Cheng, Ying; Liu, Yongfeng

    2015-01-01

    Huaier aqueous extract, the main active constituent of Huaier proteoglycan, has antihepatocarcinoma activity in experimental and clinical settings. However, the potential and associated antihepatoma mechanisms of Huaier extract are not yet fully understood. Therefore, in this study, we aimed to elucidate the inhibitory proliferation effect of Huaier extract on apoptosis and cycle of HepG2 and Bel-7402 cells. Our data demonstrated that incubation with Huaier extract resulted in a marked decrease in cell viability dose-dependently. Flow cytometric analysis showed that a 48 h treatment of Huaier extract caused cell apoptosis. Typical apoptotic nucleus alterations were observed with fluorescence microscope after Hoechst staining. Immunoblot analysis further demonstrated that Huaier extract activated caspase 3 and PARP. Additionally, Huaier extract inhibited the activity of p-ERK, p-p38, and p-JNK in terms of MAPK. Furthermore, Huaier extract induced HCC cells arrest in S phase and decreased the cycle related protein expression of β-catenin and cyclin D1. Studies with JNK specific inhibitor, SP600125, showed that Huaier extract induced S phase arrest and decreased β-catenin and cyclin D1 expression via JNK signaling pathway. In conclusion, we verify that Huaier extract causes cell apoptosis and induces hepatocellular carcinoma cells arrest in S phase via JNK pathway, which advances our understanding on the molecular mechanisms of Huaier extract in hepatocarcinoma management. PMID:26229542

  14. Bacillus thuringiensis parasporal proteins induce cell-cycle arrest and caspase-dependant apoptotic cell death in leukemic cells.

    PubMed

    Chan, Kok-Keong; Wong, Rebecca Shin-Yee; Mohamed, Shar Mariam; Ibrahim, Tengku Azmi Tengku; Abdullah, Maha; Nadarajah, Vishna Devi

    2012-01-01

    Bacillus thuringiensis (Bt) parasporal proteins with selective anticancer activity have recently garnered interest. This study determines the efficacy and mode of cell death of Bt 18 parasporal proteins against 3 leukemic cell lines (CEM-SS, CCRF-SB and CCRF-HSB-2).Cell-based biochemical analysis aimed to determine cell viability and the percentage of apoptotic cell death in treated cell lines; ultrastructural analysis to study apoptotic changes and Western blot to identify the parasporal proteins' binding site were performed. Bt 18 parasporal proteins moderately decreased viability of leukemic cells but not that of normal human T lymphocytes. Further purification of the proteins showed changes in inhibition selectivity. Phosphatidylserine externalization, active caspase-3, cell cycle, and ultrastructural analysis confirmed apoptotic activity and S-phase cell-cycle arrest. Western blot analysis demonstrated glyceraldehyde 3-phosphate dehydrogenase as a binding protein. We suggest that Bt 18 parasporal proteins inhibit leukemic cell viability by cell-cycle arrest and apoptosis and that glyceraldehyde 3-phosphate dehydrogenase binding initiates apoptosis.

  15. Effects of curine in HL-60 leukemic cells: cell cycle arrest and apoptosis induction.

    PubMed

    Dantas, Bruna Braga; Faheina-Martins, Gláucia Veríssimo; Coulidiati, Tangbadioa Hervé; Bomfim, Caio César Barbosa; da Silva Dias, Celidarque; Barbosa-Filho, José Maria; Araújo, Demetrius Antônio Machado

    2015-04-01

    Curine is a natural alkaloid isolated from Chondrodendron platyphyllum and it has been reported that this alkaloid has vasodilatory and anti-inflammatory effects. The aim of this study is to analyze the cytotoxic effects of curine in cancer cell lines HL-60, K562, and HT-29, and in primary cultures of peripheral blood mononuclear cells (PBMC). Cells were treated with curine (from 3 to 15 µM) for 24 and 48 h. Cell viability was analyzed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry with propidium iodide (PI) assay. To assess the type of cell death induced in HL-60, the cell cycle, morphological, and biochemical alterations were analyzed, which were determined by differential staining with acridine orange/ethidium bromide, and annexin V/PI double-labeling and change in mitochondrial membrane potential assays. Curine demonstrated a potent cytotoxic effect on leukemic cell lines (HL-60 and K562). Its cytotoxic effects in HL-60 cells was related to plasma membrane damage and cell cycle arrest at the G1 phase from 43.4 ± 1.0 to 56.7 ± 1.4 % (p < 0.05). Curine (15 μM) also increased the apoptotic cells number by around 60 % in HL-60 cells and caused phosphatidylserine externalization, inducing about 57 % of apoptosis. Moreover, this alkaloid provoked 20 % of mitochondrial membrane depolarization. We conclude that curine presented a cytotoxic effect and induced apoptosis in HL-60 cells. Thus, it can be considered a promising pharmacological drug.

  16. miR-22 promotes apoptosis of osteosarcoma cells via inducing cell cycle arrest.

    PubMed

    Gai, Pengzhou; Sun, Hongliang; Wang, Guangda; Xu, Qiang; Qi, Xiaojun; Zhang, Zuofu; Jiang, Lei

    2017-04-01

    To study the effects of miR-22 on the proliferation and the apoptosis of osteosarcoma MG-63 cell line and to explore the potential molecular mechanism that miR-22 regulates this biological process. Quantitive real-time polymerase chain reaction (RT-qPCR) was performed to explore the miRNA level of miR-22. The MG-63 cell line was infected with miR-22 mimics for establishment of miR-22 overexpression. Non-infected cells were in blank group and cells infected with empty vector were served as negative control (NC group). MTT assay was conducted to measure cell viability. The cell cycle and apoptosis were explored using flow cytometry and the apoptosis-related markers were detected by western blotting. RT-qPCR results revealed that the miR-22 miRNA level in the MG-63 cells was significantly lower than that in osteoblasts (P<0.05). MTT assay showed that the MG-63 cells infected with miR-22 mimics exhibited markedly decreased proliferation ability compared with blank and empty vector (NC) groups. Next, we found that overexpression of miR-22 remarkably increased the apoptosis of the MG-63 cells, evidenced from the flow cytometry results and elevated Bax and reduced Bcl-2. Furthermore, results revealed that percentage of the cells at G0/G1 phase in miR-22 mimic group (66.75±3.67%) was significantly higher than blank (52.9±2.58%) and NC (50.5±2.45%) groups. miR-22 attenuated the proliferation and induced the apoptosis of the MG-63 cells via promoting G0/G1 cell cycle arrest. Thus, miR-22 may have the potential to be a novel therapeutic in treatment of osteosarcoma.

  17. SET-related cell division autoantigen-1 (CDA1) arrests cell growth.

    PubMed

    Chai, Z; Sarcevic, B; Mawson, A; Toh, B H

    2001-09-07

    We used an autoimmune serum from a patient with discoid lupus erythematosus to clone a cDNA of 2808 base pairs. Its open reading frame of 2079 base pairs encodes a predicted polypeptide of 693 amino acids named CDA1 (cell division autoantigen-1). CDA1 has a predicted molecular mass of 79,430 Daltons and a pI of 4.26. The size of the cDNA is consistent with its estimated mRNA size. CDA1 comprises an N-terminal proline-rich domain, a central basic domain, and a C-terminal bipartite acidic domain. It has four putative nuclear localization signals and potential sites for phosphorylation by cAMP and cGMP-dependent kinases, protein kinase C, thymidine kinase, casein kinase II, and cyclin-dependent kinases (CDKs). CDA1 is phosphorylated in HeLa cells and by cyclin D1/CDK4, cyclin A/CDK2, and cyclin B/CDK1 in vitro. Its basic and acidic domains contain regions homologous to almost the entire human leukemia-associated SET protein. The same basic region is also homologous to nucleosome assembly proteins, testis TSPY protein, and an uncharacterized brain protein. CDA1 is present in the nuclear fraction of HeLa cells and localizes to the nucleus and nucleolus in HeLa cells transfected with CDA1 or its N terminus containing all four nuclear localization signals. Its acidic C terminus localizes mainly to the cytoplasm. CDA1 levels are low in serum-starved cells, increasing dramatically with serum stimulation. Expression of the CDA1 transgene, but not its N terminus, arrests HeLa cell growth, colony numbers, cell density, and bromodeoxyuridine uptake in a dose-dependent manner. The ability of CDA1 to arrest cell growth is abolished by mutation of the two CDK consensus phosphorylation sites. We propose that CDA1 is a negative regulator of cell growth and that its activity is regulated by its expression level and phosphorylation.

  18. Hispolon induces apoptosis and cell cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation.

    PubMed

    Huang, Guan-Jhong; Deng, Jeng-Shyan; Huang, Shyh-Shyun; Hu, Miao-Lin

    2011-07-13

    Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have antioxidant, anti-inflammatory, and anticancer activities. This study investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma Hep3B cells by using the MTT assay, DNA fragmentation, DAPI (4,6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analyses. Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Hispolon-induced S-phase arrest was associated with a marked decrease in the protein expression of cyclins A and E and cyclin-dependent kinase (CDK) 2, with concomitant induction of p21waf1/Cip1 and p27Kip1. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells. These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell cycle arrest and apoptosis in Hep3B cells.

  19. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.

    PubMed

    Tseng, Shuei-Kuen; Chang, Mei-Chi; Su, Cheng-Yao; Chi, Lin-Yang; Chang, Jenny Zwei-Ching; Tseng, Wan-Yu; Yeung, Sin-Yuet; Hsu, Ming-Lun; Jeng, Jiiang-Huei

    2012-08-01

    Betel quid (BQ) chewing is a common oral habit in South Asia and Taiwan. BQ consumption may increase the risk of oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSF), and periodontitis as well as systemic diseases (atherosclerosis, hypertension, etc.). However, little is known about the toxic effect of BQ components on endothelial cells that play important roles for angiogenesis, carcinogenesis, tissue fibrosis, and cardiovascular diseases. EAhy 926 (EAHY) endothelial cells were exposed to arecoline, a major BQ alkaloid, for various time periods. Cytotoxicity was estimated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The cell cycle distribution of EAHY cells residing in sub-G0/G1, G0/G1, S-, and G2/M phases was analyzed by propidium iodide staining of cellular DNA content and flow cytometry. Some EAHY cells retracted, became round-shaped in appearance, and even detached from the culture plate after exposure to higher concentrations of arecoline (> 0.4 mM). At concentrations of 0.4 and 0.8 mM, arecoline induced significant cytotoxicity to EAHY cells. At similar concentrations, arecoline induced G2/M cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. Interestingly, prolonged exposure to arecoline (0.1 mM) for 12 and 21 days significantly suppressed the proliferation of EAHY cells, whereas EAHY cells showed adaptation and survived when exposed to 0.05 mM arecoline. These results suggest that BQ components may contribute to the pathogenesis of OSF and BQ chewing-related cardiovascular diseases via toxicity to oral or systemic endothelial cells, leading to impairment of vascular function. During BQ chewing, endothelial damage may be induced by areca nut components and associate with the pathogenesis of OSF, periodontitis, and cardiovascular diseases.

  20. Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells.

    PubMed

    Chang, Yung-Ting; Wu, Chang-Yi; Tang, Jen-Yang; Huang, Chiung-Yao; Liaw, Chih-Chuang; Wu, Shih-Hsiung; Sheu, Jyh-Horng; Chang, Hsueh-Wei

    2017-09-01

    Soft corals-derived natural product, sinularin, was antiproliferative against some cancers but its effect and detailed mechanism on oral cancer cells remain unclear. The subject of this study is to examine the antioral cancer effects and underlying detailed mechanisms in terms of cell viability, oxidative stress, cell cycle analysis, and apoptosis analyses. In MTS assay, sinularin dose-responsively decreased cell viability of three oral cancer cells (Ca9-22, HSC-3, and CAL 27) but only little damage to oral normal cells (HGF-1). This cell killing effect was rescued by the antioxidant N-acetylcysteine (NAC) pretreatment. Abnormal cell morphology and induction of reactive oxygen species (ROS) were found in sinularin-treated oral cancer Ca9-22 cells, however, NAC pretreatment also recovered these changes. Sinularin arrested the Ca9-22 cells at G2/M phase and dysregulated the G2/M regulatory proteins such as cdc2 and cyclin B1. Sinularin dose-responsively induced apoptosis on Ca9-22 cells in terms of flow cytometry (annexin V and pancaspase analyses) and western blotting (caspases 3, 8, 9) and poly (ADP-ribose) polymerase (PARP). These apoptotic changes of sinularin-treated Ca9-22 cells were rescued by NAC pretreatment. Taken together, sinularin induces oxidative stress-mediated antiproliferation, G2/M arrest, and apoptosis against oral cancer cells and may be a potential marine drug for antioral cancer therapy. © 2017 Wiley Periodicals, Inc.

  1. Rhizoma Paridis Saponins Induces Cell Cycle Arrest and Apoptosis in Non-Small Cell Lung Carcinoma A549 Cells

    PubMed Central

    Zhang, Jue; Yang, Yixi; Lei, Lei; Tian, Mengliang

    2015-01-01

    Background As a traditional Chinese medicine herb, Chonglou (Paris polyphylla var. chinensis) has been used as anticancer medicine in China in recent decades, as it can induce cell cycle arrest and apoptosis in numerous cancer cells. The saponins extract from the rhizoma of Chonglou [Rhizoma Paridis saponins (RPS)] is known as the main active component for anticancer treatment. However, the molecular mechanism of the anticancer effect of RPS is unknown. Material/Methods The present study evaluated the effect of RPS in non-small-cell lung cancer (NSCLC) A549 cells using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry. Subsequently, the expression of several genes associated with cell cycle and apoptosis were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and Western blotting. Results RPS was revealed to inhibit cell growth, causing a number of cells to accumulate in the G 1 phase of the cell cycle, leading to apoptosis. In addition, the effect was dose-dependent. Moreover, the results of qRT-PCR and Western blotting showed that p53 and cyclin-dependent kinase 2 (CDK2) were significantly downregulated, and that BCL2, BAX, and p21 were upregulated, by RPS treatment. Conclusions We speculated that the RPS could act on a pathway, including p53, p21, BCL2, BAX, and CDK2, and results in G1 cell cycle arrest and apoptosis in NSCLC cells. PMID:26311066

  2. Thoc1 inhibits cell growth via induction of cell cycle arrest and apoptosis in lung cancer cells.

    PubMed

    Wan, Jianmei; Zou, Shitao; Hu, Mengshang; Zhu, Ran; Xu, Jiaying; Jiao, Yang; Fan, Saijun

    2014-06-01

    THO complex 1 (Thoc1) is a human nuclear matrix protein that binds to the retinoblastoma tumor suppressor retinoblastoma protein (pRb). While some studies suggest that Thoc1 has characteristics of a tumor suppressor protein, whether Thoc1 can inhibit lung cancer cell growth is not clear. In the present study, we observed that Thoc1 is lowly expressed in the lung cancer cell lines SPC-A1 and NCI-H1975. Then, we investigated the potential effects of Thoc1 on lung cancer cell proliferation, cell cycle and apoptosis after stable transfection of these lines with a Thoc1 expression vector. We found that overexpression of Thoc1 can inhibit cell proliferation, induce G2/M cell cycle arrest and promote apoptosis. Further investigation indicated that overexpression of Thoc1 is involved in the inhibition of cell cycle-related proteins cyclin A1 and B1 and of pro-apoptotic factors Bax and caspase-3. In vivo experiments showed that tumors overexpressing Thoc1 display a slower growth rate than the control xenografts and show reduced expression of the protein Ki-67, which localized on the nuclear membrane. Taken together, our data show that in lung cancer cells, Thoc1 inhibits cell growth through induction of cell cycle arrest and apoptosis. These results indicate that Thoc1 may be used as a novel therapeutic target for human lung cancer treatment.

  3. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation

    PubMed Central

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania

    2016-01-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  4. Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis

    PubMed Central

    Bernard, Remi; Marquis, Kathleen A.; Rudner, David Z.

    2010-01-01

    Summary How bacteria respond to chromosome replication stress has been traditionally studied using temperature-sensitive mutants and chemical inhibitors. These methods inevitably arrest all replication and lead to induction of transcriptional responses and inhibition of cell division. Here, we used repressor proteins bound to operator arrays to generate a single stalled replication fork. These replication roadblocks impeded replisome progression on one arm, leaving replication of the other arm and re-initiation unaffected. Remarkably, despite robust generation of RecA-GFP filaments and a strong block to cell division during the roadblock, patterns of gene expression were not significantly altered. Consistent with these findings, division inhibition was not mediated by the SOS-induced regulator YneA nor by RecA-independent repression of ftsL. In support of the idea that nucleoid occlusion prevents inappropriate cell division during fork arrest, immature FtsZ-rings formed adjacent to the DNA mass but rarely on top of it. Furthermore, mild alterations in chromosome compaction resulted in cell division that guillotined the DNA. Strikingly, the nucleoid occlusion protein Noc had no discernable role in division inhibition. Our data indicate that Noc-independent nucleoid occlusion prevents inappropriate cell division during replication fork arrest. They further suggest that Bacillus subtilis normally manages replication stress rather than inducing a stress-response. PMID:20807205

  5. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells.

    PubMed

    García, Víctor; Lara-Chica, Maribel; Cantarero, Irene; Sterner, Olov; Calzado, Marco A; Muñoz, Eduardo

    2016-01-26

    Galiellalactone (GL) is a fungal metabolite that presents antitumor activities on prostate cancer in vitro and in vivo. In this study we show that GL induced cell cycle arrest in G2/M phase, caspase-dependent apoptosis and also affected the microtubule organization and migration ability in DU145 cells. GL did not induce double strand DNA break but activated the ATR and ATM-mediated DNA damage response (DDR) inducing CHK1, H2AX phosphorylation (fH2AX) and CDC25C downregulation. Inhibition of the ATM/ATR activation with caffeine reverted GL-induced G2/M cell cycle arrest, apoptosis and DNA damage measured by fH2AX. In contrast, UCN-01, a CHK1 inhibitor, prevented GL-induced cell cycle arrest but enhanced apoptosis in DU145 cells. Furthermore, we found that GL did not increase the levels of intracellular ROS, but the antioxidant N-acetylcysteine (NAC) completely prevented the effects of GL on fH2AX, G2/M cell cycle arrest and apoptosis. In contrast to NAC, other antioxidants such as ambroxol and EGCG did not interfere with the activity of GL on cell cycle. GL significantly suppressed DU145 xenograft growth in vivo and induced the expression of fH2AX in the tumors. These findings identify for the first time that GL activates DDR in prostate cancer.

  6. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis

    PubMed Central

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-01-01

    Background Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. Material/Methods Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. Results The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. Conclusions The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer. PMID:27755523

  7. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.

    PubMed

    Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi

    2017-04-01

    Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.

  8. Phytochemical induction of cell cycle arrest by glutathione oxidation and reversal by N-acetylcysteine in human colon carcinomacarcinoma cells

    PubMed Central

    Odom, R. Y.; Dansby, M. Y.; Rollins-Hairston, A. M.; Jackson, K. M.; Kirlin, W. G.

    2009-01-01

    Cancer prevention by dietary phytochemicals has been shown to involve decreased cell proliferation and cell cycle arrest. However, there is limited understanding of the mechanisms involved. Previously, we have shown that a common effect of phytochemicals investigated is to oxidize the intracellular glutathione (GSH) pool. Therefore, the objective of this study was to evaluate whether changes in the glutathione redox potential in response to dietary phytochemicals was related to their induction of cell cycle arrest. Human colon carcinoma (HT29) cells were treated with benzyl isothiocyanate (BIT), diallyl disulfide (DADS), dimethyl fumarate (DMF), lycopene (LYC), sodium butyrate (NaB) or buthione sulfoxamine (BSO, a GSH synthesis inhibitor) at concentrations shown to cause oxidation of the GSH: glutathione disulfide pool. A decrease in cell proliferation, as measured by [3H]-thymidine incorporation, was observed that could be reversed by pretreatment with the GSH precursor and antioxidant N-acetylcysteine (NAC). Cell cycle analysis on cells isolated 16 h after treatment indicated an increase in the percentage (ranging from 75% to 30% for benzyl isothiocyanate and lycopene, respectively) of cells at G2/M arrest compared to control treatments (dimethylsulfoxide) in response to phytochemical concentrations that oxidized the GSH pool. Pretreatment for 6 h with N-acetylcysteine (NAC) resulted in a partial reversal of the G2/M arrest. As expected the GSH oxidation from these phytochemical treatments was reversible by NAC. That both cell proliferation and G2/M arrest, were also reversed by NAC leads to the conclusion that these phytochemical effects are also mediated, in part, by intracellular oxidation. Thus, one potential mechanism for cancer prevention by dietary phytochemicals is inhibition of the growth of cancer cells through modulation of their intracellular redox environment. PMID:19373606

  9. Lysophosphatidate Induces Chemo-Resistance by Releasing Breast Cancer Cells from Taxol-Induced Mitotic Arrest

    PubMed Central

    Samadi, Nasser; Bekele, Raie T.; Goping, Ing Swie; Schang, Luis M.; Brindley, David N.

    2011-01-01

    Background Taxol is a microtubule stabilizing agent that arrests cells in mitosis leading to cell death. Taxol is widely used to treat breast cancer, but resistance occurs in 25–69% of patients and it is vital to understand how Taxol resistance develops to improve chemotherapy. The effects of chemotherapeutic agents are overcome by survival signals that cancer cells receive. We focused our studies on autotaxin, which is a secreted protein that increases tumor growth, aggressiveness, angiogenesis and metastasis. We discovered that autotaxin strongly antagonizes the Taxol-induced killing of breast cancer and melanoma cells by converting the abundant extra-cellular lipid, lysophosphatidylcholine, into lysophosphatidate. This lipid stimulates specific G-protein coupled receptors that activate survival signals. Methodology/Principal Findings In this study we determined the basis of these antagonistic actions of lysophosphatidate towards Taxol-induced G2/M arrest and cell death using cultured breast cancer cells. Lysophosphatidate does not antagonize Taxol action in MCF-7 cells by increasing Taxol metabolism or its expulsion through multi-drug resistance transporters. Lysophosphatidate does not lower the percentage of cells accumulating in G2/M by decreasing exit from S-phase or selective stimulation of cell death in G2/M. Instead, LPA had an unexpected and remarkable action in enabling MCF-7 and MDA-MB-468 cells, which had been arrested in G2/M by Taxol, to normalize spindle structure and divide, thus avoiding cell death. This action involves displacement of Taxol from the tubulin polymer fraction, which based on inhibitor studies, depends on activation of LPA receptors and phosphatidylinositol 3-kinase. Conclusions/Significance This work demonstrates a previously unknown consequence of lysophosphatidate action that explains why autotaxin and lysophosphatidate protect against Taxol-induced cell death and promote resistance to the action of this important therapeutic

  10. Derivation of human embryonic stem cells from developing and arrested embryos.

    PubMed

    Zhang, Xin; Stojkovic, Petra; Przyborski, Stefan; Cooke, Michael; Armstrong, Lyle; Lako, Majlinda; Stojkovic, Miodrag

    2006-12-01

    Human embryonic stem cells (hESC) hold huge promise in modern regenerative medicine, drug discovery, and as a model for studying early human development. However, usage of embryos and derivation of hESC for research and potential medical application has resulted in polarized ethical debates since the process involves destruction of viable developing human embryos. Here we describe that not only developing embryos (morulae and blastocysts) of both good and poor quality but also arrested embryos could be used for the derivation of hESC. Analysis of arrested embryos demonstrated that these embryos express pluripotency marker genes such OCT4, NANOG, and REX1. Derived hESC lines also expressed specific pluripotency markers (TRA-1-60, TRA-1-81, SSEA4, alkaline phosphatase, OCT4, NANOG, TERT, and REX1) and differentiated under in vitro and in vivo conditions into derivates of all three germ layers. All of the new lines, including lines derived from late arrested embryos, have normal karyotypes. These results demonstrate that arrested embryos are additional valuable resources to surplus and donated developing embryos and should be used to study early human development or derive pluripotent hESC.

  11. Cell Arrest and Cell Death in Mammalian Preimplantation Development: Lessons from the Bovine Model

    PubMed Central

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A.

    2011-01-01

    Background The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. Methods and Findings To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. Conclusions In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development. PMID

  12. Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model.

    PubMed

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A

    2011-01-01

    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development.

  13. CIL-102-Induced Cell Cycle Arrest and Apoptosis in Colorectal Cancer Cells via Upregulation of p21 and GADD45

    PubMed Central

    Huang, Wen-Shih; Kuo, Yi-Hung; Kuo, Hsing-Chun; Hsieh, Meng-Chiao; Huang, Cheng-Yi; Lee, Ko-Chao; Lee, Kam-Fai; Shen, Chien-Heng; Tung, Shui-Yi; Teng, Chih-Chuan

    2017-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is a well-known, major active agent of the alkaloid derivative of Camptotheca acuminata with valuable biological properties, including anti-tumorigenic activity. In this study, we investigated the molecular mechanisms by which CIL-102 mediated the induction of cell death, and we performed cell cycle G2/M arrest to clarify molecular changes in colorectal cancer cells (CRC). Treatment of DLD-1 cells with CIL-102 resulted in triggering the extrinsic apoptosis pathway through the activation of Fas-L, caspase-8 and the induction of Bid cleavage and cytochrome c release in a time-dependent manner. In addition, CIL-102 mediated apoptosis and G2/M arrest by phosphorylation of the Jun N-terminus kinase (JNK1/2) signaling pathway. This resulted in the expression of NFκB p50, p300 and CREB-binding protein (CBP) levels, and in the induction of p21 and GADD45 as well as the decreased association of cdc2/cyclin B. Furthermore, treatment with the JNK1/2 (SP600125), NFκB (PDTI) or the p300/CBP (C646) inhibitors abolished CIL-102-induced cell cycle G2/M arrest and reversed the association of cdc2 with cyclin B. Therefore, we demonstrated that there was an increase in the cellular levels of p21 and GADD45 by CIL-102 reduction in cell viability and cell cycle arrest via the activation of the JNK1/2, NFκB p50, p300 and CBP signaling modules. Collectively, our results demonstrated that CIL-102 induced cell cycle arrest and apoptosis of colon cancer cells by upregulating p21 and GADD45 expression and by activating JNK1/2, NFκB p50 and p300 to provide a new mechanism for CIL-102 treatment. PMID:28068431

  14. Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.

    PubMed

    Feiszt, Péter; Schneider, György; Emődy, Levente

    2017-06-01

    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  15. Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells.

    PubMed

    Chen, H C; Hsieh, W T; Chang, W C; Chung, J G

    2004-08-01

    In this study, we have evaluated the chemopreventive role of aloe-emodin in human promyelocytic leukemia HL-60 cells in vitro by studying the regulation of proliferation, cell cycle and apoptosis. Aloe-emodin inhibited cell proliferation and induced G2/M arrest and apoptosis in HL-60 cells. Investigation of the levels of cyclins B1, E and A by immunoblot analysis showed that cyclin E level was unaffected, whereas cyclin B1 and A levels increased with aloe-emodin in HL-60 cells. Investigation of the levels of cyclin-dependent kinases, Cdk1 and 2, showed increased levels of Cdk1 but the levels of Cdk2 were not effected with aloe-emodin in HL-60 cells. The levels of p27 were increased after HL-60 cells were cotreated with various concentrations of aloe-emodin. The increase of the levels of p27 may be the major factor for aloe-emodin to cause G2/M arrest in these examined cells. Flow cytometric assays and DNA fragmentation gel electrophoresis also confirmed aloe-emodin induced apoptosis in HL-60 cells. The levels of caspase-3 were increased after HL-60 cells were cotreated with 10 microM aloe-emodin for 12, 24, 48, and 72 hours. Taken together, aloe-emodin therefore appears to exert its anticarcinogenesis properties by inhibiting proliferation and inducing cell cycle arrest and apoptosis underwent activation of caspase-3 in human leukemia HL-60 cells.

  16. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    SciTech Connect

    Su, Miaoxian; Chung, Hau Yin; Li, Yaolan

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  17. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells.

    PubMed

    Wang, L; Qin, H; Chen, B; Xin, X; Li, J; Han, H

    2007-01-01

    Human cervical carcinoma is one of the most common malignant tumors, but the mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression are not clear. Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis, but perturbed Notch signaling may contribute to tumorigenesis. We now show that Notch1 is detected in all cervical cancer, including advanced diseases. We also constitutively overexpressed active Notch1 in human cervical carcinoma to explore the effects of Notch1 signaling on human cervical carcinoma cell growth and to investigate the underlying molecular mechanisms. The signaling may participate in the development of human cervical carcinoma cells, but overexpressed active Notch1 inhibits their growth through induction of cell cycle arrest. Increased Notch1 signaling induced a downmodulation of human papillomavirus transcription through suppression of activator protein (AP)-1 activity by upregulation of c-Jun and the decreased expression of c-Fos. Thus, Notch1 signaling plays a key role and exerts dual effects, functioning in context-specific manner.

  18. Inhibition of REV3 Expression Induces Persistent DNA Damage and Growth Arrest in Cancer Cells12

    PubMed Central

    Knobel, Philip A; Kotov, Ilya N; Felley-Bosco, Emanuela; Stahel, Rolf A; Marti, Thomas M

    2011-01-01

    REV3 is the catalytic subunit of DNA translesion synthesis polymerase ζ. Inhibition of REV3 expression increases the sensitivity of human cells to a variety of DNA-damaging agents and reduces the formation of resistant cells. Surprisingly, we found that short hairpin RNA-mediated depletion of REV3 per se suppresses colony formation of lung (A549, Calu-3), breast (MCF-7, MDA-MB-231), mesothelioma (IL45 and ZL55), and colon (HCT116 +/-p53) tumor cell lines, whereas control cell lines (AD293, LP9-hTERT) and the normal mesothelial primary culture (SDM104) are less affected. Inhibition of REV3 expression in cancer cells leads to an accumulation of persistent DNA damage as indicated by an increase in phospho-ATM, 53BP1, and phospho-H2AX foci formation, subsequently leading to the activation of the ATM-dependent DNA damage response cascade. REV3 depletion in p53-proficient cancer cell lines results in a G1 arrest and induction of senescence as indicated by the accumulation of p21 and an increase in senescence-associated β-galactosidase activity. In contrast, inhibition of REV3 expression in p53-deficient cells results in growth inhibition and a G2/M arrest. A small fraction of the p53-deficient cancer cells can overcome the G2/M arrest, which results in mitotic slippage and aneuploidy. Our findings reveal that REV3 depletion per se suppresses growth of cancer cell lines from different origin, whereas control cell lines and a mesothelial primary culture were less affected. Thus, our findings indicate that depletion of REV3 not only can amend cisplatin-based cancer therapy but also can be applied for susceptible cancers as a potential monotherapy. PMID:22028621

  19. Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth.

    PubMed

    Luo, Guangzuo; Zhang, Jian; Luca, Francis C; Guo, Wei

    2013-07-08

    The rate of eukaryotic cell growth is tightly controlled for proper progression through each cell cycle stage and is important for cell size homeostasis. It was previously shown that cell growth is inhibited during mitosis when cells are preparing for division. However, the mechanism for growth arrest at this stage is unknown. Here we demonstrate that exocytosis of a select group of cargoes was inhibited before the metaphase-anaphase transition in the budding yeast Saccharomyces cerevisiae. The cyclin-dependent kinase, Cdk1, when bound to the mitotic cyclin Clb2, directly phosphorylated Exo84, a component of the exocyst complex essential for exocytosis. Mitotic phosphorylation of Exo84 disrupted the assembly of the exocyst complex, thereby affecting exocytosis and cell surface expansion. Our study demonstrates the coordination between membrane trafficking and cell cycle progression and provides a molecular mechanism by which cell growth is controlled during the cell division cycle.

  20. Physalis angulata induced G2/M phase arrest in human breast cancer cells.

    PubMed

    Hsieh, Wen-Tsong; Huang, Kuan-Yuh; Lin, Hui-Yi; Chung, Jing-Gung

    2006-07-01

    Physalis angulata (PA) is employed in herbal medicine around the world. It is used to treat diabetes, hepatitis, asthma and malaria in Taiwan. We have evaluated PA as a cancer chemopreventive agent in vitro by studying the role of PA in regulation of proliferation, cell cycle and apoptosis in human breast cancer cell lines. PA inhibited cell proliferation and induced G2/M arrest and apoptosis in human breast cancer MAD-MB 231 and MCF-7 cell lines. In this study, under treatment with various concentrations of PA in MDA-MB 231 cell line, we checked mRNA levels for cyclin A and cyclin B1 and the protein levels of cyclin A and cyclin B1, Cdc2 (cyclin-dependent kinases), p21(waf1/cip1) and P27(Kip1) (cyclin-dependent kinase inhibitors), Cdc25C, Chk2 and Wee1 kinase (cyclin-dependent kinase relative factors) in cell cycle G2/M phase. From those results, we determined that PA arrests MDA-MB 231 cells at the G2/M phase by (i) inhibiting synthesis or stability of mRNA and their downstream protein levels of cyclin A and cyclin B1, (ii) increasing p21(waf1/cip1) and P27(kip1) levels, (iii) increasing Chk2, thus causing an increase in Cdc25C phosphorylation/inactivation and inducing a decrease in Cdc2 levels and an increase in Wee1 level. According to the results obtained, PA appears to possess anticarcinogenic properties; these results suggest that the effect of PA on the levels of phosphorylated/inactivated Cdc25C are mediated by Chk2 activation, at least in part, via p21(waf1/cip1) and P27(kip1) cyclin-dependent kinase inhibitors pathway to arrest cells at G2/M phase in breast cancer carcinoma cells.

  1. Niacin reverses migratory macrophage foam cell arrest mediated by oxLDL in vitro.

    PubMed

    Huang, Hua; Koelle, Pirkko; Fendler, Markus; Schroettle, Angelika; Czihal, Michael; Hoffmann, Ulrich; Kuhlencordt, Peter Jan

    2014-01-01

    Niacin reduces vascular oxidative stress and down regulates inducible nitric oxide synthase, an enzyme mediating proatherosclerotic effects in part by increasing oxidative stress. Here, we evaluate whether Niacin reverses the redox sensitive migratory arrest of macrophages in response to oxidised(ox) LDL uptake. Migration of RAW264.7 cells, a murine macrophage cell line and bone marrow derived macrophages from wildtype and iNOS knockout mice was quantified using a modified Boyden chamber. Unstimulated cells or cells preincubated with oxLDL or non-oxidised (n)LDL were treated with Nicotinic acid or Nicotinamide. Nitric oxide, peroxynitrite and ROS production were assessed using electron paramagnetic resonance (ESR). Additionally, flow cytometry analysis of apoptosis, fokal adhesion kinase (FAK), phalloidin, CD36, F4/80 macrophage marker and iNOS gene expression (PCR) were assessed. Migration of Nicotinic acid, Nicotinamide treated cells or unstimulated cells did not differ (P>0.05). oxLDL treatment significantly reduced migration vs. unstimulated cells (p<0.05). In contrast, migratory arrest in response to oxLDL treatment was reversed by co-incubation with Nicotinic acid and Nicotinamide. The oxLDL-induced peroxynitrite formation in RAW264.7 cells was abolished by Niacin and glutathion (GSH) oxidation was significantly reduced. However, nitric oxide (NO)- and reactive oxygen species (ROS) production induced by oxLDL were not affected by Niacin treatment of RAW264.7 cells. In addition, Nicotinic acid and Nicotinamide reduced actin polymerization, a marker for migratory arrest. Our data shows that oxLDL induced inhibition of macrophage migration in vitro can be reversed by Niacin. Furthermore, Niacin reduces peroxynitite formation and improves antioxidant GSH.

  2. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  3. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.

    PubMed

    Fan, Li; Ma, Yalin; Liu, Ying; Zheng, Dongping; Huang, Guangrong

    2014-11-15

    The polyphenolic flavonoid silymarin that is the milk thistle extract has been found to possess an anti-cancer effect against various human epithelial cancers. In this study, to explore the regulative effect of silymarin on human ovarian cancer line A2780s and PA-1 cells, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay and flow cytometry were respectively used to determine the inhibitory effect of silymarin on the both cell lines, and to measure their cell cycle progression. Apoptosis induction and mitochondrial membrane potential damage were separately detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assay and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide staining. Additionally, western blotting was applied to determine cytochrome C release and expression levels of p53, p21, p27, p16, CDK2, Bax, Bcl-2, procaspase-9, procaspase-3, cleaved caspase-9 and caspase-3 proteins. The activity of caspase-9 and caspase-3 was measured using Caspase-Glo-9 and Caspase-Glo-3 assay. The results indicated that silymarin effectively suppressed cell growth in a dose- and time-dependent manner, and arrested cell cycle progression at G1/S phase in A2780s and PA-1 cells via up-regulation of p53, p21, and p27 protein expression, and down-regulation of CDK2 protein expression. Additionally, silymarin treatment for 24h at 50 and 100µg/ml resulted in a reduction of mitochondrial membrane potential and cytochrome C release, and significantly induced apoptosis in A2780s and PA-1 cells by increasing Bax and decreasing Bcl-2 protein expression, and activation of caspase-9 and caspase-3. Therefore, silymarin is a possible potential candidate for the prevention and treatment of ovarian cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Knockdown of human deubiquitinase PSMD14 induces cell cycle arrest and senescence

    SciTech Connect

    Byrne, Ann; McLaren, Rajashree P.; Mason, Paul; Chai, Lilly; Dufault, Michael R.; Huang, Yinyin; Liang, Beirong; Gans, Joseph D.; Zhang, Mindy; Carter, Kara; Gladysheva, Tatiana B.; Teicher, Beverly A.; Biemann, Hans-Peter N.; Booker, Michael; Goldberg, Mark A.; Klinger, Katherine W.; Lillie, James; Madden, Stephen L.; Jiang, Yide

    2010-01-15

    The PSMD14 (POH1, also known as Rpn11/MPR1/S13/CepP1) protein within the 19S complex (19S cap; PA700) is responsible for substrate deubiquitination during proteasomal degradation. The role of PSMD14 in cell proliferation and senescence was explored using siRNA knockdown in carcinoma cell lines. Our results reveal that down-regulation of PSMD14 by siRNA transfection had a considerable impact on cell viability causing cell arrest in the G0-G1 phase, ultimately leading to senescence. The molecular events associated with decreased cell proliferation, cell cycle arrest and senescence include down-regulation of cyclin B1-CDK1-CDC25C, down-regulation of cyclin D1 and up-regulation of p21{sup /Cip} and p27{sup /Kip1}. Most notably, phosphorylation of the retinoblastoma protein was markedly reduced in PSMD14 knockdown cells. A comparative study with PSMB5, a subunit of the 20S proteasome, revealed that PSMB5 and PSMD14 have different effects on cell cycle, senescence and associated molecular events. These data support the view that the 19S and 20S subunits of the proteasome have distinct biological functions and imply that targeting 19S and 20S would have distinct molecular consequences on tumor cells.

  5. A Novel Resveratrol Based Tubulin Inhibitor Induces Mitotic Arrest and Activates Apoptosis in Cancer Cells

    PubMed Central

    Thomas, Elizabeth; Gopalakrishnan, Vidya; Hegde, Mahesh; Kumar, Sujeet; Karki, Subhas S.; Raghavan, Sathees C.; Choudhary, Bibha

    2016-01-01

    Resveratrol is one of the most widely studied bioactive plant polyphenols which possesses anticancer properties. Previously we have reported synthesis, characterization and identification of a novel resveratrol analog, SS28. In the present study, we show that SS28 induced cytotoxicity in several cancer cell lines ex vivo with an IC50 value of 3–5 μM. Mechanistic evaluation of effect of SS28 in non-small cell lung cancer cell line (A549) and T-cell leukemic cell line (CEM) showed that it inhibited Tubulin polymerization during cell division to cause cell cycle arrest at G2/M phase of the cell cycle at 12–18 h time period. Immunofluorescence studies confirmed the mitotic arrest upon treatment with SS28. Besides, we show that SS28 binds to Tubulin with a dissociation constant of 0.414 ± 0.11 μM. Further, SS28 treatment resulted in loss of mitochondrial membrane potential, activation of Caspase 9 and Caspase 3, leading to PARP-1 cleavage and finally cell death via intrinsic pathway of apoptosis. Importantly, treatment with SS28 resulted in regression of tumor in mice. Hence, our study reveals the antiproliferative activity of SS28 by disrupting microtubule dynamics by binding to its cellular target Tubulin and its potential to be developed as an anticancer molecule. PMID:27748367

  6. Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia.

    PubMed

    Elsisi, Nahed S; Darling-Reed, Selina; Lee, Eunsook Y; Oriaku, Ebenezer T; Soliman, Karam F

    2005-02-28

    In case of injury or disease, microglia are recruited to the site of the pathology and become activated as evidenced by morphological changes and expression of pro-inflammatory cytokines. Evidence suggests that microglia proliferate by cell division to create gliosis at the site of pathological conditions such as the amyloid plaques in Alzheimer's disease and the substantia nigra of Parkinson's disease patients. The hyperactivation of microglia contributes to neurotoxicity. In the present study we tested the hypothesis that anti-inflammatory compounds modulate the progression of cell cycle and induce apoptosis of the activated cells. We investigated the effects of ibuprofen (non-steroidal anti-inflammatory drug) and apigenin (a flavonoid with anti-inflammatory and anti-proliferative properties) on the cell cycle of the murine microglial cell line BV-2. The findings indicate that apigenin-induced cell cycle arrest preferentially in the G2/M phase and ibuprofen caused S phase arrest. The binding of annexin V-FITC to the membranes of cells which indicates the apoptotic process were examined, whereas the DNA was stained with propidium iodide. Both apigenin and ibuprofen induced apoptosis significantly in early and late stages. The induction of apoptosis by ibuprofen and apigenin was confirmed using TUNEL assay, revealing that 25 microM apigenin and 250 microM ibuprofen significantly increased apoptosis in BV-2 cells. The results from the present study suggest that anti-inflammatory compounds might inhibit microglial proliferation by modulating the cell cycle progression and apoptosis.

  7. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes.

    PubMed

    Sheader, Karen; Vaughan, Sue; Minchin, James; Hughes, Katie; Gull, Keith; Rudenko, Gloria

    2005-06-14

    Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. T. brucei multiplies extracellularly in the bloodstream, relying on antigenic variation of a dense variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. We investigated the role of VSG in proliferation and pathogenicity by using inducible RNA interference to ablate VSG transcript down to 1-2% normal levels. Inhibiting VSG synthesis in vitro triggers a rapid and specific cell cycle checkpoint blocking cell division. Parasites arrest at a discrete precytokinesis stage with two full-length flagella and opposing flagellar pockets, without undergoing additional rounds of S phase and mitosis. A subset (<10%) of the stalled cells have internal flagella, indicating that the progenitors of these cells were already committed to cytokinesis when VSG restriction was sensed. Although there was no obvious VSG depletion in vitro after 24-h induction of VSG RNA interference, there was rapid clearance of these cells in vivo. We propose that a stringent block in VSG synthesis produces stalled trypanosomes with a minimally compromised VSG coat, which can be targeted by the immune system. Our data indicate that VSG protein or transcript is monitored during cell cycle progression in bloodstream-form T. brucei and describes precise precytokinesis cell cycle arrest. This checkpoint before cell division provides a link between the protective VSG coat and cell cycle progression and could function as a novel parasite safety mechanism, preventing extensive dilution of the protective VSG coat in the absence of VSG synthesis.

  8. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    SciTech Connect

    Ujiki, Michael B. |; Milam, Ben; Ding Xianzhong |; Roginsky, Alexandra B.; Salabat, M. Reza; Talamonti, Mark S.; Bell, Richard H. |; Gu Wenxin; Silverman, Richard B. ||; Adrian, Thomas E. |. E-mail: tadrian@northwestern.edu

    2006-02-24

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer.

  9. Purified Lesser weever fish venom (Trachinus vipera) induces eryptosis, apoptosis and cell cycle arrest

    PubMed Central

    Fezai, Myriam; Slaymi, Chaker; Ben-Attia, Mossadok; Lang, Florian; Jemaà, Mohamed

    2016-01-01

    Accidents caused by the sting of Trachinus vipera (known as Lesser weever fish) are relatively common in shallow waters of the Mediterranean. Symptoms after the sting vary from severe pain to edema or even tissue necrosis in some cases. Here we show that purified Lesser weever fish venom induces eryptosis, the suicidal erythrocyte death, and apoptosis of human colon carcinoma cells. The venom leads to erythrocyte shrinkage, phosphatidylserine translocation and increased intracellular Ca2+, events typical for eryptosis. According to mitochondrial staining cancer cells dyed after the activation of the intrinsic apoptotic pathway. Trachinus vipera venom further causes cell cycle arrest. PMID:27995979

  10. R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase.

    PubMed

    Tan, Huixin; Gao, Shiyong; Zhuang, Yan; Dong, Yanhong; Guan, Wenhui; Zhang, Kun; Xu, Jian; Cui, Jingru

    2016-09-12

    R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex.

  11. R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase

    PubMed Central

    Tan, Huixin; Gao, Shiyong; Zhuang, Yan; Dong, Yanhong; Guan, Wenhui; Zhang, Kun; Xu, Jian; Cui, Jingru

    2016-01-01

    R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex. PMID:27626431

  12. Cell cycle arrest in a model of colistin nephrotoxicity

    PubMed Central

    Hack, Bradley K.; Alexander, Jessy J.; Xu, Chang; Dolan, M. Eileen; Cunningham, Patrick N.

    2013-01-01

    Colistin (polymixin E) is an antibiotic prescribed with resurging frequency for multidrug resistant gram negative bacterial infections. It is associated with nephrotoxicity in humans in up to 55% of cases. Little is known regarding genes involved in colistin nephrotoxicity. A murine model of colistin-mediated kidney injury was developed. C57/BL6 mice were administered saline or colistin at a dose of 16 mg/kg/day in 2 divided intraperitoneal doses and killed after either 3 or 15 days of colistin. After 15 days, mice exposed to colistin had elevated blood urea nitrogen (BUN), creatinine, and pathologic evidence of acute tubular necrosis and apoptosis. After 3 days, mice had neither BUN elevation nor substantial pathologic injury; however, urinary neutrophil gelatinase-associated lipocalin was elevated (P = 0.017). An Illumina gene expression array was performed on kidney RNA harvested 72 h after first colistin dose to identify differentially expressed genes early in drug treatment. Array data revealed 21 differentially expressed genes (false discovery rate < 0.1) between control and colistin-exposed mice, including LGALS3 and CCNB1. The gene signature was significantly enriched for genes involved in cell cycle proliferation. RT-PCR, immunoblot, and immunostaining validated the relevance of key genes and proteins. This murine model offers insights into the potential mechanism of colistin-mediated nephrotoxicity. Further studies will determine whether the identified genes play a causative or protective role in colistin-induced nephrotoxicity. PMID:23922129

  13. Interleukin-11 induces intestinal epithelial cell growth arrest through effects on retinoblastoma protein phosphorylation.

    PubMed Central

    Peterson, R. L.; Bozza, M. M.; Dorner, A. J.

    1996-01-01

    Recombinant human (rh) interleukin (IL)-11 has been shown to reduce gastrointestinal mucosal injury after chemotherapy or irradiation in several animal models. As reduction of cellular proliferation can be cytoprotective, we have examined the effect of rhIL-11 compared with transforming growth factor (TGF)-beta 1 on the proliferation and cell cycle progression of a rat intestinal cell line, IEC-6. IEC-6 cells treated with rhIL-11 or rhTGF-beta 1 exhibited a reduced proliferative rate as measured by cell counts and [3H]thymidine incorporation. The presence of neutralizing anti-TGF-beta 1 antibodies did not block the antiproliferative effect of rhIL-11 indicating that the rhIL-11 activity was not mediated through the induction of endogenous TGF-beta 1 production. Growth inhibition correlated with delayed entry into S phase of the cell cycle. Cell cycle arrest was associated with suppression of retinoblastoma protein phosphorylation. Transient cell cycle arrest is a possible mechanism by which rhIL-11 may protect intestinal epithelial cells from damage induced by chemotherapy or radiation therapy. This study provides a rationale for the clinical use of rhIL-11 to preserve the integrity of the gastrointestinal mucosa during cancer treatment regimens. Images Figure 5 PMID:8780393

  14. LncRNA LINC00341 mediates PM2.5-induced cell cycle arrest in human bronchial epithelial cells.

    PubMed

    Xu, Yiqin; Wu, Jianjun; Peng, Xiaowu; Yang, Ti; Liu, Meiling; Chen, Lijian; Dai, Xin; Wang, Zhishan; Yang, Chengfeng; Yan, Bing; Jiang, Yiguo

    2017-07-05

    Fine particulate matter (PM2.5) could adhere to many toxic substances and cause respiratory diseases.However, the associated pathogenic mechanism remains unclear. In this study, we investigated the effects of PM2.5 on cell cycle progression in human bronchial epithelial cells (16HBE) and the underlying mechanism mediated by lncRNAs. PM2.5 treatment inhibited cell proliferation in 16HBE cells in a dose-dependent manner. The results of flow cytometry assay (FCM) showed that PM2.5 induced cell apoptosis and cell cycle arrest at G2/M phase. The lncRNA microarray analysis indicated that treatment with PM2.5 led to the alteration of lncRNA expression profiles. qRT-PCR were performed to confirm the differential expression of several candidate lncRNAs. lncRNA LINC00341 was significantly up-regulated in 16HBE cell after PM2.5 treatment. Further functional studies showed that knockdown of lncRNA LINC00341 reversed PM2.5-induced G2/M phase cell cycle arrest and p21 expression. These results suggest that up-regulation of the lncRNA LINC00341 mediates PM2.5-induced cell cycle arrest at the G2/M phase, and probably through regulating the expression of p21. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  16. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells.

    PubMed

    Hsieh, Yi-Hsien; Lee, Chien-Hsing; Chen, Hsiao-Yun; Hsieh, Shu-Ching; Lin, Chia-Liang; Tsai, Jen-Pi

    2015-09-01

    Nimbolide is a tetranortriterpenoid isolated from the leaves and flowers of Azadirachta indica which has been shown to exhibit anticancer, antioxidant, anti-inflammatory, and anti-invasive properties in a variety of cancer cells. However, the anti-tumor effect on human renal cell carcinoma (RCC) cells is unknown. In this study, we found that nimbolide treatment had a cytotoxic effect on 786-O and A-498 RCC cells in a dose-dependent manner. According to flow cytometric analysis, nimbolide treatment resulted in G2/M arrest in 786-O and A-498 cells accompanied with an increase in the phosphorylation status of p53, cdc2, cdc25c, and decreased expressions of cyclin A, cyclin B, cdc2, and cdc25c. Nimbolide also caused DNA damage in a dose-dependent manner as determined by comet assay and measurement of γ-H2AX. In addition, apoptotic cells were observed in an Annexin V-FITC/propidium iodide double-stained assay. The activities of caspase-3, -9, and poly ADP-ribose polymerase (PARP) were increased, and the expression of pro-caspase-8 was decreased in nimbolide-treated 786-O and A-498 cells. Western blot analysis revealed that the levels of intrinsic-related apoptotic proteins Bax and extrinsic-related proteins (DR5, CHOP) were significantly increased in nimbolide-treated 786-O and A-498 cells. In addition, the expressions of Bcl-2 and Mcl-1 were decreased in 786-O and A-498 cells after nimbolide treatment. We conclude that nimbolide can inhibit the growth of human RCC cells by inducing G2/M phase arrest by modulating cell cycle-related proteins and cell apoptosis by regulating intrinsic and extrinsic caspase signaling pathways. Nimbolide may be a promising therapeutic strategy for the treatment of RCC.

  17. Dimethyl sulfoxide can initiate cell divisions of arrested callus protoplasts by promoting cortical microtuble assembly

    SciTech Connect

    Hahne, G.; Hoffmann, F.

    1984-09-01

    A serious problem in the technology of plant cell culture is that isolated protoplasts from many species are reluctant to divide. We have succeeded in inducing consecutive divisions in a naturally arrested system i.e., protoplasts from a hibiscus cell line, which do not divide under standard conditions and in an artificially arrested system i.e., colchicine-inhibited callus protoplasts of Nicotiana glutinosa, which do readily divide in the absence of colchicine. In both cases, the reinstallation of a net of cortical microtubules, which had been affected either by colchicine or by the protoplast isolation procedure, resulted in continuous divisions of the formerly arrested protoplasts. Several compounds known to support microtubule assembly in vitro were tested for their ability to promote microtubule assembly in vivo. Best results were obtained by addition of dimethyl sulfoxide to the culture medium. Unlimited amounts of callus could be produced with the dimethyl sulfoxide method from protoplasts which never developed a single callus in control experiments. 30 references, 3 figures.

  18. Inhibition of protein kinase B activity induces cell cycle arrest and apoptosis during early G₁ phase in CHO cells.

    PubMed

    van Opstal, Angélique; Bijvelt, José; van Donselaar, Elly; Humbel, Bruno M; Boonstra, Johannes

    2012-04-01

    Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.

  19. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells.

    PubMed

    Drutovic, David; Chripkova, Martina; Pilatova, Martina; Kruzliak, Peter; Perjesi, Pal; Sarissky, Marek; Lupi, Monica; Damia, Giovanna; Broggini, Massimo; Mojzis, Jan

    2014-10-01

    Colorectal cancer is the third most common cancer in the world, with 1.2 million new cancer cases annually. Chalcones are secondary metabolite precursors of flavonoids that exhibit diverse biological activities, including antioxidant and antitumor activities. The aim of this study was to investigate the antiproliferative effect of new synthetic chalcone derivatives on HCT116 cells. (E)-2-(2',4'-dimethoxybenzylidene)-1-tetralone (Q705) was found to be the most active (IC50 = 3.44 ± 0.25 μM). Based on these results, this compound was chosen for further analysis of its biochemical and molecular mechanisms. Our results showed that Q705 inhibited the growth and clonogenicity of HCT116 cells. The results of a flow cytometric analyses suggested that this compound caused a significant cell cycle arrest in G2/M phase and increased the proportion of cells in the subG0/G1 phase, marker of apoptosis. Q705-induced apoptosis was confirmed by TdT-mediated dUTP nick end labelling (TUNEL) assay. Treatment of HCT116 cells with this chalcone significantly increased the caspase-3,-7 activity and resulted in cleavage of poly-ADP-ribose polymerase (PARP). Changes in the nuclear morphology such as chromatin condensation were also observed. These effects were associated with a decreased expression of bcl-xL and increased overall ratio of bax/bcl-xL mRNA levels. Immunofluorescence and qRT-PCR analysis revealed that Q705 induced H2AX histone modifications characteristic of DNA damage, disruption of microtubule organization and downregulation of tubulins. In summary, these results suggest that the cyclic chalcone analogue Q705 has potential as a new compound for colorectal cancer therapy.

  20. Mitotic arrest induced in human DU145 prostate cancer cells in response to KHC-4 treatment.

    PubMed

    Shen, Cheng-Huang; Lin, Tien-Huang; Hsieh, You-Liang; Shen, Chia-Yao; Kuo, Sheng-Chu; Wu, Hsi-Chin; Chien, Wen-Shin; Hsieh, Dennis Jine-Yuan; Wen, Su-Ying; Ting, Wei-Jen; Yao, Chun-Hsu; Huang, Chih-Yang

    2016-12-01

    In this study, the antitumor activity of KHC-4 was analyzed using human prostate cancer (CaP) cells and the underlining anticancer mechanisms of KHC-4 were identified. KHC-4 inhibited cell proliferation and induced cytotoxicity in the castration-resistant CaP DU145 cell line. The most effective concentration of KHC-4 was 0.1 μM. Cell cycle analysis demonstrated that KHC-4 treatment caused G2/M arrest and a subsequent increase in the sub-G1 population. Furthermore, KHC-4 is up-regulated p21, p27, and p53 in a time- and concentration-dependent manner. The exposure of cells to KHC-4 induced Cdk1/cyclin B1 complex activity, which led to cell cycle arrest. Moreover, KHC-4 inhibited the activities of MMP-2 and MMP-9 to inhibit tumor cell metastasis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1879-1887, 2016. © 2015 Wiley Periodicals, Inc.

  1. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies.

    PubMed

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-04-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.

  2. Tryptone-stabilized gold nanoparticles target tubulin and inhibit cell viability by inducing an unusual form of cell cycle arrest.

    PubMed

    Mahaddalkar, Tejashree; Mehta, Sourabh; Cheriyamundath, Sanith; Muthurajan, Harries; Lopus, Manu

    2017-09-05

    Gold nanoparticles have been investigated extensively for their molecular mechanisms of action and anticancer potential. We report a novel, tubulin-targeted antiproliferative mechanism of action of tryptone-stabilized gold nanoparticles (TsAuNPs). TsAuNPs, synthesized using HAuCl4·3H2O and tryptone and characterized by a variety of spectroscopic methods and transmission electron microscopy, were found to be inhibitory to viability of human pancreatic (PANC-1), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines in a concentration-dependent manner, with highest efficacy against PANC-1 cells. The particles strongly inhibited the clonogenic propagation of PANC-1 cells. TsAuNPs-mediated inhibition of cell viability involved an unusual mode of cell cycle arrest (arrest at both G0/G1 phase and S-phase) followed by apoptosis. In vitro, TsAuNPs bound purified tubulin, competitively inhibited anilinonaphthalene sulfonate binding to tubulin, and suppressed tubulin assembly. In cells, tubulin-TsAuNPs interactions were manifested as a disrupted microtubule network, defective reassembly of cold-disassembled microtubules, and induction of tubulin acetylation. Our data indicate that TsAuNPs inhibit cell viability by inducing differential cell cycle arrest possibly through disrupted dynamicity of cellular microtubules. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. How Trypanosoma cruzi handles cell cycle arrest promoted by camptothecin, a topoisomerase I inhibitor.

    PubMed

    Zuma, Aline Araujo; Mendes, Isabela Cecília; Reignault, Lissa Catherine; Elias, Maria Carolina; de Souza, Wanderley; Machado, Carlos Renato; Motta, Maria Cristina M

    2014-02-01

    The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease, which affects approximately 8 million people in Latin America. This parasite contains a single nucleus and a kinetoplast, which harbors the mitochondrial DNA (kDNA). DNA topoisomerases act during replication, transcription and repair and modulate DNA topology by reverting supercoiling in the DNA double-strand. In this work, we evaluated the effects promoted by camptothecin, a topoisomerase I inhibitor that promotes protozoan proliferation impairment, cell cycle arrest, ultrastructure alterations and DNA lesions in epimastigotes of T. cruzi. The results showed that inhibition of cell proliferation was reversible only at the lowest drug concentration (1μM) used. The unpacking of nuclear heterochromatin and mitochondrion swelling were the main ultrastructural modifications observed. Inhibition of parasite proliferation also led to cell cycle arrest, which was most likely caused by nuclear DNA lesions. Following camptothecin treatment, some of the cells restored their DNA, whereas others entered early apoptosis but did not progress to late apoptosis, indicating that the protozoa stay alive in a "senescence-like" state. This programmed cell death may be associated with a decrease in mitochondrial membrane potential and an increase in the production of reactive oxygen species. Taken together, these results indicate that the inhibition of T. cruzi proliferation is related to events capable of affecting cell cycle, DNA organization and mitochondrial activity. Copyright © 2014. Published by Elsevier B.V.

  4. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase.

    PubMed

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 μM concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 μM concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 μM concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes.

  5. A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.

    PubMed

    Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2017-05-31

    Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.

  6. Zerumbone, a Sesquiterpene, Controls Proliferation and Induces Cell Cycle Arrest in Human Laryngeal Carcinoma Cell Line Hep-2.

    PubMed

    Jegannathan, Srimathi Devi; Arul, Santhosh; Dayalan, Haripriya

    2016-07-01

    Zerumbone (ZER), a sesquiterpene found in Zingiber zerumbet Smith, has been shown to possess antiproliferative, anticancer, antioxidant, and anti-inflammatory activity against various types of human carcinoma. The molecular mechanism by which ZER mediates its activity against many cancer types is revealed by many studies. Upregulation of proapoptotic molecules and suppression of antiapoptotic gene expression are few of the mechanisms by which ZER mediates its effect. The present study is focused on investigating the effect of ZER on proliferation of laryngeal carcinoma cells (Hep-2). MTT assay results showed that ZER (0.01-100 μM) induced death of Hep-2 cells in a concentration-dependent manner; significant suppression of proliferation of Hep-2 cells was seen with a IC50 value of 15 µM. ZER at a concentration of 15 and 30 μM for 48 h showed early signs of apoptosis as evidenced by confocal microscopy imaging. Flow cytometry studies showed that ZER induced cell cycle arrest. ZER arrested Hep-2 proliferation at S and G2/M phases of cell cycle. In conclusion, these results indicate that ZER has antiproliferative effect and arrests cell cycle in Hep-2 cells in vitro. This could be a potential anticancer drug against laryngeal carcinoma.

  7. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    PubMed Central

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  8. Rosiglitazone inhibits cell proliferation by inducing G1 cell cycle arrest and apoptosis in ADPKD cyst-lining epithelia cells.

    PubMed

    Liu, Yawei; Dai, Bing; Fu, Lili; Jia, Jieshuang; Mei, Changlin

    2010-06-01

    Abnormal proliferation is an important pathological feature of autosomal dominant polycystic kidney disease (ADPKD). Many drugs inhibiting cell proliferation have been proved to be effective in slowing the disease progression in ADPKD. Recent evidence has suggested that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have anti-neoplasm effects through inhibiting cell growth and inducing cell apoptosis in various cancer cells. In the present study, we examined the expression of PPARgamma in human ADPKD kidney tissues and cyst-lining epithelial cell line, and found that the expression of PPARgamma was greater in ADPKD kidney tissues and cyst-lining epithelial cell line than in normal kidney tissues and human kidney cortex (HKC) cell line. Rosiglitazone inhibited significantly proliferation of cyst-lining epithelial cells in a concentration- and time-dependent manner. These effects were diminished by GW9662, a specific PPARgamma antagonist. Cell cycle analysis showed a G0/G1 arrest in human ADPKD cyst-lining epithelial cells with rosiglitazone treatment. Analysis of cell cycle regulatory proteins revealed that rosiglitazone decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, cyclin D2 and Cdk4 but increased the levels of p21 and p27 in a dose-dependent manner. Rosiglitazone also induced apoptosis in cyst-lining epithelial cells, which was correlated with increased bax expression and decreased bcl-2 expression. These results suggest PPARgamma agonist might serve as a promising drug for the treatment of ADPKD.

  9. Cyclin-dependent kinase inhibitor roscovitine induces cell cycle arrest and apoptosis in rabbit retinal pigment epithelial cells.

    PubMed

    Wu, Pei-Chang; Tai, Ming-Hong; Hu, Dan-Ning; Lai, Chien-Hsiung; Chen, Yi-Hao; Wu, Yi-Chen; Tsai, Chia-Ling; Shin, Shyi-Jang; Kuo, Hsi-Kung

    2008-02-01

    Cyclin-dependent kinases (CDKs) play essential roles in the intracellular control of the cell cycle. It has been postulated that roscovitine, a potent CDK2, CDK5, and CDC2 inhibitor, might inhibit cellular proliferation by arresting the cell cycle. This in vitro study investigated the antiproliferative and apoptotic effects of roscovitine in cultured rabbit retinal pigment epithelial (RPE) cells. Experiments using rabbit RPE from young pigmented rabbits were carried out using roscovitine dissolved in dimethylsulfoxide at concentrations ranging from 1 to 100 micromol. Cell proliferation was measured by an MTT assay. The cell cycle response of RPE cells to roscovitine was analyzed by flow cytometry of propidium iodide-stained nuclei. Proteins related to DNA damage in the RPE cells were then assayed by Western blot. Roscovitine inhibited proliferation of RPE cells in a dose-dependent manner. Cell cycle analysis after treatment demonstrated an accumulation of cells arrested in the S- and G2/M phases. Flow cytometry showed that 40 microM of roscovitine increased the cell population in the sub-G1 peak, which is considered a marker of cell death by apoptosis. Western blot analysis revealed Bcl-2 decreased and Bax increased after treatment of RPE cells with roscovitine. This study of the response of RPE cells to roscovitine demonstrated a bidirectional relationship between cell cycle control and apoptosis.

  10. Preclinical effects of honokiol on treating glioblastoma multiforme via G1 phase arrest and cell apoptosis.

    PubMed

    Lin, Chien-Ju; Chang, Ya-An; Lin, Yi-Ling; Liu, Shing Hwa; Chang, Cheng-Kuei; Chen, Ruei-Ming

    2016-05-15

    Our previous study showed that honokiol, a bioactive polyphenol, can traverse the blood-brain barrier and kills neuroblastoma cells. In this study, we further evaluated the preclinical effects of honokiol on development of malignant glioma and the possible mechanisms. Effects of honokiol on viability, caspase activities, apoptosis, and cell cycle arrest in human glioma U87 MG or U373MG cells were assayed. As to the mechanisms, levels of inactive or phosphorylated (p) p53, p21, CDK6, CDK4, cyclin D1, and E2F1 were immunodetected. Pifithrin-α (PFN-α), a p53 inhibitor, was pretreated into the cells. Finally, our in vitro findings were confirmed using intracranial nude mice implanted with U87 MG cells. Exposure of human U87 MG glioma cells to honokiol decreased the cell viability. In parallel, honokiol induced activations of caspase-8, -9, and -3, apoptosis, and G1 cell cycle arrest. Treatment of U87 MG cells with honokiol increased p53 phosphorylation and p21 levels. Honokiol provoked signal-transducing downregulation of CDK6, CDK4, cyclin D1, phosphorylated (p)RB, and E2F1. Pretreatment of U87 MG cells with PFN-α significantly reversed honokiol-induced p53 phosphorylation and p21 augmentation. Honokiol-induced alterations in levels of CDK6, CDK4, cyclin D1, p-RB, and E2F1 were attenuated by PFN-α. Furthermore, honokiol could induce apoptotic insults to human U373MG glioma cells. In our in vivo model, administration of honokiol prolonged the survival rate of nude mice implanted with U87 MG cells and induced caspase-3 activation and chronological changes in p53, p21, CDK6, CDK4, cyclin D1, p-RB, and E2F1. Honokiol can repress human glioma growth by inducing apoptosis and cell cycle arrest in tumor cells though activating a p53/cyclin D1/CDK6/CDK4/E2F1-dependent pathway. Our results suggest the potential of honokiol in therapies for human malignant gliomas. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Verbesina encelioides: cytotoxicity, cell cycle arrest, and oxidative DNA damage in human liver cancer (HepG2) cell line.

    PubMed

    Al-Oqail, Mai M; Siddiqui, Maqsood A; Al-Sheddi, Ebtesam S; Saquib, Quaiser; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N

    2016-05-10

    Cancer is a major health problem and exploiting natural products have been one of the most successful methods to combat this disease. Verbesina encelioides is a notorious weed with various pharmacological properties. The aim of the present investigation was to screen the anticancer potential of V. encelioides extract against human lung cancer (A-549), breast cancer (MCF-7), and liver cancer (HepG2) cell lines. A-549, MCF-7, and HepG2 cells were exposed to various concentrations of (10-1000 μg/ml) of V. encelioides for 24 h. Further, cytotoxic concentrations (250, 500, and 1000 μg/ml) of V. encelioides induced oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage in HepG2 cells were studied. The exposure of cells to 10-1000 μg/ml of extract for 24 h, revealed the concentrations 250-1000 μg/ml was cytotoxic against MCF-7 and HepG2 cells, but not against A-549 cells. Moreover, the extract showed higher decrease in the cell viability against HepG2 cells than MCF-7 cells. Therefore, HepG2 cells were selected for further studies viz. oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage. The results revealed differential anticancer activity of V. encelioides against A-549, MCF-7 and HepG2 cells. A significant induction of oxidative stress, ROS generation, and MMP levels was observed in HepG2 cells. The cell cycle analysis and comet assay showed that V. encelioides significantly induced G2/M arrests and DNA damage. These results indicate that V. encelioides possess substantial cytotoxic potential and may warrant further investigation to develop potential anticancer agent.

  12. Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts.

    PubMed

    Poppler, Louis H; Ee, Xueping; Schellhardt, Lauren; Hoben, Gwendolyn M; Pan, Deng; Hunter, Daniel A; Yan, Ying; Moore, Amy M; Snyder-Warwick, Alison K; Stewart, Sheila A; Mackinnon, Susan E; Wood, Matthew D

    2016-07-01

    Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β(+)) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin(+)/S100β(-)/CD68(-) cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest ("stressed" ANAs). These stressed ANAs contained mainly S100β(+)/p16(+) cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no

  13. Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts

    PubMed Central

    Poppler, Louis H.; Ee, Xueping; Schellhardt, Lauren; Hoben, Gwendolyn M.; Pan, Deng; Hunter, Daniel A.; Yan, Ying; Moore, Amy M.; Snyder-Warwick, Alison K.; Stewart, Sheila A.; Mackinnon, Susan E.

    2016-01-01

    Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β+) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin+/S100β−/CD68− cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest (“stressed” ANAs). These stressed ANAs contained mainly S100β+/p16+ cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no deficits

  14. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  15. Platelet-activating factor induces cell cycle arrest and disrupts the DNA damage response in mast cells

    PubMed Central

    Puebla-Osorio, N; Damiani, E; Bover, L; Ullrich, S E

    2015-01-01

    Platelet-activating factor (PAF) is a potent phospholipid modulator of inflammation that has diverse physiological and pathological functions. Previously, we demonstrated that PAF has an essential role in ultraviolet (UV)-induced immunosuppression and reduces the repair of damaged DNA, suggesting that UV-induced PAF is contributing to skin cancer initiation by inducing immune suppression and also affecting a proper DNA damage response. The exact role of PAF in modulating cell proliferation, differentiation or transformation is unclear. Here, we investigated the mechanism(s) by which PAF affects the cell cycle and impairs early DNA damage response. PAF arrests proliferation in transformed and nontransformed human mast cells by reducing the expression of cyclin-B1 and promoting the expression of p21. PAF-treated cells show a dose-dependent cell cycle arrest mainly at G2–M, and a decrease in the DNA damage response elements MCPH1/BRIT-1 and ataxia telangiectasia and rad related (ATR). In addition, PAF disrupts the localization of p-ataxia telangiectasia mutated (p-ATM), and phosphorylated-ataxia telangiectasia and rad related (p-ATR) at the site of DNA damage. Whereas the potent effect on cell cycle arrest may imply a tumor suppressor activity for PAF, the impairment of proper DNA damage response might implicate PAF as a tumor promoter. The outcome of these diverse effects may be dependent on specific cues in the microenvironment. PMID:25950475

  16. Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria

    PubMed Central

    Strangward, Patrick; Dandamudi, Durga B.; Coles, Jonathan A.; Villegas-Mendez, Ana; Gallego-Delgado, Julio; van Rooijen, Nico; Zindy, Egor; Rodriguez, Ana; Brewer, James M.; Couper, Kevin N.; Dustin, Michael L.

    2015-01-01

    There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA) and non-inducing (P. berghei NK65) infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome. PMID:26562533

  17. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury

    PubMed Central

    DiRocco, Derek P.; Bisi, John; Roberts, Patrick; Strum, Jay; Wong, Kwok-Kin; Sharpless, Norman

    2013-01-01

    Acute kidney injury (AKI) is common and urgently requires new preventative therapies. Expression of a cyclin-dependent kinase (CDK) inhibitor transgene protects against AKI, suggesting that manipulating the tubular epithelial cell cycle may be a viable therapeutic strategy. Broad spectrum small molecule CDK inhibitors are protective in some kidney injury models, but these have toxicities and epithelial proliferation is eventually required for renal repair. Here, we tested a well-tolerated, novel and specific small molecule inhibitor of CDK4 and CDK6, PD 0332991, to investigate the effects of transient cell cycle inhibition on epithelial survival in vitro and kidney injury in vivo. We report that CDK4/6 inhibition induced G0/G1 cycle arrest in cultured human renal proximal tubule cells (hRPTC) at baseline and after injury. Induction of transient G0/G1 cycle arrest through CDK4/6 inhibition protected hRPTC from DNA damage and caspase 3/7 activation following exposure to the nephrotoxins cisplatin, etoposide, and antimycin A. In vivo, mice treated with PD 0332991 before ischemia-reperfusion injury (IRI) exhibited dramatically reduced epithelial progression through S phase 24 h after IRI. Despite reduced epithelial proliferation, PD 0332991 ameliorated kidney injury as reflected by improved serum creatinine and blood urea nitrogen levels 24 h after injury. Inflammatory markers and macrophage infiltration were significantly decreased in injured kidneys 3 days following IRI. These results indicate that induction of proximal tubule cell cycle arrest with specific CDK4/6 inhibitors, or “pharmacological quiescence,” represents a novel strategy to prevent AKI. PMID:24338822

  18. Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells.

    PubMed

    Park, Hyun Soo; Han, Min Ho; Kim, Gi-Young; Moon, Sung-Kwon; Kim, Wun-Jae; Hwang, Hye Jin; Park, Kun Young; Choi, Yung Hyun

    2014-02-01

    The present study was undertaken to determine whether sulforaphane-derived reactive oxygen species (ROS) might cause growth arrest and apoptosis in human bladder cancer 5637 cells. Our results show that the reduced viability of 5637 cells by sulforaphane is due to mitotic arrest, but not the G2 phase. The sulforaphane-induced mitotic arrest correlated with an induction of cyclin B1 and phosphorylation of Cdk1, as well as a concomitant increased complex between cyclin B1 and Cdk1. Sulforaphane-induced apoptosis was associated with the activation of caspase-8 and -9, the initiators caspases of the extrinsic and intrinsic apoptotic pathways, respectively, and activation of effector caspase-3 and cleavage of poly (ADP-ribose) polymerase. However, blockage of caspase activation inhibited apoptosis and abrogated growth inhibition in sulforaphane-treated 5637 cells. This study further investigated the roles of ROS with respect to mitotic arrest and the apoptotic effect of sulforaphane, and the maximum level of ROS accumulation was observed 3h after sulforaphane treatment. However, a ROS scavenger, N-acetyl-L-cysteine, notably attenuated sulforaphane-mediated apoptosis as well as mitotic arrest. Overall, these results suggest that sulforaphane induces mitotic arrest and apoptosis of 5637 cells via a ROS-dependent pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Protein-binding, cytotoxicity in vitro and cell cycle arrest of ruthenium(II) polypyridyl complexes

    NASA Astrophysics Data System (ADS)

    Liu, Si-Hong; Zhu, Jian-Wei; Xu, Hui-Hua; Wang, Yan; Liu, Ya-Min; Liang, Jun-Bo; Zhang, Gui-Qiang; Cao, Di-Hua; Lin, Yang-Yang; Wu, Yong; Guo, Qi-Feng

    2016-05-01

    The cytotoxic activity of two Ru(II) complexes against A549, BEL-7402, HeLa, PC-12, SGC-7901 and SiHa cell lines was investigated by MTT method. Complexes 1 and 2 show moderate cytotoxicity toward BEL-7402 cells with an IC50 value of 53.9 ± 3.4 and 39.3 ± 2.1 μM. The effects of the complexes inducing apoptosis, cellular uptake, reactive oxygen species and mitochondrial membrane potential in BEL-7402 cells have been studied by fluorescence microscopy. The percentages of apoptotic and necrotic cells and cell cycle arrest were studied by flow cytometry. The BSA-binding behaviors were investigated by UV/visible and fluorescent spectra.

  20. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling.

    PubMed

    Song, Wenbin; Dang, Qiang; Xu, Defeng; Chen, Yule; Zhu, Guodong; Wu, Kaijie; Zeng, Jin; Long, Qingzhi; Wang, Xinyang; He, Dalin; Li, Lei

    2014-03-01

    Kaempferol has been shown to inhibit cell growth, induce apoptosis and cell cycle arrest in several tumors, but not in renal cell carcinoma (RCC). In the present study, we investigated the effects of kaempferol and the underlying mechanism(s) on the cell growth of RCC cells. MTT assay and colony formation assay were used to study cell growth, and flow cytometry was used to study apoptosis and cell cycles in different RCC cells treated with various doses of kaempferol. A significant inhibition on cell growth, induction of apoptosis and cell cycle arrest were observed in 786-O and 769-P cells after kaempferol treatment compared with the control group. Moreover, the results clearly showed that kaempferol causes a strong inhibition of the activation of the EGFR/p38 signaling pathways, upregulation of p21 expression and downregulation of cyclin B1 expression in human RCC cells, together with activation of PARP cleavages, induction of apoptotic death and inhibition of cell growth. Collectively, our results suggest that kaempferol may serve as a candidate for chemo-preventive or chemotherapeutic agents for RCC.

  1. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest.

    PubMed

    Yu, Xiao-Dong; Yang, Jing-Lei; Zhang, Wan-Lin; Liu, Dong-Xu

    2016-03-01

    The present study was performed to investigate the effect of resveratrol (trans-3,4',5-trihydroxystilbene) present as a natural phytoalexin in grapes, peanuts, and red wine on oral squamous cancer cell lines, SCC-VII, SCC-25, and YD-38. MTS assay and flow cytometry, respectively, were used for the analysis of inhibition of cell proliferation and apoptosis. Western blot analysis was performed to examine the effect of resveratrol on the expression of proteins associated with cell cycle regulation. The results revealed a concentration- and time-dependent inhibition of proliferation in all the three tested cell lines on treatment with resveratrol. The IC50 of resveratrol for SCC-VII, SCC-25, and YD-38 cell lines was found to be 0.5, 0.7, and 1.0 μg/ml, respectively, after 48-h treatment. Examination of the cell cycle analysis showed that resveratrol treatment induced cell cycle arrest in the G2/M phase and enhanced the expression of phospho-cdc2 (Tyr 15), cyclin A2, and cyclin B1 in the oral squamous cell carcinoma (OSCC) cells. It also caused a marked increase in the percentage of apoptotic cells as revealed by the fluorescence-activated cell sorting analysis. Thus, resveratrol exhibits inhibitory effect on the proliferation of OSCC oral cancer cells through the induction of apoptosis and G2/M phase cell cycle arrest.

  2. Ethanol extract of Innotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells

    PubMed Central

    Lee, Hyun Sook; Kim, Eun Ji

    2015-01-01

    BACKGROUND/OBJECTIVES Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were cultured in the presence of 2.5 - 10 µg/mL of EEIO, and analyzed the cell cycle arrest by flow cytometry and the cell cycle controlling protein expression by Western blotting. RESULTS Treatment cells with 2.5 - 10 µg/mL of EEIO reduced viable HT-29 cell numbers and DNA synthesis, increased the percentage of cells in G1 phase, decreased protein expression of CDK2, CDK4, and cyclin D1, increased expression of p21, p27, and p53, and inhibited phosphorylation of Rb and E2F1 expression. Among I. obliquus fractions, fraction 2 (fractionated by dichloromethane from EEIO) showed the same effect as EEIO treatment on cell proliferation and cell cycle-related protein levels. CONCLUSIONS These results demonstrate that fraction 2 is the major fraction that induces G1 arrest and inhibits cell proliferation, suggesting I. obliquus could be used as a natural anti-cancer ingredient in the food and/or pharmaceutical industry. PMID:25861415

  3. Flavonoids from Gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in H460 and A549 cancer cells.

    PubMed

    Tsui, Ko-Chung; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Chen, Bing-Huei; Lu, Jyh-Feng

    2014-10-31

    Flavonoids, containing mainly kaempferol rhamnohexoside derivatives, were extracted from Gynostemma pentaphyllum (G. pentaphyllum) and their potential growth inhibition effects against H460 non-small cell lung cancer cells was explored and compared to that on A549 cells. The extracted flavonoids were found to exhibit antiproliferation effects against H460 cells (IC50 = 50.2 μg/mL), although the IC50 of H460 is 2.5-fold that of A549 cells (IC50 = 19.8 μg/mL). Further investigation revealed that H460 cells are more susceptible to kaempferol than A549, whereas A549 cell growth is better inhibited by kaempferol rhamnohexoside derivatives as compared with H460. In addition, flavonoids from G. pentaphyllum induced cell cycle arrest at both S and G2/M phases with concurrent modulated expression of the cellular proteins cyclin A, B, p53 and p21 in A549 cells, but not H460. On the contrary, apoptosis and concomitant alteration in balance of BCL-2 and BAX expression as well as activation of caspase-3 were equally affected between both cells by flavonoid treatment. These observations strongly suggest the growth inhibition discrepancy between H460 and A549 following flavonoid treatment can be attributed to the lack of cell cycle arrest in H460 cells and the differences between H460 and A549 cells may serve as contrasting models for further mechanistic investigations.

  4. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells.

    PubMed

    Sajadian, Saharolsadat; Vatankhah, Melody; Majdzadeh, Maryam; Kouhsari, Shide Montaser; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser

    2015-01-01

    Previous report of the vast effectiveness of opium derivatives in cancer therapy is leading us to see possible effects of these derivatives on cancer stem cells in order to find new agent for cancer therapy. In this study, cells were stained for CSC markers and sorted by magnetic beads. CSCs exhibit the characteristic CD44(+)/CD24(-/low)/ESA(+) phenotype. Noscapine and papaverine (alkaloids) showed anti-proliferative activity on MCF-7 and MDA-MB-231 cell lines. It was observed that noscapine has more cytotoxic effect on CSC derived from both cell lines compared with their parental cells. Papaverine has more cytotoxic effect on MCF-7 CSCs in comparison with parental cells, while CSCs population of MDA-MB-231 is more resistant to papaverine compared with MDA-MB-231 cells. Noscapine enhances apoptosis in MDA-MB-231 CSCs more than parent cells, while in MCF-7 CSCs the apoptosis is less than parent cells. Our results show that papverine is less active in terms of apoptotic effect on CSCs in both cell lines. Moreover, noscapine arrests MCF-7 and MDA-MB-231 CSCs cell cycle at G2/M phase, while papverine arrests cell cycle at G0/G1 phase. It was suggested different mechanism for apoptotic cytotoxicity. The results of this study show possible specific effects of noscapine on these breast cell lines CSCs.

  5. Scorpion (Androctonus bicolor) venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines

    PubMed Central

    Al-Asmari, Abdulrahman K.; Riyasdeen, Anvarbatcha; Abbasmanthiri, Rajamohamed; Arshaduddin, Mohammed; Al-Harthi, Fahad Ali

    2016-01-01

    Objectives: The defective apoptosis is believed to play a major role in the survival and proliferation of neoplastic cells. Hence, the induction of apoptosis in cancer cells is one of the targets for cancer treatment. Researchers are considering scorpion venom as a potent natural source for cancer treatment because it contains many bioactive compounds. The main objective of the current study is to evaluate the anticancer property of Androctonus bicolor scorpion venom on cancer cells. Materials and Methods: Scorpions were milked by electrical stimulation of telsons and lyophilized. The breast (MDA-MB-231) and colorectal (HCT-8) cancer cells were maintained in appropriate condition. The venom cytotoxicity was assessed by 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, and the cellular and nuclear changes were studied with propidium iodide and 4’,6-diamidino-2-phenylindole stain, respectively. The cell cycle arrest was examined using muse cell analyzer. Results: The A. bicolor venom exerted cytotoxic effects on MDA-MB-231 and HCT-8 cells in a dose- and duration-dependent manner and induced apoptotic cell death. The treatment with this venom arrests the cancer cells in G0/G1 phase of cell cycle. Conclusions: The venom selectively induces the rate of apoptosis in MDA-MB-231 and HCT-8 cells as reflected by morphological and cell cycle studies. To the best of our knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest by A. bicolor scorpion venom. PMID:27721540

  6. Does cell cycle arrest occur in plant under solar UV-B radiation?

    PubMed

    Jiang, Lei; Wang, Yan; Björn, Lars Olof; Li, Shaoshan

    2011-06-01

    UV-B radiation (280-315 nm) is an integral part of solar radiation and has many harmful effects on plant growth and development. However, the molecular mechanism for the inhibition of plant growth by UV-B remains largely unknown. UV-B radiation induces various responses such as growth inhibition, DNA damage and changes of gene expression. Recently, by using synchronous root tip culture, we found that UV-B modulates the expression of cell cycle regulatory genes through DNA damage. Western blotting analysis revealed that UV-B induced G1-to-S arrest did not correlate with the protein abundance of CDKB1;1 and CYCD3;1 gene regulating proteins, but may with the posttranslational control. We extended the expression analysis of cell cycle related genes based on the published microarray data and the results strengthen our assumption that cell cycle arrest could occur in plant under solar UV-B radiation. Further study is needed to elucidate the relationship between cell cycle regulation and protective pathway induced by low dose of UV-B radiation fundamental molecular mechanism for how plants respond to solar UV-B radiation.

  7. G2/M Cell Cycle Arrest Correlates with Primate Lentiviral Vpr Interaction with the SLX4 Complex

    PubMed Central

    Berger, Gregory; Lawrence, Madeleine; Hué, Stephane

    2014-01-01

    ABSTRACT The accessory gene vpr, common to all primate lentiviruses, induces potent G2/M arrest in cycling cells. A recent study showed that human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) mediates this through activation of the SLX4/MUS81/EME1 exonuclease complex that forms part of the Fanconi anemia DNA repair pathway. To confirm these observations, we have examined the G2/M arrest phenotypes of a panel of simian immunodeficiency virus (SIV) Vpr proteins. We show that SIV Vpr proteins differ in their ability to promote cell cycle arrest in human cells. While this is dependent on the DCAF1/DDB1/CUL4 ubiquitin ligase complex, interaction with human DCAF1 does not predict G2/M arrest activity of SIV Vpr in human cells. In all cases, SIV Vpr-mediated cell cycle arrest in human cells correlated with interaction with human SLX4 (huSLX4) and could be abolished by small interfering RNA (siRNA) depletion of any member of the SLX4 complex. In contrast, all but one of the HIV/SIV Vpr proteins tested, including those that lacked activity in human cells, were competent for G2/M arrest in grivet cells. Correspondingly, here cell cycle arrest correlated with interaction with the grivet orthologues of the SLX4 complex, suggesting a level of host adaptation in these interactions. Phylogenetic analyses strongly suggest that G2/M arrest/SLX4 interactions are ancestral activities of primate lentiviral Vpr proteins and that the ability to dysregulate the Fanconi anemia DNA repair pathway is an essential function of Vpr in vivo. IMPORTANCE The Vpr protein of HIV-1 and related viruses is essential for the virus in vivo. The ability of Vpr to block the cell cycle at mitotic entry is well known, but the importance of this function for viral replication is unclear. Recent data have shown that HIV-1 Vpr targets the Fanconi anemia DNA repair pathway by interacting with and activating an endonuclease complex, SLX4/MUS81/EME1, that processes interstrand DNA cross-links. Here

  8. In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest.

    PubMed

    Paramasivam, Arumugam; Raghunandhakumar, Subramanian; Priyadharsini, Jayaseelan Vijayashree; Jayaraman, Gopalswamy

    2015-01-01

    We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose- dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

  9. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    PubMed Central

    Ren, Bao-Jun; Zhou, Zhi-Wei; Zhu, Da-Jian; Ju, Yong-Le; Wu, Jin-Hao; Ouyang, Man-Zhao; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells. PMID:26729093

  10. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    SciTech Connect

    Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling; Hu, Yu-Chen; Chang, Wen-Tsan; Chang, Kee-Lung

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  11. Saussurea lappa induces G2-growth arrest and apoptosis in AGS gastric cancer cells.

    PubMed

    Ko, Seong Gyu; Kim, Hwang-Phill; Jin, Dong-Hoon; Bae, Hyun-Su; Kim, Sung Hoon; Park, Chong-Hyeong; Lee, Jung Weon

    2005-03-18

    The molecular effects of Saussurea lappa extracts, a traditional medicine in Eastern Asia, on the fate of gastric carcinoma have not been understood. In this study, its cytostatic effects were examined using gastric AGS cancer cells. Its treatment resulted in apoptosis and G2-arrest in a dose- and time-dependent manner. The effects were attributed to the regulation of cyclins and pro-apoptotic molecules and suppression of anti-apoptotic molecules. Therefore, these results suggest that extracts of S. lappa root may be a candidate to deal with gastric cancers either by traditional herbal therapy or by combinational therapy with conventional chemotherapy.

  12. Discovery of Novel Polo-Like Kinase 1 Polo-Box Domain Inhibitors to Induce Mitotic Arrest in Tumor Cells.

    PubMed

    Qin, Tan; Chen, Fangjin; Zhuo, Xiaolong; Guo, Xiao; Yun, Taikangxiang; Liu, Ying; Zhang, Chuanmao; Lai, Luhua

    2016-08-11

    Polo-like kinase 1(Plk1) is vital for cell mitosis and has been identified as anticancer target. Its polo-box domain (PBD) mediates substrate binding, blocking of which may offer selective Plk1 inhibition compared to kinase domain inhibitors. Although several PBD inhibitors were reported, most of them suffer from low cell activity. Here, we report the discovery of novel inhibitors to induce mitotic arrest in HeLa cells by virtual screening with Plk1 PBD and cellular activity testing. Of the 81 compounds tested in the cell assay, 10 molecules with diverse chemical scaffolds are potent to induce mitotic arrest of HeLa at low micromolar concentrations. The best compound induces mitotic arrest of HeLa cells with an EC50 of 4.4 μM. The cellular active inhibitors showed binding to Plk1 PBD and compete with PBD substrate in microscale thermophoresis analysis.

  13. Extracts of centipede Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in A375 human melanoma cells.

    PubMed

    Ma, Weina; Liu, Rui; Qi, Junpeng; Zhang, Yanmin

    2014-07-01

    Extracts from the centipede Scolopendra genus, have been used in traditional medicine for the treatment of various diseases and have been found to exhibit anticancer activity in tumor cells. To investigate the potential and associated antitumor mechanism of alcohol extracts of the centipede Scolopendra subspinipes mutilans (AECS), cell viability, cell cycle and cell apoptosis were studied and the results revealed that AECS inhibits A375 cell proliferation in a dose- and time-dependent manner. In addition, AECS was found to arrest the cell cycle of A375 cells at the S phase, which was accompanied by a marked increase in the protein levels of cyclin E and a decrease in the protein levels of cyclin D1. In a cell culture system, AECS markedly induced the apoptosis of A375 cells, which was closely associated with the effects on the Bcl-2 family, whereby decreased Bcl-2 and increased Bak, Bax and Bad expression levels were observed. The underlying mechanism of AECS inhibiting A375 cell proliferation was associated with the induction of cell cycle arrest and apoptosis, indicating that AECS may present as a potential therapeutic agent for administration in human melanoma cancer intervention.

  14. Induction of Apoptosis and Antiproliferative Activity of Naringenin in Human Epidermoid Carcinoma Cell through ROS Generation and Cell Cycle Arrest

    PubMed Central

    Jafri, Asif; Ahmad, Sheeba; Afzal, Mohammad; Arshad, Md

    2014-01-01

    A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation. PMID:25330158

  15. Induction of cell cycle arrest and apoptosis by grape seed procyanidin extract in human bladder cancer BIU87 cells.

    PubMed

    Liu, J; Zhang, W-Y; Kong, Z-H; Ding, D-G

    2016-07-01

    The aim of this study was to evaluate the effects of grape seed procyanidin extract (GSPE) on cell proliferation and apoptosis in human bladder cancer BIU87 cells and to investigate its molecular mechanism in vitro. BIU87 cells were treated with different concentrations of GSPE for 24h in vitro while an untreated group was taken as control. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, Hoechst 33258 staining, flow cytometry, RT-PCR and Western blot were used to detect the anti-proliferation and apoptotic induction effects of GSPE on BIU87 cells. It was found that GSPE inhibited the cell growth through cell cycle arrest at G1 phase and induced cell apoptosis in BIU87 cells in a dose-dependent manner. Semi-quantitated RT-PCR and Western blot analyses indicated that GSPE increased caspase-3 (p<0.01), but decreased the expression of cyclinD1, CDK4 and survivin (p<0.01). GSPE inhibits cell proliferation by inducing cell cycle arrest and apoptosis in BIU87 cells, and the effect may be related with its down-regulation of cyclinD1, CDK4 and survivin.

  16. Protuboxepin A, a marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment in tumor cells.

    PubMed

    Asami, Yukihiro; Jang, Jae-Hyuk; Soung, Nak-Kyun; He, Long; Moon, Dong Oh; Kim, Jong Won; Oh, Hyuncheol; Muroi, Makoto; Osada, Hiroyuki; Kim, Bo Yeon; Ahn, Jong Seog

    2012-06-15

    Previously we reported the identification of a new oxepin-containing diketopiperazine-type marine fungal metabolite, named protuboxepin A which showed antiproliferative activity in several cancer cell lines. In this study we elucidated the mechanism by which protuboxepin A induces cancer cell growth inhibition. Here we report that protuboxepin A induced round-up morphology, M phase arrest, and an increase in the subG(1) population in tumor cells in a dose dependent manner. Our investigations revealed that protuboxepin A directly binds to α,β-tubulin and stabilizes tubulin polymerization thus disrupting microtubule dynamics. This disruption leads to chromosome misalignment and metaphase arrest which induces apoptosis in cancer. Overall, we identified protuboxepin A as a microtubule-stabilizing agent which has a distinctly different chemical structure from previously reported microtubule inhibitors. These results indicate that protuboxepin A has a potential of being a new and effective anti-cancer drug. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. HDAC8 Prevents Anthrax Lethal Toxin-induced Cell Cycle Arrest through Silencing PTEN in Human Monocytic THP-1 Cells

    PubMed Central

    Ha, Soon-Duck; Cho, Woohyun; Kim, Sung Ouk

    2017-01-01

    Anthrax lethal toxin (LeTx) is a cytotoxic virulence factor that causes cell cycle arrest and cell death in various cell types. However, susceptibility to the cytotoxic effects varies depending on cell types. In proliferating monocytes, LeTx has only transient cytotoxic effects due to activation of the phosphoinositide 3-kinase (PI3K)-AKT-mediated adaptive responses. To date, the mechanism of LeTx in activating PI3K-AKT signaling axis is unknown. This study shows that the histone deacetylase 8 (HDAC8) is involved in activating PI3K-AKT signaling axis through down-regulating the phosphatase and tensin homolog 1 (PTEN) in human monocytic THP-1 cells. The HDAC8-specific activator TM-2-51 and inhibitor PCI-34051 enhanced and prevented, respectively, AKT activation and cell cycle progression in LeTx-treated cells. Furthermore, HDAC8 induced tri-methylation of histone H3 lysine 27 (H3K27me3), which is known to suppress PTEN expression, through at least in part down-regulating the H3K27me3 eraser Jumonji Domain Containing (JMJD) 3. Importantly, the JMJD3-specific inhibitor GSK-J4 induced AKT activation and protected cell cycle arrest in LeTx-treated cells, regardless the presence of HDAC8 activity. Collectively, this study for the first time demonstrated that HDAC8 activity determines susceptibility to cell cycle arrest induced by LeTx, through regulating the PI3K-PTEN-AKT signaling axis. PMID:28509866

  18. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells.

    PubMed

    Chilampalli, Chandeshwari; Guillermo, Ruth; Kaushik, Radhey S; Young, Alan; Chandrasekher, Gudiseva; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-11-01

    Honokiol is a plant lignan isolated from bark and seed cones of Magnolia officinalis. Recent studies from our laboratory indicated that honokiol pretreatment decreased ultraviolet B-induced skin cancer development in SKH-1 mice. The aim of the present investigation was to study the effects of honokiol on human epidermoid squamous carcinoma A431 cells and to elucidate possible mechanisms involved in preventing skin cancer. A431 cells were pretreated with different concentrations of honokiol for a specific time period and investigated for effects on apoptosis and cell cycle analysis. Treatment with honokiol significantly decreased cell viability and cell proliferation in a concentration- and time-dependent manner. Honokiol pretreatment at 50 μmol/L concentration induced G0/G1 cell cycle arrest significantly (P < 0.05) and decreased the percentage of cells in the S and G2/M phase. Honokiol down-regulated the expression of cyclin D1, cyclin D2, Cdk2, Cdk4 and Cdk6 proteins and up-regulated the expression of Cdk's inhibitor proteins p21 and p27. Pretreatment of A431 cells with honokiol leads to induction of apoptosis and DNA fragmentation. These findings indicate that honokiol provides its effects in squamous carcinoma cells by inducing cell cycle arrest at G0/G1 phase and apoptosis.

  19. AP-2γ Induces p21 Expression, Arrests Cell Cycle, and Inhibits the Tumor Growth of Human Carcinoma Cells1

    PubMed Central

    Li, Hualei; Goswami, Prabhat C; Domann, Frederick E

    2006-01-01

    Abstract Activating enhancer-binding protein 2γ (AP-2γ) is a member of the developmentally regulated AP-2 transcription factor family that regulates the expression of many downstream genes. Whereas the effects of AP-2α overexpression on cell growth are fairly well established, the cellular effects of AP-2γ overexpression are less well studied. Our new findings show that AP-2γ significantly upregulates p21 mRNA and proteins, inhibits cell growth, and decreases clonogenic survival. Cell cycle analysis revealed that forced AP-2γ expression induced G1-phase arrest, decreased DNA synthesis, and decreased the fraction of cells in S phase. AP-2γ expression also led to cyclin D1 repression, decreased Rb phosphorylation, and decreased E2F activity in breast carcinoma cells. AP-2γ binding to the p21 promoter was observed in vivo, and the absence of growth inhibition in response to AP-2γ expression in p21 (-/-) cells demonstrated that p21 caused, at least in part, AP-2-induced cell cycle arrest. Finally, the tumor growth of human breast carcinoma cells in vivo was inhibited by the expression of AP-2γ relative to empty vector-infected cells, suggesting that AP-2γ acts as a tumor suppressor. In summary, expression of either AP-2γ or AP-2α inhibited breast carcinoma cell growth; thus, these genes may be therapeutic targets for breast cancer. PMID:16867219

  20. [Cycle arrest of prostate carcinoma DU-145 cells induced by pseudolaric acid B].

    PubMed

    Mai, Xia; Xu, Zhong-Wei; Chen, Xiao-Yi; Cao, Bo; Xu, Rui-Cheng

    2012-11-01

    To study the effect of pseudolaric acid B (PLAB) on cell proliferation and cycle of human prostate carcinoma DU-145 cells. method: Its inhibitory effect on the cell growth was measured by MTT method. Characteristics of cell death were determined by Hoechest 33342 staining. The cell cycle was detected by flow cytometry. The expressions of cyclin B1, cyclin D1 and CDK1 were detected by Real time-PCR and Western blot, respectively. PLAB notably inhibited DU-145 cell growth in a dose- and time dependent manner (P < 0.05). Its IC50 values of PLAB for DU-145 cells for 24, 48 and 72 h were 4.53, 2.39 and 2.08 micromol x L(-1), respectively. Having been treated with 5 micromol x L(-1) PLAB for 24 h, the cells showed such apoptosis characteristics as nuclei chromatin condensation and apoptotic body. With the increase in PLAB concentration, the proportion of G2/M phase cells strikingly increased in a dose- and time dependent manner (P < 0.05), meanwhile cyclin B1 and CDK1 showed over-expressions (P < 0.05), and the cyclin D1 showed under-expression (P < 0.05). PLAB can inhibit the growth of DU-145 cells and induce the cell cycle G2/M arrest, accompanied with the over-expression of cyclin B1 and CDK1, which may be related with its regulation cycle-associated protein degradation.

  1. Crude Garlic Extract Inhibits Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis of Cancer Cells In Vitro.

    PubMed

    Bagul, Mukta; Kakumanu, Srikanth; Wilson, Thomas A

    2015-07-01

    Garlic and its lipid-based extracts have played an important medicinal role in humans for centuries that includes antimicrobial, hypoglycemic, and lipid-lowering properties. The present study was to investigate the effects of crude garlic extract (CGE) on the proliferation of human breast, prostate, hepatic, and colon cancer cell lines and mouse macrophageal cells, not previously studied. The human cancer cell lines, such as hepatic (Hep-G2), colon (Caco-2), prostate (PC-3), and breast (MCF-7), were propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated RPMI-1640 Medium and 10% fetal bovine serum (FBS), while the mouse macrophage cell line (TIB-71) was propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated DMEM and 10% FBS. All cells were plated at a density of ∼5000 cells/well. After overnight incubation, the cells were treated with 0.125, 0.25, 0.5, or 1 μg/mL of CGE an additional 72 h. Inhibition of cell proliferation of 80-90% was observed for Hep-G2, MCF-7, TIB-71, and PC-3 cells, but only 40-55% for the Caco-2 cells when treated with 0.25, 0.5, or 1 μg/mL. In a coculture study of Caco-2 and TIB-71 cells, inhibition of cell proliferation of 90% was observed for Caco-2 cells compared to the 40-55% when cultured separately. CGE also induced cell cycle arrest and had a fourfold increase in caspase activity (apoptosis) in PC-3 cells when treated at a dose of 0.5 or 1 μg/mL. This investigation of CGE clearly highlights the fact that the lipid bioactive compounds in CGE have the potential as promising anticancer agents.

  2. ZGDHu-1 induces G2/M phase arrest and apoptosis in Kasumi-1 cells

    PubMed Central

    XIA, JUN; CHEN, SU-FENG; LV, YA-PING; LU, LING-NA; HU, WEI-XIAO; ZHOU, YONG-LIE

    2015-01-01

    The present study examined the effects of N,N′-di-(m-methylphenyi)-3, 6-dimethyl-1, 4-dihydro-1,2,4,5-tetrazine-1,4-dicarboamide (ZGDHu-1), a novel oxazine derivative, in Kasumi-1 cells. Following incubation with various concentrations of ZGDHu-1, fluorescence-activated cell sorting (FACS) was used in order to detect changes in mitochondrial membrane permeability in Kasumi-1 cells. Western blot analysis was performed in order to analyze the expression of nuclear factor-κB, inhibitor of κB and AML1/ETO. In addition FACS was used to analyze leukemia cell cycles and the expression levels of cyclin, cyclin-dependent kinases and cyclin-dependent kinase inhibitors in G2/M phase were determined using FACS and western blot analysis. The upregulation of reactive oxygen species production and mitochondrial membrane permeability was ascribed to apoptosis. The growth of Kasumi-1 cells was inhibited through the downregulation of nuclear factor-κB, degradation of AML1/ETO fusion protein and cell cycle arrest at the G2/M phase. This study documented that G2/M regulatory molecules, including cyclin B1, cell division control (cdc)2 and cdc25c were downregulated and checkpoint kinase 1 (CHK1), p53, p27, phospho-cdc25c, phospho-CHK1 and phospho-p53 were upregulated following treatment with ZGDHu-1. In the present study, pretreatment with CHIR-124, a selective CHK1 inhibitor, abrogated G2/M arrest via ZGDHu-1. These results demonstrated the anti-tumor activity of ZGDHu-1, which may therefore a potential target for further investigation and may be useful for the treatment of patients with t(8;21) acute myeloid leukemia. PMID:25573277

  3. ZGDHu-1 induces G₂/M phase arrest and apoptosis in Kasumi-1 cells.

    PubMed

    Xia, Jun; Chen, Su-Feng; Lv, Ya-Ping; Lu, Ling-Na; Hu, Wei-Xiao; Zhou, Yong-Lie

    2015-05-01

    The present study examined the effects of N,N'‑di‑(m‑methylphenyi)‑3, 6‑dimethyl‑1, 4‑dihydro‑1,2,4,5‑tetrazine‑1,4‑dicarboamide (ZGDHu‑1), a novel oxazine derivative, in Kasumi‑1 cells. Following incubation with various concentrations of ZGDHu‑1, fluorescence‑activated cell sorting (FACS) was used in order to detect changes in mitochondrial membrane permeability in Kasumi‑1 cells. Western blot analysis was performed in order to analyze the expression of nuclear factor‑κB, inhibitor of κB and AML1/ETO. In addition FACS was used to analyze leukemia cell cycles and the expression levels of cyclin, cyclin‑dependent kinases and cyclin‑dependent kinase inhibitors in G2/M phase were determined using FACS and western blot analysis. The upregulation of reactive oxygen species production and mitochondrial membrane permeability was ascribed to apoptosis. The growth of Kasumi‑1 cells was inhibited through the downregulation of nuclear factor‑κB, degradation of AML1/ETO fusion protein and cell cycle arrest at the G2/M phase. This study documented that G2/M regulatory molecules, including cyclin B1, cell division control (cdc)2 and cdc25c were downregulated and checkpoint kinase 1 (CHK1), p53, p27, phospho‑cdc25c, phospho‑CHK1 and phospho‑p53 were upregulated following treatment with ZGDHu‑1. In the present study, pretreatment with CHIR‑124, a selective CHK1 inhibitor, abrogated G2/M arrest via ZGDHu‑1. These results demonstrated the anti‑tumor activity of ZGDHu‑1, which may therefore a potential target for further investigation and may be useful for the treatment of patients with t(8;21) acute myeloid leukemia.

  4. Direct inhibition of Retinoblastoma phosphorylation by Nimbolide causes cell cycle arrest and suppresses glioblastoma growth

    PubMed Central

    Anderson, Jane; Liu, Xiaona; Henry, Heather; Gasilina, Anjelika; Nassar, Nicholas; Ghosh, Jayeeta; Clark, Jason P; Kumar, Ashish; Pauletti, Giovanni M.; Ghosh, Pradip K; Dasgupta, Biplab

    2013-01-01

    Purpose Classical pharmacology allows the use and development of conventional phytomedicine faster and more economically than conventional drugs. This approach should be tested for their efficacy in terms of complementarity and disease control. The purpose of this study was to determine the molecular mechanisms by which nimbolide, a triterpenoid found in the well-known medicinal plant Azadirachta indica controls glioblastoma (GBM) growth. Experimental Design Using in vitro signaling, anchorage-independent growth, kinase assays, and xenograft models, we investigated the mechanisms of its growth inhibition in glioblastoma. Results We show that nimbolide or an ethanol soluble fraction of A. indica leaves (Azt) that contains nimbolide as the principal cytotoxic agent is highly cytotoxic against GBM in vitro and in vivo. Azt caused cell cycle arrest, most prominently at the G1-S stage in GBM cells expressing EGFRvIII, an oncogene present in about 20-25% of GBMs. Azt/nimbolide directly inhibited CDK4/CDK6 kinase activity leading to hypophosphorylation of the retinoblastoma (RB) protein, cell cycle arrest at G1-S and cell death. Independent of RB hypophosphorylation, Azt also significantly reduced proliferative and survival advantage of GBM cells in vitro and in tumor xenografts by downregulating Bcl2 and blocking growth factor induced phosphorylation of Akt, Erk1/2 and STAT3. These effects were specific since Azt did not affect mTOR or other cell cycle regulators. In vivo, Azt completely prevented initiation and inhibited progression of GBM growth. Conclusions Our preclinical findings demonstrate Nimbolide as a potent anti-glioma agent that blocks cell cycle and inhibits glioma growth in vitro and in vivo. PMID:24170547

  5. Lipocortin 1 mediates dexamethasone-induced growth arrest of the A549 lung adenocarcinoma cell line.

    PubMed Central

    Croxtall, J D; Flower, R J

    1992-01-01

    The synthetic glucocorticoid dexamethasone (1 microM to 1 pM) strongly (maximum greater than 80%) inhibits proliferation of the A549 human lung adenocarcinoma line (EC50 greater than 1 nM) and leads to the appearance, or a further increase (approximately 3-fold) in the expression on the cell surface, of the calcium and phospholipid binding protein lipocortin (annexin) 1. Both these effects, which are shared by hydrocortisone (1 microM) but not by progesterone or aldosterone (1 microM), are inhibited by the antiglucocorticoids RU38486 and RU43044 (1 microM). The nonsteroidal antiinflammatory drugs indomethacin (1 microM) and naproxen (10 microM) and human recombinant lipocortin 1 (0.05-5.0 micrograms/ml) also produce growth arrest in this cell line. During proliferation A549 cells spontaneously release prostaglandin E2 [10-20 ng (28-57 pmol) per ml per 5-day period] into the growth medium. In concentrations that cause growth-arrest, dexamethasone, indomethacin, and lipocortin 1 abolish the generation of this eicosanoid by A549 cells. Prostaglandin E2 itself (0.01-1 pM) stimulates cell growth and partially reverses (approximately 50%) the inhibition of growth caused by dexamethasone and indomethacin. Addition of the neutralizing anti-lipocortin 1 monoclonal antibody 1A (5 micrograms/ml), but not the nonneutralizing anti-lipocortin monoclonal antibody 1B, substantially reversed (greater than 80%) the inhibitory activity of dexamethasone on both growth and prostaglandin E2 synthesis. The generation of prostaglandin E2 by A549 cells seems to be an important regulator of cell proliferation in vitro and the dexamethasone-induced suppression of proliferation in this model is attributable to eicosanoid inhibition caused by lipocortin 1. Images PMID:1533045

  6. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin.

    PubMed

    Lim, Do Y; Jeong, Yoonhwa; Tyner, Angela L; Park, Jung H Y

    2007-01-01

    Luteolin is 3',4',5,7-tetrahydroxyflavone found in celery, green pepper, and perilla leaf that inhibits tumorigenesis in animal models. We examined luteolin-mediated regulation of cell cycle progression and apoptosis in the HT-29 human colon cancer cell line. Luteolin decreased DNA synthesis and viable HT-29 cell numbers in a concentration-dependent manner. It inhibited cyclin-dependent kinase (CDK)4 and CDK2 activity, resulting in G1 arrest with a concomitant decrease of phosphorylation of retinoblastoma protein. Activities of CDK4 and CDK2 decreased within 2 h after luteolin treatment, with a 38% decrease in CDK2 activity (P < 0.05) observed in cells treated with 40 micromol/l luteolin. Luteolin inhibited CDK2 activity in a cell-free system, suggesting that it directly inhibits CDK2. Cyclin D1 levels decreased after luteolin treatment, although no changes in expression of cyclin A, cyclin E, CDK4, or CDK2 were detected. Luteolin also promoted G2/M arrest at 24 h posttreatment by downregulating cyclin B1 expression and inhibiting cell division cycle (CDC)2 activity. Luteolin promoted apoptosis with increased activation of caspases 3, 7, and 9 and enhanced poly(ADP-ribose) polymerase cleavage and decreased expression of p21(CIP1/WAF1), survivin, Mcl-1, Bcl-x(L), and Mdm-2. Decreased expression of these key antiapoptotic proteins could contribute to the increase in p53-independent apoptosis that was observed in HT-29 cells. We demonstrate that luteolin promotes both cell cycle arrest and apoptosis in the HT-29 colon cancer cell line, providing insight about the mechanisms underlying its antitumorigenic activities.

  7. Parafibromin inhibits cancer cell growth and causes G1 phase arrest

    SciTech Connect

    Zhang Chun; Kong Dong; Tan, M.-H.; Pappas, Donald L.; Wang, P.-F.; Chen, Jindong; Farber, Leslie; Zhang Nian; Koo, H.-M.; Weinreich, Michael; Williams, Bart O.; Teh, B.T. . E-mail: bin.teh@vai.org

    2006-11-10

    The HRPT2 (hereditary hyperparathyroidism type 2) tumor suppressor gene encodes a ubiquitously expressed 531 amino acid protein termed parafibromin. Inactivation of parafibromin predisposes one to the development of HPT-JT syndrome. To date, the role of parafibromin in tumorigenesis is largely unknown. Here, we report that parafibromin is a nuclear protein that possesses anti-proliferative properties. We show that overexpression of parafibromin inhibits colony formation and cellular proliferation, and induces cell cycle arrest in the G1 phase. Moreover, HPT-JT syndrome-derived mutations in HRPT2 behave in a dominant-negative manner by abolishing the ability of parafibromin to suppress cell proliferation. These findings suggest that parafibromin has a critical role in cell growth, and mutations in HRPT2 can directly inhibit this role.

  8. K+/H+-antiporter nigericin arrests DNA synthesis in Ehrlich ascites carcinoma cells.

    PubMed Central

    Margolis, L B; Novikova I, Y u; Rozovskaya, I A; Skulachev, V P

    1989-01-01

    Acidification of the cytoplasm of Ehrlich ascites carcinoma cells to pH 6.3 arrests DNA synthesis in these cells. Such an effect can be achieved by incubating the cells at pH 6.2 or by adding low concentrations of the K+/H+ antiporter, the antibiotic nigericin, at neutral pH. Glucose and anaerobiosis potentiate the nigericin effect. The inhibition of DNA synthesis by nigericin occurs without any significant decrease in the ATP concentration and in the mitochondrial membrane potential. The DNA synthesis inhibition is caused neither by a decrease in the intracellular [K+] nor by an increase in the intracellular [Na+] accompanying the nigericin effect (at least at low concentrations of the antibiotic). Nigericin should thus be regarded as a type of a cytostatic primarily affecting intracellular pH. PMID:2771947

  9. K+/H+-antiporter Nigericin Arrests DNA Synthesis in Ehrlich Ascites Carcinoma Cells

    NASA Astrophysics Data System (ADS)

    Margolis, Leonid B.; Novikova, Irina Yu.; Rozovskaya, Irina A.; Skulachev, Vladimir P.

    1989-09-01

    Acidification of the cytoplasm of Ehrlich ascites carcinoma cells to pH 6.3 arrests DNA synthesis in these cells. Such an effect can be achieved by incubating the cells at pH 6.2 or by adding low concentrations of the K+/H+ antiporter, the antibiotic nigericin, at neutral pH. Glucose and anaerobiosis potentiate the nigericin effect. The inhibition of DNA synthesis by nigericin occurs without any significant decrease in the ATP concentration and in the mitochondrial membrane potential. The DNA synthesis inhibition is caused neither by a decrease in the intracellular [K+] nor by an increase in the intracellular [Na+] accompanying the nigericin effect (at least at low concentrations of the antibiotic). Nigericin should thus be regarded as a type of a cytostatic primarily affecting intracellular pH.

  10. Induction of G1 arrest by down-regulation of cyclin D3 in T cell hybridomas

    PubMed Central

    1995-01-01

    The relationship between activation-induced growth inhibition and regulation of the cell cycle progression was investigated in T cell hybridomas by studying the function of the cell cycle-regulating genes such as G1 cyclins and their associated kinases. Activation of T cell hybridomas by anti-T cell receptor antibody induces growth arrest at G1 phase of the cell cycle and subsequently results in activation-driven cell death. Rapid reduction of both messenger RNA and protein level of the cyclin D3 is accompanied by growth arrest upon activation. Although the residual cyclin D3 protein forms a complex with cdk4 protein, cyclin D3-dependent kinase activity is severely impaired. Stable transfectants engineered to express cyclin D3 override the growth arrest upon activation. These results imply that the activation signal through T cell receptor induces the down-regulation of cyclin D3 expression and cyclin D3-dependent kinase activity, leading to growth arrest in G1 phase of the cell cycle in T cells. PMID:7629502

  11. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  12. Toona Sinensis and Moschus Decoction Induced Cell Cycle Arrest in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Zhang, Yifei; Fang, Zhijia; Huang, Zhiwei; Shi, Ping

    2014-01-01

    Toona sinensis and Moschus are two herb materials used in traditional Chinese medicine, most commonly for their various biological activities. In this study, we investigated the inhibitory effect of three decoctions from Toona sinensis, Moschus, and Toona sinensis and Moschus in combination on cell growth in several normal and cancer cell lines by cell viability assay. The results showed that the combined decoction exhibited the strongest anticancer effects, compared to two single decoctions. The observations indicated that the combined decoction did not induce cell apoptosis and autophagy in HeLa cells by fluorescence microscopy. Flow cytometry analysis revealed that the combined decoction arrested HeLa cell cycle progression in S-phase. After the decoction incubation, among 41 cell cycle related genes, eight were reduced, while five were increased in mRNA levels by real-time PCR assay. Western blotting showed that there were no apparent changes of protein levels of Cyclin E1, while P27 expression significantly declined and the levels of CDC7 and CDK7 obviously increased. The data suggest that the RB pathway is partially responsible for the decoction-induced S-phase cell cycle arrest in HeLa cells. Therefore, the combined decoction may have therapeutic potential as an anticancer formula for certain cancers. PMID:24511319

  13. Chidamide Inhibits Aerobic Metabolism to Induce Pancreatic Cancer Cell Growth Arrest by Promoting Mcl-1 Degradation

    PubMed Central

    Wang, Yanbing; Kuai, Qiyuan; Li, Changlan; Wang, Yu; Jiang, Xingwei; Wang, Xuanlin; Li, Weijing; He, Min; Ren, Suping; Yu, Qun

    2016-01-01

    Pancreatic cancer is a fatal malignancy worldwide and urgently requires valid therapies. Previous research showed that the HDAC inhibitor chidamide is a promising anti-cancer agent in pancreatic cancer cell lines. In this study, we elucidate a probable underlying anti-cancer mechanism of chidamide involving the degradation of Mcl-1. Mcl-1 is frequently upregulated in human cancers, which has been demonstrated to participate in oxidative phosphorylation, in addition to its anti-apoptotic actions as a Bcl-2 family member. The pancreatic cancer cell lines BxPC-3 and PANC-1 were treated with chidamide, resulting in Mcl-1 degradation accompanied by induction of Mcl-1 ubiquitination. Treatment with MG132, a proteasome inhibitor reduced Mcl-1 degradation stimulated by chidamide. Chidamide decreased O2 consumption and ATP production to inhibit aerobic metabolism in both pancreatic cancer cell lines and primary cells, similar to knockdown of Mcl-1, while overexpression of Mcl-1 in pancreatic cancer cells could restore the aerobic metabolism inhibited by chidamide. Furthermore, chidamide treatment or Mcl-1 knockdown significantly induced cell growth arrest in pancreatic cancer cell lines and primary cells, and Mcl-1 overexpression could reduce this cell growth inhibition. In conclusion, our results suggest that chidamide promotes Mcl-1 degradation through the ubiquitin-proteasome pathway, suppressing the maintenance of mitochondrial aerobic respiration by Mcl-1, and resulting in inhibition of pancreatic cancer cell proliferation. Our work supports the claim that chidamide has therapeutic potential for pancreatic cancer treatment. PMID:27875574

  14. Anthelmintic drug albendazole arrests human gastric cancer cells at the mitotic phase and induces apoptosis

    PubMed Central

    Zhang, Xuan; Zhao, Jing; Gao, Xiangyang; Pei, Dongsheng; Gao, Chao

    2017-01-01

    As microtubules have a vital function in the cell cycle, oncologists have developed microtubule inhibitors capable of preventing uncontrolled cell division, as in the case of cancer. The anthelmintic drug albendazole (ABZ) has been demonstrated to inhibit hepatocellular, ovarian and prostate cancer cells via microtubule targeting. However, its activity against human gastric cancer (GC) cells has remained to be determined. In the present study, ABZ was used to treat GC cells (MKN-45, SGC-7901 and MKN-28). A a CCK-8 cell proliferation assay was performed to assess the effects of ABZ on cell viability and cell cycle changes were assessed using flow cytometry. SGC-7901 cells were selected for further study, and flow cytometry was employed to determine the apoptotic rate, immunofluorescence analysis was employed to show changes of the microtubule structure as well as the subcellular localization and expression levels of cyclin B1, and western blot analysis was used to identify the dynamics of microtubule assembly. The expression levels of relevant proteins, including cyclin B1 and Cdc2, the two subunits of mitosis-promoting factor as well as apoptosis-asociated proteins were also assessed by western blot analysis. The results showed that ABZ exerted its anti-cancer activity in GC cell lines by disrupting microtubule formation and function to cause mitotic arrest, which is also associated with the accumulation of cyclin B1, and consequently induces apoptosis. PMID:28352336

  15. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Okinaga, Toshinori; Ariyoshi, Wataru; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  16. Telomerase expression abrogates rapamycin-induced irreversible growth arrest of uterine fibroid smooth muscle cells.

    PubMed

    Suo, Guangli; Sadarangani, Anil; Tang, Wingchung; Cowan, Bryan D; Wang, Jean Y J

    2014-09-01

    Uterine fibroids are the most common solid tumors found in women of reproductive age. It has been reported that deregulation of the mammalian target of rapamycin (mTOR) pathway plays an important role in the etiology of leiomyoma. Here, we investigated the effect of rapamycin, an inhibitor of mTORC1, on the growth of primary fibroid smooth muscle cells (fSMCs) and human telomerase reverse transcriptase (hTERT)-transduced and immortalized fSMCs. With the primary fSMCs, a 24-hour treatment with rapamycin was sufficient to trigger a growth arrest that was not reversible upon drug removal. By contrast, the growth inhibitory effect of rapamycin on the hTERT-transduced fSMCs was readily reversible, as these cells resumed proliferation upon the withdrawal of the drug. These results suggest that rapamycin-induced irreversible growth arrest of fSMCs is dependent on the senescence barrier that is abrogated by the ectopic expression of telomerase.

  17. Pea (Pisum sativum) cells arrested in G2 have nascent DNA with breaks between replicons and replication clusters

    SciTech Connect

    Van't Hof, J.

    1980-01-01

    DNA fiber autoradiography and alkaline sucrose sedimentation of DNA of cultured pea-root cells (Pisum sativum) arrested in G2 by carbohydrate starvation demonstrated that nascent DNA molecules of replicon (16 to 27 x 10/sup 6/D) and apparent cluster (approx. 330 x 10/sup 6/D) size were not joined. That the arrested cells were in G2 was confirmed by single-cell autoradiography and cytophotometry. In pea there are about 18 replicons per average cluster, 4.2 x 10/sup 3/ clusters, and 7.7 x 10/sup 4/ replicons per genome.

  18. Blood Stem Cell Activity Is Arrested by Th1-Mediated Injury Preventing Engraftment following Nonmyeloablative Conditioning

    PubMed Central

    Florek, Mareike; Kohrt, Holbrook E. K.; Küpper, Natascha J.; Filatenkov, Alexander; Linderman, Jessica A.; Hadeiba, Husein; Negrin, Robert S.

    2016-01-01

    T cells are widely used to promote engraftment of hematopoietic stem cells (HSCs) during an allogeneic hematopoietic cell transplantation. Their role in overcoming barriers to HSC engraftment is thought to be particularly critical when patients receive reduced doses of preparative chemotherapy and/or radiation compared with standard transplantations. In this study, we sought to delineate the effects CD4+ cells on engraftment and blood formation in a model that simulates clinical hematopoietic cell transplantation by transplanting MHC-matched, minor histocompatibility–mismatched grafts composed of purified HSCs, HSCs plus bulk T cells, or HSCs plus T cell subsets into mice conditioned with low-dose irradiation. Grafts containing conventional CD4+ T cells caused marrow inflammation and inhibited HSC engraftment and blood formation. Posttransplantation, the marrows of HSCs plus CD4+ cell recipients contained IL-12–secreting CD11c+ cells and IFN-γ–expressing donor Th1 cells. In this setting, host HSCs arrested at the short-term stem cell stage and remained in the marrow in a quiescent cell cycling state (G0). As a consequence, donor HSCs failed to engraft and hematopoiesis was suppressed. Our data show that Th1 cells included in a hematopoietic allograft can negatively impact HSC activity, blood reconstitution, and engraftment of donor HSCs. This potential negative effect of donor T cells is not considered in clinical transplantation in which bulk T cells are transplanted. Our findings shed new light on the effects of CD4+ T cells on HSC biology and are applicable to other pathogenic states in which immune activation in the bone marrow occurs such as aplastic anemia and certain infectious conditions. PMID:27815446

  19. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells.

    PubMed

    Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling; Hu, Yu-Chen; Chang, Wen-Tsan; Chang, Kee-Lung

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis.

  20. Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System.

    PubMed

    Santaguida, Stefano; Richardson, Amelia; Iyer, Divya Ramalingam; M'Saad, Ons; Zasadil, Lauren; Knouse, Kristin A; Wong, Yao Liang; Rhind, Nicholas; Desai, Arshad; Amon, Angelika

    2017-06-19

    Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Roles of p53 and caspases in the induction of cell cycle arrest and apoptosis by HIV-1 vpr.

    PubMed

    Shostak, L D; Ludlow, J; Fisk, J; Pursell, S; Rimel, B J; Nguyen, D; Rosenblatt, J D; Planelles, V

    1999-08-25

    The vpr gene from the human immunodeficiency virus type-1 (HIV-1) encodes a 14-kDa protein that prevents cell proliferation by causing a block in the G(2) phase of the cell cycle. This cellular function of vpr is conserved in evolution because other primate lentiviruses, including HIV-2, SIV(mac), and SIV(agm) encode related genes that also induce G(2) arrest. After G(2) arrest, cells expressing vpr undergo apoptosis. The signaling pathways that result in vpr-induced cell cycle arrest and apoptosis have yet to be determined. The p53 tumor suppressor protein is involved in signaling pathways leading to cell cycle arrest and apoptosis in a variety of cell types. In this work, we examine the potential role of p53 in mediating cell cycle block and/or apoptosis by HIV-1 vpr and demonstrate that both phenomena occur independently of the presence and function of p53. Caspases are common mediators of apoptosis. We examined the potential role of caspases in mediating vpr-induced apoptosis by treating vpr-expressing cells with Boc-D-FMK, a broad spectrum, irreversible inhibitor of the caspase family. Boc-D-FMK significantly reduced the numbers of apoptotic cells induced by vpr. Therefore, we conclude that vpr-induced apoptosis is effected via the activation of caspases. Copyright 1999 Academic Press.

  2. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    NASA Astrophysics Data System (ADS)

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-03-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.

  3. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    SciTech Connect

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  4. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    PubMed Central

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-01-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton. PMID:28332589

  5. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species.

    PubMed

    Liu, Yuanyuan; Fan, Chenghe; Pu, Lv; Wei, Cui; Jin, Haiqiang; Teng, Yuming; Zhao, Mingming; Yu, Albert Cheung Hoi; Jiang, Feng; Shu, Junlong; Li, Fan; Peng, Qing; Kong, Jian; Pan, Bing; Zheng, Lemin; Huang, Yining

    2016-06-01

    Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS.

  6. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro.

    PubMed

    Zanni, Giulia; Di Martino, Elena; Omelyanenko, Anna; Andäng, Michael; Delle, Ulla; Elmroth, Kecke; Blomgren, Klas

    2015-11-10

    Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro.NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (γH2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs.Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage.Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer.

  7. Calotropin from Asclepias curasavica induces cell cycle arrest and apoptosis in cisplatin-resistant lung cancer cells.

    PubMed

    Mo, En-Pan; Zhang, Rong-Rong; Xu, Jun; Zhang, Huan; Wang, Xiao-Xiong; Tan, Qiu-Tong; Liu, Fang-Lan; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-09-16

    Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance.

  8. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro

    PubMed Central

    Omelyanenko, Anna; Andäng, Michael; Delle, Ulla; Elmroth, Kecke; Blomgren, Klas

    2015-01-01

    Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro. NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (γH2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs. Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage. Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer. PMID:26397227

  9. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    PubMed Central

    da Silva, Tereza Cristina; Cogliati, Bruno; Latorre, Andréia Oliveira; Akisue, Gokithi; Nagamine, Márcia Kazumi; Haraguchi, Mitsue; Hansen, Daiane; Sanches, Daniel Soares; Dagli, Maria Lúcia Zaidan

    2015-01-01

    Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation. PMID:26075002

  10. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    SciTech Connect

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue; Cui, Hongjuan; Huang, Zhenping

    2016-04-29

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  11. Gefitinib causes growth arrest and inhibition of metastasis in human chondrosarcoma cells.

    PubMed

    Song, Jian; Zhu, Jiaxue; Zhao, Qiang; Tian, Baofang

    2015-01-01

    Chondrosarcomas are primary malignant cartilage-forming tumors of bone which are not responsive either to chemotherapy or radiation treatment and display potent capacity to invade locally and cause distant metastasis. Epidermal growth factor receptor (EGFR) pathway plays an important role in the development and progression of many cancers. However, the effect of EGFR inhibitor gefitinib on cell growth and metastasis in human chondrosarcoma cells is largely unknown. Features of the protein expression of EGFR in 3 human chondrosarcoma cell lines JJ2012, SW1353 and OUMS27 were analyzed. The inhibitory effects of EGFR inhibitor gefitinib on cell proliferation, cell cycle and metastasis were assessed by using MTS, flow cytometry and migration assays, respectively. The expression of metastasis-related proteins was evaluated by western blotting. All the three human chondrosarcoma cell lines expressed EGFR protein. Gefitinib significantly inhibited the growth, induced cell cycle arrest and decreased the migra- tion ability of human chondrosarcoma cells. In addition, gefitinib also reduced the expression of metastasis-related proteins, basic fibroblast growth factor (bFGF), matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). The discovery that gefitinib inhibited the proliferation and reduced the metastatic capacity of chondrosarcoma cells may help increase the understanding of the mechanism underlying human chondrosarcoma growth and metastasis. Thus, gefitinib may represent a promising agent for controlling chondrosarcoma proliferation and metastasis.

  12. The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells.

    PubMed

    Chen, Mei-Chuan; Kuo, Yi-Chiu; Hsu, Chia-Ming; Chen, Yi-Lin; Shen, Chien-Chang; Teng, Che-Ming; Pan, Shiow-Lin

    2017-04-07

    Patients with ovarian cancer are typically diagnosed at an advanced stage, resulting in poor prognosis since there are currently no effective early-detection screening tests for women at average-risk for ovarian cancer. Here, we investigated the effects of MT-6, a derivative of moscatilin, in ovarian cancer cells. Our investigation showed that MT-6 inhibited the proliferation and viability of ovarian cancer cells with submicromolar IC50 values. MT-6-treated SKOV3 cells showed significant cell cycle arrest at G2/M phase, followed by an increase in the proportion of cells in a sub-G1 phase. In addition, MT-6 induced a concentration-dependent increase in mitotic markers, mitotic kinases, cell cycle regulators of G2/M transition, and apoptosis-related markers in ovarian cancer cells. MT-6 treatment also induced mitochondrial membrane potential loss, JNK activation, and DR5 expression. Cotreatment of cells with the JNK inhibitor SP600125 considerably attenuated MT-6-induced apoptosis, mitochondria membrane potential loss, DR5 upregulation, and suppression of cell viability. MT-6 also inhibited tumor growth in an SKOV3 xenograft model without significant body weight loss. Together, our findings suggest that MT-6 is a potent anticancer agent with tumor-suppressive activity in vitro and in vivo that could be further investigated for ovarian cancer therapy in the future.

  13. The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells

    PubMed Central

    Chen, Mei-Chuan; Kuo, Yi-Chiu; Hsu, Chia-Ming; Chen, Yi-Lin; Shen, Chien-Chang; Teng, Che-Ming; Pan, Shiow-Lin

    2017-01-01

    Patients with ovarian cancer are typically diagnosed at an advanced stage, resulting in poor prognosis since there are currently no effective early-detection screening tests for women at average-risk for ovarian cancer. Here, we investigated the effects of MT-6, a derivative of moscatilin, in ovarian cancer cells. Our investigation showed that MT-6 inhibited the proliferation and viability of ovarian cancer cells with submicromolar IC50 values. MT-6–treated SKOV3 cells showed significant cell cycle arrest at G2/M phase, followed by an increase in the proportion of cells in a sub-G1 phase. In addition, MT-6 induced a concentration-dependent increase in mitotic markers, mitotic kinases, cell cycle regulators of G2/M transition, and apoptosis-related markers in ovarian cancer cells. MT-6 treatment also induced mitochondrial membrane potential loss, JNK activation, and DR5 expression. Cotreatment of cells with the JNK inhibitor SP600125 considerably attenuated MT-6–induced apoptosis, mitochondria membrane potential loss, DR5 upregulation, and suppression of cell viability. MT-6 also inhibited tumor growth in an SKOV3 xenograft model without significant body weight loss. Together, our findings suggest that MT-6 is a potent anticancer agent with tumor-suppressive activity in vitro and in vivo that could be further investigated for ovarian cancer therapy in the future. PMID:28387244

  14. Pirarubicin inhibits multidrug-resistant osteosarcoma cell proliferation through induction of G2/M phase cell cycle arrest

    PubMed Central

    Zheng, Shui-er; Xiong, Sang; Lin, Feng; Qiao, Guang-lei; Feng, Tao; Shen, Zan; Min, Da-liu; Zhang, Chun-ling; Yao, Yang

    2012-01-01

    Aim: Pirarubicin (THP) is recently found to be effective in treating patients with advanced, relapsed or recurrent high-grade osteosarcoma. In this study, the effects of THP on the multidrug-resistant (MDR) osteosarcoma cells were assessed, and the underlying mechanisms for the disruption of cell cycle kinetics by THP were explored. Methods: Human osteosarcoma cell line MG63 and human MDR osteosarcoma cell line MG63/DOX were tested. The cytotoxicity of drugs was examined using a cell proliferation assay with the Cell Counting Kit-8 (CCK-8). The distribution of cells across the cell cycle was determined with flow cytometry. The expression of cell cycle-regulated genes cyclin B1 and Cdc2 (CDK1), and the phosphorylated Cdc2 and Cdc25C was examined using Western blot analyses. Results: MG63/DOX cells were highly resistant to doxorubicin (ADM) and gemcitabine (GEM), but were sensitive or lowly resistant to THP, methotrexate (MTX) and cisplatin (DDP). Treatment of MG63/DOX cells with THP (200–1000 ng/mL) inhibited the cell proliferation in time- and concentration-dependent manners. THP (50–500 ng/mL) induced MG63/DOX cell cycle arrest at the G2/M phase in time- and concentration-dependent manners. Furthermore, the treatment of MG63/DOX cells with THP (200–1000 ng/mL) downregulated cyclin B1 expression, and decreased the phosphorylated Cdc2 at Thr161. Conversely, the treatment increased the phosphorylated Cdc2 at Thr14/Tyr15 and Cdc25C at Ser216, which led to a decrease in Cdc2-cyclin B1 activity. Conclusion: The cytotoxicity of THP to MG63/DOX cells may be in part due to its ability to arrest cell cycle progression at the G2/M phase, which supports the use of THP for managing patients with MDR osteosarcoma. PMID:22580740

  15. Induction of apoptosis and cell cycle arrest in human HCC MHCC97H cells with Chrysanthemum indicum extract

    PubMed Central

    Li, Zong-Fang; Wang, Zhi-Dong; Ji, Yuan-Yuan; Zhang, Shu; Huang, Chen; Li, Jun; Xia, Xian-Ming

    2009-01-01

    AIM: To investigate the effects of Chrysanthemum indicum extract (CIE) on inhibition of proliferation and on apoptosis, and the underlying mechanisms, in a human hepatocellular carcinoma (HCC) MHCC97H cell line. METHODS: Viable rat hepatocytes and human endothelial ECV304 cells were examined by trypan blue exclusion and MTT assay, respectively, as normal controls. The proliferation of MHCC97H cells was determined by MTT assay. The cellular morphology of MHCC97H cells was observed by phase contrast microscopy. Flow cytometry was performed to analyze cell apoptosis with annexin V/propidium iodide (PI), mitochondrial membrane potential with rhodamine 123 and cell cycle with PI in MHCC97H cells. Apoptotic proteins such as cytochrome C, caspase-9, caspase-3 and cell cycle proteins, including P21 and CDK4, were measured by Western blotting. RESULTS: CIE inhibited proliferation of MHCC97H cells in a time- and dose-dependent manner without cytotoxicity in rat hepatocytes and human endothelial cells. CIE induced apoptosis of MHCC97H cells in a concentration-dependent manner, as determined by flow cytometry. The apoptosis was accompanied by a decrease in mitochondrial membrane potential, release of cytochrome C and activation of caspase-9 and caspase-3. CIE arrested the cell cycle in the S phase by increasing P21 and decreasing CDK4 protein expression. CONCLUSION: CIE exerted a significant apoptotic effect through a mitochondrial pathway and arrested the cell cycle by regulation of cell cycle-related proteins in MHCC97H cells without an effect on normal cells. The cancer-specific selectivity shown in this study suggests that the plant extract could be a promising novel treatment for human cancer. PMID:19777612

  16. Diallyl disulfide selectively causes checkpoint kinase-1 mediated G2/M arrest in human MGC803 gastric cancer cell line.

    PubMed

    Ling, Hui; Lu, Li-Feng; He, Jie; Xiao, Guo-Hua; Jiang, Hao; Su, Qi

    2014-11-01

    Previous studies have shown that diallyl disulfide (DADS), a naturally occurring anticancer agent in garlic, arrested human gastric cancer cells (MGC803) in the G2/M phase of the cell cycle. Due to the importance of cell cycle redistribution in DADS-mediated anticarcinogenic effects, we investigated the role of checkpoint kinases (Chk1 and Chk2) during DADS-induced cell cycle arrest. In the present study, the northern blot analysis showed that mRNA expression of for Chkl and Chk2 was unchanged. Notably, DADS induced the accumulation of phosphorylated Chk1, but not of Chk2, activated phospho-ATR (ATM-RAD3-related gene), and dowregulated CDC25C and cyclin B1 expression. Furthermore, CDC25C was immunoprecipitated by anti-Chk1 but not anti-Chk2. Results of the overexpression and knockdown studies, showed that Chk1 but not Chk2 regulated the DADS-induced G2/M arrest of MGC803 cells. The overexpression of Chk1 resulted in significantly increased DADS-induced G2/M arrest, increased DADS-induced Chk1 phosphorylation and inhibited CDC25C expression. Knockdown of Chk1 reduced DADS‑induced G2/M arrest and blocked the DADS-induced inhibition of CDC25C and cyclin B1 expression. These results suggested that Chk1 is important in DADS‑induced cell cycle G2/M arrest in the human MGC803 gastric cancer cell line. Furthermore, the DADS-induced G2/M checkpoint response is mediated by Chk1 signaling through ATR/Chk1/CDC25C/cyclin B1.

  17. Adenovirus-mediated p53 gene transduction inhibits telomerase activity independent of its effects on cell cycle arrest and apoptosis in human pancreatic cancer cells.

    PubMed

    Kusumoto, M; Ogawa, T; Mizumoto, K; Ueno, H; Niiyama, H; Sato, N; Nakamura, M; Tanaka, M

    1999-08-01

    Evidence for a relationship between overexpression of wild-type p53 and telomerase activity remains controversial. We investigated whether p53 gene transduction could cause telomerase inhibition in pancreatic cancer cell lines, focusing on the relation of transduction to growth arrest, cell cycle arrest, and apoptotic cell death. The cells were infected with recombinant adenovirus expressing wild-type p53 or p21WAF1 at a multiplicity of infection of 100 or were continuously exposed to 10 microM VP-16, which is well known to induce apoptosis. Adenovirus-mediated p53 gene transduction caused G1 cell cycle arrest, apoptosis, and resultant growth inhibition in MIA PaCa-2 cells; the cell number 2 days after infection was 50% of preinfection value, and 13% of the cells were dead. Moreover, the transduction resulted in complete depression of telomerase activity through down-regulation of hTERT mRNA expression. In contrast, p21WAF1 gene transduction only arrested cell growth and cell cycle at G1 phase, and VP-16 treatment inhibited cell growth with G2-M arrest and apoptosis; after treatment, the cell number was 73% of pretreatment, and 12% of the cells were dead. Neither p21WAF1 gene transduction nor VP-16 treatment caused telomerase inhibition. Similar results were obtained in two other pancreatic cancer cell lines, SUIT-2 and AsPC-1. Thus, our results demonstrate that the p53 gene transduction directly inhibits telomerase activity, independent of its effects on cell growth arrest, cell cycle arrest, and apoptosis.

  18. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells.

    PubMed

    Lee, Tae-Jin; Kim, On Hee; Kim, Yeoun Hee; Lim, Jun Hee; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-08-28

    Quercetin, a natural product derived from grapes, has been shown to prevent carcinogenesis in murine models. We report here that quercetin induces anti-proliferation and arrests G2/M phase in U937 cells. The G2/M phase accumulation was accompanied by an increase in the level of the cyclin B. In contrast, the level of the cyclin D, cyclin E, E2F1, and E2F2 was marked decreased in quercetin-treated U937 cells. Removal of quercetin from the culture medium stimulates U937 cells to synchronously re-enter the cell cycle, decrease expression level of cyclin B, and increased the expression level of cyclin D and cyclin E. These data demonstrate that quercetin causes reversible G2/M phase arrest, which was related with dramatic changes in the level of cyclin B, cyclin D, and cyclin E. Quercetin-induced down-regulation of cyclin D and cyclin E was associated with suppression of transcriptional levels but not protein stability. In addition, quercetin-treated U937 cells showed DNA fragmentation, increased sub-G1 population, and generated a 60kDa cleavage product of PLC-gamma1 in a dose-dependent manner, which were significantly inhibited by z-VAD-fmk. These data clearly indicate that quercetin-induced apoptosis is associated with caspase activation. In summary, the growth inhibition of the quercetin is highly related to cell cycle arrest at the G2/M phase and induction of caspase-dependent apoptosis in human promonocytic U937 cells.

  19. Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells.

    PubMed

    Bai, Xue Tao; Moles, Ramona; Chaib-Mezrag, Hassiba; Nicot, Christophe

    2015-10-23

    HTLV-I is associated with the development of an aggressive form of lymphocytic leukemia known as adult T-cell leukemia/lymphoma (ATLL). A major obstacle for effective treatment of ATLL resides in the genetic diversity of tumor cells and their ability to acquire resistance to chemotherapy regimens. As a result, most patients relapse and current therapeutic approaches still have limited long-term survival benefits. Hence, the development of novel approaches is greatly needed. In this study, we found that a small molecule inhibitor of poly (ADP-ribose) polymerase (PARP), PJ-34, is very effective in activating S/G2M cell cycle checkpoints, resulting in permanent cell cycle arrest and reactivation of p53 transcription functions and caspase-3-dependent apoptosis of HTLV-I-transformed and patient-derived ATLL tumor cells. We also found that HTLV-I-transformed MT-2 cells are resistant to PJ-34 therapy associated with reduced cleaved caspase-3 activation and increased expression of RelA/p65. Since PJ-34 has been tested in clinical trials for the treatment of solid tumors, our results suggest that some ATLL patients may be good candidates to benefit from PJ-34 therapy.

  20. Honokiol induces cell cycle arrest and apoptosis via p53 activation in H4 human neuroglioma cells.

    PubMed

    Guo, Yun-Bao; Bao, Xin-Jie; Xu, Song-Bai; Zhang, Xing-Dong; Liu, Hai-Yan

    2015-01-01

    To investigate the signal pathway of honokiol-induced apoptosis in H4 human neuroglioma cells and to evaluate whether p53 signaling and cell cycle arrest were involved in honokiol-treated H4 human neuroglioma cells. The cell viability was detected by the CCK8 assay. The cell apoptosis was assessed by annexin V-PI double-labeling staining and hoechst 33342 staining. The protein expression of cell cycle regulators and tumor suppressors were analyzed by western blotting. Treatment of H4 human neuroglioma cells with honokiol induced cell death in a dose-and time-dependent manner by using CCK8 assay. Consistent with the CCK8 assay, the flow cytometry results showed that the proportion of the apoptosis cells increased after honokiol when compared with untreated group. Moreover, H4 human neuroglioma cells exposed to honokiol, resulted in an accumulation of cells in S and G2/M phase. Apoptotic bodies were clearly observed in human neuroglioma cells when treated with honokiol and then stained with Hoechst 33342. The expression of Cyclin B1, CDC2 and cdc25C were downregulated, however, the expression of p-CDC2 and p-cdc25c was significantly upregulated when the neuroglioma cells were exposed to honokiol. Moreover, p53, p21 and Bax/Bcl-2 were significantly upregulated by honokiol treatment. These results confirmed that honokiol could induce apoptosis in human neuroglioma cells, the underlying molecular mechanisms, at least partially, through activation p53 signaling and induction of cell cycle arrest.

  1. The temperature arrested intermediate of virus-cell fusion is a functional step in HIV infection.

    PubMed

    Henderson, Hamani I; Hope, Thomas J

    2006-05-25

    HIV entry occurs via membrane-mediated fusion of virus and target cells. Interactions between gp120 and cellular co-receptors lead to both the formation of fusion pores and release of the HIV genome into target cells. Studies using cell-cell fusion assays have demonstrated that a temperature-arrested state (TAS) can generate a stable intermediate in fusion related events. Other studies with MLV pseudotyped with HIV envelope also found that a temperature sensitive intermediate could be generated as revealed by the loss of a fluorescently labeled membrane. However, such an intermediate has never been analyzed in the context of virus infection. Therefore, we used virus-cell infection with replication competent HIV to gain insights into virus-cell fusion. We find that the TAS is an intermediate in the process culminating in the HIV infection of a target cell. In the virion-cell TAS, CD4 has been engaged, the heptad repeats of gp41 are exposed and the complex is kinetically predisposed to interact with coreceptor to complete the fusion event leading to infection.

  2. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    SciTech Connect

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-08-14

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  3. Cycle arrest and aneuploidy induced by zidovudine in murine embryonic stem cells.

    PubMed

    Campos, P B; Sartore, R C; Ramalho, B L; Costa, E S; Rehen, S K

    2012-07-01

    Zidovudine (3'-azido-3'-deoxythymidine; AZT) is a nucleoside analogue widely used for the treatment of acquired immune deficiency syndrome (AIDS). Medical guidelines recommend the use of AZT by pregnant women in order to reduce risk of HIV vertical transmission. Although it is efficacious, little is known about the side effects of AZT on embryonic development. In this sense, we used murine embryonic stem (mES) cells as a model to investigate the consequences of AZT exposure for embryogenesis. Firstly, mES colonies were incubated with AZT (50 or 100 μM) and cell cycle profile was evaluated. While 27.7 ± 5.43% of untreated mES cells were in G2/M phase, this percentage raised to 45.96 ± 4.18% after AZT exposure (100 μM). To identify whether accumulation of cells in G2/M phase could be related to chromosome missegregation with consequent cell cycle arrest, aneuploidy rate was evaluated after AZT treatment. Untreated colonies presented 39.6 ± 8.4% of cells aneuploid, while after AZT 100 μM treatment, the proportion of aneuploid cells raised to 67.8 ± 3.4% with prevalence of chromosome loss. This event was accompanied by micronuclei formation as AZT 100 μM treated mES cells presented a 2-fold increase compared to untreated ones. These data suggest that AZT exerts genotoxic effects and increases chromosome instability at early stages of embryonic development.

  4. Troglitazone but not rosiglitazone induces G1 cell cycle arrest and apoptosis in human and rat hepatoma cell lines.

    PubMed

    Bae, Myung-Ae; Rhee, Herman; Song, Byoung J

    2003-03-20

    Rosiglitazone (RSG), an agonist of peroxisome proliferator-activated receptor gamma (PPARgamma), induces minor toxicity in humans relative to another PPARgamma agonist, troglitazone (TRO). In contrast, recent reports suggest that RSG causes growth arrest and apoptosis of normal and cancerous cells. Therefore, in this study, we investigated the relative toxicities of TRO and RSG on three different hepatoma cell lines, and observed that TRO, but not RSG, was cytotoxic. Additionally, we studied the mechanism by which TRO induced damage to HepG2 hepatoma cells. Our results indicated that TRO increased the levels of p53, p27, and p21, while it reduced the levels of cyclin D1 and phospho-Rb in a time-dependent manner. Increased p27 and p21 levels coincided with reduced activities of cell cycle dependent kinases (cdk) such as cdk2- and cyclin A-protein kinases 24 h after TRO treatment. These results demonstrate that TRO, but not RSG, causes G1 arrest of hepatoma cells, most likely through changing the levels of cell cycle regulators. Furthermore, because RSG did not affect the levels of cell cycle regulators, TRO-mediated growth inhibition appears independent of PPARgamma activation.

  5. Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells.

    PubMed

    Chen, Yi-Chuan; Chang, Heng-Yuan; Deng, Jeng-Shyan; Chen, Jian-Jung; Huang, Shyh-Shyun; Lin, I-Hsin; Kuo, Wan-Lin; Chao, Wei; Huang, Guan-Jhong

    2013-01-01

    Hispolon (a phenolic compound isolated from Phellinus linteus) has been shown to possess strong antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. In this study, we investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma NB4 cells using the MTT assay, DNA fragmentation, DAPI (4, 6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analysis. Hispolon inhibited the cellular growth of NB4 cells in a dose-dependent manner through the induction of cell cycle arrest at G0/G1 phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of NB4 cells to hispolon-induced apoptosis-related protein expressions, such as the cleavage form of caspase 3, caspase 8, caspase 9, poly (ADP ribose) polymerase, and the proapoptotic Bax protein. Western blot analysis showed that the protein levels of extrinsic apoptotic proteins (Fas and FasL), intrinsic related proteins (cytochrome c), and the ratio of Bax/Bcl-2 were increased in NB4 cells after hispolon treatment. Hispolon-induced G0/G1-phase arrest was associated with a marked decrease in the protein expression of p53, cyclins D1, and cyclins E, and cyclin-dependent kinases (CDKs) 2, and 4, with concomitant induction of p21waf1/Cip1 and p27Kip1. We conclude that hispolon induces both of extrinsic and intrinsic apoptotic pathways in NB4 human leukemia cells in vitro.

  6. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells

    PubMed Central

    Velma, Venkatramreddy; Dasari, Shaloam R.; Tchounwou, Paul B.

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  7. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest

    PubMed Central

    Rajamanikyam, Maheshwari; Vadlapudi, Varahalarao; Parvathaneni, Sai Prathima; Koude, Dhevendar; Sripadi, Prabhakar; Misra, Sunil; Amanchy, Ramars; Upadhyayula, Suryanarayana Murty

    2017-01-01

    Bacteria belonging to the family Brevibacterieae are ubiquitous Gram positive organisms that are responsible for the feet odour and cheese aroma. Brevibacterium mcbrellneri is a relatively new member belonging to Brevibacterieae. In the current manuscript we discuss isolation of biologically active metabolites from Brevibacterium mcbrellneri. Two aromatic esters were isolated from Brevibacterium mcbrellneri by “Bioassay guided fractionation strategy” and identified as di-(2-ethylhexyl) phthalate and dibutyl phthalate by chemical characterization using biophysical techniques. The phthalate compounds show broad spectrum antibacterial activity and mosquito larvicidal activity. Mosquito larvicidal activity has been attributed to inhibition of acetylcholinesterase enzyme activity. These compounds were found to be cytotoxic in multiple cell lines causing cell cycle arrest in G1 phase. PMID:28507481

  8. Review of Chromium (VI) Apoptosis, Cell-Cycle-Arrest, and Carcinogenesis

    PubMed Central

    Chiu, A; Shi, J; Lee, WKP; Hill, R; Wakeman, TP; Katz, A; Xu, B; Dalal, NS; Robertson, JD; Chen, C; Chiu, N; Donehower, L

    2014-01-01

    Hexavalent chromium combines with glutathione in chloride intracellular channel carrier to form tetravalent and pentavelent chromium in plasma and organelle membranes. It also combines with NADH/NADPH to form pentavalent chromium in mitochondria. Tetravalent- and pentavalent- chromium (directly and indirectly) mediated DNA double strand breaks activate DNA damage signaling sensors: DNA-dependent-protein-kinase signals p53-dependent intrinsic mitochorndrial apoptosis, and ataxia-telangiectasia-mutated and ataxia-telangiectasia-Rad3-related signal cell-arrest for DNA repair. Tetravalent chromium may be the most potent species since it causes DNA breaks and somatic recombination, but not apoptosis. Upon further failure of apoptosis and senescence/DNA-repair, damaged cells may become immortal with loss-of-heterozygosity and genetic plasticity. PMID:20859824

  9. A novel nucleolar protein, PAPA-1, induces growth arrest as a result of cell cycle arrest at the G1 phase.

    PubMed

    Kuroda, Taruho S; Maita, Hiroshi; Tabata, Takanori; Taira, Takahiro; Kitaura, Hirotake; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2004-09-29

    We have identified a novel nucleolar protein, PAP-1-associated protein-1 (PAPA-1), after screening the interacting proteins with Pim-1-associated protein-1 (PAP-1), a protein that is a phosphorylation target of Pim-1 kinase. PAPA-1 comprises 345 amino acids with a basic amino-acid cluster. PAPA-1 was found to be localized in the nucleolus in transfected HeLa cells, and the lysine/histidine cluster was essential for nucleolar localization of PAPA-1. PAPA-1 protein and mRNA expression decreased upon serum restimulation of starvation-synchronized cells, which displayed maximum level of PAPA-1 expression at G0 and early G1 phase of the cell cycle. Ectopic expression of PAPA-1 induced growth suppression of cells, and the effect was dependent on its nucleolar localization in established HeLa cell lines that inducibly express PAPA-1 or its deletion mutant under the control of a tetracycline-inducible promoter. Furthermore, when PAPA-1-inducible HeLa cells were synchronized by thymidine, colcemid or mimosine, and then PAPA-1 was expressed, the proportion of cells at the G1 phase was obviously increased. These results suggest that PAPA-1 induces growth and cell cycle arrests at the G1 phase of the cell cycle.

  10. Inflammatory environment created by fibroblast aggregates induces growth arrest and phenotypic shift of human myeloma cells.

    PubMed

    Szabova, K; Bizikova, I; Mistrik, M; Bizik, J

    2015-01-01

    Multiple myeloma (MM) is characterized by accumulation of clonal plasma cells (PCs) predominantly in the bone marrow but tumor cells appear in the circulation in significant numbers as the disease progress. The occurrence of circulating multiple myeloma cells raises question concerning interactions between these cells and stroma of peripheral organs specifically under certain pathophysiological conditions, e.g., inflammation. Therefore, in the present study we exposed three human multiple myeloma cell lines to sterile inflammation produced in a culture dish by clusters of cell-cell contact-activated dermal fibroblasts. We now observed that myeloma cells responded differently to this particular type of stromal cell activation, nemosis. Two cell lines U-266 and LP-1 were minimally affected by the proinflammatory signalling, while the third cell line RPMI 8226 responded with growth arrest and altered expression of three phenotypic markers CD38, CD45, and CD138, indicating dedifferentiation shift of these cells to less mature PC-like phenotype. In a preliminary study we identified a subclone of cells having similar phenotype in 14 out of 23 analysed specimens of MM patients. This set of data indicates that the observed phenomenon might be clinically relevant. Our results emphasize the potential role of activated stromal fibroblasts and subsequent inflammation in altering phenotype of PCs and directing myeloma progression towards dormancy. Given the significant implication of dormant myeloma cells that might serve as a major cellular basis for the relapse, understanding their unique biology and precise elucidation of the underlying molecular mechanisms for the maintenance of quiescence is important. Therefore, we consider this study as a particular contribution to development of experimental model for in vitro studies of cancer dormancy.

  11. PTEN enhances G2/M arrest in etoposide-treated MCF‑7 cells through activation of the ATM pathway.

    PubMed

    Zhang, Ruopeng; Zhu, Li; Zhang, Lirong; Xu, Anli; Li, Zhengwei; Xu, Yijuan; He, Pei; Wu, Maoqing; Wei, Fengxiang; Wang, Chenhong

    2016-05-01

    As an effective tumor suppressor, phosphatase and tensin homolog (PTEN) has attracted the increased attention of scientists. Recent studies have shown that PTEN plays unique roles in the DNA damage response (DDR) and can interact with the Chk1 pathway. However, little is known about how PTEN contributes to DDR through the ATM-Chk2 pathway. It is well-known that etoposide induces G2/M arrest in a variety of cell lines, including MCF-7 cells. The DNA damage-induced G2/M arrest results from the activation of protein kinase ataxia telangiectasia mutated (ATM), followed by the activation of Chk2 that subsequently inactivates CDC25C, resulting in G2/M arrest. In the present study, we assessed the contribution of PTEN to the etoposide-induced G2/M cell cycle arrest. PTEN was knocked down in MCF-7 cells by specific shRNA, and the effects of PTEN on the ATM-Chk2 pathway were investigated through various approaches. The results showed that knockdown of PTEN strongly antagonized ATM activation in response to etoposide treatment, and thereby reduced the phosphorylation level of ATM substrates, including H2AX, P53 and Chk2. Furthermore, depletion of PTEN reduced the etoposide-induced phosphorylation of CDC25C and strikingly compromised etoposide-induced G2/M arrest in the MCF-7 cells. Altogether, we demonstrated that PTEN plays a unique role in etoposide-induced G2/M arrest by facilitating the activation of the ATM pathway, and PTEN was required for the proper activation of checkpoints in response to DNA damage in MCF-7 cells.

  12. Unattached kinetochores rather than intrakinetochore tension arrest mitosis in taxol-treated cells

    PubMed Central

    Magidson, Valentin; He, Jie; Ault, Jeffrey G.; O’Connell, Christopher B.; Yang, Nachen; Tikhonenko, Irina; McEwen, Bruce F.

    2016-01-01

    Kinetochores attach chromosomes to the spindle microtubules and signal the spindle assembly checkpoint to delay mitotic exit until all chromosomes are attached. Light microscopy approaches aimed to indirectly determine distances between various proteins within the kinetochore (termed Delta) suggest that kinetochores become stretched by spindle forces and compact elastically when the force is suppressed. Low Delta is believed to arrest mitotic progression in taxol-treated cells. However, the structural basis of Delta remains unknown. By integrating same-kinetochore light microscopy and electron microscopy, we demonstrate that the value of Delta is affected by the variability in the shape and size of outer kinetochore domains. The outer kinetochore compacts when spindle forces are maximal during metaphase. When the forces are weakened by taxol treatment, the outer kinetochore expands radially and some kinetochores completely lose microtubule attachment, a condition known to arrest mitotic progression. These observations offer an alternative interpretation of intrakinetochore tension and question whether Delta plays a direct role in the control of mitotic progression. PMID:26833787

  13. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant.

    PubMed Central

    Rowan, S; Ludwig, R L; Haupt, Y; Bates, S; Lu, X; Oren, M; Vousden, K H

    1996-01-01

    The p53 tumor-suppressor gene product is frequently inactivated in malignancies by point mutation. Although most tumor-derived p53 mutants show loss of sequence specific transcriptional activation, some mutants have been identified which retain this activity. One such mutant, p53175P, is defective for the suppression of transformation in rodent cells, despite retaining the ability to suppress the growth of p53-null human cells. We now demonstrate that p53175P can induce a cell-cycle arrest in appropriate cell types but shows loss of apoptotic function. Our results therefore support a direct role of p53 transcriptional activation in mediating a cell-cycle arrest and demonstrate that such activity is not sufficient for the full apoptotic response. These data suggest that either p53 can induce apoptosis through a transcriptionally independent mechanism, a function lost by p53175P, or that this mutant has specifically lost the ability to activate genes which contribute to cell death, despite activation of genes responsible for the G1 arrest. This dissociation of the cell-cycle arrest and apoptotic activities of p53 indicates that inactivation of p53 apoptotic function without concomitant loss of growth inhibition can suffice to relieve p53-dependent tumor-suppression in vivo and thereby contribute to tumor development. Images PMID:8631304

  14. Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells.

    PubMed

    López, M E; Giordano, O S; López, L A

    2002-02-01

    Dehydroleucodine is a sesquiterpene lactone recently isolated from aerial parts of a medicinal herb, Artemisia douglasiana Besser. We have previously shown that 25 and 100 microM dehydroleucodine slowed down onion root growth by 30 and 70%, respectively, affecting neither cell viability nor cell elongation. In the present study we analyze the effect of dehydroleucodine on cell cycle phases in onion (Allium cepa L.) root meristematic cells synchronized with caffeine or caffeine and hydroxyurea. Synchronized root cells treated with 100 and 200 microM dehydroleucodine present an interphase lengthening of 5.2 h and 8.2 h, respectively. The S-phase length, estimated by [3H]thymidine incorporation assay, was 6 h for both control roots and roots that had been immersed in dehydroleucodine. The peak of [3H]leucine incorporation was observed 6 h after release from synchronization in controls and in dehydroleucodine-treated roots, indicating that protein synthesis in G2 was not affected. Thus, these results show that dose-dependently dehydroleucodine selectively induces a transient arrest of meristematic cell in G2 and that dehydroleucodine can be used experimentally as a cell cycle suppressor.

  15. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies

    PubMed Central

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-01-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation. PMID:28367072

  16. Low molecular weight apple polysaccharides induced cell cycle arrest in colorectal tumor.

    PubMed

    Li, Yuhua; Mei, Lin; Niu, Yinbo; Sun, Yang; Huang, Haitao; Li, Qian; Kong, Xianghe; Liu, Li; Li, Zhiquan; Mei, Qibing

    2012-04-01

    Dietary components play an important role in cancer prevention. Many ingredients from apples have been proven to have antitumor potency. We thus made low molecular weight apple polysaccharides (LMWAP) and evaluated the effects of it on colorectal cancer (CRC). The effects of LMWAP on human colon carcinoma cells (HT-29) were evaluated using a microarray. Then, cell-cycle distribution was measured by flow cytometric analysis. A colitis-associated colorectal cancer mouse model was used to assess the effect of LMWAP on in vivo CRC prevention. Treatment of HT-29 cells with LMWAP resulted in 333 genes expression over cutoff values (≥2-fold). Further analysis demonstrated that pathways of cell cycle were mainly influenced. At the concentrations from 0.001 to 0.1 mg/mL, LMWAP induced a G(0)/G(1) phase block in HT-29 cells in a dose-dependent way. In vivo studies revealed that administration of LMWAP could protect ICR mice against CRC effectively. The results of Western blot suggested LMWAP induced cell-cycle arrest in a p53 independent manner. These data indicate that LMWAP could inhibit the development of CRC through affecting cell cycle, and it has potential for clinical prevention for colon cancer.

  17. Jatamanvaltrate P induces cell cycle arrest, apoptosis and autophagy in human breast cancer cells in vitro and in vivo.

    PubMed

    Yang, Bo; Zhu, Rui; Tian, Shasha; Wang, Yiqi; Lou, Siyue; Zhao, Huajun

    2017-03-10

    Jatamanvaltrate P is a novel iridoid ester isolated from Valeriana jatamansi Jones, a traditional medicine used to treat nervous disorders. In this study, we found that Jatamanvaltrate P possessed notable antitumor properties and therefore evaluated its anticancer effects against human breast cancer cells in vitro and in vivo. Jatamanvaltrate P inhibited the growth and proliferation of MCF-7 and triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-453 and MDA-MB-468) in a concentration-dependent manner, while displayed relatively low cytotoxicity to human breast epithelial cells (MCF-10A). Treatment with Jatamanvaltrate P induced G2/M-phase arrest in TNBC and G0/G1-phase arrest in MCF-7 cells. Further study of the molecular mechanisms of this cytotoxic compound demonstrated that Jatamanvaltrate P enhanced cleavage of PARP and caspases, while decreased the expression levels of cell cycle-related Cyclin B1, Cyclin D1 and Cdc-2. It also activated autophagy, as indicated by the triggered autophagosome formation and increased LC3-II levels. Autophagy inhibition by 3-MA co-treatment undermined Jatamanvaltrate P-induced cell death. Finally, Jatamanvaltrate P exhibited a potential antitumor effect in MDA-MB-231 xenografts without apparent toxicity. These results suggest that Jatamanvaltrate P is a potential therapeutic agent for breast cancer, providing a basis for development of the compound as a novel chemotherapeutic agent.

  18. Disease and Carrier Isolates of Neisseria meningitidis Cause G1 Cell Cycle Arrest in Human Epithelial Cells

    PubMed Central

    von Papen, Michael; Oosthuysen, Wilhelm F.; Becam, Jérôme; Claus, Heike

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analyzed the effect of the human pathogen Neisseria meningitidis on the cell cycle of epithelial cells. Two pathogenic isolates, as well as two carrier isolates, were tested for their ability to adhere to and invade into the epithelial cell lines Detroit 562 and NP69 and to modulate the cell cycle. We found that all isolates adhered equally well to both Detroit 562 and NP69 cells, whereas the carrier isolates were significantly less invasive. Using propidium iodide staining and 5-ethynyl-2′-deoxyuridine pulse-labeling, we provide evidence that meningococcal infection arrested cells in the G1 phase of the cell cycle at 24 h postinfection. In parallel, a significant decrease of cells in the S phase was observed. Interestingly, G1-phase arrest was only induced after infection with live bacteria but not with heat-killed bacteria. By Western blotting we demonstrate that bacterial infection resulted in a decreased protein level of the cell cycle regulator cyclin D1, whereas cyclin E expression levels were increased. Furthermore, N. meningitidis infection induced an accumulation of the cyclin-dependent kinase inhibitor (CKI) p21WAF1/CIP1 that was accompanied by a redistribution of this CKI to the cell nucleus, as shown by immunofluorescence analysis. Moreover, the p27CIP1 CKI was redistributed and showed punctate foci in infected cells. In summary, we present data that N. meningitidis can interfere with the processes of host cell cycle regulation. PMID:27430269

  19. Apoptosis and G2/M arrest induced by Allium ursinum (ramson) watery extract in an AGS gastric cancer cell line

    PubMed Central

    Xu, Xiao-yan; Song, Guo-qing; Yu, Yan-qiu; Ma, Hai-ying; Ma, Ling; Jin, Yu-nan

    2013-01-01

    Background The present study was designed to determine whether Allium ursinum L (ramson) could inhibit the proliferation of human AGS gastric cancer cells. Furthermore, we attempted to determine whether this inhibition could occur by targeting regulatory elements of the cell cycle. Methods Flow cytometry was used to observe apoptosis and the cell cycle in AGS cell lines treated or not treated with ramson watery extract. Proteins related to the cell cycle were detected by Western blotting. Caspase activity was measured using a colorimetric assay kit according to the manufacturer’s instructions. Results Ramson watery extract induced apoptosis and G2/M phase arrest in AGS cells. Western blotting showed that cyclin B was inhibited by ramson watery extract. However, G1 phase-related proteins remain unchanged after treatment. Conclusion Our results indicate that ramson effectively sup pressed proliferation and induced apoptosis and G2/M arrest in AGS cells by regulating elements of the cell cycle. PMID:23836991

  20. Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest.

    PubMed

    Choi, Kyeong-Mi; Lee, Youn-Sun; Sin, Dong-Mi; Lee, Seunghyun; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2012-07-01

    Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.

  1. Neonatal bisphenol A exposure induces meiotic arrest and apoptosis of spermatogenic cells

    PubMed Central

    Xie, Meina; Bu, Pengli; Li, Fengjie; Lan, Shijian; Wu, Hongjuan; Yuan, Lu; Wang, Ying

    2016-01-01

    Bisphenol A (BPA) is a widely used industrial plasticizer, which is ubiquitously present in the environment and organisms. As an endocrine disruptor, BPA has caused significant concerns regarding its interference with reproductive function. However, little is known about the impact of BPA exposure on early testicular development. The aim of the present study was to investigate the influence of neonatal BPA exposure on the first wave of spermatogenesis. Newborn male mice were subcutaneously injected with BPA (0.01, 0.1 and 5 mg/kg body weight) daily from postnatal day (PND) 1 to 21. Histological analysis of testes at PND 22 revealed that BPA-treated testes contained mostly spermatogonia and spermatocytes with markedly less round spermatids, indicating signs of meiotic arrest. Terminal dUTP nick-end labeling (TUNEL) assay showed that BPA treatment significantly increased the number of apoptotic germ cells per tubule, which corroborated the observation of meiotic arrest. In addition, BPA caused abnormal proliferation of germ cells as revealed by Proliferating Cell Nuclear Antigen (PCNA) immunohistochemical staining. Mechanistically, BPA-treated testes displayed a complete lack of BOULE expression, which is a conserved key regulator for spermatogenesis. Moreover, BPA significantly increased the expression of estrogen receptor (ER) α and β in the developing testis. The present study demonstrated that neonatal BPA exposure disrupted meiosis progression during the first wave of spermatogenesis, which may be, at least in part, due to inhibition of BOULE expression and/or up-regulation of ERα/β expression in BPA-exposed developing testis. PMID:26863571

  2. Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ock; Choi, Yung Hyun; Hyun, Jin Won; Chang, Weon Young; Kim, Gi-Young

    2010-02-28

    We investigated the molecular effects of 3,4,2',4'-tetrahydroxychalcone (butein) treatment in two human hepatoma cancer cell lines-HepG2 and Hep3B. Butein treatment inhibited cancer cell growth by inducing G(2)/M phase arrest and apoptosis. Butein-induced G(2)/M phase arrest was associated with increased ATM, Chk1, and Chk2 phosphorylations and reduced cdc25C levels. Additionally, butein treatment enhanced inactivated phospho-Cdc2 levels, reduced Cdc2 kinase activity, and generated reactive oxygen species (ROS) that was accompanied by JNK activation. The extent of butein-induced G(2)/M phase arrest significantly decreased following pretreatment with N-acetyl-l-cysteine or glutathione and following JNK phosphorylation reduction by SP600125. Both N-acetyl-l-cysteine and glutathione also decreased butein-mediated apoptosis. Taken together, these results imply a critical role of ROS and JNK in the anticancer effects of butein.

  3. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    SciTech Connect

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-05-25

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  4. Knockdown of REGγ inhibits proliferation by inducing apoptosis and cell cycle arrest in prostate cancer

    PubMed Central

    Chen, Shaojun; Wang, Longsheng; Xu, Chen; Chen, Hui; Peng, Bo; Xu, Yunfei; Yao, Xudong; Li, Lei; Zheng, Junhua

    2017-01-01

    Prostate cancer (PCa) is the most common malignant tumor and the second leading cause of cancer related death among men in western countries. REGγ, a proteasome activator, is reported to play important roles in various human cancers. However, the expression patterns and potential roles of REGγ in prostate cancer have never been reported. In this study, we found for the first time that REGγ is overexpressed in prostate cancer tissues and cell lines at both protein and mRNA levels. In addition, we demonstrated that knockdown of REGγ significantly inhibited cell proliferation and induced apoptosis and cell cycle arrest in PCa cell lines PC-3 and DU145. Moreover, we observed that the expressions of P21 were increased while the levels of cycinD1 and bcl-2 were decreased after knockdown of REGγ in PCa cells. And the stabilization of P21 was enhanced after REGγ knockdown in PC-3 cells. In summary, our findings suggest that REGγ may play important roles in prostate cancer and may serve as a novel therapeutic target in the treatment of PCa patients. PMID:28861169

  5. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    PubMed

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  6. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas12

    PubMed Central

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-01-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas. PMID:21390190

  7. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  8. Glucosyltransferase Activity of Clostridium difficile Toxin B Triggers Autophagy-mediated Cell Growth Arrest.

    PubMed

    He, Ruina; Peng, Jingyu; Yuan, Pengfei; Yang, Junjiao; Wu, Xiaoji; Wang, Yinan; Wei, Wensheng

    2017-09-05

    Autophagy is a bulk cell-degradation process that occurs through the lysosomal machinery, and many reports have shown that it participates in microbial pathogenicity. However, the role of autophagy in Clostridium difficile infection (CDI), the leading cause of antibiotics-associated diarrhea, pseudomembranous colitis and even death in severe cases, is not clear. Here we report that the major virulent factor toxin B (TcdB) of Clostridium difficile elicits a strong autophagy response in host cells through its glucosyltransferase activity. Using a variety of autophagy-deficient cell lines, i.e. HeLa/ATG7 (-/-), MEF/atg7 (-/-), MEF/tsc2 (-/-), we demonstrate that toxin-triggered autophagy inhibits host cell proliferation, which contributes to TcdB-caused cytopathic biological effects. We further show that both the PI3K complex and mTOR pathway play important roles in this autophagy induction process and consequent cytopathic event. Although the glucosyltransferase activity of TcdB is responsible for inducing both cell rounding and autophagy, there is no evidence suggesting the causal relationship between these two events. Taken together, our data demonstrate for the first time that the glucosyltransferase enzymatic activity of a pathogenic bacteria is responsible for host autophagy induction and the following cell growth arrest, providing a new paradigm for the role of autophagy in host defense mechanisms upon pathogenic infection.

  9. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells.

    PubMed

    Lee, Seong-Ho; Cekanova, Maria; Baek, Seung Joon

    2008-03-01

    6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by beta-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G(1) cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of beta-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCepsilon and glycogen synthase kinase (GSK)-3beta pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G(1) cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as beta-catenin, PKCepsilon, and GSK-3beta pathways.

  10. Zoledronic acid exerts antitumor effects in NB4 acute promyelocytic leukemia cells by inducing apoptosis and S phase arrest.

    PubMed

    Liu, Shou-Sheng; Wang, Xiao-Pai; Li, Xiu-Bo; Liang, Jia-Yi; Liu, Ling-Ling; Lu, Ying; Zhong, Xue-Yun; Chen, Yun-Xian

    2014-10-01

    The aim of this study was to investigate the antitumor effect of zoledronic acid (ZOL) in the NB4 human acute promyelocytic leukemia (APL) cell line and explore the potential mechanism of action of this compound. NB4 cells were exposed to various concentrations (0-200μM) of ZOL. Cell viability was measured by MTS assay. The extent of cell apoptosis and distribution of cells in the different phases of the cell cycle were analyzed with flow cytometry. The expression of apoptosis- and cell cycle-related proteins was assayed by Western blot. The combined effect of ZOL and arsenic trioxide (ATO) on the proliferation of NB4 cells was also determined. The results of this study indicate that ZOL inhibits cell proliferation in a time- and dose-dependent fashion and also induces apoptosis and S phase arrest in a dose-dependent manner. The Western blot analysis confirmed the induction of apoptosis and S phase arrest, revealing that the pro-apoptosis proteins Bax, Puma and activated caspase-9 were upregulated and the anti-apoptosis proteins Bcl-2 and Bcl-xL were downregulated. ZOL at a concentration of 50μM synergized with 0.5μM ATO on the growth inhibition of NB4 cells. Taken together, our data indicate that ZOL exerts a potent antitumor effect on NB4 cells by inducing apoptosis and cell cycle arrest, and that ZOL can synergize with the traditional chemotherapy drug ATO.

  11. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    SciTech Connect

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-06-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-{pi} was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G{sub 2}-phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application.

  12. C-Myc regulates radiation-induced G2/M cell cycle arrest and cell death in human cervical cancer cells.

    PubMed

    Cui, Fengmei; Hou, Jun; Huang, Chengcheng; Sun, Xiujin; Zeng, Yanan; Cheng, Huiying; Wang, Hao; Li, Chao

    2017-04-01

    The study was conducted to investigate the role of c-Myc in the regulation of ionizing radiation-induced cell cycle arrest and cell death in human cervical cancer cells. Control and c-Myc-silenced Hela cells were collected at different time points after (60) Co γ-ray radiation. Flow cytometry was used to measure cell cycle distribution and apoptosis. Immunofluorescence was applied to determine the percentage of cells in M phase. Transmission electron microscopy and immunoblotting were used to detect the induction of autophagy after radiation. Immunoblotting was also used to measure the expression levels of apoptosis-related proteins. In c-Myc-silenced cells, radiation induced delayed but long-lasting G2/M arrest and an abnormal M phase compared with the control. In addition, c-Myc knockdown significantly inhibited apoptotic cell death induced by radiation. Meanwhile, radiation-induced autophagy appeared stronger in c-Myc-silenced cells. Mechanically, we found that Caspase 8 and survivin expression was decreased in c-Myc-silenced Hela-630 cells. These data showed that c-Myc serves as a co-regulator in radiation-induced G2/M cell cycle arrest and cell death in human cervical cancer cells. © 2017 Japan Society of Obstetrics and Gynecology.

  13. Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells.

    PubMed

    Xia, Zhengxiang; Zhang, Hong; Xu, Danqing; Lao, Yuanzhi; Fu, Wenwei; Tan, Hongsheng; Cao, Peng; Yang, Ling; Xu, Hongxi

    2015-06-19

    Two new xanthones, cowaxanthones G (1) and H (2), and 23 known analogues were isolated from an acetone extract of the leaves of Garcinia cowa. The isolated compounds were evaluated for cytotoxicity against three cancer cell lines and immortalized HL7702 normal liver cells, whereby compounds 1, 5, 8, and 15-17 exhibited significant cytotoxicity. Cell cycle analysis using flow cytometry showed that 5 induced cell cycle arrest at the S phase in a dose-dependent manner, 1 and 16 at the G2/M phase, and 17 at the G1 phase, while 16 and 17 induced apoptosis. Moreover, autophagy analysis by GFP-LC3 puncta formation and western blotting suggested that 17 induced autophagy. Taken together, our results suggest that these xanthones possess anticancer activities targeting cell cycle, apoptosis, and autophagy signaling pathways.

  14. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line.

    PubMed

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik; Daub, Carsten O; Balwierz, Piotr J; Irvine, Katharine M; Lassmann, Timo; Ravasi, Timothy; Hasegawa, Yuki; de Hoon, Michiel J L; Katayama, Shintaro; Schroder, Kate; Carninci, Piero; Tomaru, Yasuhiro; Kanamori-Katayama, Mutsumi; Kubosaki, Atsutaka; Akalin, Altuna; Ando, Yoshinari; Arner, Erik; Asada, Maki; Asahara, Hiroshi; Bailey, Timothy; Bajic, Vladimir B; Bauer, Denis; Beckhouse, Anthony G; Bertin, Nicolas; Björkegren, Johan; Brombacher, Frank; Bulger, Erika; Chalk, Alistair M; Chiba, Joe; Cloonan, Nicole; Dawe, Adam; Dostie, Josee; Engström, Pär G; Essack, Magbubah; Faulkner, Geoffrey J; Fink, J Lynn; Fredman, David; Fujimori, Ko; Furuno, Masaaki; Gojobori, Takashi; Gough, Julian; Grimmond, Sean M; Gustafsson, Mika; Hashimoto, Megumi; Hashimoto, Takehiro; Hatakeyama, Mariko; Heinzel, Susanne; Hide, Winston; Hofmann, Oliver; Hörnquist, Michael; Huminiecki, Lukasz; Ikeo, Kazuho; Imamoto, Naoko; Inoue, Satoshi; Inoue, Yusuke; Ishihara, Ryoko; Iwayanagi, Takao; Jacobsen, Anders; Kaur, Mandeep; Kawaji, Hideya; Kerr, Markus C; Kimura, Ryuichiro; Kimura, Syuhei; Kimura, Yasumasa; Kitano, Hiroaki; Koga, Hisashi; Kojima, Toshio; Kondo, Shinji; Konno, Takeshi; Krogh, Anders; Kruger, Adele; Kumar, Ajit; Lenhard, Boris; Lennartsson, Andreas; Lindow, Morten; Lizio, Marina; Macpherson, Cameron; Maeda, Norihiro; Maher, Christopher A; Maqungo, Monique; Mar, Jessica; Matigian, Nicholas A; Matsuda, Hideo; Mattick, John S; Meier, Stuart; Miyamoto, Sei; Miyamoto-Sato, Etsuko; Nakabayashi, Kazuhiko; Nakachi, Yutaka; Nakano, Mika; Nygaard, Sanne; Okayama, Toshitsugu; Okazaki, Yasushi; Okuda-Yabukami, Haruka; Orlando, Valerio; Otomo, Jun; Pachkov, Mikhail; Petrovsky, Nikolai; Plessy, Charles; Quackenbush, John; Radovanovic, Aleksandar; Rehli, Michael; Saito, Rintaro; Sandelin, Albin; Schmeier, Sebastian; Schönbach, Christian; Schwartz, Ariel S; Semple, Colin A; Sera, Miho; Severin, Jessica; Shirahige, Katsuhiko; Simons, Cas; St Laurent, George; Suzuki, Masanori; Suzuki, Takahiro; Sweet, Matthew J; Taft, Ryan J; Takeda, Shizu; Takenaka, Yoichi; Tan, Kai; Taylor, Martin S; Teasdale, Rohan D; Tegnér, Jesper; Teichmann, Sarah; Valen, Eivind; Wahlestedt, Claes; Waki, Kazunori; Waterhouse, Andrew; Wells, Christine A; Winther, Ole; Wu, Linda; Yamaguchi, Kazumi; Yanagawa, Hiroshi; Yasuda, Jun; Zavolan, Mihaela; Hume, David A; Arakawa, Takahiro; Fukuda, Shiro; Imamura, Kengo; Kai, Chikatoshi; Kaiho, Ai; Kawashima, Tsugumi; Kawazu, Chika; Kitazume, Yayoi; Kojima, Miki; Miura, Hisashi; Murakami, Kayoko; Murata, Mitsuyoshi; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Ogawa, Chihiro; Sano, Takuma; Simon, Christophe; Tagami, Michihira; Takahashi, Yukari; Kawai, Jun; Hayashizaki, Yoshihide

    2009-05-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.

  15. Cancer Preventive Efficacy of Marine Carotenoid Fucoxanthin: Cell Cycle Arrest and Apoptosis

    PubMed Central

    Rengarajan, Thamaraiselvan; Rajendran, Peramaiyan; Nandakumar, Natarajan; Periyasamy Balasubramanian, Maruthaiveeran; Nishigaki, Ikuo

    2013-01-01

    Epidemiological investigations have shown that overcoming the risk of cancer is related to the consumption of green vegetables and fruits. Many compounds from different origins, such as terrestrial plants and marine and microbial sources, have been reported to have therapeutic effects of which marine sources are the most important because the diversity of marine life is more varied than other sources. Fucoxanthin is one important compound with a marine origin and belongs to the group of carotenoids; it can be found in marine brown seaweeds, macroalgae, and diatoms, all of which have remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable medicinal potential and promising applications in human health. In this review, we summarize the anticancer effects of fucoxanthin through several different mechanisms including anti-proliferation, induction of apoptosis, cell cycle arrest and anti-angiogenesis, and its possible role in the treatment of cancer. PMID:24322524

  16. Chitin as a scaffold for mesenchymal stem cells transfers in the treatment of partial growth arrest.

    PubMed

    Li, Li; Hui, James Hoi Po; Goh, James Cho Hong; Chen, Fen; Lee, Eng Hin

    2004-01-01

    To investigate the feasibility of using chitin, a natural polymer, as a scaffold to repair large growth plate defects (50% of physis) in immature rabbits, mesenchymal stem cells (MSCs) were harvested from periosteum. The compatibilities of chitin with the MSCs were investigated in vitro using immunohistochemistry and fluorescence confocal microscopy. The results showed high compatibilities of chitin. An experimental model of growth arrest was created by excising the medial half of the proximal growth plate of the tibia in 6-week-old New Zealand White rabbits. The physeal defect after excision of the bony bridge was transplanted either with no interposition (group 1), chitin alone (group 2), or chitin with MSCs (group 3). In groups 2 and 3, both angulatory deformities and length discrepancies of the tibia were corrected. The differences between group 3 and group 1 were greater than those between group 2 and group 1.

  17. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation

    PubMed Central

    Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC. PMID:23382917

  18. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    PubMed

    Zhang, Zhong Rong; Al Zaharna, Mazen; Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  19. Dietary restriction and fasting arrest B and T cell development and increase mature B and T cell numbers in bone marrow.

    PubMed

    Shushimita, Shushimita; de Bruijn, Marjolein J W; de Bruin, Ron W F; IJzermans, Jan N M; Hendriks, Rudi W; Dor, Frank J M F

    2014-01-01

    Dietary restriction (DR) delays ageing and extends life span. Both long- and short-term DR, as well as short-term fasting provide robust protection against many "neuronal and surgery related damaging phenomena" such as Parkinson's disease and ischemia-reperfusion injury. The exact mechanism behind this phenomenon has not yet been elucidated. Its anti-inflammatory actions prompted us to thoroughly investigate the consequences of DR and fasting on B and T cell compartments in primary and secondary lymphoid organs of male C57Bl/6 mice. In BM we found that DR and fasting cause a decrease in the total B cell population and arrest early B cell development, while increasing the number of recirculating mature B cells. In the fasting group, a significant reduction in peripheral B cell counts was observed in both spleen and mesenteric lymph nodes (mLN). Thymopoiesis was arrested significantly at double negative DN2 stage due to fasting, whereas DR resulted in a partial arrest of thymocyte development at the DN4 stage. Mature CD3(+) T cell populations were increased in BM and decreased in both spleen and mLN. Thus, DR arrests B cell development in the BM but increases the number of recirculating mature B cells. DR also arrests maturation of T cells in thymus, resulting in depletion of mature T cells from spleen and mLN while recruiting them to the BM. The functional relevance in relation to protection against organ damage needs to be determined.

  20. Cytotoxic 3,4,5-trimethoxychalcones as mitotic arresters and cell migration inhibitors

    PubMed Central

    Salum, Lívia B.; Altei, Wanessa F.; Chiaradia, Louise D.; Cordeiro, Marlon N.S.; Canevarolo, Rafael R.; Melo, Carolina P.S.; Winter, Evelyn; Mattei, Bruno; Daghestani, Hikmat N.; Santos-Silva, Maria Cláudia; Creczynski-Pasa, Tânia B.; Yunes, Rosendo A.; Yunes, José A.; Andricopulo, Adriano D.; Day, Billy W.; Nunes, Ricardo J.; Vogt, Andreas

    2013-01-01

    Based on classical colchicine site ligands and a computational model of the colchicine binding site on beta tubulin, two classes of chalcone derivatives were designed, synthesized and evaluated for inhibition of tubulin assembly and toxicity in human cancer cell lines. Docking studies suggested that the chalcone scaffold could fit the colchicine site on tubulin in an orientation similar to that of the natural product. In particular, a 3,4,5-trimethoxyphenyl ring adjacent to the carbonyl group appeared to benefit the ligand-tubulin interaction, occupying the same subcavity as the corresponding moiety in colchicine. Consistent with modeling predictions, several 3,4,5-trimethoxychalcones showed improved cytotoxicity to murine acute lymphoblastic leukemia cells compared with a previously described parent compound, and inhibited tubulin assembly in vitro as potently as colchicine. The most potent chalcones inhibited the growth of human leukemia cell lines at nanomolar concentrations, caused microtubule destabilization and mitotic arrest in human cervical cancer cells, and inhibited human breast cancer cell migration in scratch wound and Boyden chamber assays. PMID:23524161

  1. Protein expression following gamma-irradiation relevant to growth arrest and apoptosis in colon cancer cells.

    PubMed

    Pfeifer, Daniella; Wallin, Asa; Holmlund, Birgitta; Sun, Xiao-Feng

    2009-11-01

    To study expression of proteins previously connected to radiotherapy response in rectal cancer patients, namely, p53, TAp73, DeltaNp73, survivin and PRL-3, after irradiation in colon cancer cells to gain standing ground for further studies of pathways and mechanisms. Three colon cancer cell lines (KM12C, KM12SM and KM12L4a) with one origin were radiated with gamma-radiation. Radiosensitivity was determined with cell cycle, survival fraction at 5 Gy (SF5) and apoptosis analysis and protein expression by Western blot. Following irradiation, KM12C showed no cell cycle arrest, and low SF5 and apoptosis, whilst KM12L4a showed high SF5 and apoptosis. KM12SM had moderate radiosensitivity. After irradiation, the anti-apoptotic DeltaNp73 and mitosis-factor PRL-3 increased in KM12C and the radioresistance factor survivin increased in KM12L4a. The cell lines seem to have evolved different protein patterns regarding the studied proteins and partly therefore developed different resistance mechanisms, less apoptosis for KM12C and continued proliferation for KM12L4a, after gamma-irradiation.

  2. Ellagic acid suppresses lipid accumulation by suppressing early adipogenic events and cell cycle arrest.

    PubMed

    Woo, Mi-Seon; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Lee, Boo-Yong

    2015-03-01

    Ellagic acid (EA) is a natural polyphenol found in various fruits and vegetables. In this study, we examined the inhibitory effect of EA on fat accumulation in 3T3-L1 cells during adipogenesis. Our data showed that EA reduced fat accumulation by down-regulating adipogenic markers such as peroxisome proliferator activated receptor γ (PPARγ) and the CCAAT/enhancer binding protein α (C/EBPα) at the mRNA and protein levels in a dose-dependent manner. We found that the decrease in adipogenic markers resulted from reduced expression of some early adipogenic transcription factors such as KLF4, KLF5, Krox20, and C/EBPβ within 24 h. Also, these inhibitions were correlated with down-regulation of TG synthetic enzymes, causing inhibition of triglyceride (TG) levels in 3T3-L1 cells investigated by ORO staining and in zebrafish investigated by TG assay. Additionally, the cell cycle analysis showed that EA inhibited cell cycle progression by arresting cells at the G0/G1 phase.

  3. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study.

    PubMed

    Wang, Hualin; Zhang, Jing; Sit, Wai-Hung; Lee, Chung-Yung Jetty; Wan, Jennifer Man-Fan

    2014-01-01

    Cordyceps cicadae is a medicinal fungus that is often used for treating cancer. However, the anticancer mechanisms of C. cicadae are largely unknown. This study aims to investigate the anticancer mechanisms of C. cicadae against hepatocellular carcinoma cells in vitro using a proteomic approach. Human hepatocellular carcinoma MHCC97H cells were treated with a water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) for 48 h and harvested for cell viability assays. The significant differences in protein expression between control and C. cicadae-treated cells were analyzed by two-dimensional gel-based proteomics coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry. Flow cytometry analysis was employed to investigate the cell cycle and cell death. The anticancer molecular mechanism was analyzed by whole proteome mapping. The water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) inhibited the growth of MHCC97H cells in a dose-dependent manner via G2/M phase cell cycle arrest with no evidence of apoptosis. Among the identified proteins with upregulated expression were dynactin subunit 2, N-myc downstream-regulated gene 1, heat shock protein beta-1, alpha-enolase isoform 1, phosphatidylinositol transfer protein, and WD repeat-containing protein 1. Meanwhile, the proteins with downregulated expression were 14-3-3 gamma, BUB3, microtubule-associated protein RP/EB family member 1, thioredoxin-like protein, chloride intracellular channel protein 1, ectonucleoside triphosphate diphosphohydrolase 5, xaa-Pro dipeptidase, enoyl-CoA delta isomerase 1, protein-disulfide isomerase-related chaperone Erp29, hnRNP 2H9B, peroxiredoxin 1, WD-40 repeat protein, and serine/threonine kinase receptor-associated protein. The water extract of C. cicadae reduced the growth of human hepatocellular carcinoma MHCC97H cells via G2/M cell cycle arrest.

  4. Rice hull extracts inhibit proliferation of MCF-7 cells with G₁ cell cycle arrest in parallel with their antioxidant activity.

    PubMed

    Chung, Nam-Jin; Choi, Ki-Choon; Lee, Seung-Ah; Baek, Jin-A; Lee, Jeong-Chae

    2015-03-01

    Rice (Oryza sativa L.) has been a major dietary staple worldwide for centuries. Growing interest in the beneficial effects of antioxidants has inspired investigation of rice hulls as an attractive source of chemopreventive compounds for breast cancer intervention. We prepared methanol extracts from rice hulls of three Korean bred cultivars (japonica), Ilpum, Heugjinju, and Jeogjinju, and one japonica weedy rice, WD-3. We examined the antiproliferative potential of the hull extracts on MCF-7 human breast cancer cells and the related mechanisms thereof. Hull extracts inhibited proliferation of the cells and mediated G0/G1 phase arrest by suppressing cyclins and cyclin-dependent kinases, where WD-3 extract showed the most potent. Blockage of p21 expression by small interfering RNA transfection attenuated G1 phase arrest induced by WD-3 extract. The WD-3 extract exhibited greater antioxidant potential and total phenolic compounds, compared with other rice hulls. Gas chromatography-mass spectrometry analysis for the F4 fractioned from WD-3 extract revealed that cinnamic acid derivatives were the major active constituents. The F4 fraction most potently inhibited proliferation of MCF-7 cells than WD-3 extract through the suppression of cell cycle regulatory factors. Collectively, our results suggest that the pigmented rice hulls possess greater antioxidant and chemopreventive activity against breast cancer than the other rice cultivars tested, demonstrating that WD-3 rice hulls are an attractive source of chemopreventive bioactive compounds.

  5. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells.

    PubMed

    Weng, Jing-Ru; Bai, Li-Yuan; Lin, Wei-Yu; Chiu, Chang-Fang; Chen, Yu-Chang; Chao, Shi-Wei; Feng, Chia-Hsien

    2017-03-15

    Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4'-dimethoxy-3',5,7-trihydroxyflavone (compound 1), along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50) values ranging from 3.3 μM (MCF-7) to 8.6 μM (SCC4). Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1's modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2), CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2) and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.

  6. CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells.

    PubMed

    Liu, Xuejiao; Chong, Yulong; Liu, Huize; Han, Yan; Niu, Mingshan

    2016-03-01

    Abnormal localization of tumor suppressor proteins is a common feature of renal cancer. Nuclear export of these tumor suppressor proteins is mediated by chromosome region maintenance-1 (CRM1). Here, we investigated the antitumor eff ects of a novel reversible inhibitor of CRM1 on renal cancer cells. We found that S109 inhibits the CRM1-mediated nuclear export of RanBP1 and reduces protein levels of CRM1. Furthermore, the inhibitory eff ect of S109 on CRM1 is reversible. Our data demonstrated that S109 signifi cantly inhibits proliferation and colony formation of renal cancer cells. Cell cycle assay showed that S109 induced G1-phase arrest, followed by the reduction of Cyclin D1 and increased expression of p53 and p21. We also found that S109 induces nuclear accumulation of tumor suppressor proteins, Foxo1 and p27. Most importantly, mutation of CRM1 at Cys528 position abolished the eff ects of S109. Taken together, our results indicate that CRM1 is a therapeutic target in renal cancer and the novel reversible CRM1 inhibitor S109 can act as a promising candidate for renal cancer therapy.

  7. Momordica cochinchinensis Spreng. seed extract suppresses breast cancer growth by inducing cell cycle arrest and apoptosis.

    PubMed

    Zheng, Lei; Zhang, Yanmin; Liu, Yanping; Yang, Xiaoyan Ou; Zhan, Yingzhuan

    2015-10-01

    The herb Momordica cochinchinensis has been used for a variety of purposes, and been shown to have anti‑cancer properties. The present study assessed the potency and the underlying mechanisms of action of the ethyl acetate extract of seeds of Momordica cochinchinensis (ESMC2) on breast cancer cells. Therefore, the effects of ESMC2 on the cell viability, cell cycle and apoptosis of MDA‑MB‑231 cells were investigated. The results showed that ESMC2 exerted a marked growth inhibitory effect on the cells. Cell cycle arrest in G2 phase following treatment with ESMC2 was associated with a marked increase in the protein levels of cyclin B1, cyclin E and cyclin-dependent kinase 1 and a decrease in cyclin D1 expression. In addition, ESMC2 dose‑dependently induced cell apoptosis, which was mediated via upregulation of the apoptosis-associated proteins p53, B-cell lymphoma 2 (Bcl‑2)‑associated X protein, Bcl-2 homologous antagonist killer and Bcl-2-associated death promoter expression, as well as downregulation of nuclear factor kappa B, Bcl‑2 and myeloid cell leukemia‑1. Furthermore, the activation of extracellular signal-regulated kinase 1/2, p38, c-Jun N-terminal kinase (JNK) and Akt phosphorylation were decreased by ESMC2 in a dose‑dependent manner, indicating that ESMC2 exerted its effects via the mitogen-activated protein kinase/JNK pathway. Furthermore, nude mouse xenotransplant models were used to evaluate the tumor growth inhibitory effects of ESMC2. The possible chemical components of ESMC2 were analyzed by gas chromatography-mass spectrometry, and 12 compounds were detected from the major peaks based on the similarity index with entries of a compound database. The results of the present study may aid in the development of novel therapies for breast cancer.

  8. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    SciTech Connect

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed.

  9. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis.

    PubMed

    Lee, Hwan Hee; Lee, Seulki; Lee, Kanghyo; Shin, Yu Su; Kang, Hyojeung; Cho, Hyosun

    2015-07-04

    Cordyceps militaris has been used as a traditional medicine in Asian countries for a long time. Different types of Cordyceps extract were reported to have various pharmacological activities including an anti-cancer effect. We investigated the inhibitory effect of Cordyceps militaris ethanol extract on a human colorectal cancer-derived cell line, RKO. RKO cells were treated with various concentrations of nucleosides-enriched ethanol extract of Cordyceps militaris for 48 h and cytotoxicity was measured using a CCK-8 assay. Then, xenograft Balb/c nude mice were injected with RKO cells and subsequently orally administered with ethanol extract of Cordyceps militaris every day for 3 weeks to examine the inhibitory effect on tumor growth. Lastly, the effect of Cordyceps militaris on cell cycle as well as apoptosis was measured using flow cytometry. Also, the expression of p53, caspase 9, cleaved caspase-3, cleaved PARP, Bim, Bax, Bak, and Bad were detected using western blot assay. RKO cells were highly susceptible to the ethanol extract of Cordyceps militaris (CME) and the growth of RKO cells-derived tumor was significantly delayed by the treatment of Cordyceps militaris. Cordyceps militaris induced cell cycle arrest in G2/M phase (untreated; 20.5 %, CME 100 μg/ml; 61.67 %, CME 300 μg/ml; 66.33 %) and increased early apoptosis (untreated; 1.01 %, CME 100 μg/ml; 8.48 %, CME 300 μg/ml; 18.07 %). The expression of p53, cleaved caspase 9, cleaved caspase-3, cleaved PARP, Bim, Bak, and Bad were upregulated by the treatment of Cordyceps militaris. Ethanol extract of Cordyceps militaris was highly cytotoxic to human colorectal carcinoma RKO cells and inhibited the growth of tumor in xenograft model. The anti-tumor effect of Cordyceps militaris was associated with an induction of cell cycle arrest and mitochondrial-mediated apoptosis.

  10. Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis

    PubMed Central

    Albini, Sonia; Coutinho Toto, Paula; Dall’Agnese, Alessandra; Malecova, Barbora; Cenciarelli, Carlo; Felsani, Armando; Caruso, Maurizia; Bultman, Scott J; Puri, Pier Lorenzo

    2015-01-01

    Although the two catalytic subunits of the SWI/SNF chromatin-remodeling complex—Brahma (Brm) and Brg1—are almost invariably co-expressed, their mutually exclusive incorporation into distinct SWI/SNF complexes predicts that Brg1- and Brm-based SWI/SNF complexes execute specific functions. Here, we show that Brg1 and Brm have distinct functions at discrete stages of muscle differentiation. While Brg1 is required for the activation of muscle gene transcription at early stages of differentiation, Brm is required for Ccnd1 repression and cell cycle arrest prior to the activation of muscle genes. Ccnd1 knockdown rescues the ability to exit the cell cycle in Brm-deficient myoblasts, but does not recover terminal differentiation, revealing a previously unrecognized role of Brm in the activation of late muscle gene expression independent from the control of cell cycle. Consistently, Brm null mice displayed impaired muscle regeneration after injury, with aberrant proliferation of satellite cells and delayed formation of new myofibers. These data reveal stage-specific roles of Brm during skeletal myogenesis, via formation of repressive and activatory SWI/SNF complexes. PMID:26136374

  11. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer

    PubMed Central

    Dubeykovskaya, Zina; Si, Yiling; Chen, Xiaowei; Worthley, Daniel L.; Renz, Bernhard W.; Urbanska, Aleksandra M.; Hayakawa, Yoku; Xu, Ting; Westphalen, C. Benedikt; Dubeykovskiy, Alexander; Chen, Duan; Friedman, Richard A.; Asfaha, Samuel; Nagar, Karan; Tailor, Yagnesh; Muthupalani, Sureshkumar; Fox, James G.; Kitajewski, Jan; Wang, Timothy C.

    2016-01-01

    CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity. Here we show that splenic TFF2, a secreted anti-inflammatory peptide, is released by vagally modulated memory T cells to suppress the expansion of MDSCs through CXCR4. Splenic denervation interrupts the anti-inflammatory neural arc, resulting in the expansion of MDSCs and colorectal cancer. Deletion of Tff2 recapitulates splenic denervation to promote carcinogenesis. Colorectal carcinogenesis could be suppressed through transgenic overexpression of TFF2, adenoviral transfer of TFF2 or transplantation of TFF2-expressing bone marrow. TFF2 is important to the anti-inflammatory reflex arc and plays an essential role in arresting MDSC proliferation. TFF2 offers a potential approach to prevent and to treat cancer. PMID:26841680

  12. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  13. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma.

    PubMed

    Zhao, Yuan; Zhang, Bo; Lei, Yu; Sun, Jingying; Zhang, Yaohua; Yang, Sen; Zhang, Xuejun

    2016-10-01

    The spliceosome machinery composed of multimeric protein complexes guides precursor messenger RNAs (mRNAs) (pre-mRNAs) splicing in eukaryotic cells. Spliceosome components have been shown to be downregulated in cancer and could be a promising molecular target for anticancer therapy. The ubiquitin-specific protease 39 (USP39) is essential for pre-mRNA splicing, and upregulated USP39 expression is noted in a variety of cancers. However, the role of USP39 in the development and progression of melanoma remains unclear. In the present study, USP39 expression was found to be increased in melanoma tissues compared with that in nevus tissues. USP39 silencing via lentivirus-mediated short hairpin RNA (shRNA) significantly suppressed melanoma cell proliferation, induced G0/G1 cell cycle phase arrest, and increased apoptosis in vitro. Moreover, USP39 knockdown suppressed melanoma tumor growth in a xenograft model. In addition, USP39 silencing was associated with the increased expressions of p21, p27, and Bax. Furthermore, the inhibition of USP39 expression decreased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, indicating that ERK signaling pathways might be involved in the regulation of melanoma cell proliferation by USP39. Our findings suggest that USP39 may play crucial roles in the development and pathogenesis of melanoma, and it may serve as a potential therapeutic target for melanoma.

  14. Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells.

    PubMed

    Luo, Lian-Xiang; Li, Ying; Liu, Zhong-Qiu; Fan, Xing-Xing; Duan, Fu-Gang; Li, Run-Ze; Yao, Xiao-Jun; Leung, Elaine Lai-Han; Liu, Liang

    2017-01-01

    Aberrant signaling transduction induced by mutant KRAS proteins occurs in 20∼30% of non-small cell lung cancer (NSCLC), however, a direct and effective pharmacological inhibitor targeting KRAS has not yet reached the clinic to date. Honokiol, a small molecular polyphenol natural biophenolic compound derived from the bark of magnolia trees, exerts anticancer activity, however, its mechanism remains unknown. In this study, we sought to investigate the in vitro effects of honokiol on NSCLC cell lines harboring KRAS mutations. Honokiol was shown to induce G1 arrest and apoptosis to inhibit the growth of KRAS mutant lung cancer cells, which was weakened by an autophagy inhibitor 3-methyladenine (3-MA), suggesting a pro-apoptotic role of honokiol-induced autophagy that was dependent on AMPK-mTOR signaling pathway. In addition, we also discovered that Sirt3 was significantly up-regulated in honokiol treated KRAS mutant lung cancer cells, leading to destabilization of its target gene Hif-1α, which indicated that the anticancer property of honokiol maybe regulated via a novel mechanism associated with the Sirt3/Hif-1α. Taken together, these results broaden our understanding of the mechanisms on honokiol effects in lung cancer, and reinforce the possibility of its potential anticancer benefit as a popular Chinese herbal medicine (CHM).

  15. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner

    PubMed Central

    Klumpp, Dominik; Misovic, Milan; Szteyn, Kalina; Shumilina, Ekaterina; Rudner, Justine; Huber, Stephan M.

    2016-01-01

    Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+ signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation. PMID:26839633

  16. Anthocyanins from roselle extract arrest cell cycle G2/M phase transition via ATM/Chk pathway in p53-deficient leukemia HL-60 cells.

    PubMed

    Tsai, Tsung-Chang; Huang, Hui-Pei; Chang, Kai-Ting; Wang, Chau-Jong; Chang, Yun-Ching

    2017-04-01

    Cell cycle regulation is an important issue in cancer therapy. Delphinidin and cyanidin are two major anthocyanins of the roselle plant (Hibiscus sabdariffa). In the present study, we investigated the effect of Hibiscus anthocyanins (HAs) on cell cycle arrest in human leukemia cell line HL-60 and the analyzed the underlying molecular mechanisms. HAs extracted from roselle calyces (purity 90%) markedly induced G2/M arrest evaluated with flow cytometry analysis. Western blot analyses revealed that HAs (0.1-0.7 mg mL(-1) ) induced G2/M arrest via increasing Tyr15 phosphorylation of Cdc2, and inducing Cdk inhibitors p27 and p21. HAs also induced phosphorylation of upstream signals related to G2/M arrest such as phosphorylation of Cdc25C tyrosine phosphatase at Ser216, increasing the binding of pCdc25C with 14-3-3 protein. HAs-induced phosphorylation of Cdc25C could be activated by ATM checkpoint kinases, Chk1, and Chk2. We first time confirmed that ATM-Chk1/2-Cdc25C pathway as a critical mechanism for G2/M arrest in HAs-induced leukemia cell cycle arrest, indicating that this compound could be a promising anticancer candidate or chemopreventive agents for further investigation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1290-1304, 2017.

  17. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    SciTech Connect

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  18. AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Romanini, Antonella; Pellegrino, Mario; Adinolfi, Barbara; Podestà, Adriano; Costa, Barbara; Da Pozzo, Eleonora; Martini, Claudia; Breschi, Maria Cristina; Nieri, Paola

    2015-08-01

    Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.

  19. The molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum

    PubMed Central

    Yin, Heng; Jiang, Min; Peng, Xi; Cui, Hengmin; Zhou, Yi; He, Min; Zuo, Zhicai; Ouyang, Ping; Fan, Junde; Fang, Jing

    2016-01-01

    Aflatoxin B1 (AFB1) has potent hepatotoxic, carcinogenic, genotoxic, immunotoxic and other adverse effects in human and animals. The aim of this study was to investigate the molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum of broilers. Broilers, as experimental animals, were fed 0.6 mg/kg AFB1 diet for 3 weeks. Our results showed that AFB1 reduced the jejunal villus height, villus height/crypt ratio and caused G2/M cell cycle arrest. The G2/M cell cycle was accompanied by the increase of ataxia telangiectasia mutated (ATM), p53, Chk2, p21 protein and mRNA expression, and the decrease of Mdm2, cdc25C, cdc2, cyclin B and proliferating cell nuclear antigen protein and mRNA expression. In conclusion, AFB1 blocked G2/M cell cycle by ATM pathway in the jejunum of broilers. PMID:27232757

  20. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    PubMed

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma.

  1. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development

    SciTech Connect

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.

  2. Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis.

    PubMed

    Tian, Cheng-Lei; Wen, Qian; Fan, Ting-Jun

    2015-10-01

    Atropine is an anticholinergic drug for mydriasis in eye clinic, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of atropine to the cornea and its cellular and molecular mechanisms remain unknown. In this study, we investigated the cytotoxicity of atropine to corneal epithelium and its underlying mechanisms using an in vitro model of non-transfected human corneal epithelial (HCEP) cells. Our results showed that atropine, above the concentration of 0.3125 g/l (1/32 of its therapeutic dosage in eye clinic), had a dose- and time-dependent toxicity to HCEP cells by inducing morphological abnormality, cytopathic effect, viability decline, and proliferation retardation. Moreover, the proliferation-retarding effect of atropine on the cells was achieved by inducing G1/S phase arrest and downregulation of E-cadherin and β-catenin. Besides, atropine also had an apoptosis-inducing effect on the cells by inducing phosphatidylserine externalization, plasma membrane permeability elevation, DNA fragmentation and apoptotic body formation. Furthermore, atropine could also induce activations of caspase-2, -3 and -9, disruption of mitochondrial transmembrane potential, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor, implying a death receptor-mediated mitochondrion-dependent pathway is most probably involved in the apoptosis of HCEP cells induced by atropine. Taken together, our results suggest that atropine has remarkable cytotoxicity to HCEP cells by inducing cell cycle arrest and death receptor-mediated mitochondrion-dependent apoptosis.

  3. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis.

    PubMed

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-06-17

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.

  4. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    PubMed Central

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-01-01

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway. PMID:27322250

  5. Thimerosal induces apoptosis and G2/M phase arrest in human leukemia cells.

    PubMed

    Woo, Kyung Jin; Lee, Tae-Jin; Bae, Jae Hoon; Jang, Byeong-Churl; Song, Dae-Kyu; Cho, Jae-We; Suh, Seong-Il; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-09-01

    Thimerosal is an organomercury compound with sulfhydryl-reactive properties. The ability of thimerosal to act as a sulfhydryl group is related to the presence of mercury. Due to its antibacterial effect, thimerosal is widely used as preservatives and has been reported to cause chemically mediated side effects. In the present study, we showed that the molecular mechanism of thimerosal induced apoptosis in U937 cells. Thimerosal was shown to be responsible for the inhibition of U937 cells growth by inducing apoptosis. Treatment with 2.5-5 microM thimerosal but not thiosalicylic acid (structural analog of thimerosal devoid of mercury) for 12 h produced apoptosis, G(2)/M phase arrest, and DNA fragmentation in a dose-dependent manner. Treatment with caspase inhibitor significantly reduced thimerosal-induced caspase 3 activation. In addition, thimerosal-induced apoptosis was attenuated by antioxidant Mn (III) meso-tetrakis (4-benzoic acid) porphyrin (Mn-TBAP). These data indicate that the cytotoxic effect of thimerosal on U937 cells is attributable to the induced apoptosis and that thimerosal-induced apoptosis is mediated by reactive oxygen species generation and caspase-3 activation.

  6. p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress

    PubMed Central

    Tudzarova, Slavica; Dey, Ayona; Stoeber, Kai; Okorokov, Andrei L.; Williams, Gareth H.

    2016-01-01

    ABSTRACT DNA replication initiation is a key event in the cell cycle, which is dependent on 2 kinases - CDK2 and CDC7. Here we report a novel mechanism in which p53 induces G1 checkpoint and cell cycle arrest by downregulating CDC7 kinase in response to genotoxic stress. We demonstrate that p53 controls CDC7 stability post-transcriptionally via miR-192/215 and post-translationally via Fbxw7β E3 ubiquitin ligase. The p53-dependent pathway of CDC7 downregulation is interlinked with the p53-p21-CDK2 pathway, as p21-mediated inhibition of CDK2-dependent phosphorylation of CDC7 on Thr376 is required for GSK3ß-phosphorylation and Fbxw7ß-dependent degradation of CDC7. Notably, sustained oncogenic high levels of active CDC7 exert a negative feedback onto p53, leading to unrestrained S-phase progression and accumulation of DNA damage. Thus, p53-dependent control of CDC7 levels is essential for blocking G1/S cell-cycle transition upon genotoxic stress, thereby safeguarding the genome from instability and thus representing a novel general stress response. PMID:27611229

  7. Clove Extract Inhibits Tumor Growth and Promotes Cell Cycle Arrest and Apoptosis

    PubMed Central

    Liu, Haizhou; Schmitz, John C.; Wei, Jianteng; Cao, Shousong; Beumer, Jan H.; Strychor, Sandra; Cheng, Linyou; Liu, Ming; Wang, Cuicui; Wu, Ning; Zhao, Xiangzhong; Zhang, Yuyan; Liao, Joshua; Chu, Edward; Lin, Xiukun

    2014-01-01

    Cloves (Syzygium aromaticum) have been used as a traditional Chinese medicinal herb for thousands of years. Cloves possess antiseptic, antibacterial, antifungal, and antiviral properties, but their potential anticancer activity remains unknown. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of ethyl acetate extract of cloves (EAEC) and the potential bioactive components responsible for its antitumor activity. The effects of EAEC on cell growth, cell cycle distribution, and apoptosis were investigated using human cancer cell lines. The molecular changes associated with the effects of EAEC were analyzed by Western blot and (qRT)-PCR analysis. The in vivo effect of EAEC and its bioactive component was investigated using the HT-29 tumor xenograft model. We identified oleanolic acid (OA) as one of the components of EAEC responsible for its antitumor activity. Both EAEC and OA display cytotoxicity against several human cancer cell lines. Interestingly, EAEC was superior to OA and the chemotherapeutic agent 5-fluorouracil at suppressing growth of colon tumor xenografts. EAEC promoted G0/G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. Treatment with EAEC and OA selectively increased protein expression of p21WAF1/Cip1 and γ-H2AX and downregulated expression of cell cycle-regulated proteins. Moreover, many of these changes were at the mRNA level, suggesting transcriptional regulation by EAEC treatment. Our results demonstrate that clove extract may represent a novel therapeutic herb for the treatment of colorectal cancer, and OA appears to be one of the bioactive components. PMID:24854101

  8. The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells.

    PubMed

    Singh, Raminder; Fröbel, Julia; Cadeddu, Ron-Patrick; Bruns, Ingmar; Schroeder, Thomas; Brünnert, Daniela; Wilk, Christian Matthias; Zerbini, Luiz Fernando; Haas, Rainer; Czibere, Akos

    2012-02-01

    Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Treatment of patients suffering from high-risk AML as defined by clinical parameters, cytogenetics, and/or molecular analyses is often unsuccessful. OSI-461 is a pro-apoptotic compound that has been proposed as a novel therapeutic option for patients suffering from solid tumors like prostate or colorectal carcinoma. But little is known about its anti-proliferative potential in AML. Hence, we treated bone marrow derived CD34(+) selected blast cells from 20 AML patients and the five AML cell lines KG-1a, THP-1, HL-60, U-937, and MV4-11 with the physiologically achievable concentration of 1 μM OSI-461 or equal amounts of DMSO as a control. Following incubation with OSI-461, we found a consistent induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle. In addition, we demonstrate that the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the pro-apoptotic cytokine mda-7/IL-24 and activation of the growth arrest and DNA-damage inducible genes (GADD) 45α and 45γ. Furthermore, OSI-461 treated leukemia cells did not regain their proliferative potential for up to 8 days after cessation of treatment following the initial 48 h treatment period with 1 μM OSI-461. This indicates sufficient targeting of the leukemia-initiating cells in our in vitro experiments through OSI-461. The AML samples tested in this study included samples from patients who were resistant to conventional chemotherapy and/or had FLT3-ITD mutations demonstrating the high potential of OSI-461 in human AML.

  9. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis.

    PubMed

    Liu, Haizhou; Schmitz, John C; Wei, Jianteng; Cao, Shousong; Beumer, Jan H; Strychor, Sandra; Cheng, Linyou; Liu, Ming; Wang, Cuicui; Wu, Ning; Zhao, Xiangzhong; Zhang, Yuyan; Liao, Joshua; Chu, Edward; Lin, Xiukun

    2014-01-01

    Cloves (Syzygium aromaticum) have been used as a traditional Chinese medicinal herb for thousands of years. Cloves possess antiseptic, antibacterial, antifungal, and antiviral properties, but their potential anticancer activity remains unknown. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of ethyl acetate extract of cloves (EAEC) and the potential bioactive components responsible for its antitumor activity. The effects of EAEC on cell growth, cell cycle distribution, and apoptosis were investigated using human cancer cell lines. The molecular changes associated with the effects of EAEC were analyzed by Western blot and (qRT)-PCR analysis. The in vivo effect of EAEC and its bioactive component was investigated using the HT-29 tumor xenograft model. We identified oleanolic acid (OA) as one of the components of EAEC responsible for its antitumor activity. Both EAEC and OA display cytotoxicity against several human cancer cell lines. Interestingly, EAEC was superior to OA and the chemotherapeutic agent 5-fluorouracil at suppressing growth of colon tumor xenografts. EAEC promoted G0/G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. Treatment with EAEC and OA selectively increased protein expression of p21(WAF1/Cip1) and γ-H2AX and downregulated expression of cell cycle-regulated proteins. Moreover, many of these changes were at the mRNA level, suggesting transcriptional regulation by EAEC treatment. Our results demonstrate that clove extract may represent a novel therapeutic herb for the treatment of colorectal cancer, and OA appears to be one of the bioactive components.

  10. Lobaplatin arrests cell cycle progression, induces apoptosis and alters the proteome in human cervical cancer cell Line CaSki.

    PubMed

    Li, Xiaoqin; Ran, Li; Fang, Wen; Wang, Donghong

    2014-04-01

    Cervical cancer is one of the most common gynecologic tumors. There is an upward trend in the incidence. The objective of this research was to explore the effect of lobaplatin on cervical cancer CaSki cells proliferation, cell cycle and apoptosis and analysis of the differential expressed proteins of CaSki cells after exposed to lobaplatin. Our findings have shown that lobaplatin inhibits cell proliferations in human cervical cancer CaSki cells in dose- and time-dependent manner. Flow cytometry assay confirmed that lobaplatin affected cervical cancer cell survival by blocking cell cycle progression in S phase and G0/G1 phase and inducing apoptosis in dose- and time-dependent manner. Lobaplatin treatment reduced polypyrimidine tract-binding protein 2, ribose-phosphate pyrophosphokinase, hypothetical protein, terminal uridylyltransferase 7, ubiquitin specific protease 16 and heterogeneous nuclear ribonucleoprotein A2/B1 expression and increase zinc finger protein 91, zinc finger protein, C-X-C motif chemokine 10 precursor, stromal cell protein and laminin subunit alpha-4 expression. Some of the differentially expressed proteins may be associated with antitumor effect of lobaplatin. Lobaplatin showed a good antitumour activity in in vitro models of human cervical cancer cells. These results indicate that lobaplatin could be an effective chemotherapeutic agent in human cervical cancer treatment by inducing apoptosis, cell cycle arrest and changing many kinds of protein molecule expression level.

  11. Chelidonium majus crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines.

    PubMed

    Deljanin, Milena; Nikolic, Mladen; Baskic, Dejan; Todorovic, Danijela; Djurdjevic, Predrag; Zaric, Milan; Stankovic, Milan; Todorovic, Milos; Avramovic, Dusko; Popovic, Suzana

    2016-08-22

    Chelidonium majus L (Papaveraceae) is widely used in alternative medicine for treatment of various disorders. Antitumor activities of alkaloids isolated from this plant have been reviewed, while there are only a few studies that examine properties of the whole extract. The aim of the present study was to investigate direct cytotoxic effects, as well as indirect antitumor effects of Chelidonium majus ethanolic extract against different tumor cell lines,. MTT and SRB assays were performed to estimate cytotoxic effects of Chelidonium majus extract against human tumor cell lines A549, H460, HCT 116, SW480, MDA-MB 231 and MCF-7 and peripheral blood mononuclear cells from healthy individuals. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by extract was determined by flow cytometry and cell morphology assessment. Inhibitory effect on migration of cancer cells was assessed by wound healing assay. Chelidonium majus extract showed selective time- and dose-dependent increase of cytotoxicity in all six cell lines, with individual cell line sensitivities. Extract promoted cell cycle arrest and induced apoptosis. Cotreatment with doxorubicin enhanced cytotoxicity of the drug. Also, inhibitory effect on migration was shown with non-toxic extract concentration. These results indicate possible usefulness of Chelidonium majus crude extract in antitumor therapy, whether through its direct cytotoxic effect, by prevention of metastasis, or as adjuvant therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Horizontal cell progenitors arrest in G2-phase and undergo terminal mitosis on the vitreal side of the chick retina.

    PubMed

    Boije, Henrik; Edqvist, Per-Henrik D; Hallböök, Finn

    2009-06-01

    We have addressed the question when horizontal cells in the chick retina are generated and undergo their terminal mitosis. Horizontal cell progenitors replicate their DNA early and migrate bi-directionally to the horizontal cell layer. It was hypothesized that the cells undergo mitosis directly after replication and migrate as post-mitotic transition cells before differentiating to horizontal cells. However, our results show that cells expressing markers for the axon-bearing and the axon-less subtypes of horizontal cells undergo terminal mitosis while residing on the vitreal side of the retina. By combining horizontal cell transcription factors Lim1, Isl1 and Prox1 labeling with phospho-histone H3, a marker for mitosis, we demonstrate that all or a clear majority of vitreal mitoses are undertaken by the horizontal cell committed progenitors. The pattern of cells that incorporated the thymidine analogue EdU implied that the progenitors replicated their genome while migrating towards the vitreal side. Upon arrival to the vitreal retina they become arrested for about two days prior to mitosis. Hence, cells expressing horizontal cell markers are arrested in G2-phase on the vitreal side of the retina. These results support the existence of committed progenitors that give rise to horizontal cells and that those cells become arrested in G2-phase before undergoing terminal mitosis on the vitreal side of the retina followed by migration to the horizontal cell layer. The results also indicate that the regulation of the transition from G2-phase to mitosis is important for the development of these committed progenitor cells.

  13. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells

    PubMed Central

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    ABSTRACT Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27Kip accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27Kip at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27Kip accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment. PMID:26694515

  14. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    PubMed

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  15. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest.

    PubMed

    Lan, Qiusheng; Li, Shoufeng; Lai, Wei; Xu, Heyang; Zhang, Yang; Zeng, Yujie; Lan, Wenjian; Chu, Zhonghua

    2015-08-17

    The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO) growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2) apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  16. Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells.

    PubMed

    Guo, Fang-Zi; Zhang, Lian-Shuang; Wei, Jia-Liu; Ren, Li-Hua; Zhang, Jin; Jing, Li; Yang, Man; Wang, Ji; Sun, Zhi-Wei; Zhou, Xian-Qing

    2016-10-01

    Endosulfan is a persistent organic pollutant and widely used in agriculture as a pesticide. It is present in air, water, and soil worldwide; therefore, it is a health risk affecting especially the reproductive system. The aim of this study was to evaluate the toxicity of endosulfan in the reproductive system. To investigate the effect of endosulfan on meiosis process, 32 rats were divided into four groups, treated with 0, 1, 5, and 10 mg/kg/day endosulfan, respectively, and sacrificed after the 21 days of treatments. Results show that endosulfan caused the reductions in sperm concentration and motility rate, which resulted into an increased in sperm abnormality rate; further, endosulfan induced downregulation of spermatogenesis- and oogenesis-specific basic helix-loop-helix transcription factor (Sohlh1) which controls the switch on meiosis in mammals, as well cyclin A1, cyclin-dependent kinases 1 (CDK1), and cyclin-dependent kinases 2 (CDK2). In vitro, endosulfan induced G2/M phase arrest in the spermatogenic cell cycle and caused proliferation inhibition. Moreover, endosulfan induced oxidative stress and DNA damage in vivo and vitro. The results suggested that endosulfan could inhibit the start of meiosis by downregulating the expression of Sohlh1 and induce G2/M phase arrest of cell cycle by decreasing the expression of cyclin A1, CDK1, and CDK2 via oxidative damage, which inhibits the meiosis process, and therefore decrease the amount of sperm.

  17. Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells.

    PubMed

    Wu, Shu-Jing; Chang, Shun-Pang; Lin, Doung-Liang; Wang, Shyh-Shyan; Hou, Fwu-Feuu; Ng, Lean-Teik

    2009-06-01

    Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.

  18. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells

    SciTech Connect

    Srivastava, Janmejai K.; Gupta, Sanjay . E-mail: sanjay.gupta@case.edu

    2006-07-28

    One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC{sub 5} values after 24 h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 {mu}g/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 {mu}g/ml. In cell cycle analysis, TRF (10-40 {mu}g/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.

  19. Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication

    PubMed Central

    2011-01-01

    Background Cancer cell responses to chemotherapeutic agents vary, and this may reflect different defects in DNA repair, cell-cycle checkpoints, and apoptosis control. Cytometry analysis only quantifies dye-incorporation to examine DNA content and does not reflect the biological complexity of the cell cycle in drug discovery screens. Results Using population and time-lapse imaging analyses of cultured immortalized cells expressing a new version of the fluorescent cell-cycle indicator, Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator), we found great diversity in the cell-cycle alterations induced by two anticancer drugs. When treated with etoposide, an inhibitor of DNA topoisomerase II, HeLa and NMuMG cells halted at the G2/M checkpoint. HeLa cells remained there, but NMuMG cells then overrode the checkpoint and underwent nuclear mis-segregation or avoided the checkpoint and entered the endoreplication cycle in a drug concentration dependent manner. In contrast, an inhibitor of Cdk4 led to G1 arrest or endoreplication in NMuMG cells depending upon the initial cell-cycle phase of drug exposure. Conclusions Drug-induced cell cycle modulation varied not only between different cell types or following treatment with different drugs, but also between cells treated with different concentrations of the same drug or following drug addition during different phases of the cell cycle. By combining cytometry analysis with the Fucci probe, we have developed a novel assay that fully integrates the complexity of cell cycle regulation into drug discovery screens. This assay system will represent a powerful drug-discovery tool for the development of the next generation of anti-cancer therapies. PMID:21226962

  20. Cantharidin induces G2/M phase arrest and apoptosis in human gastric cancer SGC-7901 and BGC-823 cells

    PubMed Central

    ZHANG, CHENJING; CHEN, ZHONGTING; ZHOU, XINGLU; XU, WEN; WANG, GANG; TANG, XIAOXIAO; LUO, LAISHENG; TU, JIANGFENG; ZHU, YIMIAO; HU, WEN; XU, XIANG; PAN, WENSHENG

    2014-01-01

    The aim of the present study was to investigate the effect of cantharidin (CTD) on human gastric cancer cells and to explore the underlying mechanisms of these effects. The human gastric cancer SGC-7901 and BGC-823 cell lines were treated with CTD. MTS assays were then employed to examine cellular proliferation, flow cytometry was used to analyze the cell cycle and apoptosis, and western blot analysis was used to determine protein expression levels. It was found that CTD inhibited the proliferation of the human gastric cancer SGC-7901 and BGC-823 cells in a dose- and time-dependent manner in vitro. CTD also induced G2/M phase arrest and cellular apoptosis in a dose-dependent manner. In addition, CTD increased the levels of p21, caspase-7, -8 and -9, activated caspase-3, poly ADP ribose polymerase and Bad, but decreased the levels of cyclin-dependent kinase 1, cyclin A and B, B-cell lymphoma-2 (Bcl-2) and Bid. The present results suggested that CTD may inhibit the proliferation of human gastric cancer SGC-7901 and BGC-823 cells in vitro by inducing G2/M phase arrest and cell apoptosis. CTD may induce cellular G2/M phase arrest by regulating cycle-associated proteins and induce apoptosis by activating a caspase cascade or regulating the Bcl-2 family proteins. PMID:25364455

  1. Resveratrol Induces Cell Cycle Arrest and Apoptosis in Malignant NK Cells via JAK2/STAT3 Pathway Inhibition

    PubMed Central

    Quoc Trung, Ly; Espinoza, J. Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling. PMID:23372833

  2. UBE2T silencing suppresses proliferation and induces cell cycle arrest and apoptosis in bladder cancer cells

    PubMed Central

    Gong, Yan Qing; Peng, Ding; Ning, Xiang Hui; Yang, Xin Yu; Li, Xue Song; Zhou, Li Qun; Guo, Ying Lu

    2016-01-01

    Ubiquitin-conjugating enzyme E2T (UBE2T), a member of the ubiquitin-conjugating E2 family in the ubiquitin-proteasome pathway, has been reported to be overexpressed in certain tumor types and to have an important role in the Fanconi anemia pathway. In the present study, the expression of UBE2T and its association with bladder cancer were investigated; to the best of our knowledge, this has not been reported previously. Immunohistochemistry and western blot analysis demonstrated that UBE2T was significantly upregulated in bladder cancer tissues and cell lines compared with adjacent normal bladder tissues and a normal human urinary tract epithelial cell line, respectively. UBE2T was detectable in the nuclei and cytoplasm of cancer cells, exhibiting stronger expression in the nuclei. A UBE2T-siRNA-expressing lentivirus was constructed and used to infect human bladder cancer 5637 cells, in order to examine the role of UBE2T in bladder cancer cell growth in vitro. The knockdown of UBE2T significantly decreased bladder cancer cell proliferation and colony formation. Furthermore, UBE2T silencing induced cell cycle arrest at G2/M phase and increased cell apoptosis. Therefore, UBE2T serves an important role in the growth of bladder cancer cells, and may be considered as a potential biomarker and therapeutic target for bladder cancer. PMID:28101210

  3. Sesquiterpene lactones from Ambrosia spp. are active against a murine lymphoma cell line by inducing apoptosis and cell cycle arrest.

    PubMed

    Martino, Renzo; Beer, María Florencia; Elso, Orlando; Donadel, Osvaldo; Sülsen, Valeria; Anesini, Claudia

    2015-10-01

    Sesquiterpene lactones (STLs) are natural terpenoid compounds. They have been recognized as antitumor agents. The purpose of this investigation was to explore the antiproliferative effects of psilostachyin, psilostachyin C, peruvin and cumanin on the murine lymphoma cell line BW5147. Cells were treated with the STLs at different concentrations. Tritiated thymidine uptake was employed to determine cell proliferation. MTT assay was used to analyze cell viability. Flow cytometry assay with annexin V-FITC and propidium iodide was employed to evaluate cell death. Reactive oxygen species (ROS), mitochondrial membrane potential and cell cycle analysis were also evaluated by flow cytometry. Antioxidant enzymes activities were determined spectrophotometrically by kinetic assays. Results showed that these STLs inhibited cell proliferation in a concentration-dependent manner by exerting cytotoxicity through apoptosis. Psilostachyin C was the most active and the less toxic compound. This STL induced apoptosis with an impairment in mitochondrial membrane potential. Psilostachyin C was able to induce ROS generation, related to a modulation of the antioxidant enzymes activity. In addition, it induced cell cycle arrest in S phase. In conclusion, psilostachyin C was found to be active against lymphoma cells exerting both cytostatic and cytotoxic effects. These findings may provide a novel approach for lymphoma treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Leaf Extracts of Calocedrus formosana (Florin) Induce G2/M Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells

    PubMed Central

    Yuan, Sheau-Yun; Lin, Chi-Chen; Hsu, Shih-Lan; Cheng, Ya-Wen; Wu, Jyh-Horng; Cheng, Chen-Li; Yang, Chi-Rei

    2011-01-01

    Calocedrus formosana (Florin) bark acetone/ethylacetate extracts are known to exert an antitumor effect on some human cancer cell lines, but the mechanism is yet to be defined. The aim of this study was to determine the effects of Florin leaf methanol extracts on the growth and apoptosis of human bladder cancer cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that the growth of these bladder cancer cells was potently inhibited by the Florin leaf extracts. The cell cycle of these extract-treated cells (TCCSUP cells) was arrested at the G2/M phase as determined by flow cytometry. Western blot analysis revealed the increases of cyclin B1 and Cdc2 kinase levels, alone with the decrease of phosphorylated Cdc2 kinase, after treating these cells with the extracts. An immunofluorescence assessment of β-tubulin showed decreased levels of polymerized tubulin in treated cells. However, the proteolytic cleavage of poly ADP-ribose polymerase and the activation of caspase-3/-8/-9 were all increased upon treatments of extracts. The concurrent increase of Bax and decrease of Bcl-2 levels indicated that the extracts could induce apoptosis in these treated cells. Taken together, these results suggest that the Florin leaf extracts may be an effective antibladder cancer agent. PMID:21760824

  5. Mitotic Arrest-Associated Apoptosis Induced by Sodium Arsenite in A375 Melanoma Cells Is BUBR1-Dependent

    PubMed Central

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2009-01-01

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr161 phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic’s chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity. PMID:18501396

  6. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent

    SciTech Connect

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2008-08-15

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr{sup 161} phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.

  7. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing

    PubMed Central

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos. PMID:27462457

  8. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.

    PubMed

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos.

  9. Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes.

    PubMed

    Sen, Rupashree; Bandyopadhyay, Samiran; Dutta, Avijit; Mandal, Goutam; Ganguly, Sudipto; Saha, Piu; Chatterjee, Mitali

    2007-09-01

    A major impediment to effective anti-leishmanial chemotherapy is the emergence of drug resistance, especially to sodium antimony gluconate, the first-line treatment for leishmaniasis. Artemisinin, a sesquiterpene lactone isolated from Artemisia annua, is an established anti-malarial compound that showed anti-leishmanial activity in both promastigotes and amastigotes, with IC(50) values of 160 and 22 microM, respectively, and, importantly, was accompanied by a high safety index (>22-fold). The leishmanicidal activity of artemisinin was mediated via apoptosis as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, in situ labelling of DNA fragments by terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) and cell-cycle arrest at the sub-G(0)/G(1) phase. Taken together, these data indicate that artemisinin has promising anti-leishmanial activity that is mediated by programmed cell death and, accordingly, merits consideration and further investigation as a therapeutic option for the treatment of leishmaniasis.

  10. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells.

    PubMed

    Ríos-Marco, Pablo; Martín-Fernández, Mario; Soria-Bretones, Isabel; Ríos, Antonio; Carrasco, María P; Marco, Carmen

    2013-08-01

    Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.

  11. γ-Tocotrienol prevents cell cycle arrest in aged human fibroblast cells through p16(INK4a) pathway.

    PubMed

    Zainuddin, Azalina; Chua, Kien-Hui; Tan, Jen-Kit; Jaafar, Faizul; Makpol, Suzana

    2017-02-01

    Human diploid fibroblasts (HDFs) proliferation in culture has been used as a model of aging at the cellular level. Growth arrest is one of the most important mechanisms responsible for replicative senescence. Recent researches have been focusing on the function of vitamin E in modulating cellular signaling and gene expression. Therefore, the aim of this study was to elucidate the effect of palm γ-tocotrienol (vitamin E) in modulating cellular aging through p16(INK4a) pathway in HDF cells. Primary culture of senescent HDFs was incubated with 70 μM of palm γ-tocotrienol for 24 hours. Silencing of p16(INK4a) was carried out by siRNA transfection. RNA was extracted from the different treatment groups and gene expression analysis was carried out by real-time reverse transcription polymerase chain reaction. Proteins that were regulated by p16(INK4a) were determined by western blot technique. The finding of this study showed that p16(INK4a) mRNA was overexpressed in senescent HDFs, and hypophosphorylated-pRb and cyclin D1 protein expressions were increased (p < 0.05). However, downregulation of p16(INK4a) and hypophosphorylated-pRb and cyclin D1 protein expressions (p < 0.05) by γ-tocotrienol led to modulation of the cell cycle regulation during cellular aging. In conclusion, senescent HDFs showed change in biological process specifically in cell cycle regulation with elevated expression of genes and proteins which may contribute to cell cycle arrest. Palm γ-tocotrienol may delay cellular senescence of HDFs by regulating cell cycle through downregulation of p16(INK4a) and hypophosphorylated-pRb and cyclin D1 protein expressions.

  12. Strategic Cell-Cycle Regulatory Features That Provide Mammalian Cells with Tunable G1 Length and Reversible G1 Arrest

    PubMed Central

    Pfeuty, Benjamin

    2012-01-01

    Transitions between consecutive phases of the eukaryotic cell cycle are driven by the catalytic activity of selected sets of cyclin-dependent kinases (Cdks). Yet, their occurrence and precise timing is tightly scheduled by a variety of means including Cdk association with inhibitory/adaptor proteins (CKIs). Here we focus on the regulation of G1-phase duration by the end of which cells of multicelled organisms must decide whether to enter S phase or halt, and eventually then, differentiate, senesce or die to obey the homeostatic rules of their host. In mammalian cells, entry in and progression through G1 phase involve sequential phosphorylation and inactivation of the retinoblastoma Rb proteins, first, by cyclin D-Cdk4,6 with the help of CKIs of the Cip/Kip family and, next, by the cyclin E-Cdk2 complexes that are negatively regulated by Cip/Kip proteins. Using a dynamical modeling approach, we show that the very way how the Rb and Cip/Kip regulatory modules interact differentially with cyclin D-Cdk4,6 and cyclin E-Cdk2 provides to mammalian cells a powerful means to achieve an exquisitely-sensitive control of G1-phase duration and fully reversible G1 arrests. Consistently, corruption of either one of these two modules precludes G1 phase elongation and is able to convert G1 arrests from reversible to irreversible. This study unveils fundamental design principles of mammalian G1-phase regulation that are likely to confer to mammalian cells the ability to faithfully control the occurrence and timing of their division process in various conditions. PMID:22558136

  13. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage.

    PubMed Central

    Schiestl, R H; Reynolds, P; Prakash, S; Prakash, L

    1989-01-01

    Procaryotic and eucaryotic cells possess mechanisms for arresting cell division in response to DNA damage. Eucaryotic cells arrest division in the G2 stage of the cell cycle, and various observations suggest that this arrest is necessary to ensure the completion of repair of damaged DNA before the entry of cells into mitosis. Here, we provide evidence that the Saccharomyces cerevisiae RAD9 gene, mutations of which confer sensitivity to DNA-damaging agents, is necessary for the cell cycle arrest phenomenon. Our studies with the rad9 delta mutation show that RAD9 plays a role in the cell cycle arrest of methyl methanesulfonate-treated cells and is absolutely required for the cell cycle arrest in the temperature-sensitive cdc9 mutant, which is defective in DNA ligase. At the restrictive temperature, cell cycle progression of cdc9 cells is blocked sometime after the DNA chain elongation step, whereas cdc9 rad9 delta cells do not arrest at this point and undergo one or two additional divisions. Upon transfer from the restrictive to the permissive temperature, a larger proportion of the cdc9 cells than of the cdc9 rad9 delta cells forms viable colonies, indicating that RAD9-mediated cell cycle arrest allows for proper ligation of DNA breaks before the entry of cells into mitosis. The rad9 delta mutation does not affect the frequency of spontaneous or UV-induced mutation and recombination, suggesting that RAD9 is not directly involved in mutagenic or recombinational repair processes. The RAD9 gene encodes a transcript of approximately 4.2 kilobases and a protein of 1,309 amino acids of Mr 148,412. We suggest that RAD9 may be involved in regulating the expression of genes required for the transition from G2 to mitosis. Images PMID:2664461

  14. Pectenotoxin-2 induces G2/M phase cell cycle arrest in human breast cancer cells via ATM and Chk1/2-mediated phosphorylation of cdc25C.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ock; Nam, Taek-Jeong; Kim, Se-Kwon; Choi, Yung Hyun; Kim, Gi-Young

    2010-07-01

    Although pectenotoxin-2 (PTX-2) is known to regulate the actin depolymerization and to induce apoptosis through downregulation of telomerase activity, little is known on its effect on the cell cycle regulation. Therefore, we investigated the effects of PTX-2 on G2/M arrest in human breast cancer cells (MDA-MB-231 and MCF-7). Treatment with PTX-2 significantly suppressed cell proliferation and induced G2/M phase arrest through down-regulation of cyclin B1 and cdc2 expression, but also through phosphorylation of cdc25C. We found increased phosphorylation of ATM and Chk1/2 in a PTX-2 dose-dependent manner. Furthermore, treatment with PTX-2 increased H2O2 generation with correlated G2/M arrest. Our results showed that ATM- and Chk1/2-mediated phosphorylation of cdc25C plays a major role in G2/M arrest, but not in H2O2 generation induced by PTX-2 treatment. We also observed that PTX-2-induced cell cycle arrest was not restricted to p53 status in human breast cancer cells.

  15. Induction of caspase-mediated apoptosis and cell-cycle G1 arrest by selenium metabolite methylselenol.

    PubMed

    Wang, Zaisen; Jiang, Cheng; Lü, Junxuan

    2002-07-01

    Previous work based on mono-methyl selenium compounds that are putative precursors of methylselenol has strongly implicated this metabolite in the induction of caspase-mediated apoptosis of human prostate carcinoma and leukemia cells and G1 arrest in human vascular endothelial and cancer epithelial cells. To test the hypothesis that methylselenol itself is responsible for exerting these cellular effects, we examined the apoptotic action on DU145 human prostate cancer cells and the G1 arrest effect on the human umbilical vein endothelial cells (HUVECs) of methylselenol generated with seleno-L-methionine as a substrate for L-methionine-alpha-deamino-gamma-mercaptomethane lyase (EC4.4.1.11, also known as methioninase). Exposure of DU145 cells to methylselenol so generated in the sub-micromolar range led to caspase-mediated cleavage of poly(ADP-ribose) polymerase, nucleosomal DNA fragmentation, and morphologic apoptosis and resulted in a profile of biochemical effects similar to that of methylseleninic acid (MSeA) exposure as exemplified by the inhibition of phosphorylation of protein kinase AKT and extracellularly regulated kinases 1/2. In HUVEC, methylselenol exposure recapitulated the G1 arrest action of MSeA in mitogen-stimulated G1 progression during mid-G1 to late G1. This stage specificity was mimicked by inhibitors of phosphatidylinositol 3-kinase. The results support methylselenol as an active selenium metabolite for inducing caspase-mediated apoptosis and cell-cycle G1 arrest. This cell-free methylselenol-generation system is expected to have significant usefulness for studying the biochemical and molecular targeting mechanisms of this critical metabolite and may constitute the basis of a novel therapeutic approach for cancer, using seleno-L-methionine as a prodrug. Copyright 2002 Wiley-Liss, Inc.

  16. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo

    PubMed Central

    Chen, Jingxian; Lu, Xingang; Lu, Chenghua; Wang, Chunying; Xu, Haizhu; Xu, Xiaoli; Gou, Haixin; Zhu, Bing; Du, Wangchun

    2016-01-01

    Corydalis yanhusuo, a well-known herbaceous plant, is commonly used in the treatment of inflammation, injury and pain. One natural agent isolated from Corydalis yanhusuo, 13-methyl-palmatrubine, was found to have a cytotoxic effect on cancer cells as reported in published studies. In the present study, we synthesized a potential anti-lung tumor agent, 13-methyl-palmatrubine and analyzed its activity. 13-Methyl-palmatrubine exhibited a cytotoxic effect on a panel of cancer cell lines in a time- and concentration-dependent manner. Among all the tested cancer cell lines, lung cancer A549 cells were most sensitive to 13-methyl-palmatrubine treatment. Meanwhile 13-methyl-palmatrubine showed less cytotoxicity in human normal cells. Our investigation revealed that 13-methyl-palmatrubine induced apoptosis and cell cycle arrest in A549 cells in a dose-dependent manner. Furthermore, 13-methyl-palmatrubine treatment caused activation of P38 and JNK pathways and blocked the EGFR pathway. In conclusion, our findings demonstrated that 13-methyl-palmatrubine inhibited the growth of A549 cells mediated by blocking of the EGFR signaling pathway and activation of the MAPK signaling pathway and provides a better understanding of the molecular mechanisms of 13-methyl-palmatrubine. PMID:27633656

  17. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells.

    PubMed

    Zhu, Yi; Mao, Yeqing; Chen, Hong; Lin, Yiwei; Hu, Zhenghui; Wu, Jian; Xu, Xin; Xu, Xianglai; Qin, Jie; Xie, Liping

    2013-06-01

    Apigenin (4',5,7-trihydroxyflavone) was recently shown effective in inhibiting several cancers. The aim of this study was to investigate the effect and mechanism of apigenin in the human bladder cancer cell line T24 for the first time. T24 cells were treated with varying concentrations and time of apigenin. Cell viability was evaluated by MTT assay. Cell motility and invasiveness were assayed by Matrigel migration and invasion assay. Flow cytometry and western blot analysis were used to detect cell apoptosis, cell cycle and signaling pathway. The results demonstrated that apigenin suppressed proliferation and inhibited the migration and invasion potential of T24 bladder cancer cells in a dose- and time-dependent manner, which was associated with induced G2/M Phase cell cycle arrest and apoptosis. The mechanism of action is like to involve PI3K/Akt pathway and Bcl-2 family proteins. Apigenin increased caspase-3 activity and PARP cleavage, indicating that apigenin induced apoptosis in a caspase-dependent way. These findings suggest that apigenin may be an effective way for treating human bladder cancer.

  18. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    PubMed

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  19. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation

    PubMed Central

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A.; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment. PMID:26309132

  20. Benfluron Induces Cell Cycle Arrest, Apoptosis and Activation of p53 Pathway in MOLT-4 Leukemic Cells.

    PubMed

    Seifrtová, M; Cochlarová, T; Havelek, R; Řezáčová, M

    2015-01-01

    The aim of our study was to determine the effect of potential anti-tumour agent benfluron on human leukemic cells MOLT-4 and elucidate the molecular mechanisms of response of tumour cells to this chemotherapeutic agent. It has been shown that the mechanisms of action of benfluron are complex, but the molecular pathways of the cytostatic effect have remained unknown and the present study contributes to their elucidation. In this work, benfluron reduced viability of the treated cells and induced caspase-mediated apoptosis. The programmed cell death was associated with activation of caspases 8, 9 and 3/7. Moreover, exposure of cells to benfluron resulted in accumulation of the cells primarily in late S and G2/M phases. The changes in the levels of key proteins show that benfluron provoked activation of p53 and induced phosphorylation of p53 on serine 15 and serine 392. The application of benfluron led to phosphorylation of Chk1 on serine 345 and phosphorylation of Chk2 on threonine 68 in the treated cells. Higher doses of benfluron caused phosphorylation of ERK1/2 on threonine 202 and tyrosine 204, whereas JNK and p38 kinases were not activated. In conclusion, benfluron induces apoptosis, cell cycle arrest in late S and G2/M phases, and activates various signalling pathways of the DNA damage response.

  1. The natural terthiophene α-terthienylmethanol induces S phase cell cycle arrest of human ovarian cancer cells via the generation of ROS stress.

    PubMed

    Preya, Umma Hafsa; Lee, Kyung-Tae; Kim, Nam-Jung; Lee, Jung-Yun; Jang, Dae Sik; Choi, Jung-Hye

    2017-06-25

    Ovarian cancer is the most lethal gynecological malignancy worldwide. Thiophenes such as terthiophene have been shown to have anti-tumor effects on several cancer cell lines, including ovarian cancer cells. However, the underlying mechanisms behind the anti-proliferative effect of thiophenes are poorly understood. In this study, we investigated the molecular mechanisms underlying the anti-proliferative effect of α-terthienylmethanol, a terthiophene isolated from Eclipta prostrata (False Daisy), on human ovarian cancer cells. We found that α-terthienylmethanol is a more potent inhibitor of cell growth than is cisplatin in human ovarian cancer cells. α-Terthienylmethanol induces cell cycle arrest in ovarian cancer cells, as shown by the accumulation of cells in S phase. In addition, α-terthienylmethanol induced a change in S phase-related proteins cyclin A, cyclin-dependent kinase 2, and cyclin D2. Knockdown of cyclin A using specific siRNAs significantly compromised α-terthienylmethanol-induced S phase arrest. We further demonstrated that α-terthienylmethanol induced an increase in intracellular ROS, and the antioxidant N-acetyl-l-cysteine significantly reversed the S phase arrest induced by α-terthienylmethanol. Moreover, α-terthienylmethanol significantly increased the levels of p-H2AX, a DNA damage marker. These results suggest that α-terthienylmethanol inhibits the growth of human ovarian cancer cells by S phase cell cycle arrest via induction of ROS stress and DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.

  3. Temperature stress promotes cell division arrest in Xanthomonas citri subsp. citri.

    PubMed

    Sumares, Júlia A P; Morão, Luana Galvão; Martins, Paula M M; Martins, Daniela A B; Gomes, Eleni; Belasque, José; Ferreira, Henrique

    2016-04-01

    Citrus canker is an economically important disease that affects orange production in some of the most important producing areas around the world. It represents a great threat to the Brazilian and North American citriculture, particularly to the states of São Paulo and Florida, which together correspond to the biggest orange juice producers in the world. The etiological agent of this disease is the Gram-negative bacterium Xanthomonas citri subsp. citri (Xcc), which grows optimally in laboratory cultures at ~30 °C. To investigate how temperatures differing from 30 °C influence the development of Xcc, we subjected the bacterium to thermal stresses, and afterward scored its recovery capability. In addition, we analyzed cell morphology and some markers of essential cellular processes that could indicate the extent of the heat-induced damage. We found that the exposure of Xcc to 37 °C for a period of 6 h led to a cell cycle arrest at the division stage. Thermal stress might have also interfered with the DNA replication and/or the chromosome segregation apparatuses, since cells displayed an increased number of sister origins side-by-side within rods. Additionally, Xcc treated at 37 °C was still able to induce citrus canker symptoms, showing that thermal stress did not affect the ability of Xcc to colonize the host citrus. At 40-42 °C, Xcc lost viability and became unable to induce disease symptoms in citrus. Our results provide evidence about essential cellular mechanisms perturbed by temperature, and can be potentially explored as a new method for Xanthomonas citri synchronization in cell cycle studies, as well as for the sanitation of plant material. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Impact of Mitochondria-Mediated Apoptosis in U251 Cell Cycle Arrest in G1 Stage and Caspase Activation.

    PubMed

    Zhang, Lei; Liang, Peng; Zhang, Rui

    2015-11-23

    BACKGROUND Most mitochondria-mediated apoptosis has some relevance to the cell cycle, but there is still a lack of investigations about U251 cell cycle in human brain glioma cells. In this study, we aimed to clarify the correlation of mitochondria-mediated apoptosis with the U251 cell cycle and its influence on apoptosis, through observing the impact of mitochondria-mediated apoptosis in U251cell specificity cycle arrest and Caspase activation. MATERIAL AND METHODS AnnexinV/PI and API were used to label the brain glioma cells for flow cytometry analysis of U251 cell apoptosis and cell cycle. RT-PCR and Western blot were performed to detect Caspase-3 and Caspase-9 activation. RESULTS Peripheral blood in stationary phase is not sensitive to apoptosis induction, but U251 cells have obvious apoptosis. Mitochondria-mediated apoptosis mainly occurs in the G1 phase of the cell cycle. Caspase-3 and Caspase-9 mRNAs and proteins expression increased significantly after the cells were treated by mitochondrial apoptosis-related gene Bax induction. CONCLUSIONS Mitochondria-mediated apoptosis is related to the U251 cell cycle with specific G1 stage arrest. Caspase activation occurs in the process of cell apoptosis.

  5. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging.

    PubMed

    Li, Tongyuan; Liu, Xiangyu; Jiang, Le; Manfredi, James; Zha, Shan; Gu, Wei

    2016-03-15

    Although p53-mediated cell cycle arrest, senescence and apoptosis are well accepted as major tumor suppression mechanisms, the loss of these functions does not directly lead to tumorigenesis, suggesting that the precise roles of these canonical activities of p53 need to be redefined. Here, we report that the cells derived from the mutant mice expressing p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, exhibit high levels of aneuploidy upon DNA damage. Moreover, the embryonic lethality caused by the deficiency of XRCC4, a key DNA double strand break repair factor, can be fully rescued in the p533KR/3KR background. Notably, despite high levels of genomic instability, p533KR/3KRXRCC4-/- mice, unlike p53-/- XRCC4-/- mice, are not succumbed to pro-B-cell lymphomas. Nevertheless, p533KR/3KR XRCC4-/- mice display aging-like phenotypes including testicular atrophy, kyphosis, and premature death. Further analyses demonstrate that SLC7A11 is downregulated and that p53-mediated ferroptosis is significantly induced in spleens and testis of p533KR/3KRXRCC4-/- mice. These results demonstrate that the direct role of p53-mediated cell cycle arrest, senescence and apoptosis is to control genomic stability in vivo. Our study not only validates the importance of ferroptosis in p53-mediated tumor suppression in vivo but also reveals that the combination of genomic instability and activation of ferroptosis may promote aging-associated phenotypes.

  6. Allyl-isatin suppresses cell viability, induces cell cycle arrest, and promotes cell apoptosis in hepatocellular carcinoma HepG2 cells.

    PubMed

    Bian, Weihua; An, Yukuan; Qu, Huiqing; Yang, Yue; Yang, Junhou; Xu, Yanyan

    2016-06-01

    The anticancer effect of the newly synthesized isatin derivative, N-allyl-isatin (Allyl-I), was evaluated in vitro with human hepatocellular carcinoma HepG2 cells. Cell viability was detected by cell counting kit-8 (CCK8) assay. Acridine orange (AO)/ethidium bromide (EB) double staining was used to observe the cell morphology. Flow cytometry was used to assess the effects of Allyl-I on the cell cycle, apoptosis rate, and mitochondrial membrane potential (MMP). Western blot analysis was performed to detect the influence of Ally1-I on the expression of cytochrome c (cyt c), Bax, Bcl-2, and cleaved caspase-3. Allyl-I significantly inhibited HepG2 cell viability in a time- and dose-dependent manner. Allyl-I can induce cell cycle arrest in HepG2 cells at the G2/M phase. Apoptotic nuclear morphological changes were observed after AO/EB double staining. Fluorescein isothiocyanate-conjugated Annexin V (Annexin V-FITC) and propidium iodide (PI) double staining showed that the apoptotic rates significantly increased in the presence of Allyl-I. Rhodamine 123 staining indicated that Allyl-I can decrease the MMP. Allyl-I also altered the expression of mitochondrial apoptosis-related proteins. Protein levels of cyt c and cleaved caspase-3 were upregulated following Allyl-I treatment. By contrast, the Bcl-2/Bax ratio decreased. Results suggest that Allyl-I suppresses cell viability, induces cell cycle arrest, and promotes cell apoptosis in HepG2 cells. Furthermore, the induction of apoptosis might be correlated with the mitochondrial pathway.

  7. Abrogation of MUC5AC Expression Contributes to the Apoptosis and Cell Cycle Arrest of Colon Cancer Cells.

    PubMed

    Zhu, Xijia; Long, Xiangkai; Luo, Xishun; Song, Zhike; Li, Shengguo; Wang, Haipeng

    2016-09-01

    Deregulated expressions of mucins have been found in various malignancies and play a pivotal role in carcinogenesis. MUC5AC, as a secreted mucin, is reported to be aberrantly expressed during epithelial cancer progression, including colon cancer. However, the mechanisms of the oncoprotein MUC5AC in the initiation of colon cancer requires further investigation. Here, we collected colon cancer tissues (n = 20) and corresponding paracancerous tissues (n = 20) and found that the expression of MUC5AC was significantly elevated in colon cancer tissues when compared with the corresponding paracancerous tissues. Immunofluorescence indicated that all colon cancer cell lines, including HT29, SW620, and the normal human intestinal epithelial cells FHC, showed the positive expression of MUC5AC, and SW620 exhibited the highest expression. Moreover, knockdown of MUC5AC in SW620 cells remarkably suppressed cell vitality and promoted apoptosis and G1 cell cycle arrest, resulting in the impaired ability of colony formation. Furthermore, the inhibition of MUC5AC in SW620 cells dramatically repressed the cell migration and invasion. These results demonstrated that MUC5AC as an oncogene could be a promising target in the treatment of colon cancer.

  8. Vapor of Volatile Oils from Litsea cubeba Seed Induces Apoptosis and Causes Cell Cycle Arrest in Lung Cancer Cells

    PubMed Central

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R.; Baishya, Gakul; Barua, Nabin C.; Baruah, Pranab K.; Rao, Paruchuri G.; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation. PMID:23091605

  9. Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells.

    PubMed

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R; Baishya, Gakul; Barua, Nabin C; Baruah, Pranab K; Rao, Paruchuri G; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser(473) and Thr(308); through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.

  10. Synthetic phosphoethanolamine induces cell cycle arrest and apoptosis in human breast cancer MCF-7 cells through the mitochondrial pathway.

    PubMed

    Ferreira, Adilson Kleber; Meneguelo, Renato; Pereira, Alexandre; Filho, Otaviano Mendonça R; Chierice, Gilberto Orivaldo; Maria, Durvanei Augusto

    2013-07-01

    Phosphoethanolamine (Pho-s) is a compound involved in phospholipid turnover, acting as a substrate for many phospholipids of the cell membranes. In a recent study, we showed that Pho-s has antitumor effect in the several tumor cells. In this study we evaluated the antitumor activity of synthetic Pho-s on MCF-7 breast cancer cells. Here we demonstrate that Pho-s is cytotoxic to MCF-7 cells in a dose-dependent manner, while it is cytotoxic to MCF10 only at higher concentrations. In addition, Pho-s induces a disruption in mitochondrial membrane potential (Δψm). Furthermore, Pho-s induces mitochondria aggregates in the cytoplasm and DNA fragmentation of MCF-7 cells visualized by confocal microscopy. In agreement with the reduction on Δψm, we showed that Pho-s induces apoptosis followed by an increase in cytochrome c expression and capase-3-like activity in MCF-7 cells. Our results demonstrate that Pho-s induces a cell cycle arrest in the G1 phase through an inhibition of cyclin D1 and stimulates p53. An additional highlight of this study is the finding that Pho-s inhibits Bcl-2, inducing apoptosis through the mitochondrial pathway. Taken together, these results show that Pho-s is a promising compound in the fight against cancer. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Solanum tuberosum lectin inhibits Ehrlich ascites carcinoma cells growth by inducing apoptosis and G2/M cell cycle arrest.

    PubMed

    Kabir, Syed Rashel; Rahman, Md Musfikur; Amin, Ruhul; Karim, Md Rezaul; Mahmud, Zahid Hayat; Hossain, M Tofazzal

    2016-06-01

    Recently, a lectin was purified from the potato cultivated in Bangladesh locally known as Sheel. In the present study cytotoxicity of the lectin against Ehrlich ascites carcinoma (EAC) cells was studied by MTT assay in vitro in RPMI-1640 medium and 8.0-36.0 % cell growth inhibition was observed at the range of 2.5-160 μg/ml protein concentration when incubated for 24 h. The lectin-induced apoptosis in EAC cells was confirmed by fluorescence and optical microscope. The apoptotic cell death was also confirmed by using caspase inhibitors. Cells growth inhibition caused by the lectin (36 %) was remarkably decreased to 7.6 and 22.3 % respectively in the presence of caspase-3 and -8 inhibitors. RT-PCR was used to evaluate the expression of apoptosis-related genes Bcl-X, p53, and Bax. An intensive expression of Bcl-X gene was observed in untreated control EAC cells with the disappeared of the gene in Sheel-treated EAC cells. At the same time, Bax gene expression appeared only in Sheel-treated EAC cells and the expression level of the p53 gene was increased remarkable after the treatment of EAC cells with the lectin. The lectin showed strong agglutination activity against EAC cells. Flow cytometry was used to study the cell cycle phases of EAC cells and it was observed that the lectin arrested the G2/M phase. In conclusion, Sheel lectin inhibited EAC cells growth by inducing apoptosis.

  12. Silencing HCCR2 expression inhibits the proliferation of leukemia cells by inducing apoptosis and promoting cell cycle arrest.

    PubMed

    Qiao, Shu-Kai; Ren, Han-Yun; Shi, Yong-Jin; Liu, Wei

    2013-12-01

    The human cervical cancer oncogene (HCCR2) has been found to be overexpressed in a variety of human malignant tumors cells, and its function is related to cell cycle progression and survival. However, the molecular mechanisms of action of HCCR2 in leukemia remain unclear. In this study, we used the RNA interference strategy to investigate the effects of HCCR2 knockdown in the K562 leukemia cell line, and to explore the potential mechanisms involved. Following transfection with small interfering RNA (siRNA) targeting HCCR2 (HCCR2-siRNA), we examined the effects of HCCR2 knockdown on cell morphology, cell proliferation, cell cycle progression and apoptosis in K562 cells. Morphological changes were evaluated by Wright-Giemsa staining. Cell cycle progression and apoptosis were measured by flow cytometry. The expression levels of genes related to the cell cycle and apoptosis were detected by quantitative RT-PCR (qRT-PCR) and western blot analysis. HCCR2 expression at the mRNA and protein level was significantly decreased following transfection with plasmids expressing HCCR2-siRNA. Silencing HCCR2 expression significantly suppressed cell proliferation, induced G1 cell cycle arrest and promoted the apoptosis of K562 cells. Additionally, we found that the expression of Bax, p53 and p21 was significantly increased, while Bcl-2 expression was significantly decreased in the HCCR2-siRNA-transfected cells. However, the expression of p27 was not affected. These results suggest that the HCCR2 gene plays an important role in the tumorigenesis of leukemia, thus making it an attractive therapeutic target for acute leukemia.

  13. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells.

    PubMed

    Sudan, Sudhanshu; Rupasinghe, H P Vasantha

    2014-04-01

    Dietary flavonoids have been associated with reduced risk of cancer including hepatocellular carcinoma (HCC). Quercetin-3-O-glucoside (Q3G) has been shown to possess anti-proliferative and antioxidant activities. The objectives of this study were to assess the anti-proliferative properties of Q3G in human liver cancer cells (HepG2); assess the cytotoxicity on normal primary cells; and elucidate its possible mechanism of action(s). Using a dose- and time-dependent study, we evaluated the antiproliferative properties of Q3G in HepG2 cells using MTS cell viability assay and lactate dehydrogenase release assay. To elucidate the mechanism of action, we performed cell-cycle analysis using flow cytometry. Cell death via apoptosis was analyzed by DNA fragmentation assay, caspase-3 induction assay and fluorescence microscopy. DNA topoisomerase II drug screening assay was performed to assess the effect of Q3G on DNA topoisomerase II. Q3G treatment inhibited cell proliferation in a dose- and time-dependent manner in HepG2 cells with the blockade of the cell cycle in the S-phase. Additionally, Q3G exhibited a strong ability to inhibit DNA topoisomerase II. Furthermore, DNA fragmentation and fluorescence microscopy analysis suggested that Q3G induced apoptosis in HepG2 cells with the activation of caspase-3. Interestingly, Q3G exhibited significantly lower toxicity to normal cells (primary human and rat hepatocytes and primary lung cells) than sorafenib (p<0.05), a chemotherapy drug for hepatocellular carcinoma. The results suggest that Q3G is a potential antitumor agent against liver cancer with a possible mechanism of action via cell-cycle arrest and apoptosis. Further research should be performed to confirm these results in vivo.

  14. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study

    PubMed Central

    2014-01-01

    Background Cordyceps cicadae is a medicinal fungus that is often used for treating cancer. However, the anticancer mechanisms of C. cicadae are largely unknown. This study aims to investigate the anticancer mechanisms of C. cicadae against hepatocellular carcinoma cells in vitro using a proteomic approach. Methods Human hepatocellular carcinoma MHCC97H cells were treated with a water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) for 48 h and harvested for cell viability assays. The significant differences in protein expression between control and C. cicadae-treated cells were analyzed by two-dimensional gel-based proteomics coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry. Flow cytometry analysis was employed to investigate the cell cycle and cell death. The anticancer molecular mechanism was analyzed by whole proteome mapping. Results The water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) inhibited the growth of MHCC97H cells in a dose-dependent manner via G2/M phase cell cycle arrest with no evidence of apoptosis. Among the identified proteins with upregulated expression were dynactin subunit 2, N-myc downstream-regulated gene 1, heat shock protein beta-1, alpha-enolase isoform 1, phosphatidylinositol transfer protein, and WD repeat-containing protein 1. Meanwhile, the proteins with downregulated expression were 14-3-3 gamma, BUB3, microtubule-associated protein RP/EB family member 1, thioredoxin-like protein, chloride intracellular channel protein 1, ectonucleoside triphosphate diphosphohydrolase 5, xaa-Pro dipeptidase, enoyl-CoA delta isomerase 1, protein-disulfide isomerase-related chaperone Erp29, hnRNP 2H9B, peroxiredoxin 1, WD-40 repeat protein, and serine/threonine kinase receptor-associated protein. Conclusion The water extract of C. cicadae reduced the growth of human hepatocellular carcinoma MHCC97H cells via G2/M cell cycle arrest. PMID:24872842

  15. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    SciTech Connect

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  16. Cardiac arrest

    MedlinePlus

    ... or low levels can cause cardiac arrest. Severe physical stress. Anything that causes a severe stress on your body can lead to cardiac arrest. This can include trauma, electrical shock, or major blood loss. Recreational drugs. Using certain drugs, such as cocaine ...

  17. DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells.

    PubMed

    Polewska, Joanna; Skwarska, Anna; Augustin, Ewa; Konopa, Jerzy

    2013-09-01

    Imidazoacridinone 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) is an antitumor inhibitor of topoisomerase II and FMS-like tyrosine kinase 3 receptor. In this study, we describe the unique sequence of cellular responses to C-1311 in human non-small cell lung cancer (NSCLC) cell lines, A549 and H460. In A549 cells, C-1311 (IC80 = 0.08 µM) induced G1 and G2/M arrests, whereas H460 cells (IC80 = 0.051 µM) accumulated predominantly in the G1 phase. In both cell lines, cell cycle arrest was initiated by overexpression of p53 but was sustained for an extended time by elevated levels of p21. Despite prolonged drug exposure (up to 192 hours), no apoptotic response was detected in either cell line. Instead, cells developed a senescent phenotype and did not resume proliferation even after 2 weeks of post-treatment, indicating that C-1311-triggered senescence was permanent. When cell cycle arrest was evident but there were no signs of senescence, C-1311 significantly induced autophagic cells. Pharmacological inhibition of autophagy by 3-methyladenine profoundly reduced the senescent phenotype and slightly sensitized cancer cells to C-1311 by increasing cell death, suggesting a link between both autophagy and senescence. However, a small interfering RNA-mediated knockdown of the autophagy-associated Beclin 1 and ATG5 genes attenuated but failed to block development of senescence. Taken together, our studies suggest that in NSCLC, a C-1311-induced senescence program is preceded and corroborated but not exclusively determined by the induction of autophagy.

  18. Cataloging and organizing p73 interactions in cell cycle arrest and apoptosis

    PubMed Central

    Tozluoğlu, Melda; Karaca, Ezgi; Haliloglu, Turkan

    2008-01-01

    We have compiled the p73-mediated cell cycle arrest and apoptosis pathways. p73 is a member of the p53 family, consisting of p53, p63 and p73. p73 exists in several isoforms, presenting different domain structures. p73 functions not only as a tumor suppressor in apoptosis but also as differentiator in embryo development. p53 mutations are responsible for half of the human cancers; p73 can partially substitute mutant p53 as tumor suppressor. The pathways we assembled create a p73-centered network consisting of 53 proteins and 176 interactions. We clustered our network into five functional categories: Upregulation, Activation, Suppression, Transcriptional Activity and Degradation. Our literature searches led to discovering proteins (c-Jun and pRb) with apparent opposing functional effects; these indicate either currently missing proteins and interactions or experimental misidentification or functional annotation. For convenience, here we present the p73 network using the molecular interaction map (MIM) notation. The p73 MIM is unique amongst MIMs, since it further implements detailed domain features. We highlight shared pathways between p53 and p73. We expect that the compiled and organized network would be useful to p53 family-based studies. PMID:18660513

  19. Arresting transcription and sentencing the cell: the consequences of blocked transcription.

    PubMed

    McKay, Bruce C; Cabrita, Miguel A

    2013-01-01

    Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Honokiol induces cell cycle arrest and apoptosis via inhibition of survival signals in adult T-cell leukemia.

    PubMed

    Ishikawa, Chie; Arbiser, Jack L; Mori, Naoki

    2012-07-01

    Honokiol, a naturally occurring biphenyl, possesses anti-neoplastic properties. We investigated activities of honokiol against adult T-cell leukemia (ATL) associated with human T-cell leukemia virus type 1 (HTLV-1). Cell viability was assessed using colorimetric assay. Propidium iodide staining was performed to determine cell cycle phase. Apoptotic effects were evaluated by 7A6 detection and caspases activity. Expressions of cell cycle- and apoptosis-associated proteins were analyzed by Western blot. We investigated the efficacy of honokiol in mice harboring tumors of HTLV-1-infected T-cell origin. Honokiol exhibited cytotoxic activity against HTLV-1-infected T-cell lines and ATL cells. We identified two different effects of honokiol on HTLV-1-infected T-cell lines: cell cycle inhibition and induction of apoptosis. Honokiol induced G1 cell cycle arrest by reducing the expression of cyclins D1, D2, E, CDK2, CDK4, CDK6 and c-Myc, while apoptosis was induced via reduced expression of cIAP-2, XIAP and survivin. The induced apoptosis was also associated with activation of caspases-3 and -9. In addition, honokiol suppressed the phosphorylation of IκBα, IKKα, IKKβ, STAT3, STAT5 and Akt, down-regulated JunB and JunD, and inhibited DNA binding of NF-κB, AP-1, STAT3 and STAT5. These effects resulted in the inactivation of survival signals including NF-κB, AP-1, STATs and Akt. Honokiol was highly effective against ATL in mice Our data suggested that honokiol is a systemically available, non-toxic inhibitor of ATL cell growth that should be examined for potential clinical application. Our findings provide a rationale for clinical evaluation of honokiol for the management of ATL. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    PubMed Central

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60–75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas. PMID:28356992

  2. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    PubMed

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  3. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    PubMed

    Wang, Wenmeng; Luo, Junqing; Xiang, Fang; Liu, Xueting; Jiang, Manli; Liao, Lingjuan; Hu, Jinyue

    2014-01-01

    High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC) down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  4. Nucleolin Down-Regulation Is Involved in ADP-Induced Cell Cycle Arrest in S Phase and Cell Apoptosis in Vascular Endothelial Cells

    PubMed Central

    Wang, Wenmeng; Luo, Junqing; Xiang, Fang; Liu, Xueting; Jiang, Manli; Liao, Lingjuan; Hu, Jinyue

    2014-01-01

    High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC) down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin. PMID:25290311

  5. Arrest of irradiated G1, S, or G2 cells at mitosis using nocodazole promotes repair of potentially lethal damage

    SciTech Connect

    Iliakis, G.; Nuesse, M.

    1984-08-01

    The ability of synchronized Ehrlich ascites tumor cells, irradiated in G1, S, and G2 phases, to repair potentially lethal damage when arrested at mitosis by using 0.4 ..mu..g/ml nocodazole, a specific inhibitor of microtubule polymerization, has been studied. Cells irradiated in these phases were found to repair potentially lethal damage at mitosis. The extent of this repair was similar to that observed for cells irradiated at the same stages in the cell cycle but allowed to repair potentially lethal damage by incubating in balanced salt solution for 6 hr after X irradiation.

  6. The production of reactive oxygen species and the mitochondrial membrane potential are modulated during onion oil-induced cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Xin-jiang; Stahl, Thorsten; Hu, Ying; Kassie, Fekadu; Mersch-Sundermann, Volker

    2006-03-01

    Protective effects of Allium vegetables against cancers have been shown extensively in experimental animals and epidemiologic studies. We investigated cell proliferation and the induction of apoptosis by onion oil extracted from Allium cepa, a widely consumed Allium vegetable, in human lung cancer A549 cells. GC/MS analysis suggested that propyl sulfides but not allyl sulfides are major sulfur-containing constituents of onion oil. Onion oil at 12.5 mg/L significantly induced apoptosis (13% increase of apoptotic cells) as indicated by sub-G1 DNA content. It also caused cell cycle arrest at the G2/M phase; 25 mg/L onion oil increased the percentage of G2/M cells almost 6-fold compared with the dimethyl sulfoxide control. The action of onion oil may occur via a reactive oxygen species-dependent pathway because cell cycle arrest and apoptosis were blocked by the antioxidants N-acetylcysteine and exogenous glutathione. Marked collapse of the mitochondrial membrane potential suggested that dysfunction of the mitochondria may be involved in the oxidative burst and apoptosis induced by onion oil. Expression of phospho-cdc2 and phospho-cyclin B1 were downregulated by onion oil, perhaps accounting for the G2/M arrest. Overall, these results suggest that onion oil may exert chemopreventive action by inducing cell cycle arrest and apoptosis in tumor cells.

  7. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest.

    PubMed

    González-Sarrías, Antonio; Gromek, Samantha; Niesen, Daniel; Seeram, Navindra P; Henry, Geneive E

    2011-08-24

    Research has shown that members of the Carex genus produce biologically active stilbenoids including resveratrol oligomers. This is of great interest to the nutraceutical industry given that resveratrol, a constituent of grape and red wine, has attracted immense research attention due to its potential human health benefits. In the current study, five resveratrol oligomers (isolated from Carex folliculata and Carex gynandra ), along with resveratrol, were evaluated for antiproliferative effects against human colon cancer (HCT-116, HT-29, Caco-2) and normal human colon (CCD-18Co) cells. The resveratrol oligomers included one dimer, two trimers, and two tetramers: pallidol (1); α-viniferin (2) and trans-miyabenol C (3); and kobophenols A (4) and B (5), respectively. Although not cytotoxic, the resveratrol oligomers (1-5), as well as resveratrol, inhibited growth of the human colon cancer cells. Among the six stilbenoids, α-viniferin (2) was most active against the colon cancer cells with IC(50) values of 6-32 μM (>2-fold compared to normal colon cells). Moreover, α-viniferin (at 20 μM) did not induce apoptosis but arrested cell cycle (in the S-phase) for the colon cancer but not the normal colon cells. This study adds to the growing body of knowledge supporting the anticancer effects of resveratrol and its oligomers. Furthermore, Carex species should be investigated for their nutraceutical potential given that they produce biologically active stilbenoids such as α-viniferin.

  8. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

    PubMed Central

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  9. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells.

    PubMed

    Turkson, James; Zhang, Shumin; Mora, Linda B; Burns, Audrey; Sebti, Said; Jove, Richard

    2005-09-23

    Previous studies have established constitutive activation of Stat3 protein as one of the molecular changes required for tumorigenesis. To develop novel therapeutics for tumors harboring constitutively active Stat3, compounds from the NCI 2000 diversity set were evaluated for inhibition of Stat3 DNA-binding activity in vitro. Of these, a novel platinum (IV) compound, IS3 295, interacted with Stat3 and inhibited its binding to specific DNA-response elements. Further analysis suggested noncompetitive-type kinetics for the inhibition of Stat3 binding to DNA. In human and mouse tumor cell lines with constitutively active Stat3, IS3 295 selectively attenuated Stat3 signaling, thereby inducing cell growth arrest at G0/G1 phase and apoptosis. Moreover, in transformed cells, IS3 295 repressed expression of cyclin D1 and bcl-xL, two of the known Stat3-regulated genes that are overexpressed in malignant cells, suggesting that IS3 295 mediates anti-tumor cell activity in part by blocking Stat3-mediated sub-version of cell growth and apoptotic signals. Together, our findings provide evidence for the inhibition of Stat3 activity and biological functions by IS3 295 through interaction with Stat3 protein. This study represents a significant advance in small molecule-based approaches to target Stat3 and suggests potential new applications for platinum (IV) complexes as modulators of the Stat3 pathway for cancer therapy.

  10. BDE-47 and BDE-209 inhibit proliferation of Neuro-2a cells via inducing G1-phase arrest.

    PubMed

    Chen, Hongmei; Tang, Xuexi; Zhou, Bin; Xu, Ningning; Zhou, Zhongyuan; Fang, Kuan; Wang, You

    2017-03-01

    Cell proliferation is closely related to cell cycle which is strictly regulated by genes and regulatory proteins. In the present study, we comparatively analyzed the toxic effects of BDE-47 and BDE-209 on cell proliferation of Neuro-2a cells, and the possible mechanism was discussed. The results indicated that BDE-47 significantly inhibited the cell proliferation and the cell cycle were arrest at G1 phase, while BDE-209 had little effects on either cell proliferation or cell cycle. qRT-PCR and Western blot assay presented that BDE-47 up-regulated the gene expressions of p53 and p21, which down-regulated the expresseion of cyclinD1 and CDK2, and inhibited retinoblastoma protein (pRb) phosphorylation. This process could effectively arrest the cell cycle at G1 phase, which finally caused the inhibition on Neuro-2a cell proliferation. However, BDE-209 was only up-regulated the gene expressions of p53, also suggested to be involved in the inhibition on Neuro-2a cell proliferation.

  11. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine Dependent Arrest in the T Cell Signaling Cascade

    PubMed Central

    Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.

    2015-01-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921

  12. The p53 co-activator Zac1 neither induces cell cycle arrest nor apoptosis in chicken Lim1 horizontal progenitor cells.

    PubMed

    Fard, S Shirazi; Blixt, Mke; Hallböök, F

    2015-01-01

    Chicken horizontal progenitor cells are able to enter their final mitosis even in the presence of DNA damage despite having a functional p53-p21 system. This suggests that they are resistant to DNA damage and that the regulation of the final cell cycle of horizontal progenitor cells is independent of the p53-p21 system. The activity of p53 is regulated by positive and negative modulators, including the zinc finger containing transcription factor Zac1 (zinc finger protein that regulates apoptosis and cell cycle arrest). Zac1 interacts with and enhances the activity of p53, thereby inducing cell cycle arrest and apoptosis. In this work, we use a gain-of-function assay in which mouse Zac1 (mZac1) is overexpressed in chicken retinal progenitor cells to study the effect on the final cell cycle of horizontal progenitor cells. The results showed that overexpression of mZac1 induced expression of p21 in a p53-dependent way and arrested the cell cycle as well as triggered apoptosis in chicken non-horizontal retinal progenitor cells. The negative regulation of the cell cycle by mZac1 is consistent with its proposed role as a tumour-suppressor gene. However, the horizontal cells were not affected by mZac1 overexpression. They progressed into S- and late G2/M-phase despite overexpression of mZac1. The inability of mZac1 to arrest the cell cycle in horizontal progenitor cells support the notion that the horizontal cells are less sensitive to events that triggers the p53 system during their terminal and neurogenic cell cycle, compared with other retinal cells. These properties are associated with a cell that has a propensity to become neoplastic and thus with a cell that may develop retinoblastoma.

  13. Persistent p21Cip1 induction mediates G(1) cell cycle arrest by methylseleninic acid in DU145 prostate cancer cells.

    PubMed

    Wang, Zhe; Lee, Hyo-Jeong; Chai, Yubo; Hu, Hongbo; Wang, Lei; Zhang, Yong; Jiang, Cheng; Lü, Junxuan

    2010-05-01

    The induction of G(1) cell cycle arrest and apoptosis by second-generation selenium compounds (e.g., methylselenol precursors such as methylseleninic acid, MSeA) may contribute to their anti-cancer activities. We have documented previously induction of G(1) arrest and apoptosis by MSeA in association with upregulation of cyclin-dependent kinase inhibitor (CDKI) proteins p21Cip1 and/or p27Kip1 in DU145 prostate cancer cells. However, whether these CDKIs play a critical mediator role in G(1) arrest and apoptosis by MSeA has not been addressed. In the present work, we show exposure of p53-mutant DU145 cells to sub-apoptotic concentrations of MSeA induced p21cip1 mRNA (3 h) and protein (6 h) much faster than p27kip1 mRNA (12 h) and protein (12 h). Knocking down of p21 by siRNA completely abolished G(1) arrest induction by MSeA in DU145 cells, yet si-p27 RNA had no attenuation effect on the G(1) arrest. Depletion of p21Cip1 alone or both p21Cip1 and p27Kip1 increased MSeA-induced caspase-mediated apoptosis. Immunoprecipitation detected increased binding of p21Cip1 to CDK2 and CDK6 in MSeA-exposed DU145 cells. In DU145 xenografts from mice acutely treated with MSeA p.o., the induction of p21Cip1 was observed at 72 h of daily exposure. In p53-wild type LNCaP PCa cells and p53-null PC-3 PCa cells, MSeA modestly and transiently upregulated p21Cip1 protein level, subsiding to basal level by 24 h, without affecting P27Kip1 abundance in the same duration. Si-p21 RNA knockdown in these cells have only a partial effect to reverse G(1) arrest induction by MSeA. Together, our data support persistent, p53-independent, p21Cip1 induction as a critical mediator of MSeA-induced G(1) arrest in DU145 PCa cells, however, p21Cip1 induction and G(1) arrest were not necessary for, and may antagonize, caspase-mediated apoptosis.

  14. Lipid biomarkers of glioma cell growth arrest and cell death detected by 1 H magic angle spinning MRS.

    PubMed

    Mirbahai, Ladan; Wilson, Martin; Shaw, Christopher S; McConville, Carmel; Malcomson, Roger D G; Kauppinen, Risto A; Peet, Andrew C

    2012-11-01

    Biomarkers of early response to treatment have the potential to improve cancer therapy by allowing treatment to be tailored to the individual. Alterations in lipids detected by in vivo MRS have been suggested as noninvasive biomarkers of cell stress and early indicators of cell death. An improved understanding of the relationship between MRS lipids and cell stress in vitro would aid in the translation of this technique into clinical use. Rat BT4C glioma cells were treated with 50 µ m cis-dichlorodiammineplatinum II (cisplatin), a commonly used chemotherapeutic agent, and harvested at several time points up to 72 h. High-resolution magic angle spinning (1) H MRS of cells was then performed on a 600-MHz NMR spectrometer. The metabolites were quantified using a time domain fitting method, TARQUIN. Increases were detected in saturated and polyunsaturated fatty acid resonances early during the exposure to cisplatin. The fatty acid CH(2) /CH(3) ratio was unaltered by treatment after allowing for contributions of macromolecules. Polyunsaturated fatty acids increased on treatment, with the group -CH=CH-CH(2) -CH=CH- accounting for all the unsaturated fatty acid signals. Transmission electron microscopy, in addition to Nile red and 4',6-diamino-2-phenylindole co-staining, revealed that the lipid increase was associated with cytoplasmic neutral lipid droplets. Small numbers of apoptotic and necrotic cells were detected by trypan blue, annexin V-fluorescein isothiocyanate-labelled flow cytometry and DNA laddering after up to 48 h of cisplatin exposure. Propidium iodide flow cytometry revealed that cells accumulated in the G1 stage of the cell growth cycle. In conclusion, an increase in the size of the lipid droplets is detected in morphologically viable cells during cisplatin exposure. (1) H MRS can detect lipid alterations during cell cycle arrest and progression of cell death, and has the potential to provide a noninvasive biomarker of treatment efficacy in vivo.

  15. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    SciTech Connect

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  16. Selective cell cycle arrest and induction of apoptosis in human prostate cancer cells by a polyphenol-rich extract of Solanum nigrum

    PubMed Central

    NAWAB, AKBAR; THAKUR, VIJAY S.; YUNUS, MOHAMMAD; MAHDI, ABBAS ALI; GUPTA, SANJAY

    2012-01-01

    Progression of prostate cancer is associated with escape of tumor cells from cell cycle arrest and apoptosis. Agents capable of selectively eliminating cancer cells by cell cycle arrest and/or induction of apoptosis offer a highly desirable approach. Here we demonstrate that a polyphenolic extract derived from ripe berries of Solanum nigrum (SN) differentially causes cell cycle arrest and apoptosis in various human prostate cancer cells without affecting normal prostate epithelial cells. Virally transformed normal human prostate epithelial PZ-HPV-7 cells and their cancer counterpart CA-HPV-10 cells, were used to evaluate the growth-inhibitory effects of the SN extract. SN treatment (5–20 μg/ml) of PZ-HPV-7 cells resulted in growth inhibitory responses of low magnitude. In sharp contrast, SN treatment of CA-HPV-10 cells increased cytotoxicity, decreased cell viability and induced apoptosis. Similar results were noted in the human prostate cancer LNCaP, 22Rv1, DU145 and PC-3 cell lines, where significant reductions in cell viability and induction of apoptosis was observed in all these cells, an effect independent of disease stage and androgen association. Cell cycle analysis revealed that SN treatment (5–20 μg/ml) resulted in a dose-dependent G2/M phase arrest and subG1 accumulation in the CA-HPV-10 but not in the PZ-HPV-7 cell line. Our results, for the first time, demonstrate that the SN extract is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. SN may be developed as a promising therapeutic and/or preventive agent against prostate cancer. PMID:22076244

  17. Acetate Supplementation Induces Growth Arrest of NG2/PDGFRα-Positive Oligodendroglioma-Derived Tumor-Initiating Cells

    PubMed Central

    Long, Patrick M.; Tighe, Scott W.; Driscoll, Heather E.; Moffett, John R.; Namboodiri, Aryan M. A.; Viapiano, Mariano S.; Lawler, Sean E.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA), which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683) and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35) relative to an oligodendrocyte progenitor line (Oli-Neu) were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation. PMID:24278309

  18. Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumor-initiating cells.

    PubMed

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Moffett, John R; Namboodiri, Aryan M A; Viapiano, Mariano S; Lawler, Sean E; Jaworski, Diane M

    2013-01-01

    Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA), which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683) and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35) relative to an oligodendrocyte progenitor line (Oli-Neu) were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation.

  19. Mitotic arrest of breast cancer MDA-MB-231 cells by a halogenated thieno[3,2-d]pyrimidine.

    PubMed

    Ross, Christina R; Temburnikar, Kartik W; Wilson, Gerald M; Seley-Radtke, Katherine L

    2015-04-15

    Halogenated thieno[3,2-d]pyrimidines exhibit antiproliferative activity against a variety of cancer cell models, such as the mouse lymphocytic leukemia cell line L1210 in which they induce apoptosis independent of cell cycle arrest. Here we assessed these activities on MDA-MB-231 cells, a well-established model of aggressive, metastatic breast cancer. While 2,4-dichloro[3,2-d]pyrimidine was less toxic to MDA-MB-231 cells than previously observed in the L1210 model, flow cytometry analysis showed that MDA-MB-231 cell death involved arrest at the G2/M stage of the cell cycle. Conversely, the introduction of bromine at C7 of the 2,4-dichloro[3,2-d]pyrimidine eliminated cell type-dependent differences in cytotoxicity or cell cycle status. Together, these data indicate that a substituent at C7 can profoundly modify the cytotoxic mechanism of halogenated thieno[3,2-d]pyrimidines in a cell type-specific manner.

  20. Palmitic Acid-Induced Neuron Cell Cycle G2/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-01-01

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction. PMID:25402647

  1. Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells.

    PubMed

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-11-13

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer's disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.

  2. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan).

    PubMed

    Abu Bakar, Mohd Fadzelly; Mohamad, Maryati; Rahmat, Asmah; Burr, Steven A; Fry, Jeffrey R

    2010-06-01

    An extract of Mangifera pajang kernel has been previously found to contain a high content of antioxidant phytochemicals. The present research was conducted to investigate the anticancer potential of this kernel extract. The results showed that the kernel crude extract induced cytotoxicity in MCF-7 (hormone-dependent breast cancer) cells and MDA-MB-231 (non-hormone dependent breast cancer) cells with IC50 values of 23 and 30.5 microg/ml, respectively. The kernel extract induced cell cycle arrest in MCF-7 cells at the sub-G1 (apoptosis) phase of the cell cycle in a time-dependent manner. For MDA-MB-231 cells, the kernel extract induced strong G2-M arrest in cell cycle progression at 24h, resulting in substantial sub-G1 (apoptosis) arrest after 48 and 72 h of incubation. Staining with Annexin V-FITC and propidium iodide revealed that this apoptosis occurred early in both cell types, 36 h for MCF-7 cells and 24 h for MDA-MB-231 cells, with 14.0% and 16.5% of the cells respectively undergoing apoptosis at these times. This apoptosis appeared to be dependent on caspase-2 and -3 in MCF-7 cells, and on caspase-2, -3 and -9 in MDA-MB-231 cells. These findings suggest that M. pajang kernel extract has potential as a potent cytotoxic agent against breast cancer cell lines.

  3. Nobiletin, a Polymethoxylated Flavone, Inhibits Glioma Cell Growth and Migration via Arresting Cell Cycle and Suppressing MAPK and Akt Pathways.

    PubMed

    Lien, Li-Ming; Wang, Meng-Jiy; Chen, Ray-Jade; Chiu, Hou-Chang; Wu, Jia-Lun; Shen, Ming-Yi; Chou, Duen-Suey; Sheu, Joen-Rong; Lin, Kuan-Hung; Lu, Wan-Jung

    2016-02-01

    Nobiletin, a bioactive polymethoxylated flavone (5,6,7,8,3(') ,4(') -hexamethoxyflavone), is abundant in citrus fruit peel. Although nobiletin exhibits antitumor activity against various cancer cells, the effect of nobiletin on glioma cells remains unclear. The aim of this study was to determine the effects of nobiletin on the human U87 and Hs683 glioma cell lines. Treating glioma cells with nobiletin (20-100 µm) reduced cell viability and arrested the cell cycle in the G0/G1 phase, as detected using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide (PI) staining, respectively; however, nobiletin did not induce cell apoptosis according to PI-annexin V double staining. Data from western blotting showed that nobiletin significantly attenuated the expression of cyclin D1, cyclin-dependent kinase 2, cyclin-dependent kinase 4, and E2 promoter-binding factor 1 (E2F1) and the phosphorylation of Akt/protein kinase B and mitogen-activated protein kinases, including p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Our data also showed that nobiletin inhibited glioma cell migration, as detected by both functional wound healing and transwell migration assays. Altogether, the present results suggest that nobiletin inhibits mitogen-activated protein kinase and Akt/protein kinase B pathways and downregulates positive regulators of the cell cycle, leading to subsequent suppression of glioma cell proliferation and migration. Our findings evidence that nobiletin may have potential for treating glioblastoma multiforme.

  4. 3,3'-Diindolylmethane induces G1 arrest and apoptosis in human acute T-cell lymphoblastic leukemia cells.

    PubMed

    Shorey, Lyndsey E; Hagman, Amanda M; Williams, David E; Ho, Emily; Dashwood, Roderick H; Benninghoff, Abby D

    2012-01-01

    Certain bioactive food components, including indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) from cruciferous vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations 8- to 25-fold lower than the parent compound I3C. DIM (7.5 µM) arrested CEM and HSB2 cells at the G(1) phase of the cell cycle and 15 µM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25, TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for therapeutic application of DIM in T-ALL.

  5. Ailanthone Inhibits Huh7 Cancer Cell Growth via Cell Cycle Arrest and Apoptosis In Vitro and In Vivo.

    PubMed

    Zhuo, Zhenjian; Hu, Jianyang; Yang, Xiaolin; Chen, Minfen; Lei, Xueping; Deng, Lijuan; Yao, Nan; Peng, Qunlong; Chen, Zhesheng; Ye, Wencai; Zhang, Dongmei

    2015-11-03

    While searching for natural anti-hepatocellular carcinoma (HCC) components in Ailanthus altissima, we discovered that ailanthone had potent antineoplastic activity against HCC. However, the molecular mechanisms underlying the antitumor effect of ailanthone on HCC have not been examined. In this study, the antitumor activity and the underlying mechanisms of ailanthone were evaluated in vitro and in vivo. Mechanistic studies showed that ailanthone induced G0/G1-phase cell cycle arrest, as indicated by decreased expression of cyclins and CDKs and increased expression of p21 and p27. Our results demonstrated that ailanthone triggered DNA damage characterized by activation of the ATM/ATR pathway. Moreover, ailanthone-induced cell death was associated with apoptosis, as evidenced by an increased ratio of cells in the subG1 phase and by PARP cleavage and caspase activation. Ailanthone-induced apoptosis was mitochondrion-mediated and involved the PI3K/AKT signaling pathway in Huh7 cells. In vivo studies demonstrated that ailanthone inhibited the growth and angiogenesis of tumor xenografts without significant secondary adverse effects, indicating its safety for treating HCC. In conclusion, our study is the first to report the efficacy of ailanthone against Huh7 cells and to elucidate its underlying molecular mechanisms. These findings suggest that ailanthone is a potential agent for the treatment of liver cancer.

  6. Ailanthone Inhibits Huh7 Cancer Cell Growth via Cell Cycle Arrest and Apoptosis In Vitro and In Vivo

    PubMed Central

    Zhuo, Zhenjian; Hu, Jianyang; Yang, Xiaolin; Chen, Minfen; Lei, Xueping; Deng, Lijuan; Yao, Nan; Peng, Qunlong; Chen, Zhesheng; Ye, Wencai; Zhang, Dongmei

    2015-01-01

    While searching for natural anti-hepatocellular carcinoma (HCC) components in Ailanthus altissima, we discovered that ailanthone had potent antineoplastic activity against HCC. However, the molecular mechanisms underlying the antitumor effect of ailanthone on HCC have not been examined. In this study, the antitumor activity and the underlying mechanisms of ailanthone were evaluated in vitro and in vivo. Mechanistic studies showed that ailanthone induced G0/G1-phase cell cycle