Science.gov

Sample records for 17o nmr spectra

  1. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite

    USGS Publications Warehouse

    Kelsey, K.E.; Stebbins, J.F.; Du, L.-S.; Hankins, B.

    2007-01-01

    The 17O NMR spectra of glasses quenched from melts at high pressure are often difficult to interpret due to overlapping peaks and lack of crystalline model compounds. High-pressure aluminosilicate glasses often contain significant amounts of [5]Al and [6]Al, thus these high-pressure glasses must contain oxygen bonded to high-coordinated aluminum. The 17O NMR parameters for the minerals jadeite, pyrope, grossular, and mullite are presented to assist interpretation of glass spectra and to help test quantum chemical calculations. The 17O NMR parameters for jadeite and grossular support previous peak assignments of oxygen bonded to Si and high-coordinated Al in high-pressure glasses as well as quantum chemical calculations. The oxygen tricluster in mullite is very similar to the previously observed tricluster in grossite (CaAl4 O7) and suspected triclusters in glasses. We also present 27Al NMR spectra for pyrope, grossular, and mullite.

  2. Solid-State 17O NMR of Paramagnetic Coordination Compounds**

    PubMed Central

    Kong, Xianqi; Terskikh, Victor V.; Khade, Rahul L.; Yang, Liu; Rorick, Amber; Zhang, Yong; He, Peng; Huang, Yining; Wu, Gang

    2015-01-01

    We demonstrate that high-quality solid-state 17O (I = 5/2) NMR spectra can be successfully obtained for paramagnetic coordination compounds in which oxygen atoms are directly bonded to the paramagnetic metal centers. For complexes containing V(III) (S = 1), Cu(II) (S = 1/2), and Mn(III) (S = 2) metal centers, the 17O isotropic paramagnetic shifts were found to span a range of more than 10000 ppm. In several cases, high-resolution 17O NMR spectra were recorded under very fast magic-angle spinning (MAS) conditions at 21.1 T. Quantum chemical computations using density functional theory (DFT) qualitatively reproduced the experimental 17O hyperfine shift tensors. PMID:25694203

  3. (17)O NMR Investigation of Water Structure and Dynamics.

    PubMed

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole. PMID:27454747

  4. Chemometric Analysis of Two Dimensional Decay Data: Application to {sup 17}O NMR Relaxation Matrices

    SciTech Connect

    Alam, M.K.; Alam, T.M.

    1999-03-18

    The use of {sup 17}O NMR spectroscopy as a tool to investigate aging in polymer systems has recently been demonstrated. Because the natural abundance of {sup 17}O is extremely low (0.037%), the use of labeled {sup 17}O{sub 2} during the oxidation of polymers produces {sup 17}O NMR spectra whose signals arise entirely from the degradation species (i.e. signals from the bulk or unaged material are not observed). This selective isotopic labeling eliminates the impact of interference from the unaged material, cause (1) above. As discussed by Alam et al. spectral overlap between different degradation species as well as errors in quantification remains a major difficulty in {sup 17}O NMR spectroscopy. As a demonstration of the DECRA and CTBSA methods, relaxation matrices obtained from {sup 17}O NMR for model alcohol systems are evaluated. The benefits and limitations of these newly developed chemometric techniques are discussed.

  5. {sup 17}O NMR investigations of oxidative degradation in polymers

    SciTech Connect

    Alam, T.M.; Celina, M.; Assink, R.A.; Gillen, K.T.; Clough, R.L.

    1996-12-31

    We have initiated studies using both solution and solid state magic angle spinning {sup 17}O NMR for a series of oxidatively aged polymers. This short note reports the solution {sup 17}O NMR for oxidatively degraded polypropylene, ethylene-propylene-diene, polyisoprene, and nitrile rubber. Enriched O{sub 2} is used during the accelerated aging. 3 figs, 7 refs.

  6. The relationship between environmental abundant electromagnetic fields and packaging shape to their effects on the 17O NMR and Raman spectra of H2O-NaCl

    NASA Astrophysics Data System (ADS)

    Abdelsamie, Maher A. A.; Rahman, Russly B. Abdul; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2015-07-01

    In this study, two identical groups of four containers with different packaging shapes made of polymethyl methacrylate (PMMA) were used to store H2O-NaCl solution for seven days at ambient room temperature (25 °C). Faraday shield was used to shield one group. The surrounding electromagnetic fields were measured during the storage period by using R&S®TS-EMF EMF measurement system. Samples of H2O-NaCl were collected at the end of the storage period and examined by 17Oxygene nuclear magnetic resonance spectroscopy (17O NMR) and Raman spectroscopy. Electromagnetic simulation was used to explore the relationship between the packaging shape of H2O-NaCl containers and the environmentally abundant electromagnetic fields to their effects on the cluster size of water. The study showed variations in the cluster size of water stored inside the two groups of containers. It was observed that the cluster size of water stored in the unshielded containers was lower than that of the shielded containers. The cluster size of water stored in the unshielded pyramidal container was lower than the cluster size of water stored in the unshielded rectangular, square, and cylindrical containers. The EM simulation results showed significant variations in the total specific absorption rate SAR and maximum point SAR values induced in the H2O-NaCl solution in the unshielded container models at 2400 MHz for both vertical and horizontal polarization. It can be concluded that the variations in the values of SAR induced in H2O-NaCl solution are directly related to the variations in the cluster size of the stored water.

  7. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  8. Understanding the symmetric line shape in the 17O MAS spectra for hexagonal ice

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Oki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2016-06-01

    Solid-state 17O Magic-Angle Spinning (MAS) nuclear magnetic resonance (NMR) spectra of 17O-enriched hexagonal ice, [17O]-Ih, between 173 and 253 K were presented. Marked changes in the line shape were clearly observed, indicating water molecular reorientation in the crystal structure. At 173 K, molecular motions were considered to be frozen and analysis of the 1D MAS spectrum yielded the following parameters: quadrupole coupling constant (CQ) = 6.6 ± 0.2 MHz and asymmetry parameter (ηQ) = 0.95 ± 0.05. At 232 K and above, contrary to the conventional explanation, pseudo-symmetric line shapes appeared in the 17O MAS NMR spectra arising from the contribution of second-order quadrupole interactions. As a chemical exchange model to describe these isotropic 17O MAS NMR spectra, a modified Ratcliffe model, which consider the effects of proton disorder, was proposed, and the resulting theoretical spectra could well reproduce the experimental spectra.

  9. New insights into the bonding arrangements of L- and D-glutamates from solid state 17O NMR

    NASA Astrophysics Data System (ADS)

    Lemaitre, V.; Pike, K. J.; Watts, A.; Anupold, T.; Samoson, A.; Smith, M. E.; Dupree, R.

    2003-03-01

    Magic angle spinning (MAS) from L- and D-glutamic acid-HCl at 14.1 T produces highly structured and very similar NMR spectra. Lines from all 4 oxygen sites are readily distinguished and assigned. These 17O NMR spectra are very different from the previously reported 17O spectrum of the D, L-form presumably because that was a racemic crystal. 17O NMR from L-monosodium glutamate-HCl is very different again requiring the application of double angle rotation and 3 quantum MAS NMR to provide resolution of 5 different sites. Hence high resolution 17O solid state NMR techniques offer possible new insight into biochemical bonding processes.

  10. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    SciTech Connect

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  11. Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy

    SciTech Connect

    Alam, T.M.; Click, C.A.; Assink, R.A.

    1997-09-01

    Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

  12. Identification of different oxygen species in oxide nanostructures with (17)O solid-state NMR spectroscopy.

    PubMed

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P; Peng, Luming

    2015-02-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the (17)O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency (17)O chemical shifts being observed for the lower coordinated surface sites. H2 (17)O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. (17)O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  13. Dynamic NMR of low-sensitivity fast-relaxing nuclei: (17)O NMR and DFT study of acetoxysilanes.

    PubMed

    Fusaro, Luca; Mameli, Giulia; Mocci, Francesca; Luhmer, Michel; Cerioni, Giovanni

    2012-02-01

    (17)O NMR is not routinely used for structure characterization, and kinetic studies of fluxional organic compounds are seldom undertaken because poor sensitivity and fast quadrupole relaxation are frequently regarded as intractable issues. This work shows how, nowadays, quantitative (17)O dynamic NMR studies on small organic molecules are feasible without enrichment being needed. It reports on acetoxysilanes, a class of fluxional compounds whose structure and dynamics were to be clarified. Natural abundance (17)O NMR spectra were recorded over a wide range of temperatures using standard instrumentation. The analysis relies on simple linewidth measurements and directly provides the activation parameters. The activation enthalpy is found to decrease with increasing number of acetoxy groups bound to silicon. Density functional theory calculations properly predict this trend and show that a single oxygen atom of the acetoxy group is bound to silicon, excluding chelation as binding mode, and that the dynamic process involves the shift of the silicon atom between the two oxygen atoms of the acetoxy group. PMID:22374872

  14. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    PubMed Central

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  15. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  16. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    PubMed

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25641664

  17. NMR study of a 17O enriched LaMnO3 stoichiometric crystal

    NASA Astrophysics Data System (ADS)

    Pinsard-Gaudart, L.; Trokiner, A.; Verkhovskii, S.; Gerashenko, A.; Dragoe, N.

    2011-12-01

    We present the synthesis and the NMR characterization of a 17O enriched LaMnO 3 crystalline sample. We checked that it is single phase and, more important, stoichiometric in oxygen. Its 17O enrichment estimated by NMR is about 5.5%. These first 17O NMR results obtained at T=415 K in an undoped parent LaMnO 3 manganite demonstrate that the two oxygen sites of the structure probe very different Mn spin correlations in the paramagnetic orbital ordered phase. This work opens the way to study experimentally the interactions responsible for the orbital order.

  18. Joint experimental and computational 17O solid state NMR study of Brownmillerite Ba2In2O5.

    PubMed

    Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Holmes, Lesley A; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P

    2014-02-14

    Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature. PMID:24382459

  19. Characterizing Oxygen Local Environments in Paramagnetic Battery Materials via (17)O NMR and DFT Calculations.

    PubMed

    Seymour, Ieuan D; Middlemiss, Derek S; Halat, David M; Trease, Nicole M; Pell, Andrew J; Grey, Clare P

    2016-08-01

    Experimental techniques that probe the local environment around O in paramagnetic Li-ion cathode materials are essential in order to understand the complex phase transformations and O redox processes that can occur during electrochemical delithiation. While Li NMR is a well-established technique for studying the local environment of Li ions in paramagnetic battery materials, the use of (17)O NMR in the same materials has not yet been reported. In this work, we present a combined (17)O NMR and hybrid density functional theory study of the local O environments in Li2MnO3, a model compound for layered Li-ion batteries. After a simple (17)O enrichment procedure, we observed five resonances with large (17)O shifts ascribed to the Fermi contact interaction with directly bonded Mn(4+) ions. The five peaks were separated into two groups with shifts at 1600 to 1950 ppm and 2100 to 2450 ppm, which, with the aid of first-principles calculations, were assigned to the (17)O shifts of environments similar to the 4i and 8j sites in pristine Li2MnO3, respectively. The multiple O environments in each region were ascribed to the presence of stacking faults within the Li2MnO3 structure. From the ratio of the intensities of the different (17)O environments, the percentage of stacking faults was found to be ca. 10%. The methodology for studying (17)O shifts in paramagnetic solids described in this work will be useful for studying the local environments of O in a range of technologically interesting transition metal oxides. PMID:27404908

  20. Site-assignment of 17O-NMR signals in itinerant metamagnetic compound Sr 3Ru 2O 7

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kentaro; Ishida, Kenji; Perry, Robin S.; Maeno, Yoshiteru

    2006-05-01

    We have performed an 17O-NMR measurement in the bilayered perovskite ruthenate Sr 3Ru 2O 7 which shows itinerant metamagnetism at low temperatures. Three oxygen sites are identified in the 17O-NMR spectrum. NMR lines arising from the outer-apical O site are observable in the vicinity of a metamagnetic quantum critical point in spite of strong spin fluctuations. The field dependence of the Knight shift scales with the bulk magnetization.

  1. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  2. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    PubMed

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom. PMID:26670708

  3. A solid-state 17O NMR, X-ray, and quantum chemical study of N-α-Fmoc-protected amino acids

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Hashizume, Daisuke; Shimizu, Tadashi; Ohki, Shinobu; Yokoyama, Shigeyuki

    2008-10-01

    We report the results of a solid-state 17O NMR and X-ray investigation of 17O-enriched N-α-fluoren-9-ylmethoxycarbonyl- L-alanine (Fmoc- L-ALA) and N-α-fluoren-9-ylmethoxycarbonyl- O- t-butyl- L-serine (Fmoc- L-SER). The present X-ray results for Fmoc- L-SER show that the compound crystallized in the monoclinic space group P2 1 with unit-cell dimensions a = 5.843, b = 11.937, c = 15.042 Å, and β = 96.19°. Analysis of 17O magic-angle spinning (MAS) spectra and stationary NMR spectra recorded at multiple magnetic fields of the present Fmoc-protected amino acids yields the magnitudes of hydroxyl and carbonyl 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors with the relative orientations between the two NMR tensors. The 17O quadrupole coupling constants ( CQ) are found to be 7.05-7.60 MHz and 7.90-8.35 MHz, and the spans of the CS tensors are 218-236 ppm and 450-521 ppm, for hydroxyl and carbonyl oxygen atoms, respectively. We also carry out quantum chemical calculations using density functional theory in order to investigate the effects of hydrogen-bond angles on 17O NMR parameters. It is demonstrated that, in addition to the hydrogen bond distances, hydrogen bond angles are an important factor in determining the magnitudes of these tensor components.

  4. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGESBeta

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; Pruski, Marek

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  5. Solid-State (17)O NMR of Oxygen-Nitrogen Singly Bonded Compounds: Hydroxylammonium Chloride and Sodium Trioxodinitrate (Angeli's Salt).

    PubMed

    Lu, Jiasheng; Kong, Xianqi; Terskikh, Victor; Wu, Gang

    2015-07-23

    We report a solid-state NMR study of (17)O-labeled hydroxylammonium chloride ([H(17)O-NH3]Cl) and sodium trioxodinitrate monohydrate (Na2[(17)ONNO2]·H2O, Angeli's salt). The common feature in these two compounds is that they both contain oxygen atoms that are singly bonded to nitrogen. For this class of oxygen-containing functional groups, there is very limited solid-state (17)O NMR data in the literature. In this work, we experimentally measured the (17)O chemical shift and quadrupolar coupling tensors. With the aid of plane-wave DFT computation, the (17)O NMR tensor orientations were determined in the molecular frame of reference. We found that the characteristic feature of an O-N single bond is that the (17)O nucleus exhibits a large quadrupolar coupling constant (13-15 MHz) but a rather small chemical shift anisotropy (100-250 ppm), in sharp contrast with the nitroso (O═N) functional group for which both quantities are very large (e.g., 16 MHz and 3000 ppm, respectively). PMID:26107984

  6. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State (17)O MAS NMR Spectroscopy.

    PubMed

    Halat, David M; Dervişoğlu, Rıza; Kim, Gunwoo; Dunstan, Matthew T; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2016-09-14

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  7. Vortex Lattice Formation in High Magnetic Fields in an Underdoped Single Crystal of Hg1201 from 17O NMR

    NASA Astrophysics Data System (ADS)

    Lee, Jeongseop; Xin, Yizhou; Halperin, W. P.; Reyes, A. P.; Kuhns, P. L.

    The vortex lattice in HgBa2CuO4+δ forms at a vortex melting temperature, Tv, typically ~40K for underdoped crystals with a hole doping ~ 0.11. We present our results from 17O NMR for investigation of the vortex lattice as a function of external magnetic field up to 30 T and temperature as low as 5 K. The vortex contribution to the NMR linewidth can be separated from inhomogeneous broadening by deconvolution of the normal state spectra which was measured separately above, Tv. The vortex melting temperature was measured for two underdoped samples marked by the onset of extra linewidth broadening due to the inhomogeneous magnetic field distribution from the solid vortex lattice consistent with transverse relaxation measurements. We have found evidence for a change in the vortex lattice symmetry as a function of external fields. This work was supported by the DOE BES under Grant No. DE-FG02-05ER46248 and the NHMFL through the NSF and State of Florida.

  8. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics

    PubMed Central

    2015-01-01

    A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25−32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H–17O double resonance experiments. PMID:26321789

  9. Solid-state {sup 17}O magic-angle and dynamic-angle spinning NMR study of the SiO{sub 2} polymorph coesite

    SciTech Connect

    Grandinetti, P.J.; Baltisberger, J.H.; Farnan, I.; Stebbins, J.F.; Werner, U.; Pines, A. |

    1995-08-10

    Five distinctly resolved {sup 17}O solid-state NMR resonances in room temperature coesite, an SiO{sub 2} polymorph, have been observed and assigned using dynamic angle spinning (DAS) at 11.7 T along with magic angle spinning (MAS) spectra at 9.4 and 11.7 T. The {sup 17}O quadrupolar parameters for each of the five oxygen environments in coesite are correlated with the Si-O-Si bridging bond angles determined by diffraction experiments. The sign of e{sup 2}-qQ/h along with the orientation of the electric field gradient for oxygen in the Si-O-Si linkage were determined from a Townes-Dailey analysis of the data. 41 refs., 7 figs., 5 tabs.

  10. Computational 17O-NMR spectroscopy of organic acids and peracids: comparison of solvation models.

    PubMed

    Baggioli, Alberto; Crescenzi, Orlando; Field, Martin J; Castiglione, Franca; Raos, Guido

    2013-01-28

    We examine several computational strategies for the prediction of the (17)O-NMR shielding constants for a selection of organic acids and peracids in aqueous solution. In particular, we consider water (the solvent and reference for the chemical shifts), hydrogen peroxide, acetic acid, lactic acid and peracetic acid. First of all, we demonstrate that the PBE0 density functional in combination with the 6-311+G(d,p) basis set provides an excellent compromise between computational cost and accuracy in the calculation of the shielding constants. Next, we move on to the problem of the solvent representation. Our results confirm the shortcomings of the Polarizable Continuum Model (PCM) in the description of systems susceptible to strong hydrogen bonding interactions, while at the same time they demonstrate its usefulness within a molecular-continuum approach, whereby PCM is applied to describe the solvation of the solute surrounded by some explicit solvent molecules. We examine different models of the solvation shells, sampling their configurations using both energy minimizations of finite clusters and molecular dynamics simulations of bulk systems. Hybrid molecular dynamics simulations, in which the solute is described at the PM6 semiempirical level and the solvent by the TIP3P model, prove to be a promising sampling method for medium-to-large sized systems. The roles of solvent shell size and structure are also briefly discussed. PMID:23223608

  11. Correlations between 29Si, 17O and 1H NMR properties and local structures in silicates: an ab initio calculation

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.

    In order to gain insight into the correlations between 29Si, 17O and 1H NMR properties (chemical shift and quadrupolar coupling parameters) and local structures in silicates, ab initio self-consistent field Hartree-Fock molecular orbital calculations have been carried out on silicate clusters of various polymerizations and intertetrahedral (Si-O-Si) angles. These include Si(OH)4 monomers (isolated as well as interacting), Si2O(OH)6 dimers (C2 symmetry) with the Si-O-Si angle fixed at 5° intervals from 120° to 180°, Si3O2(OH)8 linear trimers (C2 symmetry) with varying Si-O-Si angles, Si3O3(OH)6 three-membered rings (D3 and C1 symmetries), Si4O4(OH)8 four-membered ring (C4 symmetry) and Si8O12(OH)8 octamer (D4 symmetry). The calculated 29Si, 17O and 1H isotropic chemical shifts (δiSi, δiO and δiH) for these clusters are all close to experimental NMR data for similar local structures in crystalline silicates. The calculated 17O quadrupolar coupling constants (QCC) of the bridging oxygens (Si-O-Si) are also in good agreement with experimental data. The calculated 17O QCC of silanols (Si-O-H) are much larger than those of the bridging oxygens, but unfortunately there are no experimental data for similar groups in well-characterized crystalline phases for comparison. There is a good correlation between δiSi and the mean Si-O-Si angle for both Q1 and Q2, where Qn denotes Si with n other tetrahedral Si next-nearest neighbors. Both the δiO and the 17O electric field gradient asymmetry parameter, η of the bridging oxygens have been found to depend strongly on the O site symmetry, in addition to the Si-O-Si angle. On the other hand, the 17O QCC seems to be influenced little by structural parameters other than the Si-O-Si angle, and is thus expected to be the most reliable 17O NMR parameter that can be used to decipher Si-O-Si angle distribution information. Both the 17O QCC and the 2H QCC of silanols decrease with decreasing length of hydrogen bond to a second O atom

  12. 17O NMR study of the doped electrons in lightly oxygen-deficient cubic SrMnO3 -x

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Verkhovskii, S.; Volkova, Z.; Gerashenko, A.; Mikhalev, K.; Germov, A.; Yakubovskii, A.; Korolev, A.; Dabrowski, B.; Tyutyunnik, A.

    2016-05-01

    The spin susceptibility of the localized Mn (t2 g) electrons, χs, and the spatially distributed spin density of the doped electrons were investigated by 17O nuclear magnetic resonance (NMR) in the paramagnetic (PM) and antiferromagnetic (AF) phases of electron-doped SrMnO3 -x ceramics with the cubic structure. Three lightly doped samples (2 x <0.015 ) were studied with TN=220 K-240 K. In the PM state χs increases gradually from TN and reaches a broad maximum above ˜1.5 TN . The gapped behavior of χs indicates a low-dimensional short-range spin order persisting above TN. These short-range one-dimensional correlations are consistent with 17O NMR results obtained at room temperature, which show that Mn magnetic moments are aligned along the edges of the cubic unit cell. Above 350 K all doped electrons are fast-moving eg electrons. They provide the uniform polarization of the localized spins which increases χs and the increasing doping shifts the oxygen-deficient SrMnO3 -x oxide towards a ferromagnetic (FM) metallic state. At lower T the doped electrons are heterogeneously distributed in the oxide: The fraction of the fast-moving electrons diminishes and vanishes below 100 K, while the remaining doped electrons slow down their hopping and each of them creates a FM domain. These FM domains which are detected below 10 K by 55Mn NMR can be considered as small-size magnetic polarons. Their T -activated hopping in the G-type AF lattice was probed by 17O spin-echo experiments. The energy barrier of hopping shows a trend to grow with increasing doping, indicating that the de Gennes metallic ground state cannot be achieved in oxygen-deficient SrMnO3 -x oxides, probably due to detrimental oxygen vacancy defects.

  13. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  14. /sup 17/O NMR spectroscopy of magnetically ordered YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ microcrystals

    SciTech Connect

    Coretsopoulos, C.; Lee, H.C.; Ramli, E.; Reven, L.; Rauchfuss, T.B.; Oldfield, E.

    1989-01-01

    We have obtained /sup 17/O NMR spectra of powder samples of YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ and EuBa/sub 2/Cu/sub 3/O/sub 7-//sub x/, as well as magnetically ordered YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/. Two major features are observed in YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/: a sharp resonance at approx. =1800 ppm (from external H/sub 2//sup 17/O, International Union of Pure and Applied Chemistry delta scale) and a broader series of features centered at approx. =400 ppm. The 1800-ppm feature undergoes a diamagnetic shift of approx. =800 ppm on cooling to 77 K, and a similar magnitude shift on Eu substitution, suggesting assignment to the plane oxygens, O(2,3). Measurements on magnetically ordered samples at 8.45 and 11.7 T give the magnitude of the diagonal terms of the electric field gradient tensor, which are 2.3, 3.5, and 5.8 MHz. For the columnar oxygen, O(1), we find e/sup 2/qQ/h = 7.7 MHz, with a chemical shift anisotropy of approx. =660 ppm.

  15. ^17O and ^59Co NMR Studies of Strongly Correlated Electrons in NaxCoO2

    NASA Astrophysics Data System (ADS)

    Imai, Takashi

    2006-03-01

    The anomalous electronic properties of triangular-lattice system NaxCoO2 has been attracting strong interest over the last several years since the discovery of superconductivity in hydrated Na1/3CoO2.4/3[H2O]. The electronic phase diagram of these materials is quite rich, as the physical properties depend very strongly on Na concentration. Here we report our ^17O and ^59Co NMR studies of the local electronic properties and low-frequency spin dynamics in these materials for a variety of Na concentrations [1,2]. [1] F.L. Ning, T. Imai, B.W. Statt, and F.C. Chou, PRL 93 (2004) 237201.[2] F.L. Ning and T. Imai, PRL 94 (2005) 227004.

  16. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  17. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  18. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  19. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    SciTech Connect

    Puzzarini, Cristina Cazzoli, Gabriele; Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  20. Local moment and inhomogeneous hyperfine interaction in the CuO2 plane of Bi2Sr2CaCu2O8+δ (Bi2212) single crystal by ^17O NMR

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Mukhopadhyay, Sutirtha; Halperin, William

    2007-03-01

    The ^17O NMR spectra of Bi2Sr2CaCu2O8+δ (Bi2212) single crystals were measured in the magnetic field of 8 T from 4 K to 200 K. The linewidth of the oxygen in CuO2 plane, O(1), was found to follow a Curie temperature dependence in the normal state, where the Curie coefficient decreases with the increase of δ oxygen in the crystal. In the superconductive state, it decreases with deceasing temperature, proportional to the decreasing Knight shift. This temperature dependence of the linewidth identifies the existence of local moment and inhomogeneous hyperfine interaction in the CuO2 plane.

  1. Ab initio and sup 17 O NMR study of aromatic compounds with dicoordinate oxygen atoms. (1) Methoxy- and (methylenedioxy)benzene derivatives

    SciTech Connect

    Biekofsky, R.R.; Pomilio, A.B.; Contreras, R.H. ); Orendt, A.M.; Facelli, J.C. )

    1990-09-20

    {sup 17}O NMR data at natural abundance in toluene-d{sub 8} at 74{degree}C were obtained for aromatic compounds containing methoxy and methylenedioxy groups as side-chains substituents. {sup 17}O chemical shifts of this series of compounds are significantly influenced by both electronic and steric effects. Ortho electronic and steric substituent chemical shift effects for methoxy and methylenedioxy groups were estimated. Ab initio calculations at the 4-31G level were used to determine geometries of the compounds to gain insight into the structural aspects of these compounds. A correlation between the calculated bond orders, P{sub C{sub Ar}P{minus}O}, and the {sup 17}O chemical shift was found.

  2. Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Im; Sur, Jung Chul; Lee, Sung Keun

    2016-01-01

    Despite its geochemical importance and implications for the properties of natural magmatic melts, understanding the detailed structure of iron-bearing silicate glasses remains among the outstanding problems in geochemistry. This is mainly because solid-state NMR techniques, one of the most versatile experimental methods to probe the structure of oxide glasses, cannot be fully utilized for exploring the structural details of iron-bearing glasses as the unpaired electrons in Fe induce strong local magnetic fields that mask the original spectroscopic features (i.e., paramagnetic effect). Here, we report high-resolution 29Si and 17O solid-state NMR spectra of iron-bearing sodium silicate glasses (Na2O-Fe2O3-SiO2, Fe3+/ΣFe = 0.89 ± 0.04, thus containing both ferric and ferrous iron) with varying XFe2O3 [=Fe2O3/(Na2O + Fe2O3)], containing up to 22.9 wt% Fe2O3. This compositional series involves Fe-Na substitution at constant SiO2 contents of 66.7 mol% in the glasses. For both nuclides, the NMR spectra exhibit a decrease in the signal intensities and an increase in the peak widths with increasing iron concentration partly because of the paramagnetic effect. Despite the intrinsic difficulties that result from the pronounced paramagnetic effect, the 29Si and 17O NMR results yield structural details regarding the effect of iron content on Q speciation, spatial distribution of iron, and the extent of polymerization in the iron-bearing silicate glasses. The 29Si NMR spectra show an apparent increase in highly polymerized Q species with increasing XFe2O3 , suggesting an increase in the degree of melt polymerization. The 17O 3QMAS NMR spectra exhibit well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) peaks with varying iron concentration. By replacing Na2O with Fe2O3 (and thus with increasing iron content), the fraction of Na-O-Si decreases. Quantitative consideration of this effect confirms that the degree of polymerization is likely to

  3. Simple (17) O NMR method for studying electron self-exchange reaction between UO2 (2+) and U(4+) aqua ions in acidic solution.

    PubMed

    Bányai, István; Farkas, Ildikó; Tóth, Imre

    2016-06-01

    (17) O NMR spectroscopy is proven to be suitable and convenient method for studying the electron exchange by following the decrease of (17) O-enrichment in U(17) OO(2+) ion in the presence of U(4+) ion in aqueous solution. The reactions have been performed at room temperature using I = 5 M ClO4 (-) ionic medium in acidic solutions in order to determine the kinetics of electron exchange between the U(4+) and UO2 (2+) aqua ions. The rate equation is given as R = a[H(+) ](-2)  + R', where R' is an acid independent parallel path. R' depends on the concentration of the uranium species according to the following empirical rate equation: R' = k1 [UO(2 +) ](1/2) [U(4 +) ](1/2)  + k2 [UO(2 +) ](3/2) [U(4 +) ](1/2) . The mechanism of the inverse H(+) concentration-dependent path is interpreted as equilibrium formation of reactive UO2 (+) species from UO2 (2+) and U(4+) aqua ions and its electron exchange with UO2 (2+) . The determined rate constant of this reaction path is in agreement with the rate constant of UO2 (2+) -UO2 (+) , one electron exchange step calculated by Marcus theory, match the range given experimentally of it in an early study. Our value lies in the same order of magnitude as the recently calculated ones by quantum chemical methods. The acid independent part is attributed to the formation of less hydrolyzed U(V) species, i.e. UO(3+) , which loses enrichment mainly by electron exchange with UO2 (2+) ions. One can also conclude that (17) O NMR spectroscopy, or in general NMR spectroscopy with careful kinetic analysis, is a powerful tool for studying isotope exchange reactions without the use of sophisticated separation processes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854521

  4. Crystal structure and proton conductivity of BaSn0.6Sc0.4O3–δ: insights from neutron powder diffraction and solid-state NMR spectroscopy† †Electronic supplementary information (ESI) available: Rietveld fit of dry BaSn0.6Sc0.4O3–δ sample (Fig. S1). 119Sn (Fig. S2), 45Sc (Fig. S3–S6) and 17O (Fig. S7) spectra of all materials as a function of Sc doping concentration, 45Sc MQMAS of deuterated BaSn0.9Sc0.1O3–δ (Fig. S4), 45Sc MQMAS of dry and deuterated BaSn0.8Sc0.2O3–δ (Fig. S5), 45Sc MQMAS of dry and deuterated BaSn0.7Sc0.3O3–δ (Fig. S6), 17O MQMAS of 17O enriched BaSn0.8Sc0.2O3–δ and BaSn0.6Sc0.4O3–δ (Fig. S8). See DOI: 10.1039/c5ta09744d Click here for additional data file.

    PubMed Central

    Norberg, Stefan T.; Knee, Christopher S.; Ahmed, Istaq; Hull, Stephen; Buannic, Lucienne; Hung, Ivan; Gan, Zhehong; Blanc, Frédéric; Grey, Clare P.; Eriksson, Sten G.

    2016-01-01

    The solid-state synthesis and structural characterisation of perovskite BaSn1–xScxO3–δ (x = 0.0, 0.1, 0.2, 0.3, 0.4) and its corresponding hydrated ceramics are reported. Powder and neutron X-ray diffractions reveal the presence of cubic perovskites (space group Pm3m) with an increasing cell parameter as a function of scandium concentration along with some indication of phase segregation. 119Sn and 45Sc solid-state NMR spectroscopy data highlight the existence of oxygen vacancies in the dry materials, and their filling upon hydrothermal treatment with D2O. It also indicates that the Sn4+ and Sc3+ local distribution at the B-site of the perovskite is inhomogeneous and suggests that the oxygen vacancies are located in the scandium dopant coordination shell at low concentrations (x ≤ 0.2) and in the tin coordination shell at high concentrations (x ≥ 0.3). 17O NMR spectra on 17O enriched BaSn1–xScxO3–δ materials show the existence of Sn–O–Sn, Sn–O–Sc and Sc–O–Sc bridging oxygen environments. A further room temperature neutron powder diffraction study on deuterated BaSn0.6Sc0.4O3–δ refines the deuteron position at the 24k crystallographic site (x, y, 0) with x = 0.579(3) and y = 0.217(3) which leads to an O–D bond distance of 0.96(1) Å and suggests tilting of the proton towards the next nearest oxygen. Proton conduction was found to dominate in wet argon below 700 °C with total conductivity values in the range 1.8 × 10–4 to 1.1 × 10–3 S cm–1 between 300 and 600 °C. Electron holes govern the conduction process in dry oxidizing conditions, whilst in wet oxygen they compete with protonic defects leading to a wide mixed conduction region in the 200 to 600 °C temperature region, and a suppression of the conductivity at higher temperature. PMID:27358734

  5. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Wan, Chuan; Hu, Mary Y.; Borodin, Oleg; Qian, Jiangfeng; Qin, Zhaohai; Zhang, Ji-Guang; Hu, Jian Zhi

    2016-03-01

    Natural abundance 17O and 6Li NMR experiments, quantum chemistry and molecular dynamics studies were employed to investigate the solvation structures of Li+ at various concentrations of LiFSI in DME electrolytes. It was found that the chemical shifts of both 17O and 6Li changed with the concentration of LiFSI, indicating the changes of solvation structures with concentration. For the quantum chemistry calculations, the coordinated cluster LiFSI(DME)2 forms at first, and its relative ratio increases with increasing LiFSI concentration to 1 M. Then the solvation structure LiFSI(DME) become the dominant component. As a result, the coordination of forming contact ion pairs between Li+ and FSI- ion increases, but the association between Li+ and DME molecule decreases. Furthermore, at LiFSI concentration of 4 M the solvation structures associated with Li+(FSI-)2(DME), Li+2(FSI-)(DME)4 and (LiFSI)2(DME)3 become the dominant components. For the molecular dynamics simulation, with increasing concentration, the association between DME and Li+ decreases, and the coordinated number of FSI- increases, which is in perfect accord with the DFT results.

  6. GC-MS and /sup 17/O NMR tracer studies of Et/sub 3/PO formation from auranofin and H/sub 2//sup 17/O in the presence of bovine serum albumin: an in vitro model for auranofin metabolism

    SciTech Connect

    Isab, A.A.; Shaw, C.F. III; Locke, J.

    1988-09-21

    /sup 17/O NMR spectroscopy and gas chromatographic-mass spectral analysis have been used to monitor the source of oxygen in the triethylphosphine oxide formed by the reaction of the antiarthritic drug auranofin ((2,3,4,6-tetra-O-acetyl-..beta..-D-1-glucopyranosato)(triethylphosphine)gold(I)) and bovine serum albumin (BSA) in the presence of reduced glutathione (GtSH). A procedure to extract Et/sub 3/PO from aqueous solutions and concentrate it for subsequent analyses was developed. When the in vitro reaction is carried out aerobically in /sup 17/O-enriched water, Et/sub 3/P/sup 17/O is generated. The chemical ionization (CH/sub 4/) mass measurement, (m + 1)/z = 135, and the /sup 17/O NMR parameters (delta/sub O/ = 40.6 and /sup 1/J/sub PO/ = 156 /plus minus/ 5 Hz) unambiguously establish its identity. The SH titer of the albumin (mole ratio of protein SH groups to BSA) increases during the reaction, confirming that albumin disulfide bonds are reduced in the reaction. Under aerobic conditions, the enriched Et/sub 3/PO accounts for at least 60% of the Et/sub 3/PO formed. The significance of these results for the in vivo formation of Et/sub 3/PO, an auranofin metabolite, is discussed. 25 references, 2 figures.

  7. Rate of water exchange between Al(C 2O 4)(H 2O) 4+(aq) complexes and aqueous solutions determined by 17O-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Crawford, Susan Neugebauer; Casey, William H.

    1997-12-01

    Substitution of an oxalate molecule for two inner-coordination-sphere waters of Al(H 2O) 63+(aq) enhances, by a factor of ≈ 10 2, the rate of exchange of water molecules from the innercoordination sphere to the bulk solution. The rate parameters for chemical exchange are: k ex298 = 109 s -1, ΔH ‡ = 68.9 ± 2.4 kJ/mol, and ΔS ‡ = 25.3 ± 6.7 J/mol/K, measured via dynamic 17O-NMR. This reactivity enhancement of coordinated waters by oxalate results from a change in bonding between Al(III) and oxygens throughout the complex upon ligation by oxalate. A similar process has been proposed to explain ligand-enhanced dissolution of oxide minerals (e.g., Stumm, 1991; Casey and Ludwig, 1995; Phillips et al., 1997) where a stable adsorbate increases the flux of metals from a surface. These new rate coefficients for aluminum-oxalate complexes, along with previous work on aluminum-fluoride complexes, show a correlation with the respective equilibrium constants similar to that obtained by Ludwig et al. (1995, 1996).

  8. Spin excitations in the (Sr,Ca)14Cu24O41 family of spin ladders: 63Cu and 17O NMR studies under pressure

    NASA Astrophysics Data System (ADS)

    Piskunov, Y.; Jérome, D.; Auban-Senzier, P.; Wzietek, P.; Yakubovsky, A.

    2004-01-01

    We report the results of a NMR study of hole doped spin ladders belonging to the series Sr14-xCaxCu24O41+δ performed on 63Cu and 17O nuclei. The new results obtained on Ca0 and Ca12 single crystals at ambient pressure and also under 32 kbar confirm the onset of low-lying spin fluctuations modes at zero energy coexisting with spin-gapped excitations when superconductivity can be stabilized under pressure in Ca12. We found that the theoretical two and three magnons mechanisms explain fairly well the spin-lattice relaxation data using the magnitude of the pressure dependent magnon spin gap Δs derived from the Knight shifts data as long as most of the spectral weight for low-frequency spin fluctuations is provided by the magnon dispersion of isolated ladders. The cross over between spin gapped and paramagnetic regimes of decoupled Heisenberg chains can be identified in heavily doped ladders via the temperature dependence of dynamical structure factors at q˜(π,π) and q˜(0,0) wave vectors. The cross over temperature scales under pressure with Δs/2.

  9. On the solid-state NMR spectra of naproxen

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří

    2015-01-01

    Two previous measurements of the 13C and 1H NMR isotropic chemical shifts in crystalline naproxen, which is an important pharmaceutical compound, are confronted with the results obtained from several theoretical approaches capable of the proper treatment of solid-phase effects. In the underlying geometrical optimizations, two crystal structures are considered. The agreement between the data sets is quantified, including an evaluation of the similarity between the experimental solid-state NMR spectra. The 13C-1H heteronuclear correlations are analyzed, and their various assignments are discussed employing the statistical treatment of the differences between the measured and theoretical isotropic chemical shifts.

  10. Characterization of the Dynamics in the Protonic Conductor CsH2PO4 by 17O Solid-State NMR Spectroscopy and First-Principles Calculations: Correlating Phosphate and Protonic Motion

    PubMed Central

    2015-01-01

    17O NMR spectroscopy combined with first-principles calculations was employed to understand the local structure and dynamics of the phosphate ions and protons in the paraelectric phase of the proton conductor CsH2PO4. For the room-temperature structure, the results confirm that one proton (H1) is localized in an asymmetric H-bond (between O1 donor and O2 acceptor oxygen atoms), whereas the H2 proton undergoes rapid exchange between two sites in a hydrogen bond with a symmetric double potential well at a rate ≥107 Hz. Variable-temperature 17O NMR spectra recorded from 22 to 214 °C were interpreted by considering different models for the rotation of the phosphate anions. At least two distinct rate constants for rotations about four pseudo C3 axes of the phosphate ion were required in order to achieve good agreement with the experimental data. An activation energy of 0.21 ± 0.06 eV was observed for rotation about the P–O1 axis, with a higher activation energy of 0.50 ± 0.07 eV being obtained for rotation about the P–O2, P–O3d, and P–O3a axes, with the superscripts denoting, respectively, dynamic donor and acceptor oxygen atoms of the H-bond. The higher activation energy of the second process is most likely associated with the cost of breaking an O1–H1 bond. The activation energy of this process is slightly lower than that obtained from the 1H exchange process (0.70 ± 0.07 eV) (Kim, G.; Blanc, F.; Hu, Y.-Y.; Grey, C. P. J. Phys. Chem. C2013, 117, 6504−6515) associated with the translational motion of the protons. The relationship between proton jumps and phosphate rotation was analyzed in detail by considering uncorrelated motion, motion of individual PO4 ions and the four connected/H-bonded protons, and concerted motions of adjacent phosphate units, mediated by proton hops. We conclude that, while phosphate rotations aid proton motion, not all phosphate rotations result in proton jumps. PMID:25732257

  11. ImatraNMR: novel software for batch integration and analysis of quantitative NMR spectra.

    PubMed

    Mäkelä, A V; Heikkilä, O; Kilpeläinen, I; Heikkinen, S

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D (1)H and (13)C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request. PMID:21705250

  12. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    NASA Astrophysics Data System (ADS)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  13. Constraining Oxygen-17 NMR Spectra of High Pressure Crystals and Glasses: New Data for Jadeite, Pyrope, Grossular, and Mullite

    NASA Astrophysics Data System (ADS)

    Kelsey, K. E.; Stebbins, J. F.; Du, L.; Hankins, B.

    2005-12-01

    17O NMR is a direct way of analyzing the immediate environment around oxygen atoms and can provide information on cation ordering, mixing, and network connectivity in glasses and disordered crystals. Due to overlapping peaks and lack of data on crystalline model compounds, 17O NMR spectra of high pressure glasses have been difficult to interpret. Additionally, data on crystalline model compounds are needed to test the validity of quantum chemical calculations. In this study, 17O NMR spectra were collected for crystalline jadeite, pyrope, grossular, and mullite in order to determine the parameters for oxygen bonded to [6]Al in a variety of environments. Jadeite contains three oxygen sites: oxygen bonded to [4]Si, Na, and two [6]Al atoms (O1), oxygen bonded to [4]Si, Na, and [6]Al atoms (O2), and oxygen bonded to two [4]Si and two Na atoms (O3). The NMR parameters for O1 are CQ = 3.3 MHz, δ = 64 ppm, and ν = 0.9; for O2 are CQ = 4.1 MHz, δ = 59 ppm, and ν = 0.15; and for O3 are CQ = 5.0 MHz, δ = 60 ppm, and ν = 0.15. The parameters for O2 are similar to interpretations of recent data for this kind of site in high pressure sodium aluminosilicate glasses (δ = 59 ppm) and to quantum chemical calculations (Lee et al., 2004, J. Phys. Chem., 108, 5897). Pyrope and grossular each contain one oxygen site, oxygen bonded to [4]Si, [6]Al, and two M2+ cations. The 17O NMR parameters for pyrope are CQ = 3.4 MHz, δ = 84 ppm, and ν = 0.3 and for grossular are CQ = 4.1 MHz, δ = 102 ppm, and ν = 0.4. In grossular, the NMR peak for oxygens bonded to [4]Si, Ca, and high coordinated Al seems to fall between those for "normal" bridging and non bridging oxygens, as reported for high pressure CAS glasses by Allwardt et al. (2005). These data will also be useful to help understand Ca-Mg ordering in the pyrope-grossular solid solutions. Mullite contains four oxygen environments: oxygen bonded to three tetrahedral Al or Si (Oc*), oxygen bonded to two tetrahedral Al or Si (Oc), and

  14. /sup 13/C and /sup 17/O NMR and IR spectroscopic study of a series of carbonyl(4-substituted pyridine)(meso-tetraphenylporphinato)iron(II) complexes. Correlations between NMR chemical shifts and IR stretching frequencies of the carbonyl ligand and Taft parameters of the pyridine substituent

    SciTech Connect

    Box, J.W.; Gray, G.M.

    1987-08-26

    The results of a /sup 13/C and /sup 17/O NMR and IR spectroscopic study of a series of carbonyl(4 substituted pyridine)(meso-tetraphenylporphinato)iron(II) (Fe(TPP)(CO)(py-4-X)) complexes are presented. Good to excellent linear correlations between the /sup 13/ and /sup 17/O NMR chemical shifts and the IR stretching frequencies of the carbonyl ligand are observed as the pyridine substituent is varied. Good to excellent linear correlations are also observed between these NMR chemical shifts and IR stretching frequencies and the NMR chemical shifts and IR stretching force constants for the trans carbonyls of a series of cis-Mo(CO)/sub 4/(py-4-X)/sub 2/ complexes as the pyridine substituent is varied. The relationship between the donor ability of the pyridine ligands and the /sup 13/C and /sup 17/O NMR chemical shifts and the IR stretching frequencies of the carbonyl ligands in the Fe(TPP)(CO)(py-4-X) complexes has been quantitated by fitting the spectroscopic data to the single and the dual Taft substituent parameters of the pyridine substituent. Good to excellent correlations are observed. The upfield shift in the /sup 13/C NMR resonance of the carbonyl ligand as the electron-donor ability of the pyridine increases is unique. This has been rationalized by using the Buchner and Schenk description of metal carbonyl /sup 13/C NMR chemical shifts. 49 references, 3 figures, 6 tables.

  15. Spectroscopic Parameters for Ozone and its Isotopes: Current Status, Prospects for Improvement, and the Identification of 16O16O17O and O-16O-16O-17 and O-16O-17O-16 Lines in Infrared Ground-Based and Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Flaud, J.-M.; Goldman, A.; Perrin, A.; Camy-Peyret, C.; Smith, M. A. H.; Devi, V. Malathy; Benner, D. C.; Barbe, A.; Stephens, T. M.; Murcray, F. J.

    1998-01-01

    We describe the updates to the spectroscopic parameters of ozone and its isotopes in the 1996 HITRAN compilation. Recent published studies not included in HITRAN are also summarized. Finally, we report the identification of infrared lines of the v(sub 3) bands of O-16O-16O-17 and O-16O-17O-16 in high-resolution solar spectra recorded by stratospheric balloon-borne and ground-based Fourier transform spectrometers.

  16. Sensitive, quantitative carbon-13 NMR spectra by mechanical sample translation

    NASA Astrophysics Data System (ADS)

    Donovan, Kevin J.; Allen, Mary; Martin, Rachel W.; Shaka, A. J.

    2009-04-01

    Collecting a truly quantitative carbon-13 spectrum is a time-consuming chore. Very long relaxation delays, required between transients to allow the z-magnetization, M z, of the spin with the longestT1 to return to the equilibrium value, M0, must precede each transient. These long delays also reduce sensitivity, as fewer transients per unit time can be acquired. In addition, sometimes T1 is not known to within even a factor of two: a conservative guess for the relaxation delay then leads to very low sensitivity. We demonstrate a fresh method to bypass these problems and collect quantitative carbon-13 spectra by swapping the sample volume after each acquisition with a different portion where the magnetization is already equilibrated to M0. Loading larger sample volumes of 10-20 mL into an unusually long (1520 mm) 5 mm OD. NMR tube and vertically sliding the tube between acquisitions accomplishes the swap. The relaxation delay can then be skipped altogether. The spectra are thus both quantitative, and far more sensitive. We demonstrate the moving tube technique on two small molecules (thymol and butylhydroxytoluene) and show good carbon-13 quantification. The gain in sensitivity can be as much as 10-fold for slowly-relaxing 13C resonances. These experiments show that quantitative, sensitive carbon-13 spectra are possible whenever sufficient sample volumes are available. The method is applicable to any slow-relaxing nuclear spin species, such as 29Si, 15N and other low-γ nuclei.

  17. 17O-NMR Knight shift study of the interplay between superconductivity and pseudogap in (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy

    NASA Astrophysics Data System (ADS)

    Cvitanić, T.; Pelc, D.; Požek, M.; Amit, E.; Keren, A.

    2014-08-01

    We report systematic 17O-NMR measurements on the high-Tc cuprate (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy, for four different families (different x). Using Knight shift data, we show that the pseudogap opening temperature T* is much higher than Tc near optimal doping, unlike structurally similar YBCO. In addition, at constant doping the pseudogap temperature does not vary with x, in contrast to Tc. This puts constraints on the nature of the pseudogap and position of the quantum critical point inside the superconducting dome.

  18. {sup 19}F NMR spectra and structures of halogenated porphyrins

    SciTech Connect

    Birnbaum, E.R.; Hodge, J.A.; Grinstaff, M.W.

    1995-07-05

    Fluorine-19 NMR spectra of a series of halogenated porphyrins have been used to create a spectral library of different types of fluorine splitting patterns for tetrakis(pentafluorophenyl) porphyrins (TFPP) complexed with diamagnetic and paramagnetic metal ions. The paramagnetic shift, line broadening, and fine structure of the resonances form the peripheral pentafluorophenyl rings are dependent on the symmetry and core environment of the porphyrin macrocycles. In combination with crystal structure data, {sup 19}F NMR helps define the behavior of halogenated porphyrins in solution. Six new crystal structures for TFPP and octahalo-TFPP derivatives are reported: H{sub 2}TFPP in rhombohedral space group R3, a = 20.327(4) {Angstrom}, c = 15.261(2) {Angstrom}, {beta} = 103.87(2){degrees}, V = 2227.6(13) {Angstrom}{sup 3}, Z = 2; CuTFPP in rhombohedral space group R3, a = 20.358(5), c = 14.678(2) {Angstrom}, {alpha} = 88.97(1), {beta}=76.05(1){degrees}, {gamma} = 71.29(1){degrees}, V = 2181.4(6) {Angstrom}{sup 3}, Z = 2; ZnTFPPCl{sub 8} in tetragonal space group P42, c, a = 19.502(20), c = 10.916(8) {Angstrom}, V = 4152(6) {Angstrom}{sup 3}, Z = 2; H{sub 2}TFPPBr{sub 8} in monoclinic space group C2, a = 27.634(6) {Angstrom}, b = 6.926(2) {Angstrom}, c = 14.844(3) {Angstrom}, {beta} = 109.64(2){degrees}, V = 2675.8(11) {Angstrom}{sup 3}, Z = 2.

  19. Hot water emission spectra: Rotational energy levels of the (0 0 0) and (0 1 0) states of HD17O

    NASA Astrophysics Data System (ADS)

    Mellau, Georg Ch.; Mikhailenko, Semen N.; Tyuterev, Vladimir G.

    2015-02-01

    The rotational transitions of the HD17O water isotopologue have been assigned in a high temperature emission spectrum between 320 and 520 cm-1 of water vapor enriched by deuterium and 17O. We assigned 169 emission lines to 189 partly overlapping transitions of pure rotational and the ν2-ν2 rotational bands. A new extended set of 390 rotational energy levels for the (0 0 0) and (0 1 0) vibration states of HD17O up to J = 17 and Ka = 13 was obtained by combination of the new line transitions with those reported in previous studies. We constructed an effective rotational Hamiltonian based on the generation function approach. For this Hamiltonian the deviation between calculated and measured eigenenergies is in the order of 0.001 cm-1. We report a new calculated linelist based on our new energy level list. Our linelist supersedes the IUPAC linelist for the HD17O water isotopologue as it is based on a substantially extended set of accurate transition wavenumbers.

  20. {sup 13}C and {sup 17}O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    SciTech Connect

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} and (UO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = {minus}log(a{sub H}{sup +}) versus p[H] = {minus}log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA.

  1. Access to experimentally infeasible spectra by pure-shift NMR covariance.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments. PMID:27494746

  2. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  3. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra

    PubMed Central

    Peng, Chen; Unger, Stephen W.; Filipp, Fabian V.; Sattler, Michael; Szalma, Sándor

    2016-01-01

    This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, Kd = ~ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments. PMID:15243180

  4. Enrichment of H(2)(17)O from tap water, characterization of the enriched water, and properties of several (17)O-labeled compounds.

    PubMed

    Prasad, Brinda; Lewis, Andrew R; Plettner, Erika

    2011-01-01

    A low-abundance form of water, H(2)(17)O, was enriched from 0.04% to ∼90% by slow evaporation and fractional distillation of tap water. The density and refractive index for H(2)(17)O are reported. Gas chromatography-mass spectrometry (GC-MS) of (16)O- and (17)O-1-hexanols and their trimethyl silyl ethers and of (16)O- and (17)O-hexamethyl disiloxanes was used to determine the percentage of (17)O enrichment in the H(2)(17)O. Furthermore, the chemical shifts of labeled and nonlabeled water dissolved in CDCl(3) differed sufficiently that we could verify the enrichment of H(2)(17)O. (17)O hexanol was synthesized by the reaction of iodohexane with Na(17)OH. (17)O-Labeled trimethylsilanol and (17)O-labeled hexamethyldisiloxane were prepared by the reaction of H(2)(17)O with bis(trimethylsilyl)trifluoroacetamide (BSTFA). To generate standards for (17)O NMR, H(2)(17)O(2), and (17)O camphor were prepared. H(2)(17)O was electrolyzed to form (17)O-labeled hydrogen peroxide which was quantified using two colorimetric assays. (17)O-Labeled camphor was prepared by exchanging the ketone oxygen of camphor using H(2)(17)O. The (17)O-labeled compounds were characterized using (17)O, (1)H, and (13)C NMR and GC-MS. While we were characterizing the labeled camphor, we also detected an unexpected oxygen exchange reaction of primary alcohols, catalyzed by electrophilic ketones such as camphor. The reaction is a displacement of the alcohol OH group by water. This is an example of the usefulness of (17)O NMR in the study of a reaction mechanism that has not been noticed previously. PMID:21128590

  5. Anisotropy of hyperfine interactions as a tool for interpretation of NMR spectra in magnetic materials.

    PubMed

    Chlan, V; Stěpánková, H; Rezníček, R; Novák, P

    2011-07-01

    Approach for interpretation of nuclear magnetic resonance (NMR) spectra in magnetic materials is presented, consisting in employing the anisotropy of hyperfine interaction. The anisotropic parts of hyperfine magnetic fields on (57)Fe nuclei are calculated ab initio for a model example of lithium ferrite and utilized to assign the experimental NMR spectral lines to iron sites in the crystal structure. PMID:21536415

  6. Proton NMR Spectra: Deceptively Simple and Deceptively Complex Examples.

    ERIC Educational Resources Information Center

    Gurst, J. E.; And Others

    1985-01-01

    Describes relatively simple nuclear magnetic resonance (NMR) experiments that demonstrate unexpected results of the deceptively simple and deceptively complex types. Background information, experimental procedures, and typical results obtained are included. (JN)

  7. Proton Fingerprints Portray Molecular Structures: Enhanced Description of the 1H NMR Spectra of Small Molecules

    PubMed Central

    Napolitano, José G.; Lankin, David C.; McAlpine, James B.; Niemitz, Matthias; Korhonen, Samuli-Petrus; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    The characteristic signals observed in NMR spectra encode essential information on the structure of small molecules. However, extracting all of this information from complex signal patterns is not trivial. This report demonstrates how computer-aided spectral analysis enables the complete interpretation of 1D 1H NMR data. The effectiveness of this approach is illustrated with a set of organic molecules, for which replicas of their 1H NMR spectra were generated. The potential impact of this methodology on organic chemistry research is discussed. PMID:24007197

  8. Physicochemical characterization of the dimeric lanthanide complexes [en{Ln(DO3A)(H2O)}2] and [pi{Ln(DTTA)(H2O)}2]2-: a variable-temperature 17O NMR study.

    PubMed

    Lee, Tzu-Ming; Cheng, Tsan-Hwang; Ou, Ming-Hung; Chang, C Allen; Liu, Gin-Chung; Wang, Yun-Ming

    2004-03-01

    The Gd(III) complexes of the two dimeric ligands [en(DO3A)2] {N,N'-bis[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-10-yl-methylcarbonyl]-N,N'-ethylenediamine} and [pi(DTTA)2]8- [bisdiethylenetriaminepentaacetic acid (trans-1,2-cyclohexanediamine)] were synthesized and characterized. The 17O NMR chemical shift of H2O induced by [en{Dy(DO3A)}2] and [pi{Dy(DTTA)}2]2- at pH 6.80 proved the presence of 2.1 and 2.2 inner-sphere water molecules, respectively. Water proton spin-lattice relaxation rates for [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- at 37.0 +/- 0.1 degrees C and 20 MHz are 3.60 +/- 0.05 and 5.25 +/- 0.05 mM(-1) s(-1) per Gd, respectively. The EPR transverse electronic relaxation rate and 17O NMR transverse relaxation time for the exchange lifetime of the coordinated H2O molecule and the 2H NMR longitudinal relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time were thoroughly investigated, and the results were compared with those reported previously for other lanthanide(III) complexes. The exchange lifetimes for [en{Gd(DO3A)(H2O)}2] (769 +/- 10 ns) and [pi{Gd(DTTA)(H2O)}2]2- (910 +/- 10 ns) are significantly higher than those of [Gd(DOTA)(H2O)]- (243 ns) and [Gd(DTPA)(H2O)]2- (303 ns) complexes. The rotational correlation times for [en{Gd(DO3A)(H2O)}2] (150 +/- 11 ps) and [pi{Gd(DTTA)(H2O)}2]2- (130 +/- 12 ps) are slightly greater than those of [Gd(DOTA)(H2O)]- (77 ps) and [Gd(DTPA)(H2O)]2- (58 ps) complexes. The marked increase in relaxivity (r1) of [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- result mainly from their longer rotational correlation time and higher molecular weight. PMID:14971018

  9. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  10. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  11. Lattice simulation method to model diffusion and NMR spectra in porous materials.

    PubMed

    Merlet, Céline; Forse, Alexander C; Griffin, John M; Frenkel, Daan; Grey, Clare P

    2015-03-01

    A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques. PMID:25747093

  12. Some plant leaves have orientation-dependent EPR and NMR spectra.

    PubMed

    McCain, D C; Selig, T C; Govindjee; Markley, J L

    1984-02-01

    Proton nuclear magnetic resonance ((1)H NMR) spectra of leaves from 50 plant species were obtained at a spectrometer frequency of 470 MHz. Water present in leaf samples gives rise to characteristic spectral patterns. Most species show only one broad (1)H NMR peak; however, the leaves of some plants display complex, orientation-dependent spectra in which a common three-line pattern is discerned. The pattern varies with the angle between the leaf surface and the external magnetic field. Proton relaxation measurements show the presence of at least two water compartments in the leaves. The compartments are responsible for different components of the spectral pattern. EPR spectra, obtained at 35 GHz and at a temperature of -180 degrees C, of plant leaf sections are dominated by the strong signals of manganous ions. We find that most plant leaves have isotropic Mn(2+) EPR spectra. However, in some species (including ones that exhibit orientation-dependent (1)H NMR spectra) we detect orientation-dependent intensities in the forbidden lines; the spectra indicate that Mn(2+) ions occupy binding sites with axial or lower symmetry on nonrandomly oriented membranes. Both the NMR and the EPR results suggest that the chloroplasts of some plants are preferentially aligned with respect to the leaf surface. PMID:16593413

  13. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I = 3/2

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I = 3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments.

  14. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I=3/2.

    PubMed

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I=3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments. PMID:27149654

  15. PR-CALC: A program for the reconstruction of NMR spectra from projections

    PubMed Central

    Coggins, Brian E.; Zhou, Pei

    2013-01-01

    Projection-reconstruction NMR (PR-NMR) has attracted growing attention as a method for collecting multidimensional NMR data rapidly. The PR-NMR procedure involves measuring lower-dimensional projections of a higher-dimensional spectrum, which are then used for the mathematical reconstruction of the full spectrum. We describe here the program PR-CALC, for the reconstruction of NMR spectra from projection data. This program implements a number of reconstruction algorithms, highly optimized to achieve maximal performance, and manages the reconstruction process automatically, producing either full spectra or subsets, such as regions or slices, as requested. The ability to obtain subsets allows large spectra to be analyzed by reconstructing and examining only those subsets containing peaks, offering considerable savings in processing time and storage space. PR-CALC is straightforward to use, and integrates directly into the conventional pipeline for data processing and analysis. It was written in standard C++ and should run on any platform. The organization is flexible, and permits easy extension of capabilities, as well as reuse in new software. PR-CALC should facilitate the widespread utilization of PR-NMR in biomedical research. PMID:16604426

  16. RUBIDIUM, a program for computer-aided assignment of two-dimensional NMR spectra of polypeptides.

    PubMed

    Yu, C; Hwang, J F; Chen, T B; Soo, V W

    1992-01-01

    Taking advantage of the rule-based expert system technology, a program named RUBIDIUM (Rule-Based Identification In 2D NMR Spectrum) was developed to accomplish the automatic 1H NMR resonance assignments of polypeptides. Besides noise elimination and peak selection capabilities, RUBIDIUM detects the cross-peak patterns of amino acid residues in the COSY spectrum, assigning these patterns to amino acid types, performing sequential assignments using combined COSY/NOESY spectra, and finally, achieving the total assignment of the 1H NMR spectrum. PMID:1607394

  17. Genetic algorithm-based feature selection in high-resolution NMR spectra

    PubMed Central

    Cho, Hyun-Woo; Jeong, Myong K.; Park, Youngja; Ziegler, Thomas R.; Jones, Dean P.

    2011-01-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy has provided a new means for detection and recognition of metabolic changes in biological systems in response to pathophysiological stimuli and to the intake of toxins or nutrition. To identify meaningful patterns from NMR spectra, various statistical pattern recognition methods have been applied to reduce their complexity and uncover implicit metabolic patterns. In this paper, we present a genetic algorithm (GA)-based feature selection method to determine major metabolite features to play a significant role in discrimination of samples among different conditions in high-resolution NMR spectra. In addition, an orthogonal signal filter was employed as a preprocessor of NMR spectra in order to remove any unwanted variation of the data that is unrelated to the discrimination of different conditions. The results of k-nearest neighbors and the partial least squares discriminant analysis of the experimental NMR spectra from human plasma showed the potential advantage of the features obtained from GA-based feature selection combined with an orthogonal signal filter. PMID:21472035

  18. Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures.

    PubMed

    Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika

    2002-01-01

    Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730

  19. 17O Single Crystal NMR Evidence for a Gapped Spin-liquid Ground State in the S=1/2 Kagome Lattice ZnCu3 (OH)6Cl2

    NASA Astrophysics Data System (ADS)

    Fu, Mingxuan; Imai, Takashi; Han, Tianheng; Lee, Young. S.

    2015-03-01

    The two-dimensional S=1/2 Kagome lattice in Herbersmithite ZnCu3(OH)6Cl2 is the best candidate for experimental realization of a quantum spin liquid ground state known to date. The recent discovery of a continuum of spinon excitations using inelastic neutron scattering has drawn strong attention to its exotic magnetic properties. Understanding the nature of the paramagnetic ground state of ZnCu3(OH)6Cl2 , however, remains a challenge, due to excess magnetic Cu defects occupying the interlayer Zn sites. We conducted single crystal NMR measurements of the 17 O Knight shift, and succeeded in measuring the intrinsic spin susceptibility of the Kagome layer down to T ~ 0 . 01 J (J ~ 17 meV) for the first time. We demonstrate that the intrinsic spin susceptibility decays exponentially at low temperatures, revealing the presence of a spin gap Δ ~ 0 . 1 J . Moreover, we show that application of a high magnetic field suppresses the gap. These results provide direct evidence for a gapped spin-liquid ground state realized in ZnCu3(OH)6Cl2.

  20. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  1. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  2. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength

    PubMed Central

    Brumm, T.; Möps, A.; Dolainsky, C.; Brückner, S.; Bayerl, T. M.

    1992-01-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with 2H-, 31P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze—etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit 31P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature. The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as 31P-and 2H-NMR lineshapes and relaxation times as well as 2H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied. ImagesFIGURE 1 PMID:19431822

  3. Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.

    PubMed

    Mizuno, Motohiro; Suzuki, You; Endo, Kazunaka; Murakami, Miwa; Tansho, Masataka; Shimizu, Tadashi

    2007-12-20

    A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)NMR spectra when these paramagnetic effects are taken into account. PMID:18027914

  4. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    SciTech Connect

    Levin, E M; Bud' ko, S L

    2011-04-28

    Bulk magnetization and ¹H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe₂O₃ nano- or micro-particles have been studied. In LAP+Fe₂O₃, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe₂O₃, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. ¹H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm³ affects the ¹H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×10²²/cm³. ¹H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  5. On the practical aspects of recording wideline QCPMG NMR spectra.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2010-06-01

    The practical aspects of applying CPMG for acquisition of wideline powder patterns are examined. It is shown that most distortions/modulations of spikelet spectra can be traced to the incoherent signal averaging from multiple coherence transfer pathways. A strategy for minimizing these distortions/modulations is described. Also, a few interesting observations regarding the implementation of the wideline WURST-QCPMG experiment are presented, namely the accumulation of second-order signal phase and the effects of varying the sweep rate and rf field of chirp pulses. PMID:20359918

  6. Characterisation of the 1H and 13C NMR spectra of methylcitric acid

    NASA Astrophysics Data System (ADS)

    Krawczyk, Hanna; Martyniuk, Tomasz

    2007-06-01

    Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2 RS, 3 RS stereoisomers) and in the nucleophilic addition (2 RS, 3 SR stereoisomers). The stereoselectivity of these reactions was analysed. 1H and 13C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of 1H chemical shifts and 1H- 1H coupling constants were analysed. Proton-decoupled high-resolution 13C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.

  7. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  8. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  9. A new method for the comparison of 1H NMR predictors based on tree-similarity of spectra

    PubMed Central

    2014-01-01

    A methodology based on spectral similarity is presented that allows to compare NMR predictors without the recourse to assigned experimental spectra, thereby making the task of benchmarking NMR predictors less tedious, faster, and less prone to human error. This approach was used to compare four popular NMR predictors using a dataset of 1000 molecules and their corresponding experimental spectra. The results found were consistent with those obtained by directly comparing deviations between predicted and experimental shifts. PMID:24666427

  10. Quadrupolar magic angle spinning NMR spectra fitted using the Pearson IV function.

    PubMed

    Mironenko, Roman M; Belskaya, Olga B; Talsi, Valentin P; Likholobov, Vladimir A

    2014-01-01

    The Pearson IV function was used to fit the asymmetric solid-state (27)Al NMR spectra of alumina based catalysts. A high convergence (correlation coefficient is no less than 0.997) between experimental and simulated spectra was achieved. The decomposition of the (27)Al NMR spectra of zinc/aluminum mixed oxides with different Zn/Al molar ratio revealed an increased fraction (6-9%) of pentacoordinated aluminum atoms in these oxides as compared to γ-Al2O3. As the Zn/Al ratio is raised, the fraction of [AlO6] octahedral units decreases, while the fraction of [AlO4] tetrahedra increases. PMID:25454293

  11. HyperBIRD: a sensitivity-enhanced approach to collecting homonuclear-decoupled proton NMR spectra.

    PubMed

    Donovan, Kevin J; Frydman, Lucio

    2015-01-01

    Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low-γ nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like (1)H nuclei. Small- and intermediate-sized molecules, however, show strong heteronuclear cross-relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the (13)C-bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear-decoupled (1)H spectra in natural abundance samples based on heteronuclear couplings to these same, (13)C-bonded nuclei. This results in the HyperBIRD methodology; a single-shot combination of these two effects that can simultaneously simplify and resolve complex, congested (1)H NMR spectra with many overlapping spin multiplets, while achieving 50-100 times sensitivity enhancements over conventional thermal counterparts. PMID:25256418

  12. Line shapes in CP/MAS NMR spectra of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-02-01

    Cross polarization (CP) from 1H to quadrupolar nuclei with S = 3/2 has been carried out under magic-angle-spinning (MAS) conditions for powder samples of Na 2B 4O 7·10H 2O and H 3BO 3. The line shapes in the CP/MAS NMR spectra are different from those in the spectra measured with the single pulse sequence combined with 1H dipolar decoupling. Furthermore, the line shapes are found to be dependent on the measuring conditions such as the pulse amplitude for the quadrupolar nuclei. The spin-locking experiments demonstrate that line shapes in CP/MAS NMR spectra are largely dependent on the spin-locking efficiency.

  13. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    PubMed

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  14. Practical model fitting approaches to the direct extraction of NMR parameters simultaneously from all dimensions of multidimensional NMR spectra.

    PubMed

    Chylla, R A; Volkman, B F; Markley, J L

    1998-08-01

    A maximum likelihood (ML)-based approach has been established for the direct extraction of NMR parameters (e.g., frequency, amplitude, phase, and decay rate) simultaneously from all dimensions of a D-dimensional NMR spectrum. The approach, referred to here as HTFD-ML (hybrid time frequency domain maximum likelihood), constructs a time-domain model composed of a sum of exponentially-decaying sinusoidal signals. The apodized Fourier transform of this time-domain signal is a model spectrum that represents the 'best-fit' to the equivalent frequency-domain data spectrum. The desired amplitude and frequency parameters can be extracted directly from the signal model constructed by the HTFD-ML algorithm. The HTFD-ML approach presented here, as embodied in the software package CHIFIT, is designed to meet the challenges posed by model fitting of D-dimensional NMR data sets, where each consists of many data points (10(8) is not uncommon) encoding information about numerous signals (up to 10(5) for a protein of moderate size) that exhibit spectral overlap. The suitability of the approach is demonstrated by its application to the concerted analysis of a series of ten 2D 1H-15N HSQC experiments measuring 15N T1 relaxation. In addition to demonstrating the practicality of performing maximum likelihood analysis on large, multidimensional NMR spectra, the results demonstrate that this parametric model-fitting approach provides more accurate amplitude and frequency estimates than those obtained from conventional peak-based analysis of the FT spectrum. The improved performance of the model fitting approach derives from its ability to take into account the simultaneous contributions of all signals in a crowded spectral region (deconvolution) as well as to incorporate prior knowledge in constructing models to fit the data. PMID:9751999

  15. Protein–RNA specificity by high-throughput principal component analysis of NMR spectra

    PubMed Central

    Collins, Katherine M.; Oregioni, Alain; Robertson, Laura E.; Kelly, Geoff; Ramos, Andres

    2015-01-01

    Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding proteins. We show that PCA can be used to compare the changes in the nuclear magnetic resonance (NMR) spectrum of a protein upon binding a set of quasi-degenerate RNAs and define the nucleobase specificity. We couple this application of PCA to an automated NMR spectra recording and processing protocol and obtain an unbiased and high-throughput NMR method for the analysis of nucleobase preference in protein–RNA interactions. We test the method on the RNA binding domains of three important regulators of RNA metabolism. PMID:25586222

  16. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced. PMID:11529420

  17. A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet

    SciTech Connect

    Buchanan, M.; Marsden, P.K.; Garlick, P.B.; Mielke, C.H.

    1996-06-01

    Radiotracer techniques and nuclear magnetic resonance (NMR) spectroscopy are two complementary methods that are widely used to investigate cardiac metabolism. The authors have now developed a novel gamma photon detector system that will operate within a wide-bore, 9.4 T magnet. With this detector in position, it is possible to acquire radiotracer uptake data while simultaneously collecting NMR spectra. The advantages of this new system are firstly, that it enables correlations between radiotracer and NMR data to be made on individual rat hearts, and secondly that it allows the number of experiments required to obtain results of statistical significance to be greatly decreased. The extension of the system, to one in which positron emission tomography (PET) and magnetic resonance imaging (MRI) data are acquired simultaneously, clearly has enormous clinical potential. The detector consists of a NaI(Tl) scintillation crystal coupled to a magnetic field-insensitive photomultiplier tube by a 72.5 cm long, acrylic light pipe. This detector configuration satisfies the two, conflicting requirements of the crystal being near the sample, and thus in a high magnetic field, and the PMT being in a low magnetic field and thus far from the sample. In this paper the authors present the technical specifications of their new system together with what they believe are the first examples of simultaneously acquired NMR spectra and {sup 18}F-fluorodeoxyglucose ({sup 18}FDG) uptake data, obtained from isolated, perfused rat hearts.

  18. Deuteron and triton magnetic moments from NMR spectra of the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof

    2015-08-01

    We present a theory and calculations of the nuclear magnetic shielding with finite nuclear mass effects and determine the magnetic moments of deuteron and triton using the known NMR spectra of HD and HT molecules. The results μd=0.857 438 234 6 (53 ) μN and μt=2.978 962 471 (10 ) μN are more accurate and in good agreement with the currently accepted values.

  19. High-resolution J-resolved NMR spectra of dilute spins in solids

    NASA Astrophysics Data System (ADS)

    Terao, T.; Miura, H.; Saika, A.

    1981-08-01

    A technique for obtaining J-resolved NMR spectra of dilute spins in solids has been developed. It is based on the observation that a combination of magic-angle irradiation and magic-angle spinning removes dipolar broadening, but leaves indirect spin-spin coupling. A preliminary application of this technique to adamantane clearly reveals the AX (J = 121 Hz) and AX (J = 135 Hz) multiplets in the methylene and methyne 13C spectrum, respectively.

  20. Automated recognition and assessment of cross peaks in two-dimensional NMR spectra of macromolecules

    NASA Astrophysics Data System (ADS)

    Glaser, S.; Kalbitzer, H. R.

    A generally applicable procedure for the automated recognition of cross peaks in two-dimensional NMR spectra is presented which exploits local and global spectral properties. It is mainly based on general symmetry considerations which apply for the two-dimensional homonuclear techniques commonly used for structural determination of macromolecules in solution. The corresponding PASCAL program has been tested on a double-quantumfiltered COSY spectrum of a small protein; the results show that the recognition of cross peaks and their assessment works effectively even on spectra with intense 1 noise and experimental artifacts as are typically obtained for biological macromolecules with relatively low solubility.

  1. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  2. Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories.

    PubMed

    Markus, Michelle A; Ferrier, Jonathan; Luchsinger, Sarah M; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J; Hicks, Joshua M; Killday, K Brian; Kirby, Christopher W; Berrue, Fabrice; Kerr, Russell G; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E; Lankin, David C; Pauli, Guido F; Burton, Ian; Karakach, Tobias K; Arnason, John T; Colson, Kimberly L

    2014-06-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. PMID:24963620

  3. Deuteron NMR spectra of ND4ClO4 single crystal at low temperatures.

    PubMed

    Birczyński, A; Lalowicz, Z T; Ingman, L P; Punkkinen, M; Ylinen, E E

    1993-03-01

    2H NMR spectra of ND4ClO4 single crystal were obtained at v0 = 44 MHz. Orientation and temperature (1.9-75 K) dependences were measured. Fitting the spectra gives the effective quadrupole coupling constants for all deuterons and the ground torsional level structure. The isotope reduction of the (A-T) and (A-E) tunnelling splittings, i.e., the ratios of the respective splittings for NH4+ and ND4+, were found to be different. The splittings at T = 24 K are about 60% of the helium temperature values. The spectrum undergoes intermediate narrowing by reorientations between 26 and 34 K and tunnelling related features in the spectra are eradicated. After reaching the extreme narrowing limit, a doublet with gradually decreasing separation was observed, what was attributed to averaging by torsional oscillations of increasing amplitude. At high temperatures (T > 75 K), the narrow spectrum reflects fast multiaxial reorientation of the ammonium ion. PMID:7834308

  4. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  5. Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates.

    PubMed

    Kida, Masato; Sakagami, Hirotoshi; Takahashi, Nobuo; Nagao, Jiro

    2013-05-23

    The solid-state (13)C NMR spectra of various guest hydrocarbons (methane, ethane, propane, adamantane) in clathrate hydrates were measured to elucidate the local structural environments around hydrocarbon molecules isolated in guest-host frameworks of clathrate hydrates. The results show that, depending on the cage environment, the trends in the (13)C chemical shift and line width change as a function of temperature. Shielding around the carbons of the guest normal alkanes in looser cage environments tends to decrease with increasing temperature, whereas shielding in tighter cage environments tends to increase continuously with increasing temperature. Furthermore, the (13)C NMR line widths suggest, because of the reorientation of the guest alkanes, that the local structures in structure II are more averaged than those in structure I. The differences between structures I and II tend to be very large in the lower temperature range examined in this study. The (13)C NMR spectra of adamantane guest molecules in structure H hydrate show that the local structures around adamantane guests trapped in structure H hydrate cages are averaged at the same level as in the α phase of solid adamantane. PMID:23607335

  6. Uncertainty measurement for automated macro program-processed quantitative proton NMR spectra.

    PubMed

    Hays, Patrick A; Schoenberger, Torsten

    2014-11-01

    The evaluation of a fully automated quantitative proton nuclear magnetic resonance spectroscopy (qNMR) processing program, including the determination of its processing uncertainty, and the calculations of the combined uncertainty of the qNMR result, is presented with details on the use of a trimmed purity average. Quantitative NMR spectra (1359) were collected over a 4-month period on various concentrations of pseudoephedrine HCl dissolved in D2O (0.0610 to 93.60 mg/mL) containing maleic acid (the internal standard) to yield signal-to-noise ratios ranging from 3 to 72,000 for analyte integral regions. The resulting 5436 purities exhibited a normal distribution about the best estimate of the true value. The median absolute deviation (MAD) statistical method was used to obtain a model of uncertainty relative to the signal-to-noise of the analyte's integral peaks. The model was then tested using different concentrations of known purity chloroquine diphosphate. qNMR results of numerous illicit heroin HCl samples were compared to those obtained by capillary electrophoresis. PMID:25273593

  7. Alternative approach to the standardization of NMR spectra. Direct measurement of nuclear magnetic shielding in molecules.

    PubMed

    Jackowski, Karol; Jaszuński, Michał; Wilczek, Marcin

    2010-02-25

    Exploring the relation between shielding constants, resonance frequencies and magnetic moments of the nuclei we demonstrate that nuclear magnetic shielding can be directly observed from NMR spectra. In this approach, the absolute shielding constants of all the nuclei can be related to a single reference scale, with atomic (3)He as the primary standard. The accuracy of the data obtained using our method is confirmed comparing the (1)H and (13)C shielding constants for a series of deuterated compounds with those determined analyzing the traditional chemical shifts. Since the use of helium-3 is not in general a practical alternative, we next transfer the reference standard to the (2)H signals of external lock solvents, in this way making the method easy and ready for application with most NMR spectrometers. Finally, we illustrate our new method with the measurements of the (2/1)H primary isotope effects in several liquid deuterated solvents. PMID:20112974

  8. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  9. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  10. Structures of Si-Carbohydrate Aqueous Complexes: Comparison of NMR Spectra and Molecular Orbital Results

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Heaney, P. J.

    2002-12-01

    Researchers recently have made the discovery that hypercoordinate Si-sorbitol complexes will readily form in biologically relevant fluids, and they have reported the first evidence for a transient organosilicon complex generated within the life cycle of an organism. These interpretations are based upon peak assignments of Si-29 NMR spectra that invoke Si-polyol complexes with Si in five- and six-fold coordination states. However, ab initio analyses of the proposed organosilicon structures do not reproduce the experimentally observed chemical shifts. We have successfully modeled one of the observed Si-29 chemical shifts with a 5-fold Si-disorbitol complex involving 5-membered ring configurations (i.e., Si-O-C-C-O), which yielded Si-29 chemical shifts that closely matched the observed values in the -100 to -102 ppm range. Likewise, Si-29 NMR peaks near -144 ppm were well fit by a model in which a 6-fold Si was complexed to three sorbitol molecules in a 5-membered ring configuration. The ability to simulate observed NMR signals using molecular orbital calculations provides strong support for the controversial role of hypercoordinate organosilicon species in the uptake and transport of silica by biological systems. The existence of such complexes in turn may explain other puzzles in Si biogeochemistry, such as the persistence of monomeric silica in concentrated biological fluids and the biofractionation of Si isotopes and Ge.

  11. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  12. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  13. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    PubMed

    Hughes, Travis S; Wilson, Henry D; de Vera, Ian Mitchelle S; Kojetin, Douglas J

    2015-01-01

    Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D) 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) to objectively determine which model (number of peaks) would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/). PMID:26241959

  14. Cu-NMR spectra in UCu4Ni uncover site disorder

    NASA Astrophysics Data System (ADS)

    Bernal, O. O.; Rose, D. A.; Wu, Hsin-Ju; Chiang, M.; MacLaughlin, D. E.; Stewart, G. R.; Kim, J. S.

    2012-12-01

    Cu-NMR measurements in a random powder of UCu4Ni reveal two types of spectral lines for each of the two isotopes of naturally abundant Cu in the material. These lines, which we label L1 and L2, point to the existence of two inequivalent Cu sites in the sample. We present a study of the NMR line shape in UCu4Ni at three different frequencies (in the range from 40-70 MHz) and two temperature values (10 K and 150 K), that allow us to assign the lines to particular Cu sites. L1 is strongly broadened as the frequency decreases, but changes less with increasing temperature. In contrast, the width of L2 grows in proportion to frequency and decreases noticeably with increasing temperature. This behavior indicates that the crystallographic site corresponding to L1 is exposed to electric field gradients and has lower point symmetry than the site corresponding to L2, which displays some anisotropy but no discernible quadrupole effects. By comparison with the Cu-NMR spectra in UCu4Pd, where only one type of Cu-NMR line has been observed clearly, we can associate L1 with Cu(16e) nuclei: Cu nuclei sitting at the 16e site (Wyckoff notation) in the AuBe5 structure of the parent compound UCu5. This leaves L2 as originating from Cu(4c) nuclei; i.e., those sitting at the 4c site of the same structure. Unlike in UCu4Pd, the appearance of signal from Cu(4c) nuclei in the Ni compound is clear evidence of site disorder in UCu4Ni.

  15. Analysis of the carbon-13 and proton NMR spectra of bovine chromaffin granules.

    PubMed

    Sharp, R R; Richards, E P

    1977-03-29

    Natural abundance carbon-13 and proton NMR spectra of bovine chromaffin granules have been obtained and analyzed using computer simulation techniques. High resolution spectra show the presence of a fluid aqueous phase containing epinephrine, ATP and a random coil protein. The protein spectrum contains unusually intense resonances due to glutamic acid and proline and has been simulated satisfactorily using the known amino acid composition of chromogranin A. The lipid phase of chromaffin granules gives rise to intense, but very broad, resonances in the carbon-13 spectrum. Protons in the lipid phase are also observable as a very rapid component of the proton-free induction decay (T2 approximately equal to 15 microns). Linewidths of the carbon-13 spectra have been used to set upper limits on rotational correlation times and on the motional anisotropy in the aqueous phase. These limits show that the aqueous phase is a simple solution (not a gel) that is isotropic over regions much larger than solute dimensions. No gel transition is observed between -3 and 25 degrees C. The carbon-13 spectra are definitely inconsistent with a lipoprotein matrix model and chromaffin granules previously proposed by Helle and Serck-Hanssen ((1975) Mol. Cell, Biochem. 6, 127-146). Relative carbon-13 intensities of ATP and epinephrine are not consistent with the known 1 : 4 mol ratio of these components. This fact suggests that epinephrine and ATP are not directly complexed in intact chromaffin granules. PMID:849474

  16. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854892

  17. Spectroscopic separation of (13) C NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment.

    PubMed

    Yang, Lu; Moreno, Aitor; Fieber, Wolfgang; Brauchli, Robert; Sommer, Horst

    2015-04-01

    Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra. Simple consolidation of the subspectra yields (13) C NMR spectra for individual isomers. Alternatively, CSSF-INEPT with heteronuclear long-range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the (13) C NMR spectra for isomers containing multiple spin systems. A proof-of-principle validation of the CSSF-TOCSY-INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF-TOCSY-INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. PMID:25616134

  18. Simulation of 2D NMR Spectra of Carbohydrates Using GODESS Software.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2016-06-27

    Glycan Optimized Dual Empirical Spectrum Simulation (GODESS) is a web service, which has been recently shown to be one of the most accurate tools for simulation of (1)H and (13)C 1D NMR spectra of natural carbohydrates and their derivatives. The new version of GODESS supports visualization of the simulated (1)H and (13)C chemical shifts in the form of most 2D spin correlation spectra commonly used in carbohydrate research, such as (1)H-(1)H TOCSY, COSY/COSY-DQF/COSY-RCT, and (1)H-(13)C edHSQC, HSQC-COSY, HSQC-TOCSY, and HMBC. Peaks in the simulated 2D spectra are color-coded and labeled according to the signal assignment and can be exported in JCAMP-DX format. Peak widths are estimated empirically from the structural features. GODESS is available free of charge via the Internet at the platform of the Carbohydrate Structure Database project ( http://csdb.glycoscience.ru ). PMID:27227420

  19. Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra

    PubMed Central

    Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé

    2012-01-01

    When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720

  20. An analytical derivation of a popular approximation of the Voigt function for quantification of NMR spectra.

    PubMed

    Bruce, S D; Higinbotham, J; Marshall, I; Beswick, P H

    2000-01-01

    The approximation of the Voigt line shape by the linear summation of Lorentzian and Gaussian line shapes of equal width is well documented and has proved to be a useful function for modeling in vivo (1)H NMR spectra. We show that the error in determining peak areas is less than 0.72% over a range of simulated Voigt line shapes. Previous work has concentrated on empirical analysis of the Voigt function, yielding accurate expressions for recovering the intrinsic Lorentzian component of simulated line shapes. In this work, an analytical approach to the approximation is presented which is valid for the range of Voigt line shapes in which either the Lorentzian or Gaussian component is dominant. With an empirical analysis of the approximation, the direct recovery of T(2) values from simulated line shapes is also discussed. PMID:10617435

  1. Velocity autocorrelation spectra in molten polymers measured by NMR modulated gradient spin-echo

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Mohorič, Aleš; Mattea, Carlos; Stapf, Siegfried; Serša, Igor

    2014-04-01

    The segmental dynamics in molten linear polymers is studied by the NMR method of modulated gradient spin-echo, which directly probes a spectrum of molecular velocity autocorrelation function. Diffusion spectra of mono-disperse poly(isoprene-1.4) with different molecular masses, measured in the frequency range 0.1-10 kHz at a temperature of 26\\ ^{\\circ}\\text{C} , have a form similar to the spectrum of Rouse chain dynamics, which implicates the tube-Rouse motion as the dominant dynamic process in this frequency range. The scaling of the center-of-mass diffusion coefficient, given from the fitting parameters, changes from N^{-1} into N^{-2.4} at around N \\approx 3\\text{-}5 Kuhn steps, which is less than predicted by theory and simulations, while the correlation times of the tube-Rouse mode do not follow the anticipated scaling.

  2. Observation of the Second-Order Quadrupolar Interaction as a Dominating NMR Relaxation Mechanism in Liquids: The Ultraslow Regime of Motion.

    PubMed

    Shen, Jiahui; Terskikh, Victor; Wu, Gang

    2016-09-01

    We report variable-temperature (VT) (17)O NMR spectra of [5-(17)O]-d-glucose in an aqueous solution and in glycerol at 14.1 and 21.1 T. The VT (17)O NMR data cover a wide range of motion for which the molecular rotational correlation time (τc) of glucose changes more than 5 orders of magnitude. The observed line width of the (17)O NMR signal for [5-(17)O]-d-glucose displays a maximum at ω0τc ≈ 1 and a minimum at ω0τc ≈ 150, where ω0 is the angular Larmor frequency of (17)O. Under the ultraslow motion condition (i.e., ω0τc > 150), the line width of the observed (17)O NMR signal increases drastically with τc, suggesting that the second-order quadrupolar interaction becomes the predominant relaxation mechanism. While this relaxation mechanism has long been predicted by theory, the current study reports the first experimental observation of such a phenomenon. The implications of this new relaxation mechanism on the spectral resolution limit in liquid-state NMR spectroscopy for half-integer spins are discussed. PMID:27525537

  3. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  4. Main-chain-directed strategy for the assignment of /sup 1/H NMR spectra of proteins

    SciTech Connect

    Englander, S.W.; Wand, A.J.

    1987-09-22

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub ..cap alpha../H-C/sub ..beta../H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step.

  5. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  6. sup 17 O nuclear-magnetic-resonance spectroscopic study of high- T sub c superconductors

    SciTech Connect

    Oldfield, E.; Coretsopoulos, C.; Yang, S.; Reven, L.; Lee, H.C.; Shore, J.; Han, O.H.; Ramli, E. Materials Research Laboratory, University of Illinois at Urbana; Hinks, D.

    1989-10-01

    We have obtained solid-state {sup 17}O NMR spectra of a number of {sup 17}O-enriched oxides and high-temperature oxide superconductors, including Cu{sub 2}{sup I}O, Cu{sup II}O, KCu{sup III}O{sub 2}, Bi{sub 2}O{sub 3}, Tl{sub 2}O{sub 3}, La{sub 1.85}Sr{sub 0.15}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{ital x}}, Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8+{ital x}}, and Ba{sub 0.6}K{sub 0.4}BiO{sub 3}. Spectra of all of the simple diamagnetic oxides contain relatively sharp resonances in a diamagnetic'' region of {similar to}{minus}200 to +700 ppm (from H{sub 2}O, International Union of Pure and Applied Chemistry {delta} scale). Cu{sup II}O exhibits a broad resonance centered at {similar to}4500 ppm.

  7. The NMR investigation of alkaloids. IX. /sup 13/C NMR spectra and stereochemistry of convolvine, convolamine, convoline, convolidine, subhirsine and 6-hydroxyhyoscyamine

    SciTech Connect

    Yagudaev, M.R.; Aripova, S.F.

    1986-07-01

    A correlation has been made on the basis of the results of a study of the C 13 NMR spectra, of the CSs of the C 13 carbon nuclei with the structure and stereochemistry of the tropane alkaloids convolvine, convolamine, convoline, convolidine, subhirsine, and 6-hydroxyhyoscyamine. It has been established that the N-CH/sub 3/ group in convolamine and the -OH group in convoline are oriented equatorially, and the N-CH/sub 3/ in hydroxyhyoscyamine axially.

  8. Spinning-frequency-dependent linewidths in 1H-decoupled 13C magic-angle spinning NMR spectra

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; McDowell, Charles A.

    1994-09-01

    The broadenings observed in 13C MAS NMR spectra, which depend on the sample-spinning speed, were studied, using polycrystalline adamantane. Not only was a monotonic increase of the linewidths with the increase of the spinning frequency observed, but also a novel resonant feature was found. The phenomena were interpreted as originating from rotary-resonance 13C 1H recoupling.

  9. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides.

    PubMed

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-02-26

    Standard Eucheuma denticulatum iota-carrageenan was degraded with the Alteromonas fortis iota-carrageenase. The most abundant products, the neo-iota-carratetraose and neo-iota-carrahexaose were purified by permeation gel chromatography, and their corresponding (1)H and (13)C NMR spectra were fully assigned. PMID:20038459

  10. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  11. Deuteron NMR Spectra of ND4 Tunneling at Low Frequenciesin (ND4)2SnBr6

    NASA Astrophysics Data System (ADS)

    Lalowicz, Z. T.; Serafin, R.; Punkkinen, M.; Vuorimäki, A. H.; Ylinen, E. E.

    1995-05-01

    Deuteron NMR spectra of slowly tunneling ND4+ ions are analysed. Spectra are calculated as functions of the tunneling parameters which are the tunneling frequencies about the symmetry axes C2 and C3 of the tetrahedral ion. The structure and splittings within the ground torsional level (GTL) are obtained by fitting the spectra of (ND4)2SnBr6. Comparison with the GTL structure obtained before for NH4+ in the same compound gives the isotope reduction factor of the tunneling frequency about 200.

  12. Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C–1H HSQC Spectra

    PubMed Central

    2015-01-01

    A new metabolomics database and query algorithm for the analysis of 13C–1H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) 13C–1H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index. Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from 13C–1H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  13. Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.

    PubMed

    Bingol, Kerem; Li, Da-Wei; Bruschweiler-Li, Lei; Cabrera, Oscar A; Megraw, Timothy; Zhang, Fengli; Brüschweiler, Rafael

    2015-02-20

    A new metabolomics database and query algorithm for the analysis of (13)C-(1)H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) (13)C-(1)H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index . Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from (13)C-(1)H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  14. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  15. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  16. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems.

    PubMed

    Voronov, Vladimir K

    2016-09-01

    The peculiarities of nuclear spin relaxation in the paramagnetic systems have been analyzed taking into account the exchange processes. The analysis is based on the modified Solomon-Bloembergen equations. In this line, the conditions of detecting of the NMR signals of samples are discussed depending on resonance frequency of the NMR spectrometer and characteristic relaxation time. On this basis, (1)H NMR spectra of cobalt semiquinolate complex have been analyzed. It has been shown that the satellite signals observed in the spectrum are caused by hyperfine coupling of the tert-butyl group protons with α and β states (localized on pz orbital of the aromatic carbon) of unpaired electron spin. The relaxation process of the resonance protons is controlled by paramagnetic dipole-dipole coupling. The contact hyperfine coupling does not contribute to the paramagnetic broadening. A mechanism involving paramagnetic molecular structures, which are responsible for intramolecular exchange processes in the cobalt semiquinolate complex, is given. PMID:27513208

  17. AssignFit: A program for simultaneous assignment and structure refinement from solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.

    2012-01-01

    AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes.

  18. Experimental and theoretical studies on compositions, structures, and IR and NMR spectra of functionalized protic ionic liquids.

    PubMed

    Cui, Yingna; Yin, Jingmei; Li, Changping; Li, Shenmin; Wang, Ailing; Yang, Guang; Jia, Yingping

    2016-07-20

    The compositions and structures of amine-based functionalized protic ionic liquids (PILs), namely N,N-dimethyl(cyanoethyl)ammonium propionate (DMCEAP) and N,N-dimethyl(hydroxyethyl)ammonium propionate (DMEOAP) have been investigated systematically by IR and (1)H NMR spectroscopy and density functional theory (DFT) calculations. Analysis of the IR spectra suggests that both DMCEAP and DMEOAP are composed of neutral and ionized species in the liquid phase, the former one mainly existing in the state of precursor molecules, and the latter mainly as ion-pairs. The ratio of precursor molecules to ion-pairs in the liquid phase depends on the types of precursors, especially the functional groups of cations. (1)H NMR spectra indicate that there is a dynamic equilibrium between the neutral and ionized species, probably due to the formation of some intermediates in the PILs. The DFT calculations have been carried out to reveal the conformation, and obtain the corresponding IR and (1)H NMR spectra of the neutral and ionized species, so that the theoretical support to the experimental results can be provided. The present study will help understand the properties of PILs and provide guidance for further applications of PILs. PMID:27385035

  19. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  20. Conformational studies of 3-aminomethylene-2,4-pentanedione using vibrational and NMR spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Sümmchen, L.; Salzer, R.

    2007-10-01

    The IR, Raman and NMR spectra of 3-aminomethylene-2,4-pentanedione (AMP) H 2N sbnd CH dbnd C(COCH 3) 2 were measured. According to the NMR spectra in chloroform and more polar DMSO at room temperature, the sample exists as single entity. On the other hand vibrational spectra revealed that in less polar solutions AMP exists as two conformers with EZ or ZZ orientation of acetyl groups whereas in more polar solvent only one EZ conformer is observed. Such interpretation was confirmed also by the temperature-dependent measurements of IR spectra in chloroform. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of possible conformers of AMP were also evaluated at the same levels of theory and compared with the data from X-ray analysis which revealed that AMP exists in solid state as EZ conformer. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM, IPCM and ONSAGER models.

  1. EASY-GOING deconvolution: Combining accurate simulation and evolutionary algorithms for fast deconvolution of solid-state quadrupolar NMR spectra

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Polman, Ben J. W.; Kentgens, Arno P. M.; Leo Meerts, W.

    2011-08-01

    A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution ( EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.

  2. An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve

    NASA Astrophysics Data System (ADS)

    Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong

    2016-04-01

    The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.

  3. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra of complex mixtures and biofluids

    NASA Astrophysics Data System (ADS)

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.

  4. Ab initio study of 59Co NMR spectra in Co2FeAl1-xSix Heusler alloys

    NASA Astrophysics Data System (ADS)

    Nishihara, H.; Sato, K.; Akai, H.; Takiguchi, C.; Geshi, M.; Kanomata, T.; Sakon, T.; Wada, T.

    2015-05-01

    Ab initio electronic structure calculation of a series of Co2FeAl1-xSix Heusler alloys has been performed, using the Korringa-Kohn-Rostoker-coherent potential approximation method to explain experimental 59Co NMR spectra. Two prominent features are explained semi-quantitatively-a global shift of the 59Co resonance line due to alloying with Al and Si atoms in Co2FeAl1-xSix, and the effect of local disorder in creating distinct satellite lines of 59Co NMR in Co2FeAl. The importance is stressed of the positive contribution to the 59Co hyperfine field from valence electron polarization, which emerges from the half-metallic band structure inherent in Co-based Heusler alloys.

  5. Computer-assisted assignment of 2D 1H NMR spectra of proteins: basic algorithms and application to phoratoxin B.

    PubMed

    Kleywegt, G J; Boelens, R; Cox, M; Llinás, M; Kaptein, R

    1991-05-01

    A suite of computer programs (CLAIRE) is described which can be of assistance in the process of assigning 2D 1H NMR spectra of proteins. The programs embody a software implementation of the sequential assignment approach first developed by Wüthrich and co-workers (K. Wüthrich, G. Wider, G. Wagner and W. Braun (1982) J. Mol. Biol. 155, 311). After data-abstraction (peakpicking), the software can be used to detect patterns (spin systems), to find cross peaks between patterns in 2D NOE data sets and to generate assignments that are consistent with all available data and which satisfy a number of constraints imposed by the user. An interactive graphics program called CONPAT is used to control the entire assignment process as well as to provide the essential feedback from the experimental NMR spectra. The algorithms are described in detail and the approach is demonstrated on a set of spectra from the mistletoe protein phoratoxin B, a homolog of crambin. The results obtained compare well with those reported earlier based entirely on a manual assignment process. PMID:1841687

  6. Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods

    NASA Astrophysics Data System (ADS)

    Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.

    Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).

  7. Characterisation of the 1H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease.

    PubMed

    Krawczyk, Hanna; Gradowska, Wanda

    2003-03-10

    1H and 13C NMR spectra of N-acetylaspartylglutamate (NAAG) have been recorded and interpreted. The values of the 1H chemical shifts and 1H-(1)H coupling constants at different pH were obtained by iterative computer fitting of 1-D 1H NMR spectra. This provided information on the solution conformation of the investigated molecule. Proton-decoupled high resolution 13C NMR spectra of NAAG have been measured in a series of dilute water solution of various acidity. These data have provided a basis for unequivocal determination of the presence of NAAG in the urine sample of a patient suffering from Canavan disease. NMR spectroscopy provides a possibility of detecting NAAG in body fluids. PMID:12615232

  8. Probing protein structure by solvent perturbation of NMR spectra: the surface accessibility of bovine pancreatic trypsin inhibitor.

    PubMed Central

    Molinari, H; Esposito, G; Ragona, L; Pegna, M; Niccolai, N; Brunne, R M; Lesk, A M; Zetta, L

    1997-01-01

    In the absence of specific interactions, the relative attenuation of protein NMR signals due to added stable free radicals such as TEMPOL should reflect the solvent accessibility of the molecular surface. The quantitative correlation between observed attenuation and surface accessibility was investigated with a model system, i.e., the small protein bovine pancreatic trypsin inhibitor. A detailed discussion is presented on the reliability and limits of the approach, and guidelines are provided for data acquisition, treatment, and interpretation. The NMR-derived accessibilities are compared with those obtained from x-ray diffraction and molecular dynamics data. Although the time-averaged accessibilities from molecular dynamics are ideally suited to fit the NMR data, better agreement was observed between the paramagnetic attenuations of the fingerprint cross-peaks of homonuclear proton spectra and the total NH and H alpha accessibilities calculated from x-ray coordinates, than from time-averaged molecular dynamics simulations. In addition, the solvent perturbation response appears to be a promising approach for detecting the thermal conformational evolution of secondary structure elements in proteins. PMID:9199802

  9. Fast acquisition of high-resolution NMR spectra in inhomogeneous fields via intermolecular double-quantum coherences

    PubMed Central

    Chen, Zhong; Cai, Shuhui; Chen, Zhiwei; Zhong, Jianhui

    2009-01-01

    A pulse sequence, IDEAL-II, is proposed based on the concept of intermolecular dipolar-interaction enhanced all lines [Z. Chen et al., J. Am. Chem. Soc. 126, 446 (2004)] for obtaining one-dimensional (1D) high-resolution liquid NMR spectra in inhomogeneous fields via two-dimensional acquisitions. With the new acquisition scheme, the range of magnetic field inhomogeneity rather than chemical shift is sampled in the indirect dimension. This enables a great reduction in acquisition time and amount of data, much improved over the original IDEAL implementation. It is applicable to both isolated and J-coupled spin systems in liquid. For the latter, apparent J coupling constants are magnified threefold in spectra obtained with this sequence. This allows a more accurate measurement of J coupling constants in the cases of small J coupling constants or large inhomogeneous fields. Analytical expression was derived based on intermolecular multiple-quantum coherence treatments. Solution samples that were purposely deshimmed and biological samples with intrinsic field inhomogeneities were tested. Experimental results demonstrate that this sequence retains useful structural information including chemical shifts, relative peak areas, and multiplet patterns of J coupling even when the field inhomogeneity is severe enough to almost erase all spectroscopic information with conventional 1D single-quantum coherence techniques. This sequence is more applicable to weakly coupled and uncoupled spin systems, potentially useful for studying metabolites in in vivo NMR spectroscopy and for characterizing technologically important new materials in combinatorial chemistry. PMID:19256612

  10. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  11. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    PubMed

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  12. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    PubMed

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  13. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    SciTech Connect

    Levin, E. M.; Chen, Q.; Bud'ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  14. Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 1. Highly protonated molecules

    SciTech Connect

    Alemany, L.B.; Grant, D.M.; Pugmire, R.J.; Alger, T.D.; Zilm, K.W.

    1983-04-20

    CP/MAS /sup 13/C NMR spectra were obtained at various contact times on ten solid organic compounds containing a variety of simple functional groups. The spectra show that signal intensities that agree with atomic ratios can be obtained with a contact time of 2.25 ms and often with a contact time as short as about 1 ms. Computer analysis of signal intensities obtained at a minimum of ten different contact times provides T/sub CH/ data that are consistent with these experimental results. The experimental results are also consistent with the previously reported lack of significant variation in the spectra of complex organic solids obtained with contact times of about 1 to 3 ms. In general, nonprotonated carbon atoms polarize more slowly than protonated carbon atoms. The compounds exhibit a wide range of proton spin lattice relaxation times. Some compounds exhibit more resonances than are found in the /sup 13/C(/sup 1/H) spectra of the compounds in solution because the crystalline environment removes the nominal spatial equivalence found for carbon atoms related to each other by unimolecular symmetry elements.

  15. The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.

    PubMed

    Frach, Roland; Kibies, Patrick; Böttcher, Saraphina; Pongratz, Tim; Strohfeldt, Steven; Kurrmann, Simon; Koehler, Joerg; Hofmann, Martin; Kremer, Werner; Kalbitzer, Hans Robert; Reiser, Oliver; Horinek, Dominik; Kast, Stefan M

    2016-07-18

    High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the (15) N-enriched peptide bond model, N-methylacetamide (NMA), in water, combined with quantum-chemical computations of the magnetic parameters using a pressure-sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4-dimethyl-4-silapentane-1-sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent-induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure-induced changes of the magnetic susceptibility of the solvent. PMID:27282319

  16. Direct observation of ¹⁷O-¹⁸⁵/¹⁸⁷Re ¹J-coupling in perrhenates by solid-state ¹⁷O VT MAS NMR: temperature and self-decoupling effects.

    PubMed

    Jakobsen, Hans J; Bildsøe, Henrik; Brorson, Michael; Gan, Zhehong; Hung, Ivan

    2013-05-01

    (17)O MAS NMR spectra recorded at 14.1T and room temperature (RT) for (17)O-enriched samples of the two perrhenates, KReO4 and NH4ReO4, exhibit very similar overall appearances of the manifold of spinning sidebands (ssbs) for the satellite transitions (STs) and the central transition (CT). These overall appearances of the spectra are easily simulated in terms of the usual quadrupole coupling and chemical shift interaction parameters. However, a detailed inspection of the line shapes for the individual ssbs of the STs and, in particular, for the CT in the spectrum of KReO4 reveals line-shape features, which to our knowledge have not before been observed experimentally in 1D MAS NMR spectra for any quadrupolar nucleus, nor emerged from simulations for any combination of second-order quadrupolar interaction and chemical shift anisotropy. In contrast, such line-shape features are not observed for the corresponding ssbs (STs and CT) in the 14.1T RT (17)O MAS NMR spectrum of NH4ReO4. Considering the additional interaction of a combination of residual heteronuclear (17)O-(185/)(187)Re dipolar and scalar J coupling between this spin pair of two quadrupolar nuclei, spectral simulations for KReO4 show that these interactions are able to account for the observed line shapes, although the expected (1)J((17)O-(185/)(187)Re) six-line spin-spin splittings are not resolved. Low-temperature, high-field (21.1T) (17)O VT MAS NMR spectra of both KReO4 and NH4ReO4 show that full resolution into six-line multiplets for the centerbands are achieved at -90°C and -138°C, respectively. This allows determination of (1)J((17)O-(187)Re)=-268Hz and -278Hz for KReO4 and NH4ReO4, respectively, i.e., an isotropic (1)J coupling and its sign between two quadrupolar nuclei, observed for the first time directly from solid-state one-pulse 1D MAS NMR spectra, without resort to additional 1D or 2D experiments. Determination of T1((187)Re) spin-lattice relaxation times, observed indirectly through a 2D

  17. Cucurbitacins from Cayaponia racemosa: isolation and total assignment of 1H and 13C NMR spectra.

    PubMed

    Chaves, Davina C; Assunção, João Carlos C; Braz-Filho, Raimundo; Lemos, Telma L G; Monte, Francisco J Q

    2007-05-01

    Two new cucurbitane-type triterpenoids, 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,22-dione and 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,11,22-trione, were isolated from fruits of Cayaponia racemosa. The total (1)H and (13)C chemical shift assignment of these two closely related compounds is described, making use of one- and two-dimensional NMR techniques. PMID:17372957

  18. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  19. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    PubMed

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils. PMID:19544589

  20. Analysis of 31P MAS NMR spectra and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1994-01-01

    Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate. PMID:8038391

  1. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  2. Weighted least-squares deconvolution method for discovery of group differences between complex biofluid 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Gipson, Geoffrey T.; Tatsuoka, Kay S.; Sweatman, Brian C.; Connor, Susan C.

    2006-12-01

    Biomarker discovery through analysis of high-throughput NMR data is a challenging, time-consuming process due to the requirement of sophisticated, dataset specific preprocessing techniques and the inherent complexity of the data. Here, we demonstrate the use of weighted, constrained least-squares for fitting a linear mixture of reference standard data to complex urine NMR spectra as an automated way of utilizing current assignment knowledge and the ability to deconvolve confounded spectral regions. Following the least-squares fit, univariate statistics were used to identify metabolites associated with group differences. This method was evaluated through applications on simulated datasets and a murine diabetes dataset. Furthermore, we examined the differential ability of various weighting metrics to correctly identify discriminative markers. Our findings suggest that the weighted least-squares approach is effective for identifying biochemical discriminators of varying physiological states. Additionally, the superiority of specific weighting metrics is demonstrated in particular datasets. An additional strength of this methodology is the ability for individual investigators to couple this analysis with laboratory specific preprocessing techniques.

  3. Tracing Nitrate Deposition Using Δ 17O

    NASA Astrophysics Data System (ADS)

    Michalski, G m; Hernandez, L.; Meixner, T.; Fenn, M.; Thiemens, M.

    2001-12-01

    Assessing the impact of atmospheric deposition of fixed nitrogen on local, regional, and global biogeochemical cycles has received much attention in recent years. Local and regional ecosystems can suffer from eutrophication and shrinking biodiversity from the increased nitrogen flux, in addition to degradation associated with acid rain ( an increasing proportion of which is as HNO3 ). On a global scale, the effect of nitrogen fertilization on CO2 uptake rates is one of the biggest unknowns in global warming research. This renewed interest has led to new attempts to utilize current, and in the development of new, analytical techniques in order to better understand the source, sink and transport mechanisms of atmospheric nitrogen deposition. Its role as the primary sink of the NOx cycle makes atmospheric nitrate (as particulate nitrate or nitric acid ) the primary source of nitrogen deposition. Stable isotopes of nitrogen and oxygen have been used by several researchers to trace atmospheric nitrate through the biogeochemical system. 15N ratios have been problematic due to the lack of large fractionations and an overlap of 15N ratios between sources. Initial studies of 18O ratios showed promise due to the large enrichment (60 ‰ ) in atmospheric nitrate. However, subsequent studies showed an δ 18O spread of 25 - 80 ‰ and have made quantitative analysis of mixing reservoirs difficult. No studies of δ 17O nitrates have been published. For δ 17O, thermodynamic, kinetic, and equilibrium isotope effects dictate that δ 17O = .52 x δ 18O . Certain photochemical processes violate this rule due to quantum effects and are quantified by Δ 17O = δ 17O -.52 x δ 18O which are called mass independent fractionations (MIF). Atmospheric nitrates have now been measured and have been found to have a large MIF; Δ 17O ~ 25 ‰ and a small range +/- 4‰ . The large variations in δ 18O of atmospheric nitrate are due to mass dependent fractions from transport and source ratios

  4. Importance of Tensor Asymmetry for the Analysis of 2H-NMR Spectra from Deuterated Aromatic Rings

    PubMed Central

    Pulay, Peter; Scherer, Erin M.; van der Wel, Patrick C. A.; Koeppe, Roger E.

    2008-01-01

    We have used ab initio calculations to compute all of the tensor elements of the electric field gradient for each carbon-deuterium bond in the ring of deuterated 3-methyl-indole. Previous analyses have ignored the smaller tensor elements perpendicular to principal component Vzz which is aligned with the C-2H bond (local bond z-axis). At each ring position, the smallest element Vxx is in the molecular plane and Vyy is normal to the plane of the ring. The asymmetry parameter η = (|Vyy|-|Vxx|)/|Vzz| ranges from 0.07 at C4 to 0.11 at C2. We used the perpendicular (off-bond) tensor elements, in concert with an improved understanding of the indole ring geometry1, to analyze prototype 2H-NMR spectra from well-oriented, hydrated peptide/lipid samples. For each of the 4 tryptophans of membrane-spanning gramicidin A (gA)2 channels, the inclusion of the perpendicular elements changes the deduced ring tilt by nearly 10° and increases the ring principal order parameter Szz for overall ‘wobble’ with respect to the membrane normal (molecular z-axis). With the improved analysis, the magnitude of Szz for the outermost indole rings of Trp13 and Trp15 is indistinguishable from that observed previously for backbone atoms (0.93 ± 0.03). For the Trp9 and Trp11 rings, which are slightly more buried within the membrane, Szz is slightly lower (0.86 ± 0.03). The results show that the perpendicular elements are important for the detailed analysis of 2H-NMR spectra from aromatic ring systems. PMID:16332101

  5. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  6. Theory of damped quantum rotation in NMR spectra. I. Fundamental aspects.

    PubMed

    Ratajczyk, T; Szymański, S

    2005-11-22

    The damped quantum rotation (DQR) theory, formulated originally for methyl-like atomic groupings, is now extended to hindered (N>3)-fold molecular rotors, such as the cyclopentadienyl, benzene, and cycloheptatrienyl rings in solid phase environments. It heightens the significance of the Pauli principle in shaping up the stochastic dynamics of such objects, reflected in NMR line shapes. The corresponding NMR line-shape equation is derived; its stochastic part is shown for the first time to have the double commutator form for any values of the quantum-mechanical (coherence-damping) rate constants entering it. Constraints on the relative magnitudes of such constants are determined under which the DQR line-shape equation is converted into the phenomenological Alexander-Binsch equation describing classical jumps of the rotor. When all the quantum rate constants happen to be equal, the phenomenological model of equal jump rates between any two of the N (equivalent) orientations of the rotor is reproduced. On the other hand, the seemingly most plausible (for N>3) nearest-neighbor hopping model does not have any peculiar grounds in the DQR approach. For the special instances of stochastic molecular motions addressed in this work, the extended DQR formalism affords a quantification of the "degree of classicality" represented by a complete set of the relevant quantum rate constants. In view of our earlier experimental findings for the methyl rotors, the very occurrence of the nonclassical DQR effects seems unquestionable even for the objects of the size of benzene. The question of under what circumstances such effects can be big enough to be detected experimentally will be addressed in Part II of this work. PMID:16351283

  7. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  8. Toward dynamic isotopomer analysis in the rat brain in vivo: automatic quantitation of 13C NMR spectra using LCModel.

    PubMed

    Henry, Pierre-Gilles; Oz, Gülin; Provencher, Stephen; Gruetter, Rolf

    2003-01-01

    The LCModel method was adapted to analyze localized in vivo (13)C NMR spectra obtained from the rat brain in vivo at 9.4 T. Prior knowledge of chemical-shifts, J-coupling constants and J-evolution was included in the analysis. Up to 50 different isotopomer signals corresponding to 10 metabolites were quantified simultaneously in 400 microl volumes in the rat brain in vivo during infusion of [1,6-(13)C(2)]glucose. The analysis remained accurate even at low signal-to-noise ratio of the order of 3:1. The relative distribution of isotopomers in glutamate, glutamine and aspartate determined in vivo in 22 min was in excellent agreement with that measured in brain extracts. Quantitation of time series of (13)C spectra yielded time courses of total (13)C label incorporation into up to 16 carbon positions, as well as time courses of individual isotopomer signals, with a temporal resolution as low as 5 min (dynamic isotopomer analysis). The possibility of measuring in vivo a wealth of information that was hitherto accessible only in extracts is likely to expand the scope of metabolic studies in the intact brain. PMID:14679502

  9. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4'-Nitrobiphenyl by density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-03-25

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4'-Nitrobiphenyl (abbreviated as 4M4'NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4'NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm(-1). The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental (1)H and (13)C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4'NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. PMID:24299985

  10. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4";-Nitrobiphenyl by density functional theory

    NASA Astrophysics Data System (ADS)

    Govindarasu, K.; Kavitha, E.

    2014-03-01

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of 4-Methoxy-4";-Nitrobiphenyl (abbreviated as 4M4";NBPL) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the 4M4";NBPL have been calculated with the help of density functional theory computations. The FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm-1 and 3500-50 cm-1 respectively. Natural Bond Orbital (NBO) analysis is also used to explain the molecular stability. The UV-Vis absorption spectra of the title compound dissolved in chloroform were recorded in the range of 200-800 cm-1. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlation between the experimental 1H and 13C NMR chemical shifts in chloroform solution and calculated GIAO shielding tensors were found. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The chemical reactivity and thermodynamic properties of 4M4";NBPL at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  11. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  12. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  13. A Discovery-Based Hydrochlorination of Carvone Utilizing a Guided-Inquiry Approach to Determine the Product Structure from [superscript 13]C NMR Spectra

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Walker, Natalie M.

    2012-01-01

    This experiment describes a discovery-based method for the regio- and stereoselective hydrochlorination of carvone, appropriate for a 3-h second-semester organic chemistry laboratory. The product is identified through interpretation of the [superscript 13]C NMR and DEPT spectra are obtained on an Anasazi EFT-60 at 15 MHz as neat samples. A…

  14. Quantitative analysis of ³¹P NMR spectra of soil extracts--dealing with overlap of broad and sharp signals.

    PubMed

    Doolette, Ashlea L; Smernik, Ronald J

    2015-09-01

    Solution (31)P NMR analysis following extraction with a mixture of sodium hydroxide and ethylenediaminetetraacetic acid is the most widely used method for detailed characterization of soil organic P. However, quantitative analysis of the (31)P NMR spectra is complicated by severe spectral overlap in the monoester region. Various deconvolution procedures have been developed for the task, yet none of these are widely accepted or implemented. In this mini-review, we first describe and compare these varying approaches. We then review approaches to similar issues of spectral overlap in biomedical science applications including NMR-based metabolic profiling and analyzing (31)P magnetic resonance spectra of ex vivo and in vivo intact tissues. The greater maturity and resourcing of this biomedical research means that a wider variety of approaches has been developed. Of particular relevance are approaches to dealing with overlap of broad and sharp signals. Although the existence of this problem is still debated in the context of soil analyses, not only is it well-recognized in biomedical applications, but multiple approaches have been developed to deal with it, including T2 editing and time-domain fitting. Perhaps the most transferable concept is the incorporation of 'prior knowledge' in the fitting of spectra. This is well established in biomedical applications but barely touched in soil analyses. We argue that shortcuts to dealing with overlap in the monoester region (31)P NMR soil spectra are likely to be found in the biomedical literature, although some degree of adaptation will be necessary. PMID:25854619

  15. A General Method for Extracting Individual Coupling Constants from Crowded (1)H NMR Spectra.

    PubMed

    Sinnaeve, Davy; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A

    2016-01-18

    Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of (1)H-(1)H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J-resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F2, and only the couplings to chosen spins appear, as simple doublets, in F1. This approaches the theoretical limit for resolving (1)H-(1)H couplings, with close to natural linewidths and with only chemical shifts in F2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses. PMID:26636773

  16. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    SciTech Connect

    Buckingham, A. David

    2014-01-07

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection.

  17. X-ray and DFT studies of the structure, vibrational and NMR spectra of 2-amino-pyridine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Kowalczyk, I.; Koput, J.; Katrusiak, A.

    2005-06-01

    The effect of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of 2-amino-pyridine betaine hydrochloride (1-carboxymethyl-2-amino-pyridinium chloride), 2-NH 2PBH⋯Cl(c), in the crystal and its isolated molecules has been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by DFT calculations. In the crystal, the Cl - anion is connected with protonated betaine via hydrogen bond, O-H⋯Cl -= 2.975(2) Å, two N(12)-H⋯Cl - hydrogen bonds and two N(1) H⋯Cl - intermolecular electrostatic interactions. Two minima are located in the potential energy surface at the B3LYP/6-31G(d,p) level, 2-NH 2PBH⋯Cl(t) and 2-NH 2PB⋯HCl(c), with the latter being 20,7 kcal/mol higher in energy. The optimized bond lengths and angles of 2-NH 2PBH⋯Cl(t) at B3LYP level of theory are in good agreement with X-ray data, except for the conformation of the COOH group, which is cis ( syn) in the crystal and trans ( anti) in the single molecule. The probable assignments for the anharmonic experimental solid state vibrational spectra of 2-NH 2PBH⋯Cl(c) and 2-ND 2PBD⋯Cl(c) based on the calculated B3LYP/6-31G(d,p) harmonic frequencies have been made. 1H and 13C NMR screening constants for both single molecules have been calculated in the GIAO/B3LYP/6-31G(d,p) approach. Linear correlation between the calculated and experimental 1H chemical shifts holds only for cis conformer. The lack of such a correlation for trans conformer indicates that it is absent in D 2O solution.

  18. Automated Quantification of Human Brain Metabolites by Artificial Neural Network Analysis from in VivoSingle-Voxel 1H NMR Spectra

    NASA Astrophysics Data System (ADS)

    Kaartinen, Jouni; Mierisová, Šarka; Oja, Joni M. E.; Usenius, Jukka-Pekka; Kauppinen, Risto A.; Hiltunen, Yrjö

    1998-09-01

    A real-time automated way of quantifying metabolites fromin vivoNMR spectra using an artificial neural network (ANN) analysis is presented. The spectral training and test sets for ANN containing peaks at the chemical shift ranges resembling long echo time proton NMR spectra from human brain were simulated. The performance of the ANN constructed was compared with an established lineshape fitting (LF) analysis using both simulated and experimental spectral data as inputs. The correspondence between the ANN and LF analyses showed correlation coefficients of order of 0.915-0.997 for spectra with large variations in both signal-to-noise and peak areas. Water suppressed1H NMR spectra from 24 healthy subjects were collected and choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) were quantified with both methods. The ANN quantified these spectra with an accuracy similar to LF analysis (correlation coefficients of 0.915-0.951). These results show that LF and ANN are equally good quantifiers; however, the ANN analyses are more easily automated than LF analyses.

  19. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  20. Antioxidant activity, NMR, X-ray, ECD and UV/vis spectra of (+)-terrein: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Trabolsy, Zuhra Bashir Khalifa Al; Anouar, El Hassane; Zakaria, Nur Shahidatul Shida; Zulkeflee, Manar; Hasan, Mizaton Hazizul; Zin, Maisarah Mohd; Ahmad, Rohaya; Sultan, Sadia; Weber, Jean-Frédéric F.

    2014-02-01

    Fungal metabolite terrein isolated from Aspergillus terreus is endowed with diverse biological and antioxidant activities. To determine the stereochemistry of the isolated terrein, we combined spectroscopic methods (CD and NMR spectra) and theoretical calculations (DFT and TD-DFT methods). Stereochemistry effects on the antioxidant activity of isolated terrein were evaluated by calculating bond dissociation enthalpies (BDEs), ionization potentials (IPs) and spin density delocalization of terrein and isoterrein stereoisomers with B3P86/6-31+G (d, p) method in gas and polarizable continuum model. The results showed a good agreement between experimental data and theoretical calculations which confirmed the (+)-terrein stereochemistry of isolated metabolite. Theoretical calculations showed that the antioxidant activity is relatively influenced by isomeric geometry of the terrein (a variation of 2 kcal/mol between BDEs of terrein and isoterrein isomers), while chirality has no influence on the antioxidant activity [0.2 kcal/mol difference between BDEs of (+)- and (-)-terrein]. The low antioxidant activity of (+)-terrein with respect to trolox and ascorbic acid was explained by the positive free Gibbs energy of the hydrogen atom transfer (HAT) mechanism and high BDE values of the 2-OH active site.

  1. MetaboID: A graphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues

    NASA Astrophysics Data System (ADS)

    MacKinnon, Neil; Somashekar, Bagganahalli S.; Tripathi, Pratima; Ge, Wencheng; Rajendiran, Thekkelnaycke M.; Chinnaiyan, Arul M.; Ramamoorthy, Ayyalusamy

    2013-01-01

    Nuclear magnetic resonance based measurements of small molecule mixtures continues to be confronted with the challenge of spectral assignment. While multi-dimensional experiments are capable of addressing this challenge, the imposed time constraint becomes prohibitive, particularly with the large sample sets commonly encountered in metabolomic studies. Thus, one-dimensional spectral assignment is routinely performed, guided by two-dimensional experiments on a selected sample subset; however, a publicly available graphical interface for aiding in this process is currently unavailable. We have collected spectral information for 360 unique compounds from publicly available databases including chemical shift lists and authentic full resolution spectra, supplemented with spectral information for 25 compounds collected in-house at a proton NMR frequency of 900 MHz. This library serves as the basis for MetaboID, a Matlab-based user interface designed to aid in the one-dimensional spectral assignment process. The tools of MetaboID were built to guide resonance assignment in order of increasing confidence, starting from cursory compound searches based on chemical shift positions to analysis of authentic spike experiments. Together, these tools streamline the often repetitive task of spectral assignment. The overarching goal of the integrated toolbox of MetaboID is to centralize the one dimensional spectral assignment process, from providing access to large chemical shift libraries to providing a straightforward, intuitive means of spectral comparison. Such a toolbox is expected to be attractive to both experienced and new metabolomic researchers as well as general complex mixture analysts.

  2. The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine

    NASA Astrophysics Data System (ADS)

    Cinar, Z.; Karabacak, M.; Cinar, M.; Kurt, M.; Chinna babu, P.; Sundaraganesan, N.

    2013-12-01

    The 2-amino-4-chloro-6-methoxypyrimidine abbreviated as ACMP have been investigated by both the experimental and theoretical methods; through this work we provide the essential fact about the structural and vibrational insights. The optimized molecular structure, atomic charges, vibrational frequencies and ultraviolet spectral interpretation of ACMP have been studied by performing DFT/B3LYP/6-311++G(df,pd) level of theory. The FT-IR, FT-Raman spectra were recorded in the region 4000-400 cm-1 and 4000-50 cm-1 respectively. The UV absorption spectrum of the compound that dissolved in ethanol and water solution were recorded in the range of 200-400 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Based on the UV spectrum and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. The 1H, 13C and DEPT 135 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using with the Gauge Including Atomic Orbital (GIAO) method and compared with experimental results. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  3. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  4. Quantitative (13)C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers.

    PubMed

    Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte

    2016-08-01

    In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. PMID:27372550

  5. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  6. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.

    PubMed

    Shigemitsu, Yoshiki; Ikeya, Teppei; Yamamoto, Akihiro; Tsuchie, Yuusuke; Mishima, Masaki; Smith, Brian O; Güntert, Peter; Ito, Yutaka

    2015-02-01

    Despite their advantages in analysis, 4D NMR experiments are still infrequently used as a routine tool in protein NMR projects due to the long duration of the measurement and limited digital resolution. Recently, new acquisition techniques for speeding up multidimensional NMR experiments, such as nonlinear sampling, in combination with non-Fourier transform data processing methods have been proposed to be beneficial for 4D NMR experiments. Maximum entropy (MaxEnt) methods have been utilised for reconstructing nonlinearly sampled multi-dimensional NMR data. However, the artefacts arising from MaxEnt processing, particularly, in NOESY spectra have not yet been clearly assessed in comparison with other methods, such as quantitative maximum entropy, multidimensional decomposition, and compressed sensing. We compared MaxEnt with other methods in reconstructing 3D NOESY data acquired with variously reduced sparse sampling schedules and found that MaxEnt is robust, quick and competitive with other methods. Next, nonlinear sampling and MaxEnt processing were applied to 4D NOESY experiments, and the effect of the artefacts of MaxEnt was evaluated by calculating 3D structures from the NOE-derived distance restraints. Our results demonstrated that sufficiently converged and accurate structures (RMSD of 0.91Å to the mean and 1.36Å to the reference structures) were obtained even with NOESY spectra reconstructed from 1.6% randomly selected sampling points for indirect dimensions. This suggests that 3D MaxEnt processing in combination with nonlinear sampling schedules is still a useful and advantageous option for rapid acquisition of high-resolution 4D NOESY spectra of proteins. PMID:25545060

  7. A study of the molecular conformations and the vibrational, 1H and 13C NMR spectra of the anticancer drug tamoxifen and triphenylethylene

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-08-01

    The structural stability and the vibrational spectra of the anticancer drug tamoxifen and triphenylethylene were investigated by the DFT B3LYP/6-311G (d,p) calculations. Tamoxifen and triphenylethylene were predicted to exist predominantly as non-planar structures. The vibrational frequencies and the 1H and 13C NMR chemical shifts of the low energy structures of tamoxifen and triphenylethylene were computed at the DFT B3LYP level of theory. Complete vibrational assignments were provided by combined theoretical and experimental data of tamoxifen and triphenylethylene. The 1H and 13C NMR spectra of both molecules were interpreted by experimental and DFT calculated chemical shifts of the two molecules. The RMSD between experimental and theoretical 1H and 13C chemical shifts for tamoxifen is 0.29 and 4.72 ppm, whereas for triphenylethylene, it is 0.16 and 2.70 ppm, respectively.

  8. Systematic comparison of sets of (13)C NMR spectra that are potentially identical. Confirmation of the configuration of a cuticular hydrocarbon from the cane beetle Antitrogus parvulus.

    PubMed

    Basar, Norazah; Damodaran, Krishnan; Liu, Hao; Morris, Gareth A; Sirat, Hasnah M; Thomas, Eric J; Curran, Dennis P

    2014-08-15

    A systematic process is introduced to compare (13)C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published (13)C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5-10 ppb (±0.005-0.01 ppm). PMID:25019530

  9. Systematic Comparison of Sets of 13C NMR Spectra That Are Potentially Identical. Confirmation of the Configuration of a Cuticular Hydrocarbon from the Cane Beetle Antitrogus parvulus

    PubMed Central

    2015-01-01

    A systematic process is introduced to compare 13C NMR spectra of two (or more) candidate samples of known structure to a natural product sample of unknown structure. The process is designed for the case where the spectra involved can reasonably be expected to be very similar, perhaps even identical. It is first validated by using published 13C NMR data sets for the natural product 4,6,8,10,16,18-hexamethyldocosane. Then the stereoselective total syntheses of two candidate isomers of the related 4,6,8,10,16-pentamethyldocosane natural product are described, and the process is applied to confidently assign the configuration of the natural product as (4S,6R,8R,10S,16S). This is accomplished even though the chemical shift differences between this isomer and its (16R)-epimer are only ±5–10 ppb (±0.005–0.01 ppm). PMID:25019530

  10. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    PubMed

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc]. PMID:27261759

  11. Simplification of the 1H NMR spectra of enantiomers dissolved in chiral liquid crystals, combining variable angle sample spinning and selective refocusing experiments.

    PubMed

    Beguin, Laetitia; Courtieu, Jacques; Ziani, Latifa; Merlet, Denis

    2006-12-01

    This work presents a technique to simplify overcrowded proton spectra in chiral liquid crystal solvents using rotation of the sample near the magic angle, VASS, combined with homonuclear selective refocusing 2D NMR experiments, SERF. This methodology provides a powerful tool to visualise enantiomers out of unresolved proton spectra. A modified SERF sequence is presented where the resulting 2D spectrum can be phased to increase the resolution. Accurate enantiomeric excesses are determined that are not possible to measure on static samples. Two examples are presented. PMID:16991108

  12. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  13. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  14. 4 f-4 f hypersensitivity in the absorption spectra and NMR studies on paramagnetic lanthanide chloride complexes with 1,10-phenanthroline in non-aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hussain, H. A.; Iftikhar, K.

    2003-03-01

    The optical absorption and NMR studies of trivalent lanthanide chloride complexes with 1,10-phenanthroline (phen) are presented and discussed. The 1H NMR spectra of the complexes of La, Pr, Nd, Eu and Yb have been studied in methanol- d4. The resonances of phen in the NMR spectra of the paramagnetic complexes have been shifted to lower as well as higher fields, which is a manifestation of dipolar interaction. The H (2) protons of the heterocyclic amine display broad resonances. The degree of broadening in Pr, Nd, and Yb complexes follows the order Prspectra of Pr, Nd, Ho and Er complexes have been investigated in methanol, pyridine, DMSO and DMF, which reveal that the hypersensitive transitions exhibit larger variation in oscillator strength values and band shapes. The change in the coordination geometry of the complexes and relative basicity of ligand are found responsible for oscillator strength and band shape variation. The interelectronic repulsion and covalency parameters show covalent nature of bonding between the metal and the ligand.

  15. Synthesis and NMR Spectral Analysis of Amine Heterocycles: The Effect of Asymmetry on the [superscript 1]H and [superscript 13]C NMR Spectra of N,O-Acetals

    ERIC Educational Resources Information Center

    Saba, Shahrokh; Ciaccio, James A.; Espinal, Jennifer; Aman, Courtney E.

    2007-01-01

    The stereochemical investigation is conducted to give students the combined experience of chemical synthesis of amines and N-heterocycles and structural stereochemical analysis using NMR spectroscopy. Students are introduced to the concept of topicity-stereochemical relationships between ligands within a molecule by synthesizing N,O-acetals.

  16. Paramagnetic effects on the NMR spectra of isotropic bicelles with headgroup modified chelator lipids and metal ions.

    PubMed

    Tang, Ming; Mao, Kevin; Li, Stacey; Zhuang, Jianqin; Diallo, Koumba

    2016-06-21

    We characterized the paramagnetic effects of nine metal ions on NMR signals of isotropic bicelles with headgroup-modified lipids. We found that Mn(2+), Gd(3+) and Dy(3+) show evidence for influencing NMR signals on the surface more than inside and on the disc edge, providing distance information in the bilayers. PMID:27240538

  17. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  18. Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 4681-5337 cm-1 region

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Jacquemart, D.; Lyulin, O. M.; Tashkun, S. A.; Perevalov, V. I.

    2015-07-01

    The line positions and intensities of carbon dioxide isotopologues have been retrieved in the 4681-5337 cm-1 spectral range from Fourier transform spectra of carbon dioxide recorded in LADIR (Paris, France) with the Bruker IFS 125-HR [Jacquemart D, et al., J Quant Spectrosc Radiat Transf 2012;113:961-975]. In total 6386 line positions and intensities of 89 bands of 12 isotopologues 16O12C16O, 16O13C16O, 16O12C18O, 16O12C17O, 16O13C18O, 16O13C17O, 18O12C18O, 17O12C18O, 17O12C17O, 18O13C18O, 17O13C18O, and 17O13C17O have been retrieved. 23 bands were newly assigned. All studied bands belong to the ΔP=7 series of transitions, where P = 2V1 +V2 + 3V3 is the polyad number (Vi are vibrational quantum numbers). The accuracy of the line position measurement is about 0.3×10-3 cm-1 for the unblended and not very weak lines. The accuracy of the line intensities varies from 4% to 15% depending on the isotopologue, on the intensity of the line and on the extent of the line overlapping. The observed intensities were used to fit the effective dipole moment parameters for the ΔP=7 series of transitions in 16O12C18O, 16O12C17O, 12C17O2, 17O12C18O, 16O13C17O, 13C17O2 and 17O13C18O isotopologues of carbon dioxide.

  19. Survey of {sup 17}O excited states selectively populated by five-particle transfer reactions

    SciTech Connect

    Crisp, A. M.; Roeder, B. T.; Momotyuk, O. A.; Kemper, K. W.; Weintraub, W.; Wiedeking, M.; Keeley, N.

    2008-04-15

    The highly selective reactions {sup 12}C({sup 7}Li,d){sup 17}O and {sup 12}C({sup 6}Li,p){sup 17}O have been used to populate high-lying excited states in {sup 17}O up to 16 MeV in excitation. Several of the states are newly observed, and the existence of others in a previous study of {sup 12}C({sup 6}Li,p){sup 17}O is confirmed. The observed spectra show a clear gap of about 3 MeV, indicating an energy gap between 3p-2h and 5p-4h states in {sup 17}O. Differential cross section angular distributions have been extracted from the data for both reactions and they have been compared with finite-range DWBA calculations by assuming a ''{sup 5}He'' cluster transfer. Possible spins and parities are reported for states at 11.82 MeV (7/2{sup +}), 12.00 MeV (9/2{sup +}),12.22 MeV (7/2{sup -}), and 12.42 MeV (9/2{sup +})

  20. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile using NMR and vibrational spectra, X-ray analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2008-11-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile (DMHSP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN) (SO 2CH 3)] as a solid and in different solvents were measured. The spectra and X-ray analysis revealed that DMHSP was prepared as a pure E-isomer and E- syn conformer with the syn orientation of N, N-dimethylhydrazino group towards the C dbnd C double bond in the solid state. Due to the low barrier practically free isomerization process occurred in solutions at room temperature. DMHSP exists in more polar solvents as pure E-isomer in conformational equilibrium between E- syn and E- anti but in a less polar solvent the presence of Z-isomer was observed as well. From the IR and NMR temperature dependence spectra in polar solvents the energy difference between E- anti and E- syn of Δ H = 2.3 ± 0.9 kJ/mol and Δ H = 3.2 ± 0.4 kJ/mol, respectively, was estimated with the syn one being more stable. The geometries and relative energies of possible conformers of DMHSP were evaluated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set and compared with the X-ray data. The interpretation of NMR spectra was supported by ab initio MP2 calculations. The influence of solvent polarity on the conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM model. In addition, the observed IR and Raman bands were compared also with harmonic vibrational frequencies, calculated on the same levels of theory, and assigned on the base of potential energy distribution.

  1. Natural abundance 17O nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Zhi

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  2. Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes

    SciTech Connect

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Z.

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  3. Bond pathway analysis of NMR spectra for Li1.2Mn0.4Co0.4O2: pristine material

    NASA Astrophysics Data System (ADS)

    Iddir, Hakim; Key, Baris; Dogan, Fulya; Russell, John; Long, Brandon; Bareno, Javier; Croy, Jason; Benedek, Roy

    2015-03-01

    NMR has been applied extensively to lithium ion battery cathode materials, of which layered-layered composites xLi2MnO3 . (1 - x) Li MO2 (M = Mn,Co,Ni) are of particular interest, owing to their high energy density. In this work, NMR spectra are measured for the model layered-layered system xLi2MnO3 . (1 - x) LiCoO2 and Bond-Pathway-model analysis is applied to elucidate the atomic arrangement and domain structure of this material (in its pristine state, before electrochemical cycling). The simplest structural element of a domain consists of a stripe of composition LiMn2 parallel to an in-layer crystallographic axis in a metal layer of the composite. A simple model of the composite structure may be constructed by a superposition of such stripes in an LiCoO background. We show that such a model can account for most of the features of the observed NMR spectra. Support from the Vehicle Technologies Program U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy.

  4. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  5. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations.

    PubMed

    Novotný, Jan; Sojka, Martin; Komorovsky, Stanislav; Nečas, Marek; Marek, Radek

    2016-07-13

    Ruthenium-based compounds are potential candidates for use as anticancer metallodrugs. The central ruthenium atom can be in the oxidation state +2 (e.g., RAPTA, RAED) or +3 (e.g., NAMI, KP). In this study we focus on paramagnetic NAMI analogs of a general structure [4-R-pyH](+)trans-[Ru(III)Cl4(DMSO)(4-R-py)](-), where 4-R-py stands for a 4-substituted pyridine. As paramagnetic systems are generally considered difficult to characterize in detail by NMR spectroscopy, we performed a systematic structural and methodological NMR study of complexes containing variously substituted pyridines. The effect of the paramagnetic nature of these complexes on the (1)H and (13)C NMR chemical shifts was systematically investigated by temperature-dependent NMR experiments and density-functional theory (DFT) calculations. To understand the electronic factors influencing the orbital (δ(orb), temperature-independent) and paramagnetic (δ(para), temperature-dependent) contributions to the total NMR chemical shifts, a relativistic two-component DFT approach was used. The paramagnetic contributions to the (13)C NMR chemical shifts are correlated with the distribution of spin density in the ligand moiety and the (13)C isotropic hyperfine coupling constants, Aiso((13)C), for the individual carbon atoms. To analyze the mechanism of spin distribution in the ligand, the contributions of molecular spin-orbitals (MSOs) to the hyperfine coupling constants and the spatial distribution of the z-component of the spin density in the MSOs calculated at the relativistic four-component DFT level are discussed and rationalized. The significant effects of the substituent and the solvent on δ(para), particularly the contact contribution, are demonstrated. This work should contribute to further understanding of the link between the electronic structure and the NMR chemical shifts in open-shell systems, including the ruthenium-based metallodrugs investigated in this account. PMID:27312929

  6. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  7. A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2014-10-01

    The structural stability, vibrational, 1H and 13C NMR spectra of valeric and valproic acids were investigated by the B3LYP calculations with the 6-311G** basis set. Valeric acid is predicted to exist predominantly in the planar cis form (80% abundance). Valproic acid is predicted to have an equilibrium mixture of 68% gauche-1 and 32% gauche-2 structures at 298.15 K. The spectral feature of the Osbnd H stretching mode in the infrared spectra of both acids suggests the presence of strong H-bonding in the condensed phase of valeric acid and weak H-bonding in the case of valproic acid. The harmonic and anharmonic vibrational wavenumbers were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of combined theoretical and experimental infrared and Raman data of the molecules. Not all of the calculated anharmonic wavenumbers showed a consistent trend with the observed wavenumbers. The 1H and 13C NMR spectra of both acids were interpreted by experimental and DFT calculated chemical shifts of the two acids. The RMSD between experimental and theoretical 1H and 13C chemical shifts for valeric acid is 1.8 and 3.8 ppm, whereas for valproic acid, it is 1.4 and 4.5 ppm, respectively.

  8. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.

    PubMed

    Kawamura, Toshiaki; Abe, Minori; Saito, Masaichi; Hada, Masahiko

    2014-04-30

    We carried out a series of zeroth-order regular approximation (ZORA)-density functional theory (DFT) and ZORA-time-dependent (TD)-DFT calculations for molecular geometries, NMR chemical shifts, nucleus-independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2 ((t) BuMe2 Si)2 C4 PbL1 L2 (L1, L2 = tetrahydrofuran, Pyridine, N-heterocyclic carbene), and their model molecules. We mainly discussed the Lewis-base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n-Huckel rule is applied to the fractional π-electron number. The calculated (13)C- and (207)Pb-NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the (13)C-NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the (207)Pb-NMR chemical shifts and J[Pb-C] but also in the (13)C-NMR chemical shifts of carbons adjacent to the lead atom. PMID:24643814

  9. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  10. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  11. Absolute nutrient concentration measurements in cell culture media: (1)H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches.

    PubMed

    Goldoni, Luca; Beringhelli, Tiziana; Rocchia, Walter; Realini, Natalia; Piomelli, Daniele

    2016-09-01

    The NMR spectra and data reported in this article refer to the research article titled "A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR" [1]. We provide the (1)H q-NMR spectra of cell culture media (DMEM) after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill) sequence or applying post-processing filtering algorithms to remove, from the (1)H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. PMID:27331118

  12. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  13. Bare-Minimum Fluorous Mixture Synthesis of a Stereoisomer Library of 4,8,12-Trimethylnonadecanols and Predictions of NMR Spectra of Saturated Oligoisoprenoid Stereoisomers

    PubMed Central

    Yeh, Edmund A.-H.; Kumli, Eveline; Damodaran, Krishnan; Curran, Dennis P.

    2013-01-01

    All four diastereomers of a typical saturated oligoisoprenoid, 4,8,12-trimethylnonadecanol, are made by an iterative three step cycle with the aid of traceless thionocarbonate fluorous tags to encode configurations. The tags have a minimum number of total fluorine atoms, starting at zero and increasing in increments of one. With suitable acquisition and data processing, each diastereomer exhibited characteristic chemical shifts of methyl resonances in its 1H and 13C NMR spectra. Together, these shifts provide a basis to predict the appearance of the methyl region of the spectrum of every stereoisomer of higher saturated oligoisoprenoids. PMID:23297872

  14. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  15. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  16. Using a Problem Solving-Cooperative Learning Approach to Improve Students' Skills for Interpreting [Superscript 1]H NMR Spectra of Unknown Compounds in an Organic Spectroscopy Course

    ERIC Educational Resources Information Center

    Angawi, Rihab F.

    2014-01-01

    To address third- and fourth-year chemistry students' difficulties with the challenge of interpreting [superscript 1]H NMR spectra, a problem solving-cooperative learning technique was incorporated in a Spectra of Organic Compounds course. Using this approach helped students deepen their understanding of the basics of [superscript 1]H NMR…

  17. On the Δ17O budget of atmospheric O2

    NASA Astrophysics Data System (ADS)

    Young, Edward D.; Yeung, Laurence Y.; Kohl, Issaku E.

    2014-06-01

    We modeled the Δ17O of atmospheric O2 using 27 ordinary differential equations comprising a box model composed of the stratosphere, troposphere, geosphere, hydrosphere and biosphere. Results show that 57% of the deficit in 17O in O2 relative to a reference water fractionation line is the result of kinetic isotope fractionation attending the Dole effect, 33% balances the positive Δ17O of O(1D) in the stratosphere, and 10% is from evapotranspiration. The predicted Δ‧17O O2 relative to waters is -0.410‰ as measured at the δ18O of air. The value for Δ‧17O O2 varies at fixed δ18O with the concentration of atmospheric CO2, gross primary production, and net primary production as well as with reaction rates in the stratosphere. Our model prediction is consistent with our measurements of the oxygen isotopic composition of air O2 compared with rocks if rocks define a fractionation line with an intercept in δ‧17O = 103ln(δ17O/103 + 1) vs. δ‧18O = 103ln(δ18O/103 + 1) space less than SMOW but more positive than some recent measurements imply. The predicted Δ17O is less negative than that obtained from recent measurements of O2 directly against SMOW. Underestimation of Δ‧17O O2 can only be ameliorated if the integrated (bulk) Δ‧17O for stratospheric CO2 is significantly greater than measurements currently allow. Our results underscore the need for high-precision comparisons of the 17O/16O and 18O/16O ratios of atmospheric O2, VSMOW, and rocks.

  18. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan.

    PubMed

    Eisenreich, Wolfgang; Joshi, Monika; Illarionov, Boris; Kacprzak, Sylwia; Lukaschek, Michail; Kothe, Gerd; Budisa, Nediljko; Fischer, Markus; Bacher, Adelbert; Weber, Stefan

    2015-10-29

    The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization. PMID:26244593

  19. (1)H NMR z-spectra of acetate methyl in stretched hydrogels: quantum-mechanical description and Markov chain Monte Carlo relaxation-parameter estimation.

    PubMed

    Shishmarev, Dmitry; Chapman, Bogdan E; Naumann, Christoph; Mamone, Salvatore; Kuchel, Philip W

    2015-01-01

    The (1)H NMR signal of the methyl group of sodium acetate is shown to be a triplet in the anisotropic environment of stretched gelatin gel. The multiplet structure of the signal is due to the intra-methyl residual dipolar couplings. The relaxation properties of the spin system were probed by recording steady-state irradiation envelopes ('z-spectra'). A quantum-mechanical model based on irreducible spherical tensors formed by the three magnetically equivalent spins of the methyl group was used to simulate and fit experimental z-spectra. The multiple parameter values of the relaxation model were estimated by using a Bayesian-based Markov chain Monte Carlo algorithm. PMID:25486634

  20. Structure of pyridine and quinoline vinyl ethers according to data from /sup 1/H and /sup 13/C NMR spectra and quantum-chemical calculations

    SciTech Connect

    Afonin, A.V.; Voronov, V.K.; Andriankov, M.A.; Danovich, D.K.

    1987-08-10

    A systematic investigation of the structure of the vinyl ethers of heterocyclic compounds has not been undertaken. The present work was devoted to investigation of the stereochemical and electronic structure of the vinyl ethers of pyridine and quinoline. The PMR spectra of the samples were recorded for 5% solutions in deuterochloroform on a Tesla BS-497 spectrometer at 100 MHz. The /sup 13/C NMR spectra were recorded on a Tesla BS-567A spectrometer at 25.1 MHz in deuterochloroform with the samples at concentrations of 30%. The internal standard was HMDS. The vinyl ethers of pyridine and quinoline exist preferentially in the nonplanar S-trans conformation. In the vinyl esters of pyridine and quinoline the p-..pi.. conjugation is concurrent in nature and depends on the position of the vinyloxy group in the heterocycle.

  1. Combined experimental (FT-IR, UV-visible spectra, NMR) and theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Srivastava, Ambrish Kumar; Gangwar, Shashi; Misra, Neeraj; Mondal, Avijit; Brahmachari, Goutam

    2015-09-01

    Phomarin is an important natural product belonging to anthraquinone series of compounds. The equilibrium geometry of phomarin has been determined and analyzed at DFT method employing B3LYP/6-311++G(d,p) level of computation. The reactivity of molecule using various descriptors such as Fukui functions, local softness, electrophilicity, electronegativity, Hardness, HOMO-LUMO gap are calculated and discussed. The infrared and UV-vis spectra of phomarin are calculated and compared with the experimentally observed ones. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method. We also notice that phomarin shows remarkable biological activities against malaria parasite. The study suggests further investigation on phomarin for their pharmacological importance.

  2. Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: calculations and an application to the double perovskite cryolite.

    PubMed

    Kotecha, Mrignayani; Chaudhuri, Santanu; Grey, Clare P; Frydman, Lucio

    2005-11-30

    Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite. PMID:16305261

  3. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile using X-ray analysis, NMR and vibrational spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2009-12-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile (DMHAP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] were measured. X-ray analysis revealed that DMHAP exists in solid state as ZZa conformer. Vibrational and NMR spectra confirmed the existence of only one ZZa conformer with an intramolecular hydrogen bond in less polar solvents and next two EZa and EZs conformers of E-isomer with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazino group in more polar environments. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and DFT/B3LYP methods in 6-31G∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of the possible isomers and conformers of DMHAP were also evaluated on the same levels and compared with the X-ray data. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model.

  4. IR and NMR spectra, intramolecular hydrogen bonding and conformations of para-tert-butyl-aminothiacalix[4]arene in solid state and chloroform solution

    NASA Astrophysics Data System (ADS)

    Zvereva, Elena E.; Katsyuba, Sergey A.; Vandyukov, Alexander E.; Chernova, Alla V.; Kovalenko, Valery I.; Solovieva, Svetlana E.; Antipin, Igor S.; Konovalov, Alexander I.

    2010-02-01

    It is demonstrated that dissolution of aminothiacalix[4]arene in chloroform results in transformation of 1,3-alternate conformation, adopted in single-crystal and bulk polycrystalline solids, to the pinched-cone form. This conformer is stabilised by the intramolecular hydrogen bonds of two distal amino-groups acting as H-donors with another two amino moieties that appear as H-acceptors. The H-bonds cause quite small (ca. 10-20 cm -1) red shift of the IR bands of the NH 2 stretching vibrations, which suggests rather weak NH⋯N hydrogen bonding. This latter is sufficient to stabilize the pinched-cone conformation in the chloroform solution, but the energy gap between the pinched-cone and other conformations is small, and solid-state intermolecular forces easily overcome it, leading to realisation of the 1,3-alternate conformer. The comparison of the DFT computed and experimental vibrational and NMR spectra demonstrates good quality of present quantum-chemical computations, allows complete interpretation of the spectra and reveals simple IR and NMR spectroscopic markers of the conformers of aminothiacalix[4]arenes.

  5. IR and NMR spectra, intramolecular hydrogen bonding and conformations of para-tert-butyl-aminothiacalix[4]arene in solid state and chloroform solution.

    PubMed

    Zvereva, Elena E; Katsyuba, Sergey A; Vandyukov, Alexander E; Chernova, Alla V; Kovalenko, Valery I; Solovieva, Svetlana E; Antipin, Igor S; Konovalov, Alexander I

    2010-02-01

    It is demonstrated that dissolution of aminothiacalix[4]arene in chloroform results in transformation of 1,3-alternate conformation, adopted in single-crystal and bulk polycrystalline solids, to the pinched-cone form. This conformer is stabilised by the intramolecular hydrogen bonds of two distal amino-groups acting as H-donors with another two amino moieties that appear as H-acceptors. The H-bonds cause quite small (ca. 10-20 cm(-1)) red shift of the IR bands of the NH(2) stretching vibrations, which suggests rather weak NHcdots, three dots, centeredN hydrogen bonding. This latter is sufficient to stabilize the pinched-cone conformation in the chloroform solution, but the energy gap between the pinched-cone and other conformations is small, and solid-state intermolecular forces easily overcome it, leading to realisation of the 1,3-alternate conformer. The comparison of the DFT computed and experimental vibrational and NMR spectra demonstrates good quality of present quantum-chemical computations, allows complete interpretation of the spectra and reveals simple IR and NMR spectroscopic markers of the conformers of aminothiacalix[4]arenes. PMID:20042365

  6. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  7. Off-resonance effects on 2D NMR nutation spectra of I = 3/2 quadrupolar nuclei in static samples.

    PubMed

    Xia, Y; Deng, F; Ye, C

    1995-12-01

    The off-resonance effects on 2D NMR nutation of I = 3/2 quadrupolar nuclei are demonstrated with perturbation theory and numerical calculation in static samples. The off-resonant (delta omega) rf field (omega 1) enlarges a nutation frequency and consequently increases the measurement range of nuclear quadrupolar interaction parameters. When omega e > omega Qmax, and arctg(omega 1/delta omega) = +/- 54.7 degrees (magic angle), the satellite lines (produced by coherence transfers) in a nutation spectrum are superimposed with the line of central transition, and hence the nutation spectrum is simplified and its sensitivity is enhanced. The nuclear quadrupolar interaction parameters of 23Na nuclei in Na omega molecular sieve are obtained using 2D NMR nutation. PMID:9053113

  8. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    SciTech Connect

    Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.; González, Fabio; Wist, Julien

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruning of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.

  9. 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts.

    PubMed

    Lomas, John S

    2014-12-01

    Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral-equation-formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, -0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re-examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi-standard approach gives a similar result. PMID:25199903

  10. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4'-methylpropiophenone.

    PubMed

    Karunakaran, V; Balachandran, V

    2014-07-15

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4'-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4'-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set. PMID:24657464

  11. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4‧-Methylpropiophenone

    NASA Astrophysics Data System (ADS)

    Karunakaran, V.; Balachandran, V.

    2014-07-01

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4‧-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4‧-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The 1H and 13C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set.

  12. Quantification of the Contribution of Extracellular Sodium to 23Na Multiple-Quantum-Filtered NMR Spectra of Suspensions of Human Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Knubovets, Tatyana; Shinar, Hadassah; Navon, Gil

    1998-03-01

    23Na double-quantum-filtered (DQF) NMR enables the detection of anisotropic motion of sodium ions due to their interaction with ordered structures in biological tissues. Using the technique, anisotropic motion was found for sodium ions in mammalian red blood cell suspensions (RBC) and the effect was shown to correlate with the integrity of membrane cytoskeleton. In the present study relative contributions to the DQF and triple-quantum-filtered (TQF) spectra of sodium bound to anisotropic and isotropic binding sites in the intra- and extracellular sodium pools (Na content being 15 and 150 mM, respectively) of human RBC were quantified for different hematocrits. DQF spectra were measured by a modified Jeener-Broekaert pulse sequence which enabled exclusive detection of anisotropically moving sodium ions. The relative contributions of the extracellular sodium to the TQF and DQF spectra decreased as the hematocrit increased, but their efficiency relative to the sodium content increased. The contribution of the extracellular sodium to the TQF signal was found to dominate the spectrum of the RBC suspension at all hematocrits studied. The contribution of the extracellular sodium to the DQF was significantly smaller than that to the TQF and was only 22% at a high hematocrit of about 90%.

  13. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model

  14. Explosive hydrogen burning of 17O in classical novae.

    PubMed

    Fox, C; Iliadis, C; Champagne, A E; Coc, A; José, J; Longland, R; Newton, J; Pollanen, J; Runkle, R

    2004-08-20

    We report on the observation of a new resonance at E(lab)(R)=190 keV in the 17O(p,gamma)18F reaction. The measured resonance strength amounts to omegagamma(pgamma)=(1.2+/-0.2)x10(-6) eV. With this new value, the uncertainties in the 17O(p,gamma)18F and 17O(p,alpha)14N thermonuclear reaction rates are reduced by orders of magnitude at nova temperatures. Our significantly improved reaction rates have major implications for the galactic synthesis of 17O, the stellar production of the radioisotope 18F, and the predicted oxygen isotopic ratios in nova ejecta. PMID:15447168

  15. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions.

  16. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study.

    PubMed

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions. PMID:26985875

  17. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  18. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2--a free in-house NMR database with integrated LIMS for academic service laboratories.

    PubMed

    Kuhn, Stefan; Schlörer, Nils E

    2015-08-01

    nmrshiftdb2 supports with its laboratory information management system the integration of an electronic lab administration and management into academic NMR facilities. Also, it offers the setup of a local database, while full access to nmrshiftdb2's World Wide Web database is granted. This freely available system allows on the one hand the submission of orders for measurement, transfers recorded data automatically or manually, and enables download of spectra via web interface, as well as the integrated access to prediction, search, and assignment tools of the NMR database for lab users. On the other hand, for the staff and lab administration, flow of all orders can be supervised; administrative tools also include user and hardware management, a statistic functionality for accounting purposes, and a 'QuickCheck' function for assignment control, to facilitate quality control of assignments submitted to the (local) database. Laboratory information management system and database are based on a web interface as front end and are therefore independent of the operating system in use. PMID:25998807

  19. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  20. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  1. Ab Initio Molecular Dynamics Simulations and GIPAW NMR Calculations of a Lithium Borate Glass Melt.

    PubMed

    Ohkubo, Takahiro; Tsuchida, Eiji; Takahashi, Takafumi; Iwadate, Yasuhiko

    2016-04-14

    The atomic structure of a molten 0.3Li2O-0.7B2O3 glass at 1250 K was investigated using ab initio molecular dynamics (AIMD) simulations. The gauge including projector augmented wave (GIPAW) method was then employed for computing the chemical shift and quadrupolar coupling constant of (11)B, (17)O, and (7)Li from 764 AIMD derived structures. The chemical shift and quadrupolar coupling constant distributions were directly estimated from the dynamical structure of the molten glass. (11)B NMR parameters of well-known structural units such as the three-coordinated ring, nonring, and four-coordinated tetrahedron were found to be in good agreement with the experimental results. In this study, more detailed classification of B units was presented based on the number of O species bonded to the B atoms. This highlights the limitations of (11)B NMR sensitivity for resolving (11)B local environment using the experimentally obtained spectra only. The (17)O NMR parameter distributions can theoretically resolve the bridging and nonbridging O atoms with different structural units such as nonring, single boroxol ring, and double boroxol ring. Slight but clear differences in the number of bridging O atoms surrounding Li that have not been reported experimentally were observed in the theoretically obtained (7)Li NMR parameters. PMID:27010637

  2. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  3. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. PMID:25305625

  4. Organic Matter Composition, Recycling Susceptibility and the Effectiveness of the Biological Pump - An Evaluation using NMR Spectra of Marine Plankton

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Cade-Menun, B.

    2005-12-01

    The degree of organic matter biodegradation and recycling depends on the "reactivity" of compounds synthesized by the biota, which in turn is controlled by the structural characteristics of these compounds. Thus, abundance of a wide-range of organic compounds in seawater would lend itself to different susceptibility for biodegradation, which in turn is important for estimating the potential for rapid regeneration in the euphotic zone and thus the effectiveness of the biological pump. We employed 13C and 31P NMR spectroscopy on cultures of phytoplankton dominating blooms in the Southern Ocean grown under five light levels at 3oC. We found differences in both C and P compounds synthesized by the different taxa as well as for each species at various light levels. Results suggest variability in synthesized organic compounds by different taxa and by a single species grown in different environmental conditions. understanding of the oceanic C cycle in general and C sequestration effectiveness in particular.

  5. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Fu, R.; Brey, W. W.; Shetty, K.; Gor'kov, P.; Saha, S.; Long, J. R.; Grant, S. C.; Chekmenev, E. Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T. M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I. R.; Markiewicz, W. D.; Cross, T. A.

    2005-11-01

    Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console have been installed and tested with many science applications to develop this spectrometer as a user facility. Solution NMR of membrane proteins with enhanced resolution, new pulse sequences for solid state NMR taking advantage of narrowed proton linewidths, and enhanced spatial resolution and contrast leading to improved animal imaging have been documented. In addition, it is demonstrated that spectroscopy of single site 17O labeled macromolecules in a hydrated lipid bilayer environment can be recorded in a remarkably short period of time. 17O spectra of aligned samples show the potential for using this data for orientational restraints and for characterizing unique details of cation binding properties to ion channels. The success of this NHMFL magnet illustrates the potential for using a similar magnet design as an outsert for high temperature superconducting insert coils to achieve an NMR magnet with a field >25 T.

  6. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  7. NMR of 133Cs+ in stretched hydrogels: One-dimensional, z- and NOESY spectra, and probing the ion's environment in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Shishmarev, Dmitry; Puckeridge, Max; Levitt, Malcolm H.; Naumann, Christoph; Chapman, Bogdan E.

    2015-12-01

    133Cs nuclear magnetic resonance (NMR) spectroscopy was conducted on 133Cs+ in gelatin hydrogels that were either relaxed or stretched. Stretching generated a septet from this spin-7/2 nucleus, and its nuclear magnetic relaxation was studied via z-spectra, and two-dimensional nuclear Overhauser (NOESY) spectroscopy. Various spectral features were well simulated by using Mathematica and the software package SpinDynamica. Spectra of CsCl in suspensions of human erythrocytes embedded in gelatin gel showed separation of the resonances from the cation inside and outside the cells. Upon stretching the sample, the extracellular 133Cs+ signal split into a septet, while the intracellular peak was unchanged, revealing different alignment/ordering properties of the environment inside and around the cells. Differential interference contrast light microscopy confirmed that the cells were stretched when the overall sample was elongated. Analysis of the various spectral features of 133Cs+ reported here opens up applications of this K+ congener for studies of cation-handling by metabolically-active cells and tissues in aligned states.

  8. Studies on vibrational, NMR spectra and quantum chemical calculations of N-Succinopyridine: An organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Thirupugalmani, K.; Brahadeeswaran, S.

    2013-10-01

    Single crystals of N-Succinopyridine (NSP) have been grown from water using solution growth method by isothermal solvent evaporation technique. The solid state Fourier Transform Infrared (FTIR) spectrum of the grown crystal shows a broad absorption extending from 3450 down to 400 cm-1, due to H-bond vibrations and other characteristic vibrations. Fourier Transform Raman (FT-Raman) spectrum of NSP single crystal shows Raman intensities ranging from 3100 to 100 cm-1 due the characteristics vibrations of functional groups present in NSP. The proton and carbon positions of NSP have been described by 1H and 13C NMR spectrum respectively. Ab initio quantum chemical calculations on NSP have been performed by density functional theory (DFT) calculations using B3LYP method with 6-311++G(d,p) basis set. The predicted first hyperpolarizability is found to be 1.29 times greater than that of urea and suggests that the title compound could be an attractive material for nonlinear optical applications. The calculated HOMO-LUMO energies show that charge transfers occur within the molecule and other related molecular properties. Molecular properties such as Mulliken population analysis, thermodynamic functions and perturbation theory energy analysis have also been reported. Electrostatic potential map (ESP) of NSP obtained by electron density isosurface provided the information about the size, shape, charge density distribution and site of chemical reactivity of the title molecule. The molecular stability and bond strength have been investigated through the Natural Bond Orbital (NBO) analysis.

  9. Removal of t1 noise from metabolomic 2D 1H- 13C HSQC NMR spectra by Correlated Trace Denoising

    NASA Astrophysics Data System (ADS)

    Poulding, Simon; Charlton, Adrian J.; Donarski, James; Wilson, Julie C.

    2007-12-01

    The presence of t1 noise artefacts in 2D phase-cycled Heteronuclear Single Quantum Coherence (HSQC) spectra constrains the use of this experiment despite its superior sensitivity. This paper proposes a new processing algorithm, working in the frequency-domain, for reducing t1 noise. The algorithm has been developed for use in contexts, such as metabolomic studies, where existing denoising techniques cannot always be applied. Two test cases are presented that show the algorithm to be effective in improving the SNR of peaks embedded within t1 noise by a factor of more than 2, while retaining the intensity and shape of genuine peaks.

  10. Corrections for 17O interference, effects on Δ47 determination

    NASA Astrophysics Data System (ADS)

    Olack, G.; He, B.; Colman, A. S.

    2013-12-01

    The measurements of 13C on CO2 samples are routinely corrected for 17O contribution to the m/z 45 signal (Craig, 1957; Santrock, et al., 1985). The 17O abundance affects the Δ47 calculation, and the amount of 17O present is routinely determined using the relationship between 18O and 17O presented in IAEA TECDOC 825 (Dennis, et al., 2011; Huntington, et al., 2009; Gonfiantini, et al., 1995). In 2010, the IAEA released new recommendations for 17O determinations to be used for 13C corrections (Brand, et al., 2010). We compare the effect of using different ways to determine 17O interference, as well as using the currently accepted N(13C)/N(12C) value for VPDB (Brand, et al., 2010), on heated gas lines, model data, and on CO2 gases made to have similar δ47 and Δ47, but with highly contrasting δ18O and δ13C values. The 2010 IAEA recommendations give a better fit for heated gas data than the TECDOC 825 recommendations. Comparing differences in the data points relative to their respective fitted lines, we see differences on the order of 5 to 10 ppm in Δ47. That corresponds to a systematic error of 2 °C in the temperature estimate (room temperature range), and one that varies with δ13C and δ18O, but not necessarily with δ47. The preliminary work on equilibrated CO2 gases having similar δ47, but very different δ13C and δ18O, showed large (ca. 70 ppm) differences in Δ47 when using the (standard) TECDOC 825 recommendations. The Δ47 values were much closer when the 2010 IUPAC recommendations were used. This also serves as a test of the updated factors for 17O determination, as well as the overall robustness of the Δ47 measurement.

  11. Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags.

    PubMed

    Nadaud, Philippe S; Helmus, Jonathan J; Sengupta, Ishita; Jaroniec, Christopher P

    2010-07-21

    We describe a condensed data collection approach that facilitates rapid acquisition of multidimensional magic-angle spinning solid-state nuclear magnetic resonance (SSNMR) spectra of proteins by combining rapid sample spinning, optimized low-power radio frequency pulse schemes and covalently attached paramagnetic tags to enhance protein (1)H spin-lattice relaxation. Using EDTA-Cu(2+)-modified K28C and N8C mutants of the B1 immunoglobulin binding domain of protein G as models, we demonstrate that high resolution and sensitivity 2D and 3D SSNMR chemical shift correlation spectra can be recorded in as little as several minutes and several hours, respectively, for samples containing approximately 0.1-0.2 micromol of (13)C,(15)N- or (2)H,(13)C,(15)N-labeled protein. This mode of data acquisition is naturally suited toward the structural SSNMR studies of paramagnetic proteins, for which the typical (1)H longitudinal relaxation time constants are inherently a factor of at least approximately 3-4 lower relative to their diamagnetic counterparts. To illustrate this, we demonstrate the rapid site-specific determination of backbone amide (15)N longitudinal paramagnetic relaxation enhancements using a pseudo-3D SSNMR experiment based on (15)N-(13)C correlation spectroscopy, and we show that such measurements yield valuable long-range (15)N-Cu(2+) distance restraints which report on the three-dimensional protein fold. PMID:20583834

  12. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  13. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. PMID:23845985

  14. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation.

    PubMed

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost. PMID:26397220

  15. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost.

  16. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  17. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  18. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  19. Quadrupolar transients, cosine correlation functions, and two-dimensional exchange spectra of non-selectively excited spin-3/2 nuclei: A 7Li NMR study of the superionic conductor lithium indium phosphate

    NASA Astrophysics Data System (ADS)

    Storek, M.; Böhmer, R.

    2015-11-01

    Cos-cos stimulated echoes of non-selectively excited spin-3/2 nuclei were not exploited in studies of slow motional processes in solids and solid-like samples, so far. Based on a theoretical analysis of the quadrupolar transients which hitherto obviously precluded the application of such echoes, their utility is demonstrated for the example of 7Li NMR on the polycrystalline fast ion conductor lithium indium phosphate. Quadrupolar transients can adversely affect the shape of two- and three-pulse echo spectra and strategies are successfully tested that mitigate their impact. Furthermore, by means of suitably adapted cos-cos echo sequences an effective suppression of central-line contributions to the NMR spectra is achieved. By combining cos-cos and sin-sin datasets static two-dimensional exchange spectra were recorded that display quadrupolarly modulated off-diagonal intensity indicative of ionic motion.

  20. NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of nicotinic acid N-oxide: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Kose, Etem

    2012-01-01

    In this work, the experimental and theoretical UV, NMR, and vibrational features of nicotinic acid N-oxide (abbreviated as NANO, C 6H 5NO 3) were studied. The ultraviolet (UV) absorption spectrum of studied compound that dissolved in water was examined in the range of 200-800 nm. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm -1 and 3500-50 cm -1, respectively. The 1H and 13C NMR spectra in DMSO were recorded. The geometrical parameters, energies and the spectroscopic properties of NANO were obtained for all four conformers from density functional theory (DFT) B3LYP/6-311++G(d,p) basis set calculations. There are four conformers, C n, n = 1-4 for this molecule. The computational results identified the most stable conformer of title molecule as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by CIS approach. Finally the calculation results were applied to simulate infrared, Raman, and UV spectra of the title compound which show good agreement with observed spectra.

  1. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other. These spectra exhibited signals for alkyl (0~50 ppm), O-alkyl (50~110 ppm), aromatic (110~160 ppm) and carbonyl (160~200 ppm) regions. The signals in carbonyl C region concentrated between 172 ppm and 173 ppm, and with a small signal occurred in the region of 190~200 ppm, indicating that there was carbonyl C of carboxylic acid, ester and amide, but a little amount carbonyl C of ketonic compounds. In the region of aromatic C, the most obvious peaks were the absorption at 131~133 ppm and 114~117 ppm. The former was mainly the aromatic C substituted by -COOH or -COOMe and the unsubstituted aromatic meta to carbons bearing an oxygen or nitrogen atom; the latter was mainly the unsubstituted aromatic C ortho and para to carbons bearing an oxygen and nitrogen atom. There was a small peak at 152-154ppm, which was the signal of phenolic OH. The signal at 55~56 ppm was methoxyl C. The signals at 71~73 ppm were due to the -CH(OH)- in carbohydrate. The peak at 102~103 ppm was generally assigned to double oxygen-C in polysaccharide (possibly acetal). The maximum absorption at 30 ppm was the contribution of the polymethylene chain -(CH2)n- in saturated hydrocarbons (Wilson, 1981). After OM application, the contents of alkyl C and O-alkyl C increased and the contents of aromatic C and carbonxyl C except to 1986 decreased. Compared with 1986, the contents of O-alkyl C increased and the contents of alkyl C decreased for the same treatment CKbr and O2. Aromaticity decreased significantly in OM treatments, indicating that the OM decreased the content of aromatic C and was simplified the molecular structure. The relative content of O-alkyl C increased indicating that OM application increased the content of methoxyl C and -CH(OH)- in carbohydrate. Alkyl C was probably derived from compounds of plants with high resistance to degradation, such as cutin and suberin (Baldock et al., 1992; Preston

  2. Ferroelastic phase transitions by 14N NMR spectra in [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-09-01

    Changes in the structural geometry of [N(CH3)4]2BCl4 (B=Co and Zn) crystals near the phase transition temperatures were studied by analyzing the 14N nuclear magnetic resonance (NMR) spectra. Two physically inequivalent a-N(1)(CH3)4 and b-N(2)(CH3)4 groups were observed in these spectra. Abrupt changes in the resonance frequency and splitting of 14N NMR signals near the phase transition temperatures were attributed to structural phase transitions, and the primary mechanism of these phase transitions exhibited ferroelastic characteristics. In addition, ferroelasticity of [N(CH3)4]2BCl4 was identified at low temperatures using optical polarizing microscopy.

  3. Vibrational spectra, molecular structure, NBO, NMR, UV, first order hyperpolarizability, analysis of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol by Density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-06-01

    In this study, geometrical optimization, spectroscopic analysis, electronic structure and nuclear magnetic resonance studies of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol (abbreviated as SN5N2PLA) were investigated by utilizing HF and DFT/B3LYP with 6-31G(d,p) as basis set. The Fourier transform infrared (FT-IR) and FT-Raman spectra of SN5N2PLA were recorded in the region 4000-400cm(-1) and 3500-50cm(-1), respectively. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. UV-Visible spectrum of the compound that dissolved in methanol were recorded in the region 200-800nm and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The molecular stability and bond strength have been investigated by applying the Natural Bond Orbital (NBO) analysis. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of SN5N2PLA were calculated using the GIAO method in methanol solution and compared with the measured experimental data. The dipole moment, polarizability and first order hyperpolarizability values were also computed. The polarizability and first hyperpolarizability of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The Chemical reactivity and Thermodynamic properties of SN5N2PLA at different temperature are calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) analysis were investigated using theoretical calculations. PMID:24657932

  4. Phosphorus-31 NMR spectra of ethidium, quinacrine, and daunomycin complexes with poly(adenylic acid)ter dot poly(uridylic acid) RNA duplex and calf thymus DNA

    SciTech Connect

    Gorenstein, D.G.; Lai, K. )

    1989-04-04

    {sup 31}P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A){center dot}poly(U) and calf thymus DNA. {sup 31}P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new {sup 31}P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A){center dot}poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the {sup 31}P signals is observed in sonicated poly(A){center dot}poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the {sup 31}P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA {sup 31}P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of {sup 31}P chemical shift with drug duplex unwinding angle is confirmed for both the RNA and DNA duplexes.

  5. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  6. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    NASA Astrophysics Data System (ADS)

    Dou, S.

    2009-04-01

    -MAS-13C-NMR spectrum of HA. The CP-MAS- 13C-NMR spectra of the HA were quite similar to each other

  7. Hydrogen Burning of {sup 17}O in Classical Novae

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2005-07-15

    We report on the observation of a previously unknown resonance at E{sub R}{sup lab}=194.1{+-}0.6 keV in the {sup 17}O(p,{alpha}){sup 14}N reaction, with a measured resonance strength {omega}{gamma}{sub p{alpha}}=1.6{+-}0.2 meV. We studied in the same experiment the {sup 17}O(p,{gamma}){sup 18}F reaction by an activation method and the resonance-strength ratio was found to be {omega}{gamma}{sub p{alpha}}/{omega}{gamma}{sub p{gamma}}=470{+-}50. The corresponding excitation energy in the {sup 18}F compound nucleus was determined to be 5789.8{+-}0.3 keV by {gamma}-ray measurements using the {sup 14}N({alpha},{gamma}){sup 18}F reaction. These new resonance properties have important consequences for {sup 17}O nucleosynthesis and {gamma}-ray astronomy of classical novae.

  8. Investigation of the Herzberg (C1Σ+→A1Π) band system in 12C17O

    NASA Astrophysics Data System (ADS)

    Hakalla, Rafał

    2015-10-01

    The C→A (0,1), (0,2) and (0,3) rovibronic bands of the less-abundant 12C17O isotopologue are studied in high resolution using a high-accuracy dispersive optical spectroscopy in the region of 22,800-26,100 cm-1. Calibration with respect to simultaneously recorded thorium atomic lines, obtained from several overlapped orders of the spectrum in the visible range, as well as a stainless steel hollow-cathode molecular lamp with two anodes, yields an absolute accuracy of wavenumbers measurements of about 0.0025 cm-1 for the CO spectra. All 261 spectra lines of the Herzberg band system in 12C17O, up to Jmax=34, were precisely measured and rotationally analyzed. As a result, the merged rotational constants and rotational equilibrium constants for the C1Σ+ Rydberg state, as well as the band origins, the isotope shifts, the RKR turning points, Franck-Condon factors, relative intensities, and r-centroids of the C→A system in the 12C17O isotopologue were obtained. An experimental RKR potential energy curve and vibrational levels of the C1Σ+ state in 12C17O together with highly excited k3Π, c3Π, E1Π, B1Σ+ and D‧1Σ+ states lying in the region between the first dissociation limit and the ionization potential of CO were plotted. A detailed investigation of possible perturbations that should occur in the C1Σ+(υ=0) Rydberg state of less-abundant 12C17O isotopologue in the close vicinity of the k3Π(υ=1, 2) and c3Π(υ=0) states in the region 92,000 cm-1 was performed. In the A1Π, υ=3 state of 12C17O, extensive, multi-state rotational perturbations were found and analyzed. Also, a global isotopic analysis of the C1Σ+ Rydberg state was carried out in the 12C16O, 12C17O, 13C16O, 12C18O, 13C17O, and 13C18O as well as in 14C16O and 14C18O isotopologues. This analysis enabled us to determine, amongst others, the vibrational equilibrium constants in 12C17O for the C1Σ+ state, to improve these constants in the 12C16O, 13C16O, 12C18O, 13C17O, and 13C18O isotopologues and

  9. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

    PubMed

    Cuny, Jérôme; Xie, Yu; Pickard, Chris J; Hassanali, Ali A

    2016-02-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials. PMID:26730889

  10. Study of {sup 17}O(p,{alpha}){sup 14}N reaction via the Trojan Horse Method for application to {sup 17}O nucleosynthesis

    SciTech Connect

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Gulino, M.; Cherubini, S.; Crucilla, V.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Tudisco, S.; Tumino, A.; Coc, A.; Hammache, F.; Sereville, N. de; Kiss, G.

    2008-05-21

    Because of the still present uncertainties on its rate, the {sup 17}O(p,{alpha}){sup 14}N is one of the most important reaction to be studied in order to get more information about the fate of {sup 17}O in different astrophysical scenarios. The preliminary study of the three-body reaction {sup 2}H({sup 17}O,{alpha}{sup 14}N)n is presented here as a first stage of the indirect study of this important {sup 17}O(p,{alpha}){sup 14}N reaction through the Trojan Horse Method (THM)

  11. /sup 14/C(/sup 6/Li,t)/sup 17/O reaction at E(/sup 6/Li) = 34 MeV

    SciTech Connect

    Cunsolo, A.; Foti, A.; Imme, G.; Pappalardo, G.; Raciti, G.; Saunier, N.

    1981-11-01

    Energy spectra and angular distributions of tritons from the /sup 14/C(/sup 6/Li,t)/sup 17/O reaction have been measured at 34 MeV /sup 6/Li incident enegy and between theta/sub lab/ = 5/sup 0/ and 45/sup 0/. The observed selectivity and the forward peaked angular distributions suggest a predominantly direct reaction mechanism. /sup 17/O states with main 3p-2h configuration are tentatively identified. The experimental data have been analyzed in terms of Hauser-Feshbach and exact-finite-range distorted-wave Born approximation theories. /sup 3/He spectroscopic strengths are extracted.

  12. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  13. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. PMID:25727157

  14. An oxygen-17 dynamic NMR study of the Pr-DOTA complex.

    PubMed

    Fusaro, Luca; Luhmer, Michel

    2014-01-21

    The complex between (17)O-enriched DOTA (tetraazacyclododecanetetraacetic acid) and praseodymium(III) (Pr(3+)) was studied in aqueous solution by variable-temperature (17)O NMR at 14.1 T. pH effects as well as the influence of metal ions free in solution were investigated. At low temperature, the so-called TSAP and SAP conformations give rise to distinct signals for the oxygen atoms coordinated to the metal ion (O2); coalescence occurs between 20 and 30 °C. In contrast, a single signal was detected for the noncoordinated oxygen atoms (O1) in the entire investigated temperature range, i.e. between -3 and 135 °C. At high temperature, the spectra exhibit signal broadening that reveals the interchange of the O1 and O2 oxygen atoms of the carboxylate groups. The linewidths measured for O1 were deconvolved into contributions from quadrupole relaxation and chemical exchange, allowing the corresponding activation barriers to be determined. The present (17)O dynamic NMR study provides the first quantitative experimental data characterizing the interchange of the oxygen atoms in a DOTA chelate of a lanthanide metal ion. The activation entropy of this process is negligible and the activation enthalpy is found to range between 66 and 77 kJ mol(-1), depending on the pH and the presence of free Pr(3+) ions in solution. These data support the results of a previous computational study according to which the exchange mechanism involves the internal rotation of the carboxylate groups. PMID:24158053

  15. Dynamic Nuclear Polarization of 17O: Direct Polarization

    PubMed Central

    Michaelis, Vladimir K.; Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2014-01-01

    Dynamic nuclear polarization of 17O was studied using four different polarizing agents – the biradical TOTAPOL, and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and bi-radical polarizing agents. Enhancements were recorded < 88 K and were > 100 using the trityl (OX063) radical and < 10 with the other polarizing agents. The > 10,000 fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei. PMID:24195759

  16. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  17. High-resolution solid-state 13C CP MAS NMR spectra of some β-cyclodextrin inclusion complexes with nitriles

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; McDowell, C. A.

    1983-11-01

    β-cyclodextrin inclusion complexes of 3-aminobenzonitrile, 4-aminobenzonitrile, and adamantane-1-carbonitrile were studied by means of high-resolution solid-state CP MAS 13C NMR spectroscopy. The interactions between the host and guest molecules are discussed.

  18. A new approach to the optimisation of non-uniform sampling schedules for use in the rapid acquisition of 2D NMR spectra of small molecules.

    PubMed

    Sidebottom, Philip J

    2016-08-01

    Non-uniform sampling allows the routine, rapid acquisition of 2D NMR data. When the number of points in the NUS schedule is low, the quality of the data obtained is very dependent of the schedule used. A simple proceedure for finding optimium schedules has been developed and is demonstrated for the multiplicity edited HSQC experiment. PMID:27160788

  19. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    SciTech Connect

    Bevilaqua, Rochele C. A.; Miranda, Caetano R.; Rigo, Vagner A.; Veríssimo-Alves, Marcos

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  20. NMR characterization of hydrocarbon adsorption on calcite surfaces: a first principles study.

    PubMed

    Bevilaqua, Rochele C A; Rigo, Vagner A; Veríssimo-Alves, Marcos; Miranda, Caetano R

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca(2+). Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for (43)Ca, (13)C, and (17)O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated. PMID:25429955

  1. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    NASA Astrophysics Data System (ADS)

    Bevilaqua, Rochele C. A.; Rigo, Vagner A.; Veríssimo-Alves, Marcos; Miranda, Caetano R.

    2014-11-01

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca2+. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 ( {10bar 14} )). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for 43Ca, 13C, and 17O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  2. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. PMID:24813280

  3. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-01

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 4000-10 cm-1, respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  4. Synthesis, experimental spectra (IR & Raman and NMR), vibrational analysis and theoretical DFT investigations of N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide

    NASA Astrophysics Data System (ADS)

    Aydın, Lütfiye; Şahan, Emine; Önal, Zülbiye; Özpozan, Talat

    2014-08-01

    The title molecule, N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide (C27H23N3O3), was synthesized and characterized by elemental analysis, IR, Raman, 1H and 13C NMR spectral data. To determine conformational flexibility, potential energy surfaces of the title compound were obtained by DFT regarding the selected degree of torsional freedom, which was varied from 0° to 360° in 6° and 20° steps. The ten conformers of the title compound were determined and it was found that the conformer 1 basis the most stable one. All conformers were also optimized by using the density functional theory (DFT/B3LYP) method with the 6-31G(d,p), 6-311G(d,p) and cc-pVDZ basis sets in the ground state. Potential energy distribution was calculated with the 6-31G(d,p) basis set. The vibrational spectra were recorded in solid phase IR and Raman spectra were compared based on the results of the theoretical calculations. The formation of hydrogen bonds was explained using natural bond orbital (NBO) analysis and spectroscopic analysis. NMR analysis and frontier molecular orbitals (FMOs) were also investigated by DFT.

  5. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: A combined experimental and density functional methods

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Xueliang

    2015-01-01

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method.

  6. Molecular structure, vibrational and 13C NMR spectra of two ent-kaurenes spirolactone type diterpenoids rabdosinate and rabdosin B: a combined experimental and density functional methods.

    PubMed

    Wang, Tao; Wang, Xueliang

    2015-01-25

    The title compounds, rabdosinate and rabdosin B, were isolated from the leaves of Isodon japonica, and characterized by IR-NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO-13C) chemical shift values of the title compounds have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set. In addition, obtained results were related to the linear regression of experimental 13C NMR chemical shifts values. The integral equation formalism polarized continuum model (IEFPCM) was used in treating chloroform solvation effects on optimized structural parameters and 13C chemical shifts. Besides, molecular electrostatic potential (MEP), HOMO-LUMO analysis were performed by the B3LYP method. PMID:25123947

  7. Simulation of the diurnal variations of the isotope anomaly (?17O) of reactive trace gases (NOx, HOx) and implications for the ?17O of nitrate.

    NASA Astrophysics Data System (ADS)

    Morin, Samuel; Sander, Rolf; Savarino, Joël.

    2010-05-01

    The isotope anomaly of secondary atmospheric species such as nitrate (NO3-) has potential to provide useful constrains on their formation pathways. Indeed, the ?17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero ?17O in the atmosphere. Interpreting variations of ?17O in nitrate requires an in-depth understanding of the ?17O of its precursors taking into account non-linear chemical regimes operating under various environmental settings. In addition, the role of isotope exchange reactions must be carefully accounted for. To investigate the relevance of various assessments of the isotopic signature of nitrate production pathways that have recently been proposed in the literature, an atmospheric chemistry box model (MECCA, Sander et al., 2005, ACP)) was used to explicitly compute the diurnal variations of the isotope anomaly of NOx, HOx under several conditions prevailing in the marine boundary layer. ?17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation applied at each time step of the model (30 seconds typically). The model confirms that diurnal variations in ?17O of NOx are well predicted by the photochemical steady-state relationship introduced by Michalski et al. (2003, GRL) during the day, but that at night a different approach must be employed (e.g. « fossilization » of the ?17O of NOx as soon as the photochemical lifetime of NOx drops below ca. 5 minutes). The model also allows to evaluate the impact on ?17O of NOx and nitrate of the frequently made simplifying assumption that ?17O(HOx)=0 permil, with and without mass-independent fractionation during the H+O2-HO2 reaction. Recommendations for the modeling of ?17O of nitrate will be given, based on the extensive model work carried out. In addition, the link between diurnal variations of the ?17O of nitrate precursors and seasonal

  8. Experimental determination of the {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reaction rates

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2007-03-15

    The {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reactions are of major importance to hydrogen-burning nucleosynthesis in a number of different stellar sites. In particular, {sup 17}O and {sup 18}F nucleosynthesis in classical novae is strongly dependent on the thermonuclear rates of these two reactions. The previously estimated rate for {sup 17}O(p,{alpha}){sup 14}N carries very large uncertainties in the temperature range of classical novae (T=0.01-0.4 GK), whereas a recent measurement has reduced the uncertainty of the {sup 17}O(p,{gamma}){sup 18}F rate. We report on the observation of a previously undiscovered resonance at E{sub c.m.}=183.3 keV in the {sup 17}O(p,{alpha}){sup 14}N reaction, with a measured resonance strength {omega}{gamma}{sub p{alpha}}=(1.6{+-}0.2)x10{sup -3} eV. We studied in the same experiment the {sup 17}O(p,{gamma}){sup 18}F reaction by an activation method, and the resonance strength was found to amount to {omega}{gamma}{sub p{gamma}}=(2.2{+-}0.4)x10{sup -6} eV. The excitation energy of the corresponding level in {sup 18}F was determined to be 5789.8{+-}0.3 keV in a Doppler shift attenuation method measurement, which yielded a value of {tau}<2.6 fs for the level lifetime. The {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reaction rates were calculated using the measured resonance properties and reconsidering some previous analyses of the contributions of other levels or processes. The {sup 17}O(p,{alpha}){sup 14}N rate is now well established below T=1.5 GK, with uncertainties reduced by orders of magnitude in the temperature range T=0.1-0.4 GK. The uncertainty in the {sup 17}O(p,{gamma}){sup 18}F rate is somewhat larger because of remaining obscurities in the knowledge of the direct capture process. These new resonance properties have important consequences for {sup 17}O nucleosynthesis and {gamma}-ray emission of classical novae.

  9. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using delta17O.

    PubMed

    Michalski, Greg; Meixner, Thomas; Fenn, Mark; Hernandez, Larry; Sirulnik, Abby; Allen, Edith; Thiemens, Mark

    2004-04-01

    The isotopic composition of nitrate collected from aerosols, fog, and precipitation was measured and found to have a large 17O anomaly with delta17O values ranging from 20 percent per thousand to 30% percent per thousand (delta17O = delta17O - 0.52(delta18O)). This 17O anomaly was used to trace atmospheric deposition of nitrate to a semiarid ecosystem in southern California. We demonstrate that the delta17O signal is a conserved tracer of atmospheric nitrate deposition and is a more robust indicator of N deposition relative to standard delta18O techniques. The data indicate that a substantial portion of nitrate found in the local soil, stream, and groundwater is of atmospheric origin and does not undergo biologic processing before being exported from the system. PMID:15112822

  10. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    PubMed Central

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log kGSH) for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89). By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99), but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity. PMID:22754331

  11. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    PubMed

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  12. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  13. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. PMID:25641013

  14. Experimental Study of 17O(p,{alpha})14N and 17O(p,{gamma})18F for Classical Nova Nucleosynthesis

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2006-04-26

    We investigated the proton-capture reactions on 17O occurring in classical nova explosions. We observed a previously undiscovered resonance at E{sub R}{sup lab}=194.1{+-}0.6 keV in the 17O(p,{alpha})14N reaction, with a measured resonance strength {omega}{gamma}p{alpha}=1.6{+-}0.2 meV. We studied in the same experiment the 17O(p,{gamma})18F reaction by an activation method and the resonance-strength ratio was found to be {omega}{gamma}p{alpha}/{omega}{gamma}p{gamma}=470{+-}50. The corresponding excitation energy in the 18F compound nucleus was determined to be 5789.8{+-}0.3 keV by {gamma}-ray measurements using the 14N({alpha},{gamma})18F reaction. These new resonance properties have important consequences for 17O nucleosynthesis and {gamma}-ray astronomy of classical novae.

  15. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Berman, Elena S F; Levin, Naomi E; Landais, Amaelle; Li, Shuning; Owano, Thomas

    2013-11-01

    Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ(18)O, δ(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: δ(18)OVSMOW-SLAP = -24.74 ± 0.07‰ (1σ) and δ(17)OVSMOW-SLAP = -13.12 ± 0.05‰ (1σ). For comparison, the International Atomic Energy Agency (IAEA) value for δ(18)OVSMOW-SLAP is -24.76 ± 0.09‰ (1σ) and an average of previously reported values for δ(17)OVSMOW-SLAP is -13.12 ± 0.06‰ (1σ). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ(18)O, δ(17)O, and (17)O-excess. The ability to measure accurately δ(18)O, δ(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others. PMID:24032448

  16. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  17. /sup 13/C and /sup 1/H NMR spectra and structure of the products from the condensation of 1,3-dicarbonyl compounds with aldehydes

    SciTech Connect

    Emelina, E.E.; Gindin, V.A.; Ershov, B.A.

    1988-05-20

    The structure of the diadducts formed in the reaction of 1,3-dicarbonyl compounds with aldehydes in a ratio of 2:1 under the conditions of the Knoevenagel condensation was studied by /sup 13/C and /sup 1/H NMR spectroscopy. It was shown that acyclic tetracarbonyl compounds are formed in the absence of a catalyst while substituted cyclohexanones are formed in the presence of piperidine. The acyclic tetracarbonyl compounds exist mainly in the tetraketo form in solution, and the presence of the monoenol form was established for dimethyl 2,4-diacetylpentanedioate in CD/sub 2/Cl/sub 2/. The most characteristic signals which distinguish between the cyclic diadducts and the acyclic products are the signals of the C/sup 5/ (delta 72 ppm) and C/sup 6/ (delta 52 ppm) atoms. The presence of a keto-enol equilibrium in 2,4-diacetyl-5-hydroxy-3-(p-methoxyphenyl)-5-methylcyclohexanone was demonstrated by /sup 13/C NMR.

  18. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  19. 17O excess transfer during the NO2 + O3 → NO3 + O2 reaction

    NASA Astrophysics Data System (ADS)

    Berhanu, Tesfaye Ayalneh; Savarino, Joël; Bhattacharya, S. K.; Vicars, Willliam C.

    2012-01-01

    The ozone molecule possesses a unique and distinctive 17O excess (Δ17O), which can be transferred to some of the atmospheric molecules via oxidation. This isotopic signal can be used to trace oxidation reactions in the atmosphere. However, such an approach depends on a robust and quantitative understanding of the oxygen transfer mechanism, which is currently lacking for the gas-phase NO2 + O3 reaction, an important step in the nocturnal production of atmospheric nitrate. In the present study, the transfer of Δ17O from ozone to nitrate radical (NO3) during the gas-phase NO2 + O3 → NO3 + O2 reaction was investigated in a series of laboratory experiments. The isotopic composition (δ17O, δ18O) of the bulk ozone and the oxygen gas produced in the reaction was determined via isotope ratio mass spectrometry. The Δ17O transfer function for the NO2 + O3 reaction was determined to be: Δ17O(O3*) = (1.23 ± 0.19) × Δ17O(O3)bulk + (9.02 ± 0.99). The intramolecular oxygen isotope distribution of ozone was evaluated and results suggest that the excess enrichment resides predominantly on the terminal oxygen atoms of ozone. The results obtained in this study will be useful in the interpretation of high Δ17O values measured for atmospheric nitrate, thus leading to a better understanding of the natural cycling of atmospheric reactive nitrogen.

  20. Low-lying 1- and 2+ states in 124Sn via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.

    2016-05-01

    The γ decay of low-lying 1-and 2+ states up to the neutron separation energy in 124Sn populate by the inelastic scattering of 17O was measured. The Angular distributions were measured both for the γ rays and the scattered 17O ions. The results are presented.

  1. NMR Studies of the original magnetic properties of the cuprates: influence of impurities and defects.

    NASA Astrophysics Data System (ADS)

    Alloul, Henri

    1998-03-01

    The cuprates display original magnetic properties, both in their insulating and metallic phases. In underdoped metallic systems, a pseudo gap in the density of magnetic q=3D0 excitations is observed from local susceptibility measurements, as well as from specific heat and transport properties. A pseudo spin-gap in the AF excitations at the AF wave vector is detected both by NMR and inelastic neutron scattering. From the NMR measurements it can be concluded that these magnetic anomalies are quite similar in single layer(J. Bobroff, H.. Alloul, P. Mendels, V. Viallet, J. F. Marucco and D. Colson, Phys. Rev. Letters 78, 3757 (1997).), bilayer and trilayer underdoped cuprates. The modifications of magnetic properties induced by substitutions or defects in the planes, which do not modify appreciably the charge transfer have been studied. The spatial dependence of the spin susceptibility \\chi ' (r) of the pure material can be directly probed through the study of the modifications of the NMR spectra of various nuclei (^89Y, ^17O, ^63Cu) induced by such localised magnetic impurities. Large qualitative differences between the underdoped and slightly overdoped YBCO are evidenced from ^17O NMR line broadening in Ni substituted YBCO. This allows us to propose a quite powerful method for studying the q and T dependence of the static magnetic susceptibility (J. Bobroff et al, Phys. Rev. Letters 78, 3757 (1997).). The impurity magnetic state also directly reflects the occurence of electronic correlations in the metallic state. The case of Zn will be examined in some detail. ^89Y NMR has revealed that the substitution of this 3d^10 non magnetic atom on a Cu site induces a Curie like contribution to the local susceptibility on the near neighbour coppers ( A. V. Mahajan, H. Alloul, G. Collin and J. F. Marucco, Physical Review Letters 72, 3100 (1994).). The effective induced moment decreases with hole doping and becomes rather weak, but is still present for optimal doping

  2. Continental scale variation in 17O-excess of meteoric waters in the United States

    NASA Astrophysics Data System (ADS)

    Li, Shuning; Levin, Naomi E.; Chesson, Lesley A.

    2015-09-01

    High-precision triple oxygen isotope analysis of waters is an emerging tool in hydrological and paleoclimate research. The existing research on 17O-excess in waters includes surveys of meteoric waters and region-specific studies of high-latitude snow and tropical storms. However, a better understanding of the variation in 17O-excess of waters across large geographic regions is needed to expand the utility of triple oxygen isotope measurements. Here we present 17O-excess data from tap waters across the continental U.S., which we used as a proxy for precipitation. The 17O-excess values of tap waters ranged from -6 to +43 per meg and averaged 17 ± 11 per meg which is lower than the average 17O-excess reported for global meteoric waters, but overlaps with reported 17O-excess values of rainfall from the tropics. We observed relatively high 17O-excess values (>25 per meg) of tap waters in the northwestern U.S. and some of the lowest 17O-excess values (<5 per meg) in the states bordering the Gulf of Mexico. The latitudinal variation of 17O-excess among tap waters likely reflects the different controls on 17O-excess in precipitation. For example, re-evaporation of precipitation and convective processes influence the isotopic composition of tap waters from the southern portions of the U.S., resulting in relatively low 17O-excess values. In contrast, these effects are reduced in tap waters from the northern portions of the U.S. where snow and cold-season rainfall are primarily responsible for the majority of annual precipitation. Exceptions to the latitudinal trend are prevalent in the central portions of the U.S., where mixing and convection are likely responsible for 17O-excess values that are lower than would be expected at their latitudes. The results of this study provide both a first look at the variation of 17O-excess in meteoric waters on a continental scale and a predictive map for 17O-excess of meteoric waters in the U.S.

  3. {sup 17}O({alpha},{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne for the weak s process

    SciTech Connect

    Best, A.; Goerres, J.; Beard, M.; Couder, M.; Boer, R. de; Falahat, S.; Gueray, R. T.; Kontos, A.; Kratz, K.-L.; LeBlanc, P. J.; Li, Q.; O'Brien, S.; Oezkan, N.; Pignatari, M.; Sonnabend, K.; Talwar, R.; Tan, W.; Uberseder, E.; Wiescher, M.

    2012-11-20

    The ratio of the reaction rates of the competing channels {sup 17}O({alpha}{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne determines the efficiency of {sup 16}O as a neutron poison in the s process in low metallicity rotating stars. It has a large impact on the element production, either producing elements to the mass range of A=90 in case of a significant poisoning effect or extending the mass range up to the region of A=150 if the {gamma} channel is of negligible strength. We present an improved study of the reaction {sup 17}O({alpha},n){sup 20}Ne, including an independent measurement of the {sup 17}O({alpha},n{sub 1}){sup 20}Ne channel. A simultaneous R-Matrix fit to both the n{sub 0} and the n{sub 1} channels has been performed. New reaction rates, including recent data on the {sup 17}O({alpha},{gamma}){sup 21}Ne reaction, have been calculated and used as input for stellar network calculations and their impact on the s process in rotating massive stars is discussed.

  4. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  5. Cumulative “roof effect” in high-resolution in vivo 31P NMR spectra of human calf muscle and the Clebsch Gordan coefficients of ATP at 1.5 T

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2005-05-01

    NMR spectra of non-weakly coupled spin systems exhibit asymmetries in line intensities known as "roof effect" in 1D spectroscopy. Due to limited spectral resolution, this effect has not been paid much attention so far in in vivo spectroscopy. But when high-quality spectra are obtained, this effect should be taken into account to explain the quantum-mechanical fine structure of the system. Adenosine 5'-triphosphate (ATP) represents a 31P spin system with multiple line splittings which are caused by J-couplings of medium strength at 1.5 T. We analyzed the ATP roof effect in vivo, especially for the β-ATP multiplet. The intensities of its outer resonances deviate by ca. 12.5% from a symmetrical triplet. As this asymmetry reflects the transition from Paschen-Back to Zeeman effect with total spin that is largely broken up, the Clebsch-Gordan coefficients of the system can be indicated in analogy to the hyperfine structure of hydrogen. Taking the roof effect into account, the χ2 of fitting in vivo ATP resonances is reduced by ca. 9% ( p < 0.005).

  6. Vibrational analysis using FT-IR, FT-Raman spectra and HF-DFT methods and NBO, NLO, NMR, HOMO-LUMO, UV and electronic transitions studies on 2,2,4-trimethyl pentane

    NASA Astrophysics Data System (ADS)

    Suvitha, A.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-03-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for 2,2,4-Trimethyl Pentane, TMP (C8H18) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The scaled B3LYP/6-311++G(d,p) results shows the best agreement with the experimental values over the other method. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The physical reactions of single bond hydrocarbon TMP were investigated. The results of the calculations were applied to simulate spectra of the title compound, which shows the excellent agreement with observed spectra. Besides, Mulliken atomic charges, UV, frontier molecular orbital (FMO), MEP, NLO activity, Natural Bond-Orbital (NBO) analysis, NMR and thermodynamic properties of title molecule were also performed.

  7. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  8. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  9. Minimalist Relativistic Force Field: Prediction of Proton-Proton Coupling Constants in (1)H NMR Spectra Is Perfected with NBO Hybridization Parameters.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-05-15

    We previously developed a reliable method for multiparametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. We now report that utilization of NBO hybridization coefficients for carbon atoms in the involved C-H bonds allows for a significant simplification of this parametric scheme, requiring only four general types of SSCCs: geminal, vicinal, 1,3-, and long-range constants. The method is optimized for inexpensive B3LYP/6-31G(d) molecular geometries. A new DU8 basis set, based on a training set of 475 experimental spin-spin coupling constants, is developed for hydrogen and common non-hydrogen atoms (Li, B, C, N, O, F, Si, P, S, Cl, Se, Br, I) to calculate Fermi contacts. On a test set of 919 SSCCs from a diverse collection of natural products and complex synthetic molecules the method gave excellent accuracy of 0.29 Hz (rmsd) with the maximum unsigned error not exceeding 1 Hz. PMID:25885091

  10. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: amyloid fibrils of human CA150.WW2.

    PubMed

    Becker, Johanna; Ferguson, Neil; Flinders, Jeremy; van Rossum, Barth-Jan; Fersht, Alan R; Oschkinat, Hartmut

    2008-08-11

    The second WW domain (WW2) of CA150, a human transcriptional activator, forms amyloid fibrils in vitro under physiological conditions. Based on experimental constraints from MAS NMR spectroscopy experiments, alanine scanning and electron microscopy, a structural model of CA150.WW2 amyloid fibrils was calculated earlier. Here, the assignment strategy is presented and suggested as a general approach for proteins that show intermediate line width. The (13)C,(13)C correlation experiments were recorded on fully or partially (13)C-labelled fibrils. The earlier (13)C assignment (26 residues) was extended to 34 of the 40 residues by direct (13)C-excitation experiments by using a deuterated sample that showed strongly improved line width. A 3D HNC-TEDOR (transferred-echo double-resonance) experiment with deuterated CA150.WW2 fibrils yielded 14 amide nitrogen and proton resonance assignments. The obtained chemical shifts were compared with the chemical shifts determined with the natively folded WW domain. TALOS (Torsion angle likelihood obtained from shift and sequence similarity) predictions confirmed that, under physiological conditions, the fibrillar form of CA150.WW2 adopts a significantly different beta structure than the native WW-domain fold. PMID:18642254

  11. Spatial (data and model) and temporal variability of 17O-excess in East Antarctica

    NASA Astrophysics Data System (ADS)

    Winkler, Renato; Landais, Amaelle; Umuera, Ryu; Xiao, Cunde; Hoffmann, Georg; Jouzel, Jean; Kelley, Maxwell; Fukui, Kotaro

    2010-05-01

    For many decades stable water isotopes (δD and δ18O) are used as tracers in earth's hydrological cycle in order to get information about climatic parameters such as temperature and precipitation. In particular, δD and δ18O in ice cores permit to reconstruct the polar temperature of the past. Improvements of the analytical devices made it possible to measure also the δ17O of water with high precision. The combination of δ18O and δ17O leads to the definition of the so called 17O-excess (ln(δ17O/1000 +1)-0.528ln(δ18O/1000+1)) by analogy with the d-excess (δD -8δ18O). It has been suggested that 17O-excess in the ice cores is a more direct indicator of relative humidity of the source region than d-excess and that the combination of the two parameters is essential to reconstruct the past climatic conditions in the evaporative regions. Here we show new results for the spatial and temporal distribution of 17O-excess in East Antarctica. We especially explore the isotopic composition of the surface snow in remote regions of East Antarctica characterized by very low δ18O (between -60 and -55 permil). Then, we present the record of 17O-excess over the last deglaciation (26 to 8 kyrs BP) in the EPICA Dome C ice core. Interestingly, this 17O-excess record shows a more stable behavior than the one at Vostok. Finally, we compare our results with the spatial variability of 17O-excess in precipitation obtained by the old version of the GISS GCM model.

  12. δ17O and Δ47—The Heavens can Wait.

    NASA Astrophysics Data System (ADS)

    Olack, G.; Colman, A. S.

    2015-12-01

    Most terrestrial systems fall on or close to the Global Meteoric Water Line, GMWL, for 17O and 18O isotopes. Luz and Barken (2010) recently discussed variations from the GMWL, and typically the differences were in the 50 per meg, or 0.05‰, 17O excess. Landais et al. also looked at water from a Vostok ice core, covering the past 150,000 years, and see differences from GMWL on the order of 45 per meg 17O excess. Carbonate samples are analyze for their 13C and 18O to help understand paleo-climate, water sources, and by looking at clumped isotopes, Δ47, the excess of 13C-18O bonds measured by mass spectroscopy on m/z 47. Those samples will also carry thru the 17O-excess in their waters of formation. We modeled the effect of 17O excess on Δ47 and basically there is little effect in the 50 per meg 17O excess range. We also looked at what would happen with 18O spiked samples, presuming the spike does not add 17O. In that case, a 100 ‰ shift in 18O would give rise to -49‰ 17O excess anomaly. That shows a significant effect, a 1.8 ‰ shift in Δ47 and even a 3.5 ‰ shift in the δ13C reading. So spiked samples are not good candidates for clumped isotope analysis, terrestrial samples probably will not have enough of a 17O excess to affect Δ47 measurements, and extra-terrestrial samples will have to be checked.

  13. The 17O Excess of Stratospheric Nitrous Oxide in Mid-latitude Air

    NASA Astrophysics Data System (ADS)

    Ridley, A.; Kaiser, J.; Laube, J. C.

    2015-12-01

    Tropospheric nitrous oxide (N2O) has a 17O excess of (0.9±0.1) ‰ relative to Vienna Standard Mean Ocean Water (VSMOW). The origin of this 17O excess is under debate: tropospheric and stratospheric in-situ sources as well as isotope fractionation and isotope exchange during biological N2O production are all considered to make a contribution, as might the stratospheric photolysis sink. To constrain the relative contributions of the different processes and to improve our understanding of the underlying atmospheric chemical and microbial processes, more measurements are required. We have measured the 17O excess of stratospheric samples from mid-latitudes, from altitudes between 8 and 26 km. N2O was extracted cryogenically, separated from CO2 and CHF3 by a PoraPlotQ pre-column and then thermally decomposed in a gold furnace at 900 ºC. The precision for the 17O excess of a single 5 nmol N2O aliquot was ±0.3 ‰. This dataset significantly enhances the limited range of oxygen triple isotope measurements in mostly lower stratospheric samples reported by Cliff et al. (1999). The average 17O excess of the stratospheric samples analysed was (-0.19 ±0.46) ‰ relative to tropospheric N2O. Since the 17O excess of the first measurements of stratospheric air is not significantly different to that in tropospheric air, this data suggests that the 17O excess is not of stratospheric origin. This confirms the idea that the origin of the 17O excess is not due to either stratospheric photolysis or reaction with electronically excited oxygen atoms. It suggests that the origin of the 17O excess may therefore be related to tropospheric in situ sources, e.g. NH2+NO2 as proposed by Röckmann et al., 2001, or to microbial nitrogen conversion reactions as suggested by Kaiser and Röckmann, 2005.

  14. High-Speed Magic-Angle Spinning 13C MAS NMR Spectra of Adamantane: Self-Decoupling of the Heteronuclear Scalar Interaction and Proton Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Ernst, Matthias; Verhoeven, Aswin; Meier, Beat H.

    1998-02-01

    We have investigated the carbon line shape of solid adamantane under high-speed magic-angle sample spinning (MAS) acquired without proton decoupling. The CH-group shows a spinning-speed-dependent line broadening while the CH2-group consists of a spinning-speed-independent sharp component and a spinning-speed-dependent broader part. These phenomena can be explained by self-decoupling of theJ-interaction due to proton spin diffusion. Such a self-decoupling process can be described by a magnetization exchange process between the multiplet lines. Changing the spin-diffusion rate constant by off-resonance irradiation of the protons allows us to observe the full range from slow exchange to coalescence to fast exchange of the carbon spectra. One of the multiplet components in the CH2-group corresponds to a group spin of the protons of zero and therefore does not couple to the other protons. This gives rise to the sharp central line. The magnetization exchange rate constant between the different multiplet lines can be determined from the spectra and is a measure for the spinning-speed-dependent proton spin-diffusion rate constant. Even at an MAS speed of 30 kHz, proton spin diffusion is still observable despite the relatively weak intermolecular proton dipolar-coupling network in adamantane which results in a static proton line width of only 14 kHz (full width at half height).

  15. Multitude of 2+ discrete states in 124Sn observed via the (17O 17O'γ) reaction: Evidence for pygmy quadrupole states

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Tsoneva, N.; Avigo, R.; Benzoni, G.; Blasi, N.; Bottoni, S.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Lenske, H.; Million, B.; Morales, A. I.; Nicolini, R.; Wieland, O.; Bazzacco, D.; Bednarczyk, P.; Birkenbach, B.; Ciemała, M.; de Angelis, G.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Isocrate, R.; Kmiecik, M.; Krzysiek, M.; Lunardi, S.; Maj, A.; Mazurek, K.; Mengoni, D.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Siebeck, B.; Siem, S.; Ur, C.; Valiente-Dobón, J. J.

    2015-07-01

    A multitude of discrete 2+ states in 124Sn with energy up to 5 MeV were populated and identified with the (17O, 17O'γ) reaction at 340 MeV. Cross sections were compared with distorted wave Born approximation predictions and in general a good agreement was found. The measured energy and intensity distributions of the 2+ states are very similar to the predictions based on self-consistent density functional theory and extended QRPA approach accounting for multiphonon degrees of freedom. This provides evidence of the excitation of the pygmy quadrupole resonance in skin nuclei.

  16. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  17. Oxygen isotope dynamics of atmospheric nitrate over the Antarctic plateau: First combined measurements of ozone and nitrate 17O-excess (Δ17O)

    NASA Astrophysics Data System (ADS)

    Vicars, William; Savarino, Joël; Erbland, Joseph; Preunkert, Susanne; Jourdain, Bruno; Frey, Markus; Gil, Jaime; Legrand, Michel

    2013-04-01

    Variations in the isotopic composition of atmospheric nitrate (NO3-) provide novel indicators for important processes in boundary layer chemistry, often acting as source markers for reactive nitrogen (NOx = NO + NO2) and providing both qualitative and quantitative constraints on the pathways that determine its fate. Stable isotope ratios of nitrate (δ15N, δ17O, δ18O) offer direct insight into the nature and magnitude of the fluxes associated with different processes, thus providing unique information regarding phenomena that are often difficult to quantify from concentration measurements alone. The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O ) of ozone (O3), which is transferred to NOx via oxidation reactions in the atmosphere, has been found to be a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric interpretations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C, Antarctica during December 2011 to January 2012. Sampling was conducted within the framework of the OPALE (Oxidant Production over Antarctic Land and its Export) project, thus providing an opportunity to combine our isotopic observations with a wealth of meteorological and chemical data, including in-situ concentration measurements of the gas-phase precursors involved in nitrate production (NOx, O3, OH, HO2, etc.). Furthermore, nitrate isotope analysis has been combined in this study for the first time with parallel observations of the transferrable Δ17O of surface ozone, which was measured concurrently at Dome C using our recently developed analytical approach. This unique dataset has allowed for a direct comparison of observed Δ17O(NO3-) values to those that are

  18. 1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canthaxanthin, β-apo-8'-carotenal and spheroidene

    NASA Astrophysics Data System (ADS)

    Fujii, Ritsuko; Chen, Chun-Hai; Mizoguchi, Tadashi; Koyama, Yasushi

    1998-05-01

    Eleven cis- trans isomers of okenone were isolated by means of HPLC using a silica-gel column from an isomeric mixture which was obtained by iodine-sensitized photo-isomerization of the all- trans isomer. The configurations of eight isomers among them were determined by NMR spectroscopy using the isomerization shifts of the olefinic 1Hs and the 1H- 1H NOE correlations to be all- trans, 7- cis, 7- cis,8-s- cis, 9- cis, 9'- cis, 13- cis, 13'- cis and 9,9'-di- cis, and their electronic-absorption and resonance-Raman spectra were recorded. Based on the results: (1) the chemical shifts of the olefinic 1Hs in NMR; (2) the wavelength of the A g-→B u+ transition; and (3) the relative intensity of the A g-→A g+ versus the A g-→B u+ transition in electronic absorption; (4) the CC stretching frequency; and (5) the relative intensity of the C10-C11 (C10'-C11') versus the C14-C15 (C14'-C15') stretching vibration in resonance Raman were compared among the all- trans, 7- cis, 9- cis (9'- cis) and 13- cis (13'- cis) isomers of β-carotene, canthaxanthin, β-apo-8'-carotenal, neurosporene, spheroidene and okenone. Relevance of the systematic changes in the above five different parameters originally found in β-carotene was examined in the rest of the carotenoids, and the effects of the peripheral groups on them were explained in terms of the length and asymmetry of the conjugated system consisting of the CC and CO bonds.

  19. The 17O(p,α)14N reaction measurement via the Trojan horse method and its application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2014-05-01

    The role of oxygen in astrophysics is related to different problems as novae nucleosynthesis and gamma-ray astronomy. In particular, owing to the still present uncertainties on its rate, the 17O(p,α)14N is one of the most important reaction to be studied in order to get more information about the fate of oxygen in different astrophysical scenarios.

  20. 17O(p,α)14N reaction measurement at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2014-05-01

    The 17O(p,α)14N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of narrow resonance in the ultra-low energy region.

  1. Simulations of molecular dynamics in solid-state NMR spectra of spin-1 nuclei including effects of CSA- and EFG-terms up to second order.

    PubMed

    Larsen, Flemming H

    2007-04-01

    By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse. PMID:17418539

  2. Improvement of the high-accuracy 17O(p ,α )14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; O'Brien, S.; Roberson, D.; Tan, W.; Wiescher, M.; Irgaziev, B.; Mukhamedzhanov, A.; Mrazek, J.; Kroha, V.

    2015-06-01

    The 17O(p ,α )14N and 17O(p ,γ )18F reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of 17O and the formation of the short-lived radioisotope 18F, which is of special interest for γ -ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T =0.01 -0.1 GK for RG, AGB, and massive stars and T =0.1 -0.4 GK for a classical nova explosion, the 17O(p ,α )14N reaction cross section is dominated by two resonances: one at about ERc m=65 keV above the 18F proton threshold energy, corresponding to the EX=5.673 MeV level in 18F, and another one at ERc m=183 keV (EX=5.786 MeV). We report on the indirect study of the 17O(p ,α )14N reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect.

  3. Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Baumgardner, James E.; Borthakur, Arijitt; Witschey, Walter R.; Reddy, Ravinder

    2009-01-01

    Despite the importance of metabolic disturbances in many diseases, there are currently no clinically used methods for the detection of oxidative metabolism in vivo. To address this deficiency, 17O MRI techniques are scaled from small animals to swine as a large animal model of human inhalation and circulation. The hemispheric cerebral metabolic rate of oxygen consumption (CMRO2) is estimated in swine by detection of metabolically produced H217O by rapid T1ρ-weighted proton magnetic resonance imaging on a 1.5 Tesla clinical scanner. The 17O is delivered as oxygen gas by a custom, minimal-loss, precision-delivery breathing circuit and converted to H217O by oxidative metabolism. A model for gas arterial input is presented for the deeply breathing large animal. The arterial input function for recirculation of metabolic water is measured by arterial blood sampling and high field 17O spectroscopy. It is found that minimal metabolic water “wash-in” occurs before 60 seconds. A high temporal resolution pulse sequence is employed to measure CMRO2 during those 60 seconds after delivery begins. Only about one tidal volume of 17O enriched oxygen gas is used per measurement. Proton measurements of signal change due to metabolically produced water are correlated with 17O in vivo spectroscopy. Using these techniques, the hemispheric CMRO2 in swine is estimated to be 1.23 ± 0.26 μmol/g/min, consistent with existing literature values. All of the technology used to perform these CMRO2 estimates can easily be adapted to clinical MR scanners, and it is hoped that this work will lead to future studies of human disease. PMID:19428508

  4. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  5. Enhanced staggered magnetization probed by NMR in Zn-doped YBCO

    NASA Astrophysics Data System (ADS)

    Julien, Marc-Henri

    2001-03-01

    We present NMR measurements in Zn-doped YBCO. The electronic spin polarization of Cu sites is probed through 63Cu NMR spectra, and is found to grow rapidly on cooling, in agreement with previous 63Cu, 89Y and 17O NMR works [1]. This is attributed to staggered magnetic moments induced on many sites around the impurity, presumably including also the first neighbor sites. Hence, the notion of destruction of AF correlations by Zn is not valid, as also shown by the enhanced low temperature/low energy spectral weight at Q=(pi/a,pi/a), detected in inelastic neutron scattering [2] and NMR T1 measurements [3]. In Ref. [3], we have used the expression "enhancement of AF correlations", proposed in another context [4]. Strictly speaking, however, it is the staggered polarization, rather than the strength of AF correlations, which is enhanced with respect to the pure material: Zn only reveals the already-existing AF-correlated Cu2+ moments. Actually, this kind of magnetic response is expected for any kind of local disorder in CuO2 planes. The staggered magnetic moments with spatially distributed amplitude in CuO2 planes (AF-like patches) give rise to a Curie-like contribution in the bulk susceptibility. They may also have an important impact in transport or spectroscopic measurements. [1] R.E. Walstedt et al., PRB 48, 10646 (1993); A.V. Mahajan et al. PRL 72, 3100 (1994); J. Bobroff et al., Physica C 282-287, 139 (1997). [2] Y. Sidis et al., PRB 53, 6811 (1996); P. Bourges et al., Czech. J. Phys 46, 1155 (1996). [3] M.-H. Julien et al., PRL 84, 3422 (2000). [4] G.B. Martins, PRL 78, 3563 (1997).

  6. Measurments and Modeling of Δ 17O Vatiations in Atmospheric Nitrate

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Thiemens, M. H.

    2002-12-01

    The estimated doubling of HNO3 production in the atmosphere in the next 50 years is important from both an ecological and an atmospheric chemistry perspective. The removal of NO-{3 atm} (HNO3 + aerosol nitrate) by dry and wet deposition can initiate serious environmental consequences including soil acidification, forest decline, the alteration of native plant diversity, and the promotion of eutrophication and toxic algae blooms in coastal waters. A reliable, quantitative, tracer of NO-{3 atm} deposition, particularly in regions with multiple nitrate sources and heavy nitrogen cycling is still lacking. In the atmosphere, HNO3 production is the primary sink for NOx, which via direct and catalytic production of ozone regulates the oxidative capacity of the troposphere. The impact heterogeneous versus homogenous HNO3 production exert on global O3 and OH steady state concentrations has also been demonstrated in Global 3-D chemical models. Yet, the extent that anthroprogenic activities have impacted heterogeneous and homogenous production, and how these pathways varied on ancient time scales is also unknown. Nitrate aerosols were collected in La Jolla, Ca. for a one-year period and their oxygen isotopic composition were analyzed (δ 18O and δ 17O). A large Δ 17O17O = δ 17O - 0.515 δ 18O ) was observed and this isotopic signature exhibited a strong seasonal amplitude. The variability in Δ 17O is attributed to variability in HOx and O3 oxidation rates and the seasonal variation of homogeneous versus heterogeneous nitric acid formation reactions. An isotopic model coupled to a photochemical box model reproduced the observed Δ 17O with good precision. Implications for the use of Δ 17O in nitrate as an investigative tool for NOx related chemistry in both present day atmosphere and in ancient atmospheres is discussed. The magnitude of the Δ 17O signature also has implications as a tracer of atmospheric nitrogen deposition. Both the increased detection sensitivity

  7. Isotope separation of 17O by photodissociation of ozone with near-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of 17O, however, has been very costly due to the lack of appropriate methods that enable efficient production of 17O on an industrial level. In this paper, we report the first 17O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O3-90 vol% CF4 with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of 16O16O17O around 1 μm. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an 17O enrichment factor of 2.2 was attained.

  8. Isotope separation of {sup 17}O by photodissociation of ozone with near-infrared laser irradiation

    SciTech Connect

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of {sup 17}O, however, has been very costly due to the lack of appropriate methods that enable efficient production of {sup 17}O on an industrial level. In this paper, we report the first {sup 17}O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O{sub 3}-90 vol% CF{sub 4} with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of {sup 16}O{sup 16}O{sup 17}O around 1 {mu}m. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an {sup 17}O enrichment factor of 2.2 was attained.

  9. Atmosphere-surface interactions on Mars: delta 17O measurements of carbonate from ALH 84001.

    PubMed

    Farquhar, J; Thiemens, M H; Jackson, T

    1998-06-01

    Oxygen isotope measurements of carbonate from martian meteorite ALH 84001 (delta18O = 18.3 +/- 0.4 per mil, delta17O = 10.3 +/- 0.2 per mil, and Delta17O = 0.8 +/- 0.05 per mil) are fractionated with respect to those of silicate minerals. These measurements support the existence of two oxygen isotope reservoirs (the atmosphere and the silicate planet) on Mars at the time of carbonate growth. The cause of the atmospheric oxygen isotope anomaly may be exchange between CO2 and O(1D) produced by the photodecomposition of ozone. Atmospheric oxygen isotope compositions may be transferred to carbonate minerals by CO2-H2O exchange and mineral growth. A sink of 17O-depleted oxygen, as required by mass balance, may exist in the planetary regolith. PMID:9616116

  10. The ^17O(p,α)^14N reaction measured using a novel technique

    NASA Astrophysics Data System (ADS)

    Moazen, B. H.; Blackmon, J. C.; Bardayan, D. W.; Chae, K. Y.; Chipps, K.; Domizioli, C. P.; Fitzgerald, R.; Greife, U.; Hix, W. R.; Jones, K. L.; Kozub, R. L.; Lingerfelt, E. J.; Livesay, R. J.; Nesaraja, C. D.; Pain, S. D.; Roberts, L. F.; Shriner, J. F., Jr.; Smith, M. S.; Thomas, J. S.

    2007-10-01

    We developed a new approach for measuring (p,α) reactions and applied it to measure the energy and strength of the 183 keV resonance in ^17O(p,α)^ 14N that was recently reported to significantly increase the reaction rate in novae. A beam of ^17O from the Holifield Radioactive Ion Beam Facility [ORNL] tandem accelerator bombarded hydrogen gas, which filled a differentially pumped scattering chamber at pressures up to 4 Torr. Reaction products were detected in coincidence and the vertex of the reaction was determined from the relative kinematics of the two products. Nova simulations show the new ^17O(p,α)^14N reaction rate significantly decreases ^18F production in low mass ONeMg nova but affects more energetic novae less. Results and astrophysical implications will be presented as well as comments regarding my past CEU participation. ORNL is managed by UT-Battelle for the US DOE.

  11. CRDS of 17O enriched water between 5850 and 6671 cm-1: More than 1000 energy levels of H217O and HD17O newly determined

    NASA Astrophysics Data System (ADS)

    Mikhailenko, S. N.; Leshchishina, O.; Karlovets, E. V.; Mondelain, D.; Kassi, S.; Campargue, A.

    2016-07-01

    The room temperature absorption spectrum of water vapor highly enriched in 17O has been recorded by Cavity Ring Down Spectroscopy (CRDS) between 5850 and 6671 cm-1. Two series of recordings were performed with pressure values of 1.0 and 12.0 Torr. The investigated spectral region corresponds to the important 1.55 μm transparency window of the atmosphere where water absorption is very weak. The high sensitivity of the recordings (αmin ~ 5×10-11 cm-1) allows detecting lines with intensity spanning six orders of magnitude (1.4×10-30-3.6×10-24 cm/molecule at room temperature). The experimental list includes more than 10,300 lines. The assignments of water lines were performed using known experimental energy levels as well as calculated line lists based on the results of Partridge and Schwenke. More than 8500 lines were assigned to 9619 transitions of six water isotopologues (H216O, H217O, H218O, HD16O, HD17O and HD18O). All but four transitions of the 16O and 18O isotopologues were assigned using known experimental energy levels. More than half of the assigned H217O and HD17O transitions correspond to new (or corrected) upper energy levels. About 1000 new H217O transitions associated with upper states of the second triad and of the first hexad were identified. Most of the newly assigned HD17O transitions belong to the ν1+ν3 and 2ν2+ν3 bands. The assigned transitions allowed to newly determine or correct 20 highly excited rotational levels of the vibrational ground state of this isotopologue. Overall 791 and 266 energy levels are newly determined for H217O and HD17O, respectively. A few additional levels were corrected compared to literature values. The obtained experimental results are compared to the spectroscopic parameters provided by the HITRAN database and to the empirical energy levels recommended by an IUPAC task group.

  12. Solution oxygen-17 NMR application for observing a peroxidized cysteine residue in oxidized human SOD1

    NASA Astrophysics Data System (ADS)

    Fujiwara, Noriko; Yoshihara, Daisaku; Sakiyama, Haruhiko; Eguchi, Hironobu; Suzuki, Keiichiro

    2016-12-01

    NMR active nuclei, 1H, 13C and 15N, are usually used for determination of protein structure. However, solution 17O-NMR application to proteins is extremely limited although oxygen is an essential element in biomolecules. Proteins are oxidized through cysteine residues by two types of oxidation. One is reversible oxidation such as disulphide bonding (Cys-S-S-Cys) and the other is irreversible oxidation to cysteine sulfinic acid (Cys-SO 2H) and cysteine sulfonic acid (Cys-SO 3H). Copper,Zinc-superoxide dismutase (SOD1) is a key enzyme in the protection of cells from the superoxide anion radical. The SH group at Cys 111 residue in human SOD1 is selectively oxidized to -SO 2H and -SO 3H with atmospheric oxygen, and this oxidized human SOD1 is also suggested to play an important role in the pathophysiology of various neurodegenerative diseases, probably mainly via protein aggregation. Therefore, information on the structural and the dynamics of the oxidized cysteine residue would be crucial for the understanding of protein aggregation mechanism. Although the -SO 3H group on proteins cannot be directly detected by conventional NMR techniques, we successfully performed the site-specific 17O-labeling of Cys 111 in SOD1 using ^{17}it {O}2 gas and the 17O-NMR analysis for the first time. We observed clear 17O signal derived from a protein molecule and show that 17O-NMR is a sensitive probe for studying the structure and dynamics of the 17O-labeled protein molecule. This novel and unique strategy can have great impact on many research fields in biology and chemistry.

  13. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  14. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  15. 1H and 13C NMR spectra, structure and physicochemical features of phenyl acridine-9-carboxylates and 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulphonates--alkyl substituted in the phenyl fragment.

    PubMed

    Krzymiński, K; Malecha, P; Zadykowicz, B; Wróblewska, A; Błażejowski, J

    2011-01-01

    The 1H and 13C NMR spectra of twelve phenyl acridine-9-carboxylates--alkyl-substituted in the phenyl fragment--and their 10-methyl-9-(phenoxycarbonyl)acridinium salts dissolved in CD3CN, CD3OD, CDCl3 and DMSO-d6 were recorded in order to examine the influence of the structure of these compounds and the properties of the solvents on chemical shifts and 1H-(1)H coupling constants. Experimental data were compared with 1H and 13C chemical shifts predicted at the GIAO/DFT level of theory for DFT(B3LYP)/6-31G** optimised geometries of molecules, as well as with values of 1H chemical shifts and 1H-(1)H coupling constants, estimated using ACD/HNMR database software to ensure that the assignment was correct. To investigate the relations between chemical shifts and selected structural or physicochemical characteristics of the target compounds, the values of several of these parameters were determined at the DFT or HF levels of theory. The HOMO and LUMO energies obtained at the HF level yielded the ionisation potentials and electron affinities of molecules. The DFT method provided atomic partial charges, dipole moments, LCAO coefficients of pz LUMO of selected C atoms, and angles reflecting characteristic structural features of the compounds. It was found that the experimentally determined 1H and 13C chemical shifts of certain atoms relate to the predicted dipole moments, the angles between the acridine and phenyl moieties, and the LCAO coefficients of the pz LUMO of the C atoms believed to participate in the initial step of the oxidation of the target compounds. The spectral and physicochemical characteristics of the target compounds were investigated in the context of their chemiluminogenic ability. PMID:21134782

  16. High resolution δ17O-δ18O as a single mineral thermometer

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Sengupta, S.; Pack, A.

    2014-12-01

    The equilibrium relationship α17O/16Oa-b = (α18O/16Oa-b)θ makes the analysis of δ17O redundant for most terrestrial applications. However the θ term varies with temperature, so that ultra-high precision δ17O data provide additional information not available from δ18O alone. If the δ18O and δ17O values of formation water covary in a known way (e.g., meteoric water, ocean water), then a unique solution for both temperature and the δ18O of the formation fluids can be obtained from the combined δ18O-δ17O mineral values. The paired δ18O-δ17O values are in essence a single mineral thermometer. Unlike clumped isotopes or combined δ18O-δD data, the δ18O and δ17O values of a mineral have identical 'diagenetic potential', and will only be altered with a high F/R ratio. We have made an empirical determination of the temperature dependence on θ = -710/T2 + 0.5305 using Pleistocene diatom data from ODP Leg 177, Site 1093 (δ18O = 39.610, δ17O = 20.536‰), which is almost identical to Pack and Herwartz (EPSL, 2014). Application to ancient cherts gives the following results: The δ18O-δ17O values of cherts vary systematically with age, from Archean to Proterozoic to Phanerozoic. The Archean cherts are incompatible with modern seawater under any temperature conditions. Instead they have equilibrated with water of δ18O= -10±3 (‰ vs SMOW) at 50 to 70°C. These data support a lighter ocean in the Archean by ~5‰. Proterozoic cherts equilibrated at 35-50°C with meteoric water of -8±3‰ and Phanerozoic cherts equilibrated with mixed meteoric water/ocean water at similar temperatures and higher δ18O values (-3±3‰). The δ18O values of lacustrine diatoms from the Valles Caldera, NM, vary by over 20‰ between glacial and interglacial times. The combined δ18O-δ17O values of interglacial diatoms give T= ~12°C, δ18Ometeoric water = -9‰. A glacial age diatom sample gives T=<10°C, δ18Ometeoric water = -20‰. These data could not be obtained from the

  17. [DOTA-bis(amide)]lanthanide complexes: NMR evidence for differences in water-molecule exchange rates for coordination isomers.

    PubMed

    Zhang, S; Kovacs, Z; Burgess, S; Aime, S; Terreno, E; Sherry, A D

    2001-01-01

    Two derivatives of 1,4,7,10-tetraazacyclododecane with trans-acetate and trans-amide side-chain ligating groups have been prepared and their complexes with lanthanide cations examined by multinuclear NMR spectroscopy. These lanthanide complexes exist in aqueous solution as a mixture of slowly interconverting coordination isomers with 1H chemical shifts similar to those reported previously for the major (M) and minor (m) forms of the tetraacetate ([Ln(dota)]-) and tetraamide ([Ln(dtma)]3+) complexes. As in the [Ln(dota)]- and [Ln(dtma)]3+ complexes, the m/M ratio proved to be a sensitive function of lanthanide size and temperature. An analysis of 1H hyperfine shifts in spectra of the Yb3+ complexes revealed significant differences between the axial (D1) and non-axial (D2) components of the magnetic susceptibility tensor anisotropy in the m and M coordination isomers and the energetics of ring inversion and m <==> M isomerization as determined by two-dimensional exchange spectroscopy (EXSY). (17)O shift data for the Dy3+ complexes showed that both have one inner-sphere water molecule. A temperature-dependent (17)O NMR study of bulk water linewidths for solutions of the Gd3+ complexes provided direct evidence for differences in water exchange rates for the two coordination isomers. The bound-water lifetimes (tauM298) in the M and m isomers of the Gd3+ complexes ranged from 1.4-2.4 micros and 3-14 ns, respectively. This indicates that 1) the inner-sphere water lifetimes for the complexes with a single positive charge reported here are considerably shorter for both coordination isomers than the corresponding values for the [Gd(dtma)]3+ complex with three positive charges, and 2) the difference in water lifetimes for M and m isomers in these two series is magnified in the [Gd[dota-bis(amide)

  18. Measurements and Modeling of (16)O(12)C(17)O Spectroscopic Parameters at 2µm

    NASA Astrophysics Data System (ADS)

    Jacquemart, D.; Sung, K.; Brown, L. R.; Coleman, M.; Mantz, A. W.; Smith, M. A. H.

    2014-06-01

    In the present study, line-intensity measurements for 16O12C17O were performed using a high-resolution Fourier transform spectrometer (Bruker IFS-125HR) together with a Herriott cell allowing a 20.956 m absorption path. For this, a 17O-enriched CO2 gas sample mixture was used. The 16O12C17O isotopologue abundance in the sample was determined to be 0.3991 by mass spectrometry. Since a collisional narrowing effect has been observed, the Rautian profile was systematically used instead of the Voigt profile. Finally, around 1000 transitions were studied between 4604 and 5126 cm-1 involving 15 bands of the 16O12C17O isotopologue. For each of the 15 bands, transition dipole moments and Herman-Wallis factors were derived, which also enabled a global comparison with theoretical calculations and predictions achieved for carbon dioxide. For the measured and calculated line positions, the accuracy is between 0.1 - 1×10-3 cm-1. For line intensities, depending on the intensity of the band, accuracies are between 2 - 3 % for 5 cold bands and 2 hot bands and between 6 - 30 % for 8 weaker hot bands. Results from this work are compared to previous works and to HITRAN 2012. Complete line lists were generated to support atmospheric remote sensing for the Earth (e.g. GOSAT, OCO-2 ...), Mars and Venus.

  19. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  20. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  1. Insight into the dynamics of lanthanide-DTPA complexes as revealed by oxygen-17 NMR.

    PubMed

    Fusaro, Luca; Mocci, Francesca; Muller, Robert N; Luhmer, Michel

    2012-08-01

    DTPA chelates of various diamagnetic and paramagnetic lanthanide(III) metal ions, as well as the chemically similar DTPA chelate of Y(3+), were studied in aqueous solution by variable temperature (17)O NMR with the aim of characterizing their internal dynamics. As a consequence of poor chemical shift dispersion and fast quadrupole relaxation, no dynamic exchange process could be detected for the diamagnetic complexes nor for the Sm-DTPA complex. In contrast, the spectra recorded for the Eu-DTPA complex show chemical exchange due to the well-known racemization process and, at high temperature, feature signal broadening that reveals a fluxional process involving the interchange of the coordinated and noncoordinated oxygen atoms of the carboxylate groups. The spectra recorded for the Pr-DTPA complex feature coalescence events due to such a fluxional process, which is ascribable to the rotation of the carboxylate groups. The activation free energy barriers determined experimentally are remarkably lower than the calculated activation barriers recently reported for the rotation of the carboxylate groups of various Ln-DOTA complexes. Furthermore, the smallest activation free energy measured for the Pr-DTPA complex, about 45 kJ mol(-1), is significantly lower than the activation free energy characterizing the racemization process. The fluxional behavior of the carboxylate groups is, however, not expected to significantly affect the residence time of the water molecule coordinated to the metal ion. PMID:22817329

  2. Solid-state NMR and Membrane Proteins

    PubMed Central

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  3. Practice and applications of 17-O-excess measurements of water using novel laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennis, K. J.; Steig, E. J.; Vasileios, G.; Schauer, A. J.; Schoenemann, S. W.; Hoffnagle, J.

    2014-12-01

    17O-excess, defined as the deviation from the Global Meteoric Water Line (GMWL) in a plot of ln(δ18O+1) vs. ln(δ17O+1), is an evolving tool for understanding the modern water cycle and reconstructing past climate regimes. Because of competing effects between equilibrium and kinetic fractionation small variations in 17O-excess can be used, for example, to (i) infer changes in temperature and sea ice across glacial-interglacial cycles in Antarctica (Schoenemann et al., 2014), (ii) study the role of rain re-evaporation during convective events thereby improving the incorporation of isotopes into GCMs (Landais et al., 2010), and (iii) assess the role of stratospheric water vapor intrusions at high altitudes or in polar regions (Winkler et al., 2013). In natural waters, variability in 17O-excess is very small (on the order of tens of per meg, where 1 per meg is 0.001‰). Until recently, only measurements made via Isotope Ratio Mass Spectrometry (IRMS) could achieve the required precision, following time-consuming front-end chemistry that converted H2O into O2 for analysis of m/z+ 32, 33 and 34. Recent improvements in laser-based spectroscopy, e.g., Cavity Ring-Down Spectroscopy (CRDS), are enabling quicker and easier measurement of 17O-excess in water (Steig et al., 2013; 2014). The Picarro L2140-i is certified with a precision of ≤ 0.015‰; however implementation of best practices can result in an achievable precision of ≤ 0.008‰, thereby demonstrating comparable performance to IRMS. We will review our recommendations for achieving high-precision measurements of 17O-excess on the Picarro L2140-i, including how to calibrate the system, the frequency of standards analysis, the number of replicate injections and vials required, and approaches to dealing with sample-to-sample memory. We will also compare the external accuracy achieved by three distinct Picarro L2140-i analyzers for multiple waters with distinct isotopic composition.

  4. Simulating the budget and distribution of Δ17O in CO2 with a global atmosphere-biosphere model

    NASA Astrophysics Data System (ADS)

    Peters, Wouter; Schneider, Linda; Hofmann, Magdalena E. G.; van der Velde, Ivar; Röckmann, Thomas

    2015-04-01

    The isotope ratios of 16O, 17O and 18O in CO2 are referred to as the triple-oxygen isotope composition of CO2, and have long held promise to better understand terrestrial carbon cycling. However, measurement precision as well as an incomplete understanding of fractionation during equilibrium exchange and diffusion of CO2 have been a challenge, especially for the estimation of gross primary production (GPP) and respiration from measured δ17O and δ18O isotope ratios in CO2. The excess-17O in CO2 (Δ17O), defined as the deviation of the δ17O and δ18O ratios from an expected mass-dependent fractionation line, is in principle easier to interpret as many processes that simultaneously affect δ17O and δ18O are not reflected in Δ17O. Two global box model simulations suggest that atmospheric Δ17O is therefore mostly determined by transport of relatively δ17O enriched CO2 from the stratosphere, and its equilibration in leaf-water back to an excess of close to zero, following diffusion as part of photosynthetic CO2 uptake by vegetation. This makes Δ17O an interesting tracer for photosynthesis at the global scale, and the first decadal time series have recently been published that indeed suggest strong GPP-driven variations in atmospheric Δ17O. In this study, we expand the modeling of Δ17O beyond the current two global box model results published by explicitly simulating the global atmospheric Δ17O distribution over a five year period. We specifically are interested whether regional gradients in Δ17O in areas with large GPP such as Amazonia leave an imprint on Δ17O that can be measured with the rapidly improving measurement precision (10-40 permeg currently). Therefore, we used the SIBCASA biosphere model at 1x1 degrees globally to simulate hourly fluxes of Δ17O into and out of C3 and C4 vegetation as well as soils. These fluxes were then fed into the TM5 atmospheric transport model at 6x4 degrees horizontal resolution to simulate the hourly spatial gradients in

  5. FTS Studies of the 17O Enriched Isotopologues of CO_2 Toward Creating a Complete and Highly Accurate Reference Standard

    NASA Astrophysics Data System (ADS)

    Elliott, Ben; Sung, Keeyoon; Brown, Linda; Miller, Charles

    2014-06-01

    The proliferation and increased abilities of remote sensing missions for the monitoring of planetary atmospheric gas species has spurred the need for complete and accurate spectroscopic reference standards. As a part of our ongoing effort toward creating a global carbon dioxide (CO2) frequency reference standard, we report new FTS measurements of the 17O enriched isotopologues of CO2. The first measurements were taken in the ν3 region (2200 - 2450 cm-1, 65 - 75 THz), have absolute calibration accuracies of 100 kHz (3E-6 cm-1), comparable to the uncertainties for typical sub-millimeter/THz spectroscopy. Such high absolute calibration accuracy has become regular procedure for the cases of linear molecules such as CO2 and CO for FTS measurements at JPL, and enables us to produce measured transition frequencies for entire bands with accuracies that rival those of early heterodyne measurements for individual beat notes. Additionally, by acquiring spectra of multiple carbon dioxide isotopologues simultaneously, we have begun to construct a self-consistent frequency grid based on CO2 that extends from 20 - 200 THz. These new spectroscopic reference standards are a significant step towards minimizing CO2 retrieval errors from remote sensing applications, especially those involving targets with predominantly CO2 atmospheres such as Mars, Venus and candidate terrestrial exoplanets where minor isotopologues will make significant contributions to the radiance signals.

  6. Measurements and Modeling of 16O12C17O Spectroscopic Parameters at 2 μm

    NASA Astrophysics Data System (ADS)

    Jacquemart, David; Sung, Keeyoon; Brown, Linda; Coleman, Max; Mantz, Arlan; Smith, Mary Ann H.

    2014-06-01

    Nearly 1000 line intensities of 16O12C17O between 4604 and 5126 wn were measured using an isotopically-enriched mixture sample having 40 % (determined by mass spectrometry). Spectra were recorded at 0.0056 wn resolution with a Fourier transform spectrometer (Bruker IFS-125HR at JPL) configured to a Herriott cell with a 20.946 m absorption path. Since collisional narrowing effects were observed, the Rautian profile was systematically applied (instead of the Voigt profile) using a multispectrum retrieval procedure. Transition dipole moments and Herman-Wallis factors were derived for 15 bands, and a global comparison with theoretical calculations and predictions was obtained. Accuracies for the line intensities ranged between 2 - 3 % for strong bands and 6 - 30 % for weak bands. Retrieved line positions were calibrated using CO, HCl and some well-known 16O12C16O transitions. For both measured and calculated line positions, the accuracies fell between 0.1 - 1×10-3 wn. Self-broadening was also obtained for a few bands. Complete line lists were generated to support atmospheric remote sensing of the Earth (e.g., OCO-2 mission), Mars and Venus. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, and California Institute of Technology, and NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  7. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species

    NASA Astrophysics Data System (ADS)

    Morin, S.; Sander, R.; Savarino, J.

    2010-12-01

    The isotope anomaly (Δ17O) of secondary atmospheric species such as nitrate (NO3-) or hydrogen peroxyde (H2O2) has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. We present results from numerical simulations carried out using the atmospheric chemistry box model (CAABA/MECCA) to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model confirms that diurnal variations in Δ17O of NOx are well predicted by the photochemical steady-state relationship during the day, but that at night a different approach must be employed (i.e. "fossilization" of the Δ17O of NOx as soon as the photolytical lifetime of NOx drops below ca. 5 min). We quantify the diurnally-integrated isotopic signature (DIIS) of sources of atmospheric nitrate and H2O2 under the various environmental conditions analyzed, which is of particular relevance to larger-scale implementations of Δ17O where high computational costs cannot be afforded.

  8. Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Crespi, F. C. L.; Leoni, S.; Camera, F.; Lanza, E. G.; Kmiecik, M.; Maj, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Vandone, V.; Wieland, O.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Cederwall, B.; Charles, L.; Ciemala, M.; De Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Gernhäuser, R.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocrate, R.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Krzysiek, M.; Litvinova, E.; Lunardi, S.; Mazurek, K.; Mengoni, D.; Michelagnoli, C.; Menegazzo, R.; Molini, P.; Napoli, D. R.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente Dobon, J. J.; Zieblinski, M.

    2014-11-01

    The γ decay from the high-lying states of 124Sn was measured using the inelastic scattering of 17O at 340 MeV. The emitted γ rays were detected with high resolution with the AGATA demonstrator array and the scattered ions were detected in two segmented ΔE- E silicon telescopes. The angular distribution was measured both for the γ rays and the scattered 17O ions. An accumulation of E1 strength below the particle threshold was found and compared with previous data obtained with (γ ,γ‧) and (α ,α‧ γ) reactions. The present results of elastic scattering, and excitation of E2 and E1 states were analysed using the DWBA approach. From this comprehensive description the isoscalar component of the 1- excited states was extracted. The obtained values are based on the comparison of the data with DWBA calculations including a form factor deduced using a microscopic transition density.

  9. Seasonal variations in 35S and Δ17O of sulfate aerosols on the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Hill-Falkenthal, Jason; Priyadarshi, Antra; Savarino, Joel; Thiemens, Mark

    2013-08-01

    The first reported seasonal Δ17O anomaly in sulfate aerosols and measurements of radioactive 35SO42- activities collected from Dome C, Antarctica, are reported. Δ17O values exhibit minima during summer (as low as 0.91‰) when tropospheric oxidation patterns are dominated by OH/H2O2 mechanisms. Significant enrichment during autumn and spring is observed (up to 2.40‰) as ozone oxidation increases in the troposphere relative to summer and both stratospheric sources and long-range transport become more significant to the total sulfate budget. An unexpected decrease in Δ17O is seen as winter progresses. This decline is concluded to potentially arise due to a reduction in vertical mixing in the troposphere or linked to variations in the long-range transport of sulfur species to Antarctica. 35SO42- activities exhibit maxima during summer (up to 1219 atoms 35S/m3) that correlate with the peak in stratospheric flux and minima during winter (as low as 146 atoms 35S/m3) when the lack of solar radiation substantially reduces photochemical activity. It is shown that 35S offers the potential to be used as an additional tracer to study stratospheric and tropospheric interactions and is used to estimate stratospheric input of sulfur (combination of SO2 and SO42-). Stratospheric sulfur input produces maxima during summer/autumn with an upper limit of 5.5 ng/m3 and minima during winter/spring with an upper limit of 1.1 ng/m3. From these results, it is concluded that the variation in Δ17O is more reliant upon shifts in tropospheric oxidation mechanisms and long-range transport than on changes in the stratospheric flux.

  10. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  11. Study of the soft dipole modes in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemała, M.; Fornal, B.; Grȩbosz, J.; Mazurek, K.; Mȩczyński, W.; Ziȩbliński, M.; Crespi, F. C. L.; Bracco, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; De Angelis, G.; Napoli, D. R.; Valiente-Dobon, J. J.; Bazzacco, D.; Farnea, E.; Gottardo, A.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Recchia, F.; Ur, C.; Gadea, A.; Huyuk, T.; Barrientos, D.; Birkenbach, B.; Geibel, K.; Hess, H.; Reiter, P.; Steinbach, T.; Wiens, A.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.

    2014-05-01

    The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in 140Ce, excited via inelastic scattering of weakly bound 17O projectiles. An important aim was to investigate the ‘splitting’ of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (α, α‧) and (γ, γ‧) experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of 17O ion beam at 20 MeV A-1 was used to excite the resonance modes in the 140Ce target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered 17O ions were identified by two ΔE - E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the ‘pygmy’ region with a character more similar to the one obtained in alpha scattering experiment.

  12. Optically detected magnetic resonance studies of photoexcited /sup 17/O-benzophenone. Orbital rotation in the lowest triplet state

    SciTech Connect

    Waeckerle, G.; Baer, M.; Zimmermann, H.; Dinse, K.H.; Yamauchi, S.; Kashmar, R.J.; Pratt, D.W.

    1982-03-01

    The magnetically active isotope of oxygen /sup 17/O has been used to probe the changes in the electron charge and spin density distributions in oxygen valence orbitals which occur when benzophenone is excited to its lowest triplet state. The data obtained include the optically detected magnetic resonance (ODMR) and electron-nuclear double resonance spectra at both zero and high magnetic fields. New methods of analysis of zero-field ODMR spectra, appropriate when the second-order hyperfine splitting exceeds the quadrupole coupling, are described. This analysis yields the principal values of the electron fine-structure (D), oxygen hyperfine (A), and oxygen quadrupole (Q) tensors, and the orientation of their principal axes with respect to the molecular frame. It is found, consistent with expectations for an n..pi..( state, that the direction of the largest component of Q is different from that of the ground state. It is also found, by two independent methods, that the principal transverse axes of A and Q do not conform to the local C/sub 2v/ symmetry axes of the carbonyl group. This result is interpreted to mean that the axis of the n-type oxygen 2p orbital is rotated out of the carbonyl plane, a rotation which appears to be direct consequence of n..pi..(/..pi pi..( configurational mixing. In agreement with this, the principal values of D, A, and Q are different from those expected for a ''pure'' n..pi..( state. Other consequences of n..pi..(/..pi pi..( mixing, not only in benzophenone but also in the lowest triplet states of other aromatic carbonyls, are discussed briefly.

  13. Tracing the Atmospheric Source of Desert Nitrates Using Δ 17O

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Holve, M.; Feldmeier, J.; Bao, H.; Reheis, M.; Bockheim, J. G.; Thiemens, M. H.

    2001-05-01

    Mineral, caliche, and soil nitrates are found throughout the worlds deserts, including the cold dry Wright Valley of Antarctica, the Atacama desert in Chile and the Mojave desert in the southwest United States. Several authors have suggested biologic sources of these nitrates while others have postulated atmospheric deposition. A recent study utilizing 18O indicated that 30%, and perhaps 100%, of nitrates found in the Atacama and Mojave were of atmospheric origin [1]. A more quantitative assessment of the source strength of atmospheric nitrates was impossible because of the high variability of δ 18 18O of atmospheric nitrates and uncertainties in conditions of biologic production. Mass independently fractionated (MIF) processes are defined and quantified by the equation Δ 17O = δ 17O - .52x δ 18O. MIF processes are associated with the photochemistry of trace gases in the atmosphere and have been found in O3, N2O, CO, and sulfate aerosols . A large MIF (Δ 17O ~ 28 ‰ ) in nitrate aerosols collected in polluted regions was recently reported [2]. Here we extend measurements of MIF in nitrate to the dry deposition of nitrate in less polluted areas (Mojave desert). In addition we trace the MIF signal as it accumulates in the regolith as nitrate salts and minerals and is mixed with biologically produced nitrate (nitrification). Also examined were the isotopic composition of soil nitrates from Antarctic dry valleys. Dust samples were collected as part of the NADP program and soils were collected throughout the Mojave and Death Valley regions of California. Isotope analysis was done in addition to soluble ion content (Cl, NO3, SO4). Dust samples collected by dry deposition samplers showed a large MIF > 20‰ approaching values measured in urban nitrate aerosol. Soils collected throughout the region showed large variations in Δ 17O from ~ 0 to 18 ‰ . The low Δ 17O values are nitrates dominated by biologic nitrification and higher values are nitrates derived by

  14. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  15. Modern NMR spectroscopy: a guide for chemists

    SciTech Connect

    Sanders, J.K.M.; Hunter, B.K.

    1988-01-01

    The aim of the authors of Modern NMR Spectroscopy is to bridge the communication gap between the chemist and the spectroscopist. The approach is nonmathematical, descriptive, and pictorial. To illustrate the ideas introduced in the text, the authors provide original spectra obtained specially for this purpose. Examples include spectroscopy of protons, carbon, and less receptive nuclei of interest to inorganic chemists. The authors succeed in making high-resolution NMR spectroscopy comprehensible for the average student or chemist.

  16. Probing Cancer Cell Metabolism Using NMR Spectroscopy.

    PubMed

    Hollinshead, Kate E R; Williams, Debbie S; Tennant, Daniel A; Ludwig, Christian

    2016-01-01

    Altered cellular metabolism is now accepted to be at the core of many diseases including cancer. Over the past 20 years, NMR has become a core technology to study these metabolic perturbations in detail. This chapter reviews current NMR-based methods for steady-state metabolism and, in particular, the use of non-radioactive stable isotope-enriched tracers. Opportunities and challenges for each method, such as 1D (1)H NMR spectroscopy and (13)C carbon-based NMR spectroscopic methods, are discussed. Ultimately, the combination of NMR and mass spectra as orthogonal technologies are required to compensate for the drawbacks of each technique when used singly are discussed. PMID:27325263

  17. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species

    NASA Astrophysics Data System (ADS)

    Morin, S.; Sander, R.; Savarino, J.

    2011-04-01

    The isotope anomaly (Δ17O) of secondary atmospheric species such as nitrate (NO3-) or hydrogen peroxide (H2O2) has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. This article reviews and illustrates a series of basic concepts relevant to the propagation of the Δ17O of ozone to other reactive or secondary atmospheric species within a photochemical box model. We present results from numerical simulations carried out using the atmospheric chemistry box model CAABA/MECCA to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Using a simplified but realistic tropospheric gas-phase chemistry mechanism, Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the mass-balance equations, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model results confirm that diurnal variations in Δ17O of NOx predicted by the photochemical steady-state relationship during the day match those from the explicit treatment, but not at night. Indeed, the Δ17O of NOx is "frozen" at night as soon as the photolytical lifetime of NOx drops below ca. 10 min. We introduce and quantify the diurnally-integrated isotopic signature (DIIS) of sources of atmospheric nitrate and H2O2, which is of particular relevance to larger-scale simulations of Δ17O where high computational costs cannot be afforded.

  18. Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; Casciotti, K.L.

    2004-01-01

    The bacterial denitrification method for isotopic analysis of nitrate using N2O generated from Pseudomonas aureofaciens may overestimate ??15N values by as much as 1-2??? for samples containing atmospheric nitrate because of mass-independent 17O variations in such samples. By analyzing such samples for ??15N and ??18O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct ??15N values because oxygen in N 2O generated by P. chlororaphis is primarily derived from H 2O. The difference between the apparent ??15N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent 17O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different ?? 18O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N2O derived from the nitrate and from water with each denitrifier. This information can be used to improve ??15N values of nitrates having excess 17O. The same analyses also yield estimates of the magnitude of 17O excess in the nitrate (expressed as ??17O) that may be useful in some environmental studies. The 1-?? uncertainties of ??15N, ??18O and ??17O measurements are ??0.2, ??0.3 and ??5???, respectively. Copyright ?? 2004 John Wiley & Sons, Ltd.

  19. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    PubMed

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. PMID:23946163

  20. Synthesis and x-ray structural characterization of binuclear iridium(I) and rhodium(I) hydroxypyridinate complexes. 1. Complete assignment of the /sup 1/H NMR spectra by two-dimensional and NOE techniques. The nature of inside and outside /sup 1/H chemical shift differences

    SciTech Connect

    Rodman, G.S.; Mann, K.R.

    1988-09-21

    Six new d/sup 8/-d/sup 8/ complexes, (Ir(COD)(..mu..-hp))/sub 2/, (Ir(COD)(..mu..-mhp))/sub 2/, (Ir(COD)(..mu..-chp))/sub 2/, (Ir(COD)(..mu..-2hq))/sub 2/, (Rh(COD)(..mu..-hp))/sub 2/, and (Rh(COD)(..mu..-mhp))/sub 2/ (hp = 2-hydroxyphridinate, mhp = 6-methyl-2-hydroxypyridinate, chp = 6-chloro-2-hydroxypyridinate, 2hq = 2-hydroxyquinolate, COD = 1,5-cyclooctadiene), were synthesized and characterized by /sup 1/H NMR, /sup 13/C NMR, and IR spectroscopy and FAB mass spectrometry. X-ray crystallographic analyses of the isostructural (M(COD)(..mu..-mhp))/sub 2/ (M = Ir and Rh) complexes confirmed the binuclear nature of the complexes. The complete assignment of the /sup 1/H NMR spectrum of (Ir(COD)(..mu..-hp))/sub 2/ (and by analogy, the spectra of the other five complexes) was carried out with selective decoupling, nuclear Overhauser effect (NOE), and two-dimensional NMR techniques. The NOE observed between hp proton H5 and COD proton H15 allowed the precise assignment of all 12 COD resonances. Olefinic proton H12 (trans to N and outside) resonates downfield of olefinic proton H11 (trans to N and inside). Olefininc proton H15 (trans to O and outside) resonates upfield of olefinic proton H16 (trans to O and inside). The endo methylene protons resonate upfield of the exo methylene protons. The inside/outside chemical shift differences observed for these compounds are ascribed to steric and magnetic anisotropy effects. The crystallographic data are presented. The molecular structure of the complexes is discussed in detail. 39 references, 5 figures, 9 tables.

  1. Covalency in La2CuO4: A study of 17O hyperfine couplings in the paramagnetic phase

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Cheong, S.-W.

    2001-07-01

    17O nuclear magnetic resonance spectra from single crystals of La2CuO4 are reported for temperatures ranging from 285 to 800 K. Hyperfine tensor data for the planar sites are analyzed using a spin Hamiltonian model that includes spin-orbit coupling effects. The results show a 7.7% hybridization effect of the oxygen 2pσ orbital from a single copper neighbor, in good agreement with recent density-functional (DF) calculations by Hüsser et al. (HSSM). A large, positive isotropic shift component is also reported, presumably originating from the contact interaction with a hybridized 2s orbital component. First-order quadrupolar-splitting data lead to complete characterization of the electric-field gradient (EFG) tensor, which varies only slightly with temperature up to 800 K. EFG tensors for both doped and undoped La2CuO4 are fitted with a two-component model, which incorporates a substantial anisotropy in for the 2pσ wave functions, an effect that originated in the DF calculations of HSSM. This analysis reveals an increased charge density on the planar oxygens for the superconducting phase, in accord with the original Zhang-Rice model. However, the increase is found to correspond to only ~80% of the nominal doped-hole density, corroborating a similar conclusion reached recently by Hammel et al. Regarding the anomalous spin HF interaction reported in a previous paper for the weakly ferromagnetic state, the present results show that its effects extend all the way to and slightly beyond the orthorhombic-tetragonal phase boundary (TO-T~=550 K). Further, the predominant 2s contact HF interaction reported here supports the notion, suggested earlier, that a 2s admixture underlies the anomaly. However, the basic mechanism of the anomaly remains obscure.

  2. Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: Ambient measurements from 50°N to 50°S using the nitrite-coated filter technique

    NASA Astrophysics Data System (ADS)

    Vicars, William C.; Savarino, Joël

    2014-06-01

    The unique and distinctive 17O-excess (Δ17O) of ozone (O3) provides a conservative tracer for oxidative processes in both modern and paleo-atmospheres and has acted as the primary driver of theoretical and experimental research into non-mass-dependent fractionation (NMDF) for over three decades. However, due to the inherent complexity of extracting O3 from ambient air, the existing observational dataset for tropospheric O3 isotopic composition remains quite small. Recent analytical developments have provided a robust and reliable means for determining Δ17O(O3)trans., the transferrable Δ17O signature of ozone in the troposphere (Vicars et al., 2012). We have employed this new methodology in a systematic investigation of the spatial and seasonal features of Δ17O(O3)trans. in two separate field campaigns: a weekly sampling effort at our laboratory in Grenoble, France (45°N) throughout 2012 (n = 47) and a four-week campaign onboard the Research Vessel (R/V) Polarstern along a latitudinal transect from 50°S to 50°N in the Atlantic Ocean (n = 30). The bulk 17O-excess of ozone, denoted Δ17O(O3)bulk, exhibited mean (±1σ) values of 26.2 ± 1.3‰ (Δ17O(O3)trans. = 39.3 ± 2.0‰) and 25.9 ± 1.1‰ (Δ17O(O3)trans. = 38.8 ± 1.6‰) for the Grenoble and R/V Polarstern collections, respectively. This range of values is in excellent quantitative agreement with the two previous studies of ozone triple-isotope composition, which have yielded mean (±1σ) Δ17O(O3)bulk values of 25.4 ± 9.0‰ (n = 89). However, the magnitude of variability detected in the present study is much smaller than that formerly reported. In fact, the standard deviation of Δ17O(O3)bulk in each new dataset is lower than the uncertainty previously estimated for the filter technique (±1.7‰), indicating a low level of natural spatial and temporal variation in the 17O-excess of surface ozone. For instance, no clear temporal pattern in Δ17O(O3) is evident in the annual record from Grenoble

  3. Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks

    PubMed Central

    Herwartz, Daniel; Pack, Andreas; Krylov, Dmitri; Xiao, Yilin; Muehlenbachs, Karlis; Sengupta, Sukanya; Di Rocco, Tommaso

    2015-01-01

    The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition (17O/16O, 18O/16O) of Proterozoic rocks to reconstruct the 18O/16O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3–2.4 gigayears ago (Ga)] snowball Earth, δ18O = −43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low 18O/16O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme 18O depletion. For a Neoproterozoic (∼0.6–0.7 Ga) snowball Earth, higher meltwater δ18O estimates of −21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how 17O/16O measurements provide information beyond traditional 18O/16O measurements, even though all fractionation processes are purely mass dependent. PMID:25870269

  4. 1- and 2+ discrete states in 90Zr populated via the (17O,'17Oγ ) reaction

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Lanza, E. G.; Vitturi, A.; Mengoni, D.; Leoni, S.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Corsi, A.; Giaz, A.; Million, B.; Pellegri, L.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Kmiecik, M.; Krzysiek, M.; Maj, A.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Hess, H.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Kempley, R. S.; Labiche, M.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Sahin, E.; Siem, S.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2015-02-01

    2+ and 1- states in 90Zr were populated via the (17O,'17Oγ ) reaction at 340 MeV. The γ decay was measured with high resolution using the AGATA (advanced γ tracking array demonstrator array). Differential cross sections were obtained at few different angles for the scattered particle. The results of the elastic scattering and inelastic excitation of 2+,3-, and 1- states are compared with distorted-wave Born approximation (DWBA) calculations, using both the standard collective form factor and a form factor obtained by folding microscopically calculated transition densities. This allowed to extract the isoscalar component of the 1- state at 6.424 MeV. The comparison of the present (17O,'17Oγ ) data with existing (γ ,γ' ) and (p ,p' ) data in the corresponding region of the γ continuum (6-11 MeV), characterized by a large E 1 component, shows completely different behaviors of the cross section as a function of the nuclear excitation energy. The comparison of the data with DWBA calculations suggests a decrease of the isoscalar strength in the cross section with increasing excitation energy.

  5. Elastic scattering of 17O+208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Nicoletto, M.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Toniolo, N.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Stroe, L.; Vitturi, A.; Watanabe, Y.; Zerva, K.

    2016-05-01

    Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.

  6. Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks.

    PubMed

    Herwartz, Daniel; Pack, Andreas; Krylov, Dmitri; Xiao, Yilin; Muehlenbachs, Karlis; Sengupta, Sukanya; Di Rocco, Tommaso

    2015-04-28

    The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition ((17)O/(16)O, (18)O/(16)O) of Proterozoic rocks to reconstruct the (18)O/(16)O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3-2.4 gigayears ago (Ga)] snowball Earth, δ(18)O = -43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low (18)O/(16)O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme (18)O depletion. For a Neoproterozoic (∼0.6-0.7 Ga) snowball Earth, higher meltwater δ(18)O estimates of -21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how (17)O/(16)O measurements provide information beyond traditional (18)O/(16)O measurements, even though all fractionation processes are purely mass dependent. PMID:25870269

  7. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  8. NMR study of some coumarins and furocoumarins methylated

    NASA Astrophysics Data System (ADS)

    Miranda, R.; Santana, L.; Uriarte, E.; Zagotto, G.

    1994-01-01

    The 1H and 13C NMR spectra of various methylcoumarins and methylfurocoumarins are reported. All signals were assigned and the influence on chemical shifts of methylation at various positions was determined.

  9. Pygmy dipole resonance in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Bracco, A.; Crespi, F. C. L.; Lanza, E. G.; Litvinova, E.; Paar, N.; Avigo, R.; Bazzacco, D.; Benzoni, G.; Birkenbach, B.; Blasi, N.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Ciemała, M.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocarte, R.; Jungclaus, A.; Leoni, S.; Ljungvall, J.; Lunardi, S.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Milion, B.; Morales, A. I.; Napoli, D. R.; Nicolini, R.; Pellegri, L.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Siebeck, B.; Siem, S.; Söderström, P.-A.; Ur, C.; Valiente-Dobon, J. J.; Wieland, O.; Ziebliński, M.

    2016-04-01

    The γ decay from the high-lying states of 140Ce excited via inelastic scattering of 17O at a bombarding energy of 340 MeV was measured using the high-resolution AGATA-demonstrator array in coincidence with scattered ions detected in two segmented Δ E -E silicon detectors. Angular distributions of scattered ions and emitted γ rays were measured, as well as their differential cross sections. The excitation of 1- states below the neutron separation energy is similar to the one obtained in reactions with the α isoscalar probe. The comparison between the experimental differential cross sections and the corresponding predictions using the distorted-wave Born approximation allowed us to extract the isoscalar component of identified 1- pygmy states. For this analysis the form factor obtained by folding microscopically calculated transition densities and optical potentials was used.

  10. Optimised conditions for the synthesis of (17)O and (18)O labelled cholesterol.

    PubMed

    de la Calle Arregui, Celia; Purdie, Jonathan A; Haslam, Catherine A; Law, Robert V; Sanderson, John M

    2016-02-01

    Conditions are described for the preparation of cholesterol with (17)O and (18)O labels from i-cholesteryl methyl ether using minimal amounts of isotopically enriched water. Optimum yields employed trifluoromethanesulfonic acid as catalyst in 1,4-dioxane at room temperature with 5 equivalents of water. An isotopic enrichment >90% of that of the water used for the reaction could be attained. Tetrafluoroboric acid could also be used as catalyst, at the expense of a lower overall reaction yield. Byproducts from the reaction included dicholesteryl ether, methyl cholesteryl ether, compounds formed by ether hydrolysis, and olefins arising from elimination reactions. Reactions in tetrahydrofuran yielded significant amounts of cholesteryl ethers formed by reaction with alcohols arising from hydrolysis of the solvent. PMID:26724708

  11. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame.

    PubMed

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20-60 nm and lengths of 4-6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  12. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  13. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    NASA Astrophysics Data System (ADS)

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-06-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications.

  14. 17O-excess traces atmospheric nitrate in paleo groundwater of the Saharan desert

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Leis, A.; Abdalla, R.; Savarino, J.; Morin, S.; Böttcher, M. E.; Köhler, S.

    2013-12-01

    Saharan paleo groundwater from the Hasouna area of Libya contains up to 1.8 mM of nitrate, the origin of which is still disputed. Herein we show that a positive 17O-excess in NO3- (Δ17ONO3 = δ17ONO3 - 0.52 δ18ONO3) is preserved in the paleo groundwater. The 17O-excess provides an excellent tracer of atmospheric NO3-, which is caused by the interaction of ozone with NOx via photochemical reactions, coupled with a non-mass dependent isotope fractionation. Our Δ17ONO3 data from 0.4 to 5.0‰ (n = 28) indicate that up to x [NO3-]atm = 20 mol % of total dissolved NO3- originated from the Earth's atmosphere. High Δ17ONO3 values correspond to soils that are barren in dry periods, while low Δ17ONO3 values correspond to more fertile soils. Coupled high Δ17ONO3 and high x [NO3-]atm values are caused by a sudden wash out of dry deposition of atmospheric NO3- on plant or soil surfaces within humid-wet cycles. The individual isotope and chemical composition of the Hasouna groundwater can be followed by a binary mixing approach using the lowest and highest mineralized groundwater as end-members without considering evaporation. Using the δ34SSO4 and δ18OSO4 isotope signature of dissolved sulfate, no indication is found for a superimposition by denitrification, e.g. involving pyrite minerals within the aquifers. It is suggested that dissolved sulfate originates from the dissolution of calcium sulfate minerals during groundwater evolution.

  15. 17O excess traces atmospheric nitrate in paleo-groundwater of the Saharan desert

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Leis, A.; Abdalla, R.; Savarino, J.; Morin, S.; Böttcher, M. E.; Köhler, S.

    2014-06-01

    Saharan paleo-groundwater from the Hasouna area of Libya contains up to 1.8 mM of nitrate, which exceeds the World Health Organization limit for drinking water, but the origin is still disputed. Herein we show that a positive 17O excess in NO3- (Δ17ONO3 = Δ17ONO3 - 0.52 δ18ONO3) is preserved in the paleo-groundwater. The 17O excess provides an excellent tracer of atmospheric NO3-, which is caused by the interaction of ozone with NOx via photochemical reactions, coupled with a non-mass-dependent isotope fractionation. Our Δ17ONO3 data from 0.4 to 5.0 ‰ (n = 28) indicate that up to 20 mol % of total dissolved NO3- originated from the Earth's atmosphere (x[NO3-]atm), where the remaining NO3- refers to microbially induced nitrification in soils. High Δ17ONO3 values correspond to soils that are barren in dry periods, while low Δ17ONO3 values correspond to more fertile soils. Coupled high Δ17ONO3 and high x[NO3-]atm values are caused by a sudden wash-out of accumulated disposition of atmospheric NO3- on plants, soil surfaces and in vadose zones within humid-wet cycles. The individual isotope and chemical composition of the Hasouna groundwater can be followed by a binary mixing approach using the lowest and highest mineralised groundwater as end members without considering evaporation. Using the δ34SSO4 and δ18OSO4 isotope signature of dissolved SO42-, no indication is found for a superimposition by denitrification, e.g. involving pyrite minerals within the aquifers. It is suggested that dissolved SO42- originates from the dissolution of CaSO4 minerals during groundwater evolution.

  16. Development of Halbach magnet for portable NMR device

    NASA Astrophysics Data System (ADS)

    Doğan, N.; Topkaya, R.; Subaşi, H.; Yerli, Y.; Rameev, B.

    2009-03-01

    Nuclear magnetic resonance (NMR) has enormous potential for various applications in industry as the on-line or at-line test/control device of process environments. Advantage of NMR is its non-destructive nature, because it does not require the measurement probe to have a contact with the tested media. Despite of the recent progress in this direction, application of NMR in industry is still very limited. This is related to the technical and analytical complications of NMR as a method, and high cost of NMR analyzers available at the market. However in many applications, NMR is a very useful technique to test various products and to monitor quantitatively industrial processes. Fortunately usually there is no need in a high-field superconducting magnets to obtain the high-resolution spectra with the detailed information on chemical shifts and coupling-constant. NMR analyzers are designed to obtain the relaxation parameters by measuring the NMR spectra in the time domain rather than in frequency domain. Therefore it is possible to use small magnetic field (and low frequency of 2-60 MHz) in NMR systems, based on permanent magnet technology, which are specially designed for specific at-line and on-line process applications. In this work we present the permanent magnet system developed to use in the portative NMR devices. We discuss the experimental parameters of the designed Halbach magnet system and compare them with results of theoretical modelling.

  17. Evidence for intrinsic impurities in the high-temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} from {sup 17}O nuclear magnetic resonance.

    SciTech Connect

    Chen, B.; Mukhopadhyay, S.; Halperin, W. P.; Guptasarma, P.; Hinks, D. G.; Materials Science Division; Northwestern Univ.; Univ. of Wisconsin at Milwaukee

    2008-02-01

    We have found that high quality crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212) have intrinsic magnetic defects that depend on oxygen doping. Our {sup 17}O nuclear magnetic resonance spectra provide evidence that local moments form in the CuO{sub 2} plane in both normal and superconducting states. We suggest that these magnetic impurities are related to the electronic disorder that scanning tunneling microscopy experiments identify with the oxygen dopant atoms.

  18. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  19. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  20. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  1. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  2. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  3. VizieR Online Data Catalog: C18O/C17O ratios in the Galactic center

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Sun, L. L.; Riquelme, D.; Henkel, C.; Lu, D. R.; Zhang, Y.; Wang, J. Z.; Wang, M.; Li, J.

    2015-09-01

    Our mapping observations of the J=1-0 lines of 12CO, 13 and C17O were carried out with the DLH 13.7m telescope of the Purple Mountain Observatory (PMO) at Delingha in 2011 January and 2012 May and November. The C18O and C17O lines were also observed in single-point mode toward Sgr B2 with the IRAM 30m telescope in 2011 September, and toward Sgr C and Sgr D with the Mopra 22m in 2014 June. (2 data files).

  4. On the introduction of 17O+p reaction rates evaluated through the THM in AGB nucleosynthesis calculations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2014-05-01

    The rates for the 17O(p,αα14N, 17O(p,α)18F and 18O(p,α)15N reactions deduced trough the Trojan Horse Method (THM) have been introduced into a state-of-the-art asymptotic giant branch (AGB) models for proton-capture nucleosynthesis and cool bottom process. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis.

  5. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wischer, M.; Mrazek, J.; Kroha, V.

    2016-05-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  6. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  7. Potential barriers and Landau-Zener promotion in the inelastic excitation of /sup 17/O by /sup 13/C ions

    SciTech Connect

    Park, J.Y.; Gramlich, K.; Scheid, W.; Greiner, W.

    1986-05-01

    The inelastic excitation of the (1/2)/sup +/ (871 keV) state of /sup 17/O in the reaction of /sup 13/C on /sup 17/O is described by a time-dependent quantum mechanical model with two diabatic states and a classical treatment of the radial relative motion. The structures in the angle-integrated cross section are interpreted as caused by the barriers of the angular momentum-dependent potentials. The transition strength is enhanced by the Landau-Zener effect between the levels considered.

  8. Tracing Atmospheric Sulfate Through a Subalpine Ecosystem Using 17O and 35S, Loch Vale Watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Kester, C. L.; Johnson, C. A.; Mast, M. A.; Michel, R. L.

    2002-12-01

    Over the past several decades, sulfur cycles have been examined in numerous watersheds worldwide to assess the impacts of changes in sulfuric acid deposition rates. A thorough understanding of sulfur behavior in these systems requires that the sulfate influxes from bedrock weathering and from atmospheric deposition be known, and that the extent of sulfur uptake by biomass be determined. Following the discovery of excess 17O in atmospheric sulfate (Lee et al, 2001, GRL 28:1783), we used 17O to help constrain sulfur dynamics and fluxes in alpine/subalpine watersheds in the Rocky Mountains of Colorado (Johnson et al, 2001, GRL 28:4483). Building on this work, and on our previous studies employing cosmogenic 35S (t1/2=87 d, Michel et al, 2000, WRR 36:27), we report a combined 17O-35S study of sulfate in an undisturbed subalpine watershed, Loch Vale, Colorado. In this study, both isotopes were measured in sulfate from a suite of stream and spring waters collected in 1999, and in sulfate from the 1999 snowpack. The snowpack sulfate represents the dominant fraction of annual atmospheric deposition to the watershed. Individual sampling sites show linear correlations between excess 17O and 35S, suggesting that there are two dominant sources of surface water sulfate. The data arrays extend neither toward the measured compositions of snowpack sulfate (Δ17O=1.3‰ , 35S=53 mBq/mg sulfate at Julian day 90), nor toward the compositions characteristic of sulfate from bedrock weathering (Δ17O =0, 35S=0). Thus, the mixing components are themselves composites of different sulfate types. One component appears to be sulfate from bedrock weathering plus atmospheric sulfate with watershed residence times great enough for its 35S to have decayed to below detection (> approx 1 yr). The second mixing component is atmospheric sulfate, a portion of which was subject to redox cycling in soil organic matter - thereby erasing the excess 17O fingerprint - on timescales short enough that 35S is

  9. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation

    SciTech Connect

    Zhu, Liangliang; Xiao, Ling; Xia, Yangliu; Zhou, Kun; Wang, Huili; Huang, Minyi; Ge, Guangbo; Wu, Yan; Wu, Ganlin; Yang, Ling

    2015-03-01

    This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1 ± 0.3 μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In the presence of DES (0–6.25 μM), K{sub m} values for E2-17-O-glucuronidation are located in the range of 7.2–7.4 μM, while V{sub max} values range from 0.38 to 1.54 nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2 μM) can elevate V{sub max} from 0.016 to 0.81 nmol/min/mg, while lifting K{sub m} in a much lesser extent from 4.4 to 11 μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with K{sub A}, α, and β values of 0.077 ± 0.18 μM, 3.3 ± 1.1 and 104 ± 56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4. - Highlights: • E2-3-O-glucuronidation in HLM is inhibited when co-incubated with DES. • E2-17-O-glucuronidation in HLM is stimulated when co-incubated with DES. • Acceleration of E2-17-O-glucuronidationin in HLM by DES is via activating the

  10. Normal coordinate analysis, molecular structure, vibrational, electronic spectra and NMR investigation of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione by ab initio HF and DFT method

    NASA Astrophysics Data System (ADS)

    Bahgat, Khaled; Fraihat, Safwan

    2015-01-01

    In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of APTT were recorded in solid phase. The UV-Vis absorption spectrum of the APTT was recorded in the range of 200-400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

  11. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  12. First Principles NMR Study of Fluorapatite under Pressure

    PubMed Central

    Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M. J.; Fornari, Marco

    2012-01-01

    NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method [Pickard and Mauri, 2001]. Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from −5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as 43Ca and 17O. PMID:22770669

  13. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  14. Hyperpolarized NMR of plant and cancer cell extracts at natural abundance.

    PubMed

    Dumez, Jean-Nicolas; Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Lalande-Martin, Julie; Tea, Illa; Yon, Maxime; Maucourt, Mickaël; Deborde, Catherine; Moing, Annick; Frydman, Lucio; Bodenhausen, Geoffrey; Jannin, Sami; Giraudeau, Patrick

    2015-09-01

    Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics. PMID:26215673

  15. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  16. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    NASA Astrophysics Data System (ADS)

    Steig, E. J.; Gkinis, V.; Schauer, A. J.; Schoenemann, S. W.; Samek, K.; Hoffnagle, J.; Dennis, K. J.; Tan, S. M.

    2014-08-01

    High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O), a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS). We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS) with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  17. 17O(n,α)14C cross section from 25 meV to approximately 1 MeV

    NASA Astrophysics Data System (ADS)

    Koehler, P. E.; Graff, S. M.

    1991-12-01

    We have measured the 17O(n,α)14C cross section from thermal energy to approximately 1 MeV. A bump in the data near 3 keV could be fitted by a state whose properties are consistent with a known subthreshold J π=1- level at Ex=8.039 MeV. The cause of the 1/v cross section near thermal energy could not be determined although the known 2+ state at 8.213 MeV was found to be too narrow to contribute much to the thermal cross section. Our data are compared to measurements made via the inverse reaction. There are many differences between the two sets of data. The astrophysical reaction rate was calculated from the measured cross section. This reaction plays a role in the nucleosynthesis of heavy elements in nonstandard big-bang models. At big-bang temperatures, the experimental rate was found to be in fair agreement with the rate estimated from the previously known properties of states of 18O in this region. Furthermore, using the available information from experiments, it was estimated that the 17O(n,α)14C rate is approximately a factor of 103-104 times larger than the 17O(n,γ)18O rate at big-bang temperatures. As a result, there may be significant cycling between 14C and 17O resulting in a reduction of heavy-element nucleosynthesis.

  18. Synthesis of 5α-androstane-3α,17β-diol 17-O-glucuronide histaminyl conjugate for immunoassays.

    PubMed

    Vinš, Petr; Černý, Ivan; Mikšátková, Petra; Drašar, Pavel

    2016-05-01

    Simple method of preparation of 5α-androstane-3α,17β-diol 17-O-glucuronide N-histaminyl amide was developed for the construction of immunoanalytical kit. Improved method of glucuronide derivative synthesis was used, followed by hydroxybenzotriazole-dicyclohexylcarbodiimide coupling with histamine. PMID:26898541

  19. Effects on ^18F production in novae from changes in the ^17O(p,α)^14N rate

    NASA Astrophysics Data System (ADS)

    Moazen, B. H.; Blackmon, J. C.; Bardayan, D. W.; Chae, K. Y.; Chipps, K.; Domizioli, C. P.; Fitzgerald, R.; Greife, U.; Hix, W. R.; Jones, K. L.; Kozub, R. L.; Lingerfelt, E. J.; Livesay, R. J.; Nesaraja, C. D.; Pain, S. D.; Roberts, L. F.; Shriner, J. F., Jr.; Smith, M. S.; Thomas, J. S.

    2008-04-01

    The properties of a resonance at 183 keV are important for understanding the ^17 O(p,α)^14N and ^17O(p,γ)^18F reaction rates at nova temperatures and was recently reported to significantly increase the (p,α) reaction rate. A method involving the bombardment of a hydrogen filled target chamber was recently developed at ORNL for measuring the strength and energy of (p, α) resonances and was applied to measure this resonance in ^17O(p, α)^14N. The strength of the resonance was confirmed and post-processing nova nucleosynthesis simulations show the new ^17O(p,α)^14N reaction rate significantly decreases ^18F production in low mass ONeMg novae but has little effect on more energetic novae [Moazen et. al. Phys. Rev. C 75 065801 (2007)]. Results and astrophysical implications will be presented as well as future plans to measure ^18F(p,α)^15O with this technique. ORNL is managed by UT Battelle for the US DOE

  20. Simulation and evaluation of nuclear reaction spectra

    NASA Astrophysics Data System (ADS)

    Vizkelethy, G.

    1990-01-01

    A RUMP-like-[1] computer code was written for PCs in order to simulate and evaluate nuclear reaction spectra. The code was written in Turbo Pascal. Any particle-target combination can be used; the stopping power calculation based on the ZBL algorithm [2] and the cross sections are taken from experimental data. The effects of straggling and geometrical spread are included in the simulation. Examples are given for the 16O(d,P) 17O, 18O(P,α) 15N, 16O( 3He,α) 15O and 16O(α,α) 16O reactions and for ERDA measurements.

  1. Superconductivity and planar hole densities in the cuprates from NMR

    NASA Astrophysics Data System (ADS)

    Haase, Juergen; Jurkutat, Michael; Rybicki, Damian

    We show how nuclear magnetic resonance (NMR) of 63Cu and 17O provides a quantitative measure of the charge distribution in the ubiquitous CuO2 plane, the common structural feature of cuprate physics. The various materials are found to differ significantly in the local charge distribution, while the total charge per CuO2 matches expectation from stoichiometry. Using the local charges on Cu and O measured by NMR, a new three-dimensional cuprate phase diagram is drawn that consistently encompasses all cuprate materials. These appear ordered according to their maximum Tc. It is the sharing of the inherent Cu hole with O that sets an upper limit for Tc, and it correlates with the superfluid density measured by μSR, over all cuprate families.

  2. Background suppression in MAS NMR

    NASA Astrophysics Data System (ADS)

    White, Jeffery L.; Beck, Larry W.; Ferguson, David B.; Haw, James F.

    Pulse sequences for suppressing background signals from spinning modules used in magic-angle spinning NMR are described. These pulse sequences are based on spatially selective composite 90° pulses originally reported by Bax, which provide for no net excitation of spins outside the homogeneous region of the coil. We have achieved essentially complete suppression of background signals originating from our Vespel spinning module (which uses a free-standing coil) in both 1H and 13C spectra without notable loss in signal intensity. Successful modification of both Bloch decay and cross-polarization pulse sequences to include spatially selective pulses was essential to acquire background-free spectra for weak samples. Background suppression was also found to be particularly valuable for both T1 and T1 ϱ, relaxation measurements.

  3. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  4. 1H NMR relaxation in urea

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bacher, Alfred D.; Dybowski, C.

    2007-11-01

    Proton NMR spin-lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38-65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin-lattice relaxation times in the rotating frame T1 ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.

  5. Report on neptunium speciation by NMR and optical spectroscopies

    SciTech Connect

    Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

    1995-11-01

    Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

  6. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties. PMID:25494341

  7. Nuclear magnetic resonance characterization of a paramagnetic DNA-drug complex with high spin cobalt; assignment of the 1H and 31P NMR spectra, and determination of electronic, spectroscopic and molecular properties.

    PubMed

    Gochin, M

    1998-08-01

    The proton NMR spectrum of the ternary complex between the octamer duplex d(TTGGCCAA)2, two molecules of the drug chromomycin-A3, and a divalent cobalt ion has been assigned. Assignment procedures used standard two-dimensional techniques and relied upon the expected NOE contacts observed in the equivalent diamagnetic complex containing zinc. The magnetic susceptibility tensor for the cobalt was determined and used to calculate shifts for all nuclei, aiding in the assignment process and verification. Relaxation, susceptibility, temperature and field dependence studies of the paramagnetic spectrum enabled determination of electronic properties of the octahedral cobalt complex. The electronic relaxation tau(s) was determined to be 2.5 +/- 1.5 ps; the effective isotropic g value was found to be 2.6 +/- 0.2, indicating strong spin-orbit coupling. The magnetic susceptibility tensor was determined to be chi(xx) = 8.9 x 10(-3) cm3/mol, chi(yy) = 9.5 x 10(-3) cm3/mol, chi(zz) = 12.8 * 10(-3) cm3/mol. A tentative rotational correlation time of 8 ns was obtained for the complex. Both macroscopic and microscopic susceptibility measurements revealed deviations from Curie behavior over the temperature range accessible in the study. Non-selective relaxation rates were found to be inaccurate for defining distances from the metal center. However, pseudocontact shifts could be calculated with high accuracy using the dipolar shift equation. Isotropic hyperfine shifts were factored into contact and dipolar terms, revealing that the dipolar shift predominates and that contact shifts are relatively small. PMID:9751997

  8. Isotopic splitting patterns in the (13) C NMR spectra of some partially deuterated 1-aryl-2-(phenyldiazenyl)butane-1,3-dione and 4-hydroxy-3-(phenyldiazenyl)-2H-chromen-2-one: evidence for elucidation of tautomeric forms.

    PubMed

    Noroozi Pesyan, Nader; Rashidnejad, Hamid

    2016-05-01

    Nuclear magnetic resonance spectra of synthesized azo dyes derived from aniline derivatives in reaction with benzoylacetone and 4-hydroxycoumarin were studied in both CDCl3 and (CD3 )2 SO (two drops of D2 O were added into solutions of dyes). All dyes showed intramolecular hydrogen bonding. Dyes derived from o-nitro aniline in the reaction with benzoylacetone, and 4-hydroxycoumarin showed bifurcated intramolecular hydrogen bonds. The solvent-substrate proton exchange of dyes derived from benzoylacetone and 4-hydroxycoumarin was examined in the presence of two drops of D2 O. Among ten dye samples, two dyes derived from benzoylacetone did not show deuteration, three dyes showed partial deuteration and five dyes showed full deuteration under similar conditions. For the partially deuterated dyes the β-isotope effect in (13) C splitting was investigated and was used for the determination of the predominant tautomeric form. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26776053

  9. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  10. On the introduction of {sup 17}O+p reaction rates evaluated through the THM in AGB nucleosynthesis calculations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2014-05-09

    The rates for the {sup 17}O(p,αα{sup 14}N, {sup 17}O(p,α){sup 18}F and {sup 18}O(p,α){sup 15}N reactions deduced trough the Trojan Horse Method (THM) have been introduced into a state-of-the-art asymptotic giant branch (AGB) models for proton-capture nucleosynthesis and cool bottom process. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis.

  11. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  12. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  13. Ultra-wideline solid-state NMR spectroscopy.

    PubMed

    Schurko, Robert W

    2013-09-17

    Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such

  14. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  15. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  16. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  17. Analysis of multiple pulse NMR in solids

    NASA Technical Reports Server (NTRS)

    Rhim, W.-K.; Elleman, D. D.; Vaughan, R. W.

    1973-01-01

    The general problems associated with the removal of the effects of dipolar broadening from solid-state NMR spectra are analyzed. The effects of finite pulse width and H sub 1 inhomogeneity are shown to have limited the resolution of previous pulse cycles, and a new eight-pulse cycle designed to minimize these problems is discussed. Spectra for F-19 in CaF2 taken with this cycle are presented which show residual linewidth near 10 Hz. The feasibility of measuring proton chemical shift tensors is discussed.

  18. Conformation of the nootropic agents 1-(4-methoxybenzoyl)-5-oxo-2-pyrrolidinepropanoic acid (CI-933) and 4-hydroxymethyl-1-benzyl-pyrrolidin-2-one (WEB-1868): X-ray crystal structures, theoretical MO calculations (AM-1) and 600 MHZ 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Amato, Maria E.; Bandoli, Giuliano; Djedaïni, Florence; Dolmella, Alessandro; Grassi, Antonio; Pappalardo, Giuseppe C.

    1990-05-01

    The crystal and molecular structures of the cognition activators 1-(4-methoxybenzoyl)-5-oxo-2-pyrrolidinepropanoic acid (CI-933) ( 1) and 4-hydroxymethyl-1-benzyl-pyrrolidin-2-one (WEB-1868) ( 2) have been determined by X-ray analysis. The conformations of the isolated molecules 1 and 2 have been deduced from AM1-type theoretical calculations. Whilst in 1 there are no hydrogen bonds, in 2 stabilization of the crystal occurs through effective inter- and intramolecular ? bonds. The five-membered ring in both 1 and 2 adopts an envelope conformation in the solid with C(3) at the flap displaced from the C(1), C(2), C(4), N(5) mean plane. Bond distances and angles are normal and comparable with previously known similar structures. In the crystal, the torsion angles C(1)-N(5)-C(6)-C(7) and N(5)-C(6)-C(7)-C(8) in 1 are 43.1° and 44.8°, respectively; the same torsion angles in 2 are -101° and 42°, respectively. Results of theoretical calculations correlate well with the conformation of 1 in the solid, whilst in the case of 2 these indicate that the conformation in the crystal should not be retained by the isolated molecule. The complete analysis of the very high field (600 MHz) 1H NMR spectra of both compounds in CDCl 3, gives results well in line with the above established conformational features.

  19. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  20. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  1. Rapid characterization of molecular diffusion by NMR spectroscopy.

    PubMed

    Pudakalakatti, Shivanand M; Chandra, Kousik; Thirupathi, Ravula; Atreya, Hanudatta S

    2014-11-24

    An NMR-based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D (13)C and (1)H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self-assembly to form nanotubular structures. PMID:25331210

  2. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  3. Design and applications of an in situ electrochemical NMR cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaocan; Zwanziger, Josef W.

    2011-01-01

    A device using a three-electrode electrochemical cell (referred to as an ECNMR cell) was successfully constructed that could be used in a standard 5 mm NMR probe to acquire high-resolution NMR spectra while the working electrode was held at a constant electrical potential. The working electrode was a 20 nm thick gold film thermally coated on the outside of an inner 3 mm glass tube. An underlayer consisting of (3-mercaptopropyl)trimethoxy-silane was coated on the glass surface in order to improve its adhesion to gold. Tests showed prolonged life of the gold film. Details of the design and construction of the ECNMR cell are described. The ECNMR cell could be routinely used in a multi-user service high-resolution NMR instrument under oxygen-free conditions in both aqueous and non-aqueous solvents. Different approaches were applied to suppress the noise transmitted between the potentiostat and the NMR spectrometer. These approaches were shown to be effective in reducing background noise in the NMR spectra. The electrochemical and NMR performance of the ECNMR cell is presented. The reduction of 1,4-benzoquinone in both aqueous and non-aqueous solvents was used for testing. The evolution of the in situ ECNMR spectra with time demonstrated that use of the ECNMR cell was feasible. Studies of caffeic acid and 9-chloroanthracene using this ECNMR cell were undertaken to explore its applications, such as monitoring reactions and studying their reaction mechanisms.

  4. An NMR study and ab initio molecular orbital calculation of substituted benzofuroxans and the salt of 4,6-dinitrobenzofuroxan

    NASA Astrophysics Data System (ADS)

    Cmoch, P.; Wiench, J. W.; Stefaniak, L.; Webb, G. A.

    1999-09-01

    13C, 15N and 17O NMR data are reported for a series of substituted benzofuroxans in aprotic and acidic solutions and for a potassium salt of a substituted benzofuroxan. Some of the title compounds can exhibit fast furoxan valence equilibrium at room temperature regardless of a solvent used, whereas for the others no evidence of above-mentioned process exists. The NMR parameters most sensitive to salt formation are the chemical shifts of the C7, N1, N3 and all of the oxygen nuclei. Hence these are reported as the most satisfactory chemical shifts to be used in distinguishing between the salt and non-ionic forms of the substituted benzofuroxans studied. Calculated energies at the self-consistent field (SCF) level of theory for both tautomeric forms (N1- and N3-oxide) of some compounds studied are used for predicting the tautomeric equilibrium constants. Absolute 17O shieldings are employed in the reversal of the assignments of 17O NMR signals existing in the literature.

  5. Capillary toroid cavity detector for high pressure NMR

    SciTech Connect

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  6. Structural biology applications of solid state MAS DNP NMR.

    PubMed

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance. PMID:27095695

  7. NMR studies on polyphosphide Ce6Ni6P17

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.

    2016-02-01

    We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.

  8. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  9. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  10. High-resolution NMR spectroscopy under the fume hood.

    PubMed

    Küster, Simon K; Danieli, Ernesto; Blümich, Bernhard; Casanova, Federico

    2011-08-01

    This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data. PMID:21698335

  11. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR. PMID:25924947

  12. Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses.

    PubMed

    Gallo, Vito; Intini, Nicola; Mastrorilli, Piero; Latronico, Mario; Scapicchio, Pasquale; Triggiani, Maurizio; Bevilacqua, Vitoantonio; Fanizzi, Paolo; Acquotti, Domenico; Airoldi, Cristina; Arnesano, Fabio; Assfalg, Michael; Benevelli, Francesca; Bertelli, Davide; Cagliani, Laura R; Casadei, Luca; Cesare Marincola, Flaminia; Colafemmina, Giuseppe; Consonni, Roberto; Cosentino, Cesare; Davalli, Silvia; De Pascali, Sandra A; D'Aiuto, Virginia; Faccini, Andrea; Gobetto, Roberto; Lamanna, Raffaele; Liguori, Francesca; Longobardi, Francesco; Mallamace, Domenico; Mazzei, Pierluigi; Menegazzo, Ileana; Milone, Salvatore; Mucci, Adele; Napoli, Claudia; Pertinhez, Thelma; Rizzuti, Antonino; Rocchigiani, Luca; Schievano, Elisabetta; Sciubba, Fabio; Sobolev, Anatoly; Tenori, Leonardo; Valerio, Mariacristina

    2015-07-01

    An interlaboratory comparison (ILC) was organized with the aim to set up quality control indicators suitable for multicomponent quantitative analysis by nuclear magnetic resonance (NMR) spectroscopy. A total of 36 NMR data sets (corresponding to 1260 NMR spectra) were produced by 30 participants using 34 NMR spectrometers. The calibration line method was chosen for the quantification of a five-component model mixture. Results show that quantitative NMR is a robust quantification tool and that 26 out of 36 data sets resulted in statistically equivalent calibration lines for all considered NMR signals. The performance of each laboratory was assessed by means of a new performance index (named Qp-score) which is related to the difference between the experimental and the consensus values of the slope of the calibration lines. Laboratories endowed with a Qp-score falling within the suitable acceptability range are qualified to produce NMR spectra that can be considered statistically equivalent in terms of relative intensities of the signals. In addition, the specific response of nuclei to the experimental excitation/relaxation conditions was addressed by means of the parameter named NR. NR is related to the difference between the theoretical and the consensus slopes of the calibration lines and is specific for each signal produced by a well-defined set of acquisition parameters. PMID:26020452

  13. Spin fluctuations in La2-xSrxCuO4: NMR versus inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barzykin, V.; Pines, D.; Thelen, D.

    1994-12-01

    We use a one-component description to analyze the current experimental situation for the low-frequency magnetic properties of La1.85Sr0.15CuO4 as determined by NMR and neutron-scattering experiments. We show that the measured 17O spin-lattice relaxation rate is in sharp conflict with the incommensurate-magnetic-structure interpretation of neutron-scattering experiments, but is quantitatively explained if the local-spin-fluctuation spectrum (measured by NMR) possesses a commensurate peak. We conclude that the formation of domains, as suggested by Slichter and Phillips, represents the best (and, quite possibly, only) way of reconciling NMR and neutron-scattering experiments on La1.85Sr0.15CuO4.

  14. Dicobalt-μ-oxo polyoxometalate compound, [(α(2)-P2W17O61Co)2O](14-): a potent species for water oxidation, C-H bond activation, and oxygen transfer.

    PubMed

    Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny

    2014-02-01

    High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms. PMID:24437566

  15. THM determination of the 65 keV resonance strength intervening in the 17O ( p ,α)14N reaction rate

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2015-02-01

    The 17O ( p ,α)14N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the 17O ( p ,α)14N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at Ec.m.R = 65 keV (EX =5.673 MeV). The strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel.

  16. THM determination of the 65 keV resonance strength intervening in the {sup 17}O(p,α){sup 14}N reaction rate

    SciTech Connect

    Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Burjan, S. V.; Hons, Z.; Kroha, V.; Coc, A.; Hammache, F.; Irgaziev, B.; Kiss, G. G.; Somorjai, E.; Lamia, L.; Mukhamedzhanov, A.; and others

    2015-02-24

    The {sup 17}O(p,α){sup 14}N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at E{sub c.m.}{sup R} = 65 keV (E{sub X} =5.673 MeV). The strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel.

  17. Study of the γ decay of high-lying states in 208Pb via inelastic scattering of 17O ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Kmiecik, M.; Bracco, A.; Leoni, S.; Maj, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemala, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; De Angelis, G.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Recchia, F.; Sahin, E.; Siebeck, B.; Siem, S.; Ur, C.; Valiente Dobon, J. J.

    2014-03-01

    A measurement of the high-lying states in 208Pb has been made using 17O beams at 20 MeV/u. The gamma decay following inelastic excitation was measured with the detector system AGATA Demonstrator based on segmented HPGe detectors, coupled to an array of large volume LaBr3:Ce scintillators and to an array of Si detectors. Preliminary results in comparison with (γ,γ') data, for states in the 5-8 MeV energy interval, are presented.

  18. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  19. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  20. NMR studies of the conformation and motion of tetrahydrofuran in graphite intercalation compounds

    SciTech Connect

    Caplan, D. F.

    1991-11-01

    The behavior of tetrahydrofuran (THF) molecules intercalated in graphite layers in compounds Cs(THF){sub 1.3}C{sub 24} and K(THF){sub 2.5}C{sub 24} was studied by proton NMR. The graphite layers in these compounds impose a uniform ordering on the THF molecules, giving rise to sharp NMR spectra. Experimental and simulated proton NMR spectra were used to investigate geometry, orientation and conformation of intercalated THF, and to determine whether pseudorotation, a large amplitude low-frequency vibration observed in gaseous THF, can also occur in the constrained environment provided by the graphite intercalation compounds. Deuterium and multiple quantum proton NMR spectra were also simulated in order to determine if these techniques could further refine the proton NMR results.

  1. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  2. Automated protein fold determination using a minimal NMR constraint strategy

    PubMed Central

    Zheng, Deyou; Huang, Yuanpeng J.; Moseley, Hunter N.B.; Xiao, Rong; Aramini, James; Swapna, G.V.T.; Montelione, Gaetano T.

    2003-01-01

    Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, 13C-, 15N-enriched protein samples with selective protonation of side-chain methyl groups (13CH3). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain 15N, HN resonances, and side-chain 13CH3 methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide 1H/2H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A. PMID:12761394

  3. Three-Dimensional Maximum-Quantum Correlation HMQC NMR Spectroscopy (3D MAXY-HMQC)

    NASA Astrophysics Data System (ADS)

    Liu, Maili; Mao, Xi-An; Ye, Chaohui; Nicholson, Jeremy K.; Lindon, John C.

    1997-11-01

    The extension of two-dimensional maximum-quantum correlation spectroscopy (2D MAXY NMR), which can be used to simplify complex NMR spectra, to three dimensions (3D) is described. A new pulse sequence for 3D MAXY-HMQC is presented and exemplified using the steroid drug dexamethasone. The sensitivity and coherence transfer efficiency of the MAXY NMR approach has also been assessed in relation to other HMQC- and HSQC-based 3D methods.

  4. Isolation and 2D NMR Studies of Alkaloids from Comptonella sessilifoliola1.

    PubMed

    Pusset, J; Lopez, J L; Pais, M; Neirabeyeh, M A; Veillon, J M

    1991-04-01

    Six known furanoquinoline alkaloids have been isolated from the wood and trunk bark of COMPTONELLA SESSILIFOLIOLA (Guillaumin) Hartley (Rutaceae). 2D NMR experiments gave the assignment of all the signals for both (1)H- and (13)C-NMR spectra. Pteleine and kokusaginine were used as models. The two-dimensional carbon-proton correlation experiments, performed for the first time on furanoquinoline alkaloids, led us to correct (13)C-NMR assignments previously described in the literature. PMID:17226139

  5. Slow-MAS NMR: A New Technology for In Vivo Metabolomic Studies

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi; Majors, Paul D.

    2005-08-01

    Improvements in the ability to obtain detailed in vivo metabolic information have been identified as key elements of better understanding the efficacy and toxicity of new therapies. A new NMR technology called LOCMAT is discussed that yields substantially increased spectral resolution of spatially localized in vivo 1H NMR metabolite spectra, as illustrated by measurements in the liver and heart of a live mouse. Thus, LOCMAT promises to significantly enhance the utility of NMR spectroscopy for biomedical research.

  6. Development and applications of NMR (nuclear magnetic resonance) in low fields and zero field

    SciTech Connect

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab.

  7. Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency (17)O-Hyperfine EPR Spectroscopies and Density Functional Theory.

    PubMed

    Rapatskiy, Leonid; Ames, William M; Pérez-Navarro, Montserrat; Savitsky, Anton; Griese, Julia J; Weyhermüller, Thomas; Shafaat, Hannah S; Högbom, Martin; Neese, Frank; Pantazis, Dimitrios A; Cox, Nicholas

    2015-10-29

    Multifrequency pulsed EPR data are reported for a series of oxygen bridged (μ-oxo/μ-hydroxo) bimetallic manganese complexes where the oxygen is labeled with the magnetically active isotope (17)O (I = 5/2). Two synthetic complexes and two biological metallocofactors are examined: a planar bis-μ-oxo bridged complex and a bent, bis-μ-oxo-μ-carboxylato bridge complex; the dimanganese catalase, which catalyzes the dismutation of H2O2 to H2O and O2, and the recently identified manganese/iron cofactor of the R2lox protein, a homologue of the small subunit of the ribonuclotide reductase enzyme (class 1c). High field (W-band) hyperfine EPR spectroscopies are demonstrated to be ideal methods to characterize the (17)O magnetic interactions, allowing a magnetic fingerprint for the bridging oxygen ligand to be developed. It is shown that the μ-oxo bridge motif displays a small positive isotropic hyperfine coupling constant of about +5 to +7 MHz and an anisotropic/dipolar coupling of -9 MHz. In addition, protonation of the bridge is correlated with an increase of the hyperfine coupling constant. Broken symmetry density functional theory is evaluated as a predictive tool for estimating hyperfine coupling of bridging species. Experimental and theoretical results provide a framework for the characterization of the oxygen bridge in Mn metallocofactor systems, including the water oxidizing cofactor of photosystem II, allowing the substrate/solvent interface to be examined throughout its catalytic cycle. PMID:26225537

  8. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α)14C reaction

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Spitaleri, C.; Tang, X. D.; Guardo, G. L.; Lamia, L.; Cherubini, S.; Bucher, B.; Burjan, V.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; Lamm, L.; La Cognata, M.; Li, C.; Ma, C.; Mrazek, J.; Mukhamedzhanov, A. M.; Notani, M.; O'Brien, S.; Pizzone, R. G.; Rapisarda, G. G.; Roberson, D.; Sergi, M. L.; Tan, W.; Thompson, I. J.; Wiescher, M.

    2014-03-01

    The reaction 17O(n, α)14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  9. Experimental and theoretical study of the intramolecular C-H···N and C-H···S hydrogen bonding effects in the 1H and 13C NMR spectra of the 2-(alkylsulfanyl)-5-amino-1-vinylpyrroles: a particular state of amine nitrogen.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Tarasova, Ol'ga A; Nedolya, Nina A

    2013-07-01

    In the (1)H NMR spectra of the 1-vinylpyrroles with amino- and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one-bond (1)J(C(β),H(B)) coupling constant is surprisingly greater than the (1)J(C(β),H(A)) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π-system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C-HB •••N hydrogen bonding in the s-cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C-HB •••S hydrogen bonding in the s-cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C-H•••N and C-H•••S hydrogen bonding. Therefore, an unusual high-frequency shift of the HB signal and the increase in the (1)J(C(β),H(B)) coupling constant can be explained by the effects of hydrogen bonding. PMID:23695830

  10. Matrix-isolation study and ab initio calculations of the structure and spectra of hydroxyacetone.

    PubMed

    Sharma, Archna; Reva, Igor; Fausto, Rui

    2008-07-01

    The structure of hydroxyacetone (HA) isolated in an argon matrix (at 12 K) and in a neat solid phase (at 12-175 K) was characterized by using infrared (IR) spectroscopy. The interpretation of the experimental results was supported by high-level quantum chemical calculations, undertaken by using both ab initio (MP2) and density functional theory methods. A potential-energy surface scan, carried out at the MP2/6-311++G(d,p) level of theory, predicted four nonequivalent minima, Cc, Tt, Tg, and Ct, all of them doubly degenerate by symmetry. The energy barriers for conversion between most of the symmetrically related structures and also between some of the nonequivalent minima (e.g., Tg --> Tt and Ct --> Tt) are very small and stay below the zero-point vibrational level associated with the isomerization coordinate in the higher-energy form in each pair. Therefore, only Cc and Tt conformers have physical significance, with populations of 99 and 1%, respectively, in gas phase at room temperature. For the matrix-isolated compound, only the most stable Cc conformer was observed. On the other hand, the polarizable continuum model calculations indicated that in water solution, the population of Tt and Ct conformers might be high enough (ca. 6 and 11%, respectively) to enable their experimental detection, thus supporting the conclusions of a previous IR spectroscopy study [ Spectrochim. Acta A 2005, 61, 477] in which the presence of more than one HA conformer in aqueous solution was postulated. The signatures of these minor conformers, however, do not appear in the spectra of the neat HA crystal, and the crystal structure was rationalized in terms of centrosymmetric hydrogen-bonded dimers consisting of two Cc-like units. Finally, we calculated (1)H, (13)C, and (17)O NMR chemical shifts at different levels of theory and found them to agree with available experimental data. PMID:18537231

  11. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    spectroscopic methods to weight or filter the spin signals represents the core of the book. This is a subject where Blümich is deeply involved with substantial contributions. The chapter includes a lot of ideas to provide MR contrast between different regions based on their mobility, diffusion, spin couplings or NMR spectra. After describing NMR imaging methods for solids with broad lines, Blümich spends time on applications in the last two chapters of the book. This part is really fun to read. It underlines the effort to bring NMR into many kinds of manufacturing. Car tyres and high-voltage cables are just two such areas. Elastomeric materials, green-state ceramics and food science represent other interesting fields of applications. This part of the book represents a personal but nevertheless extensive compilation of modern applications. As a matter of course the MOUSE is presented, a portable permanent-magnet based NMR developed by Blümich and his co-workers. Thus the book is not only of interest to NMR spectroscopists but also to people in material science and chemical engineering. The bibliography and indexing are excellent and may serve as an attractive reference source for NMR spectroscopists. The book is the first on the subject and likely to become the standard text for NMR imaging of materials as the books by Abragam, Slicher and Ernst et al are for NMR spectroscopy. The purchase of this beautiful book for people dealing with NMR spectroscopy or medical MRI is highly recommended. Ralf Ludwig

  12. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?

    NASA Astrophysics Data System (ADS)

    Risi, C.; Landais, A.; Winkler, R.; Vimeux, F.

    2013-09-01

    Combined measurements of the H218O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H218O isotopic ratio alone. More recently, measurements of H217O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM) LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD) and during the last glacial maximum (LGM). The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity), Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O-excess by LMDZ

  13. SQUID detected NMR in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Matlachov, Andrei N.; Volegov, Petr L.; Espy, Michelle A.; George, John S.; Kraus, Robert H.

    2004-09-01

    We have built an NMR system that employs a superconducting quantum interference device (SQUID) detector and operates in measurement fields of 2-25 μT. The system uses a pre-polarizing field from 4 to 30 mT generated by simple room-temperature wire-wound coils that are turned off during measurements. The instrument has an open geometry with samples located outside the cryostat at room-temperature. This removes constraints on sample size and allows us to obtain signals from living tissue. We have obtained 1H NMR spectra from a variety of samples including water, mineral oil, and a live frog. We also acquired gradient encoded free induction decay (FID) data from a water-plastic phantom in the μT regime, from which simple projection images were reconstructed. NMR signals from samples inside metallic containers have also been acquired. This is possible because the penetration skin depth is much greater at the low operating frequencies of this system than for conventional systems. Advantages to ultra-low field NMR measurements include lower susceptibility artifacts caused by high strength polarizing and measurement fields, and negligible line width broadening due to measurement field inhomogeneity, reducing the burden of producing highly homogeneous fields.

  14. /sup 29/Si NMR study of the surface of pyrogenic silica modified by methylchlorosilanes

    SciTech Connect

    Brie, V.V.; Gorlov, Yu.I.; Chuiko, A.A.

    1986-11-01

    Cross-polarization /sup 29/Si NMR spectra have been used for aerosil modified by methyl-chlorosilanes to identify surface organosilicon compounds and their reactions during hydrolysis and methanolysis.

  15. An Analysis of a Commercial Furniture Refinisher: A Comprehensive Introductory NMR Experiment.

    ERIC Educational Resources Information Center

    Markow, Peter G.; Cramer, John A.

    1983-01-01

    Describes a comprehensive nuclear magnetic resonance (NMR) experiment designed to introduce undergraduate organic chemistry students to measurement/interpretation of NMR parameters. Students investigate chemical shift analysis, spin-spin coupling, peak integrations, effect of deuterium oxide extraction, and comparisons with literature spectra;…

  16. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  17. Theoretical and experimental insights into applicability of solid-state 93Nb NMR in catalysis.

    PubMed

    Papulovskiy, Evgeniy; Shubin, Alexandre A; Terskikh, Victor V; Pickard, Chris J; Lapina, Olga B

    2013-04-14

    Ab initio DFT calculations of (93)Nb NMR parameters using the NMR-CASTEP code were performed for a series of over fifty individual niobates, and a good agreement has been found with experimental NMR parameters. New experimental and calculated (93)Nb NMR data were obtained for several compounds, AlNbO4, VNb9O25, K8Nb6O19 and Cs3NbO8, which are of particular interest for catalysis. Several interesting trends have been identified between (93)Nb NMR parameters and the specifics of niobium site environments in niobates. These trends may serve as useful guidelines in interpreting (93)Nb NMR spectra of complex niobium oxide systems, including amorphous samples and niobium-based multicomponent heterogeneous catalysts. Potential applications of (93)Nb NMR to study solid polyoxoniobates are discussed. PMID:23450163

  18. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  19. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  20. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  1. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  2. Nuclear spin noise in NMR revisited

    NASA Astrophysics Data System (ADS)

    Ferrand, Guillaume; Huber, Gaspard; Luong, Michel; Desvaux, Hervé

    2015-09-01

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  3. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water. PMID:24595457

  4. NMR and protein folding: equilibrium and stopped-flow studies.

    PubMed Central

    Frieden, C.; Hoeltzli, S. D.; Ropson, I. J.

    1993-01-01

    NMR studies are now unraveling the structure of intermediates of protein folding using hydrogen-deuterium exchange methodologies. These studies provide information about the time dependence of formation of secondary structure. They require the ability to assign specific resonances in the NMR spectra to specific amide protons of a protein followed by experiments involving competition between folding and exchange reactions. Another approach is to use 19F-substituted amino acids to follow changes in side-chain environment upon folding. Current techniques of molecular biology allow assignments of 19F resonances to specific amino acids by site-directed mutagenesis. It is possible to follow changes and to analyze results from 19F spectra in real time using a stopped-flow device incorporated into the NMR spectrometer. PMID:8298453

  5. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  6. NMR Studies of the Li-Mg-N-H Phases.

    NASA Astrophysics Data System (ADS)

    Bowman, Robert; Reiter, J. W.; Kulleck, J. G.; Hwang, S.-J.; Luo, Weifang

    2007-03-01

    Solid state NMR including magic-angle-spinning (MAS) and cross-polarization (CP) MAS experiments have been used to characterize various amide and imide phases containing Li and/or Mg. MAS-NMR spectra for the ^1H, ^6Li, ^7Li, and ^15N nuclei have been obtained to improve understanding on formation, processing, and degradation behavior. Only limited information could be obtained from the proton and ^7Li MAS-NMR spectra to due large dipolar interactions and small chemical shifts. However, more success was obtained from the ^6Li and ^15N nuclei although their very long spin-lattice relaxation times did impact signal acquisition times. For example, three distinct ^6Li peaks were resolved from LiNH2 phases that were clearly separated from the LiH secondary phase in these samples. While the ^15N spectra for LiNH2 phase in isotopically enriched samples exhibited only a single peak at least three distinct ^15N peaks were observed from the similarly enriched Mg amide samples. These differences will be related to crystal structures. The NMR spectra also revealed very little motion in these hydrides upon to nearly 500 K.

  7. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  8. Quantitative calibration of radiofrequency NMR Stark effects

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.; Kempf, James G.

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω0). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C14 (the response parameter in cubic crystals) were obtained for both 69Ga and 75As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω0 amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω0 circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω0 excitation to presaturate NMR spectra yielded C14 = (2.59 ± 0.06) × 1012 m-1 for 69Ga at room-temperature and 14.1 T. For 75As, we obtained (3.1 ± 0.1) × 1012 m-1. Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω0 field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  9. Continuous-flow IRMS technique for determination of Δ17O in (stratospheric) CO2 using complete oxygen isotope exchange with cerium oxide

    NASA Astrophysics Data System (ADS)

    Mrozek, D. J.; Roeckmann, T.

    2012-12-01

    Isotope studies of carbon dioxide (CO2) play an important role in understanding of the global carbon cycle. Stratospheric CO2 is known to undergo an isotopic exchange reaction with ozone (Yung et all 1991). Therefore, stratosphere CO2 shows a mass independent fractionation (MIF) which is a deviation in the 17O content from a purely mass-dependent pattern (MDF): for MDF processes δ17O = 0.52 δ18O, for MIF phenomena Δ17O = δ17O - 0.52 δ18O ≠ 0. The detailled mechanism that controls the 17O anomalies in stratospheric CO2 is not fully understood. Interest in this field has caused innovations in analytical techniques based on Isotope Ratio Mass Spectrometry (IRMS). Our approach was to design an analytical system that allows analysis of δ17O on nanomolar quantities of CO2 suitable for measuring oxygen isotope anomalies in stratospheric air samples. Based on complete oxygen isotope exchange with CeO2 at 650°C (Assonov et al. 2001) we have established an online measurement system for δ17O in CO2. Due to isotopic equilibration with CeO2 the CO2 samples loose their mass independent fractionation information and from the difference between the exchanged and non-exchanged sample Δ17O in the original CO2 can be calculated. The technique is fast and efficient due to its fully automation. A single measurement takes 15 minutes and 2 ml of air (plus flushing of the lines). Analytical precision can be improved by performing multiple measurements on one sample, and the analytical precision for a package of ten measurements is 0.7 ‰ for Δ17O. The new technique is a valuable tool to study the isotopic exchange mechanism between O3 and CO2 in the stratosphere. As a first application, we have determined the isotopic composition of stratospheric CO2 on air samples obtained during the EU project RECONCILE in the Arctic winter/spring season with the high-altitude aircraft Geophysica.

  10. Online, high precision analytical method for determination of Δ17O in stratospheric CO2 with the use of CeO2 isotopic exchange

    NASA Astrophysics Data System (ADS)

    Mrozek, D.; Röckmann, T.

    2012-04-01

    Isotope studies of carbon dioxide (CO2) play an important role in understanding of the global carbon cycle. In the atmosphere CO2 is an important greenhouse gas. Stratospheric CO2 is known to undergo an isotopic exchange reaction with ozone (Yang et all 1991). Therefore, stratosphere CO2 shows a mass independent fractionation (MIF) which is a deviation in the 17O content from a purely mass-dependent pattern (MDF): for MDF phenomena Δ17O = δ17O - 0.52 δ18O=0, for MIF phenomena Δ17O ≠ 0. The detail mechanism that controls the 17O anomalies in stratospheric CO2 is not fully understood. Interest in this field has caused innovations in analytical techniques based on Isotope Rato Mass Spectrometry (IRMS). Our approach was to design an analytical system that allows analysis of 17O on nanomolar quantities of CO2 suitable for measuring oxygen isotope anomalies in the stratospheric air samples. The standard continuous flow-IRMS techniques permit measuring small quantities of CO2 but it is impossible to measure the 17O isotope at mass 45 due to the interference from the much more abundant 13C. Therefore, CO2 has to be either converted to O2 or the oxygen it contains must be exchanged with oxygen of known isotopic composition. Based on complete oxygen isotope exchange with CeO2 at 650°C (Assonov et al. 2001) we have established an online measurement system for δ17O in CO2. The system allows analysis of 17O on nanomolar quantities of CO2 with a good reproducibility of 0.08‰ for δ45CO2. The new technique is a valuable tool to study isotopic exchange mechanism between O3 and CO2 in the stratosphere. We have determined the isotopic composition of stratospheric CO2 on air samples obtained during the EU project RECONCILE in the Arctic winter/spring season with the high-altitude aircraft Geophysica.

  11. Continuous-flow IRMS technique for determining the 17O excess of CO2 using complete oxygen isotope exchange with cerium oxide

    NASA Astrophysics Data System (ADS)

    Mrozek, D. J.; van der Veen, C.; Kliphuis, M.; Kaiser, J.; Wiegel, A. A.; Röckmann, T.

    2015-02-01

    This paper presents an analytical system for analysis of all single substituted isotopologues (12C16O17O, 12C16O18O, 13C16O16O) in nanomolar quantities of CO2 extracted from stratospheric air samples. CO2 is separated from bulk air by gas chromatography and CO2 isotope ratio measurements (ion masses 45 / 44 and 46 / 44) are performed using isotope ratio mass spectrometry (IRMS). The 17O excess (Δ17O) is derived from isotope measurements on two different CO2 aliquots: unmodified CO2 and CO2 after complete oxygen isotope exchange with cerium oxide (CeO2) at 700 °C. Thus, a single measurement of Δ17O requires two injections of 1 mL of air with a CO2 mole fraction of 390 μmol mol-1 at 293 K and 1 bar pressure (corresponding to 16 nmol CO2 each). The required sample size (including flushing) is 2.7 mL of air. A single analysis (one pair of injections) takes 15 minutes. The analytical system is fully automated for unattended measurements over several days. The standard deviation of the 17O excess analysis is 1.7‰. Multiple measurements on an air sample reduce the measurement uncertainty, as expected for the statistical standard error. Thus, the uncertainty for a group of 10 measurements is 0.58‰ for Δ 17O in 2.5 h of analysis. 100 repeat analyses of one air sample decrease the standard error to 0.20‰. The instrument performance was demonstrated by measuring CO2 on stratospheric air samples obtained during the EU project RECONCILE with the high-altitude aircraft Geophysica. The precision for RECONCILE data is 0.03‰ (1σ) for δ13C, 0.07‰ (1σ) for δ18O and 0.55‰ (1σ) for δ17O for a sample of 10 measurements. This is sufficient to examine stratospheric enrichments, which at altitude 33 km go up to 12‰ for δ17O and up to 8‰ for δ18O with respect to tropospheric CO2 : δ17O ~ 21‰ Vienna Standard Mean Ocean Water (VSMOW), δ18O ~ 41‰ VSMOW (Lämmerzahl et al., 2002). The samples measured with our analytical technique agree with available data for

  12. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  13. Variational calculations of the {Lambda}-separation energy of the {sub {Lambda}}{sup 17}O hypernucleus

    SciTech Connect

    Usmani, A.A.; Pieper, S.C.; Usmani, Q.N.

    1995-05-01

    Variational Monte Carlo calculations have been made for the {sub {Lambda}}{sup 17}O hypernucleus using realistic two- and three-baryon interactions. A two-pion exchange potential with spin- and space-exchange components is used for the {Lambda}{ital N} potential. Three-body two-pion exchange and strongly repulsive dispersive {Lambda}{ital NN} interactions are also included. The trial wave function is constructed from pair- and triplet-correlation operators acting on a single-particle determinant. These operators consist of central, spin, isospin, tensor, and three-baryon potential components. A cluster Monte Carlo method is developed for noncentral correlations and is used with up to four-baryon clusters in our calculations. The three-baryon {Lambda}{ital NN} force is discussed.

  14. Magnetic isotope effects in the photolysis of dibenzyl ketone on porous silica. /sup 13/C and /sup 17/O enrichments

    SciTech Connect

    Turro, N.J.; Cheng, C.C.; Wan, P.; Chung, C.; Mahler, W.

    1985-04-25

    The photolysis of dibenzyl ketone (DBK) on porous silica has been investigated. Both /sup 13/C and /sup 17/O isotopic enrichment in the ketone remaining after partial photolysis is demonstrated. The efficiency of /sup 13/C enrichment was found to be relatively insensitive to the average pore diameter of the silica host, to the percent coverage by DBK, and to the application of an external magnetic field. A significant dependence of /sup 13/C enrichment with temperature, with a maximum in the enrichment-temperature profile, was observed. The results are interpreted in terms of the competition between pathways available to the triplet C/sub 6/H/sub 5/CH/sub 2/COCH/sub 2/C/sub 6/H/sub 5/ radical pair produced by photolysis of DBK.

  15. Chemical shift referencing in MAS solid state NMR

    NASA Astrophysics Data System (ADS)

    Morcombe, Corey R.; Zilm, Kurt W.

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than ±0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.

  16. Chemical shift referencing in MAS solid state NMR.

    PubMed

    Morcombe, Corey R; Zilm, Kurt W

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported. PMID:12810033

  17. Nontarget analysis of Murchison soluble organic matter by high-field NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Hertkorn, N; Harir, M; Schmitt-Kopplin, Ph

    2015-09-01

    High-field NMR spectra of Murchison meteorite methanolic extracts revealed primarily aliphatic extraterrestrial organic matter (EOM) with near statistical branching of commonly C(3-5) units separated by heteroatoms and aromatic units. The ratios of CCH, OCH and C(sp2)H units were 89 : 8 : 3, whereas carbon-based aliphatic chain termination was in the order methyl >  -COOH >  -CH(CH3)COOH. Aliphatic methine carbon was abundant, but its weak NMR signatures were primarily deduced from JRES (J-resolved) NMR spectra. Carbon NMR spectra were dominated by methylene and methyl carbon; strong apodization revealed methine carbon, of which about 20% was aromatic. Extrapolation provided 5-7% aromatic carbon present in Murchison soluble EOM. Compositional heterogeneity in Murchison methanolic extracts was visible in NMR and Fourier transform ion cyclotron (FTICR) mass spectra obtained from a few cubic millimeters of solid Murchison meteorite; increasing sample size enhanced uniformity of NMR spectra. Intrinsic chemical diversity and pH-dependent chemical shift variance contributed to the disparity of NMR spectra. FTICR mass spectra provided distinct clustering of CHO/CHOS and CHNO/CHNOS molecular series and confirmed the prevalence of aliphatic/alicyclic (73%) over single aromatic (21%) and polyaromatic (6%) molecular compositions, suggesting extensive aliphatic substitution of aromatic units as proposed by NMR. Murchison soluble EOM molecules feature a center with enhanced aromatic and heteroatom content, which provides rather diffuse and weak NMR signatures resulting from a huge overall chemical diversity. The periphery of Murchison EOM molecules comprises flexible branched aliphatic chains and aliphatic carboxylic acids. These project on narrow ranges of chemical shift, facilitating observation in one-dimensional and two-dimensional NMR spectra. The conformational entropy provided by these flexible surface moieties facilitates the solubility of EOM. PMID

  18. Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters.

    PubMed

    Aghabozorg, Hussein; Sohrabi, Beheshteh; Mashkouri, Sara; Aghabozorg, Hamid Reza

    2012-03-01

    DFT computations were carried out to characterize the (17)Oand (2)H electric field gradient, EFG, in various bisphosphonate derivatives. The computations were performed at the B3LYP level with 6-311++G (d,P) standard basis set. Calculated EFG tensors were used to determine the (17)O and (2)H nuclear quadrupole coupling constant, χ and asymmetry parameter, η. For better understanding of the bonding and electronic structure of bisphosphonates, isotropic and anisotropic NMR chemical shieldings were calculated for the (13)C, (17)O and (31)P nuclei using GIAO method for the optimized structure of intermediate bisphosphonates at B3LYP level of theory using 6-311++G (d, p) basis set. The results showed that various substituents have a strong effect on the nuclear quadrupole resonance (NQR) parameters (χ, η) of (17)O in contrast with (2)H NQR parameters. The NMR and NQR parameters were studied in order to find the correlation between electronic structure and the activity of the desired bisphosphonates. In addition, the effect of substitutions on the bisphosphonates polarity was investigated. Molecular polarity was determined via the DFT calculated dipole moment vectors and the results showed that substitution of bromine atom on the ring would increase the activity of bisphosphonates. PMID:21633790

  19. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  20. Screening proteins for NMR suitability

    PubMed Central

    Yee, Adelinda A.; Semesi, Anthony; Garcia, Maite; Arrowsmith, Cheryl H.

    2014-01-01

    Summary NMR spectroscopy is an invaluable tool in structural genomics. Identification of protein samples that are amenable to structure determination by NMR spectroscopy requires efficient screening. Here, we describe how we prepare multiple samples in parallel and screen by NMR. The method described here is applicable to large structural genomics projects but can easily be scaled down for application to small structural biology projects since all the equipments used are those commonly found in any NMR structural biology laboratory. PMID:24590717

  1. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  2. Enantiodiscrimination by NMR spectroscopy.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Salvadori, Piero

    2006-01-01

    The analysis of enantiorecognition processes involves the detection of enantiomeric species as well as the study of chiral discrimination mechanisms. In both fields Nuclear Magnetic Resonance (NMR) spectroscopy plays a fundamental role, providing several tools, based on the use of suitable chiral auxiliaries, for observing distinct signals of enantiomers and for investigating the complexation phenomena involved in enantiodiscrimination processes. PMID:17100610

  3. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    NASA Astrophysics Data System (ADS)

    Babailov, S. P.; Purtov, P. A.; Fomin, E. S.

    2016-08-01

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  4. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application.

    PubMed

    Babailov, S P; Purtov, P A; Fomin, E S

    2016-08-01

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange. PMID:27497554

  5. High-Precision Measurement of The Oxygen Isotopic Composition of Tropospheric O2: Implications for Δ17O of air as a Biosignature

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Ziegler, K.

    2006-05-01

    Here we present high-precision measurements of 18O/16O and 17O/16O in samples of tropospheric O2 using a standard calibrated with measurements of terrestrial and extraterrestrial rock samples. These new data provide a measure of Δ17O on an absolute scale that aids in the interpretation of the cause of the disparity in Δ17O between O2 in the troposphere and terrestrial rocks. We measured the isotopic composition of four separate aliquotes of ground-level air O2. Oxygen was isolated from air cryogenically using molecular sieve substrates. Correction was made for the influence of Ar scattered across the Faraday collectors (~0.06 per mil in δ17O) of the gas- source mass spectrometer. The reference gas used as an internal standard was calibrated against terrestrial rock samples and meteorites analyzed using infrared laser heating fluorination. All results are reported as linearized delta values (signified with a prime superscript symbol). With a mean terrestrial rock Δ17O'of 0.00 ‰ ± 0.02 we obtain Δ17O values of -0.25 ‰ ± 0.04 1σ, -0.22 ‰ ± 0.03, and -0.23 ‰ ± 0.05 for 5 mesosiderite meteorites, 7 pallasites, and 12 HED meteorites, respectively. The latter meteorite data are consistent with results from three other laboratories and serve to establish the absolute scale for the air O2 measurements. Our results for the O2 samples give a mean linearized δ18O' of 23.237 ‰ ± 0.008 1 std err (corresponding to a normal, non-linearized δ18O SMOW value of 23.509 ‰), a mean δ17O' of 11.922 ‰ ± 0.018, and a mean linearized Δ17O' of -0.347 ‰ ± 0.018 based on a rock-water terrestrial fractionation reference line with a slope (β) of 0.528. The latter is the exponent in a normal fractionation law described by the relation α17=(α18)β. This result can be reconciled with the suggestion by Young et al (2002) that the whole of the departure in Δ17O' of tropospheric O2 relative to terrestrial rocks can be attributed to respiration (a Δ17O Dole effect

  6. The AGB star nucleosynthesis in the light of the recent 17O ( p ,α)14N and 18O ( p ,α)15N reaction rate determinations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-02-01

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O ( p ,α)14N and 18O ( p ,α)15N reactions. Moreover, the strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of "presolar" grains to determine their impact on astrophysical environments.

  7. Study of the 17O(n,α)14C reaction: Extension of the Trojan Horse Method to neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Guardo, G. L.; Lamia, L.; Spitaleri, C.; Gulino, M.; Tang, X. D.; Bucher, B.; Burjan, V.; Cherubini, S.; Couder, M.; Davies, P.; deBoer*, R.; Fang, X.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; Lamm, L.; La Cognata, M.; Li, C.; Ma, C.; Mrazek, J.; Mukhamedzhanov, A. M.; Notani, M.; OBrien, S.; Pizzone, R. G.; Rapisarda, G. G.; Roberson, D.; Sergi, M. L.; Tan, W.; Thompson, I. J.; Wiescher, M.

    2014-05-01

    The experimental study of the 17O(n,α)14C reaction has been performed in the energy range 0-350 keV. This reaction could play an important role in explaining heavy elements (s-process) nucleosynthesis in various astrophysical scenario. To overcome the practical problems arising from the neutrons production, a new application of the Trojan Horse Method has been recently suggested. In more details, the 17O(n,α)14C reaction has been studied using the quasi-free 2H(17O,α14C)1H reaction, induced at an energy of 43.5 MeV. The measurement allows one to investigate the ℓ=3, 75 keV resonance (E*=8.125 MeV, Jπ=5-), absent in the available direct measurements because of centrifugal suppression effects.

  8. Study of the {sup 17}O(n,α){sup 14}C reaction: Extension of the Trojan Horse Method to neutron induced reactions

    SciTech Connect

    Guardo, G. L.; Lamia, L.; Spitaleri, C.; Cherubini, S.; Rapisarda, G. G.; Sergi, M. L.; Gulino, M.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; Boer, R. de; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; OBrien, S.; Roberson, D.; Tan, W.; Wiescher, M.; and others

    2014-05-02

    The experimental study of the {sup 17}O(n,α){sup 14}C reaction has been performed in the energy range 0-350 keV. This reaction could play an important role in explaining heavy elements (s-process) nucleosynthesis in various astrophysical scenario. To overcome the practical problems arising from the neutrons production, a new application of the Trojan Horse Method has been recently suggested. In more details, the {sup 17}O(n,α){sup 14}C reaction has been studied using the quasi-free {sup 2}H({sup 17}O,α{sup 14}C){sup 1}H reaction, induced at an energy of 43.5 MeV. The measurement allows one to investigate the ℓ=3, 75 keV resonance (E*=8.125 MeV, J{sup π}=5{sup −}), absent in the available direct measurements because of centrifugal suppression effects.

  9. Analysis of Radiation Induced Degradation in FPC-461 Fluoropolymers by Variable Temperature Multinuclear NMR

    SciTech Connect

    Chinn, S C; Wilson, T S; Maxwell, R S

    2004-10-27

    Solid state nuclear magnetic resonance techniques have been used to investigate aging mechanisms in a vinyl chloride:chlorotrifluoroethylene copolymer, FPC-461, due to exposure to {gamma}-radiation. Solid state {sup 1}H MAS NMR spectra revealed structural changes of the polymer upon irradiation under both air and nitrogen atmospheres. Considerable degradation is seen with {sup 1}H NMR in the vinyl chloride region of the polymer, particularly in the samples irradiated in air. {sup 19}F MAS NMR was used to investigate speciation in the chlorotrifluoroethylene blocks, though negligible changes were seen. {sup 1}H and {sup 19}F NMR at elevated temperature revealed increased segmental mobility and decreased structural heterogeneity within the polymer, yielding significant resolution enhancement over room temperature solid state detection. The effects of multi-site exchange are manifest in both the {sup 1}H and {sup 19}F NMR spectra as a line broadening and change in peak position as a function of temperature.

  10. Monitoring the Electrochemical Processes in the Lithium-Air Battery by Solid State NMR Spectroscopy.

    PubMed

    Leskes, Michal; Moore, Amy J; Goward, Gillian R; Grey, Clare P

    2013-12-27

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium-air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by (17)O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. (13)C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium-oxygen battery. PMID:24489976

  11. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  12. Proton conductors by the NMR method with modulation

    SciTech Connect

    Erofeev, L.N.; Sosikov, A.I.; Shteinberg, V.G.

    1988-01-01

    The NMR spectra and NMR relaxation in hydrates of phosphoro tungstic acid (PTA) and its salt were investigated. There was a narrow central line in both spectra, and the linewidth, measured in the temperature interval 130-290 K, was 4kHz. A previously proposed modulation technique by L. N. Erofeev, A.I. Sosikow, and A. K. Khitrin, was used to clarify the nature of the observed spectra. It was confirmed that model samples (gypsum, adamantane, rubber) make it possible to use the modulation technique to study the structure of proton systems. Decay curves for the magnetization in samples of PTA and Na-PTA are presented as obtained under multi-pulse spin locking conditions with and without modulation.

  13. Dolphin: a tool for automatic targeted metabolite profiling using 1D and 2D (1)H-NMR data.

    PubMed

    Gómez, Josep; Brezmes, Jesús; Mallol, Roger; Rodríguez, Miguel A; Vinaixa, Maria; Salek, Reza M; Correig, Xavier; Cañellas, Nicolau

    2014-12-01

    One of the main challenges in nuclear magnetic resonance (NMR) metabolomics is to obtain valuable metabolic information from large datasets of raw NMR spectra in a high throughput, automatic, and reproducible way. To date, established software packages used to match and quantify metabolites in NMR spectra remain mostly manually operated, leading to low resolution results and subject to inconsistencies not attributable to the NMR technique itself. Here, we introduce a new software package, called Dolphin, able to automatically quantify a set of target metabolites in multiple sample measurements using an approach based on 1D and 2D NMR techniques to overcome the inherent limitations of 1D (1)H-NMR spectra in metabolomics. Dolphin takes advantage of the 2D J-resolved NMR spectroscopy signal dispersion to avoid inconsistencies in signal position detection, enhancing the reliability and confidence in metabolite matching. Furthermore, in order to improve accuracy in quantification, Dolphin uses 2D NMR spectra to obtain additional information on all neighboring signals surrounding the target metabolite. We have compared the targeted profiling results of Dolphin, recorded from standard biological mixtures, with those of two well established approaches in NMR metabolomics. Overall, Dolphin produced more accurate results with the added advantage of being a fully automated and high throughput processing package. PMID:25370160

  14. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-01

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases. PMID:25881480

  15. Spin fluctuations in the exotic metallic state of Sr2RuO4 studied with β -NMR

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Buck, T.; Dehn, M. H.; Kiefl, R. F.; Levy, C. D. P.; McFadden, R. M. L.; Morris, G. D.; Pearson, M. R.; Salman, Z.; Maeno, Y.; MacFarlane, W. A.

    2015-06-01

    A β -NMR study was performed on a Sr2RuO4 crystal in the metallic state using a beam of spin-polarized +8Li implanted at a mean depth of 90 nm. The +8Li spin-lattice relaxation rate is strongly influenced by the onset of incommensurate spin fluctuations. The nuclear relaxation rate can be explained using previously published bulk 17O NMR and inelastic neutron spectroscopy measurements of the dynamic magnetic susceptibility to model the hyperfine coupling. A well-resolved quadrupolar-split NMR for +8Li implies a static stopping position in an interstitial site. The +8Li Knight shift is highly sensitive to the anisotropic static susceptibility.

  16. Measurement of the cross section for the reaction 20Ne( n,α)17O in the neutron-energy between 4 and 7 MeV

    NASA Astrophysics Data System (ADS)

    Khryachkov, V. A.; Bondarenko, I. P.; Kuzminov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2012-04-01

    The cross section for the reaction 20Ne( n, α)17O was measured in the neutron-energy range 4-7 MeV. An ionization chamber equipped with a Frisch grid combined with a pulse-shape digitizer was used as a detector. Gaseous neon that served as a target on which the reaction being studied proceeded was added to the gas filling the ionization chamber. The partial cross sections for the α 0, α 1, α 2, and α 3 channels of the reaction 20Ne( n, α)17O were obtained for the first time.

  17. Resonance strength measurement at astrophysical energies: The {sup 17}O(p,α){sup 14}N reaction studied via Trojan Horse Method

    SciTech Connect

    Sergi, M. L. La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Lamia, L.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-15

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on {sup 17}O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  18. NMR Investigation of Filler Effects of (Gamma) Irradiation in Polyurethane Adhesives

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Cohenour, R

    2007-06-11

    Polyurethane and polyester elastomers have been used for decades in a wide variety of applications, from seat cushion foams to prosthetic materials to high performance adhesives. Adiprene LW-520 is a polyurethane-based adhesive used in a number of U. S. Department of Energy applications. Several investigations have been performed to determine aging properties of polyurethanes. For example, {sup 1}H nuclear magnetic resonance (NMR) relaxation times have been shown to be sensitive to thermal degradation in polyurethanes. Detailed information about the exact nature of the oxidative thermal degradation in related materials has also been obtained via {sup 17}O and {sup 13}C NMR, with additional insight into morphological changes being obtained using {sup 1}H spin diffusion experiments. Radiation has also been shown to change the physical and mechanical properties of the polymers; in fact many polyurethanes are cured using radiation to affect the isocyanate and free radical reactive groups, thus controlling the properties such as thermal or solvent resistance.

  19. NMR study of the potential composition of Titan's lakes

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, Mark A.

    2015-05-01

    A large number of hydrocarbon lakes have been discovered in Titan's surface. However, the chemical composition and physical properties of these lakes are not fully understood. We investigate the potential composition of Titan's lakes by NMR. Based upon NMR data, the 1H and 13C NMR spectra of the hydrocarbons in Titan's lakes are simulated on a 1 T spectrometer [being developed at the NASA Jet Propulsion Laboratory (JPL) for future in situ characterization of Titan's lakes]. The study indicates that the dominant composition (all components>1% of the lake composition by mole fraction) in Titan's lakes can be determined and the major soluble organics quantitatively identified from either quantitative 1H or 13C spectra on a 1 T NMR spectrometer. The proton T1 relaxation times are determined for a number of candidate organics in hydrocarbon solution, a necessary determinant for quantitative NMR. The gas solubility of these organics is also investigated to understand the equilibrium of composition between Titan's lakes and atmosphere and the precipitation rates of the molecules at Titan's ground level. Our results are significant for the ongoing discussion regarding the development of in situ, low bias analysis methods and instruments for Titan missions and other outer planet exploration.

  20. GFT projection NMR spectroscopy for proteins in the solid state

    PubMed Central

    Franks, W. Trent; Atreya, Hanudatta S.; Szyperski, Thomas

    2011-01-01

    Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated ‘sampling problem’ and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins. PMID:21052779