Science.gov

Sample records for 17th european bioenergetics

  1. EDITORIAL The 17th Central European Workshop on Quantum Optics

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2011-02-01

    . The uncertainty relations for photon quadratures were also checked for the thermal photon state using experimental values of optical tomograms and avoiding the reconstruction procedure of the Wigner function and its associated precision constrains. In the tomographic-probability representation of quantum mechanics and quantum optics, tomograms are used for the description of quantum states as an alternative to the wave function and density matrix. The purity, fidelity, entropy and photon temperature associated with quantum states are expressed in terms of tomograms. This provides the possibility of measuring these characteristics directly by taking optical tomograms and checking basic inequalities like entropic uncertainty relations, temperature-dependent quadrature uncertainty relations, etc. The better understanding that quantum states can be identified with measurable probability distributions like optical tomograms opens new prospects in quantum optics, for example, to check experimentally the uncertainty relations for higher quadrature momenta and to control the precision with which the fundamental inequalities of quantum mechanics are experimentally confirmed. This Topical Issue is a collection of papers presented at the 17th Central European Workshops on Quantum Optics (CEWQO10) held at the University of St Andrews, Scotland, UK, 6-11 June 2010. The other collaborators from different scientific centers who could not, due to different reasons, come to St Andrews but participated in the previous CEWQOs and plan to participate in future CEWQOs also contributed to this issue. The paper by Ulf Leonhardt and Natalia Korolkova, the CEWQO10 Organizers, opens this issue. The order of the following papers corresponds to the alphabetical order of the first author of the paper. The history of CEWQOs can be found in the Preface to the Proceedings of the 15th CEWQO (2009 Phys. Scr. T135 011005). The Proceedings of the 16th Central European Workshop on Quantum Optics (CEWQO09

  2. Native American Games & European Religious Attitudes in the 16th & 17th Centuries.

    ERIC Educational Resources Information Center

    Eisen, George

    Some aspects of the white-Indian relationship are reflected in the writings of 16th and 17th century observers of Indian pastimes. The Noble Savage image was apparently accepted by French colonists as a consequence of an intellectual disappointment in the contemporary societies. In an age of absolutism and religious intolerance, the picture of the…

  3. European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.

    2011-12-01

    Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.

  4. Union catalogue of printed books of 15th, 16th and 17th centuries in European astronomical observatories.

    NASA Astrophysics Data System (ADS)

    Grassi, G.

    This catalogue deals with the scientific subjects of that historical period such as astronomy, astrology, chemistry, mathematics, physics, historia naturalis and so forth, and contains extremely rare volumes such as the first printed editions of the eminent Arab, Latin, Greek and Persian scientists Albumasar, Albohazen Aly, Aristoteles, Ptolemaeus, Pliny the Elder and Ulugh Beig. In addition the catalogue contains the first works of such great astronomers of the 16th and 17th centuries as Copernicus, Kepler, Clavius, Regiomontanus, Sacrobosco, Mercator, Newton, Gassendi, Galilei and Hevelius, just to quote the most representative ones. The catalogue is followed by a chronological index and an index of printers and publishers.

  5. Post 17th-century changes of European PAH emissions recorded in high-altitude Alpine snow and ice.

    PubMed

    Gabrieli, Jacopo; Vallelonga, Paul; Cozzi, Giulio; Gabrielli, Paolo; Gambaro, Andrea; Sigl, Michael; Decet, Fabio; Schwikowski, Margit; Gäggeler, Heinz; Boutron, Claude; Cescon, Paolo; Barbante, Carlo

    2010-05-01

    The occurrence of organic pollutants in European Alpine snow/ice has been reconstructed over the past three centuries using a new online extraction method for polycyclic aromatic hydrocarbons (PAH) followed by liquid chromatographic determination. The meltwater flow from a continuous ice core melting system was split into two aliquots, with one aliquot directed to an inductively coupled plasma quadrupole mass spectrometer for continuous trace elements determinations and the second introduced into a solid phase C18 (SPE) cartridge for semicontinuous PAH extraction. The depth resolution for PAH extractions ranged from 40 to 70 cm, and corresponds to 0.7-5 years per sample. The concentrations of 11 PAH were determined in dated snow/ice samples to reconstruct the atmospheric concentration of these compounds in Europe for the last 300 years. The PAH pattern is dominated by phenanthrene (Phe), fluoranthene (Fla), and pyrene (Pyr), which represent 60-80% of the total PAH mass. Before 1875 the sum of PAH concentration (SigmaPAH) was very low with total mean concentrations less than 2 ng/kg and 0.08 ng/kg for the heavier compounds (SigmaPAH*, more than four aromatic rings). During the first phase of the industrial revolution (1770-1830) the PAH deposition showed a weak increase which became much greater from the start of the second phase of the industrial revolution at the end of 19th Century. In the 1920s, economic recession in Europe decreased PAH emissions until the 1930s when they increased again and reached a maximum concentration of 32 ng/kg from 1945 to 1955. From 1955 to 1975 the PAH concentrations decreased significantly, reflecting improvements in emission controls especially from major point sources, while from 1975 to 2003 they rose to levels equivalent to those in 1910. The Fla/(Fla+Pyr) ratio is often used for source assignment and here indicates an increase in the relative contribution of gasoline and diesel combustion with respect to coal and wood burning

  6. PREFACE: Papers from the 17th European Conference on Atomic and Molecular Physics of Ionized Gases (Constanta, Romania, 1 5 September 2004)

    NASA Astrophysics Data System (ADS)

    Ciupina, V.; Musa, G.; Vladoiu, R.

    2005-05-01

    The 17th European Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG-17) was held in Constanta, Romania, on 1-5 September 2004. ESCAMPIG is an important biennial European conference at which useful exchanges of ideas and discussion of new achievements in low temperature plasma physics take place. The meeting was held in the ambient location of Constanta, Romania, which provided the perfect location to encourage interaction between the related research communities attending the conference. The local organizers, as well as the plasma scientists of Romania, were all very much honoured that Constanta was selected by the International Scientific Committee as the location for ESCAMPIG-17. The conference was the second largest plasma physics conference ever to take place in Romania, second only to the ICPIG conference of 1969 in Bucharest—a huge conference with four parallel sections and simultaneous translation in four languages (English, German, French and Russian) in all four parallel sections. In contrast, ESCAMPIG-17 maintained the founding ideals and held single sessions only to encourage and strengthen the relationships between research communities. During ESCAMPIG-17 we had the opportunity to attend and hear excellent invited lectures presenting outstanding new results in plasma physics. A selection of those invited lectures from ESCAMPIG-17 is published in this issue of Plasma Sources Science and Technology. We would like to take this opportunity to express our thanks to all the invited lecturers and also to all the participants who attended ESCAMPIG-17. The Local Organizing Committee would particularly like to thank all the International Scientific Committee members. Special thanks are due to Professor Gerrit Kroesen and Professor Nader Sadeghi for their valuable and continuous support in solving our problems, no matter how complicated they were.

  7. [Spanish authors in the ideal library of G. Naudé (1627): a European view of the Spanish culture and science at the beginning of the 17th century].

    PubMed

    Muñoz, Evaristo álvarez

    2010-01-01

    This article aims to analyze a European view of the 17th century Spanish culture. Naudé's "Advis pour dresser une bibliothèque" (1627) - translated twice into English: "Instructions concerning erecting of a library" (1661) and "Advice on establishing a library" (1950) - represents a wide set of bibliographic recommendations that constitute, among many other things, an excellent observatory of the Spanish culture in such a delicate time.

  8. Scientific Misconduct and Theft: Case Report from 17th Century

    PubMed Central

    Fatović-Ferenčić, Stella

    2008-01-01

    Gjuro Armen Baglivi was one of the most famous medical authorities of the 17th century. Apart from his numerous books and publications, several extensive collections of his correspondence have been preserved and are available in libraries around the world. They provide new information about the 17th century scientific culture and place of Baglivi’s work in the scientific European context. Also, they shed light on his personality more than other writings intended for the public eye. In this paper I will present the case of a theft of intellectual property, which Baglivi described in one of his letters to Jean Jacques Manget. PMID:18293461

  9. 17th Annual School Construction Report, 2012

    ERIC Educational Resources Information Center

    Abramson, Paul

    2012-01-01

    The 2012 "School Planning & Management"'s 17th Annual School Construction Report reports over the last two years although school construction had fallen from previous highs, the pipeline of projects funded before the recession was still full. And so, in 2009 total construction was a solid $16.4 billion. But the pipeline is not being…

  10. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists.

    PubMed

    Rossignol, Rodrigue

    2015-06-01

    Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.

  11. DIMMING OF THE 17TH CENTURY SUN

    SciTech Connect

    Foukal, Peter; Ortiz, Ada; Schnerr, Roald

    2011-06-01

    Reconstructions of total solar irradiance (TSI) rely mainly on linear relations between TSI variation and indices of facular area. When these are extrapolated to the prolonged 15th-17th century Spoerer and Maunder solar activity minima, the estimated solar dimming is insufficient to explain the mid-millennial climate cooling of the Little Ice Age. We draw attention here to evidence that the relation departs from linearity at the lowest activity levels. Imaging photometry and radiometry indicate an increased TSI contribution per unit area from small network faculae by a factor of 2-4 compared with larger faculae in and around active regions. Even partial removal of this more TSI-effective network at prolonged minima could enable climatically significant solar dimming, yet be consistent with the weakened but persistent 11 yr cycle observed in Be 10 during the Maunder Minimum. The mechanism we suggest would not alter previous findings that increased solar radiative forcing is insufficient to account for 20th century global warming.

  12. 17th International Conference on Arabidopsis Research

    SciTech Connect

    Bender, Judith

    2006-07-02

    The 17th International Conference on Arabidopsis Research was held at the University of Madison, Wisconsin from June 27- July 2, 2006. ICAR-2006 included approximately 625 scientists from across the world. The scientific program was of excellent quality featuring 73 talks, including 30 from invited speakers. There were also 6 community-organized workshops (facilitated by conference staff) featuring additional talks on topics including ‘Submitting data to long-term repositories,’ ‘TAIR introductory workshop,’ ‘Web services and demonstration,’ ‘Public engagement: broadening the impact of your research,’ ‘Systems biology approaches to analysis of metabolic and regulatory networks of Arabidopsis,’ and ‘Mechanotransduction in Arabidopsis.’ Approximately 440 posters were presented in general topic areas including, among others, Development, Modeling/Other Systems, Energy, Environment, and Genetic/Epigenetic mechanisms. Graduate students, postdoctoral researchers, junior faculty, and underrepresented minorities made up a significant portion of the oral presentations thereby promoting the training of young scientists and facilitating important career development opportunities for speakers. Several poster sessions provided an opportunity for younger participants to freely meet with more established scientists. The North American Arabidopsis Steering Committee (NAASC) continued its outreach effort and again sponsored two special luncheons to encourage personal and professional development of young scientists and also underrepresented minorities. The ‘Emerging Scientists Luncheon’ featured 10 graduate students selected on the basis of scientific excellence of their submitted research abstracts. The ‘Minority Funding Luncheon,’ featured 8 awardees selected by the NAASC through a widely-publicized application process. This luncheon was established specifically to provide an opportunity for underrepresented minorities, and/or scientists from

  13. 17th International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.

  14. High Life: 17th Annual Residence Hall Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2006-01-01

    Residence hall construction continues to be a priority for colleges and universities. With enrollments on the upswing, higher-education institutions are spending more and building larger facilities to entice students to live on campus. This article presents the findings of "American School & University's" 17th annual Residence Hall Construction…

  15. Harvard Humanities Students Discover the 17th Century Online

    ERIC Educational Resources Information Center

    Howard, Jennifer

    2007-01-01

    This article profiles Harvard professor Stephen Greenblatt's new course, "Travel and Transformation in the Early 17th Century." The product of an intense, months-long collaboration between computing specialists, graduate students, librarians, and scholars, the course makes innovative use of all the tools and technical know-how a major university…

  16. Molecular and Bioenergetic Differences between Cells with African versus European Inherited Mitochondrial DNA Haplogroups: Implications for Population Susceptibility to Diseases

    PubMed Central

    Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres del Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis P.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin

    2015-01-01

    The geographic origins of populations can be identified by their maternally inherited mitochondrial DNA (mtDNA) haplogroups. This study compared human cybrids (cytoplasmic hybrids), which are cell lines with identical nuclei but mitochondria from different individuals with mtDNA from either the H haplogroup or L haplogroup backgrounds. The most common European haplogroup is H while individuals of maternal African origin are of the L haplogroup. Despite lower mtDNA copy numbers, L cybrids had higher expression levels for nine mtDNA-encoded respiratory complex genes, decreased ATP turnover rates and lower levels of ROS production, parameters which are consistent with more efficient oxidative phosphorylation. Surprisingly, GeneChip arrays showed that the L and H cybrids had major differences in expression of genes of the canonical complement system (5 genes), dermatan/chondroitin sulfate biosynthesis (5 genes) and CCR3 signaling (9 genes). Quantitative nuclear gene expression studies confirmed that L cybrids had (a) lower expression levels of complement pathway and innate immunity genes and (b) increased levels of inflammation-related signaling genes, which are critical in human diseases. Our data support the hypothesis that mtDNA haplogroups representing populations from different geographic origins may play a role in differential susceptibilities to diseases. PMID:24200652

  17. Report from 17th Hydrology Days Conference available

    NASA Astrophysics Data System (ADS)

    The 17th annual Hydrology Days Conference was held from April 14-18,1997, at Colorado State University in Fort Collins. Highlights of the meeting included awards for the best student papers, given to Lyn Benjamin and Kevin Williams, both of Utah State University, and to Tom Sale of Colorado State University and Frank Barranco of the Colorado School of Mines. Proceedings from the meeting are available for $30 from H. J. Morel-Seytoux (57 Selby Lane, Atherton, CA 94027-3926 USA; tel. +1-415-365-4080semi; e-mail morelsey@usgs.gov)

  18. Anatomy and anatomists in Tuscany in the 17th century.

    PubMed

    Orlandini, Giovanni E; Paternostro, Ferdinando

    2010-01-01

    The 17th century was characterized by a real revolution in the field of scientific research due to the introduction of the experimental method, promoted by Galileo Galilei who was the most representative scientist of this period. Therefore, medical disciplines, particularly Anatomy, underwent innovative and deep changes shattering traditional culture and representing the background for the modern science. In this fermenting period, Tuscany played a significant role since numerous distinguished scientists were gathered by Medici Grand Dukes (especially Ferdinando the 2nd and Cosimo the 3rd) at Pisa University and at their court in Florence. Among them, it must be mentioned Giovanni Alfonso Borelli, creator of iathromechanics, Marcello Malpighi, founder of microscopic Anatomy, Francesco Redi, who denied the insect spontaneous generation, Nils Steensen who continued in Florence his anatomical studies on lymph nodes and salivary glands while setting also the bases of modern geology. Moreover, at the end of the 17th century, the anatomical wax modelling techniques arose and developed in Florence thanks to the work of Gaetano Zumbo (or Zummo), capable of creating some real masterpieces, still very well preserved and collected in the Museum of Natural Sciences "La Specola".

  19. [Surgeons among the pirates in the 17th century].

    PubMed

    Snelders, S

    2005-12-24

    The memoirs of ship's surgeons that sailed with the Caribbean buccaneers and pirates of the 17th century are an important source of information on how they lived and worked. The surgeons enjoyed a full-fledged position among the egalitarian buccaneers. Known buccaneer surgeons whose memoirs have been preserved were apparently not entirely qualified according to the traditional guild system. Besides the usual work of ship's surgeons in general, the buccaneer surgeons had to be able to cope with the specific demands of the tropical climate. Botanical knowledge obtained from the Indian tribes played an important role in surviving the jungles of Central America. In addition, they were required to assist with duels, which played an important role among pirates and buccaneers in the settling of conflicts aboard ship, this in contrast to the situation on merchant and navy ships.

  20. 17th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip (Compiler)

    2002-01-01

    The 17th Space Photovoltaic Research and Technology (SPRAT XVII) Conference was held September 11-13, 2001, at the Ohio Aerospace Institute (OAI) in Cleveland, Ohio. The SPRAT conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar technology. This year's conference continued to build on many of the trends shown in SPRAT XVI; the use of new high-efficiency cells for commercial use and the development of novel array concepts such as Boeing's Solar Tile concept. In addition, new information was presented on space environmental interactions with solar arrays.

  1. JANNAF 17th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 16 unclassified/unlimited technical papers presented at the 17th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the 35th Combustion Subcommittee (CS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include projectile and shaped charge jet impact vulnerability of munitions; thermal decomposition and cookoff behavior of energetic materials; damage and hot spot initiation mechanisms with energetic materials; detonation phenomena of solid energetic materials; and hazard classification, insensitive munitions, and propulsion systems safety.

  2. Teaching Science in Art: Technical Examination of 17th-Century Dutch Painting as Interdisciplinary Coursework for Science Majors and Nonmajors

    ERIC Educational Resources Information Center

    Uffelman, Erich S.

    2007-01-01

    Two linked courses examining conservation science and art history of 17th-century Dutch painting are described. The two courses have been taught on campus and, most recently, as study-abroad courses in collaboration with the Center for European Studies, Universiteit Maastricht, The Netherlands. The highly interdisciplinary courses are intense, yet…

  3. Bioenergetics in ecosystems

    USGS Publications Warehouse

    Madenjian, Charles P.; Farrell, Anthony P.

    2011-01-01

    A bioenergetics model for a fish can be defined as a quantitative description of the fish’s energy budget. Bioenergetics modeling can be applied to a fish population in a lake, river, or ocean to estimate the annual consumption of food by the fish population; such applications have proved to be useful in managing fisheries. In addition, bioenergetics models have been used to better understand fish growth and consumption in ecosystems, to determine the importance of the role of fish in cycling nutrients within ecosystems, and to identify the important factors regulating contaminant accumulation in fish from lakes, rivers, and oceans.

  4. A Mediterranean derecho: Catalonia (Spain), 17th August 2003

    NASA Astrophysics Data System (ADS)

    López, J. Manuel

    2007-02-01

    At approximately 6:10 UTC in the morning of 17th August 2003, a squall line developed over south Catalonia (the northeast region of Spain). During the next 9 h, the squall moved rapidly northeast and crossed Catalonia and the French regions of Languedoc-Roussillon and Province, damaging and uprooting hundreds of trees and blocking trains in the region. Wind gusts reached were recoded up to 52 m/s with evidence of F2 intensity damage. This case study shows the characteristics of a derecho (widespread convectively induced windstorm). Radar observations of the evolving squall line show signatures often correlated with damaging surface winds, including: Bow echoes, Rear inflow notches, Rear inflow jets, Medium altitude radial convergence, Narrow gradient of very marked reflectivity, Development of isolated cells ahead of the convective line, A band of convection off the northern end of the line known as a "warm advection wing". When examining the different surface observations, satellite, radar imagery and cloud-to-ground lightning data, this case shows many similarities to those investigated in the United States. The derecho is a hybrid case, but has many characteristics of warm season derechoes. This emanates from a mesoscale convective complex (MCC) moving along a quasi-stationary, low-level thermal boundary in an environment characterized by high potential instability and relatively strong mid-tropospheric winds.

  5. Reconstructing early 17th century estuarine drought conditions from Jamestown oysters.

    PubMed

    Harding, Juliana M; Spero, Howard J; Mann, Roger; Herbert, Gregory S; Sliko, Jennifer L

    2010-06-08

    Oysters (Crassostrea virginica) were a central component of the Chesapeake Bay ecosystem in 1607 when European settlers established Jamestown, VA, the first permanent English settlement in North America. These estuarine bivalves were an important food resource during the early years of the James Fort (Jamestown) settlement while the colonists were struggling to survive in the face of inadequate supplies and a severe regional drought. Although oyster shells were discarded as trash after the oysters were eaten, the environmental and ecological data recorded in the bivalve geochemistry during shell deposition remain intact over centuries, thereby providing a unique window into conditions during the earliest Jamestown years. We compare oxygen isotope data from these 17th century oyster shells with modern shells to quantify and contrast estuarine salinity, season of oyster collection, and shell provenance during Jamestown colonization (1609-1616) and the 21st century. Data show that oysters were collected during an extended drought between fall 1611 and summer 1612. The drought shifted the 14 psu isohaline above Jamestown Island, facilitating individual oyster growth and extension of oyster habitat upriver toward the colony, thereby enhancing local oyster food resources. Data from distinct well layers suggest that the colonists also obtained oysters from reefs near Chesapeake Bay to augment oyster resources near Jamestown Island. The oyster shell season of harvest reconstructions suggest that these data come from either a 1611 well with a very short useful period or an undocumented older well abandoned by late 1611.

  6. Overview of mitochondrial bioenergetics.

    PubMed

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  7. Report on the 17th Annual Land O'Lakes Bioanalytical Conference.

    PubMed

    Burns, Erik C; Moran, Jeff; Breidinger, Sheila; Ho, Stacy; Guthrie, Randy; Amaravardi, Lakshmi

    2016-11-01

    17th Annual Land O'Lakes Bioanalytical Conference, Madison, WI, USA, 11-14 July 2016 The 17th Annual Land O'Lakes Bioanalytical Conference, titled 'Biomarker Validation, Stability, and Regulatory Concerns', was held on 11-14 July 2016 (Monday through Thursday) in Madison, WI, USA. The Land O'Lakes Conference is presented each year by the Division of Pharmacy Professional Development within the School of Pharmacy at the University of Wisconsin-Madison (USA). The purpose of this 3-day conference is to provide an educational forum to discuss issues and applications associated with the analysis of xenobiotics, metabolites, biologics and biomarkers in biological matrices. The conference is designed to include and encourage an open exchange of scientific and methodological applications for bioanalysis. To increase the interactive nature of the conference, the program is a mixture of lectures, interactive discussions and a poster session. This report summarizes the presentations at the 17th Annual Conference.

  8. Portuguese tin-glazed earthenware from the 17th century. Part 1: Pigments and glazes characterization

    NASA Astrophysics Data System (ADS)

    Vieira Ferreira, L. F.; Casimiro, T. M.; Colomban, Ph.

    2013-03-01

    Two sherds representative of the Portuguese faience production of the first and second halves of the 17th century were studied carefully with the use of non-invasive spectroscopies, namely: Ground State Diffuse Reflectance Absorption (GSDR), micro-Raman, Fourier-Transform Infrared (FT-IR), Laser Induced Luminescence (LIL) and Proton Induced X-ray (PIXE). These results were compared with the ones obtained for a Chinese Ming porcelain, Wanli period (16th/beginning of the 17th centuries), which served as an influence for the initial Lisbon's faience production. By combining information of the different non-destructive spectroscopic techniques used in this work, it was possible to conclude that: Co3O4 (Co II and Co III) can be found in the silicate matrix and is the blue pigment in the "Especieiro" sample (1st half of the 17th C.). Cobalt olivine silicate (Co2SiO4, Co II only) was clearly identified as the blue pigment in "Aranhões" sample (2nd half of the17th C.) - 824 cm-1 band in the micro-Raman-spectrum. Cobalt aluminate (CoAl2O4, Co II only) is the blue pigment in the Wanli plate - 203 and 512 cm-1 bands in the micro-Raman spectrum. The blue pigment in the 1st half 17th century of Lisbon's production was obtained by addition of a cobalt ore in low concentrations, which gives no specific Raman signature, because of complete dissolution in the glass. However, in most cases of the 2nd half 17th century, the Raman signature was quite evident, from a cobalt silicate. These findings point to the use of higher temperature kilns in the second case.

  9. Portuguese tin-glazed earthenware from the 17th century. Part 1: pigments and glazes characterization.

    PubMed

    Vieira Ferreira, L F; Casimiro, T M; Colomban, Ph

    2013-03-01

    Two sherds representative of the Portuguese faience production of the first and second halves of the 17th century were studied carefully with the use of non-invasive spectroscopies, namely: Ground State Diffuse Reflectance Absorption (GSDR), micro-Raman, Fourier-Transform Infrared (FT-IR), Laser Induced Luminescence (LIL) and Proton Induced X-ray (PIXE). These results were compared with the ones obtained for a Chinese Ming porcelain, Wanli period (16th/beginning of the 17th centuries), which served as an influence for the initial Lisbon's faience production. By combining information of the different non-destructive spectroscopic techniques used in this work, it was possible to conclude that: Co(3)O(4) (Co II and Co III) can be found in the silicate matrix and is the blue pigment in the "Especieiro" sample (1st half of the 17th C.). Cobalt olivine silicate (Co(2)SiO(4), Co II only) was clearly identified as the blue pigment in "Aranhões" sample (2nd half of the 17th C.) - 824 cm(-1) band in the micro-Raman-spectrum. Cobalt aluminate (CoAl(2)O(4), Co II only) is the blue pigment in the Wanli plate - 203 and 512 cm(-1) bands in the micro-Raman spectrum. The blue pigment in the 1st half 17th century of Lisbon's production was obtained by addition of a cobalt ore in low concentrations, which gives no specific Raman signature, because of complete dissolution in the glass. However, in most cases of the 2nd half 17th century, the Raman signature was quite evident, from a cobalt silicate. These findings point to the use of higher temperature kilns in the second case.

  10. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  11. Molecular Medicine - CHI's 17th International Tri-Conference: Mastering Medicinal Chemistry - CHI's Seventh Annual Conference.

    PubMed

    Semple, Graeme

    2010-04-01

    CHI's 17th International Tri-Conference on Molecular Medicine, held in San Francisco, included topics covering the drug discovery process, with an emphasis on lead optimization. This conference report highlights selected presentations on the development of several launched and investigational drugs, including Plerixafor, Trox-1 (CombinatoRX Inc), lorcaserin (Arena Pharmaceuticals Inc), vorapaxar (Merck & Co Inc) and ulimorelin (Tranzyme Pharma Inc).

  12. Nonmilitary applications of the rocket between the 17th and 20th centuries

    NASA Technical Reports Server (NTRS)

    Sharpe, M. R.

    1977-01-01

    Nonmilitary uses of the rocket through history were investigated. It was found that through the 17th century rockets were used in whaling as harpoon drives. In later years, rockets were used in lifesaving and in commercial signalling at sea. Rocket utilization was traced up to the present application of sending the first men to the moon.

  13. Mosquito Vector Control and Biology in Latin America - A 17th Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 17th Annual Latin America American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 73rd Annual Meeting in Orlando, FL, in April 2007. The principal objective, as for the previous 16 symposia, was to promote participation in the AMCA by vector cont...

  14. Why "Worser" Is Better: The Double Comparative in 16th- to 17th-Century English.

    ERIC Educational Resources Information Center

    Schluter, Julia

    2001-01-01

    Investigates the redundantly marked comparative "worser" in relation to its irregular, but etymologically justified, counterpart, "worse." Examines the diachronic development of the form as well as its distribution in the written language of the 16th and 17th centuries. (Author/VWL)

  15. Concurrent phenomena of science and history in the 17th century and their essential interdependence.

    PubMed Central

    Bloch, H.

    1992-01-01

    The explanation for the explosion of science in the 17th century lies in history and medical historiography. Without this approach, it becomes fantasy, accidents, or success stories. Sigerist grasped the essential interdependence of science and history, and had no need for devised reasons or speculation. He realized that once the dark night of the Middle Ages was over, the sciences arose with undreamt of force and accelerated development. The advances in astronomy, mathematics, mechanics, and experimental science benefitted a society developing in seafaring, manufacture, and trade in the 17th century. Sigerist's views make the scientific explosion understandable in human and social terms. He did not overlook the capabilities of some extraordinary individuals, such as Paracelsus (1493-1541), to shape the course of medicine, nor the importance of the mechanistic philosophy in the 17th century. Man makes history and science; hence, we find concurrent phenomena of history and science essentially interdependent. The spirit of experimental science of 17th century England was inspired by the new needs of commercial enterprise for more means of transportation and communication. Likewise, the interest in the mechanics of the pump for waterworks and for the drainage of swamps led Harvey to think of the heart as a pump, and to explain the circulation of the blood in terms of its functioning. PMID:1608066

  16. Japanese Concepts of Child Development from the Mid-17th to Mid-19th Century.

    ERIC Educational Resources Information Center

    Kojima, Hideo

    1986-01-01

    Summarizes beliefs and values about child rearing from documents written by experts on the mid-17th to mid-19th centuries. The experts argued that children are innately good rather than evil; environmental factors accounted for differences among children rather than innate factors; and children were autonomous rather than passive learners. (HOD)

  17. 8. Photocopy of photograph (from 17th Annual Report, 1912, The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph (from 17th Annual Report, 1912, The American Scenic and Historic Preservation Society) Unknown, Photographer, c. 1912 PERSPECTIVE VIEW OF WEST (FRONT) AND NORTH SIDE AS LOCATED AND ALTERED AT PRESENT SITE - Hamilton Grange, (Moved From) 237 West 141 Street to 141st Street & Amsterdam, New York County, NY

  18. My Experience with Alcohol, a 17th-Century Mathematician, and a Personal Decision

    ERIC Educational Resources Information Center

    Eaton, Dennis R.; Rector, Sheila M.

    2009-01-01

    This writing shares the first author's personal experience with alcohol, the negative consequences of his choices, and the ultimate answering of the question, "Am I an alcoholic and should I drink again?" The decision-making process and the eventual answer come from Blaise Pascal, a 17th-century mathematician. This process is explained and…

  19. Computers in Libraries Annual Conference (17th, Washington, DC, March 13-15, 2002): Collected Presentations.

    ERIC Educational Resources Information Center

    Nixon, Carol, Comp.

    This book contains presentations from the 17th annual Computers in Libraries Conference. Topics covered include: chatting with a librarian; verbots for library Web sites; collaborative IT (Information Technology) planning at Montgomery County Public Library (Maryland); designing a local government taxonomy; Weblogs; new roles for librarians in…

  20. Traces and echoes of De Architectura by Marcus Vitruvius Pollio in the work of Xu Guangqi in 17th century China

    NASA Astrophysics Data System (ADS)

    Cigola, Michela; Fang, Yibing

    2016-03-01

    This study aims to investigate the role played by Xu Guangqi (1562-1633), minister of the Ming Dynasty, in the development of European scientific and technical knowledge in China between the 16th and 17th centuries by analyzing a book of Western technology that he wrote, namely, Taixi Shuifa ( On Western Hydraulics). Several Western books related to machine knowledge are searched to trace the source of the illustrations in Taixi Shuifa. We found that Archimedes' screw and Ctesibius' machine, which are included in Vitruvius' De Architectura volumes, also appear in the work of Xu Guangqi.

  1. Bioenergetics and Life's Origins

    PubMed Central

    Deamer, David; Weber, Arthur L.

    2010-01-01

    Bioenergetics is central to our understanding of living systems, yet has attracted relatively little attention in origins of life research. This article focuses on energy resources available to drive primitive metabolism and the synthesis of polymers that could be incorporated into molecular systems having properties associated with the living state. The compartmented systems are referred to as protocells, each different from all the rest and representing a kind of natural experiment. The origin of life was marked when a rare few protocells happened to have the ability to capture energy from the environment to initiate catalyzed heterotrophic growth directed by heritable genetic information in the polymers. This article examines potential sources of energy available to protocells, and mechanisms by which the energy could be used to drive polymer synthesis. PMID:20182625

  2. Bioenergetics of the Archaea

    PubMed Central

    Schäfer, Günter; Engelhard, Martin; Müller, Volker

    1999-01-01

    In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane

  3. John Hall and his epileptic patients--epilepsy management in early 17th century England.

    PubMed

    Betts, T; Betts, H

    1998-10-01

    John Hall, a physician, practised in Stratford in the early 17th century and was the son-in-law of William Shakespeare. During his career he kept records of his patients (in Latin) which he may have been preparing for publication when he died. Despite his instruction for them to be destroyed some were later translated into English and published by another physician. The case records were popular and have recently been reprinted with a commentaryl. We have searched the case records for descriptions of epilepsy and examined the treatments offered (and the attitudes to) this condition in early 17th century England. Treatment consisted of standard remedies ('fumes' of hartshorn and extracts of peony) related to the Galenic system of medicine, plus individual remedies. Interestingly, there is no evidence that the condition was stigmatized.

  4. 17th Edition of TOP500 List of World's Fastest SupercomputersReseased

    SciTech Connect

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack J.; Simon,Horst D.

    2001-06-21

    17th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, GERMANY; KNOXVILLE, TENN.; BERKELEY, CALIF. In what has become a much-anticipated event in the world of high-performance computing, the 17th edition of the TOP500 list of the world's fastest supercomputers was released today (June 21). The latest edition of the twice-yearly ranking finds IBM as the leader in the field, with 40 percent in terms of installed systems and 43 percent in terms of total performance of all the installed systems. In second place in terms of installed systems is Sun Microsystems with 16 percent, while Cray Inc. retained second place in terms of performance (13 percent). SGI Inc. was third both with respect to systems with 63 (12.6 percent) and performance (10.2 percent).

  5. 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings

    SciTech Connect

    Sopori, B. L.

    2007-08-01

    The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

  6. Acupuncture points & use of moxibustion, found in the popular literature & paintings of 17th century Japan.

    PubMed

    Omura, Y

    1984-01-01

    Acupuncture and moxibustion have long been an integral part of Far Eastern oriental medicine. Moxibustion and acupuncture cannot be discussed without each other since both use the same acupuncture point locations and nomenclatures. In the late 17th century, the famous travel diary of Basho, a Japanese master of haiku poetry, made reference to personal use of moxibustion on one of the well-known acupuncture points, stomach 36. Recently, the author found 2 paintings of a 17th century Kyoto geisha house and its surroundings in the Boston Museum of Fine Arts, painted in realistic color by Moronobu, the originator of the Ukiyoe style and a contemporary of Basho. Part of the scene depicts some professional porters at work; on their legs are white scars at some of the well-known acupuncture points, including stomach 36 and spleen 6. The scars appear to be the result of moxibustion. This may indicate the common use of moxibustion on well-known acupuncture points of the lower extremities in late 17th century Japan for professional porters and for people making extensive journeys. Further support of the relatively widespread use of acupuncture and moxibustion is even found in the popular, non-medical literature of late 17th century Japan. In one of the short stories about the life of average people, written by the novelist Saikaku, the details of a young woman giving moxibustion on the back of a young man is realistically described with illustrations. Reports written by some of the foreign physicians who visited Japan during this period were published, describing these methods with illustrations.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Mycobacterium tuberculosis complex detection in human remains: tuberculosis spread since the 17th century in Rio de Janeiro, Brazil.

    PubMed

    Jaeger, Lauren Hubert; Leles, Daniela; Lima, Valdirene dos Santos; da Silva, Laura da Piedade; Dias, Ondemar; Iñiguez, Alena Mayo

    2012-06-01

    Paleogenetic analysis for tuberculosis (TB) was conducted on bone and sediment samples dating from the 17th to 19th centuries from the archeological site of Nossa Senhora do Carmo Church in Rio de Janeiro, Brazil. Forty samples were analyzed, corresponding to 32 individuals from 28 burials, 22 of primary type and 6 of secondary type. The samples were collected following strict paleogenetic investigation guidelines and submitted to ancient DNA (aDNA) extraction. In order to detect TB infection, aDNA hybridizations with the molecular targets of Mycobacterium tuberculosis complex (MTC) IS6110 and IS1081 were applied. Additionally, the ancestry of individuals was assessed by human mitochondrial DNA (mtDNA) analysis of hypervariable segment I (HVS-I) sequence polymorphisms. The results of aDNA hybridizations demonstrated varying levels of MTC intensity in 17/32 individuals (53.1%), using the IS6110 target. The IS1081 MTC target showed lower sensitivity, confirming TB positivity in 10/32 (31.2%) individuals. The mtDNA analysis allowed the recovery of HVS-I sequences in 23/32 individuals (71.8%). The majority of these individuals (21/23, 91.3%) were of European ancestry, especially in primary burials. Haplogroups U, J, V, T, K, N, H and R, were identified with haplogroup U being the most frequent at 6/23 (26.1%). African and Amerindian mtDNA haplogroups were observed in two individuals in secondary burials. In spite of the ecclesiastic and aristocratic bias of the population of the study, human ancestry analysis revealed the prominent contribution of Europeans in the introduction or spread of TB in the New World.

  8. Molecular Medicine - CHI's 17th International Tri-Conference: Mastering Medicinal Chemistry - CHI's Seventh Annual Conference.

    PubMed

    Terrett, Nick

    2010-04-01

    CHI's 17th International Tri-Conference on Molecular Medicine, held in San Francisco, included topics covering new developments in the field of medicinal chemistry. This conference report highlights selected presentations on fragment-based drug discovery, quantum mechanical energy decomposition for the analysis of SARs, medicinal chemistry strategies and the role of imaging in drug discovery. Investigational drugs discussed include MLN-4924 (Millennium Pharmaceuticals Inc), GDC-0449 (Chugai Pharmaceutical Co Ltd/Curis Inc/F Hoffmann-La Roche Ltd/Genentech Inc/NCI), RDEA-119 (Ardea Biosciences Inc/Bayer HealthCare AG) and tafamidis (Fx-1006A; FoldRx Pharmaceuticals Inc).

  9. Transient uplift after a 17th-century earthquake along the kuril subduction zone

    USGS Publications Warehouse

    Sawai, Y.; Satake, K.; Kamataki, T.; Nasu, H.; Shishikura, M.; Atwater, B.F.; Horton, B.P.; Kelsey, H.M.; Nagumo, T.; Yamaguchi, M.

    2004-01-01

    In eastern Hokkaido, 60 to 80 kilometers above a subducting oceanic plate, tidal mudflats changed into freshwater forests during the first decades after a 17th-century tsunami. The mudflats gradually rose by a meter, as judged from fossil diatom assemblages. Both the tsunami and the ensuing uplift exceeded any in the region's 200 years of written history, and both resulted from a shallow plate-boundary earthquake of unusually large size along the Kuril subduction zone. This earthquake probably induced more creep farther down the plate boundary than did any of the region's historical events.

  10. [Rules of hygiene and moral guidance in medical practice, 16th-17th centuries Spain].

    PubMed

    Ruiz Somavilla, María José

    2002-01-01

    In recent decades, we have seen how members of the illiterate, popular classes gained access to specific contents of elite culture by means of oral expression collected through texts. This development may be related to the target readership of medical texts published in Spain during the 16th and 17th centuries. The study also analyses how information about preventive measures in health care was passed on through medical books from professionals to lay-people. This represents one of the key methods used by medical practice in the modern world.

  11. Pigment characterization of important golden age panel paintings of the 17th century

    NASA Astrophysics Data System (ADS)

    Pięta, Ewa; Proniewicz, Edyta; Szmelter-Fausek, Bożena; Olszewska-Świetlik, Justyna; Proniewicz, Leonard M.

    2015-02-01

    Samples were obtained from two world-famous 17th century panel paintings of the Gdańsk school of panting: 'Seven Acts of Charity' (1607, in St. Mary's Church in Gdańsk, Poland) by Anton Möller and 'Angelic Concert' (1611, in Diocesan Museum in Pelplin, Poland) by Hermann Han. Micro-Raman spectroscopy (MRS), optical microscopy (OM), and X-ray fluorescence (XRF) spectroscopy studies of the samples were performed to characterize the pigments present in the individual painting layers (a rich palette of white, black, blue, red, and yellow pigments) and the pictorial techniques used by the artists.

  12. Too Little too Soon: The Literature of Deaf Education in 17th-Century Britain (Part II).

    ERIC Educational Resources Information Center

    Hoolihan, Christopher

    1985-01-01

    The article describes the growth in literature on deaf education in 17th century Britain. Noted is the work of John Wallis, William Holder, George Dalgarno, Anton Deusing, and Johann Conrad Amman. (CL)

  13. Food flora in 17th century northeast region of Brazil in Historia Naturalis Brasiliae

    PubMed Central

    2014-01-01

    Background This article reports historical ethnobotany research conducted from a study of the work Historia Naturalis Brasiliae (Natural History of Brazil), authored by Piso and Marcgrave and published in 1648, with main focus on Caatinga of northeast region of Brazil. Methods Focusing the content analysis on the section dedicated to plant species with multiple uses, Marcgrave's contribution to the aforementioned work, this research had the following objectives: the retrieval of 17th century knowledge about the food uses of the flora in the northeast region of Brazil, including the taxonomic classifications; the identification of plant parts, their modes of consumption and the ethnic group of consumers; and the verification of the use of these species over time. Results The use of 80 food species at the time of the publication of the work is indicated, some of which are endemic to the Caatinga, such as “umbu” (Spondias tuberosa Arruda), “mandacaru” (Cereus jamacaru DC.) and “carnauba” (Copernicia cerifera Mart.). It is noticeable that among the species listed by Marcgrave, some species still lack current studies indicating their real nutritional value. The present study is an unprecedented work because it introduces, in a systematic way, the food plants described in a study of 17th century Brazil. Conclusions Finally, this study makes information about plants consumed in the past accessible, aiming to provide material for studies that could develop new food products today. PMID:24965737

  14. Care of the insane in Lübeck during the 17th and 18th centuries.

    PubMed

    Dilling, Horst; Thomsen, Hans Peter; Hohagen, Fritz

    2010-12-01

    Only selected aspects of the history of the House of the Poor Insane in the Hanseatic Free City of Lübeck have been studied to date.This article presents the results of an entire source study of this small institution in the 17th and 18th centuries, and briefly also during the next 40 years after the opening of a new building. In addition to the minute-book of the Governors, now kept in the Lübeck Municipal Archives, the results are based primarily on the account-books,which illustrate the institution's social history and activities. Examples are given. During most of the 17th century, the House was generally rather like a prison for the insane, but at the end of this century and in the early 18th there was a reform phase.This was followed by phases of repression and 'containment' at the end of the 18th century and in the early 19th century, before a renewed reform by the medical profession.The findings for Lübeck are compared with the development of inpatient care in institutions elsewhere, and the decisive factors in Lübeck are discussed.

  15. LATIN AS A LANGUAGE OF INTERNATIONAL COMMUNICATIVE STATUS: MEDICINE OF THE 16TH-17TH CENTURIES.

    PubMed

    Bieliaieva, O; Lysanets, Yu; Melaschenko, M

    2017-01-01

    The research paper is of interdisciplinary nature, written at the crossroads of the history of medicine, functional stylistics and terminology science. The choice of the 16th century as a starting point of the study is due to the fact that quality changes in book and manuscript writing that took place during this period led to unprecedented development and dissemination of scientific knowledge, including biomedical. The 16th century embraces the life and work of such prominent figures in the history of medicine, as Andreas Vesalius, Gabriele Fallopian, Bartolomeo Eustachi, and Girolamo Fracastoro. The 17th century, which is called the century of "scientific revolution", left not less honourable names in the history of medicine - William Harvey, Marcello Malpighi, Thomas Willis, Jean Pecquet, Francis Glisson, Thomas Sydenham. In the context of this study, these prominent figures are interesting due to the fact that their works were written in Latin and constitute the prototypes of modern scientific style, in particular of such genres as thesis, monograph, scientific article, scientific report, polemic presentation, textbook. On the basis of extensive factual material, it has been demonstrated that during 16th-17th centuries, Latin acted as a fully developed language with a clearly oriented international status. As one of basic tools in scientific knowledge, Latin not only performed the epistemological function which was the priority for the development of medicine, but also served as a means of accumulation, reception, transmission and popularization of achievements in various areas of medical science.

  16. Building a Foundation for Bioenergetics

    ERIC Educational Resources Information Center

    Hamori, Eugene

    2002-01-01

    To give students a lasting comprehension of bioenergetics, first such basics as heat, work, equilibrium, entropy, free energy, closed "versus" open systems, steady state, and reversibility should be explained to them in a meticulous manner, albeit with a minimal use of mathematical formulae. The unique feature of thermodynamics, that it does not…

  17. Bioenergetics of Continental Serpentinites

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Meyer-Dombard, D. R.

    2011-12-01

    methanogenesis. We find that there is strong energetic yield from most reactions considered, except for transformation of nitrite to nitrate, ammonia to nitrite, ferrous to ferric iron, and carbon dioxide to methane. Laying out foundational metabolic models for microbiological communities sustained by chemosynthesis in this setting (mining energy from ultramafic rocks and chemical systems, not tied to photosynthesis in any way) has enticing relevance to the search for extraterrestrial life, in that similar rocks have been detected on our sibling planet Mars, with transient atmospheric detection of hydrogen and methane (Schulte et al., 2006, Mumma et al., 2009). To a first order, this work explores the intersection of serpentinite groundwater chemistry and bioenergetics to determine what kinds of life can be sustained in these significant subsurface settings. References cited: Kelley et al. 2005. Science 307:1428-1434. McCollom and Bach. 2009. GCA 73:856-875. Mumma et al., 2009. Science 323:1041-1045. Schulte et al., 2006. Astrobiology 6:364-376.

  18. Role of Melatonin in the Regulation of Differentiation of T Cells Producing Interleukin-17 (Th17).

    PubMed

    Kuklina, E M; Glebezdina, N S; Nekrasova, I V

    2016-03-01

    We studied the ability of melatonin in physiological and pharmacological concentrations to induce and/or regulate differentiation of T cells producing IL-17 (Th17). This hormone produced the opposite effect on CD4+T cells, which depended on their activation status. Melatonin induced the synthesis of IL-17A by intact T cells, but had little effect on activated cells. Melatonin in high (pharmacological) concentration decreased the intracellular expression of this cytokine under conditions of polyclonal activation. Melatonin had a dose-depended effect. Taking into the fact that Th17 cells play an important role in the immune defense, it can be suggested that the regulation of their activity by melatonin contributes to this process.

  19. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669.

    PubMed

    Thalassinou, Eleni; Tsiamis, Costas; Poulakou-Rebelakou, Effie; Hatzakis, Angelos

    2015-12-01

    A little-known effort to conduct biological warfare occurred during the 17th century. The incident transpired during the Venetian–Ottoman War, when the city of Candia (now Heraklion, Greece) was under siege by the Ottomans (1648–1669). The data we describe, obtained from the Archives of the Venetian State, are related to an operation organized by the Venetian Intelligence Services, which aimed at lifting the siege by infecting the Ottoman soldiers with plague by attacking them with a liquid made from the spleens and buboes of plague victims. Although the plan was perfectly organized, and the deadly mixture was ready to use, the attack was ultimately never carried out. The conception and the detailed cynical planning of the attack on Candia illustrate a dangerous way of thinking about the use of biological weapons and the absence of reservations when potential users, within their religious framework, cast their enemies as undeserving of humanitarian consideration.

  20. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669

    PubMed Central

    Thalassinou, Eleni; Poulakou-Rebelakou, Effie; Hatzakis, Angelos

    2015-01-01

    A little-known effort to conduct biological warfare occurred during the 17th century. The incident transpired during the Venetian–Ottoman War, when the city of Candia (now Heraklion, Greece) was under siege by the Ottomans (1648–1669). The data we describe, obtained from the Archives of the Venetian State, are related to an operation organized by the Venetian Intelligence Services, which aimed at lifting the siege by infecting the Ottoman soldiers with plague by attacking them with a liquid made from the spleens and buboes of plague victims. Although the plan was perfectly organized, and the deadly mixture was ready to use, the attack was ultimately never carried out. The conception and the detailed cynical planning of the attack on Candia illustrate a dangerous way of thinking about the use of biological weapons and the absence of reservations when potential users, within their religious framework, cast their enemies as undeserving of humanitarian consideration. PMID:26894254

  1. In the sign of Galileo: pictorial representation in the 17th-century Copernican debate.

    PubMed

    Remmert, Volker R

    2003-03-01

    After Galileo had discovered the four moons of Jupiter in 1609 he became increasingly convinced that the Copernican, heliocentric system of the world was correct. However, this ran against the opinions of the Church and a large number of contemporary astronomers and natural philosophers. The ensuing development culminated in the condemnation of the Copernican system by the Church in 1616 and of Galileo himself, who had propagated the Copernican system in his Dialogue Concerning the Two Chief World Systems (1632), in 1633. Nevertheless, there was a constant debate about the right world system during the whole 17th century. Pictorial representation played an important role in it and the illustrations used as book frontispieces were a significant medium for the dispute.

  2. [Vitalism and mechanism: their meanings in the milieu of the 17th and 18th centuries].

    PubMed

    Hwang, S I

    1993-01-01

    The views on the life in the early modern period (the 17th and 18th centuries) with their socio-cultural backgrounds and their meanings at that time were discussed in this paper. Those views discussed here were the dualistic, mechanistic one of Rene Descartes (1596-1650), the animistic, vitalistic one of Georg Ernst Stahl (1660-1734), and the monistic, mechanistic one of Julien Offray de la Mettrie (1709-1751). Author stressed that the processes of their view formation were influenced by the wide range of the various political and religious factors as well as the scientific, medical facts and opinions at that time, and that not only the contents of the views but also their historical contexts should be pursued in the study on the medical thoughts.

  3. [Richard Morton (1637-1698)--the distinguished physician of the 17th century].

    PubMed

    Kontić, Olga; Vasiljević, Nadja; Jorga, Jagoda; Lakić, Aneta; Jasović-Gasić, Miroslava

    2009-01-01

    Richard Morton was a distinguished physician of the 17th century. He was born in Suffolk, England, on July 30th 1637. Morton published three works but his landmark paper was "Phthisiologia, seu exercitationes de phthisi, tribus libris comprehensae" published in 1689, dedicated to William III. The book established his reputation at home and abroad lasting for over a century. Pulmonary tuberculosis was very frequent in the 17th century in England. He was the first physician ever to state that tubercles were always present in its pulmonary form. When we add to these momentous observations and their rational explanation the facts that he was the first physician to state categorically that tubercles are always present in phthisis, we must agree that Morton richly deserves his honoured place in the long list of those who have contributed to the solution of the problem of tuberculosis. Morton first described and gave conclusions of numerous today well known and already examined illnesses. In 1694 he gave first notes about the psychiatric illness which we today call "anorexia nervosa", calling it "nervous consumption". His chapters on treatment are long and contain a sound basis of common sense as indicated by his instructions on general management. He stresses the need for an adequate diet, an environment free from fog and smoke, and the desirability of ensuring a moderate amount of exercise. All Morton's therapeutic dicta are in their humanity and thoughtful care in striking contrast to the regimen of copious bleeding and semi-starvation inflicted by the later generation of physicians. Confirmation of his achievements and his teaching can be found in today's medical practice.

  4. Quantifying early 17th century changes in Chesapeake Bay estuarine carbon dynamics from James River, VA oyster geochemistry

    NASA Astrophysics Data System (ADS)

    Grimm, B. L.; Spero, H. J.; Harding, J. M.

    2012-12-01

    same shells provide seasonal signals and also show an offset from modern that is consistent with drought conditions during the early 17th century. These high fidelity records allow for a direct, high-resolution comparison of the residence time of carbon in the environment immediately prior to European colonization and during the first century of land use change in mid-Atlantic North America.

  5. [Chemistry of life: ferments and fermentation in 17th-century iatrochemistry].

    PubMed

    Clericuzio, Antonio

    2003-01-01

    The concepts of ferment and fermentation played an important, though heretofore neglected, role in 17th-century physiology. Though these notions can be found in ancient philosophy and medicine, as well as in medieval medicine, they became integral part of the chemical medicine that was advocated by Paracelsus and his school. Paracelsians made fermentation a central concept in their successful effort to give chemical foundation to medicine. Jean Baptiste van Helmont and Sylvius used the concepts of ferment and fermentation to explain a variety of physiological processes in human body. Corpuscular philosophers like Robert Boyle and Thomas Willis reinterpreted these notions in corpuscular terms and separated the concept of ferment from that of fermentation. In the second half of the seventeenth century, physiologist tried to explain fermentation by means of chemical reactions, as for instance acid -alkali, and ruled out the notion of ferment as superfluous to their investigations. At the end of hte seventeenth century fermentation attracted the interest of physicists like Johannes Bernoulli and Isaac Newton, who tried to explain fermentative processes in terms of matter and motion (Bernoulli) and short-range forces (Newton). George Ernst Stahl devoted a work to fermentation: the Zymotechnia. He explained fermentation as the outcome of the reactions of molecules formed of saline, oily and earthy corpuscles with particles of water. He saw fermentation as a mechanical process, i.e. as collision of different kinds of corpuscles.

  6. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells

    PubMed Central

    Chen, Xi; Madar, Aviv; Carpenito, Carmine; McGettigan, Shannon E.; Frigault, Matthew J.; Lee, Jihyun; Posey, Avery D.; Scholler, John; Scholler, Nathalie; Bonneau, Richard

    2014-01-01

    With the notable exception of B-cell malignancies, the efficacy of chimeric antigen receptor (CAR) T cells has been limited, and CAR T cells have not been shown to expand and persist in patients with nonlymphoid tumors. Here we demonstrate that redirection of primary human T cells with a CAR containing the inducible costimulator (ICOS) intracellular domain generates tumor-specific IL-17-producing effector cells that show enhanced persistence. Compared with CARs containing the CD3ζ chain alone, or in tandem with the CD28 or the 4-1BB intracellular domains, ICOS signaling increased IL-17A, IL-17F, and IL-22 following antigen recognition. In addition, T cells redirected with an ICOS-based CAR maintained a core molecular signature characteristic of TH17 cells and expressed higher levels of RORC, CD161, IL1R-1, and NCS1. Of note, ICOS signaling also induced the expression of IFN-γ and T-bet, consistent with a TH17/TH1 bipolarization. When transferred into mice with established tumors, TH17 cells that were redirected with ICOS-based CARs mediated efficient antitumor responses and showed enhanced persistence compared with CD28- or 4-1BB-based CAR T cells. Thus, redirection of TH17 cells with a CAR encoding the ICOS intracellular domain is a promising approach to augment the function and persistence of CAR T cells in hematologic malignancies. PMID:24986688

  7. Radiological Diagnosis of Congenital Diaphragmatic Hernia in 17th Century Korean Mummy

    PubMed Central

    Kim, Yi-Suk; Lee, In Sun; Jung, Go-Un; Kim, Myeung Ju; Oh, Chang Seok; Yoo, Dong Su; Lee, Won-Joon; Lee, Eunju; Cha, Soon Chul; Shin, Dong Hoon

    2014-01-01

    Congenital diaphragmatic hernia (CDH) is a birth defect of the diaphragm resulting in pulmonary sequelae that threaten the lives of infants. In computed tomography (CT) images of a 17th century middle-aged male mummy (the Andong mummy), we observed that the abdominal contents had protruded into the right thoracic cavity through the diaphragmatic defect, accompanied by a mediastinal shift to the left. On autopsy, the defect in the right posterolateral aspect of the diaphragm was reconfirmed, as was the herniation of the abdominal organs. The herniated contents included the right lobe of the liver, the pyloric part of the stomach, a part of the greater omentum, and the right colic flexure connecting the superior part of the ascending colon and the right part of the transverse colon. Taking our CT and autopsy results together, this case was diagnosed as the Bochdalek-type CDH. Herein we make the first ever report of a CT-assisted diagnosis of a pre-modern historical case of CDH. Our results show the promising utility of this modality in investigations of mummified human remains archaeologically obtained. PMID:24988465

  8. A Possible Case of Cherubism in a 17th-Century Korean Mummy

    PubMed Central

    Spigelman, Mark; Sarig, Rachel; Lim, Do-Sun; Lee, In Sun; Oh, Chang Seok; May, Hila; Boaretto, Elisabetta; Kim, Yi-Suk; Lee, Soong Deok; Peled, Nathan; Kim, Myeung Ju; Toledano, Talya; Bar-Gal, Gila Kahila

    2014-01-01

    Cherubism is a benign fibro-osseous disease of childhood limited specifically to the maxilla and mandible. The progressive replacement of the jaw bones with expansile multilocular cystic lesions causes eventual prominence of the lower face, and hence the classic “cherubic” phenotype reflecting variable extents of jaw hypertrophy. Histologically, this condition has been characterized as replacement of the normal bone matrix with multicystic pockets of fibrous stroma and osteoclastic giant cells. Because of radiographic features common to both, primarily the presence of multiloculated lucencies with heterogeneous “ground-glass” sclerosis on CT imaging, cherubism was long mistaken for a craniofacial subtype of fibrous dysplasia. In 1999, however, the distinct genetic basis for cherubism was mapped to chromosome 4p16.3 and the SH-3 binding protein SH3BP2. But while there are already three suspected cases of fibrous dysplasia amongst archaeological populations, no definitive cases of cherubism have yet been reported in historical populations. In the current study we describe micro- and macro-structural changes in the face of a 17th century Joseon Dynasty Korean mummy which may coincide with the clinic-pathologic and radiologic features of cherubism. PMID:25093864

  9. A shift in the spatial pattern of Iberian droughts during the 17th century

    NASA Astrophysics Data System (ADS)

    Domínguez-Castro, F.; García-Herrera, R.; Ribera, P.; Barriendos, M.

    2010-09-01

    In this paper, series of drought occurrence and drought extension in the Iberian Peninsula are constructed for the 1600-1750 period from seven rogation series. These rogation ceremony records come from Bilbao, Catalonia, Zamora, Zaragoza, Toledo, Murcia and Seville. They are distributed across the Peninsula and include the areas with the most characteristic Iberian climate types, influenced by the Atlantic and the Mediterranean conditions, described from modern data. A seasonal division of the series shows that spring is a critical season for rogation series in most of Iberia, being Bilbao the only site were the highest number of rogations is detected for a different season. The annual analysis of the series shows a dramatic difference between the first half of the 17th century when droughts are characterized by its local character; and the rest of the period, when they affect to broader regions or even to the whole Peninsula. The analysis of spring series confirms the existence of the two periods detected in the annual analysis. Finally, secondary documentary sources are used to further characterise the two most extended droughts in the period, 1664 and 1680, and to verify the extension of the areas affected by droughts recorded through rogation series.

  10. Gerrit Dou: 17th century Dutch artist portraying dentists at work.

    PubMed

    Christen, Arden G; Christen, Joan A

    2002-07-01

    The Dutch painter, Gerrit Dou (1613-1675), was, during his lifetime, a prestigious and highly paid artist. Critics and collectors of that era marveled at his extraordinary technical skill, his masterful illusionism and his keen portrayal of everyday life. He was the first artist to perfect the technique of "fine painting"--the production of small, detailed pictures wherein subjects are painted in a photographically realistic style. Because of his exceptional skill in this technique, the brushwork in his painting was almost invisible. Additionally, he masterfully used light and shade to achieve the effect of a third dimension. In many of his portraits, subjects stare ahead from inside a window (or niche), whose sill is overflowing with small, familiar objects. Dou's focus was on 17th century Holland and his work included: portraits, genre (scenes of everyday life) and religious themes. Between 1628 and 1675, he painted about three hundred pictures: six of these portrayed dentists at work. Most artists of those days depicted dentists as plying their trade in theatrical, circus-like environments, as in crowded county fairs. However, Dou's dentists interact with their patients in a realistic, professional manner. In this article, his most famous dental painting, "The Dentist," created in 1672, is analyzed in detail. Over the centuries, Dou's public recognition has faded into obscurity. However, his exceptional talents are currently being rediscovered.

  11. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells.

    PubMed

    Guedan, Sonia; Chen, Xi; Madar, Aviv; Carpenito, Carmine; McGettigan, Shannon E; Frigault, Matthew J; Lee, Jihyun; Posey, Avery D; Scholler, John; Scholler, Nathalie; Bonneau, Richard; June, Carl H

    2014-08-14

    With the notable exception of B-cell malignancies, the efficacy of chimeric antigen receptor (CAR) T cells has been limited, and CAR T cells have not been shown to expand and persist in patients with nonlymphoid tumors. Here we demonstrate that redirection of primary human T cells with a CAR containing the inducible costimulator (ICOS) intracellular domain generates tumor-specific IL-17-producing effector cells that show enhanced persistence. Compared with CARs containing the CD3ζ chain alone, or in tandem with the CD28 or the 4-1BB intracellular domains, ICOS signaling increased IL-17A, IL-17F, and IL-22 following antigen recognition. In addition, T cells redirected with an ICOS-based CAR maintained a core molecular signature characteristic of TH17 cells and expressed higher levels of RORC, CD161, IL1R-1, and NCS1. Of note, ICOS signaling also induced the expression of IFN-γ and T-bet, consistent with a TH17/TH1 bipolarization. When transferred into mice with established tumors, TH17 cells that were redirected with ICOS-based CARs mediated efficient antitumor responses and showed enhanced persistence compared with CD28- or 4-1BB-based CAR T cells. Thus, redirection of TH17 cells with a CAR encoding the ICOS intracellular domain is a promising approach to augment the function and persistence of CAR T cells in hematologic malignancies.

  12. Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.

    2011-06-01

    Northeast tropical Queensland rainfall is concentrated in the summer half year and characterized by high interannual variability, partly related to El Niño-Southern Oscillation (ENSO) events. This results in highly variable river flows affecting nearshore coral reefs of the Great Barrier Reef, Australia. Freshwater flood events are recorded in long-lived, annually banded massive coral skeletons as luminescent lines. Quantitative measurements of luminescence intensity were made for 20 Porites coral cores from nearshore reef sites between 11°S and 23°S. Seventeen of the coral luminescence series were significantly correlated with an instrumental record of northeast Queensland summer rainfall and were used to develop seven significantly calibrated and verified rainfall reconstructions based on between 17 (starting 1891) and 1 (starting 1639) coral series. The longest reconstruction, based on more than one coral, provides insights into northeast Queensland rainfall variability from the late 17th century. Comparisons with various independent climate proxies are equivocal: the magnitude and significance of relationships with, for example, a proxy ENSO index vary through time. An extended drier period reconstructed from approximately the 1760s to the 1850s is associated with lower interannual rainfall variability. Since the late 19th century average rainfall and its variability have significantly increased, with wet and dry extremes becoming more frequent than in earlier centuries. This suggests that a warming global climate maybe associated with more variable tropical Queensland rainfall.

  13. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    NASA Astrophysics Data System (ADS)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  14. Forming, transfer and globalization of medical-pharmaceutical knowledge in South East Asian missions (17th to 18th c.) - historical dimensions and modern perspectives.

    PubMed

    Anagnostou, Sabine

    2015-06-05

    From the 17th to the 18th centuries, missionaries in Southeast Asia dedicated themselves to providing and establishing a professional medical-pharmaceutical supply for the local population and therefore explored the genuine Materia medica for easily available and affordable remedies, especially medicinal plants. In characteristic medical-pharmaceutical compendia, which can be classified as missionary pharmacopoeias, they laid down their knowledge to advise others and to guarantee a professional health care. As their knowledge often resulted from an exchange with indigenous communities, these compendia provide essential information about traditional plant uses of Southeast Asian people. Individual missionaries such as the Jesuit Georg Joseph Kamel (1661-1706) not only strove to explore medicinal plants but performed botanical studies and even composed comprehensive herbals. The Jesuit missionaries in particular played roles in both the order's own global network of transfer of medicinal drugs and knowledge about the application, and within the contemporary local and European scientific networks which included, for example, the famous Royal Society of London. The results of their studies were distributed all over the world, were introduced into the practical Materia medica of other regions, and contributed significantly to the academization of knowledge. In our article we will explain the different intentions and methods of exploring, the resulting works and the consequences for the forming of the pharmaceutical and scientific knowledge. Finally, we will show the options which the works of the missionaries can offer for the saving of traditional ethnopharmacological knowledge and for the development of modern phytotherapeutics and pharmaceutical supply. The publication is based on a comprehensive study on the phenomenon of missionary pharmacy which has been published as a book in 2011 (Anagnostou, 2011a) and shows now the potential of historical medical

  15. 76 FR 67005 - Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th Street, NW., Suite 1000, Washington, DC 20036; Notice of Intention To Cancel Registration Pursuant...

  16. 76 FR 70178 - Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th Street NW., Suite 1000, Washington, DC 20036; Notice of Intention to Cancel Registration Pursuant...

  17. The "System of Chymists" and the "Newtonian Dream" in Greek-Speaking Communities in the 17th-18th Centuries

    ERIC Educational Resources Information Center

    Bokaris, Efthymios P.; Koutalis, Vangelis

    2008-01-01

    The acceptance of new chemical ideas, before the Chemical Revolution of Lavoisier, in Greek-speaking communities in the 17th and 18th centuries did not create a discourse of chemical philosophy, as it did in Europe, but rather a "philosophy" of chemistry as it was formed through the evolution of didactic traditions of Chemistry. This…

  18. The historical archaeology of the 17th- and 18th-century Jewish community of Nevis, British West Indies

    NASA Astrophysics Data System (ADS)

    Terrell, Michelle M.

    2000-11-01

    This is an historical archaeological examination of a 17th- and 18th-century Jewish community on the island of Nevis in the British West Indies. Unlike earlier archaeological studies of the Jewish Caribbean Diaspora that focused on single sites, this investigation used a community-wide approach to elucidate the daily experience of Sephardic Jews within the colonial Caribbean. This project included an archaeological excavation at the purported location of the community's synagogue, an electrical resistivity survey of the surviving cemetery, the construction of a map of property ownership in 18th-century Charlestown, and archival research. This study was carded out within a multiscalar and contextual framework that emphasized the importance of understanding the diaspora that brought the Jews to the West Indies, the development of the colonial Caribbean, and the surrounding environs of the port city of Charlestown, Nevis. The archaeological analysis of the supposed site of the synagogue proved that it was in fact that of a late 18th-century townhouse, but the associated land record research revealed the actual location of the community's former synagogue. Furthermore, the reconstruction of the physical layout of colonial-period Charlestown from the land records indicated the presence of a distinct Jewish quarter in the undesirable southern portion of the town. Evidence from the public records of Nevis and the social history of the members of the Jewish population unveiled external social and political pressures placed upon the Sephardim as well as internal religious and ethnic ties dig bound the community together. It is argued in closing that the archival evidence, in conjunction with the continued presence of a clustered settlement pattern like that of European Jewish communities during the medieval period, indicates that the Jews of the Caribbean were not fully integrated socially or politically into British colonial society. This examination of the Nevis community

  19. Bioenergetic Progress and Heat Barriers

    NASA Astrophysics Data System (ADS)

    Zotin, A. A.; Lamprecht, I.; Zotin, A. I.

    2001-07-01

    Progressing biological evolution is discussed in the framework of nonequilibrium thermodynamics. It is connected with an increase of the mass specific standard metabolism given by coefficient a in the allometric relation (1) between oxygen consumption rate and body mass of an animal. Three “heat barriers” are found in the course of such a bioenergetic evolution. The first heat barrier concerns an animal's overheating during active movement and is overcome by the development of thermoregulation and the appearance of homeothermic animals. A second barrier arises when the coefficient a reaches values connected with lethal body temperatures. The transition across this second heat barrier occurs as result of reasonable activities and the appearance of civilization. The third heat barrier will arise during the further development of human civilization, connected with a highly increased energy production and a fatal warming of the Earth atmosphere. The manner to overcome this barrier will probably depend on the assimilation of space and the establishment of energy consuming industries outside the Earth. The bioenergetic evolution discussed in this paper does not exclude other trends of evolution, e.g. increase of size, and does not mean to be the only aspect of biological evolution.

  20. Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study

  1. FOREWORD: 17th National Conference of the Australian Meteorological and Oceanographic Society

    NASA Astrophysics Data System (ADS)

    Burns, Barbara A.; Davis, Clem; Kiss, Andrew E.; Taylor, John R.

    2010-05-01

    The Australian Meteorology and Oceanography Society (AMOS) has held an annual conference each year since 1994. The venue for the 17th conference in this series was the Australian National University (ANU) in Canberra, Australia's capital city. The conference ran over three days from 27 to 29 January 2010. The conference title was Atmospheres, Oceans, Environment and Society with the conference themes: Weather, ocean and climate forecasting Observing and modelling the integrated earth system Climate trends, variability and extremes: past, present and future Climate impacts and adaptation Antarctic weather, ocean and climate systems Ocean systems and dynamics. Local co-hosts for the conference were the Fenner School of Environment and Society (ANU) and the Research School of Earth Sciences (ANU). The conference organising committee was drawn from the members of the Australian Capital Territory centre of AMOS. The conference was very successful, attracting 300 delegates presenting 160 oral and 68 poster presentations over the three days. In a first for an AMOS National Conference, the organisers decided to produce a refereed Conference Proceedings with all presenters being invited to contribute. Each submitted paper was refereed by two anonymous reviewers selected by the conference editorial committee. The refereeing process followed the guidelines for the IOP Conference Series: Earth and Environmental Science. The result is the collection of 39 papers in this conference volume. The range of subjects covered in the papers reflects the diversity of the presentations prompted by the conference themes and the broad range of the research interests of the Australian climate, meteorology and oceanographic community. Within the proceedings the editors have presented the papers alphabetically within the theme area in which they were presented at the conference. The editorial committee wish to thank not only the authors for their contributions to this volume but also the

  2. [Semantics of learned quackery in the 17th and 18th centuries].

    PubMed

    Füssel, Marian

    2004-06-01

    In the 17th and 18th century republic of letters the problem of scientific fraud was met with a discourse of charlatanism. Departing from Johann Burchhard Menckes famous treatise on the Charlatanry of the learned the following essay traces how the accusations of academic and scientific misconduct put in terms of 'charlatanry' primarily helped to produce the new species of the erudite 'charlatan'. Facing a growing complexity of scientific culture this new frame of meaning, structured by numerous examples of scientific misconduct offered a new way of orientation in the world of learning. But besides its cognitive impacts the discourse of charlatanry allowed to create symbolic boundaries, which determined decisions upon the affiliation or non affiliation to the new forming scientific community by separating honourable from dishonourable scientific personae. Speaking of charlatanry therefore always implied a social distinction as much as a scientific. The discourses on charlatanry also mirror differentiations within the scientific field. At first dominated by a critique built on courteous or bourgeois values, the scientific field later on developed its own criteria of appraisal like authorship, originality, transparency etc. Attracting the attention of a further growing public sphere, the explicit verbalisation of claims not relating to the value system of a republic of letters primarily concerned with the production and distribution of knowledge finally led up to a more implicit moral economy of science. A change that at a large scale level can be described both as an internalisation of the values of scientific conduct and differentiation between justiciable and unjusticiable transgressions of the norms set up by the scientific community.

  3. Plastic surgery in 17th century Europe. case study: Nicolae Milescu, the snub-nosed.

    PubMed

    Dumbravă, Daniela; Luchian, Stefan

    2013-01-01

    The rising and the existence of plastic and aesthetic surgery in early modern Europe did not have a specific pattern, but was completely different from one nation to another. Colleges of Physicians could only be found in some places in Europe; different Parliaments of Europe's nations did not always elevate being a surgeon to the dignity of a profession, and being a surgeon did not always come with corporate and municipal privileges, or with attractive stipends. Conversely, corporal punishments for treacherous surgeons were ubiquitous. Rhinoplasty falls into the category of what Ambroise Paré named "facial plastic surgery". The technique is a medical source from which many histories derive, one more fascinating than the other: the history of those whose nose was cut off (because of state betrayal, adultery, abjuration, or duelling with swords), the history of those who invented the surgery of nose reconstruction (e.g. SuSruta-samhita or Tagliacozzi?), the history of surgeries kept secret in early modern Europe (e.g. Tropea, Calabria, Leiden, Padua, Paris, Berlin), and so on. Where does the history of Nicolae Milescu the Snub-nosed fall in all of this? How much of this history do the Moldavian Chronicles record? Is there any "scholarly gossip" in the aristocratic and diplomatic environments at Constantinople? What exactly do the British ambassadors learn concerning Rhinoplasty when they meet Milescu? How do we "walk" within these histories, and why should we be interested at all? What is their stike for modernity? Such are the interrogations that this article seeks to provoke; its purpose is to question (and eventually, synchronise) histories, and not exclusively history, both in academic terms but also by reassessing the practical knowledge of the 17th century.

  4. ESSDERC (European Solid State Device Research Conference) 17th Held in Bologna, Italy on 14-17 September 1987

    DTIC Science & Technology

    1987-09-17

    are stressed by imposing a of the continuous increase of the applied volta - constant current at the drain and at the sub- ges (Vd and Vsub)’ In order...the current across the J a the mean current N scrom the device section, device. VD the voltae applied between anode and cathode, For two opposite...threshold voltae control. Although VTb is Front gate threshold voltage versus film thickness (V b-0 V). Same technological parameters as in positive

  5. Bioenergetics

    PubMed Central

    2008-01-01

    Natural life is chemical. Chemistry, not abstract logic, determines and constrains its potentialities. One of the potentialities is cognition. Humans have two equivalent cognitive systems: the immune and the nervous ones. The principle of functioning is the same for both: rooted in the previously acquired and embodied knowledge, the system is intrinsically generating many new chemical states and the environment selects and stabilizes appropriate of them. From the fundamental level of complicated brain chemistry (“biochemese”) higher levels emerge: the physiological (“physiologese”) and the mental (“mentalese”). Processes are causal at the basic chemical level; they are mere isomorphic, tautological translations at the other levels. The thermodynamic necessity to maintain correlations in the complicated chemical system and to generate variants makes the nervous system energetically expensive: it runs continuously at full speed and external inputs only trigger and modulate the ongoing dynamics. Models of the brain as a universal computer are utterly inadequate. PMID:19513208

  6. Bioenergetics of Mammalian Sperm Capacitation

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005

  7. Mitochondrial morphology-emerging role in bioenergetics.

    PubMed

    Galloway, Chad A; Lee, Hakjoo; Yoon, Yisang

    2012-12-15

    Dynamic change in mitochondrial shape is a cellular process mediated mainly by fission and fusion of mitochondria. Studies have shown that mitochondrial fission and fusion are directly and indirectly associated with mitochondrial maintenance, bioenergetic demand, and cell death. Changes in mitochondrial morphology are frequently observed in response to changes in the surrounding cellular milieu, such as metabolic flux, that influence cellular bioenergetics. Connections between morphological regulation and the bioenergetic status of mitochondria are emerging as reciprocally responsive processes, though the nature of the signaling remains to be defined. Given the pivotal role mitochondria play in cellular fate, tight regulation of fission and fusion is therefore critical to preserving normal cellular physiology. Here we describe recent advancements in the understanding of the mechanisms governing mitochondrial morphology and their emerging role in mitochondrial bioenergetics.

  8. Tropical mathematics and the financial catastrophe of the 17th century. Thermoeconomics of Russia in the early 20th century

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2010-03-01

    In the paper, an example is presented concerning relationships (which cannot be neglected) between mathematics and other sciences. In particular, the relationship between the tropical mathematics and the humanitarian-economic catastrophe of 17th century (related to slavery of Africans) is considered. The notion of critical state of economy of the 19th century is introduced by using the refined Fisher equation. A correspondence principle for thermodynamics of fluids and economics of the 19th century is presented.

  9. Invitation to the 17th international congress on photosynthesis research in 2016: photosynthesis in a changing world.

    PubMed

    van Amerongen, Herbert; Croce, Roberta

    2016-02-01

    The 17th International Congress on Photosynthesis will be held from August 7 to 12, 2016 in Maastricht, The Netherlands. The congress will include an opening reception, 15 plenary lectures, 28 scientific symposia, many poster sessions, displays by scientific companies, excursions, congress dinner, social activities, and the first photosynthesis soccer world championship. See http://www.ps2016.com/ . The congress is organized as an official event of the International Society of Photosynthesis Research (see http://www.photosynthesisresearch.org/).

  10. Bioenergetics modeling of percid fishes: Chapter 14

    USGS Publications Warehouse

    Madenjian, Charles P.; Kestemont, Patrick; Dabrowski, Konrad; Summerfelt, Robert C.

    2015-01-01

    A bioenergetics model for a percid fish represents a quantitative description of the fish’s energy budget. Bioenergetics modeling can be used to identify the important factors determining growth of percids in lakes, rivers, or seas. For example, bioenergetics modeling applied to yellow perch (Perca flavescens) in the western and central basins of Lake Erie revealed that the slower growth in the western basin was attributable to limitations in suitably sized prey in western Lake Erie, rather than differences in water temperature between the two basins. Bioenergetics modeling can also be applied to a percid population to estimate the amount of food being annually consumed by the percid population. For example, bioenergetics modeling applied to the walleye (Sander vitreus) population in Lake Erie has provided fishery managers valuable insights into changes in the population’s predatory demand over time. In addition, bioenergetics modeling has been used to quantify the effect of the difference in growth between the sexes on contaminant accumulation in walleye. Field and laboratory evaluations of percid bioenergetics model performance have documented a systematic bias, such that the models overestimate consumption at low feeding rates but underestimate consumption at high feeding rates. However, more recent studies have shown that this systematic bias was due, at least in part, to an error in the energy budget balancing algorithm used in the computer software. Future research work is needed to more thoroughly assess the field and laboratory performance of percid bioenergetics models and to quantify differences in activity and standard metabolic rate between the sexes of mature percids.

  11. PREFACE: 17th International Conference on Microscopy of Semiconducting Materials 2011

    NASA Astrophysics Data System (ADS)

    Walther, T.; Midgley, P. A.

    2011-11-01

    This volume contains invited and contributed papers from the 17th international conference on 'Microscopy of Semiconducting Materials' held at Churchill College, University of Cambridge, on 4-7 April 2011. The meeting was organised under the auspices of the Institute of Physics and supported by the Royal Microscopical Society as well as the Materials Research Society of the USA. This conference series deals with recent advances in semiconductor studies carried out by all forms of microscopy, with an emphasis on electron microscopy and related techniques with high spatial resolution. This time the meeting was attended by 131 delegates from 25 countries world-wide, a record in terms of internationality. As semiconductor devices shrink further new routes of device processing and characterisation need to be developed, and, for the latter, methods that offer sub-nanometre spatial resolution are particularly valuable. The various forms of imaging, diffraction and spectroscopy available in modern microscopes are powerful tools for studying the microstructure, the electronic structure, the chemistry and also electric fields in semiconducting materials. Recent advances in instrumentation, from lens aberration correction in both TEM and STEM instruments, to the development of a wide range of scanning probe techniques, as well as new methods of signal quantification have been presented at this conference. Two examples of topics at this meeting that have attracted a number of interesting studies were: the correlation of microstructural, optical and chemical information at atomic resolution with nanometre-scale resolved maps of the local electrical fields in (In,Al)GaN based semiconductors and tomographic approaches to characterise ensembles of nanowires and stacks of processed layers in devices Figure 1 Figure 1. Opening lecture by Professor Sir Colin J Humphreys. Each manuscript submitted for publication in this proceedings volume has been independently reviewed and revised

  12. PREFACE: 17th International Conference on Recent Progress in Many-Body Theories (MBT17)

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Boronat, Jordi

    2014-08-01

    These are the proceedings of the XVII International Conference on Recent Progress in Many-Body Theories, which was held from 8-13 September 2013 in Rostock, Germany. The conference continued the triennial series initiated in Trieste in 1978 and was devoted to new developments in the field of many-body theories. The conference series encourages the exchange of ideas between physicists working in such diverse areas as nuclear physics, quantum chemistry, lattice Hamiltonians or quantum uids. Many-body theories are an integral part in different fields of theoretical physics such as condensed matter, nuclear matter and field theory. Phase transitions and macroscopic quantum effects such as magnetism, Bose-Einstein condensation, super uidity or superconductivity have been investigated within ultra-cold gases, finite systems or various nanomaterials. The conference series on Recent Progress in Many-Body Theories is devoted to foster the interaction and to cross-fertilize between different fields and to discuss future lines of research. The topics of the 17th meeting were Cluster Physics Cold Gases High Energy Density Matter and Intense Lasers Magnetism New Developments in Many-Body Techniques Nuclear Many-Body and Relativistic Theories Quantum Fluids and Solids Quantum Phase Transitions Topological Insulators and Low Dimensional Systems. 109 participants from 20 countries participated. 44 talks and 61 posters werde presented. As a particular highlight of the conference, The Eugene Feenberg Memorial Medal for outstanding results in the field of many-body theory and The Hermann Kümmel Early Achievement Award in Many-Body Physics for young scientists in that field were awarded. The Feenberg Medal went jointly to Patrick Lee (MIT, USA) for his fundamental contributions to condensed-matter theory, especially in regard to the quantum Hall effect, to universal conductance uctuations, and to the Kondo effect in quantum dots, and Douglas Scalapino (UC Santa Barbara, USA) for his

  13. [Effects of the periodical spread of rinderpest on famine, epidemic, and tiger disasters in the late 17th Century].

    PubMed

    Kim, Dong Jin; Yoo, Han Sang; Lee, Hang

    2014-04-01

    This study clarifies the causes of the repetitive occurrences of such phenomena as rinderpest, epidemic, famine, and tiger disasters recorded in the Joseon Dynasty Chronicle and the Seungjeongwon Journals in the period of great catastrophe, the late 17th century in which the great Gyeongsin famine (1670~1671) and the great Eulbyeong famine (1695~1696) occurred, from the perspective that they were biological exchanges caused by the new arrival of rinderpest in the early 17th century. It is an objection to the achievements by existing studies which suggest that the great catastrophes occurring in the late 17th century are evidence of phenomena in a little ice age. First of all, rinderpest has had influence on East Asia as it had been spread from certain areas in Machuria in May 1636 through Joseon, where it raged throughout the nation, and then to the west part of Japan. The new arrival of rinderpest was indigenized in Joseon, where it was localized and spread periodically while it was adjusted to changes in the population of cattle with immunity in accordance with their life spans and reproduction rates. As the new rinderpest, which showed high pathogenicity in the early 17th century, was indigenized with its high mortality and continued until the late 17th century, it broke out periodically in general. Contrastively, epidemics like smallpox and measles that were indigenized as routine ones had occurred constantly from far past times. As a result, the rinderpest, which tried a new indigenization, and the human epidemics, which had been already indigenized long ago, were unexpectedly overlapped in their breakout, and hence great changes were noticed in the aspects of the human casualty due to epidemics. The outbreak of rinderpest resulted in famine due to lack of farming cattle, and the famine caused epidemics among people. The casualty of the human population due to the epidemics in turn led to negligence of farming cattle, which constituted factors that triggered

  14. Composition of Façon de Venise glass from early 17th century London in comparison with luxury glass of the same age

    NASA Astrophysics Data System (ADS)

    Cagno, S.; De Raedt, I.; Jeffries, T.; Janssens, K.

    SEM-EDX and LA-ICP-MS analyses were performed on a set of early 17th century London glass fragments. The samples originate from two archaeological sites (Aldgate and Old Broad Street) where glass workshops were active in this period. The great majority of the samples are made of soda glass. Two distinct compositional groups are observed, each typical of one site of provenance. The samples originating from the Old Broad Street excavation feature a silica-soda-lime composition, with a moderate amount of potash. The samples from Aldgate are richer in potassium and feature higher amounts of trace elements such as Rb, Zr and Cu. The distinction between the two groups stems from different flux and silica sources used for glassmaking. A comparison with different European glass compositions of that time reveals no resemblance with genuine Venetian production, yet the composition of the Old Broad Street glass shows a close similarity to that of fragments produced `à la façon de Venise' in Antwerp at the end of the 16th century. This coincides with historical sources attesting the arrival of glassworkers from the Low Countries in England and suggests that a transfer of technology took place near the turn of the century.

  15. Genotyping Yersinia pestis in Historical Plague: Evidence for Long-Term Persistence of Y. pestis in Europe from the 14th to the 17th Century.

    PubMed

    Seifert, Lisa; Wiechmann, Ingrid; Harbeck, Michaela; Thomas, Astrid; Grupe, Gisela; Projahn, Michaela; Scholz, Holger C; Riehm, Julia M

    2016-01-01

    Ancient DNA (aDNA) recovered from plague victims of the second plague pandemic (14th to 17th century), excavated from two different burial sites in Germany, and spanning a time period of more than 300 years, was characterized using single nucleotide polymorphism (SNP) analysis. Of 30 tested skeletons 8 were positive for Yersinia pestis-specific nucleic acid, as determined by qPCR targeting the pla gene. In one individual (MP-19-II), the pla copy number in DNA extracted from tooth pulp was as high as 700 gene copies/μl, indicating severe generalized infection. All positive individuals were identical in all 16 SNP positions, separating phylogenetic branches within nodes N07_N10 (14 SNPs), N07_N08 (SNP s19) and N06_N07 (s545), and were highly similar to previously investigated plague victims from other European countries. Thus, beside the assumed continuous reintroduction of Y. pestis from central Asia in multiple waves during the second pandemic, long-term persistence of Y. pestis in Europe in a yet unknown reservoir host has also to be considered.

  16. The bioenergetics of salt tolerance

    SciTech Connect

    Packer, L.

    1991-01-01

    The aim of this project was to try to understand the adaptive mechanisms that organisms develop in order to respond to a sudden transformation in their environment to a salt shock.'' To study this problem we used a fresh water oxygenic photosynthetic cyanobacterium known as Synecoccus 6311. This organism suffers injury after this sudden exposure to high concentrations of sodium chloride equivalent to or even higher than that in sea water. Yet they are able to re-establish their photosynthetic activity which is partially injured and return to virtually normal growth rates. Identification of the temporal sequence of changes involved in adaptation to this stress was the rationale. Indeed this project employed a wide variety of biochemical and biophysical methods, including electron spin resonance techniques and nuclear magnetic resonance to study the bioenergetics and transport mechanisms, growth and energy changes in these organisms and how the structural components of the cells changed in response to adaptation to growth at high salinity. The problem has relevance for higher plants because most of the arable farmland in the work is already under use and that which is not used is usually in salite environments. Hence, understanding basic mechanisms of salt tolerance is a fundamental biological problem with great applications for bioproductivity and agriculture. 18 refs.

  17. PREFACE: 17th International Conference on the Physics of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The 17th edition of the International Conference on the Physics of Highly Charged Ions (HCI 2014) was held in San Carlos de Bariloche, in the southern region of Argentina known as Patagonia, from August 31 to September 5, 2014. This meeting corresponds to a series of HCI conferences, which has been held every other year since 1982 in cities in Europe, USA, Japan and China. This was the first time that the conference took place in Latin America. This edition was organized by a Local Committee made up of physicists mainly from the cities of Bariloche and Rosario and also from Buenos Aires and Bahía Blanca, all sites where research on Atomic Collisions is developed. The conference was attended by delegates coming from 18 countries, more that 23% of whom were women. The field of highly charged ions has seen in recent years a promising evolution originating from bold progress in theory and significant advances in experimental techniques. The HCI conferences aim at bringing together experimentalists and theoreticians from as wide a range of fields as, for instance, Fundamental Aspects, Structure and Spectroscopy, Collisions with Electrons, Ions, Atoms and Molecules, Interaction with Clusters, Surfaces and Solids, Interactions with Photons and Plasmas, Strong Field Processes, and Production, Experimental Developments and Applications. The Scientific Programme, selected by an International Advisory Board, included 5 Review Lectures, 11 Progress Reports, 1 Local Report and 24 Special Reports. In addition, the results of 132 contributed works were presented as poster communications and a Public Lecture on 'The wonders of the Southern Skies' was delivered by an Argentinean expert. Thus, a wide range of subjects comprising a balanced mix of topics was covered throughout the course of the conference. The HCI 2014 was a resounding success for the international and local communities, from both the scientific and social aspects, considering that the attendees and accompanying

  18. PREFACE: 17th International Conference on Textures of Materials (ICOTOM 17)

    NASA Astrophysics Data System (ADS)

    Skrotzki, Werner; Oertel, Carl-Georg

    2015-04-01

    The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the "triennial" series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8. Texture

  19. Anatomical confirmation of computed tomography-based diagnosis of the atherosclerosis discovered in 17th century Korean mummy.

    PubMed

    Kim, Myeung Ju; Kim, Yi-Suk; Oh, Chang Seok; Go, Jai-Hyang; Lee, In Sun; Park, Won-Kyu; Cho, Seok-Min; Kim, Soon-Kwan; Shin, Dong Hoon

    2015-01-01

    In the present study on a newly discovered 17th century Korean mummy, computed tomography (CT) revealed multiple aortic calcifications within the aortic wall that were indicative of ancient atherosclerosis. The CT-based findings were confirmed by our subsequent post-factum dissection, which exhibited possible signs of the disease including ulcerated plaques, ruptured hemorrhages, and intimal thickening where the necrotic core was covered by the fibrous cap. These findings are strong indicators that the mummy suffered from aortic atherosclerosis during her lifetime. The present study is a good example of how CT images of vascular calcifications can be a useful diagnostic tool in forming at least preliminary diagnoses of ancient atherosclerosis.

  20. Report from the 17th Annual Western Canadian Gastrointestinal Cancer Consensus Conference; Edmonton, Alberta; 11–12 September 2015

    PubMed Central

    Mulder, K.E.; Ahmed, S.; Davies, J.D.; Doll, C.M.; Dowden, S.; Gill, S.; Gordon, V.; Hebbard, P.; Lim, H.; McFadden, A.; McGhie, J.P.; Park, J.; Wong, R.

    2016-01-01

    The 17th annual Western Canadian Gastrointestinal Cancer Consensus Conference (wcgccc) was held in Edmonton, Alberta, 11–12 September 2015. The wcgccc is an interactive multidisciplinary conference attended by health care professionals from across Western Canada (British Columbia, Alberta, Saskatchewan, and Manitoba) who are involved in the care of patients with gastrointestinal cancer. Surgical, medical, and radiation oncologists; pathologists; radiologists; and allied health care professionals participated in presentation and discussion sessions for the purposes of developing the recommendations presented here. This consensus statement addresses current issues in the management of gastric cancer. PMID:28050139

  1. Bioenergetic characterization of mouse podocytes.

    PubMed

    Abe, Yoshifusa; Sakairi, Toru; Kajiyama, Hiroshi; Shrivastav, Shashi; Beeson, Craig; Kopp, Jeffrey B

    2010-08-01

    Mitochondrial dysfunction contributes to podocyte injury, but normal podocyte bioenergetics have not been characterized. We measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR), using a transformed mouse podocyte cell line and the Seahorse Bioscience XF24 Extracellular Flux Analyzer. Basal OCR and ECAR were 55.2 +/- 9.9 pmol/min and 3.1 +/- 1.9 milli-pH units/min, respectively. The complex V inhibitor oligomycin reduced OCR to approximately 45% of baseline rates, indicating that approximately 55% of cellular oxygen consumption was coupled to ATP synthesis. Rotenone, a complex I inhibitor, reduced OCR to approximately 25% of the baseline rates, suggesting that mitochondrial respiration accounted for approximately 75% of the total cellular respiration. Thus approximately 75% of mitochondrial respiration was coupled to ATP synthesis and approximately 25% was accounted for by proton leak. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), which uncouples electron transport from ATP generation, increased OCR and ECAR to approximately 360% and 840% of control levels. FCCP plus rotenone reduced ATP content by 60%, the glycolysis inhibitor 2-deoxyglucose reduced ATP by 35%, and 2-deoxyglucose in combination with FCCP or rotenone reduced ATP by >85%. The lactate dehydrogenase inhibitor oxamate and 2-deoxyglucose did not reduce ECAR, and 2-deoxyglucose had no effect on OCR, although 2-deoxyglucose reduced ATP content by 25%. Mitochondrial uncoupling induced by FCCP was associated with increased OCR with certain substrates, including lactate, glucose, pyruvate, and palmitate. Replication of these experiments in primary mouse podocytes yielded similar data. We conclude that mitochondria play the primary role in maintaining podocyte energy homeostasis, while glycolysis makes a lesser contribution.

  2. Evolutionary primacy of sodium bioenergetics

    PubMed Central

    Mulkidjanian, Armen Y; Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2008-01-01

    Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section. PMID:18380897

  3. Evaluation of a lake whitefish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Pothoven, Steven A.; Schneeberger, Philip J.; Rediske, Richard R.; O'Keefe, James P.; Bergstedt, Roger A.; Argyle, Ray L.; Brandt, Stephen B.

    2006-01-01

    We evaluated the Wisconsin bioenergetics model for lake whitefish Coregonus clupeaformis in the laboratory and in the field. For the laboratory evaluation, lake whitefish were fed rainbow smelt Osmerus mordax in four laboratory tanks during a 133-d experiment. Based on a comparison of bioenergetics model predictions of lake whitefish food consumption and growth with observed consumption and growth, we concluded that the bioenergetics model furnished significantly biased estimates of both food consumption and growth. On average, the model overestimated consumption by 61% and underestimated growth by 16%. The source of the bias was probably an overestimation of the respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit of the model to the observed consumption and growth in our laboratory tanks. Based on the adjusted model, predictions of food consumption over the 133-d period fell within 5% of observed consumption in three of the four tanks and within 9% of observed consumption in the remaining tank. We used polychlorinated biphenyls (PCBs) as a tracer to evaluate model performance in the field. Based on our laboratory experiment, the efficiency with which lake whitefish retained PCBs from their food (I?) was estimated at 0.45. We applied the bioenergetics model to Lake Michigan lake whitefish and then used PCB determinations of both lake whitefish and their prey from Lake Michigan to estimate p in the field. Application of the original model to Lake Michigan lake whitefish yielded a field estimate of 0.28, implying that the original formulation of the model overestimated consumption in Lake Michigan by 61%. Application of the bioenergetics model with the adjusted respiration component resulted in a field I? estimate of 0.56, implying that this revised model underestimated consumption by 20%.

  4. JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Mulder, Edwin J. (Editor); Gomez-Knight, Sylvia J. (Editor)

    1999-01-01

    This volume contains 37 unclassified/unlimited-distribution technical papers that were presented at the JANNAF 28th Propellant Development & Characterization Subcommittee (PDCS) and 17th Safety & Environmental Protection Subcommittee (S&EPS) Joint Meeting, held 26-30 April 1999 at the Town & Country Hotel and the Naval Submarine Base, San Diego, California. Volume II contains 29 unclassified/limited-distribution papers that were presented at the 28th PDCS and 17th S&EPS Joint Meeting. Volume III contains a classified paper that was presented at the 28th PDCS Meeting on 27 April 1999. Topics covered in PDCS sessions include: solid propellant rheology; solid propellant surveillance and aging; propellant process engineering; new solid propellant ingredients and formulation development; reduced toxicity liquid propellants; characterization of hypergolic propellants; and solid propellant chemical analysis methods. Topics covered in S&EPS sessions include: space launch range safety; liquid propellant hazards; vapor detection methods for toxic propellant vapors and other hazardous gases; toxicity of propellants, ingredients, and propellant combustion products; personal protective equipment for toxic liquid propellants; and demilitarization/treatment of energetic material wastes.

  5. A Statistical Investigation on a Seismic Transient Occurred in Italy Between the 17th and 20th Centuries

    NASA Astrophysics Data System (ADS)

    Bragato, P. L.

    2016-11-01

    According to the historical earthquake catalog of Italy, the country experienced a pulse of seismicity between the 17th century, when the rate of destructive events increased by more than 100%, and the 20th century, characterized by a symmetric decrease. In the present work, I performed a statistical analysis to verify the reliability of such transient, considering different sources of bias and uncertainty, such as completeness and declustering of the catalog, as well as errors on magnitude estimation. I also searched for a confirmation externally to the catalog, analyzing the correlation with the volcanic activity. The similarity is high for the eruptive history of Vesuvius, which agrees on both the main rate changes of the 17th and 20th centuries and on minor variations in the intermediate period. Of general interest, beyond the specific case of Italy, the observed rate changes suggest the existence of large-scale crustal processes taking place within decades and lasting for centuries, responsible for the synchronous activation/deactivation of remote, loosely connected faults in different tectonic domains. Although their origin is still unexplained (I discuss a possible link with the climate changes and the consequent variations of the sea level), their existence and long lasting is critical for seismic hazard computation. In fact, they introduce a hardly predictable time variability that undermines any hypothesis of regularity of the earthquake cycle on individual faults and systems of interconnected faults.

  6. Chitinase Expression Due to Reduction in Fusaric Acid Level in an Antagonistic Trichoderma harzianum S17TH.

    PubMed

    Sharma, Vivek; Bhandari, Pamita; Singh, Bikram; Bhatacharya, Amita; Shanmugam, Veerubommu

    2013-06-01

    To study the effect of reduction in phytotoxin level on fungal chitinases, antagonistic Trichoderma spp. were screened for their ability to reduce the level of fusaric acid (FA), the phytotoxin produced by Fusarium spp. A T. harzianum isolate S17TH was able to tolerate high levels of FA (up to 500 ppm) but was unable to reduce the toxin to a significant level (non-toxic) added to minimal synthetic broth (MSB). However, the isolate was able to reduce 400 ppm FA in the liquid medium after 7 days to a non-toxic level and displayed similar level of antagonism over the control (without FA). In studies of the effect of the reduction in FA (400 ppm) level on chitinase gene expression in PCR assays, nag1 was significantly repressed but ech42 expression was only slightly repressed. Chitinase activity was either reduced or absent in the extracellular proteins of MSB supplemented with 400 ppm FA, which could be attributed to the effect of residual FA or its breakdown products through unknown mechanisms. Selection of S17TH as a toxin insensitive isolate that could commensurate the negative effect on chitinase activity makes it a potential antagonist against Fusarium spp.

  7. A Statistical Investigation on a Seismic Transient Occurred in Italy Between the 17th and 20th Centuries

    NASA Astrophysics Data System (ADS)

    Bragato, P. L.

    2017-03-01

    According to the historical earthquake catalog of Italy, the country experienced a pulse of seismicity between the 17th century, when the rate of destructive events increased by more than 100%, and the 20th century, characterized by a symmetric decrease. In the present work, I performed a statistical analysis to verify the reliability of such transient, considering different sources of bias and uncertainty, such as completeness and declustering of the catalog, as well as errors on magnitude estimation. I also searched for a confirmation externally to the catalog, analyzing the correlation with the volcanic activity. The similarity is high for the eruptive history of Vesuvius, which agrees on both the main rate changes of the 17th and 20th centuries and on minor variations in the intermediate period. Of general interest, beyond the specific case of Italy, the observed rate changes suggest the existence of large-scale crustal processes taking place within decades and lasting for centuries, responsible for the synchronous activation/deactivation of remote, loosely connected faults in different tectonic domains. Although their origin is still unexplained (I discuss a possible link with the climate changes and the consequent variations of the sea level), their existence and long lasting is critical for seismic hazard computation. In fact, they introduce a hardly predictable time variability that undermines any hypothesis of regularity of the earthquake cycle on individual faults and systems of interconnected faults.

  8. 17(th) Century Variola Virus Reveals the Recent History of Smallpox.

    PubMed

    Duggan, Ana T; Perdomo, Maria F; Piombino-Mascali, Dario; Marciniak, Stephanie; Poinar, Debi; Emery, Matthew V; Buchmann, Jan P; Duchêne, Sebastian; Jankauskas, Rimantas; Humphreys, Margaret; Golding, G Brian; Southon, John; Devault, Alison; Rouillard, Jean-Marie; Sahl, Jason W; Dutour, Olivier; Hedman, Klaus; Sajantila, Antti; Smith, Geoffrey L; Holmes, Edward C; Poinar, Hendrik N

    2016-12-19

    Smallpox holds a unique position in the history of medicine. It was the first disease for which a vaccine was developed and remains the only human disease eradicated by vaccination. Although there have been claims of smallpox in Egypt, India, and China dating back millennia [1-4], the timescale of emergence of the causative agent, variola virus (VARV), and how it evolved in the context of increasingly widespread immunization, have proven controversial [4-9]. In particular, some molecular-clock-based studies have suggested that key events in VARV evolution only occurred during the last two centuries [4-6] and hence in apparent conflict with anecdotal historical reports, although it is difficult to distinguish smallpox from other pustular rashes by description alone. To address these issues, we captured, sequenced, and reconstructed a draft genome of an ancient strain of VARV, sampled from a Lithuanian child mummy dating between 1643 and 1665 and close to the time of several documented European epidemics [1, 2, 10]. When compared to vaccinia virus, this archival strain contained the same pattern of gene degradation as 20(th) century VARVs, indicating that such loss of gene function had occurred before ca. 1650. Strikingly, the mummy sequence fell basal to all currently sequenced strains of VARV on phylogenetic trees. Molecular-clock analyses revealed a strong clock-like structure and that the timescale of smallpox evolution is more recent than often supposed, with the diversification of major viral lineages only occurring within the 18(th) and 19(th) centuries, concomitant with the development of modern vaccination.

  9. Bone Cell Bioenergetics and Skeletal Energy Homeostasis.

    PubMed

    Riddle, Ryan C; Clemens, Thomas L

    2017-04-01

    The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.

  10. Myocardial bioenergetic abnormalities in experimental uremia

    PubMed Central

    Chesser, Alistair MS; Harwood, Steven M; Raftery, Martin J; Yaqoob, Muhammad M

    2016-01-01

    Purpose Cardiac bioenergetics are known to be abnormal in experimental uremia as exemplified by a reduced phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. However, the progression of these bioenergetic changes during the development of uremia still requires further study and was therefore investigated at baseline, 4 weeks and 8 weeks after partial nephrectomy (PNx). Methods A two-stage PNx uremia model in male Wistar rats was used to explore in vivo cardiac and skeletal muscles’ bioenergetic changes over time. High-energy phosphate nucleotides were determined by phosphorus-31 nuclear magnetic resonance (31P-NMR) and capillary zone electrophoresis. Results 31P-NMR spectroscopy revealed lower PCr/ATP ratios in PNx hearts compared to sham (SH)-operated animals 4 weeks after PNx (median values given ± SD, 0.64±0.16 PNx, 1.13±0.31 SH, P<0.02). However, 8 weeks after PNx, the same ratio was more comparable between the two groups (0.84±0.15 PNx, 1.04±0.44 SH, P= not significant), suggestive of an adaptive mechanism. When 8-week hearts were prestressed with dobutamine, the PCr/ATP ratio was again lower in the PNx group (1.08±0.36 PNx, 1.55±0.38 SH, P<0.02), indicating a reduced energy reserve during the progression of uremic heart disease. 31P-NMR data were confirmed by capillary zone electrophoresis, and the changes in myocardial bioenergetics were replicated in the skeletal muscle. Conclusion This study provides evidence of the changes that occur in myocardial energetics in experimental uremia and highlights how skeletal muscle bioenergetics mirror those found in the cardiac tissue and so might potentially serve as a practical surrogate tissue during clinical cardiac NMR investigations. PMID:27307758

  11. Anatomical Confirmation of Computed Tomography-Based Diagnosis of the Atherosclerosis Discovered in 17th Century Korean Mummy

    PubMed Central

    Kim, Myeung Ju; Kim, Yi-Suk; Oh, Chang Seok; Go, Jai-Hyang; Lee, In Sun; Park, Won-Kyu; Cho, Seok-Min; Kim, Soon-Kwan; Shin, Dong Hoon

    2015-01-01

    In the present study on a newly discovered 17th century Korean mummy, computed tomography (CT) revealed multiple aortic calcifications within the aortic wall that were indicative of ancient atherosclerosis. The CT-based findings were confirmed by our subsequent post-factum dissection, which exhibited possible signs of the disease including ulcerated plaques, ruptured hemorrhages, and intimal thickening where the necrotic core was covered by the fibrous cap. These findings are strong indicators that the mummy suffered from aortic atherosclerosis during her lifetime. The present study is a good example of how CT images of vascular calcifications can be a useful diagnostic tool in forming at least preliminary diagnoses of ancient atherosclerosis. PMID:25816014

  12. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    USGS Publications Warehouse

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  13. Aberrant expression of circulating Th17, Th1 and Tc1 cells in patients with active and inactive ulcerative colitis.

    PubMed

    Dong, Zhaogang; Du, Lutao; Xu, Xiaofei; Yang, Yongmei; Wang, Haiyan; Qu, Ailin; Qu, Xun; Wang, Chuanxin

    2013-04-01

    Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease, yet its etiology and pathogenesis remain poorly understood. The aberrant expression of T lymphocytes plays an essential role in the progression of UC. This study aimed to evaluate the expression profile of circulating Th17, Th1 and Tc1 cells in patients with active and inactive UC. Our results revealed that the percentage of circulating Th17 cells (CD3+CD8-IL-17+) was significantly increased in patients with active UC when compared with the percentage in patients with inactive UC, Crohn's disease (CD) and healthy controls. The percentages of circulating Th1 (CD3+CD8-IFN-γ+) and Tc1 (CD3+CD8+IFN-γ+) cells were also higher in patients with active UC when compared with the percentages in patients with inactive UC and normal controls, although levels were lower than that in CD. Further analysis showed that Th17 cells were positively correlated with Th1 cells, but not with Tc1 cells. Notably, the three cells had a positive correlation with disease activity, extent of disease, detection of erythrocyte sedimentation rate and c-reactive protein in active UC. Moreover, plasma IL-17 was higher in patients with active UC, and a similar trend applied to the mRNA levels of RORγt and T-bet in peripheral blood mononuclear cells (PBMCs). The levels of p-STAT3 and p-STAT5 in PBMCs, as well as the ratio of p-STAT3/p-STAT5, were also elevated in active UC patients. Taken together, our findings revealed that elevated circulating Th17, Th1 and Tc1 cells and the aberrant activation of the STAT pathway may be implicated in the progression of UC. These findings may provide preliminary experimental clues for the development of new therapies for UC.

  14. EDITORIAL: 17th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2011)

    NASA Astrophysics Data System (ADS)

    van de Sanden, M. C. M.; Dimitrova, Miglena; Ghelev, Chavdar

    2012-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977, when the VEIT Summer School series was launched by the Institute of Electronics, Bulgarian Academy of Sciences. The aim was to act as a forum for the exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion- and plasma-assisted technologies. The organizers of the 2011 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. Whilst the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions and exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers and Journal of Physics: Conference Series. The Seventeenth edition of VEIT was held in the Black Sea resort of Sunny Beach, Bulgaria on 19-23 September 2011. It was attended by 96 participants from 18 countries: Belgium, Brazil, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, The Netherlands, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this special issue of Journal of

  15. Report from the European Prison Education Association, September 2007

    ERIC Educational Resources Information Center

    Behan, Cormac

    2007-01-01

    The main activity of the European Prison Education Association (EPEA) since the last edition of the Journal was the 11th European Prison Education Association International Conference, which took place in Dublin, Ireland from June 13th to 17th. The conference, Learning for Liberation, was the largest EPEA conference to date with 180 participants…

  16. Pre-European Conditions of Micmac People

    ERIC Educational Resources Information Center

    Howe, Shirley Ann

    1976-01-01

    The history and traditional ways of the Micmac Indians prior to the 17th century are discussed. During this era, the Micmac Indians had a sociopolitical system which provided political, social, economic, cultural and educational structures which surprised the early Europeans. (NQ)

  17. The Second Law of Thermodynamics in Bioenergetics

    PubMed Central

    Kemeny, Gabor

    1974-01-01

    Bioenergetic processes are viewed as processes of free energy transduction. The free energies of both local equilibrium and fluctuation states are being considered. It is shown that the exchange of thermal energy with the surrounding medium, acting as a reservoir, does not violate the second law of thermodynamics within broad limits. There is sufficient latitude for proteins to carry out their function of transduction utilizing thermal energy in the process. PMID:16592167

  18. Evaluation of a Mysis bioenergetics model

    USGS Publications Warehouse

    Chipps, S.R.; Bennett, D.H.

    2002-01-01

    Direct approaches for estimating the feeding rate of the opossum shrimp Mysis relicta can be hampered by variable gut residence time (evacuation rate models) and non-linear functional responses (clearance rate models). Bioenergetics modeling provides an alternative method, but the reliability of this approach needs to be evaluated using independent measures of growth and food consumption. In this study, we measured growth and food consumption for M. relicta and compared experimental results with those predicted from a Mysis bioenergetics model. For Mysis reared at 10??C, model predictions were not significantly different from observed values. Moreover, decomposition of mean square error indicated that 70% of the variation between model predictions and observed values was attributable to random error. On average, model predictions were within 12% of observed values. A sensitivity analysis revealed that Mysis respiration and prey energy density were the most sensitive parameters affecting model output. By accounting for uncertainty (95% CLs) in Mysis respiration, we observed a significant improvement in the accuracy of model output (within 5% of observed values), illustrating the importance of sensitive input parameters for model performance. These findings help corroborate the Mysis bioenergetics model and demonstrate the usefulness of this approach for estimating Mysis feeding rate.

  19. Acute Abdomen in the 17th Week of Twin Pregnancy due to Ovarian Torsion – A Late Complication of IVF

    PubMed Central

    Habek, D.; Bauman, R.; Rukavina Kralj, L.; Hafner, T.; Turudic, T.; Vujisic, S.

    2016-01-01

    Background: A 32-year-old woman with tubal factor infertility due to bilateral laparoscopic salpingectomy conceived twins with in vitro fertilization (IVF). She developed moderate ovarian hyperstimulation syndrome which was treated with anticoagulant therapy. The subsequent course of the twin pregnancy was normal until the 17th week of gestation when she presented to hospital because of a sharp pain in the right lower abdomen which ceased after admission. Case: Except for a single incident of vomiting, patient had no other subjective symptoms. The clinical examination showed tenderness of the lower right abdominal segment on palpation. The surgeon and the urologist found no signs of an acute surgical or urologic condition, and laboratory findings were within normal reference ranges for pregnant women. Two days after admission the pain reappeared; it was now much stronger and colic-like. The pain was initially located supraumbilically but subsequently spread diffusely across the lower abdomen. Abdominal guarding was present and laboratory findings showed an increase in inflammatory parameters. An enlarged and edematous right ovary was found on transvaginal ultrasound. Conclusion: Exploratory laparotomy via a vertical midline abdominal transection revealed a torqued necrotic right ovary with elements of inflammation and inflammatory adhesions involving the entire pelvis. The patient underwent right-sided ovariectomy and adhesiolysis. Recovered was normal and the patient was delivered of healthy twins in the 37th week of gestation. PMID:28017976

  20. [Principles of order in the color systems of the 17th century. (Franciscus Aguilonius--Athanasius Kircher--Isaac Newton)].

    PubMed

    Jaeger, W

    1984-04-01

    Since Aristotle there have been two colour order systems: The first is according to the subjective luminosity of colours, and the second is that which is found in the rainbow. Almost all the medieval concepts of colour order were based on the subjective luminosity of colours. At the beginning of the 17th century Franciscus Aguilonius still described the traditional sequence according to subjective luminosity: white, yellow, red, blue and black in his colour order system. - Athanasius Kircher demonstrated two sequences: The first was the same as Aguilonius 's, completed by lists of symbolic qualities attributed to the respective colours; The second was the sequence of the prismatic spectrum; red, orange, yellow, green and blue. Violet was still missing from his spectrum. For that reason the idea of arranging the colours in a closed circle did not occur to him. - Isaac Newton added violet to the prismatic spectrum. Hence he was able to bring the ends of the spectrum together, forming a colour circle. He completed the colours of his spectrum "with those purple hues which, although not present in the spectrum, were familiar to painters and dyers , and in this way closed up the colour-circle into a band returning on itself" (W. Ostwald). Thus he combined the perceptual concept of the colour wheel, containing pairs of complementary colours, with the physical concept of the prismatic spectrum.

  1. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    SciTech Connect

    Hargis, Kenneth Marshall

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  2. Aspects of informed consent in medical practice in the eastern Mediterranean region during the 17th and 18th centuries.

    PubMed

    Christopoulos, Platon; Falagas, Matthew E; Gourzis, Philippos; Trompoukis, Constantinos

    2007-08-01

    Informed consent is a question of central importance in contemporary medical ethics, and clinical practice is inconceivable without considering the issues it raises. Although it is often vigorously argued that consent, informed or otherwise, is a recent phenomenon and that no sources testify to its existence before the 20th century, it is difficult to accept that a process for regulating the common and fundamental parameters in the relationship between doctor and patient and the planning of treatment had not concerned previous eras. A review of the Registers of the Islamic Court of Candia (Heraklion) in Crete, a series of records that touches on, among other things, matters of medical interest, reveals that the concept of informed consent was not only known during a period that stretched from the mid-17th to the early 19th century, but it was concerned with the same principles that prevail or have been a point of contention today. An extension of this study into other periods may thus provide contemporary researchers with material and information valuable in the discussion of today's bioethical issues.

  3. Providing Quality Education and Training for Rural Australians. SPERA National Conference Proceedings (17th, Wagga Wagga, New South Wales, Australia, July 8-11, 2001).

    ERIC Educational Resources Information Center

    Hemmings, Brian, Ed.; Boylan, Colin, Ed.

    This proceedings of the 17th annual conference of the Society for the Provision of Education in Rural Australia (SPERA) contains 28 keynote addresses and conference papers. Major conference themes were vocational education and training (VET) in rural schools, small schools, flexible rural delivery systems, and the community as a resource and…

  4. Reports: Programme Commissions, Administrative Commission, Legal Committee. Records of the General Conference (17th, Paris, 17 October to 21 November 1972), Volume 2.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.

    The reports of the Programme Commissions, the Administrative Commission, and Legal Committee are presented as the records of the 17th session of the General Conference of UNESCO in 1972. Part 1 contains Programme Commissions reports on education; natural sciences and their application to development; social sciences, humanities, and culture;…

  5. Systemic modelling of human bioenergetics and blood circulation.

    PubMed

    Lim, K M; Yang, S-H; Shim, E B

    2012-10-01

    This work reviews the main aspects of human bioenergetics and the dynamics of the cardiovascular system, with emphasis on modelling their physiological characteristics. The methods used to study human bioenergetics and circulation dynamics, including the use of mathematical models, are summarised. The main characteristics of human bioenergetics, including mitochondrial metabolism and global energy balance, are first described, and the systemic aspects of blood circulation and related physiological issues are introduced. The authors also discuss the present status of studies of human bioenergetics and blood circulation. Then, the limitations of the existing studies are described in an effort to identify directions for future research towards integrated and comprehensive modelling. This review emphasises that a multi-scale and multi-physical approach to bioenergetics and blood circulation that considers multiple scales and physiological factors are necessary for the appropriate clinical application of computational models.

  6. Floods of the Lower Tisza from the late 17th century onwards: frequency, magnitude, seasonality and great flood events

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2016-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred on the lower sections of the Tisza river in Hungary, with special emphasis on the area of Szeged town. The study area is well-represented by contemporary source evidence from the late 17th century onwards, when the town and its broader area was reoccupied from the Ottoman Turkish Empire. Concerning the applied source materials, the main bases of investigation are the administrative (archival) sources such as town council protocols of Szeged and county meeting protocols of Csanád and Csongrád Counties. In these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers as well as town chronicles and other contemporary narratives. In the presentation the main focus is on the analysis of flood-rich flood-poor periods of the last ca. 330 years; moreover, the seasonality distribution as well as the magnitude of Tisza flood events are also discussed. Another important aim of the poster is to provide a short overview, in the form of case studies, on the greatest flood events (e.g. duration, magnitude, damages, multi-annual consequences), and their further impacts on the urban and countryside development as well as on (changes in) flood defence strategies. In this respect, especially two flood events, the great (1815-)1816 and the catastrophic 1879 flood (shortly with causes and consequences) - that practically erased Szeged town from the ground - are presented in more detail.

  7. Hydrometeorological extremes reconstructed from documentary evidence for the Jihlava region in the 17th-19th centuries

    NASA Astrophysics Data System (ADS)

    Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Belinova, Monika; Reznickova, Ladislava

    2016-04-01

    Different documentary evidence (taxation records, chronicles, insurance reports etc.) is used for reconstruction of hydrometeorological extremes (HMEs) in the Jihlava region (central part of the recent Czech Republic) in the 17th-19th centuries. The aim of the study is description of the system of tax alleviation in Moravia, presentation of utilization of early fire and hail damage insurance claims and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 400 HMEs were analysed for the 16 estates (past basic economic units). Late frost on 16 May 1662 on the Nove Mesto na Morave estate, which destroyed whole cereals and caused damage in the forests, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Moreover, floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. Archival records, preserved in the Moravian Land Archives in Brno and other district archives, create a unique source of data contributing to the better understanding of extreme events and their impacts.

  8. The ``System of Chymists'' and the ``Newtonian dream'' in Greek-speaking Communities in the 17th-18th Centuries

    NASA Astrophysics Data System (ADS)

    Bokaris, Efthymios P.; Koutalis, Vangelis

    2008-06-01

    The acceptance of new chemical ideas, before the Chemical Revolution of Lavoisier, in Greek-speaking communities in the 17th and 18th centuries did not create a discourse of chemical philosophy, as it did in Europe, but rather a “philosophy” of chemistry as it was formed through the evolution of didactic traditions of Chemistry. This “philosophical” chemistry was not based on the existence of any academic institutions, it was focused on the ontology of principles and forces governing the analysis/synthesis of matter and formulated two didactic traditions. The one, named “the system of chymists”, close to the Boylean/Cartesian tradition, accepted, contrary to Aristotelianism, the five “chymical” principles and also the analytical ideal, but the “chymical” principles were not under a conceptual and experimental investigation, as they were in Europe. Also, a crucial issue for this tradition remained the “mechanical” principles which were under the influence of the metaphysical nature of the Aristotelian principles. The other, close to the Boylean/Newtonian tradition, was the integrated presentation of the Newtonian “dream”, which maintained a discursive attitude with reference to the “chemical attractions”-“chemical affinities” and actualised the mathematical atomism of Boscovich, according to which the elementary texture of matter could be causally explained within this complex architecture of mathematical “ punkta”. In this tradition also coexisted, in a discursive synthesis, the “chemical element” of Lavoisier and the arguments of the new theory and its opposition to the phlogiston theory, but the “chemical affinities” were under the realm of the “physical element” as “metaphysical point”.

  9. Standardized bioenergetic profiling of adult mouse cardiomyocytes.

    PubMed

    Readnower, Ryan D; Brainard, Robert E; Hill, Bradford G; Jones, Steven P

    2012-12-18

    Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology. Here, we describe methods for using extracellular flux (XF) analysis to measure mitochondrial bioenergetics in isolated, intact, adult mouse cardiomyocytes (ACMs). Following isolation, ACMs were seeded overnight onto laminin-coated (20 μg/ml) microplates, which resulted in high attachment efficiency. After establishing seeding density, we found that a commonly used assay medium (containing a supraphysiological concentration of pyruvate at 1 mmol/l) produced a maximal bioenergetic response. After performing a pyruvate dose-response, we determined that pyruvate titrated to 0.1 mmol/l was optimal for examining alternative substrate oxidation. Methods for measuring fatty acid oxidation were established. These methods lay the framework using XF analysis to profile metabolism of ACMs and will likely augment our ability to understand mitochondrial dysfunction in heart failure and acute myocardial ischemia. This platform could easily be extended to models of diabetes or other metabolic defects.

  10. Reevaluation of a walleye (Sander vitreus) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; Wang, Chunfang

    2013-01-01

    Walleye (Sander vitreus) is an important sport fish throughout much of North America, and walleye populations support valuable commercial fisheries in certain lakes as well. Using a corrected algorithm for balancing the energy budget, we reevaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks each day during a 126-day experiment. Feeding rates ranged from 1.4 to 1.7 % of walleye body weight per day. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with observed monthly consumption, we concluded that the bioenergetics model estimated food consumption by walleye without any significant bias. Similarly, based on a statistical comparison of bioenergetics model predictions of weight at the end of the monthly test period with observed weight, we concluded that the bioenergetics model predicted walleye growth without any detectable bias. In addition, the bioenergetics model predictions of cumulative consumption over the 126-day experiment differed fromobserved cumulative consumption by less than 10 %. Although additional laboratory and field testing will be needed to fully evaluate model performance, based on our laboratory results, the Wisconsin bioenergetics model for walleye appears to be providing unbiased predictions of food consumption.

  11. Cosmic ray composition between 10 to the 15th power - 10 to the 17th power eV obtained by air shower experiments

    NASA Technical Reports Server (NTRS)

    Muraki, Y.

    1985-01-01

    Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.

  12. Proceedings of the Symposium on Electromagnetic Windows (17th) Held at Georgia Institute of Technology, Engineering Experiment Station, Atlanta, Georgia on 25-27 July 1984. Part 1

    DTIC Science & Technology

    1984-09-01

    00 George H. Adams Department of Continuing Education September 1984 0-I U. S. Army Research Office P. 0. No. 84-M-0346 GEORGIA INSTITUTE OF TECHNOLOGY...ATLANTA, GEORGIA 30332 r ) (ELEctEK D JN22 1985 APPROvED FOR PUBLIC RELEASE 91STRIBUTION UNLIMITED 7 .7 .7 7rr - COMPONENT PART NOTICE THIS PAPER IS...A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT: (TITLE): Proceedingzs of the Symposium on Electromagnetic Windows (17th) Held at Georgia

  13. Report from the European Prison Education Association, June 2006

    ERIC Educational Resources Information Center

    Behan, Cormac

    2006-01-01

    It has just been announced that the 11th European Prison Education Association (EPEA) International Conference will take place in Dublin, Ireland from the 13th to 17th June 2007. Further details and an application form will be available in September 2006. Regular updates will be available at www.epea.org.

  14. Report from the European Prison Education Association, December 2006

    ERIC Educational Resources Information Center

    Behan, Cormac

    2006-01-01

    The main activity of the European Prison Education Association over the last number of months has been organizing the 11th EPEA conference in Dublin, Ireland in 2007. Application forms to attend the conference (13th-17th June 2007), are available to download at www.epea.org. Applications can be submitted online or by regular mail. The closing date…

  15. Simulated weightlessness - Effects on bioenergetic balance

    NASA Technical Reports Server (NTRS)

    Jordan, J. P.; Sykes, H. A.; Crownover, J. C.; Schatte, C. L.; Simmons, J. B., II; Jordan, D. P.

    1980-01-01

    As a prelude to a flight experiment, an attempt was made to separate energy requirements associated with gravity from all other metabolic needs. The biological effects of weightlessness were simulated by suspending animals in a harness so that antigravity muscles were not supporting the body. Twelve pairs of rats were allowed to adapt to wearing a harness for 5 d. Experimental animals were then suspended in harness for 7 d followed by recovery for 7 d. Control animals were harnessed but never suspended. Oxygen consumption, carbon dioxide production and rate of (C-14)O2 expiration from radio-labeled glucose were monitored on selected days. Food intake and body mass were recorded daily. Metabolic rate decreased in experimental animals during 7 d of suspension and returned to normal during recovery. Although some of the metabolic changes may have related to variation in food intake, simulated weightlessness appears to directly affect bioenergetic balance.

  16. BIOENERGETICS OF A SEMI-TROPICAL CLADOCERAN, DAPHNIA LUMHOLTZI

    EPA Science Inventory

    The bioenergetics of D.lumholtzi from Kentucky Lake, USA was investigated across a wide range of temperatures and food concentrations...This suggests a physiological adaptation to competitive ability under differing climatic conditions.

  17. Development of a bioenergetics model for age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.

    2011-01-01

    Bioenergetics modeling can be used as a tool to investigate the impact of non-native age-0 American shad (Alosa sapidissima) on reservoir and estuary food webs. The model can increase our understanding of how these fish influence lower trophic levels as well as predatory fish populations that feed on juvenile salmonids. Bioenergetics modeling can be used to investigate ecological processes, evaluate alternative research hypotheses, provide decision support, and quantitative prediction. Bioenergetics modeling has proven to be extremely useful in fisheries research (Ney et al. 1993,Chips and Wahl 2008, Petersen et al. 2008). If growth and diet parameters are known, the bioenergetics model can be used to quantify the relative amount of zooplankton or insects consumed by age-0 American shad. When linked with spatial and temporal information on fish abundance, model output can guide inferential hypothesis development to demonstrate where the greatest impacts of age-0 American shad might occur.

  18. Mitochondria, Bioenergetics, and the Epigenome in Eukaryotic and Human Evolution

    PubMed Central

    Wallace, D.C.

    2013-01-01

    Studies on the origin of species have focused largely on anatomy, yet animal populations are generally limited by energy. Animals can adapt to available energy resources at three levels: (1) evolution of different anatomical forms between groups of animals through nuclear DNA (nDNA) mutations, permitting exploitation of alternative energy reservoirs and resulting in new species with novel niches, (2) evolution of different physiologies within intraspecific populations through mutations in mitochondrial DNA (mtDNA) and nDNA bioenergetic genes, permitting adjustment to energetic variation within a species’ niche, and (3) epigenomic regulation of dispersed bioenergetic genes within an individual via mitochondrially generated high-energy intermediates, permitting individual adjustment to environmental fluctuations. Because medicine focuses on changes within our species, clinically relevant variation is more likely to involve changes in bioenergetics than anatomy. This may explain why mitochondrial diseases and epigenomic diseases frequently have similar phenotypes and why epigenomic diseases are being found to involve mitochondrial dysfunction. Therefore, common complex diseases may be the result of changes in any of a large number of mtDNA and nDNA bioenergetic genes or to altered epigenomic regulation of these bioenergetic genes. All of these changes result in similar bioenergetic failure and consequently related phenotypes. PMID:19955254

  19. Reevaluation of lake trout and lake whitefish bioenergetics models

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steve A.; Kao, Yu-Chun

    2013-01-01

    Using a corrected algorithm for balancing the energy budget, we reevaluated the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush) in the laboratory and for lake whitefish (Coregonus clupeaformis) in the laboratory and in the field. For lake trout, results showed that the bioenergetics model slightly overestimated food consumption by the lake trout when they were fed low and intermediate rations, whereas the model predicted food consumption by lake trout fed ad libitum without any detectable bias. The slight bias in model predictions for lake trout on restricted rations may have been an artifact of the feeding schedule for these fish, and we would therefore recommend application of the Wisconsin lake trout bioenergetics model to lake trout populations in the field without any revisions to the model. Use of the Wisconsin bioenergetics model for coregonids resulted in overestimation of food consumption by lake whitefish both in the laboratory and in the field by between 20 and 30%, on average. This overestimation of food consumption was most likely due to overestimation of respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit to the observed consumption in our laboratory tanks. The adjusted model predicted the consumption in the laboratory and the field without any detectable bias. Until a detailed lake whitefish respiration study can be conducted, we recommend application of our adjusted version of the Wisconsin generalized coregonid bioenergetics model to lake whitefish populations in the field.

  20. Portuguese tin-glazed earthenware from the 17th century. Part 2: A spectroscopic characterization of pigments, glazes and pastes of the three main production centers.

    PubMed

    Vieira Ferreira, L F; Ferreira, D P; Conceição, D S; Santos, L F; Pereira, M F C; Casimiro, T M; Ferreira Machado, I

    2015-01-01

    Sherds representative of the three Portuguese faience production centers of the 17th century - Lisbon, Coimbra and Vila Nova were studied with the use of mostly non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE) or X-ray fluorescence emission (XRF). X-ray diffraction (XRD) experiments were also performed. The obtained results evidence a clear similarity in the pastes of the pottery produced Vila Nova and some of the ceramic pastes from Lisbon, in accordance with documental sources that described the use of Lisbon clays by Vila Nova potters, at least since mid 17th century. Quartz and Gehlenite are the main components of the Lisbon's pastes, but differences between the ceramic pastes were detected pointing out to the use of several clay sources. The spectroscopic trend exhibited Coimbra's pottery is remarkably different, Quartz and Diopside being the major components of these pastes, enabling one to well define a pattern for these ceramic bodies. The blue pigment from the Lisbon samples is a cobalt oxide that exists in the silicate glassy matrix, which enables the formation of detectable cobalt silicate microcrystals in most productions of the second half of the 17th century. No micro-Raman cobalt blue signature could be detected in the Vila Nova and Coimbra blue glazes. This is in accordance with the lower kiln temperatures in these two production centers and with Co(2+) ions dispersed in the silicate matrix. In all cases the white glaze is obtained with the use of tin oxide. Hausmannite was detected as the manganese oxide mineral used to produce the purple glaze (wine color "vinoso") in Lisbon.

  1. Elevated Frequencies of Circulating Th22 Cell in Addition to Th17 Cell and Th17/Th1 Cell in Patients with Acute Coronary Syndrome

    PubMed Central

    Zhang, Lei; Wang, Ting; Wang, Xiao-qi; Du, Rui-zhi; Zhang, Kai-ning; Liu, Xin-guang; Ma, Dao-xin; Yu, Shuang; Su, Guo-hai; Li, Zhen-hua; Guan, Yu-qing; Du, Nai-li

    2013-01-01

    Background Atherosclerosis is a chronic inflammatory disease mediated by immune cells. Th22 cells are CD4+ T cells that secret IL-22 but not IL-17 or IFN-γ and are implicated in the pathogenesis of inflammatory disease. The roles of Th22 cells in the pathophysiologic procedures of acute coronary syndrome (ACS) remain unclear. The purpose of this study is to investigate the profile of Th22, Th17 and Th17/Th1 cells in ACS patients, including unstable angina (UA) and acute myocardial infarction (AMI) patients. Design and Methods In this study, 26 AMI patients, 16 UA patients, 16 stable angina (SA) patients and 16 healthy controls were included. The frequencies of Th22, Th17 and Th17/Th1 cells in AMI, UA, SA patients and healthy controls were examined by flow cytometry. Plasma levels of IL-22, IL-17 and IFN-γ were measured by enzyme-linked immunosorbent assay (ELISA). Results Th22, Th17 and Th17/Th1 cells were significantly increased in AMI and UA patients compared with SA patients and healthy controls. Moreover, plasma IL-22 level was significantly elevated in AMI and UA patients. In addition, Th22 cells correlated positively with IL-22 as well as Th17 cells in AMI and UA patients. Conclusion Our findings showed increased frequencies of both Th22 and Th17 cells in ACS patients, which suggest that Th22 and Th17 cells may play a potential role in plaque destabilization and the development of ACS. PMID:24312440

  2. [The beginnings of the nursing profession : the complementary relationship between secular caregivers and hospital nuns in France in the 17th and 18th centuries].

    PubMed

    Diebolt, Evelyne

    2013-06-01

    The words used for designating the caregivers are ambiguous. Little by little, the word "nurse" becomes widely used, mainly in the feminine form due to the need of specialized staff. Health care structures are developing in the 17th and 18 centuries, the remains of which you can find in today hospitals (Salpêtrière hospital, Hôtel-Dieu hospital in Paris). The government of Louis XIV cares for the poor sick people, the vagabonds and the beggars. It opens new general hospitals as it will be the case later in all Europe. In the 17th century, the staff of the general hospital in Paris is entirely secular. The Paris general hospital is headed by the magistrates of Paris Parliament. The healthcare institutions employ both secular and religious staff for example the Hotel Dieu in Paris and the one in Marseilles. In the 17th century, there are 2000 secular caregivers in France. The order of the "Filles de la Charité" (grey sisters) is not submitted to the rule of enclosure. They renew their vows every year. For their founders Vincent de Paul and Louise de Marcillac, their monastery should be the cells of the sick, their cloister should be the rooms of the hospitals or the streets of the town. The secular or religious caregivers are excellent in the apothecary and they open a network of small dispensaries. It improves the health of the French population and allows fighting against the epidemics. This activity allowed some women to have a rewarding activity and a social status of which they were apparently satisfied.

  3. [The magic universe of cures: the role of magic practices and witchcraft in the universe of 17th century Mato Grosso].

    PubMed

    Sá, Mario

    2009-01-01

    The article analyzes the role of healing agents played by practitioners of magic and witchcraft in Mato Grosso society during the 17th century. It observes that magic and witchcraft were developed as competitors, alternatives or associated with other forms of healing (official and lay). It points out how such roles contributed to the process of subjugating its practitioners, especially Africans, Indians and their descendents, and were appropriated as an opportunity for survival in the colonial slave society. The pastoral visit made by Bruno Pinna in 1785 to Cuiabá and nearby areas served as the principal source of knowledge regarding the practices and practitioners of magic and witchcraft.

  4. Development of a bioenergetics model for age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.

    2011-01-01

    Bioenergetics modeling can be used as a tool to investigate the impact of non-native age-0 American shad (Alosa sapidissima) on reservoir and estuary food webs. The model can increase our understanding of how these fish influence lower trophic levels as well as predatory fish populations that feed on juvenile salmonids. Bioenergetics modeling can be used to investigate ecological processes, evaluate alternative research hypotheses, provide decision support, and quantitative prediction. Bioenergetics modeling has proven to be extremely useful in fisheries research (Ney et al. 1993,Chips and Wahl 2008, Petersen et al. 2008). If growth and diet parameters are known, the bioenergetics model can be used to quantify the relative amount of zooplankton or insects consumed by age-0 American shad. When linked with spatial and temporal information on fish abundance, model output can guide inferential hypothesis development to demonstrate where the greatest impacts of age-0 American shad might occur.


    Bioenergetics modeling is particularly useful when research questions involve multiple species and trophic levels (e.g. plankton communities). Bioenergetics models are mass-balance equations where the energy acquired from food is partitioned between maintenance costs, waste products, and growth (Winberg 1956). Specifically, the Wisconsin bioenergetics model (Hanson et al. 1997) is widely used in fisheries science. Researchers have extensively tested, reviewed, and improved on this modeling approach for over 30 years (Petersen et al. 2008). Development of a bioenergetics model for any species requires three key components: 1) determine physiological parameters for the model through laboratory experiments or incorporate data from a closely related species, 2) corroboration of the model with growth and consumption estimates from independent research, and 3) error analysis of model parameters.


    Wisconsin bioenergetics models have been parameterized for

  5. Bioenergetic evolution in proteobacteria and mitochondria.

    PubMed

    Degli Esposti, Mauro

    2014-11-27

    Mitochondria are the energy-producing organelles of our cells and derive from bacterial ancestors that became endosymbionts of microorganisms from a different lineage, together with which they formed eukaryotic cells. For a long time it has remained unclear from which bacteria mitochondria actually evolved, even if these organisms in all likelihood originated from the α lineage of proteobacteria. A recent article (Degli Esposti M, et al. 2014. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 9:e96566) has presented novel evidence indicating that methylotrophic bacteria could be among the closest living relatives of mitochondrial ancestors. Methylotrophs are ubiquitous bacteria that live on single carbon sources such as methanol and methane; in the latter case they are called methanotrophs. In this review, I examine their possible ancestry to mitochondria within a survey of the common features that can be found in the central and terminal bioenergetic systems of proteobacteria and mitochondria. I also discuss previously overlooked information on methanotrophic bacteria, in particular their intracytoplasmic membranes resembling mitochondrial cristae and their capacity of establishing endosymbiotic relationships with invertebrate animals and archaic plants. This information appears to sustain the new idea that mitochondrial ancestors could be related to extant methanotrophic proteobacteria, a possibility that the genomes of methanotrophic endosymbionts will hopefully clarify.

  6. Laboratory evaluation of a walleye (Sander vitreus) bioenergetics model

    USGS Publications Warehouse

    Madenjian, C.P.; Wang, C.; O'Brien, T. P.; Holuszko, M.J.; Ogilvie, L.M.; Stickel, R.G.

    2010-01-01

    Walleye (Sander vitreus) is an important game fish throughout much of North America. We evaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks during a 126-day experiment. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with the observed monthly consumption, we concluded that the bioenergetics model significantly underestimated food consumption by walleye in the laboratory. The degree of underestimation appeared to depend on the feeding rate. For the tank with the lowest feeding rate (1.4% of walleye body weight per day), the agreement between the bioenergetics model prediction of cumulative consumption over the entire 126-day experiment and the observed cumulative consumption was remarkably close, as the prediction was within 0.1% of the observed cumulative consumption. Feeding rates in the other three tanks ranged from 1.6% to 1.7% of walleye body weight per day, and bioenergetics model predictions of cumulative consumption over the 126-day experiment ranged between 11 and 15% less than the observed cumulative consumption. ?? 2008 Springer Science+Business Media B.V.

  7. Neurohormetic Phytochemicals: An Evolutionary - Bioenergetic Perspective

    PubMed Central

    Murugaiyah, Vikneswaran; Mattson, Mark P.

    2015-01-01

    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by ‘neurohormetic phytochemicals’ (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the

  8. Growth variation, final height and secular trend. Proceedings of the 17th Aschauer Soiree, 7th November 2009.

    PubMed

    Hermanussen, M; Godina, E; Rühli, F J; Blaha, P; Boldsen, J L; van Buuren, S; MacIntyre, M; Assmann, C; Ghosh, A; de Stefano, G F; Sonkin, V D; Tresguerres, J A F; Meigen, C; Scheffler, C; Geiger, C; Lieberman, L S

    2010-08-01

    Growth and body height have always been topics interesting to the public. In particular, the stupendous increase of some 15-19cm in final adult height during the last 150 years in most European countries (the "secular trend"), the concomitant changes in body and head proportions, the tendency towards early onset of sexual maturation, the changes in the age when final height is being reached, and the very recent trend in body mass index, have generated much scientific literature. The marked plasticity of growth in height and weight over time causes problems. Child growth references differ between nations, they tend to quickly become out of date, and raise a number of questions regarding fitting methods, effects caused by selective drop-out, etc. New findings contradict common beliefs about the primary importance of nutritional and health related factors for secular changes in growth. There appears to be a broad age span from mid-childhood to early adolescence that is characterised by a peculiar insusceptibility. Environmental factors that are known to influence growth during this age span appear to have only little or no impact on final height. Major re-arrangements in height occur at an age when puberty has almost been completed and final height has almost been reached, implying that factors, which drive the secular trend in height, are limited to early childhood and late adolescence.

  9. Historical and Metallurgical Characterization of a "Falchion" Sword Manufactured in Caino (Brescia, Italy) in the Early 17th Century A.D.

    NASA Astrophysics Data System (ADS)

    Tonelli, G.; Faccoli, M.; Gotti, R.; Roberti, R.; Cornacchia, G.

    2016-08-01

    A historical and metallurgical characterization of a "falchion" sword manufactured in Caino (Brescia, northern Italy) and dating from the early 17th century was performed to understand the manufacture methods of a Renaissance sword. At first, a set of size measurements was carried out to look for the existence of constant and/or recurring macroscopic sizes, which would indicate a standardized production, or of any type of proportionality between different parts of a sword, which would prove an intentional design activity. Light optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, quantometer analyses, and Vickers microhardness tests were then employed to analyze the microstructure and obtain the mechanical properties. All the metallurgical work is supported by an accurate study on the chemical composition of both metal-matrix and nonmetallic inclusions, which allowed for rebuilding and evaluating the efficiency of the whole production process.

  10. Real Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection

    DTIC Science & Technology

    2014-09-01

    1 AWARD NUMBER: W81XWH-13-1-0149 TITLE: Real Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection ... Tuberculosis 5a. CONTRACT NUMBER Infection 5b. GRANT NUMBER W81XWH-13-1-0149 5c. PROGRAM ELEMENT NUMBER 6...resistant state, sometimes reactivating to cause tuberculosis (TB) decades after the primary infection , has puzzled scientists for years. This

  11. Comparative bioenergetics modeling of two Lake Trout morphotypes

    USGS Publications Warehouse

    Kepler, Megan V.; Wagner, Tyler; Sweka, John A.

    2014-01-01

    Efforts to restore Lake Trout Salvelinus namaycush in the Laurentian Great Lakes have been hampered for decades by several factors, including overfishing and invasive species (e.g., parasitism by Sea Lampreys Petromyzon marinus and reproductive deficiencies associated with consumption of Alewives Alosa pseudoharengus). Restoration efforts are complicated by the presence of multiple body forms (i.e., morphotypes) of Lake Trout that differ in habitat utilization, prey consumption, lipid storage, and spawning preferences. Bioenergetics models constitute one tool that is used to help inform management and restoration decisions; however, bioenergetic differences among morphotypes have not been evaluated. The goal of this research was to investigate bioenergetic differences between two actively stocked morphotypes: lean and humper Lake Trout. We measured consumption and respiration rates across a wide range of temperatures (4–22°C) and size-classes (5–100 g) to develop bioenergetics models for juvenile Lake Trout. Bayesian estimation was used so that uncertainty could be propagated through final growth predictions. Differences between morphotypes were minimal, but when present, the differences were temperature and weight dependent. Basal respiration did not differ between morphotypes at any temperature or size-class. When growth and consumption differed between morphotypes, the differences were not consistent across the size ranges tested. Management scenarios utilizing the temperatures presently found in the Great Lakes (e.g., predicted growth at an average temperature of 11.7°C and 14.4°C during a 30-d period) demonstrated no difference in growth between the two morphotypes. Due to a lack of consistent differences between lean and humper Lake Trout, we developed a model that combined data from both morphotypes. The combined model yielded results similar to those of the morphotype-specific models, suggesting that accounting for morphotype differences may

  12. The emerging theme of redox bioenergetics in health and disease.

    PubMed

    Kramer, Philip A; Darley-Usmar, Victor M

    2015-01-01

    Mitochondrial function has long been recognized as central to normal physiology and a contributor to a broad range of pathologies. Much of the early research in mitochondrial biology focused on the mechanisms to generate ATP and characterization of mitochondria from highly energetic tissues such as the heart or liver. More recent studies emphasize the role of mitochondria in redox signaling and in less energetic cells such as those in the innate immune system and the vasculature. In this short overview, we discuss some of these recent developments in translational and basic research in mitochondrial pathophysiology. Advanced high throughput analytical techniques are now allowing the assessment of bioenergetic health in human populations and the emergence of the exciting new field of metabolotherapeutics. These have led to the emergence of the new field of redox bioenergetics which encompasses both the canonical aspects of mitochondrial energy production and the organelles' role in cell signaling and disease.

  13. Coupling stable isotopes with bioenergetics to estimate interspecific interactions.

    PubMed

    Caut, Stephane; Roemer, Gary W; Donlan, C Josh; Courchamp, Franck

    2006-10-01

    Interspecific interactions are often difficult to elucidate, particularly with large vertebrates at large spatial scales. Here, we describe a methodology for estimating interspecific interactions by combining stable isotopes with bioenergetics. We illustrate this approach by modeling the population dynamics and species interactions of a suite of vertebrates on Santa Cruz Island, California, USA: two endemic carnivores (the island fox and island spotted skunk), an exotic herbivore (the feral pig), and their shared predator, the Golden Eagle. Sensitivity analyses suggest that our parameter estimates are robust, and natural history observations suggest that our overall approach captures the species interactions in this vertebrate community. Nonetheless, several factors provide challenges to using isotopes to infer species interactions. Knowledge regarding species-specific isotopic fractionation and diet breadth is often lacking, necessitating detailed laboratory studies and natural history information. However, when coupled with other approaches, including bioenergetics, mechanistic models, and natural history, stable isotopes can be powerful tools in illuminating interspecific interactions and community dynamics.

  14. REGULATION OF BODY COMPOSITION AND BIOENERGETICS BY ESTROGENS

    PubMed Central

    Van Pelt, Rachael E.; Gavin, Kathleen M.; Kohrt, Wendy M.

    2015-01-01

    SYNOPSIS Evidence from basic, preclinical, and clinical research points to an important role of estradiol (E2) in the regulation of body composition and bioenergetics. There is consistent evidence from basic and preclinical research that the disruption of E2 signaling, through either genetic manipulation (e.g., estrogen receptor deletion) or surgical intervention (e.g., ovariectomy), accelerates fat accumulation, with a disproportionate increase in abdominal fat. Clinical evidence for the regulation of body composition and bioenergetics by E2 is less consistent. Evidence exists both for and against menopause as the mediator of changes in body composition. This is likely related to the prolonged nature of the menopause transition in women and the associated complexities of distinguishing effects of the loss of gonadal function from other phenomena of aging. However, a need remains to better understand the metabolic actions of estrogens in women because of the potential impact on health after the menopause. PMID:26316249

  15. Excerpts from the 1st international NTNU symposium on current and future clinical biomarkers of cancer: innovation and implementation, June 16th and 17th 2016, Trondheim, Norway.

    PubMed

    Robles, Ana I; Olsen, Karina Standahl; Tsui, Dana W T; Georgoulias, Vassilis; Creaney, Jenette; Dobra, Katalin; Vyberg, Mogens; Minato, Nagahiro; Anders, Robert A; Børresen-Dale, Anne-Lise; Zhou, Jianwei; Sætrom, Pål; Nielsen, Boye Schnack; Kirschner, Michaela B; Krokan, Hans E; Papadimitrakopoulou, Vassiliki; Tsamardinos, Ioannis; Røe, Oluf D

    2016-10-19

    The goal of biomarker research is to identify clinically valid markers. Despite decades of research there has been disappointingly few molecules or techniques that are in use today. The "1st International NTNU Symposium on Current and Future Clinical Biomarkers of Cancer: Innovation and Implementation", was held June 16th and 17th 2016, at the Knowledge Center of the St. Olavs Hospital in Trondheim, Norway, under the auspices of the Norwegian University of Science and Technology (NTNU) and the HUNT biobank and research center. The Symposium attracted approximately 100 attendees and invited speakers from 12 countries and 4 continents. In this Symposium original research and overviews on diagnostic, predictive and prognostic cancer biomarkers in serum, plasma, urine, pleural fluid and tumor, circulating tumor cells and bioinformatics as well as how to implement biomarkers in clinical trials were presented. Senior researchers and young investigators presented, reviewed and vividly discussed important new developments in the field of clinical biomarkers of cancer, with the goal of accelerating biomarker research and implementation. The excerpts of this symposium aim to give a cutting-edge overview and insight on some highly important aspects of clinical cancer biomarkers to-date to connect molecular innovation with clinical implementation to eventually improve patient care.

  16. Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baumer, Ursula; Dietemann, Patrick; Koller, Johann

    2009-07-01

    Objects of hinterglasmalerei, reverse-glass paintings, are painted on the back side of glass panels. Obviously, the paint layers are applied in reverse order, starting with the uppermost layer. The finished hinterglas painting is viewed through the glass, thus revealing an impressive gloss and depth of colour. The binding media of two precious objects of hinterglasmalerei from the 16th and 17th century have been identified as almost exclusively resinous. Identification was performed by a special optimised analysis procedure, which is discussed in this paper: solvent extracts are analysed by gas chromatography/mass spectrometry, both with and without derivatisation or hydrolysis. In an additional step, oxalic acid is added to the methanol extracts prior to injection. This attenuates the peaks of the non-acidic compounds, whereas the acids elute with good resolution. The non-acidic compounds are emphasised after injection of the underivatised extracts. This approach minimises compositional changes caused by the sample preparation and derivatisation steps. Chromatograms of aged samples with a very complex composition are simplified, which allows a more reliable and straightforward identification of significant markers for various materials. The binding media of the hinterglas objects were thus shown to consist of mixtures of different natural resins, larch turpentine, heat-treated Pinaceae resin or mastic. Typical compounds of dragon's blood, a natural red resin, were also detectable in red glazes by the applied analysis routine. Identification of the binding media provides valuable information that can be used in the development of an adequate conservation treatment.

  17. Quantification of the early small-scale fishery in the north-eastern Baltic Sea in the late 17th century.

    PubMed

    Verliin, Aare; Ojaveer, Henn; Kaju, Katre; Tammiksaar, Erki

    2013-01-01

    Historical perspectives on fisheries and related human behaviour provide valuable information on fishery resources and their exploitation, helping to more appropriately set management targets and determine relevant reference levels. In this study we analyse historical fisheries and fish trade at the north-eastern Baltic Sea coast in the late 17th century. Local consumption and export together amounted to the annual removal of about 200 tonnes of fish from the nearby sea and freshwater bodies. The fishery was very diverse and exploited altogether one cyclostome and 17 fish species with over 90% of the catch being consumed locally. The exported fish consisted almost entirely of high-valued species with Stockholm (Sweden) being the most important export destination. Due to rich political history and natural features of the region, we suggest that the documented evidence of this small-scale fishery should be considered as the first quantitative summary of exploitation of aquatic living resources in the region and can provide a background for future analyses.

  18. [Bioenergetics of the myocardiocytes in infectious-allergic myocarditis].

    PubMed

    Odinokova, V A; Smirnov, V B; Gurevich, M A

    1989-01-01

    The role of myoglobin in myocardial bio-energetics was analyzed in cases of infectious-allergic myocarditis (38 endomyocardial biopsies and 18 autopsies). Myoglobin content is found to be directly related to the severity of the disease and the degree of circulatory compensation or decompensation. In conditions of progressive muscular cell dystrophy, an abrupt drop in myoglobin, detectable around the A discs, can be seen. In hypertrophic myocardiocytes of compensated circulation, myoglobin is detected as distinctly outlined large and small granules.

  19. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics

    PubMed Central

    Prabhu, Dolly; Goldstein, Amy C.; El-Khoury, Riyad; Rak, Malgorzata; Edmunds, Lia; Rustin, Pierre; Vockley, Jerry; Schiff, Manuel

    2015-01-01

    Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblast basal mitochondrial bioenergetics. PMID:26000237

  20. Rationale for mitochondria-targeting strategies in cancer bioenergetic therapies.

    PubMed

    Jose, Caroline; Rossignol, Rodrigue

    2013-01-01

    In the 1920s, Otto Warburg first hypothesized that mitochondrial impairment is a leading cause of cancer although he recognized the existence of oxidative tumors. Likewise, Weinhouse and others in the 50s found that deficient mitochondrial respiration is not an obligatory feature of cancer and Peter Vaupel suggested in the 1990s that tumor oxygenation rather than OXPHOS capacity was the limiting factor of mitochondrial energy production in cancer. Recent studies now clearly indicate that mitochondria are highly functional in mice tumors and the field of oncobioenergetic identified MYC, Oct1 and RAS as pro-OXPHOS oncogenes. In addition, cancer cells adaptation to aglycemia, metabolic symbiosis between hypoxic and non-hypoxic tumor regions as well the reverse Warburg hypothesis support the crucial role of mitochondria in the survival of a subclass of tumors. Therefore, mitochondria are now considered as potential targets for anti-cancer therapy and tentative strategies including a bioenergetic profile characterization of the tumor and the subsequent adapted bioenergetic modulation could be considered for cancer killing. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

  1. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas.

    PubMed

    Olson, R J; Young, J W; Ménard, F; Potier, M; Allain, V; Goñi, N; Logan, J M; Galván-Magaña, F

    Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts.

  2. The Teaching of Russian Language and Literature in Europe = L'enseignement de la langue et de la litterature russes en Europe = Prepodavanie russkogo yaeyka i literatury v Europe. Proceedings of the AIMAV Seminar (17th, Brussels, Belgium, 1986).

    ERIC Educational Resources Information Center

    Blankoff, Jean, Ed.; And Others

    Papers from the Proceedings of the 17th meeting of the AIMAV (Association internationale pour le developpement de la communication interculturelle) are collected in this volume. Conference papers appear either in English, in French, or in Russian. For purposes of this abstract, all titles below have been translated into English. The…

  3. The Shaping of the Lutheran Teaching Profession and Lutheran Families of Teachers in the 16th and 17th Centuries (Illustrated by the Example of the Trencín, Liptov and Orava Superintendency)

    ERIC Educational Resources Information Center

    Bernát, Libor

    2012-01-01

    The article deals with changes in the status of teachers and the shaping of Lutheran families of teachers in the 16th and 17th centuries in the Trencín, Liptov and Orava districts of the superintendency. It describes the formation of the families and their background.

  4. [Louis XIV's Ginseng: Shaping of Knowledge on an Herbal Medicine in the Late 17th and the Early 18th Century France].

    PubMed

    Lee, Hye-Min

    2016-04-01

    This article aims to investigate the shaping of knowledge and discourse on ginseng, especially among physicians and botanists, since its introduction to France from the 17th century until the early 18th century. In France, knowledge on herbal medicine, including that of ginseng, was shaped under the influence of the modern state's policy and institution: mercantilism and the Académie royale des sciences. The knowledge of herbal medicine developed as an important part of the mercantilist policy supported systematically by the Académie. The East Asian ginseng, renowned as a panacea, was first introduced into France in the 17th century, initially in a roundabout way through transportation and English and Dutch publications of travel tales from various foreign countries. The publication activity was mainly conducted by Thévenot company with the intention to meet the needs of French mercantilism promoted by Colbert. It also implied interests on medicine in order to bolster the people's health. The Thévenot company's activity thus offered vital information on plants and herbs abroad, one of which was ginseng. Furthermore, with Louis XIV's dispatching of the Jesuit missionaries to East Asia, the Frenchmen were able to directly gather information on ginseng. These information became a basis for research of the Académie. In the Académie, founded in 1666 by Colbert, the king's physicians and botanists systematically and collectively studied on exotic plants and medical herbs including ginseng. They were also key figures of the Jardin du Roi. These institutions bore a striking contrast to the faculty of medicine at the University of Paris which has been a center of the traditional Galenic medicine. The research of the Académie on ginseng was greatly advanced, owing much to the reports and samples sent from China and Canada by Jartoux, Sarrazin, and Lapitau. From the early 18th century, the conservative attitude of the University of Paris, which was a stronghold of

  5. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  6. Social differences in oral health: Dental status of individuals buried in and around Trakai Church in Lithuania (16th-17th c.c.).

    PubMed

    Miliauskienė, Žydrūnė; Jankauskas, Rimantas

    2015-01-01

    The evaluation of social differences in dental health is based on the assumption that individuals belonging to a higher social class consumed a different diet than a common people. The aim of our study was to analyse and compare dental health of 16(th) - 17(th) c. individuals, buried inside and around the Roman Catholic Church in Trakai (Lithuania). All material (189 adult individuals) was divided in two samples of a presumably different social status: the Churchyard (ordinary townsmen) and the Presbytery (elite). Dental status analysis included that of tooth loss, tooth wear, caries, abscesses and calculus. Results revealed higher prevalence of dental disease in the Churchyard sample compared to the Presbytery. Individuals buried around the church had statistically higher prevalence of caries, antemortem tooth loss and abscesses compared to those who were buried inside the church. The Churchyard sample was also characterised by a higher increase in severity of caries with age, and a more rapid tooth wear. Differences in dental health between the samples the most probably reflect different dietary habits of people from different social groups: poor quality carbohydrate based diet of laymen buried in the churchyard and more varied diet with proteins and of a better quality of local elite, buried inside the church. Substantial sex differences in dental health were found only in the Churchyard sample: males had statistically higher prevalence of abscesses and calculus, while females had higher prevalence of caries and AMTL (antemortem tooth loss). Females were also characterised by a higher increase in the number of dental decay and tooth loss with age and had higher prevalence of gross caries, which indicates a more rapid progression of the disease. Worse dental health of females could be a result of culturally based dietary differences between females (more carbohydrates) and males (more proteins) and different physiological demands (hormonal fluctuations and

  7. Stellar Occultations by Large TNOs on 2012: The February 3rd by (208996) 2003 AZ84, and the February 17th by (50000) Quaoar

    NASA Astrophysics Data System (ADS)

    Braga Ribas, Felipe; Sicardy, B.; Ortiz, J. L.; Duffard, R.; Camargo, J. I. B.; Lecacheux, J.; Colas, F.; Vachier, F.; Tanga, P.; Sposetti, S.; Brosch, N.; Kaspi, S.; Manulis, I.; Baug, T.; Chandrasekhar, T.; Ganesh, S.; Jain, J.; Mohan, V.; Sharma, A.; Garcia-Lozano, R.; Klotz, A.; Frappa, E.; Jehin, E.; Assafin, M.; Vieira Martins, R.; Behrend, R.; Roques, F.; Widemann, T.; Morales, N.; Thirouin, A.; Mahasena, P.; Benkhaldoun, Z.; Daassou, A.; Rinner, C.; Ofek, E. O.

    2012-10-01

    On February 2012, two stellar occultation's by large Trans-neptunian Objects (TNO's) were observed by our group. On the 3rd, an event by (208996) 2003 AZ84 was recorded from Mont Abu Observatory and IUCAA Girawali Observatory in India and from Weizmann Observatory in Israel. On the 17th, a stellar occultation by (50000) Quaoar was observed from south France and Switzerland. Both occultations are the second observed by our group for each object, and will be used to improve the results obtained on the previous events. The occultation by 2003 AZ84 is the first multi-chord event recorded for this object. From the single chord event on January 8th 2011, Braga-Ribas et al. 2011 obtained a lower limit of 573 +/- 21 km. From the 2012 occultation the longest chord has a size of 662 +/- 50 km. The other chords will permit to determine the size and shape of the TNO, and derive other physical parameters, such as the geometric albedo. The Quaoar occultation was observed from south of France (Observatoire de la Côte d'Azur, TAROT telescope and Valensole) and from Gnosca, Switzerland. Unfortunately, all three sites in France are almost at the same Quaoar's latitude, so in practice, we have two chords that can be used to fit Quaoar's limb. The resulting fit will be compared with the results obtained by Braga-Ribas et al. 2011. Braga-Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.

  8. Applications of bioenergetics models to fish ecology and management: where do we go from here?

    USGS Publications Warehouse

    Hansen, Michael J.; Boisclair, Daniel; Brandt, Stephen B.; Hewett, Steven W.; Kitchell, James F.; Lucas, Martyn C.; Ney, John J.

    1993-01-01

    Papers and panel discussions given during a 1992 symposium on bioenergetics models are summarized. Bioenergetics models have been applied to a variety of research and management questions related to fish stocks, populations, food webs, and ecosystems. Applications include estimates of the intensity and dynamics of predator-prey interactions, nutrient cycling within aquatic food webs of varying trophic structure, and food requirements of single animals, whole populations, and communities of fishes. As tools in food web and ecosystem applications, bioenergetics models have been used to compare forage consumption by salmonid predators across the Laurentian Great Lakes for single populations and whole communities, and to estimate the growth potential of pelagic predators in Chesapeake Bay and Lake Ontario. Some critics say that bioenergetics models lack sufficient detail to produce reliable results in such field applications, whereas others say that the models are too complex to be useful tools for fishery managers. Nevertheless, bioenergetics models have achieved notable predictive successes. Improved estimates are needed for model parameters such as metabolic costs of activity, and more complete studies are needed of the bioenergetics of larval and juvenile fishes. Future research on bioenergetics should include laboratory and field measurements of key model parameters such as weight-dependent maximum consumption, respiration and activity, and thermal habitats actually occupied by fish. Future applications of bioenergetics models to fish populations also depend on accurate estimates of population sizes and survival rates.

  9. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure

    PubMed Central

    Giordano, Samantha; Dodson, Matthew; Ravi, Saranya; Redmann, Matthew; Ouyang, Xiaosen; Usmar, Victor M Darley; Zhang, Jianhua

    2015-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing PD. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10–100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 hr, caused cell death at 24 hr with an LD50 of 10 nM. Overall autophagic flux was decreased by 10 nM rotenone at both 2 and 24 hr, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 hr, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Upregulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine (3-MA) exacerbated cell death. Interestingly, while 3-MA exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor. PMID:25081478

  10. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation

    PubMed Central

    Diender, Martijn; Stams, Alfons J. M.; Sousa, Diana Z.

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved. PMID:26635746

  11. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    PubMed

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  12. Reconstructing hydroclimatic variability of the Bermejo River (Subtropical Andes of Argentina-Bolivia) through Archival Documents - 17th to 20th centuries

    NASA Astrophysics Data System (ADS)

    Del Rosario Prieto, M.; Cueto, C.

    2009-09-01

    The purpose of this paper is to use climatic history for contributing to the general objectives of the IAI -CRN II-047 Project. It will reconstruct, from archival documents, the hydroclimatic variability occurring in the high basin of the Bermejo River during the last centuries and its effects on the floods and swellings in the middle basin. The Río Bermejo in the Southern Andes, is a binational (Argentina-Bolivia) river that contributes the largest proportion of the sediment load to the La Plata basin. Its headwaters are in the Subtropical Andes, near Tarija, Bolivia (22?00'14"S, 64?57'38"W). The main headwater tributaries are the Río Grande de Tarija, in Bolivia and the Iruya and San Francisco Rivers in Argentina. When the river abandons the mountain and turns eastwards (Gran Chaco), it acquires the characteristics of typical lowland rivers, widens its course, and occupies a large, low sedimentary plain with vast floodland areas. Quite often during very high sediment discharge the main river avulses and changes its course, creating big alluvial plains that are occupied for many years. Administrative documents from the colonial and republican periods have provided useful information to reconstruct climate and hydrology of the region. Documents from the Archivo General de Indias in Seville, Archivo Nacional de Bolivia and Archivo General de la Nación (Argentina) have been used to identify extreme floods and swellings in the high and middle-basin of the Rio Bermejo from the 17th century to the first decades of the 20th century. Old maps of the region, reports from annals, chronicles, priests' and travelers' descriptions were also used. Diaries written by the military, explorers and government officials in charge of discovering and taking possession of the territory also provide important sources of information. The archival documents show abrupt hydrological changes in response to the climatic fluctuations in the headwaters region. These records document

  13. MicroRNA-155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 (Th17) cells.

    PubMed

    Ma, L; Xue, H-B; Wang, F; Shu, C-M; Zhang, J-H

    2015-07-01

    Our aims were to identify the differential expression of microRNA (miR)-155, as well as to explore the possible regulatory effects of miR-155 on the differentiation and function of T helper type 17 (Th17) cells in atopic dermatitis (AD). The Th17 cell percentage and expression levels of miR-155, retinoic acid-related orphan receptor (ROR)γt, interleukin (IL)-17 and suppressor of cytokine signalling-1 (SOCS1) in peripheral CD4(+) T cells, plasma and skin specimens were detected and compared in AD patients and healthy subjects. A miR-155 mimic and an inhibitor were transfected separately into AD CD4(+) T cells to confirm the in-vivo data. The Th17 cell percentage, miR-155 expression, RORγt mRNA expression, IL-17 mRNA expression and plasma concentration were increased significantly in AD patients compared with healthy subjects. Conversely, SOCS1 mRNA expression and plasma concentration were decreased significantly. Similar results were detected in cultured CD4(+) T cells transfected with the miR-155 mimic compared with a miR-155 inhibitor or a negative control. Additionally, there was a sequential decrease in miR-155 expression, as well as RORγt and IL-17 mRNA expression, but an increase in SOCS1 mRNA expression, from AD lesional skin and perilesional skin to normal skin. Positive correlations were found between miR-155 expression and AD severity, Th17 cell percentage, RORγt mRNA expression and IL-17 mRNA expression and plasma concentration, while negative correlations were observed between miR-155 expression and SOCS1 mRNA expression and plasma concentration in AD peripheral circulation and skin lesions. In conclusion, miR-155 is over-expressed and may be involved in AD pathogenesis by modulating the differentiation and function of Th17 cells.

  14. Paleoclimate Reconstruction during the 17th to 18th Century Using Fossil Coral Tsunami Boulders from Ishigaki Island, the Ryukyus, Japan

    NASA Astrophysics Data System (ADS)

    Tsuzuki, K.; Yokoyama, Y.; Seki, A.; Kawakubo, Y.; Araoka, D.; Suzuki, A.

    2014-12-01

    Resolution Inductively Coupled Plasma Mass Spectrometry) to reconstruct paleo SST during LIA (Kawakubo et al., 2014). LA-HR-ICPMS enables us to measure the long coral core rapidly. Our result shows SST variation in 17th-18th century in this area and SST declined in around 1700. This result reveals the response of Little Ice Age in the northwestern Pacific.

  15. Electronic Transfer of Information and Its Impact on Aerospace and Defence Research and Development. Proceedings of the Technical Information Panel Specialists’ Meeting Held in Brussels, Belgium on 17th-19th October 1989 Abstracts.

    DTIC Science & Technology

    1990-01-01

    INTRODUCTION 1 SUMMARIES OF PAPERS AND DISCUSSIONS COMMENTS ON TECHNOLOGIES 13 RECOMMENDATIONS 15 p fl ton for DTIK TAs Ummnonn e a hJatirtca~io S...was heid from 17th- 19th October 1989 in Brussels, Belgium; and comments on the state of the art of the technologies presented, discusses their possible...introduction into scientific and technical organisations, and provides recommendations on the use of technologies with emphasis on the aerospace and

  16. Bioenergetics of juveniles of red swamp crayfish (Procambarus clarkii).

    PubMed

    Gutiérrez-Yurrita, P J; Montes, C

    2001-08-01

    Procambarus clarkii is an endemic North American crayfish species that was introduced into Spain in 1973 for aquacultural and fishing purposes. Although P. clarkii is a well-studied species for commercial production, there is a great gap in the knowledge of the bioenergetics of juveniles. The aims of this study were to quantify the elements of the energy flow for juveniles of P. clarkii when fed in the laboratory on four different diets. The diets used were: (1) trade commercial feed; (2) various dried algal species; (3) dried Gammarus pulex; and (4) an equal mixture of algal species and G. pulex. The best energetic balance was obtained with diet 3 (greatest energy directed to production P=57%; least energetic investment in respiration R=31%, excretion U=9%, but highest energy loss via faeces F=4%). The poorest energetic balance was observed with diet 4 (P=26.3%; R=55.5%; U=14.7%, but lower energy loss in faeces F=3.5%). The mean O:N relationship was 1.37+/-2.15, implying marked protein catabolism. The utility of studying the bioenergetics of juvenile P. clarkii in laboratory conditions results in the formulation of testable hypotheses about ecological facts and the provision of new insights into the management of their populations in natural environments.

  17. Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle.

    PubMed

    Nioka, S; McCully, K; McClellan, G; Park, Jane; Chance, B

    2003-01-01

    A unique multiparameter recording of skeletal muscle bioenergetics, biochemistry and biomechanics has permitted determination of novel relationships among hemodynamics, cellular high-energy metabolites and mitochondrial bioenergetics in feline skeletal muscle. The study utilizes 31P NMR, NIR, and NADH fluorescence spectrophotometry, biochemical assays and muscle performance. Seven cats were anesthetized and mechanically ventilated. Calf muscles were stimulated through sciatic nerve electrical stimulation and tension was monitored by a strain gauge connected to the Achilles tendon. We stimulated the muscle to produce several workloads up to Vmax. We also changed FiO2 from normoxia to hypoxia for each %Vmax. From these results, the most sensitive indicators of cellular hypoxia leading to a reduction in muscle performance can be determined. Hemoglobin deoxygenation generally does not correlate with cellular hypoxia, although when the HbO2 drops below 30% saturation there is an increased incidence of cellular hypoxia. The [ADP], which is known to regulate mitochondrial function, has a close relation to the work, not to the hypoxia. On the other hand, the mitochondrial NADH does respond to cellular PO2. The degree of oxidation (NADH decrease) due to the ATP flux shifts with oxygen availability in mild to moderate hypoxia (at FiO2 down to 9%). As cellular hypoxia causes decreases in muscle performance (moderate to severe hypoxia), NADH is being reduced rather than oxidized with increasing workloads.

  18. A Full Lifecycle Bioenergetic Model for Bluefin Tuna

    PubMed Central

    Jusup, Marko; Klanjscek, Tin; Matsuda, Hiroyuki; Kooijman, S. A. L. M.

    2011-01-01

    We formulated a full lifecycle bioenergetic model for bluefin tuna relying on the principles of Dynamic Energy Budget theory. Traditional bioenergetic models in fish research deduce energy input and utilization from observed growth and reproduction. In contrast, our model predicts growth and reproduction from food availability and temperature in the environment. We calibrated the model to emulate physiological characteristics of Pacific bluefin tuna (Thunnus orientalis, hereafter PBT), a species which has received considerable scientific attention due to its high economic value. Computer simulations suggest that (i) the main cause of different growth rates between cultivated and wild PBT is the difference in average body temperature of approximately 6.5°C, (ii) a well-fed PBT individual can spawn an average number of 9 batches per spawning season, (iii) food abundance experienced by wild PBT is rather constant and sufficiently high to provide energy for yearly reproductive cycle, (iv) energy in reserve is exceptionally small, causing the weight-length relationship of cultivated and wild PBT to be practically indistinguishable and suggesting that these fish are poorly equipped to deal with starvation, (v) accelerated growth rate of PBT larvae is connected to morphological changes prior to metamorphosis, while (vi) deceleration of growth rate in the early juvenile stage is related to efficiency of internal heat production. Based on these results, we discuss a number of physiological and ecological traits of PBT, including the reasons for high Feed Conversion Ratio recorded in bluefin tuna aquaculture. PMID:21779352

  19. A bioenergetic biomagnification model for the animal kingdom.

    PubMed

    Debruyn, Adrian M H; Gobas, Frank A P C

    2006-03-01

    Species vary greatly in the degree to which they accumulate dietary contaminants. Bioenergetic processes play a key role in chemical uptake and elimination, and interspecific variation in bioaccumulation can be attributed in large part to variation in how species feed, digest, and allocate energy. We present a quantitative treatment of this relationship for the entire animal kingdom. We derive a model to predict the biomagnification factor for nonmetabolizable, slowly eliminated chemicals, BMF(max). We test the model with observed biomagnification factors and independently derived bioenergetic parameters for a diverse suite of species, including herbivores and carnivores, heterotherms and homeotherms, vertebrates and invertebrates, adults and juveniles, domestic/laboratory animals and wild individuals from freshwater, marine, and terrestrial environments. The model successfully predicts species-specific BMF(max) values across this range of taxa, with values ranging from less than 1 in caterpillars to nearly 100 in some carnivores. In addition, we make novel predictions of BMF(max) for several taxa for which no measured bioaccumulation data are available. Our analysis provides new insights into the role of ecology in chemical dynamics across the animal kingdom, providing a general framework for understanding how characteristics of an organism and its ecological context influence the degree to which that organism accumulates chemicals present in its diet.

  20. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.

    2004-01-01

    We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.

  1. The inverse association of cancer and Alzheimer's: a bioenergetic mechanism.

    PubMed

    Demetrius, Lloyd A; Simon, David K

    2013-05-06

    The sporadic forms of cancer and Alzheimer's disease (AD) are both age-related metabolic disorders. However, the molecular mechanisms underlying the two diseases are distinct: cancer is described by essentially limitless replicative potential, whereas neuronal death is a key feature of AD. Studies of the origin of both diseases indicate that their sporadic forms are the result of metabolic dysregulation, and a compensatory increase in energy transduction that is inversely related. In cancer, the compensatory metabolic effect is the upregulation of glycolysis-the Warburg effect; in AD, a bioenergetic model based on the interaction between astrocytes and neurons indicates that the compensatory metabolic alteration is the upregulation of oxidative phosphorylation-an inverse Warburg effect. These two modes of metabolic alteration could contribute to an inverse relation between the incidence of the two diseases. We invoke this bioenergetic mechanism to furnish a molecular basis for an epidemiological observation, namely the incidence of sporadic forms of cancer and AD is inversely related. We furthermore exploit the molecular mechanisms underlying the diseases to propose common therapeutic strategies for cancer and AD based on metabolic intervention.

  2. Transforming Growth Factor Beta, Bioenergetics and Mitochondria in Renal Disease

    PubMed Central

    Gabriella, Casalena; Ilse, Daehn; Erwin, Bottinger

    2012-01-01

    The transforming growth factor beta (TGF-β ) family is comprised of over 30 family members that are structurally related secreted dimeric cytokines, including TGF-β, activins, and bone morphogenetic proteins (BMPs)/growth and differentiation factors (GDFs). TGF-β are pluripotent regulators of cell proliferation, differentiation, apoptosis, migration, and adhesion of many different cell types. TGF-β pathways are highly evolutionarily conserved and control embryogenesis, tissue repair, and tissue homeostasis in invertebrates and vertebrates. Aberrations in TGF-β activity and signaling underlie a broad spectrum of developmental disorders and major pathologies in humans, including cancer, fibrosis and autoimmune diseases. Recent observations indicate an emerging role for TGF-β in regulation of mitochondrial bioenergetics and oxidative stress responses characteristic of chronic degenerative diseases and ageing. Conversely, energy and metabolic sensory pathways cross-regulate mediators of TGF-β signaling. Here we review TGF-β and regulation of bioenergetic and mitochondrial functions, including energy and oxidant metabolism and apoptotic cell death, as well as their emerging relevance in renal biology and disease. PMID:22835461

  3. Bioenergetic and physiological studies of hyperthermophilic archaea. Final report

    SciTech Connect

    Kelly, R.M.

    1999-03-01

    This project focuses on physiological and bioenergetic characteristics of two representative hyperthermophilic archaea: Thermococcus litoralis (T{sub opt} 88 C) and Pyrococcus furiosus (T{sub opt} 98 C). Both are obligately anaerobic heterotrophs which grow in the presence or absence of reducible sulfur compounds. T. litoralis was studied in relation to information previously developed for P. furiosus: effect of sulfur reduction on bioenergetics, preferred fermentation patterns, tungsten requirement, etc. A defined medium was developed for T. litoralis consisting of amino acids, vitamins and nucleotides. This serves as the basis for continuous culture studies probing metabolic response to media changes. P. furiosus and T. litoralis have also been found to produce a polysaccharide in the presence of maltose and yeast extract. The composition and chemical structure of this polysaccharide was investigated as well as the metabolic motivation for its production. A novel and, perhaps, primitive intracellular proteolytic complex (previously designated as protease S66) in P. furiosus was isolated and the gene encoding the subunit of the complex was cloned, sequenced and the protease expressed in active form in Eschericia coli. Among other issues, the role of this complex in protein turnover and stress response was examined in the context of this organism in addition to comparing it to other complexes in eubacterial and eukaryotic cells. Biochemical characteristics of the protease have been measured in addition to examining other proteolytic species in P. furiosus.

  4. Increased mitochondrial arginine metabolism supports bioenergetics in asthma

    PubMed Central

    Xu, Weiling; Ghosh, Sudakshina; Comhair, Suzy A.A.; Asosingh, Kewal; Janocha, Allison J.; Mavrakis, Deloris A.; Bennett, Carole D.; Gruca, Lourdes L.; Graham, Brian B.; Queisser, Kimberly A.; Kao, Christina C.; Wedes, Samuel H.; Petrich, John M.; Tuder, Rubin M.; Kalhan, Satish C.; Erzurum, Serpil C.

    2016-01-01

    High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma. PMID:27214549

  5. Kinetic and bioenergetic studies of Spirulina platensis in chemostat and turbidostat culture

    SciTech Connect

    Lee, H.Y.; Erickson, L.E.; Scott, C.D.

    1986-01-01

    The growth kinetics and bioenergetics of S. platensis were investigated as a function of pH, temperature, light intensity, and HCO/sub 3/ concentration. The effects of pH and temperature on growth rate and bioenergetic yield were examined using turbidostat operation. The Arrhenius activation energy for growth appears to be independent of light intensity for the range of values that were investigated. Under light-limited growth conditions, the values of pH and temperature which provide for the maximum growth rate also correspond to the maximum bioenergetic yield. Chemostat operation was used to investigate C-limited growth.

  6. Bioenergetic constraints on the evolution of complex life.

    PubMed

    Lane, Nick

    2014-05-01

    All morphologically complex life on Earth, beyond the level of cyanobacteria, is eukaryotic. All eukaryotes share a common ancestor that was already a complex cell. Despite their biochemical virtuosity, prokaryotes show little tendency to evolve eukaryotic traits or large genomes. Here I argue that prokaryotes are constrained by their membrane bioenergetics, for fundamental reasons relating to the origin of life. Eukaryotes arose in a rare endosymbiosis between two prokaryotes, which broke the energetic constraints on prokaryotes and gave rise to mitochondria. Loss of almost all mitochondrial genes produced an extreme genomic asymmetry, in which tiny mitochondrial genomes support, energetically, a massive nuclear genome, giving eukaryotes three to five orders of magnitude more energy per gene than prokaryotes. The requirement for endosymbiosis radically altered selection on eukaryotes, potentially explaining the evolution of unique traits, including the nucleus, sex, two sexes, speciation, and aging.

  7. Shedding light on fish otolith biomineralization using a bioenergetic approach.

    PubMed

    Fablet, Ronan; Pecquerie, Laure; de Pontual, Hélène; Høie, Hans; Millner, Richard; Mosegaard, Henrik; Kooijman, Sebastiaan A L M

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves.

  8. Review of methods to probe single cell metabolism and bioenergetics

    PubMed Central

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    2015-01-01

    Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed. PMID:25448400

  9. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain.

    PubMed

    Feldman, Eva L; Nave, Klaus-Armin; Jensen, Troels S; Bennett, David L H

    2017-03-22

    Pre-diabetes and diabetes are a global epidemic, and the associated neuropathic complications create a substantial burden on both the afflicted patients and society as a whole. Given the enormity of the problem and the lack of effective therapies, there is a pressing need to understand the mechanisms underlying diabetic neuropathy (DN). In this review, we present the structural components of the peripheral nervous system that underlie its susceptibility to metabolic insults and then discuss the pathways that contribute to peripheral nerve injury in DN. We also discuss systems biology insights gleaned from the recent advances in biotechnology and bioinformatics, emerging ideas centered on the axon-Schwann cell relationship and associated bioenergetic crosstalk, and the rapid expansion of our knowledge of the mechanisms contributing to neuropathic pain in diabetes. These recent advances in our understanding of DN pathogenesis are paving the way for critical mechanism-based therapy development.

  10. Bioenergetic Constraints on the Evolution of Complex Life

    PubMed Central

    Lane, Nick

    2014-01-01

    All morphologically complex life on Earth, beyond the level of cyanobacteria, is eukaryotic. All eukaryotes share a common ancestor that was already a complex cell. Despite their biochemical virtuosity, prokaryotes show little tendency to evolve eukaryotic traits or large genomes. Here I argue that prokaryotes are constrained by their membrane bioenergetics, for fundamental reasons relating to the origin of life. Eukaryotes arose in a rare endosymbiosis between two prokaryotes, which broke the energetic constraints on prokaryotes and gave rise to mitochondria. Loss of almost all mitochondrial genes produced an extreme genomic asymmetry, in which tiny mitochondrial genomes support, energetically, a massive nuclear genome, giving eukaryotes three to five orders of magnitude more energy per gene than prokaryotes. The requirement for endosymbiosis radically altered selection on eukaryotes, potentially explaining the evolution of unique traits, including the nucleus, sex, two sexes, speciation, and aging. PMID:24789818

  11. Ontogeny of muscle bioenergetics in Adelie penguin chicks (Pygoscelis adeliae).

    PubMed

    Fongy, Anaïs; Romestaing, Caroline; Blanc, Coralie; Lacoste-Garanger, Nicolas; Rouanet, Jean-Louis; Raccurt, Mireille; Duchamp, Claude

    2013-11-01

    The ontogeny of pectoralis muscle bioenergetics was studied in growing Adélie penguin chicks during the first month after hatching and compared with adults using permeabilized fibers and isolated mitochondria. With pyruvate-malate-succinate or palmitoyl-carnitine as substrates, permeabilized fiber respiration markedly increased during chick growth (3-fold) and further rose in adults (1.4-fold). Several markers of muscle fiber oxidative activity (cytochrome oxidase, citrate synthase, hydroxyl-acyl-CoA dehydrogenase) increased 6- to 19-fold with age together with large rises in intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondrial content (3- to 5-fold) and oxidative activities (1.5- to 2.4-fold). The proportion of IMF relative to SS mitochondria increased with chick age but markedly dropped in adults. Differences in oxidative activity between mitochondrial fractions were reduced in adults compared with hatched chicks. Extrapolation of mitochondrial to muscle respirations revealed similar figures with isolated mitochondria and permeabilized fibers with carbohydrate-derived but not with lipid-derived substrates, suggesting diffusion limitations of lipid substrates with permeabilized fibers. Two immunoreactive fusion proteins, mitofusin 2 (Mfn2) and optic atrophy 1 (OPA1), were detected by Western blots on mitochondrial extracts and their relative abundance increased with age. Muscle fiber respiration was positively related with Mfn2 and OPA1 relative abundance. Present data showed by two complementary techniques large ontogenic increases in muscle oxidative activity that may enable birds to face thermal emancipation and growth in childhood and marine life in adulthood. The concomitant rise in mitochondrial fusion protein abundance suggests a role of mitochondrial networks in the skeletal muscle processes of bioenergetics that enable penguins to overcome harsh environmental constraints.

  12. Laboratory evaluation of a lake trout bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.

    1999-01-01

    Lake trout Salvelinus namaycush, aged 3 and 6 years and with average weights of 700 and 2,000 g, were grown in laboratory tanks for up to 407 d under a thermal regime similar to that experienced by lake trout in nearshore Lake Michigan. Lake trout were fed alewifeAlosa pseudoharengus and rainbow smelt Osmerus mordax, prey typical of lake trout in Lake Michigan. Of the 120 lake trout used in the experiment, 40 were fed a low ration (0.25% of their body weight per day), 40 were fed a medium ration (0.5% of their body weight per day), and 40 were fed a high ration (ad libitum). We measured consumption and growth, and we compared observed consumption with that predicted by the Wisconsin bioenergetics model. For lake trout fed the medium ration, model predictions for monthly consumption were unbiased. Moreover, predicted cumulative consumption by medium-ration lake trout for the entire experiment (320 d for smaller lake trout and 407 d for larger lake trout) agreed quite well with observed cumulative consumption; predictions were as close as within 0.1 to 5.2% of observed cumulative consumption. Even so, the model consistently overestimated consumption by low-ration fish and underestimated consumption by high-ration fish. The bias was significant in both cases, but was more severe for the low-ration trout. Because the low-ration and high-ration regimes were probably unrealistic for lake trout residing in Lake Michigan and because the model fit our laboratory data rather well for medium-ration trout, we conclude that applying the Wisconsin bioenergetics model to the Lake Michigan lake trout population in order to estimate the amount of prey fish consumed by lake trout each year is appropriate.

  13. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy.

    PubMed

    Chowdhury, Subir K Roy; Smith, Darrell R; Fernyhough, Paul

    2013-03-01

    Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich

  14. Mitochondrial bioenergetics in young, adult, middle-age and senescent brown Norway rats

    EPA Science Inventory

    Mitochondria are central regulators of energy homeostasis and may play a pivotal role in mechanisms of cellular senescence and age-related neurodegenerative and metabolic disorders. However, mitochondrial bioenergetic parameters have not been systematically evaluated under identi...

  15. Life-stage and organ specific changes in mitochondrial bioenergetics in Brown Norway Rats

    EPA Science Inventory

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence and age-related neurodegenerative and metabolic disorders. However, mitochondrial bioenergetic parameters have not been systematically evaluated under identical ...

  16. Bioenergetics of Stromal Cells As a Predictor of Aggressive Prostate Cancer

    DTIC Science & Technology

    2015-09-01

    1 AD______________ AWARD NUMBER: W81XWH-14-1-0255 TITLE: BIOENERGETICS OF STROMAL CELLS AS A PREDICTOR OF AGGRESSIVE PROSTATE CANCER...31 Aug 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Bioenergetics Of Stromal Cells As A Predictor Of Aggressive Prostate Cancer” 5b. GRANT NUMBER...form and rapidly falls below the normal as they become aggressive in prostate tumorigenesis. We have validated this in five prostate cancer cell

  17. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    EPA Pesticide Factsheets

    Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups.This dataset is associated with the following publication:Pandya, J.D., J. Royland , R.C. McPhail, P.G. Sullivan, and P. Kodavanti. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. NEUROBIOLOGY OF AGING. Elsevier Science Ltd, New York, NY, USA, 42: 25-34, (2016).

  18. Real-Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection

    DTIC Science & Technology

    2015-05-01

    AWARD NUMBER: W81XWH-13-1-0149 TITLE: “Real-Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection ...Mycobacteria Meeting. Birmingham, Alabama. January 24-26, 2014. Energy and redox homeostasis during Mycobacterium tuberculosis infection . Adrie JC Steyn. 4... Infections . June 26- 29, 2014. Saltsjöbaden, Sweden. Metabolomic discovery of a redox and bioenergetic hierarchy in M. tuberculosis and in human TB. Adrie

  19. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy.

    PubMed

    Obre, Emilie; Rossignol, Rodrigue

    2015-02-01

    The field of energy metabolism dramatically progressed in the last decade, owing to a large number of cancer studies, as well as fundamental investigations on related transcriptional networks and cellular interactions with the microenvironment. The concept of metabolic flexibility was clarified in studies showing the ability of cancer cells to remodel the biochemical pathways of energy transduction and linked anabolism in response to glucose, glutamine or oxygen deprivation. A clearer understanding of the large-scale bioenergetic impact of C-MYC, MYCN, KRAS and P53 was obtained, along with its modification during the course of tumor development. The metabolic dialog between different types of cancer cells, but also with the stroma, also complexified the understanding of bioenergetics and raised the concepts of metabolic symbiosis and reverse Warburg effect. Signaling studies revealed the role of respiratory chain-derived reactive oxygen species for metabolic remodeling and metastasis development. The discovery of oxidative tumors in human and mice models related to chemoresistance also changed the prevalent view of dysfunctional mitochondria in cancer cells. Likewise, the influence of energy metabolism-derived oncometabolites emerged as a new means of tumor genetic regulation. The knowledge obtained on the multi-site regulation of energy metabolism in tumors was translated to cancer preclinical studies, supported by genetic proof of concept studies targeting LDHA, HK2, PGAM1, or ACLY. Here, we review those different facets of metabolic remodeling in cancer, from its diversity in physiology and pathology, to the search of the genetic determinants, the microenvironmental regulators and pharmacological modulators.

  20. Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines

    PubMed Central

    Silva, Diana F.; Selfridge, J. Eva; Lu, Jianghua; E, Lezi; Roy, Nairita; Hutfles, Lewis; Burns, Jeffrey M.; Michaelis, Elias K.; Yan, ShiDu; Cardoso, Sandra M.; Swerdlow, Russell H.

    2013-01-01

    Bioenergetic dysfunction occurs in Alzheimer's disease (AD) and mild cognitive impairment (MCI), a clinical syndrome that frequently precedes symptomatic AD. In this study, we modeled AD and MCI bioenergetic dysfunction by transferring mitochondria from MCI, AD and control subject platelets to mtDNA-depleted SH-SY5Y cells. Bioenergetic fluxes and bioenergetics-related infrastructures were characterized in the resulting cytoplasmic hybrid (cybrid) cell lines. Relative to control cybrids, AD and MCI cybrids showed changes in oxygen consumption, respiratory coupling and glucose utilization. AD and MCI cybrids had higher ADP/ATP and lower NAD+/NADH ratios. AD and MCI cybrids exhibited differences in proteins that monitor, respond to or regulate cell bioenergetic fluxes including HIF1α, PGC1α, SIRT1, AMPK, p38 MAPK and mTOR. Several endpoints suggested mitochondrial mass increased in the AD cybrid group and probably to a lesser extent in the MCI cybrid group, and that the mitochondrial fission–fusion balance shifted towards increased fission in the AD and MCI cybrids. As many of the changes we observed in AD and MCI cybrid models are also seen in AD subject brains, we conclude reduced bioenergetic function is present during very early AD, is not brain-limited and induces protean retrograde responses that likely have both adaptive and mal-adaptive consequences. PMID:23740939

  1. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism.

    PubMed

    Sousa, Filipa L; Martin, William F

    2014-07-01

    The deep dichotomy of archaea and bacteria is evident in many basic traits including ribosomal protein composition, membrane lipid synthesis, cell wall constituents, and flagellar composition. Here we explore that deep dichotomy further by examining the distribution of genes for the synthesis of the central carriers of one carbon units, tetrahydrofolate (H4F) and tetrahydromethanopterin (H4MPT), in bacteria and archaea. The enzymes underlying those distinct biosynthetic routes are broadly unrelated across the bacterial-archaeal divide, indicating that the corresponding pathways arose independently. That deep divergence in one carbon metabolism is mirrored in the structurally unrelated enzymes and different organic cofactors that methanogens (archaea) and acetogens (bacteria) use to perform methyl synthesis in their H4F- and H4MPT-dependent versions, respectively, of the acetyl-CoA pathway. By contrast, acetyl synthesis in the acetyl-CoA pathway - from a methyl group, CO2 and reduced ferredoxin - is simpler, uniform and conserved across acetogens and methanogens, and involves only transition metals as catalysts. The data suggest that the acetyl-CoA pathway, while being the most ancient of known CO2 assimilation pathways, reflects two phases in early evolution: an ancient phase in a geochemically confined and non-free-living universal common ancestor, in which acetyl thioester synthesis proceeded spontaneously with the help of geochemically supplied methyl groups, and a later phase that reflects the primordial divergence of the bacterial and archaeal stem groups, which independently invented genetically-encoded means to synthesize methyl groups via enzymatic reactions. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.

  2. Archaeological Remains Accounting for the Presence and Exploitation of the North Atlantic Right Whale Eubalaena glacialis on the Portuguese Coast (Peniche, West Iberia), 16th to 17th Century

    PubMed Central

    Teixeira, António; Venâncio, Rui; Brito, Cristina

    2014-01-01

    The former occurrence of the North Atlantic right whale Eubalaena glacialis on the Portuguese coast may be inferred from the historical range of that species in Europe and in NW Africa. It is generally accepted that it was the main prey of coastal whaling in the Middle Ages and in the pre-modern period, but this assumption still needs firming up based on biological and archaeological evidence. We describe the skeletal remains of right whales excavated at Peniche in 2001–2002, in association with archaeological artefacts. The whale bones were covered by sandy sediments on the old seashore and they have been tentatively dated around the 16th to 17th centuries. This study contributes material evidence to the former occurrence of E. glacialis in Portugal (West Iberia). Some whale bones show unequivocal man-made scars. These are associated to wounds from instruments with a sharp-cutting blade. This evidence for past human interaction may suggest that whaling for that species was active at Peniche around the early 17th century. PMID:24505251

  3. Urban land for a growing city at the banks of a moving river: Vienna's spread into the Danube island Unterer Werd from the late 17th to the beginning of the 20th century.

    PubMed

    Haidvogl, Gertrud; Guthyne-Horvath, Marianna; Gierlinger, Sylvia; Hohensinner, Severin; Sonnlechner, Christoph

    In the relation between urban development and the Viennese Danube different periods can be identified from the late 17th to the early 20th century. These periods were strongly intertwined with both the history of the river and the history of the city. Urban expansion into the floodplains is demonstrated in this paper by investigating the island Unterer Werd, next to the city centre. In the late 17th century the fluvial dynamic still hampered urban development on the island. First measures to stabilise the river banks and to protect buildings from floods were taken soon thereafter, but the majority of practices aimed at mitigating the risks and impacts of the frequent floods: inundation was a part of the arrangement and the main target was to minimise the potential impacts. This practice also prevailed after the 1830s, when urban expansion began to move into the north and northwest of the island and the Danube floodplains were considered an important land resource for the growing city. In connection with new technologies and available means to channelise the river, the relationship between Vienna and the Danube changed fundamentally. Urban development in the riverine landscape gained new momentum. This process was initiated before the Great Danube Regulation from 1870 to 1875 was completed, the rate of growth accelerated after 1875. The last decades of the 19th century mark a turning point in the urban development of Vienna, with expanding urban areas becoming dependent upon a well functioning and maintained flood protection system.

  4. Archaeological remains accounting for the presence and exploitation of the North Atlantic right whale Eubalaena glacialis on the Portuguese Coast (Peniche, West Iberia), 16th to 17th Century.

    PubMed

    Teixeira, António; Venâncio, Rui; Brito, Cristina

    2014-01-01

    The former occurrence of the North Atlantic right whale Eubalaena glacialis on the Portuguese coast may be inferred from the historical range of that species in Europe and in NW Africa. It is generally accepted that it was the main prey of coastal whaling in the Middle Ages and in the pre-modern period, but this assumption still needs firming up based on biological and archaeological evidence. We describe the skeletal remains of right whales excavated at Peniche in 2001-2002, in association with archaeological artefacts. The whale bones were covered by sandy sediments on the old seashore and they have been tentatively dated around the 16th to 17th centuries. This study contributes material evidence to the former occurrence of E. glacialis in Portugal (West Iberia). Some whale bones show unequivocal man-made scars. These are associated to wounds from instruments with a sharp-cutting blade. This evidence for past human interaction may suggest that whaling for that species was active at Peniche around the early 17th century.

  5. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders

    PubMed Central

    Auger, Christopher; Alhasawi, Azhar; Contavadoo, Manuraj; Appanna, Vasu D.

    2015-01-01

    The liver is involved in a variety of critical biological functions including the homeostasis of glucose, fatty acids, amino acids, and the synthesis of proteins that are secreted in the blood. It is also at the forefront in the detoxification of noxious metabolites that would otherwise upset the functioning of the body. As such, this vital component of the mammalian system is exposed to a notable quantity of toxicants on a regular basis. It therefore comes as no surprise that there are over a hundred disparate hepatic disorders, encompassing such afflictions as fatty liver disease, hepatitis, and liver cancer. Most if not all of liver functions are dependent on energy, an ingredient that is primarily generated by the mitochondrion, the power house of all cells. This organelle is indispensable in providing adenosine triphosphate (ATP), a key effector of most biological processes. Dysfunctional mitochondria lead to a shortage in ATP, the leakage of deleterious reactive oxygen species (ROS), and the excessive storage of fats. Here we examine how incapacitated mitochondrial bioenergetics triggers the pathogenesis of various hepatic diseases. Exposure of liver cells to detrimental environmental hazards such as oxidative stress, metal toxicity, and various xenobiotics results in the inactivation of crucial mitochondrial enzymes and decreased ATP levels. The contribution of the latter to hepatic disorders and potential therapeutic cues to remedy these conditions are elaborated. PMID:26161384

  6. Preliminary evaluation of a lake whitefish (Coregonus clupeaformis) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; O'Connor, Daniel V.; Brandt, Stephen B.

    2005-01-01

    We conducted a preliminary evaluation of a lake whitefish (Coregonus clupeaformis) bioenergetics model by applying the model to size-at-age data for lake whitefish from northern Lake Michigan. We then compared estimates of gross growth efficiency (GGE) from our bioenergetis model with previously published estimates of GGE for bloater (C. hoyi) in Lake Michigan and for lake whitefish in Quebec. According to our model, the GGE of Lake Michigan lake whitefish decreased from 0.075 to 0.02 as age increased from 2 to 5 years. In contrast, the GGE of lake whitefish in Quebec inland waters decreased from 0.12 to 0.05 for the same ages. When our swimming-speed submodel was replaced with a submodel that had been used for lake trout (Salvelinus namaycush) in Lake Michigan and an observed predator energy density for Lake Michigan lake whitefish was employed, our model predicted that the GGE of Lake Michigan lake whitefish decreased from 0.12 to 0.04 as age increased from 2 to 5 years.

  7. Important roles for membrane lipids in haloarchaeal bioenergetics.

    PubMed

    Kellermann, Matthias Y; Yoshinaga, Marcos Y; Valentine, Raymond C; Wörmer, Lars; Valentine, David L

    2016-11-01

    Recent advances in lipidomic analysis in combination with various physiological experiments set the stage for deciphering the structure-function of haloarchaeal membrane lipids. Here we focused primarily on changes in lipid composition of Haloferax volcanii, but also performed a comparative analysis with four other haloarchaeal species (Halobacterium salinarum, Halorubrum lacusprofundi, Halorubrum sodomense and Haloplanus natans) all representing distinctive cell morphologies and behaviors (i.e., rod shape vs. pleomorphic behavior). Common to all five haloarchaea, our data reveal an extraordinary high level of menaquinone, reaching up to 72% of the total lipids. This ubiquity suggests that menaquinones may function beyond their ordinary role as electron and proton transporter, acting simultaneously as ion permeability barriers and as powerful shield against oxidative stress. In addition, we aimed at understanding the role of cations interacting with the characteristic negatively charged surface of haloarchaeal membranes. We propose for instance that by bridging the negative charges of adjacent anionic phospholipids, Mg(2+) acts as surrogate for cardiolipin, a molecule that is known to control curvature stress of membranes. This study further provides a bioenergetic perspective as to how haloarchaea evolved following oxygenation of Earth's atmosphere. The success of the aerobic lifestyle of haloarchaea includes multiple membrane-based strategies that successfully balance the need for a robust bilayer structure with the need for high rates of electron transport - collectively representing the molecular basis to inhabit hypersaline water bodies around the planet.

  8. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  9. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  10. Evaluation of Bioenergetic Function in Cerebral Vascular Endothelial Cells.

    PubMed

    Rellick, Stephanie L; Hu, Heng; Simpkins, James W; Ren, Xuefang

    2016-11-19

    The integrity of the blood-brain-barrier (BBB) is critical to prevent brain injury. Cerebral vascular endothelial (CVE) cells are one of the cell types that comprise the BBB; these cells have a very high-energy demand, which requires optimal mitochondrial function. In the case of disease or injury, the mitochondrial function in these cells can be altered, resulting in disease or the opening of the BBB. In this manuscript, we introduce a method to measure mitochondrial function in CVE cells by using whole, intact cells and a bioanalyzer. A mito-stress assay is used to challenge the cells that have been perturbed, either physically or chemically, and evaluate their bioenergetic function. Additionally, this method also provides a useful way to screen new therapeutics that have direct effects on mitochondrial function. We have optimized the cell density necessary to yield oxygen consumption rates that allow for the calculation of a variety of mitochondrial parameters, including ATP production, maximal respiration, and spare capacity. We also show the sensitivity of the assay by demonstrating that the introduction of the microRNA, miR-34a, leads to a pronounced and detectable decrease in mitochondrial activity. While the data shown in this paper is optimized for the bEnd.3 cell line, we have also optimized the protocol for primary CVE cells, further suggesting the utility in preclinical and clinical models.

  11. Beluga (Huso huso, Brandet 1869) bioenergetics under dietary methylmercury.

    PubMed

    Gharaei, A; Esmaili-Sari, A; Jafari-Shamoshaki, V; Ghaffari, M

    2008-12-01

    Recently, there have been reports of increasing amounts of mercury (Hg) in muscles of beluga (Huso huso, Brandet 1869) in the Caspian Sea which exceeds its guideline level for food in the UK. Our intensive effort was to investigate the effects of dietary methylmercury (MeHg) on Beluga bioenergetics. Beluga juveniles were fed with four diets containing MeHg (control: 0.04 mg kg(-1); low: 0.76 mg kg(-1); medium: 7.88 mg kg(-1); and high: 16.22 mg kg(-1)) for 70 days. There were significant differences in food consumption among the treatment groups. After 42 days, all individuals of the high dose died. After 35 and 70 days, all treatment groups (low, medium and high) showed a significant decline in their growth rate, unlike the control group. They also showed considerable lower specific growth rates (SGR) comparing to the control group. All treatment groups assimilated the dietary MeHg into their muscle tissue in a dose-dependent manner. Assimilation percent was significant among the treatment groups at days 35 and 70, but it was lower in the first 35 days than in the second 35 days. The data obtained from the dietary MeHg concentration and bioaccumulation rates were modeled for better natural resources management of the Caspian Sea.

  12. History of health in the Indian Ocean: care, prevention, teaching, and research from the 17(th) to the mid-20th century.

    PubMed

    Aubry, P; Gaüzère, B-A

    2016-05-01

    In 1498, the Portuguese crossed the Cape of Good Hope. It was not until the period of 1633 and 1666, dates of the founding, respectively, of the Compagnie de l'Orient and the Compagnie des Indes orientales, that the way was definitively opened for trade between France and India. Because so many sailors developed scurvy after voyages that lasted 4 to 5 months, the French settled on Bourbon Island (Réunion) and Ile de France (Mauritius), to provide them with medical care. Created in 1689 by Louis XIV, the Navy Health Service was responsible for health in the colonies until it was replaced in 1890 by the Colonial Health Service. European medicine began its slow diffusion around the Indian Ocean in Pondicherry (India). The naval doctors reported their experiences in the Archives de médecine navale (1864-1889), and the colonial doctors afterwards in the Archives de médecine navale et coloniale (1890-1896). The health system in Madagascar developed strongly during 19(th) and 20(th) centuries, and the subsequent development of health care in the other Indian Ocean islands became closely linked to that of Madagascar. On Bourbon, the two navy hospitals in Saint-Paul and Saint-Denis treated only naval and military personnel. The colony had no hospital providing care for civilians and poor people until three civilian doctors opened a maison de santé (health house) in 1846.

  13. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea.

    PubMed

    Rascovan, Nicolás; Maldonado, Javier; Vazquez, Martín P; Eugenia Farías, María

    2016-02-01

    Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics.

  14. Analysis of performance of prepubertal swimmers assessed from anthropometric and bio-energetic characteristics.

    PubMed

    Duché, P; Falgairette, G; Bedu, M; Lac, G; Robert, A; Coudert, J

    1993-01-01

    The relationship between anthropometric and bio-energetic data and timed performance over 50 to 400 m was studied in 25 young male swimmers [11.3 (SD 1) years]. Anthropometric measurements included height, body mass, body fat mass, body area, thoracic section area (Ats) thoracic circumferences, lengths of upper limb, bi-acromial and bi-iliac diameters. Maximal oxygen consumption (VO2max; direct method), maximal anaerobic power (W(an),max; force-velocity test) and mean power in 30 s sprint (W30 s; Wingate test) were also measured. Each of these bio-energetic variables was expressed in absolute terms, relating to body mass, body area and Ats. The stepwise regression method was used to determine contribution of the variables (anthropometric and/or bio-energetic) of the time achieved over the distance. The W30 s/Ats accounted for 46% of the time over 50 m (negative correlation). The VO2max/Ats and height were negatively correlated with the times of performances over 100 m, 200 m and 400 m, these two variables accounted for 71% to 77% of the performance. These results would indicate that even in young boys, anthropometric and bio-energetic characteristics are both important in swimming performance, particularly the bio-energetic variables expressed per Ats.

  15. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea

    PubMed Central

    Rascovan, Nicolás; Maldonado, Javier; Vazquez, Martín P; Eugenia Farías, María

    2016-01-01

    Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics. PMID:26140530

  16. Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress

    PubMed Central

    Cheng, Kwai Wa; Agarwal, Roshan; Mitra, Shreya; Lee, Ju-Seog; Carey, Mark; Gray, Joe W; Mills, Gordon B

    2012-01-01

    Cancer cells are metabolically stressed during tumour progression due to limited tumour vascularity and resultant nutrient, growth factor and oxygen deficiency that can induce cell death and inhibit tumour growth. We demonstrate that Rab25, a small GTPase involved in endosomal recycling, that is genomically amplified in multiple tumour lineages, is a key regulator of cellular bioenergetics and autophagy. RAB25 enhanced survival during nutrient stress by preventing apoptosis and autophagy via binding and activating AKT leading to increased glucose uptake and improved cellular bioenergetics. Unexpectedly, Rab25 induced the accumulation of glycogen in epithelial cancer cells, a process not previously identified. Strikingly, an increase in basal ATP levels combined with AKT-dependent increases in glucose uptake and glycogen storage allowed maintenance of ATP levels during bioenergetic stress. The clinical relevance of these findings was validated by the ability of a Rab25-dependent expression profile enriched for bioenergetics targets to identify patients with a poor prognosis. Thus, Rab25 is an unexpected regulator of cellular bioenergetics implicated as a useful biomarker and potential therapeutic target. PMID:22253197

  17. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy.

    PubMed

    Ma, Jiacheng; Farmer, Kevin L; Pan, Pan; Urban, Michael J; Zhao, Huiping; Blagg, Brian S J; Dobrowsky, Rick T

    2014-02-01

    Impaired neuronal mitochondrial bioenergetics contributes to the pathophysiologic progression of diabetic peripheral neuropathy (DPN) and may be a focal point for disease management. We have demonstrated that modulating heat shock protein (Hsp) 90 and Hsp70 with the small-molecule drug KU-32 ameliorates psychosensory, electrophysiologic, morphologic, and bioenergetic deficits of DPN in animal models of type 1 diabetes. The current study used mouse models of type 1 and type 2 diabetes to determine the relationship of changes in sensory neuron mitochondrial bioenergetics to the onset of and recovery from DPN. The onset of DPN showed a tight temporal correlation with a decrease in mitochondrial bioenergetics in a genetic model of type 2 diabetes. In contrast, sensory hypoalgesia developed 10 weeks before the occurrence of significant declines in sensory neuron mitochondrial bioenergetics in the type 1 model. KU-32 therapy improved mitochondrial bioenergetics in both the type 1 and type 2 models, and this tightly correlated with a decrease in DPN. Mechanistically, improved mitochondrial function following KU-32 therapy required Hsp70, since the drug was ineffective in diabetic Hsp70 knockout mice. Our data indicate that changes in mitochondrial bioenergetics may rapidly contribute to nerve dysfunction in type 2 diabetes, but not type 1 diabetes, and that modulating Hsp70 offers an effective approach toward correcting sensory neuron bioenergetic deficits and DPN in both type 1 and type 2 diabetes.

  18. Development and evaluation of a bioenergetics model for bull trout

    USGS Publications Warehouse

    Mesa, Matthew G.; Welland, Lisa K.; Christiansen, Helena E.; Sauter, Sally T.; Beauchamp, David A.

    2013-01-01

    We conducted laboratory experiments to parameterize a bioenergetics model for wild Bull Trout Salvelinus confluentus, estimating the effects of body mass (12–1,117 g) and temperature (3–20°C) on maximum consumption (C max) and standard metabolic rates. The temperature associated with the highest C max was 16°C, and C max showed the characteristic dome-shaped temperature-dependent response. Mass-dependent values of C max (N = 28) at 16°C ranged from 0.03 to 0.13 g·g−1·d−1. The standard metabolic rates of fish (N = 110) ranged from 0.0005 to 0.003 g·O2·g−1·d−1 and increased with increasing temperature but declined with increasing body mass. In two separate evaluation experiments, which were conducted at only one ration level (40% of estimated C max), the model predicted final weights that were, on average, within 1.2 ± 2.5% (mean ± SD) of observed values for fish ranging from 119 to 573 g and within 3.5 ± 4.9% of values for 31–65 g fish. Model-predicted consumption was within 5.5 ± 10.9% of observed values for larger fish and within 12.4 ± 16.0% for smaller fish. Our model should be useful to those dealing with issues currently faced by Bull Trout, such as climate change or alterations in prey availability.

  19. On the antiquity of metalloenzymes and their substrates in bioenergetics.

    PubMed

    Nitschke, Wolfgang; McGlynn, Shawn E; Milner-White, E James; Russell, Michael J

    2013-01-01

    Many metalloenzymes that inject and extract reducing equivalents at the beginning and the end of electron transport chains involved in chemiosmosis are suggested, through phylogenetic analysis, to have been present in the Last Universal Common Ancestor (LUCA). Their active centres are affine with the structures of minerals presumed to contribute to precipitate membranes produced on the mixing of hydrothermal solutions with the Hadean Ocean ~4 billion years ago. These mineral precipitates consist of transition element sulphides and oxides such as nickelian mackinawite ([Fe>Ni]2S2), a nickel-bearing greigite (~FeSS[Fe3NiS4]SSFe), violarite (~NiSS[Fe2Ni2S4]SSNi), a molybdenum bearing complex (~Mo(IV/VI)2Fe3S(0/2-)9) and green rust or fougerite (~[Fe(II)Fe(III)(OH)4](+)[OH](-)). They may be respectively compared with the active centres of Ni-Fe hydrogenase, carbon monoxide dehydrogenase (CODH), acetyl coenzyme-A synthase (ACS), the complex iron-sulphur molybdoenzyme (CISM) superfamily and methane monooxygenase (MMO). With the look of good catalysts - a suggestion that gathers some support from prebiotic hydrothermal experimentation - and sequestered by short peptides, they could be thought of as the original building blocks of proto-enzyme active centres. This convergence of the makeup of the LUCA-metalloenzymes with mineral structure and composition of hydrothermal precipitates adds credence to the alkaline hydrothermal (chemiosmotic) theory for the emergence of life, specifically to the possibility that the first metabolic pathway - the acetyl CoA pathway - was initially driven from either end, reductively from CO2 to CO and oxidatively and reductively from CH4 through to a methane thiol group, the two entities assembled with the help of a further thiol on a violarite cluster sequestered by peptides. By contrast, the organic coenzymes were entirely a product of the first metabolic pathways. This article is part of a Special Issue entitled: Metals in Bioenergetics and

  20. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics

    PubMed Central

    Kaufman, Randal J.; Malhotra, Jyoti D.

    2014-01-01

    Calcium homeostasis is central to all cellular functions and has been studied for decades. Calcium acts as a critical second messenger for both extracellular and intracellular signaling and is fundamental in cell life and death decisions [1]. The calcium gradient in the cell is coupled with an inherent ability of the divalent cation to reversibly bind multiple target biological molecules to generate an extremely versatile signaling system [2]. Calcium signals are used by the cell to control diverse processes as development, neurotransmitter release, muscle contraction, metabolism, autophagy and cell death. “Cellular calcium overload” is detrimental to cellular health, resulting in massive activation of proteases and phospholipases leading to cell death [3]. Historically, cell death associated with calcium ion perturbations has been primarily recognized as necrosis. Recent evidence clearly associate changes in calcium ion concentrations with more sophisticated forms of cellular demise, including apoptosis [4] [5] [6] [7]. Although the endoplasmic reticulum (ER) serves as the primary calcium store in the metazoan cell, dynamic calcium release to the cytosol, mitochondria, nuclei and other organelles orchestrate diverse coordinated responses. Most evidence supports that calcium transport from the ER to mitochondria plays a significant role in regulating cellular bioenergetics, production of reactive oxygen species, induction of autophagy and apoptosis. Recently, molecular identities that mediate calcium traffic between the ER and mitochondria have been discovered [8] [9] [10]. The next questions are how they are regulated for exquisite tight control of ER – mitochondrial calcium dynamics. This review attempts to summarize recent advances in the role of calcium in regulation of ER and mitochondrial function. PMID:24690484

  1. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of Mycobacterium tuberculosis

    PubMed Central

    Saini, Vikram; Cumming, Bridgette M.; Guidry, Loni; Lamprecht, Dirk; Adamson, John H.; Reddy, Vineel P.; Chinta, Krishna C.; Mazorodzo, James; Glasgow, Joel N.; Richard-Greenblatt, Melissa; Gomez-Velasco, Anaximandro; Bach, Horacio; Av-Gay, Yossef; Eoh, Hyungjin; Rhee, Kyu; Steyn, Adrie J.C.

    2016-01-01

    SUMMARY The mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping, but distinct functions of EGT and MSH. Lastly, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity. PMID:26774486

  2. Impaired Myocardial Bioenergetics in HFpEF and the Role of Antioxidants.

    PubMed

    Hiebert, John B; Shen, Qiuhua; Thimmesch, Amanda; Pierce, Janet

    2016-01-01

    Heart failure with preserved ejection fraction (HFpEF) is a significant cardiovascular condition for more than 50% of patients with heart failure. Currently, there is no effective treatment to decrease morbidity and mortality rates associated with HFpEF because of its pathophysiological heterogeneity. Recent evidence shows that deficiency in myocardial bioenergetics is one of the key pathophysiological factors contributing to diastolic dysfunction in HFpEF. Another known mechanism for HFpEF is an overproduction of free radicals, specifically reactive oxygen species. To reduce free radical formation, antioxidants are often used. This article is a summative review of the recent relevant literature that addresses cardiac bioenergetics, deficiency in myocardial bioenergetics, and increased reactive oxygen species associated with HFpEF and the promising potential use of antioxidants in managing this condition.

  3. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.

    PubMed

    Saini, Vikram; Cumming, Bridgette M; Guidry, Loni; Lamprecht, Dirk A; Adamson, John H; Reddy, Vineel P; Chinta, Krishna C; Mazorodze, James H; Glasgow, Joel N; Richard-Greenblatt, Melissa; Gomez-Velasco, Anaximandro; Bach, Horacio; Av-Gay, Yossef; Eoh, Hyungjin; Rhee, Kyu; Steyn, Adrie J C

    2016-01-26

    The mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.

  4. Tick-borne encephalitis as a notifiable disease--Status quo and the way forward. Report of the 17th annual meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE).

    PubMed

    Kunze, Ursula

    2015-07-01

    The 17th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE), a group of neurologists, general practicioners, clinicians, travel physicians, virologists, pediatricians, and epidemiologists, was held under the title "Tick-borne encephalitis as a notifiable disease--status quo and the way forward". The conference agenda was divided into three parts on the first day: "Epidemiology & Risk areas", "Poster Walk: Epidemiological Update in Europe", and "News in TBE Research". On the second day, a World Café Working Session took place where the participants could choose three tables out of six to join for discussion. Key topics on current epidemiological developments and investigations, risk areas, cases, travel and mobility, TBE in children, vaccination rates, and latest news on vaccination were presented and extensively discussed.

  5. Breakthrough cancer medicine and its impact on novel drug development in China: report of the US Chinese Anti-Cancer Association (USCACA) and Chinese Society of Clinical Oncology (CSCO) Joint Session at the 17th CSCO Annual Meeting

    PubMed Central

    Luo, Feng Roger; Ding, Jian; Chen, Helen X.; Liu, Hao; Fung, Man-Cheong; Koehler, Maria; Armand, Jean Pierre; Jiang, Lei; Xu, Xiao; Zhang, Ge; Xu, Li; Qian, Pascal; Yan, Li

    2014-01-01

    The US Chinese Anti-Cancer Association (USCACA) teamed up with Chinese Society of Clinical Oncology (CSCO) to host a joint session at the17th CSCO Annual Meeting on September 20th, 2014 in Xiamen, China. With a focus on breakthrough cancer medicines, the session featured innovative approaches to evaluate breakthrough agents and established a platform to interactively share successful experiences from case studies of 6 novel agents from both the United States and China. The goal of the session is to inspire scientific and practical considerations for clinical trial design and strategy to expedite cancer drug development in China. A panel discussion further provided in-depth advice on advancing both early and full development of novel cancer medicines in China. PMID:25418191

  6. [Oral health on the public agenda: an analysis of Municipal Health Council records in cities from the 17th Regional Health Division in the State of Paraná, Brazil].

    PubMed

    Alves-Souza, Rosani Aparecida; Saliba, Orlando

    2003-01-01

    The present study analyzes interventions pertaining to oral health recorded in the minutes of meetings held by 15 Municipal Health Councils in cities from the 17th Regional Health Division of the State of Paraná, Brazil. Document analysis was performed by identifying health themes, emphasizing categorization of issues related to interventions in oral health. The most frequently analyzed themes were records concerning the programming and organization of oral health services, followed by health budget issues. In 90 of the 591 minutes studied, 134 records pertaining to oral health interventions were identified. An analysis of the latter showed that oral health interventions involve reports of actions already implemented and lack the characteristics of proposals when analyzed from the health planning perspective. This study highlights the need for dentists to expand their representation in such forums in order to play a broader role in the planning process and support oral health as a basic citizen's right.

  7. Application of a bioenergetics model for hatchery production: Largemouth bass fed commercial diets

    USGS Publications Warehouse

    Csargo, Isak J.; Michael L. Brown,; Chipps, Steven R.

    2012-01-01

    Fish bioenergetics models based on natural prey items have been widely used to address research and management questions. However, few attempts have been made to evaluate and apply bioenergetics models to hatchery-reared fish receiving commercial feeds that contain substantially higher energy densities than natural prey. In this study, we evaluated a bioenergetics model for age-0 largemouth bass Micropterus salmoidesreared on four commercial feeds. Largemouth bass (n ≈ 3,504) were reared for 70 d at 25°C in sixteen 833-L circular tanks connected in parallel to a recirculation system. Model performance was evaluated using error components (mean, slope, and random) derived from decomposition of the mean square error obtained from regression of observed on predicted values. Mean predicted consumption was only 8.9% lower than mean observed consumption and was similar to error rates observed for largemouth bass consuming natural prey. Model evaluation showed that the 97.5% joint confidence region included the intercept of 0 (−0.43 ± 3.65) and slope of 1 (1.08 ± 0.20), which indicates the model accurately predicted consumption. Moreover model error was similar among feeds (P = 0.98), and most error was probably attributable to sampling error (unconsumed feed), underestimated predator energy densities, or consumption-dependent error, which is common in bioenergetics models. This bioenergetics model could provide a valuable tool in hatchery production of largemouth bass. Furthermore, we believe that bioenergetics modeling could be useful in aquaculture production, particularly for species lacking historical hatchery constants or conventional growth models.

  8. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms

    SciTech Connect

    Spotila, J.R.

    1992-11-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During this project we conducted studies: to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina; to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field; to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also completed our research on the three-dimensional bioenergetic climate space for freshwater turtles.

  9. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    PubMed Central

    Hopkinson, Branden M.; Kalisz, Mark; Vestentoft, Peter Siig; Juel Rasmussen, Lene; Bisgaard, Hanne Cathrine

    2017-01-01

    Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction of hepatocyte maturation, oxidative phosphorylation is essential at all stages of differentiation. PMID:28265337

  10. Role of thermal physiology and bioenergetics on adaptation in tree shrew (Tupaia belangeri): the experiment test

    PubMed Central

    Zhang, Lin; Yang, Fang; Wang, Zheng-kun; Zhu, Wan-long

    2017-01-01

    Ambient conditions, as temperature and photoperiod, play a key role in animals’ physiology and behaviors. To test the hypothesis that the maximum thermal physiological and bioenergetics tolerances are induced by extreme environments in Tupaia belangeri. We integrated the acclimatized and acclimated data in several physiological, hormonal, and biochemical markers of thermogenic capacity and bioenergetics in T. belangeri. Results showed that T. belangeri increased body mass, thermogenesis capacity, protein contents and cytochrome c oxidase (COX) activity of liver and brown adipose tissue in winter-like environments, which indicated that temperature was the primary signal for T. belangeri to regulate several physiological capacities. The associated photoperiod signal also elevated the physiological capacities. The regulations of critical physiological traits play a primary role in meeting the survival challenges of winter-like condition in T. belangeri. Together, to cope with cold, leptin may play a potential role in thermogenesis and body mass regulation, as this hormonal signal is associated with other hormones. The strategies of thermal physiology and bioenergetics differs between typical Palearctic species and the local species. However, the maximum thermal physiology and bioenergetic tolerance maybe is an important strategy to cope with winter-like condition of T. belangeri. PMID:28145515

  11. [Test for bioenergetic progress and specific energy metabolism in isopod crustaceans (Isopoda) of various ecology].

    PubMed

    Kleĭmenov, S Iu; Alekseeva, T A

    2002-01-01

    We studied energy metabolism of terrestrial and cavernicolous isopods and demonstrated much lower standard metabolism in the troglobionts as compared to other Isopoda representatives. The test for bioenergetic progress proved to be applicable for both aromorphosis and katamorphosis. Different patterns of the relationship between energy metabolism and temperature in stenothermal and eurythermal species have been proposed.

  12. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

    PubMed Central

    Bohovych, Iryna; Fernandez, Mario R.; Rahn, Jennifer J.; Stackley, Krista D.; Bestman, Jennifer E.; Anandhan, Annadurai; Franco, Rodrigo; Claypool, Steven M.; Lewis, Robert E.; Chan, Sherine S. L.; Khalimonchuk, Oleh

    2015-01-01

    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1-associated disease phenotypes in humans. PMID:26365306

  13. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  14. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders.

    DTIC Science & Technology

    1999-10-01

    This study aims to determine what roles bioenergetic dysfunction and oxidative stress play in the etiology of neurodegeneration in Huntington’s ... disease (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in

  15. Predation rates by North Sea cod (Gadus morhua) - Predictions from models on gastric evacuation and bioenergetics

    USGS Publications Warehouse

    Hansson, S.; Rudstam, L. G.; Kitchell, J.F.; Hilden, M.; Johnson, B.L.; Peppard, P.E.

    1996-01-01

    We compared four different methods for estimating predation rates by North Sea cod (Gadus moi hua). Three estimates, based on gastric evacuation rates, came from an ICES multispecies working group and the fourth from a bioenergetics model. The bioenergetics model was developed from a review of literature on cod physiology. The three gastric evacuation rate models produced very different prey consumption estimates for small (2 kg) fish. For most size and age classes, the bioenergetics model predicted food consumption rates intermediate to those predicted by the gastric evacuation models. Using the standard ICES model and the average population abundance and age structure for 1974-1989, annual, prey consumption by the North Sea cod population (age greater than or equal to 1) was 840 kilotons. The other two evacuation rate models produced estimates of 1020 and 1640 kilotons, respectively. The bioenergetics model estimate was 1420 kilotons. The major differences between models were due to consumption rate estimates for younger age groups of cod. (C) 1996 International Council for the Exploration of the Sea

  16. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    SciTech Connect

    Alsuwaidi, Ahmed R.; Albawardi, Alia; Almarzooqi, Saeeda; Benedict, Sheela; Othman, Aws R.; Hartwig, Stacey M.; Varga, Steven M.; Souid, Abdul-Kader

    2014-04-15

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.

  17. Hybrid Incompatibility Arises in a Sequence-Based Bioenergetic Model of Transcription Factor Binding

    PubMed Central

    Tulchinsky, Alexander Y.; Johnson, Norman A.; Watt, Ward B.; Porter, Adam H.

    2014-01-01

    Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype–phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype–phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2’s showed

  18. LETM1-dependent mitochondrial Ca2+ flux modulates cellular bioenergetics and proliferation

    PubMed Central

    Doonan, Patrick J.; Chandramoorthy, Harish C.; Hoffman, Nicholas E.; Zhang, Xueqian; Cárdenas, César; Shanmughapriya, Santhanam; Rajan, Sudarsan; Vallem, Sandhya; Chen, Xiongwen; Foskett, J. Kevin; Cheung, Joseph Y.; Houser, Steven R.; Madesh, Muniswamy

    2014-01-01

    Dysregulation of mitochondrial Ca2+-dependent bioenergetics has been implicated in various pathophysiological settings, including neurodegeneration and myocardial infarction. Although mitochondrial Ca2+ transport has been characterized, and several molecules, including LETM1, have been identified, the functional role of LETM1-mediated Ca2+ transport remains unresolved. This study examines LETM1-mediated mitochondrial Ca2+ transport and bioenergetics in multiple cell types, including fibroblasts derived from patients with Wolf-Hirschhorn syndrome (WHS). The results show that both mitochondrial Ca2+ influx and efflux rates are impaired in LETM1 knockdown, and similar phenotypes were observed in ΔEF hand, D676A D688KLETM1 mutant-overexpressed cells, and in cells derived from patients with WHS. Although LETM1 levels were lower in WHS-derived fibroblasts, the mitochondrial Ca2+ uniporter components MCU, MCUR1, and MICU1 remain unaltered. In addition, the MCU mitoplast patch-clamp current (IMCU) was largely unaffected in LETM1-knockdown cells. Silencing of LETM1 also impaired basal mitochondrial oxygen consumption, possibly via complex IV inactivation and ATP production. Remarkably, LETM1 knockdown also resulted in increased reactive oxygen species production. Further, LETM1 silencing promoted AMPK activation, autophagy, and cell cycle arrest. Reconstitution of LETM1 or antioxidant overexpression rescued mitochondrial Ca2+ transport and bioenergetics. These findings reveal the role of LETM1-dependent mitochondrial Ca2+ flux in shaping cellular bioenergetics.—Doonan, P J., Chandramoorthy, H. C., Hoffman, N. E., Zhang, X., Cárdenas, C., Shanmughapriya, S., Rajan, S., Vallem, S., Chen, X., Foskett, J. K., Cheung, J. Y., Houser, S. R., Madesh, M. LETM1-dependent mitochondrial Ca2+ flux modulates cellular bioenergetics and proliferation. PMID:25077561

  19. Modelling and interpreting fish bioenergetics: a role for behaviour, life-history traits and survival trade-offs

    PubMed Central

    Jørgensen, C; Enberg, K; Mangel, M

    2016-01-01

    Bioenergetics is used as the mechanistic foundation of many models of fishes. As the context of a model gradually extends beyond pure bioenergetics to include behaviour, life-history traits and function and performance of the entire organism, so does the need for complementing bioenergetic measurements with trade-offs, particularly those dealing with survival. Such a broadening of focus revitalized and expanded the domain of behavioural ecology in the 1980s. This review makes the case that a similar change of perspective is required for physiology to contribute to the types of predictions society currently demands, e.g. regarding climate change and other anthropogenic stressors. PMID:26768979

  20. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments.

    PubMed

    Littarru, Gian Paolo; Tiano, Luca

    2007-09-01

    For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. In this model, supplementation with CoQ10 at pharmacological doses was capable of decreasing the absolute concentration of lipid hydroperoxides in atherosclerotic lesions and of minimizing the size of atherosclerotic lesions in the whole aorta. Whether these protective effects are only due to the antioxidant properties of coenzyme Q remains to be established; recent data point out that CoQ10 could have a direct effect on endothelial function. In patients with stable moderate CHF, oral CoQ10 supplementation was shown to ameliorate

  1. The 17th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The proceedings of the Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft tether, magnetic bearing suspension, explosive welding, and a deployable/retractable mast are also described.

  2. Electronics Manufacturing Seminar Proceedings. 17th Annual

    DTIC Science & Technology

    1992-12-01

    California Solderability Study of Sn/Pb Alloy After Artificial Aging by Electrochemical Reduction Analysis and Wetting Balance Tests...that Sn/Pb Nplating will be suitable, since not all solder alloys can be electroplated in this fashion. OPTIPAD*: A temporary polymer mold is used to...deposited metal alloy depends on the type of solder which is used in the OPTIPAD solder coating machine, and can be changed according to the requirements of

  3. Section 619 Profile. 17th Edition

    ERIC Educational Resources Information Center

    Lazara, Alex; Danaher, Joan; Kraus, Robert; Goode, Sue; Hipps, Cherie; Festa, Cathy

    2010-01-01

    With the passage of P.L. 94-142, the Education for All Handicapped Children Act of 1975, now the Individuals with Disabilities Education Act (IDEA), and subsequent amendments, states and jurisdictions have made great strides in the provision of services to young children, ages 3 through 5 years, with disabilities. As of Fall 2007, America's…

  4. The 17th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1981-01-01

    Progress made by the Low-Cost Solar Array Project during the period September 1980 to February 1981 is described. Included are reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. A report on and copies of visual presentations made at the Project Integration Meeting held at Pasadena, California on February 4 and 5, 1981 are also included.

  5. 17th Annual ALS Users' Association Meeting

    SciTech Connect

    Robinson, Art; Tamura, Lori

    2004-11-29

    It's not exactly Russian roulette, but scheduling October events outdoors is not risk-free, even in usually sunny California. An overflow crowd of more than 400 registered users, ALS staff, and vendors enjoyed a full indoor program featuring science highlights and workshops spread over two and a half days from October 18 to October 20. However, a major storm, heralding the onset of the San Francisco Bay Area rainy season, posed a few weather challenges for the events on the ALS patio.

  6. The potential for non-invasive study of mummies: validation of the use of computerized tomography by post factum dissection and histological examination of a 17th century female Korean mummy.

    PubMed

    Lim, Do-Seon; Lee, In Sun; Choi, Ki-Ju; Lee, Soong Deok; Oh, Chang Seok; Kim, Yi-Suk; Bok, Gi Dae; Kim, Myeung Ju; Yi, Yang Su; Lee, Eun-Joo; Shin, Dong Hoon

    2008-10-01

    The socio-cultural antipathies of some descendants with regard to invasive examinations of age-old human remains make permission for dissection of Korean mummies of the Joseon Dynasty (1392-1910) difficult to obtain. Overcoming this obstacle necessitated the use of non-invasive techniques, such as multi-detector computerized tomography (MDCT) and endoscopic examination, enabling determination of the preservation status of internal organs of mummies without significantly damaging the mummies themselves. However, MDCT alone cannot clearly differentiate specific mummified organs. Therefore, in much the same way as diagnostic radiologists make their MDCT readings on living patients more reliable by means of comparison with accumulated post-factum data from autopsies or histological studies, examinations of mummies by invasive techniques should not be decried as mere destruction of age-old human remains. Rather, providing that due permission from descendants and/or other relevant authorities can be obtained, dissection and histological examination should be performed whenever opportunities arise. Therefore, in this study, we compared the radiological data acquired from a 17th century mummy with our dissection results for the same subject. As accumulation of this kind of data could be very crucial for correct interpretation of MDCT findings on Korean mummies, we will perform similar trials on other Korean mummies found in forthcoming days if conditions permit.

  7. The potential for non-invasive study of mummies: validation of the use of computerized tomography by post factum dissection and histological examination of a 17th century female Korean mummy

    PubMed Central

    Lim, Do-Seon; Lee, In Sun; Choi, Ki-Ju; Lee, Soong Deok; Oh, Chang Seok; Kim, Yi-Suk; Bok, Gi Dae; Kim, Myeung Ju; Yi, Yang Su; Lee, Eun-Joo; Shin, Dong Hoon

    2008-01-01

    The socio-cultural antipathies of some descendants with regard to invasive examinations of age-old human remains make permission for dissection of Korean mummies of the Joseon Dynasty (1392–1910) difficult to obtain. Overcoming this obstacle necessitated the use of non-invasive techniques, such as multi-detector computerized tomography (MDCT) and endoscopic examination, enabling determination of the preservation status of internal organs of mummies without significantly damaging the mummies themselves. However, MDCT alone cannot clearly differentiate specific mummified organs. Therefore, in much the same way as diagnostic radiologists make their MDCT readings on living patients more reliable by means of comparison with accumulated post-factum data from autopsies or histological studies, examinations of mummies by invasive techniques should not be decried as mere destruction of age-old human remains. Rather, providing that due permission from descendants and/or other relevant authorities can be obtained, dissection and histological examination should be performed whenever opportunities arise. Therefore, in this study, we compared the radiological data acquired from a 17th century mummy with our dissection results for the same subject. As accumulation of this kind of data could be very crucial for correct interpretation of MDCT findings on Korean mummies, we will perform similar trials on other Korean mummies found in forthcoming days if conditions permit. PMID:19014355

  8. The proceedings of the 17th International Conference on Chelation: application of effective chelation therapies in iron loading and non iron loading conditions, and the gap in the prevention and treatment policies on thalassemia between developed and developing countries.

    PubMed

    Kontoghiorghes, George J

    2009-01-01

    Substantial progress in the use of chelating drugs for the treatment of iron overload and of non iron loading conditions has been presented during the 17th International Conference on Chelation (ICOC) held in November 2007 at Shenzhen, China. Major challenges lie ahead for the prevention and treatment of thalassemia in China, India, Thailand, Indonesia and many other developing countries where millions of heterozygote thalassemia carriers live and thousands of homozygote thalassemia patients are born annually. The progressive improvement of the economic climate in developing countries will increase the demand and resources for more prenatal and antenatal diagnoses, transfusions and chelation therapy in forthcoming years. Despite the major advances in diagnosis and treatment in developed countries, the vast majority of thalassemia patients in developing countries die untreated because they cannot afford the cost of transfusions and chelation therapy. New approaches and infrastructures and more efforts are needed to overcome the difficulties of supplying new techniques and treatments to patients in developing countries. International and local organizations need to be persuaded to act collectively and effectively to improve chelation and related treatments for thalassemia and other conditions, especially at this time that universally effective and inexpensive chelation therapies can be applied.

  9. A combined Raman microscopy, XRF and SEM-EDX study of three valuable objects - A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London

    NASA Astrophysics Data System (ADS)

    Chaplin, Tracey D.; Clark, Robin J. H.; Martinón-Torres, Marcos

    2010-07-01

    Raman microscopy has been used to identify the pigments decorating three valuable items owned by the Worshipful Company of Barbers (established in 1308 in London), one being a large leather screen dating to before 1712, the other two being illuminated title pages of books of ordinances of the Company dating to 1605 and 1658. Pigments which could not be fully characterised by this technique (particularly the green paints) have also been subject to XRF or SEM-EDX analysis. The combined analytical approach has shown that the pigments identified on all three items are typical of those in use as artists' pigments in the 17th C and include azurite, indigo, vermilion, red lead, pink and yellow lakes, verdigris, lead white, calcite (and chalk), gypsum, carbon-based black, and gold and silver leaf. However in the case of the screen alone, restoration in the 1980s has been carried out with different pigments - haematite, phthalocyanine green, rutile, and a mixture of azurite, malachite and barium sulfate. This work constitutes the first in-depth study of painted leatherwork and demonstrates that the palette used for this purpose is similar to that used on other works of art of the same date. It has also allowed the original colour schemes of the decorations to be determined where pigment degradation has occurred. The combined analysis has also provided a more complete understanding of the materials used for, or on, objects to which access is limited.

  10. Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity.

    PubMed

    Galina, Antonio

    2014-09-01

    Enhanced glycolysis, the classic bioenergetic phenotype of cancer cells was described by Otto Warburg approximately 90 years ago. However, the Warburg hypothesis does not necessarily imply mitochondrial dysfunction. The alkyl-halogen, 3-bromopyruvate (3BP), would not be expected to have selective targets for cancer therapy due to its high potential reactivity toward many SH side groups. Contrary to predictions, 3BP interferes with glycolysis and oxidative phosphorylation in cancer cells without side effects in normal tissues. The mitochondrial hexokinase II has been claimed as the main target. This "Organelle in focus" article presents a historical view of the use of 3BP in biochemistry and its effects on ATP-producing pathways of cancer cells. I will discuss how the alkylated enzymes contribute to the cooperative collapse of mitochondria and apoptosis. Perspectives for targeting 3BP to bioenergetics enzymes for cancer treatment will be considered.

  11. Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis.

    PubMed

    Liao, Tien-Ling; Tzeng, Chii-Ruey; Yu, Chao-Lan; Wang, Yi-Pei; Kao, Shu-Huei

    2015-09-01

    Estrogen enhances mitochondrial function by enhancing mitochondrial biogenesis and sustaining mitochondrial energy-transducing capacity. Shifts in mitochondrial bioenergetic pathways from oxidative phosphorylation to glycolysis have been hypothesized to be involved in estrogen-induced tumorigenesis. Studies have shown that mitochondria are an important target of estrogen. Estrogen receptor-β (ERβ) has been shown to localize to mitochondria in a ligand-dependent or -independent manner and can affect mitochondrial bioenergetics and anti-apoptotic signaling. However, the functional role of mitochondrial ERβ in tumorigenesis remains unclear. Clinical studies of ERβ-related tumorigenesis have shown that ERβ stimulates mitochondrial metabolism to meet the high energy demands of processes such as cell proliferation, cell survival, and transformation. Thus, in elucidating the precise role of mitochondrial ERβ in cell transformation and tumorigenesis, it will be particularly valuable to explore new approaches for the development of medical treatments targeting mitochondrial ERβ-mediated mitochondrial function and preventing apoptosis.

  12. Bioenergetics estimate of the effects of stocking density on hatchery production of smallmouth bass fingerlings

    USGS Publications Warehouse

    Robel, G.L.; Fisher, W.L.

    1999-01-01

    Production of and consumption by hatchery-reared tingerling (age-0) smallmouth bass Micropterus dolomieu at various simulated stocking densities were estimated with a bioenergetics model. Fish growth rates and pond water temperatures during the 1996 growing season at two hatcheries in Oklahoma were used in the model. Fish growth and simulated consumption and production differed greatly between the two hatcheries, probably because of differences in pond fertilization and mortality rates. Our results suggest that appropriate stocking density depends largely on prey availability as affected by pond fertilization and on fingerling mortality rates. The bioenergetics model provided a useful tool for estimating production at various stocking density rates. However, verification of physiological parameters for age-0 fish of hatchery-reared species is needed.

  13. Development of a bioenergetics model for the threespine stickleback Gasterosteus aculeatus

    USGS Publications Warehouse

    Hovel, Rachel A.; Beauchamp, David A.; Hansen, Adam G.; Sorel, Mark H.

    2016-01-01

    The Threespine Stickleback Gasterosteus aculeatus is widely distributed across northern hemisphere ecosystems, has ecological influence as an abundant planktivore, and is commonly used as a model organism, but the species lacks a comprehensive model to describe bioenergetic performance in response to varying environmental or ecological conditions. This study parameterized a bioenergetics model for the Threespine Stickleback using laboratory measurements to determine mass- and temperature-dependent functions for maximum consumption and routine respiration costs. Maximum consumption experiments were conducted across a range of temperatures from 7.5°C to 23.0°C and a range of fish weights from 0.5 to 4.5 g. Respiration experiments were conducted across a range of temperatures from 8°C to 28°C. Model sensitivity was consistent with other comparable models in that the mass-dependent parameters for maximum consumption were the most sensitive. Growth estimates based on the Threespine Stickleback bioenergetics model suggested that 22°C is the optimal temperature for growth when food is not limiting. The bioenergetics model performed well when used to predict independent, paired measures of consumption and growth observed from a separate wild population of Threespine Sticklebacks. Predicted values for consumption and growth (expressed as percent body weight per day) only deviated from observed values by 2.0%. Our model should provide insight into the physiological performance of this species across a range of environmental conditions and be useful for quantifying the trophic impact of this species in food webs containing other ecologically or economically important species.

  14. Calculation of Oyster Benefits with a Bioenergetics Model of the Virginia Oyster

    DTIC Science & Technology

    2014-11-01

    tissue, shell, and reproductive material. The bioenergetics model is coupled to an oyster benefits module. The calculation of benefits is based on...individual oyster (Figure 1). These are shell, soft tissue, and reproductive material. The oysters filter overlying water continuously, although the rate...is a constant fraction of the energy expended in feeding. Basal metabolism proceeds at a rate independent of activity. Reproductive material is

  15. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    PubMed

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P < 0.05) enzyme activities compared to all other protocols for both enzymes. Of the four protocols examined, the data demonstrate that the glass-on-glass pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  16. Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (Review)

    PubMed Central

    STEFANO, GEORGE B.; KREAM, RICHARD M.

    2016-01-01

    Mitochondria and chloroplasts represent endosymbiotic models of complex organelle development, driven by intense evolutionary pressure to provide exponentially enhanced ATP-dependent energy production functionally linked to cellular respiration and photosynthesis. Within the realm of translational medicine, it has become compellingly evident that mitochondrial dysfunction, resulting in compromised cellular bioenergetics, represents a key causative factor in the etiology and persistence of major diseases afflicting human populations. As a pathophysiological consequence of enhanced oxygen utilization that is functionally uncoupled from the oxidative phosphorylation of ADP, significant levels of reactive oxygen species (ROS) may be generated within mitochondria and chloroplasts, which may effectively compromise cellular energy production following prolonged stress/inflammatory conditions. Empirically determined homologies in biochemical pathways, and their respective encoding gene sequences between chloroplasts and mitochondria, suggest common origins via entrapped primordial bacterial ancestors. From evolutionary and developmental perspectives, the elucidation of multiple biochemical and molecular relationships responsible for errorless bioenergetics within mitochondrial and plastid complexes will most certainly enhance the depth of translational approaches to ameliorate or even prevent the destructive effects of multiple disease states. The selective choice of discussion points contained within the present review is designed to provide theoretical bases and translational insights into the pathophysiology of human diseases from a perspective of dysregulated mitochondrial bioenergetics with special reference to chloroplast biology. PMID:26821064

  17. Effect of fluoxetine treatment on mitochondrial bioenergetics in central and peripheral rat tissues.

    PubMed

    da Silva, Aline Isabel; Braz, Glauber Ruda Feitoza; Silva-Filho, Reginaldo; Pedroza, Anderson Apolonio; Ferreira, Diorginis Soares; Manhães de Castro, Raul; Lagranha, Claudia

    2015-06-01

    Recent investigations have focused on the mitochondrion as a direct drug target in the treatment of metabolic diseases (obesity, metabolic syndrome). Relatively few studies, however, have explicitly investigated whether drug therapies aimed at changing behavior by altering central nervous system (CNS) function affect mitochondrial bioenergetics, and none has explored their effect during early neonatal development. The present study was designed to evaluate the effects of chronic treatment of newborn male rats with the selective serotonin reuptake inhibitor fluoxetine on the mitochondrial bioenergetics of the hypothalamus and skeletal muscle during the critical nursing period of development. Male Wistar rat pups received either fluoxetine (Fx group) or vehicle solution (Ct group) from the day of birth until 21 days of age. At 60 days of age, mitochondrial bioenergetics were evaluated. The Fx group showed increased oxygen consumption in several different respiratory states and reduced production of reactive oxygen species, but there was no change in mitochondrial permeability transition pore opening or oxidative stress in either the hypothalamus or skeletal muscle. We observed an increase in glutathione S-transferase activity only in the hypothalamus of the Fx group. Taken together, our results suggest that chronic exposure to fluoxetine during the nursing phase of early rat development results in a positive modulation of mitochondrial respiration in the hypothalamus and skeletal muscle that persists into adulthood. Such long-lasting alterations in mitochondrial activity in the CNS, especially in areas regulating appetite, may contribute to permanent changes in energy balance in treated animals.

  18. Cribra orbitalia as a potential indicator of childhood stress: Evidence from paleopathology, stable C, N, and O isotopes, and trace element concentrations in children from a 17(th)-18(th) century cemetery in Jēkabpils, Latvia.

    PubMed

    Zariņa, Gunita; Sholts, Sabrina B; Tichinin, Alina; Rudovica, Vita; Vīksna, Arturs; Engīzere, Austra; Muižnieks, Vitolds; Bartelink, Eric J; Wärmländer, Sebastian K T S

    2016-12-01

    Cribra orbitalia (CO), or porotic hyperostosis (PH) of the orbital roof, is one of the most common pathological conditions found in archaeological subadult skeletal remains. Reaching frequencies higher than 50% in many prehistoric samples, CO has been generally attributed to a variety of factors including malnutrition (e.g., megaloblastic anemia) and parasitism. In this study, we tested the relationship between CO, trace element concentrations, and stable isotope values (δ(13)C, δ(15)N, δ(18)O) in subadult skeletons from a 17(th) to 18(th) century cemetery in the historic town of Jēkabpils, Latvia. A total of 28 subadults were examined, seven of which (25%) showed evidence of CO. Bioarchaeological evidence indicated high mortality for children in this cemetery: half of the burials were subadults under the age of 14, while a third were under the age of four. Life expectancy at birth was estimated to have been only 21.6 years. Trace element concentrations measured by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) showed no relationship between presence or absence of CO and levels of manganese, zinc, strontium, barium, copper, cadmium, or lead in the bones (p>0.05). However, a significant correlation (p<0.05) was found between the presence of CO and decreased levels of iron. The correlations between CO and decreased levels of copper and lead approached significance (p=0.056 for both elements). Individuals with CO furthermore displayed significantly lower δ(15)N isotope values, suggesting greater consumption of lower trophic level food resources than those unaffected by CO; δ(13)C and δ(18)O values, in contrast, showed no significant differences. These results suggest that the prevalence of CO may be related to dietary deficiencies. In this case, low iron levels may also signify a diet low in other key vitamins (e.g., B9 and B12), which are known to cause megaloblastic anemia.

  19. Magnolol Attenuates Concanavalin A-induced Hepatic Fibrosis, Inhibits CD4(+) T Helper 17 (Th17) Cell Differentiation and Suppresses Hepatic Stellate Cell Activation: Blockade of Smad3/Smad4 Signalling.

    PubMed

    Zhang, Hongjun; Ju, Baoling; Zhang, Xiaoli; Zhu, Yanfei; Nie, Ying; Xu, Yuanhong; Lei, Qiuxia

    2016-12-29

    Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4(+) T cells preferred to polarizing towards CD4(+) T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-β1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-β1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis.

  20. Decreased Bioenergetic Health Index in monocytes isolated from the pericardial fluid and blood of post-operative cardiac surgery patients.

    PubMed

    Kramer, Philip A; Chacko, Balu K; George, David J; Zhi, Degui; Wei, Chih-Cheng; Dell'Italia, Louis J; Melby, Spencer J; George, James F; Darley-Usmar, Victor M

    2015-07-01

    Monitoring the bioenergetics of leucocytes is now emerging as an important approach in translational research to detect mitochondrial dysfunction in blood or other patient samples. Using the mitochondrial stress test, which involves the sequential addition of mitochondrial inhibitors to adherent leucocytes, we have calculated a single value, the Bioenergetic Health Index (BHI), which represents the mitochondrial function in cells isolated from patients. In the present report, we assess the BHI of monocytes isolated from the post-operative blood and post-operative pericardial fluid (PO-PCF) from patients undergoing cardiac surgery. Analysis of the bioenergetics of monocytes isolated from patients' PO-PCF revealed a profound decrease in mitochondrial function compared with monocytes isolated from their blood or from healthy controls. Further, patient blood monocytes showed no significant difference in the individual energetic parameters from the mitochondrial stress test but, when integrated into the BHI evaluation, there was a significant decrease in BHI compared with healthy control monocytes. These data support the utility of BHI measurements in integrating the individual parameters from the mitochondrial stress test into a single value. Supporting our previous finding that the PO-PCF is pro-oxidant, we found that exposure of rat cardiomyocytes to PO-PCF caused a significant loss of mitochondrial membrane potential and increased reactive oxygen species (ROS). These findings support the hypothesis that integrated measures of bioenergetic health could have prognostic and diagnostic value in translational bioenergetics.

  1. Simultaneous analysis of T helper subsets (Th1, Th2, Th9, Th17, Th22, Tfh, Tr1 and Tregs) markers expression in periapical lesions reveals multiple cytokine clusters accountable for lesions activity and inactivity status

    PubMed Central

    ARAUJO-PIRES, Ana Claudia; FRANCISCONI, Carolina Favaro; BIGUETTI, Claudia Cristina; CAVALLA, Franco; ARANHA, Andreza Maria Fabio; LETRA, Ariadne; TROMBONE, Ana Paula Favaro; FAVERI, Marcelo; SILVA, Renato Menezes; GARLET, Gustavo Pompermaier

    2014-01-01

    Previous studies demonstrate that the balance between pro- and anti-inflammatory mediators determines the stable or progressive nature of periapical granulomas by modulating the balance of the osteoclastogenic factor RANKL and its antagonist OPG. However, the cytokine networks operating in the development of periapical lesions are quite more complex than what the simple pro- versus anti-inflammatory mediators' paradigm suggests. Here we simultaneously investigated the patterns of Th1, Th2, Th9, Th17, Th22, Thf, Tr1 and Tregs cytokines/markers expression in human periapical granulomas. Methods The expression of TNF-α, IFN-γ, IL-17A, IL23, IL21, IL-33, IL-10, IL-4, IL-9, IL-22, FOXp3 markers (via RealTimePCR array) was accessed in active/progressive (N=40) versus inactive/stable (N=70) periapical granulomas (as determined by RANKL/OPG expression ratio), and also to compare these samples with a panel of control specimens (N=26). A cluster analysis of 13 cytokine levels was performed to examine possible clustering between the cytokines in a total of 110 granulomas. Results The expression of all target cytokines was higher in the granulomas than in control samples. TNF-α, IFN-γ, IL-17A and IL-21 mRNA levels were significantly higher in active granulomas, while in inactive lesions the expression levels of IL-4, IL-9, IL-10, IL-22 and FOXp3 were higher than in active granulomas. Five clusters were identified in inactive lesion groups, being the variance in the expression levels of IL-17, IL-10, FOXp3, IFN-γ, IL-9, IL-33 and IL-4 statistically significant (KW p<0.05). Three clusters were identified in active lesions, being the variance in the expression levels of IL-22, IL-10, IFN-γ, IL-17, IL-33, FOXp3, IL-21 and RANKL statistically significant (KW p<0.05). Conclusion There is a clear dichotomy in the profile of cytokine expression in inactive and active periapical lesions. While the widespread cytokine expression seems to be a feature of chronic lesions

  2. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms: Progress report, 1 January 1988-31 December 1988

    SciTech Connect

    Spotila, J.R.

    1988-08-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During 1988, we conducted studies: (1) to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina, (2) to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field, (3) to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and (4) to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also continued our research on the three-dimensional bioenergetic climate space for freshwater turtles. In addition, we completed editing the symposium volume from our symposium on Constraints of Bioenergetics on Animal Population Dynamics that was held at the last meeting of the American Society of Zoologists. 43 refs., 1 fig., 1 tab.

  3. Bioenergetics model for estimating food requirements of female Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Noren, S.R.; Udevitz, M.S.; Jay, C.V.

    2012-01-01

    Pacific walruses Odobenus rosmarus divergens use sea ice as a platform for resting, nursing, and accessing extensive benthic foraging grounds. The extent of summer sea ice in the Chukchi Sea has decreased substantially in recent decades, causing walruses to alter habitat use and activity patterns which could affect their energy requirements. We developed a bioenergetics model to estimate caloric demand of female walruses, accounting for maintenance, growth, activity (active in-water and hauled-out resting), molt, and reproductive costs. Estimates for non-reproductive females 0–12 yr old (65−810 kg) ranged from 16359 to 68960 kcal d−1 (74−257 kcal d−1 kg−1) for years with readily available sea ice for which we assumed animals spent 83% of their time in water. This translated into the energy content of 3200–5960 clams per day, equivalent to 7–8% and 14–9% of body mass per day for 5–12 and 2–4 yr olds, respectively. Estimated consumption rates of 12 yr old females were minimally affected by pregnancy, but lactation had a large impact, increasing consumption rates to 15% of body mass per day. Increasing the proportion of time in water to 93%, as might happen if walruses were required to spend more time foraging during ice-free periods, increased daily caloric demand by 6–7% for non-lactating females. We provide the first bioenergetics-based estimates of energy requirements for walruses and a first step towards establishing bioenergetic linkages between demography and prey requirements that can ultimately be used in predicting this population’s response to environmental change.

  4. Bioenergetical and Cardiac Adaptations of Pilots to a 24-Hour Team Kart Race.

    PubMed

    Durand, Sylvain; Ripamonti, Michael; Rahmani, Abderrahmane; Beaune, Bruno

    2015-11-01

    This study aimed to evaluate energy expenditure (EE) and heart rate (HR) response in kart pilots to successive driving bouts during a 24-hour team race. Eight adult male pilots (22.8 ± 4.1 years) participated to a team 24-hour speedway kart race in Le Mans (France). They alternatively piloted a 390 cm kart. Each relay was 45 minutes long and each pilot performed 4 relays. For each pilot, mean speeds were calculated from lap-to-lap duration recordings using a telemetric infrared timing device. Heart rate values were recorded continuously on 5-second intervals using a portable cardiometric device. Total energy expenditure (EET) and physical activity ratio (PAR) were determined by accelerometry. To pilot a kart during 45 minutes at a mean speed around 62 km·h induces a 300-kcal EET, corresponding to a 5.6-Mets PAR. This effort is responsive for a 73 b·min increase in HR, from 84.1 ± 7.6 to 157.4 ± 11.0 b·min (82% maximal heart rate intensity). However, during this relay period, HR values seemed independent to mean speed performance and bioenergetical values. Thus, in the context of the 24-hour team race, the variability in effort made during each relay and relay succession did not alter bioenergetical adaptation of pilots to kart driving. The high EE and HR values would be better explained by both emotional stress and environmental constraints such as speedway configuration and vibrations. The way how these factors specifically influence bioenergetical demand, and their relative importance, has to be specified to optimize training procedure and recommendations.

  5. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms

    PubMed Central

    Szabo, Csaba; Ransy, Céline; Módis, Katalin; Andriamihaja, Mireille; Murghes, Baptiste; Coletta, Ciro; Olah, Gabor; Yanagi, Kazunori; Bouillaud, Frédéric

    2014-01-01

    Until recently, hydrogen sulfide (H2S) was exclusively viewed a toxic gas and an environmental hazard, with its toxicity primarily attributed to the inhibition of mitochondrial Complex IV, resulting in a shutdown of mitochondrial electron transport and cellular ATP generation. Work over the last decade established multiple biological regulatory roles of H2S, as an endogenous gaseous transmitter. H2S is produced by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). In striking contrast to its inhibitory effect on Complex IV, recent studies showed that at lower concentrations, H2S serves as a stimulator of electron transport in mammalian cells, by acting as a mitochondrial electron donor. Endogenous H2S, produced by mitochondrially localized 3-MST, supports basal, physiological cellular bioenergetic functions; the activity of this metabolic support declines with physiological aging. In specialized conditions (calcium overload in vascular smooth muscle, colon cancer cells), CSE and CBS can also associate with the mitochondria; H2S produced by these enzymes, serves as an endogenous stimulator of cellular bioenergetics. The current article overviews the biochemical mechanisms underlying the stimulatory and inhibitory effects of H2S on mitochondrial function and cellular bioenergetics and discusses the implication of these processes for normal cellular physiology. The relevance of H2S biology is also discussed in the context of colonic epithelial cell physiology: colonocytes are exposed to high levels of sulfide produced by enteric bacteria, and serve as a metabolic barrier to limit their entry into the mammalian host, while, at the same time, utilizing it as a metabolic ‘fuel’. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991830

  6. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics

    PubMed Central

    Vidaurre, Oscar G.; Haines, Jeffery D.; Katz Sand, Ilana; Adula, Kadidia P.; Huynh, Jimmy L.; McGraw, Corey A.; Zhang, Fan; Varghese, Merina; Sotirchos, Elias; Bhargava, Pavan; Bandaru, Veera Venkata Ratnam; Pasinetti, Giulio; Zhang, Weijia; Inglese, Matilde; Calabresi, Peter A.; Wu, Gang; Miller, Aaron E.; Haughey, Norman J.; Lublin, Fred D.

    2014-01-01

    Axonal damage is a prominent cause of disability and yet its pathogenesis is incompletely understood. Using a xenogeneic system, here we define the bioenergetic changes induced in rat neurons by exposure to cerebrospinal fluid samples from patients with multiple sclerosis compared to control subjects. A first discovery cohort of cerebrospinal fluid from 13 patients with multiple sclerosis and 10 control subjects showed that acute exposure to cerebrospinal fluid from patients with multiple sclerosis induced oxidative stress and decreased expression of neuroprotective genes, while increasing expression of genes involved in lipid signalling and in the response to oxidative stress. Protracted exposure of neurons to stress led to neurotoxicity and bioenergetics failure after cerebrospinal fluid exposure and positively correlated with the levels of neurofilament light chain. These findings were validated using a second independent cohort of cerebrospinal fluid samples (eight patients with multiple sclerosis and eight control subjects), collected at a different centre. The toxic effect of cerebrospinal fluid on neurons was not attributable to differences in IgG content, glucose, lactate or glutamate levels or differences in cytokine levels. A lipidomic profiling approach led to the identification of increased levels of ceramide C16:0 and C24:0 in the cerebrospinal fluid from patients with multiple sclerosis. Exposure of cultured neurons to micelles composed of these ceramide species was sufficient to recapitulate the bioenergetic dysfunction and oxidative damage induced by exposure to cerebrospinal fluid from patients with multiple sclerosis. Therefore, our data suggest that C16:0 and C24:0 ceramides are enriched in the cerebrospinal fluid of patients with multiple sclerosis and are sufficient to induce neuronal mitochondrial dysfunction and axonal damage. PMID:24893707

  7. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging.

    PubMed

    Oblong, John E

    2014-11-01

    Human skin is exposed to daily environmental insults, particularly solar radiation, that triggers a range of molecular responses. These perturbations to the normal homeostatic state can lead to cellular dysfunction and, ultimately, impacts tissue integrity and accelerates skin aging (photoaging). One of the responses is increased oxidative stress which has been shown to disrupt cellular bioenergetics. This can be detected by depletion of the nucleotide energy metabolites NAD+ and ATP as both an acute transient decrease and, over time, a more permanent chronic reduction due in part to cumulative damage of mitochondria. NAD+ and its primary precursor nicotinamide have been known for some time to impact skin homeostasis based on linkages to dietary requirements, treatment of various inflammatory conditions, photoaging, and prevention of cancer. Cellular NAD+ pools are known to be lower in aged skin and treatment with nicotinamide is hypothesized to restore these levels, thereby mitigating cellular bioenergetics dysfunction. In dermal fibroblasts, nicotinamide is able to protect against oxidative stress to glycolysis, oxidative phosphorylation as well as increase mitochondrial efficiency via sirtuin-dependent selective mitophagy. Recent research has found that NAD+ cellular pools are more dynamic than previously thought, oscillating in tandem with free nicotinamide, and serves as a regulatory point and feedback loop in cellular metabolism regulation, maintenance of mitochondrial efficiency, and circadian rhythmicity. Since UV-induced oxidative stress in skin can disrupt these processes, continued molecular understanding of the role of NAD+ and nicotinamide in skin biology is important to identify interventions that would help maintain its normal homeostatic functions and efficient cellular bioenergetics.

  8. N-acetylcysteineamide Preserves Mitochondrial Bioenergetics and Improves Functional Recovery Following Spinal Trauma

    PubMed Central

    Patel, Samir P.; Sullivan, Patrick G.; Pandya, Jignesh D.; Goldstein, Glenn A.; VanRooyen, Jenna L.; Yonutas, Heather M.; Eldahan, Khalid C.; Morehouse, Johnny; Magnuson, David S. K.; Rabchevsky, Alexander G.

    2014-01-01

    Mitochondrial dysfunction is becoming a pivotal target for neuroprotective strategies following contusion spinal cord injury (SCI) and the pharmacological compounds that maintain mitochondrial function confer neuroprotection and improve long-term hindlimb function after injury. In the current study we evaluated the efficacy of cell-permeating thiol, N-acetylcysteineamide (NACA), a precursor of endogenous antioxidant glutathione (GSH), on mitochondrial function acutely, and long-term tissue sparing and hindlimb locomotor recovery following upper lumbar contusion SCI. Some designated injured adult female Sprague-Dawley rats (n=120) received either Vehicle or NACA (75, 150, 300 or 600 mg/kg) at 15min and 6hrs post-injury. After 24hr the total, synaptic, and non-synaptic mitochondrial populations were isolated from a single 1.5cm spinal cord segment (centered at injury site) and assessed for mitochondrial bioenergetics. Results showed compromised total mitochondrial bioenergetics following acute SCI that was significantly improved with NACA treatment in a dose-dependent manner, with maximum effects at 300 mg/kg (n=4/group). For synaptic and non-synaptic mitochondria, only 300 mg/kg NACA dosage showed efficacy. Similar dosage (300mg/kg) also maintained mitochondrial GSH near normal levels. Other designated injured rats (n=21) received continuous NACA (150 or 300mg/kg/day) treatment starting at 15min post-injury for one week to assess long-term functional recovery over 6 weeks post-injury. Locomotor testing and novel gait analyses showed significantly improved hindlimb function with NACA that were associated with increased tissue sparing at the injury site. Overall, NACA treatment significantly maintained acute mitochondrial bioenergetics and normalized GSH levels following SCI, and prolonged delivery resulted in significant tissue sparing and improved recovery of hindlimb function. PMID:24805071

  9. Transfer of computer software technology through workshops: The case of fish bioenergetics modeling

    USGS Publications Warehouse

    Johnson, B.L.

    1992-01-01

    A three-part program is proposed to promote the availability and use of computer software packages to fishery managers and researchers. The approach consists of journal articles that announce new technologies, technical reports that serve as user's guides, and hands-on workshops that provide direct instruction to new users. Workshops, which allow experienced users to directly instruct novices in software operation and application are important, but often neglected. The author's experience with organizing and conducting bioenergetics modeling workshops suggests the optimal workshop would take 2 days, have 10-15 participants, one computer for every two users, and one instructor for every 5-6 people.

  10. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain☆

    PubMed Central

    Kilbaugh, Todd; Karlsson, Michael; Byro, Melissa; Bebee, Ashley; Ralston, Jill; Sullivan, Sarah; Duhaime, Ann-Christine; Hansson, Magnus J.; Elmer, Eskil; Margulies, Susan S.

    2015-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death in children worldwide. Emerging evidence suggests that alterations in mitochondrial function are critical components of secondary injury cascade initiated by TBI that propogates neurodegeneration and limits neuroregeneration. Unfortunately, there is very little known about the cerebral mitochondrial bioenergetic response from the immature brain triggered by traumatic biomechanical forces. Therefore, the objective of this study was to perform a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a high-fidelity large animal model of focal controlled cortical impact injury (CCI) 24 h post-injury. This novel approach is directed at analyzing dysfunction in electron transport, ADP phosphorylation and leak respiration to provide insight into potential mechanisms and possible interventions for mitochondrial dysfunction in the immature brain in focal TBI by delineating targets within the electron transport system (ETS). Development and application of these methodologies have several advantages, and adds to the interpretation of previously reported techniques, by having the added benefit that any toxins or neurometabolites present in the ex-vivo samples are not removed during the mitochondrial is olation process, and simulates the in situ tricarboxylic acid (TCA) cycle by maximizing key substrates for convergent flow of electrons through both complexes I and II. To investigate alterations in mitochondrial function after CCI, ipsilateral tissue near the focal impact site and tissue from the corresponding contralateral side were examined. Respiration per mg of tissue was also related to citrate synthase activity (CS) and calculated flux control ratios (FCR), as an attempt to control for variability in mitochondrial content. Our biochemical analysis of complex interdependent pathways of electron flow through the electron transport system, by most measures, reveals a

  11. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain.

    PubMed

    Kilbaugh, Todd J; Karlsson, Michael; Byro, Melissa; Bebee, Ashley; Ralston, Jill; Sullivan, Sarah; Duhaime, Ann-Christine; Hansson, Magnus J; Elmér, Eskil; Margulies, Susan S

    2015-09-01

    Traumatic brain injury (TBI) is one of the leading causes of death in children worldwide. Emerging evidence suggests that alterations in mitochondrial function are critical components of secondary injury cascade initiated by TBI that propogates neurodegeneration and limits neuroregeneration. Unfortunately, there is very little known about the cerebral mitochondrial bioenergetic response from the immature brain triggered by traumatic biomechanical forces. Therefore, the objective of this study was to perform a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a high-fidelity large animal model of focal controlled cortical impact injury (CCI) 24h post-injury. This novel approach is directed at analyzing dysfunction in electron transport, ADP phosphorylation and leak respiration to provide insight into potential mechanisms and possible interventions for mitochondrial dysfunction in the immature brain in focal TBI by delineating targets within the electron transport system (ETS). Development and application of these methodologies have several advantages, and adds to the interpretation of previously reported techniques, by having the added benefit that any toxins or neurometabolites present in the ex-vivo samples are not removed during the mitochondrial isolation process, and simulates the in situ tricarboxylic acid (TCA) cycle by maximizing key substrates for convergent flow of electrons through both complexes I and II. To investigate alterations in mitochondrial function after CCI, ipsilateral tissue near the focal impact site and tissue from the corresponding contralateral side were examined. Respiration per mg of tissue was also related to citrate synthase activity (CS) and calculated flux control ratios (FCR), as an attempt to control for variability in mitochondrial content. Our biochemical analysis of complex interdependent pathways of electron flow through the electron transport system, by most measures, reveals a bilateral

  12. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. Final report, 1 September 1988--30 June 1990

    SciTech Connect

    Spotila, J.R.

    1992-11-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During this project we conducted studies: to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina; to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field; to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also completed our research on the three-dimensional bioenergetic climate space for freshwater turtles.

  13. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis

    PubMed Central

    Seo, Jae Ho; Rivadeneira, Dayana B.; Caino, M. Cecilia; Chae, Young Chan; Speicher, David W.; Vaira, Valentina; Bosari, Silvano; Rampini, Paolo; Kossenkov, Andrew V.; Languino, Lucia R.; Altieri, Dario C.

    2016-01-01

    Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB) in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating “stress” signals of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a “drugable” therapeutic target in cancer. PMID:27389535

  14. Real-Time Monitoring of Cellular Bioenergetics with a Multi-Analyte Screen-Printed Electrode

    PubMed Central

    McKenzie, Jennifer R.; Cognata, Andrew C.; Davis, Anna N.; Wikswo, John P.; Cliffel, David E.

    2016-01-01

    Real-time monitoring of changes to cellular bioenergetics can provide new insights into mechanisms of action for disease and toxicity. This work describes the development of a multi-analyte screen-printed electrode for the detection of analytes central to cellular bioenergetics: glucose, lactate, oxygen, and pH. Platinum screen-printed electrodes were designed in-house and printed by Pine Research Instrumentation. Electrochemical plating techniques were used to form quasi-reference and pH electrodes. A Dimatix materials inkjet printer was used to deposit enzyme and polymer films to form sensors for glucose, lactate, and oxygen. These sensors were evaluated in bulk solution and microfluidic environments, and found to behave reproducibly and possess a lifetime of up to six weeks. Linear ranges and limits of detection for enzyme-based sensors were found to have an inverse relationship with enzyme loading, and iridium oxide pH sensors were found to have super-Nernstian responses. Preliminary measurements where the sensor was enclosed within a microfluidic channel with RAW 264.7 macrophages were performed to demonstrate the sensors’ capabilities for performing real-time microphysiometry measurements. PMID:26125545

  15. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics

    PubMed Central

    Codonho, Bárbara Santoni; Costa, Solange dos Santos; Peloso, Eduardo de Figueiredo; Joazeiro, Paulo Pinto; Gadelha, Fernanda Ramos; Giorgio, Selma

    2016-01-01

    The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity. PMID:27304024

  16. Bioenergetic characteristics in prepubertal swimmers. Comparison with active and non-active boys.

    PubMed

    Falgairette, G; Duche, P; Bedu, M; Fellmann, N; Coudert, J

    1993-11-01

    The effects of physical activity (PA) on bioenergetic characteristics were studied in 53 prepubertal boys. Maximal oxygen consumption (VO2max; direct method), maximal anaerobic power (Pmax, force-velocity test), and mean power in 30 s (P30s, Wingate test) were compared (mean +/- SD) in three groups of boys of the same age (11 years): swimmers (Sw, n = 26, PA = 8 +/- 3 hrs/week), active boys (A, n = 16, PA = 7 +/- 2 hrs/week) and non-active boys (C, n = 11, PA = 3 +/- 2 hrs/week). No significant difference appeared between groups for VO2max (Sw, 50.7 +/- 5.4; A, 50.8 +/- 6.0; C, 49.4 +/- 7.0; ml.min-1 x kg-1), Pmax (Sw, 8.1 +/- 1.4; A, 8.4 +/- 1.4; C, 8.1 +/- 1.4; W.kg-1) and P30s (SW, 5.8 +/- 1.0 A, 6.3 +/- 1.7; C, 5.0 +/- 1.1; W.kg-1). Significant relationships (p < 0.01) existed between Pmax, P30s (W.kg-1) and VO2max (ml.min-1 x kg-1): r = 0.37 and r = 0.40, respectively. This indicates that there is neither aerobic nor anaerobic specialization during prepubertal development, and that regular sporting activity induces no great changes in the bioenergetic characteristics of prepubertal boys.

  17. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    PubMed

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  18. Bioenergetic evaluation of diel vertical migration by bull trout (Salvelinus confluentus) in a thermally stratified reservoir

    USGS Publications Warehouse

    Eckmann, Madeleine; Dunham, Jason; Connor, Edward J.; Welch, Carmen A.

    2016-01-01

    Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.

  19. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging.

    PubMed

    Qian, Feng; Guo, Xiuyang; Wang, Xiaomei; Yuan, Xiaoling; Chen, Shu; Malawista, Stephen E; Bockenstedt, Linda K; Allore, Heather G; Montgomery, Ruth R

    2014-02-01

    Aging is associated with a progressive decline in immune function (immunosenescence) resulting in an increased susceptibility to viral and bacterial infections. Here we show reduced expression of Toll-like receptor 1 (TLR1) in polymorphonuclear leukocytes (PMN) and an underlying age-dependent deficiency in PMN bioenergetics. In older (>65 years) adults, stimulation through TLR1 led to lower activation of integrins (CD11b and CD18), lower production of the chemokine IL-8, and lower levels of the phosphorylated signaling intermediate p38 MAP kinase than in PMN from younger donors (21-30 years). In addition, loss of CD62L, a marker of PMN activation, was reduced in PMN of older adults stimulated through multiple pathways. Rescue of PMN from apoptosis by stimulation with TLR1 was reduced in PMN from older adults. In seeking an explanation for effects of aging across multiple pathways, we examined PMN energy utilization and found that glucose uptake after stimulation through TLR1 was dramatically lower in PMN of older adults. Our results demonstrate a reduction in TLR1 expression and TLR1-mediated responses in PMN with aging, and reduced efficiency of bioenergetics in PMN. These changes likely contribute to reduced PMN efficiency in aging through multiple aspects of PMN function and suggest potential therapeutic opportunities.

  20. PI3K/AKT Signaling Regulates Bioenergetics in Immortalized Hepatocytes

    PubMed Central

    Li, Chen; Li, Yang; He, Lina; Agarwal, Amit R.; Zeng, Ni; Cadenas, Enrique; Stiles, Bangyan L.

    2013-01-01

    Regulation of cellular bioenergetics by PI3K/AKT signaling was examined in isogenic hepatocyte cell lines lacking the major inhibitor of PI3K/AKT signaling, PTEN (phosphatase and tensin homolog deleted on Chromosome 10). PI3K/AKT signaling was manipulated using the activator (IGF-1) and the inhibitor (LY 294002) of the PI3K/AKT pathway. Activation of PI3K/AKT signaling resulted in an enhanced anaerobic glycolysis and mitochondrial respiration. AKT, when phosphorylated and activated, translocated to mitochondria and localized within the membrane structure of mitochondria, where it phosphorylated a number of mitochondrial residence proteins including the subunits α and β of ATP synthase. Inhibition of GSK3β by either phosphorylation by AKT or lithium chloride resulted in activation of pyruvate dehydrogenase, i.e., decrease of its phosphorylated form. AKT-dependent phosphorylation of ATP synthase subunits α and β resulted in an increased complex activity. AKT translocation to mitochondria was associated with an increased expression and activity of complex I. These data suggest that the mitochondrial signaling pathway AKT-GSK3β-PDH, AKT-dependent phosphorylation of ATP synthase, and upregulation of mitochondrial complex I expression and activity are involved in the control of mitochondrial bioenergetics by increasing substrate availability and regulating the mitochondrial catalytic/energy-transducing capacity. PMID:23376468

  1. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians

    PubMed Central

    Pinti, Marcello; Lanzarini, Catia; Ascione, Barbara; Gibellini, Lara; Dika, Emi; Patrizi, Annalisa; Tommasino, Chiara; Capri, Miriam; Cossarizza, Andrea; Baracca, Alessandra; Lenaz, Giorgio; Solaini, Giancarlo; Franceschi, Claudio; Malorni, Walter; Salvioli, Stefano

    2014-01-01

    Mitochondria have been considered for long time as important determinants of cell aging because of their role in the production of reactive oxygen species. In this study we investigated the impact of mitochondrial metabolism and biology as determinants of successful aging in primary cultures of fibroblasts isolated from the skin of long living individuals (LLI) (about 100 years old) compared with those from young (about 27 years old) and old (about 75 years old) subjects. We observed that fibroblasts from LLI displayed significantly lower complex I-driven ATP synthesis and higher production of H2O2 in comparison with old subjects. Despite these changes, bioenergetics of these cells appeared to operate normally. This lack of functional consequences was likely due to a compensatory phenomenon at the level of mitochondria, which displayed a maintained supercomplexes organization and an increased mass. This appears to be due to a decreased mitophagy, induced by hyperfused, elongated mitochondria. The overall data indicate that longevity is characterized by a preserved bioenergetic function likely attained by a successful mitochondria remodeling that can compensate for functional defects through an increase in mass, i.e. a sort of mitochondrial “hypertrophy”. PMID:24799450

  2. Bioenergetics of Juvenile Salmon During the Spring Outmigration, 1983 Annual Report.

    SciTech Connect

    Rondorf, Dennis W.

    1985-07-01

    Main stem reservoirs in the Columbia River Basin may have increased the energy demands of smolts during outmigration by prolonging migration and exposing smolts to seasonally rising water temperatures. A bioenergetic model for spring chinook salmon smolts (Oncorhynchus tshawytscha) is being developed to test these hypotheses. Results have thus far indicated that the seaward migration can be separated into two distinct phases. Phase I can be described as a period of intense smolt development in which there was a post hatchery release surge in gill Na/sup +/-K/sup +/ ATPase activity, depletion of energy available in body lipids, and a concurrent decline in caloric density. Phase II was characterized by maintenence of smolt status in apparent anticipation of reaching the estuary. Phase II is the period most affected by impoundments and annual changes in water flow; the latter period will therefore be modeled in bioenergetic simulations. Laboratory and field observations provided input parameters for the model and empirical data to verify model simmulations. Total calories, caloric density, proximate body composition, ration, and caloric intake were determined in smolts as seaward migration progressed. The effect of swimming and starvation on energy reserves and seawater survival were determined in the laboratory. Fatty acid analysis indicated ..omega..3 neutral fatty acids influenced smolt development and seawater survival. 46 refs., 13 figs., 4 tabs.

  3. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  4. Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch

    USGS Publications Warehouse

    Chipps, Steven R.; Travis W. Schaeffer,; Daniel E. Spengler,; Casey W. Schoenebeck,; Michael L. Brown,

    2012-01-01

    We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.

  5. Intermittent Fasting Results in Tissue-Specific Changes in Bioenergetics and Redox State

    PubMed Central

    Chausse, Bruno; Vieira-Lara, Marcel A.; Sanchez, Angélica B.; Medeiros, Marisa H. G.; Kowaltowski, Alicia J.

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart. PMID:25749501

  6. Bioenergetic modulation overcomes glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia.

    PubMed

    Samuels, Amy L; Heng, Jasmin Y; Beesley, Alex H; Kees, Ursula R

    2014-04-01

    Drug-resistant forms of acute lymphoblastic leukaemia (ALL) are a leading cause of death from disease in children. Up to 25% of patients with T-cell ALL (T-ALL) develop resistance to chemotherapeutic agents, particularly to glucocorticoids (GCs), a class of drug to which resistance is one of the strongest indicators of poor clinical outcome. Despite their clinical importance, the molecular mechanisms that underpin GC resistance and leukaemia relapse are not well understood. Recently, we demonstrated that GC-resistance is associated with a proliferative metabolism involving the up-regulation of glycolysis, oxidative phosphorylation and cholesterol biosynthesis. Here we confirm that resistance is directly associated with a glycolytic phenotype and show that GC-resistant T-ALL cells are able to shift between glucose bioenergetic pathways. We evaluated the potential for targeting these pathways in vitro using a glycolysis inhibitor, 2-deoxyglucose (2DG), and the oxidative phosphorylation inhibitor oligomycin in combination with methylprednisolone (MPRED). We found that oligomycin synergized with MPRED to sensitize cells otherwise resistant to GCs. Similarly we observed synergy between MPRED and simvastatin, an inhibitor of cholesterol metabolism. Collectively, our findings suggest that dual targeting of bioenergetic pathways in combination with GCs may offer a promising therapeutic strategy to overcome drug resistance in ALL.

  7. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells

    PubMed Central

    Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine

    2017-01-01

    Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954

  8. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy

    PubMed Central

    Long, Jianyin; Badal, Shawn S.; Ye, Zengchun; Wang, Yin; Ayanga, Bernard A.; Galvan, Daniel L.; Green, Nathanael H.; Chang, Benny H.; Overbeek, Paul A.

    2016-01-01

    The regulatory roles of long noncoding RNAs (lncRNAs) in transcriptional coactivators are still largely unknown. Here, we have shown that the peroxisome proliferator–activated receptor γ (PPARγ) coactivator α (PGC-1α, encoded by Ppargc1a) is functionally regulated by the lncRNA taurine-upregulated gene 1 (Tug1). Further, we have described a role for Tug1 in the regulation of mitochondrial function in podocytes. Using a murine model of diabetic nephropathy (DN), we performed an unbiased RNA-sequencing (RNA-seq) analysis of kidney glomeruli and identified Tug1 as a differentially expressed lncRNA in the diabetic milieu. Podocyte-specific overexpression (OE) of Tug1 in diabetic mice improved the biochemical and histological features associated with DN. Unexpectedly, we found that Tug1 OE rescued the expression of PGC-1α and its transcriptional targets. Tug1 OE was also associated with improvements in mitochondrial bioenergetics in the podocytes of diabetic mice. Mechanistically, we found that the interaction between Tug1 and PGC-1α promotes the binding of PGC-1α to its own promoter. We identified a Tug1-binding element (TBE) upstream of the Ppargc1a gene and showed that Tug1 binds with the TBE to enhance Ppargc1a promoter activity. These findings indicate that a direct interaction between PGC-1α and Tug1 modulates mitochondrial bioenergetics in podocytes in the diabetic milieu. PMID:27760051

  9. Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons

    PubMed Central

    Ma, Jiacheng; Pan, Pan; Anyika, Mercy; Blagg, Brian S. J.; Dobrowsky, Rick T.

    2015-01-01

    We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). Replacing the coumarin core of KU-32 with a meta-fluorinated biphenyl ring system created KU-596, a novobiocin analogue (novologue) that showed neuroprotective activity in a cell-based assay. The current study sought to determine whether KU-596 offers similar therapeutic potential for treating DPN. Administration of 2–20 mg/kg of KU-596 improved diabetes induced hypoalgesia and sensory neuron bioenergetic deficits in a dose-dependent manner. However, the drug could not improve these neuropathic deficits in diabetic heat shock protein 70 knockout (Hsp70 KO) mice. To gain further insight into the mechanisms by which KU-596 improved DPN, we performed transcriptomic analysis of sensory neuron RNA obtained from diabetic wild-type and Hsp70 KO mice using RNA sequencing. Bioinformatic analysis of the differentially expressed genes indicated that diabetes strongly increased inflammatory pathways and that KU-596 therapy effectively reversed these increases independent of Hsp70. In contrast, the effects of KU-596 on decreasing the expression of genes regulating the production of reactive oxygen species were more Hsp70-dependent. These data indicate that modulation of molecular chaperones by novologue therapy offers an effective approach toward correcting nerve dysfunction in DPN but that normalization of inflammatory pathways alone by novologue therapy seems to be insufficient to reverse sensory deficits associated with insensate DPN. PMID:26161583

  10. Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia.

    PubMed

    Smolková, Katarína; Bellance, Nadège; Scandurra, Francesca; Génot, Elisabeth; Gnaiger, Erich; Plecitá-Hlavatá, Lydie; Jezek, Petr; Rossignol, Rodrigue

    2010-02-01

    Breast cancer cells can survive and proliferate under harsh conditions of nutrient deprivation, including limited oxygen and glucose availability. We hypothesized that such environments trigger metabolic adaptations of mitochondria, which promote tumor progression. Here, we mimicked aglycemia and hypoxia in vitro and compared the mitochondrial and cellular bioenergetic adaptations of human breast cancer (HTB-126) and non-cancer (HTB-125) cells that originate from breast tissue. Using high-resolution respirometry and western blot analyses, we demonstrated that 4 days of glucose deprivation elevated oxidative phosphorylation five-fold, increased the spread of the mitochondrial network without changing its shape, and decreased the apparent affinity of oxygen in cancer cells (increase in C ( 50 )), whereas it remained unchanged in control cells. The substrate control ratios also remained constant following adaptation. We also observed the Crabtree effect, specifically in HTB-126 cells. Likewise, sustained hypoxia (1% oxygen during 6 days) improved cell respiration in non-cancer cells grown in glucose or glucose-deprived medium (+ 32% and +38%, respectively). Conversely, under these conditions of limited oxygen or a combination of oxygen and glucose deprivation for 6 days, routine respiration was strongly reduced in cancer cells (-36% in glucose medium, -24% in glucose-deprived medium). The data demonstrate that cancer cells behave differently than normal cells when adapting their bioenergetics to microenvironmental conditions. The differences in hypoxia and aglycemia tolerance between breast cancer cells and non-cancer cells may be important when optimizing strategies for the treatment of breast cancer.

  11. Human immune cells' behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model.

    PubMed

    Hoff, Paula; Maschmeyer, Patrick; Gaber, Timo; Schütze, Tabea; Raue, Tobias; Schmidt-Bleek, Katharina; Dziurla, René; Schellmann, Saskia; Lohanatha, Ferenz Leonard; Röhner, Eric; Ode, Andrea; Burmester, Gerd-Rüdiger; Duda, Georg N; Perka, Carsten; Buttgereit, Frank

    2013-03-01

    The initial inflammatory phase of bone fracture healing represents a critical step for the outcome of the healing process. However, both the mechanisms initiating this inflammatory phase and the function of immune cells present at the fracture site are poorly understood. In order to study the early events within a fracture hematoma, we established an in vitro fracture hematoma model: we cultured hematomas forming during an osteotomy (artificial bone fracture) of the femur during total hip arthroplasty (THA) in vitro under bioenergetically controlled conditions. This model allowed us to monitor immune cell populations, cell survival and cytokine expression during the early phase following a fracture. Moreover, this model enabled us to change the bioenergetical conditions in order to mimic the in vivo situation, which is assumed to be characterized by hypoxia and restricted amounts of nutrients. Using this model, we found that immune cells adapt to hypoxia via the expression of angiogenic factors, chemoattractants and pro-inflammatory molecules. In addition, combined restriction of oxygen and nutrient supply enhanced the selective survival of lymphocytes in comparison with that of myeloid derived cells (i.e., neutrophils). Of note, non-restricted bioenergetical conditions did not show any similar effects regarding cytokine expression and/or different survival rates of immune cell subsets. In conclusion, we found that the bioenergetical conditions are among the crucial factors inducing the initial inflammatory phase of fracture healing and are thus a critical step for influencing survival and function of immune cells in the early fracture hematoma.

  12. Growth, condition factor, and bioenergetics modeling link warmer stream temperatures below a small dam to reduced performance of juvenile steelhead

    USGS Publications Warehouse

    Sauter, S.T.; Connolly, P.J.

    2010-01-01

    We investigated the growth and feeding performance of juvenile steelhead Oncorhynchus mykiss using field measures and bioenergetics modeling. Juvenile steelhead populations were sampled from mid-June through August 2004 at study sites upstream and downstream of Hemlock Dam. The growth and diet of juvenile steelhead were determined for a warm (summer) and subsequent (late summer) transitional period at each study site. Empirical data on the growth and diet of juvenile steelhead and mean daily temperatures were used in a bioenergetics model to estimate the proportion of maximum consumption achieved by juvenile steelhead by site and period. Modeled estimates of feeding performance were better for juvenile steelhead at the upstream compared to the downstream site during both periods. The median condition factor of juvenile steelhead did not change over the summer at the upstream site, but showed a significant decline over time at the downstream site. A negative trend in median condition factor at the downstream site supported bioenergetics modeling results that suggested the warmer stream temperatures had a negative impact on juvenile steelhead. Bioenergetics modeling predicted a lower feeding performance for juvenile steelhead rearing downstream compared to upstream of Hemlock Dam although food availability appeared to be limited at both study sites during the warm period. Warmer water temperatures, greater diel variation, and change in diel pattern likely led to the reduced feeding performance and reduced growth, which could have affected the overall survival of juvenile steelhead downstream of Hemlock Dam. ?? 2010 by the Northwest Scientific Association.

  13. EDITORIAL: The 15th Central European Workshop on Quantum Optics The 15th Central European Workshop on Quantum Optics

    NASA Astrophysics Data System (ADS)

    Bozic, Mirjana; Man'ko, Margarita; Arsenovic, Dusan

    2009-07-01

    The development of quantum optics was part and parcel of the formation of modern physics following the fundamental work of Max Planck and Albert Einstein, which gave rise to quantum mechanics. The possibility of working with pure quantum objects, like single atoms and single photons, has turned quantum optics into the main tool for testing the fundamentals of quantum physics. Thus, despite a long history, quantum optics nowadays remains an extremely important branch of physics. It represents a natural base for the development of advanced technologies, like quantum information processing and quantum computing. Previous Central European Workshops on Quantum Optics (CEWQO) took place in Palermo (2007), Vienna (2006), Ankara (2005), Trieste (2004), Rostock (2003), Szeged (2002), Prague (2001), Balatonfüred (2000), Olomouc (1999), Prague (1997), Budmerice (1995, 1996), Budapest (1994) and Bratislava (1993). Those meetings offered excellent opportunities for the exchange of knowledge and ideas between leading scientists and young researchers in quantum optics, foundations of quantum mechanics, cavity quantum electrodynamics, photonics, atom optics, condensed matter optics, and quantum informatics, etc. The collaborative spirit and tradition of CEWQO were a great inspiration and help to the Institute of Physics, Belgrade, and the Serbian Academy of Sciences and Arts, as the organizers of CEWQO 2008. The 16th CEWQO will take place in 2009 in Turku, Finland, and the 17th CEWQO will be organized in 2010 in St Andrews, United Kingdom. The 15th CEWQO was organized under the auspices and support of the Ministry of Science of the Republic of Serbia, the Serbian Physical Society, the European Physical Society with sponsorship from the University of Belgrade, the Central European Initiative, the FP6 Program of the European Commission under INCO project QUPOM No 026322, the FP7 Program of the European Commission under project NANOCHARM, Europhysics Letters (EPL), The European

  14. Growth and food consumption by tiger muskellunge: Effects of temperature and ration level on bioenergetic model predictions

    USGS Publications Warehouse

    Chipps, S.R.; Einfalt, L.M.; Wahl, David H.

    2000-01-01

    We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.

  15. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.

    PubMed

    Chang, Ivan; Heiske, Margit; Letellier, Thierry; Wallace, Douglas; Baldi, Pierre

    2011-01-01

    Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several advantages: (1) it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can be obtained through progress curves of common enzyme kinetics protocols; (2) it is modular and can adapt to various enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants; (3) it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of the system's steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the predictive accuracy of the rate law with our experimentally

  16. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    SciTech Connect

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  17. The bioenergetic consequences of invasive-induced food web disruption to Lake Ontario alewives

    USGS Publications Warehouse

    Stewart, Thomas J.; O'Gorman, Robert; Sprules, W. Gary; Lantry, B.F.

    2010-01-01

    Alewives Alosa pseudoharengus are the dominant prey fish in Lake Ontario, and their response to ecological change can alter the structure and function of the Lake Ontario food web. Using stochastic population-based bioenergetic models of Lake Ontario alewives for 1987–1991 and 2001–2005, we evaluated changes to alewife production, consumption, and associated bioenergetic ratios after invasive-induced food web disruption. After the disruption, mean biomass of alewives declined from 28.0 to 14.6 g/m2, production declined from 40.8 to 13.6 g·m−2·year−1, and consumption declined from 342.1 to 137.2 g·m−2·year−1, but bootstrapping of error sources suggested that the changes were not statistically significant. Population-based bioenergetic ratios of production to biomass (P/B ratio), total consumption to biomass (Q/B ratio), and production efficiency did not change. Pathways of energy flow measured as prey-group-specific Q/B ratios changed significantly between the two time periods for invasive predatory cladocerans (from 0.6 to 1.3), Mysis diluviana (from 0.4 to 2.5), and other prey (from 0.8 to 0.1), but the observed decline in the zooplankton Q/B ratio (from 10.6 to 5.5) was not significant. Gross production efficiency did not change; values ranged from 8% to 15%. Age-group mean gross conversion efficiency (GCE) declined with age; GCE ranged from 7.5% to 11.0% for yearlings, was approximately 5% for age-2 alewives, and was less than 2% for age-3 and older alewives. The GCE increased significantly between the time periods for yearling alewives. Our analyses support the hypothesis that after 2003, alewives could not sustain their growth while feeding on zooplankton closer to shore. Modeling of observed spatial variation in diet and alternative occupied temperatures demonstrates the potential for reducing consumption by alewives. Our results suggest that Lake Ontario alewives can exploit spatial heterogeneity in resource patches and thermal habitat to

  18. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.

    PubMed

    Folmes, Clifford D L; Nelson, Timothy J; Martinez-Fernandez, Almudena; Arrell, D Kent; Lindor, Jelena Zlatkovic; Dzeja, Petras P; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre

    2011-08-03

    The bioenergetics of somatic dedifferentiation into induced pluripotent stem cells remains largely unknown. Here, stemness factor-mediated nuclear reprogramming reverted mitochondrial networks into cristae-poor structures. Metabolomic footprinting and fingerprinting distinguished derived pluripotent progeny from parental fibroblasts according to elevated glucose utilization and production of glycolytic end products. Temporal sampling demonstrated glycolytic gene potentiation prior to induction of pluripotent markers. Functional metamorphosis of somatic oxidative phosphorylation into acquired pluripotent glycolytic metabolism conformed to an embryonic-like archetype. Stimulation of glycolysis promoted, while blockade of glycolytic enzyme activity blunted, reprogramming efficiency. Metaboproteomics resolved upregulated glycolytic enzymes and downregulated electron transport chain complex I subunits underlying cell fate determination. Thus, the energetic infrastructure of somatic cells transitions into a required glycolytic metabotype to fuel induction of pluripotency.

  19. Bioaccumulation of polychlorinated biphenyls by zebra mussel populations predicted on the basis of bioenergetics

    SciTech Connect

    Yankovich, T.

    1995-12-31

    Hydrophobic organic contaminants, such as PCBs, partition between several phases in aquatic environments. In order to predict contaminant partitioning and flux rates between aquatic biota and other environmental phases, it is necessary to have a basic understanding of the physico-chemical properties characteristic of the contaminant of interest, in addition to exposure rates of organisms to various contaminated phases. Exposure regimes are often dictated by food availability and corresponding feeding rates necessary to meet organism energetic requirements. Therefore, a model coupling zebra mussel bioenergetics and predicted PCB bioaccumulation has been constructed to assess the impact of zebra mussel populations on organic contaminant transfer in freshwater systems. The potential impact of mussel populations on organic contaminant transfer and energy flow will be discussed.

  20. CDK1 Enhances Mitochondrial Bioenergetics for Radiation-Induced DNA Repair

    PubMed Central

    Qin, Lili; Fan, Ming; Candas, Demet; Jiang, Guochun; Papadopoulos, Stelios; Tian, Lin; Woloschak, Gayle; Grdina, David J.; Li, Jian Jian

    2015-01-01

    SUMMARY Nuclear DNA repair capacity is a critical determinant of cell fate under genotoxic stress conditions. DNA repair is a well-defined energy consuming process; however, it is unclear how DNA repair is fueled and whether mitochondrial energy production contributes to nuclear DNA repair. Here, we report a dynamic enhancement of oxygen consumption and mitochondrial ATP generation in irradiated normal cells, paralleled with increased mitochondrial relocation of cell cycle kinase CDK1 and nuclear DNA repair. The basal and radiation-induced mitochondrial ATP generation is significantly reduced in cells harboring CDK1 phosphorylation deficient mutant complex I subunits. Similarly, mitochondrial ATP generation and nuclear DNA repair are also severely compromised in cells harboring mitochondrial-targeted kinase deficient CDK1. These results demonstrate a mechanism governing the communication between mitochondria and nucleus, by which CDK1 boosts mitochondrial bioenergetics to meet the increased cellular fuel demand for DNA repair and cell survival under genotoxic stress. PMID:26670043

  1. CONTROL OF TUMOR BIOENERGETICS AND SURVIVAL STRESS SIGNALING BY MITOCHONDRIAL HSP90s

    PubMed Central

    Chae, Young Chan; Caino, M. Cecilia; Lisanti, Sofia; Ghosh, Jagadish C.; Dohi, Takehiko; Danial, Nika N.; Villanueva, Jessie; Ferrero, Stefano; Vaira, Valentina; Santambrogio, Luigi; Bosari, Silvano; Languino, Lucia R.; Herlyn, Meenhard; Altieri, Dario C.

    2012-01-01

    SUMMARY Tumors successfully adapt to constantly changing intra- and extra-cellular environments, but the wirings of this process are still largely elusive. Here, we show that Heat Shock Protein 90 (HSP90)-directed protein folding in mitochondria, but not cytosol, maintains energy production in tumor cells. Interference with this process activates a signaling network that involves phosphorylation of nutrient-sensing AMP-activated kinase (AMPK), inhibition of rapamycin-sensitive mTOR complex 1 (mTORC1), induction of autophagy, and expression of an endoplasmic reticulum (ER) unfolded protein response (UPR). This signaling network confers a survival and proliferative advantage to genetically disparate tumors, and correlates with worse outcome in lung cancer patients. Therefore, mitochondrial HSP90s are adaptive regulators of tumor bioenergetics, and tractable targets for cancer therapy. PMID:22975376

  2. Advanced In Vivo Heteronuclear MRS Approaches for Studying Brain Bioenergetics Driven by Mitochondria

    PubMed Central

    Zhu, Xiao-Hong; Du, Fei; Zhang, Nanyin; Zhang, Yi; Lei, Hao; Zhang, Xiaoliang; Qiao, Hongyan; Ugurbil, Kamil; Chen, Wei

    2017-01-01

    The greatest merit of in vivo magnetic resonance spectroscopy (MRS) methodology used in biomedical research is its ability for noninvasively measuring a variety of metabolites inside a living organ. It, therefore, provides an invaluable tool for determining metabolites, chemical reaction rates and bioenergetics, as well as their dynamic changes in the human and animal. The capability of in vivo MRS is further enhanced at higher magnetic fields because of significant gain in detection sensitivity and improvement in the spectral resolution. Recent progress of in vivo MRS technology has further demonstrated its great potential in many biomedical research areas, particularly in brain research. Here, we provide a review of new developments for in vivo heteronuclear 31P and 17O MRS approaches and their applications in determining the cerebral metabolic rates of oxygen and ATP inside the mitochondria, in both animal and human brains. PMID:18839099

  3. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function

    PubMed Central

    Stauch, Kelly L.; Purnell, Phillip R.; Fox, Howard S.

    2014-01-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function. PMID:24827396

  4. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  5. Interventions that improve body and brain bioenergetics for Parkinson's disease risk reduction and therapy.

    PubMed

    Mattson, Mark P

    2014-01-01

    Studies of Parkinson's disease (PD) patients, animal models and pathogenic actions of genetic mutations that cause familial PD have established that neuronal bioenergetics are compromised with brainstem and midbrain monoaminergic neurons being particularly vulnerable. Peripheral insulin resistance and diabetes in midlife may increase the risk of PD, and diet and lifestyle changes that increase insulin sensitivity (exercise and intermittent energy restriction) can counteract neurodegenerative processes and improve functional outcome in animal models. Insulin sensitizing glucagon-like peptide 1 (GLP-1) analogs are beneficial in animal models of PD, and the results of an initial clinical trial in PD patients are promising. In addition to improving peripheral and brain energy metabolism, exercise, intermittent energy restriction and GLP-1 analogs may bolster neuronal adaptive stress response pathways that enhance neurotrophic signaling, DNA repair, proteostasis and mitochondrial biogenesis.

  6. Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks and Bioenergetics Pathways Underlying T Cell Activation.

    PubMed

    Tan, Haiyan; Yang, Kai; Li, Yuxin; Shaw, Timothy I; Wang, Yanyan; Blanco, Daniel Bastardo; Wang, Xusheng; Cho, Ji-Hoon; Wang, Hong; Rankin, Sherri; Guy, Cliff; Peng, Junmin; Chi, Hongbo

    2017-03-21

    The molecular circuits by which antigens activate quiescent T cells remain poorly understood. We combined temporal profiling of the whole proteome and phosphoproteome via multiplexed isobaric labeling proteomics technology, computational pipelines for integrating multi-omics datasets, and functional perturbation to systemically reconstruct regulatory networks underlying T cell activation. T cell receptors activated the T cell proteome and phosphoproteome with discrete kinetics, marked by early dynamics of phosphorylation and delayed ribosome biogenesis and mitochondrial activation. Systems biology analyses identified multiple functional modules, active kinases, transcription factors and connectivity between them, and mitochondrial pathways including mitoribosomes and complex IV. Genetic perturbation revealed physiological roles for mitochondrial enzyme COX10-mediated oxidative phosphorylation in T cell quiescence exit. Our multi-layer proteomics profiling, integrative network analysis, and functional studies define landscapes of the T cell proteome and phosphoproteome and reveal signaling and bioenergetics pathways that mediate lymphocyte exit from quiescence.

  7. The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Chavarriaga, Cristina; Castello, Pablo R.; Procopio, Maria; Ritz, Thorsten; Dratz, Edward A.; Singel, David J.; Martino, Carlos F.

    2016-12-01

    Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2•‑) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.

  8. The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics

    PubMed Central

    Usselman, Robert J.; Chavarriaga, Cristina; Castello, Pablo R.; Procopio, Maria; Ritz, Thorsten; Dratz, Edward A.; Singel, David J.; Martino, Carlos F.

    2016-01-01

    Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2•−) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics. PMID:27995996

  9. Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV.

    PubMed

    de Vitry, Catherine

    2011-11-01

    Cytochromes of the c-type contain hemes covalently attached via one or, more generally, two thioether bonds between the vinyls of heme b and the thiols of cysteine residues of apocytochromes. This post-translational modification relies on membrane-associated specific biogenesis proteins, referred to as cytochrome c maturation systems. At least three different versions (i.e. Systems I-III) are found on the positive side of bioenergetic membranes in different organisms and compartments. The present minireview is concerned with systems on the negative side of the membranes. It describes System IV, also referred to as cofactor assembly on complex C subunit B, for heme binding on cytochrome b(6) through one thioether bond; this covalent heme is usually called c(i) . This system is found in all organisms with oxygenic photosynthesis but not in Firmicutes, although they also have a cytochrome b protein with an additional heme c(i) covalently attached via a single thioether bond.

  10. Bioenergetic Dysfunction and Inflammation in Alzheimer’s Disease: A Possible Connection

    PubMed Central

    Wilkins, Heather M.; Carl, Steven M.; Greenlief, Alison C. S.; Festoff, Barry W.; Swerdlow, Russell H.

    2014-01-01

    Inflammation is observed in Alzheimer’s disease (AD) subject brains. Inflammation-relevant genes are increasingly implicated in AD genetic studies, and inflammatory cytokines to some extent even function as peripheral biomarkers. What underlies AD inflammation is unclear, but no “foreign” agent has been implicated. This suggests that internally produced damage-associated molecular pattern (DAMPs) molecules may drive inflammation in AD. A more complete characterization and understanding of AD-relevant DAMPs could advance our understanding of AD and suggest novel therapeutic strategies. In this review, we consider the possibility that mitochondria, intracellular organelles that resemble bacteria in many ways, trigger and maintain chronic inflammation in AD subjects. Data supporting the possible nexus between AD-associated bioenergetic dysfunction are discussed. PMID:25426068

  11. Hybrid incompatibility despite pleiotropic constraint in a sequence-based bioenergetic model of transcription factor binding.

    PubMed

    Tulchinsky, Alexander Y; Johnson, Norman A; Porter, Adam H

    2014-12-01

    Hybrid incompatibility can result from gene misregulation produced by divergence in trans-acting regulatory factors and their cis-regulatory targets. However, change in trans-acting factors may be constrained by pleiotropy, which would in turn limit the evolution of incompatibility. We employed a mechanistically explicit bioenergetic model of gene expression wherein parameter combinations (number of transcription factor molecules, energetic properties of binding to the regulatory site, and genomic background size) determine the shape of the genotype-phenotype (G-P) map, and interacting allelic variants of mutable cis and trans sites determine the phenotype along that map. Misregulation occurs when the phenotype differs from its optimal value. We simulated a pleiotropic regulatory pathway involving a positively selected and a conserved trait regulated by a shared transcription factor (TF), with two populations evolving in parallel. Pleiotropic constraints shifted evolution in the positively selected trait to its cis-regulatory locus. We nevertheless found that the TF genotypes often evolved, accompanied by compensatory evolution in the conserved trait, and both traits contributed to hybrid misregulation. Compensatory evolution resulted in "developmental system drift," whereby the regulatory basis of the conserved phenotype changed although the phenotype itself did not. Pleiotropic constraints became stronger and in some cases prohibitive when the bioenergetic properties of the molecular interaction produced a G-P map that was too steep. Likewise, compensatory evolution slowed and hybrid misregulation was not evident when the G-P map was too shallow. A broad pleiotropic "sweet spot" nevertheless existed where evolutionary constraints were moderate to weak, permitting substantial hybrid misregulation in both traits. None of these pleiotropic constraints manifested when the TF contained nonrecombining domains independently regulating the respective traits.

  12. Behavioural thermoregulation and bioenergetics of riverine smallmouth bass associated with ambient cold-period thermal refuge

    USGS Publications Warehouse

    Westhoff, Jacob T.; Paukert, Craig P.; Ettinger-Dietzel, Sarah; Dodd, H.R.; Siepker, Michael

    2016-01-01

    Smallmouth bass in thermally heterogeneous streams may behaviourally thermoregulate during the cold period (i.e., groundwater temperature greater than river water temperature) by inhabiting warm areas in the stream that result from high groundwater influence or springs. Our objectives were to determine movement of smallmouth bass (Micropterus dolomieu) that use thermal refuge and project differences in growth and consumption among smallmouth bass exhibiting different thermal-use patterns. We implanted radio transmitters in 29 smallmouth bass captured in Alley Spring on the Jacks Fork River, Missouri, USA, during the winter of 2012. Additionally, temperature archival tags were implanted in a subset of nine fish. Fish were tracked using radio telemetry monthly from January 2012 through January of 2013. The greatest upstream movement was 42.5 km, and the greatest downstream movement was 22.2 km. Most radio tagged fish (69%) departed Alley Spring when daily maximum river water temperature first exceeded that of the spring (14 °C) and during increased river discharge. Bioenergetic modelling predicted that a 350 g migrating smallmouth bass that used cold-period thermal refuge would grow 16% slower at the same consumption level as a fish that did not seek thermal refuge. Contrary to the bioenergetics models, extrapolation of growth scope results suggested migrating fish grow 29% more than fish using areas of stream with little groundwater influence. Our results contradict previous findings that smallmouth bass are relatively sedentary, provide information about potential cues for migratory behaviour, and give insight to managers regarding use and growth of smallmouth bass in thermally heterogeneous river systems.

  13. Hybrid Incompatibility Despite Pleiotropic Constraint in a Sequence-Based Bioenergetic Model of Transcription Factor Binding

    PubMed Central

    Tulchinsky, Alexander Y.; Johnson, Norman A.; Porter, Adam H.

    2014-01-01

    Hybrid incompatibility can result from gene misregulation produced by divergence in trans-acting regulatory factors and their cis-regulatory targets. However, change in trans-acting factors may be constrained by pleiotropy, which would in turn limit the evolution of incompatibility. We employed a mechanistically explicit bioenergetic model of gene expression wherein parameter combinations (number of transcription factor molecules, energetic properties of binding to the regulatory site, and genomic background size) determine the shape of the genotype–phenotype (G-P) map, and interacting allelic variants of mutable cis and trans sites determine the phenotype along that map. Misregulation occurs when the phenotype differs from its optimal value. We simulated a pleiotropic regulatory pathway involving a positively selected and a conserved trait regulated by a shared transcription factor (TF), with two populations evolving in parallel. Pleiotropic constraints shifted evolution in the positively selected trait to its cis-regulatory locus. We nevertheless found that the TF genotypes often evolved, accompanied by compensatory evolution in the conserved trait, and both traits contributed to hybrid misregulation. Compensatory evolution resulted in “developmental system drift,” whereby the regulatory basis of the conserved phenotype changed although the phenotype itself did not. Pleiotropic constraints became stronger and in some cases prohibitive when the bioenergetic properties of the molecular interaction produced a G-P map that was too steep. Likewise, compensatory evolution slowed and hybrid misregulation was not evident when the G-P map was too shallow. A broad pleiotropic “sweet spot” nevertheless existed where evolutionary constraints were moderate to weak, permitting substantial hybrid misregulation in both traits. None of these pleiotropic constraints manifested when the TF contained nonrecombining domains independently regulating the respective traits

  14. Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters

    PubMed Central

    Pandya, Jignesh D.; Nukala, Vidya N.; Sullivan, Patrick G.

    2013-01-01

    Mitochondrial dysfunction following traumatic brain and spinal cord injury (TBI and SCI) plays a pivotal role in the development of secondary pathophysiology and subsequent neuronal cell death. Previously, we demonstrated a loss of mitochondrial bioenergetics in the first 24 h following TBI and SCI initiates a rapid and extensive necrotic event at the primary site of injury. Within the mitochondrial derived mechanisms, the cross talk and imbalance amongst the processes of excitotoxicity, Ca2+ cycling/overload, ATP synthesis, free radical production and oxidative damage ultimately lead to mitochondrial damage followed by neuronal cell death. Mitochondria are one of the important organelles that regulate intracellular calcium (Ca2+) homeostasis and are equipped with a tightly regulated Ca2+ transport system. However, owing to the lack of consensus and the link between downstream effects of calcium in published literature, we undertook a systematic in vitro study for measuring concentration dependent effects of calcium (100–1000 nmols/mg mitochondrial protein) on mitochondrial respiration, enzyme activities, reactive oxygen/nitrogen species (ROS/RNS) generation, membrane potential (ΔΨ) and oxidative damage markers in isolated brain mitochondria. We observed a dose- and time-dependent inhibition of mitochondrial respiration by calcium without influencing mitochondrial pyruvate dehydrogenase complex (PDHC) and NADH dehydrogenase (Complex I) enzyme activities. We observed dose-dependent decreased production of hydrogen peroxide and total ROS/RNS species generation by calcium and no significant changes in protein and lipid oxidative damage markers. These results may shed new light on the prevailing dogma of the direct effects of calcium on mitochondrial bioenergetics, free radical production and oxidative stress parameters that are primary regulatory mitochondrial mechanisms following neuronal injury. PMID:24385963

  15. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance.

    PubMed

    Raefsky, Sophia M; Mattson, Mark P

    2017-01-01

    An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca(2+), CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.

  16. Acid-base and bio-energetics during balanced versus unbalanced normovolaemic haemodilution.

    PubMed

    Morgan, T J; Venkatesh, B; Beindorf, A; Andrew, I; Hall, J

    2007-04-01

    Fluids balanced to avoid acid-base disturbances may be preferable to saline, which causes metabolic acidosis in high volume. We evaluated acid-base and bio-energetic effects of haemodilution with a crystalloid balanced on physical chemical principles, versus crystalloids causing metabolic acidosis or metabolic alkalosis. Anaesthetised, mechanically ventilated Sprague-Dawley rats (n=32, allocated to four groups) underwent six exchanges of 9 ml crystalloid for 3 ml blood. Exchange was with one of three crystalloids with strong ion difference (SID) values of 0, 24 (balanced) and 40 mEq/l. Controls did not undergo haemodilution. Mean haemoglobin concentration fell to approximately 50 g/l after haemodilution. With SID 24 mEq/l fluid, metabolic acid-base remained unchanged. Dilution with SID 0 mEq/l and 40 mEq/l fluids caused a progressive metabolic acidosis and alkalosis respectively. Standard base excess (SBE) and haemoglobin concentration were directly correlated in the SID 0 mEq/l group (R2 = 0.61), indirectly correlated in the SBE 40 mEq/l group (R2 = 0.48) and showed no correlation in the SID 24 mEq/l group (R2 = 0.003). There were no significant differences between final ileal values of CO2 gap, nucleotides concentration, energy charge, or luminal lactate concentration. SID 40 mEq/l crystalloid dilution caused a significant rise in subcutaneous lactate. In this group mean kidney ATP concentration was significantly less than controls and renal energy charge significantly lower than SID 0 mEq/l and control groups. We conclude that a crystalloid SID of 24 mEq/l provides balanced haemodilution. Bio-energetic perturbations with higher SID haemodilution may be more severe and need further investigation.

  17. Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing

    USGS Publications Warehouse

    Anderson, Karl R.; Chapman, Duane C.; Wynne, Timothy; Masagounder, Karthik; Paukert, Craig

    2015-01-01

    Algal blooms in the Great Lakes are a potential food source for silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis; together bigheaded carps). Understanding these blooms thus plays an important role in understanding the invasion potential of bigheaded carps. We used remote sensing imagery, temperatures, and improved species specific bioenergetics models to determine algal concentrations sufficient for adult bigheaded carps. Depending on water temperature we found that bigheaded carp require between 2 and 7 μg/L chlorophyll or between 0.3 and 1.26 × 105cells/mL Microcystis to maintain body weight. Algal concentrations in the western basin and shoreline were found to be commonly several times greater than the concentrations required for weight maintenance. The remote sensing images show that area of sufficient algal foods commonly encompassed several hundred square kilometers to several thousands of square kilometers when blooms form. From 2002 to 2011, mean algal concentrations increased 273%–411%. This indicates Lake Erie provides increasingly adequate planktonic algal food for bigheaded carps. The water temperatures and algal concentrations detected in Lake Erie from 2008 to 2012 support positive growth rates such that a 4 kg silver carp could gain between 19 and 57% of its body weight in a year. A 5 kg bighead carp modeled at the same water temperatures could gain 20–81% of their body weight in the same period. The remote sensing imagery and bioenergetic models suggest that bigheaded carps would not be food limited if they invaded Lake Erie.

  18. Characterization of mitochondrial bioenergetic functions between two forms of Leishmania donovani - a comparative analysis.

    PubMed

    Mondal, Subhasish; Roy, Jay Jyoti; Bera, Tanmoy

    2014-10-01

    Leishmaniasis is a growing health problem in many parts of the world partly due to drug resistance of the parasite. This study reports on the fisibility of studying mitochondrial properties of two forms of wild-type L. donovani through the use of selective inhibitors. Amastigote forms of L. donovani exhibited a wide range of sensitivities to these inhibitors. Mitochondrial complex II inhibitor thenoyltrifluoroacetone and FoF1-ATP synthase inhibitors oligomycin and dicyclohexylcarbodiimide were refractory to growth inhibition of amastigote forms, whereas they strongly inhibited the growth of promastigote forms. This result indicated that complex II and FoF1-ATP synthase were not functional in amastigote forms suggesting the presence of attenuated oxidative phosphorylation in the mitochondria of amastigote forms. In contrast, mitochondrial complex I inhibitor rotenone and complex III inhibitor antimycin A inhibited cellular multiplication and substrate level phosphorylation in amastigote forms, suggesting the role of complex I and complex III for the survival of amastigote forms. Further we studied the mitochondrial activities of both forms by measuring oxygen consumption and ATP production. In amastigote form, substantial ATP formation by substrate level phosphorylation was observed in NADPH-fumarate, NADH-fumarate, NADPH-pyruvate and NADH-pyruvate redox couples. None of the redox couple generated ATP formation was inhibited by FoF1-ATP synthase inhibitor oligomycin. Therefore, we may conclude that there are significant differences between these two forms of L. donovani in respect of mitochondrial bioenergetics. Our results demonstrated bioenergetic disfunction of amastigote mitochondria. Therefore, these alterations of metabolic functions might be a potential chemotherapeutic target.

  19. Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy

    PubMed Central

    Feygin, Julia; Hu, Qinsong; Swingen, Cory; Zhang, Jianyi

    2008-01-01

    This study utilized porcine models of postinfarction LV remodeling (MI: n=8) and concentric LVH secondary to aortic banding (AoB: n=8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics (P-31 MR spectroscopy). Physiological assessments were conducted at a 4 week time point after myocardial infarction or aortic banding surgery. Comparisons were made with size matched normal animals (normal: n=8). Both myocardial infarction and aortic banding instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group (p<0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of phosphocreatine to adenosine triphosphate (PCr/ATP) decreased from 1.98 ± 0.16 (normal) to 1.06 ± 0.30 (MI, p<0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, p<0.01 vs Normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone. PMID:18326803

  20. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms: Progress report, 1 January 1988-31 August 1988

    SciTech Connect

    Spotila, J.R.

    1988-07-01

    We quantified the constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. During the first eight months of 1988 we conducted studies to determine the role of incubation temperature on the post hatching growth rate of the snapping turtle, Chelydra serpentina, to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field, to determine the field metabolic rates, body temperatures, and water flux rates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also organized and chaired a national symposium on Constraints of Bioenergetics on Animal Population Dynamics at the 1987 meeting of the American Society of Zoologists. 18 refs.

  1. Removal of algae by the zebra mussel (Dreissena polymorpha) population in western Lake Erie: a bioenergetics approach

    USGS Publications Warehouse

    Madenjian, Charles P.

    1995-01-01

    A bioenergetics model for growth of a zebra mussel (Dreissena polymorpha) individual was verified with observations on zebra mussel growth in western Lake Erie. The bioenergetics model was then applied to the zebra mussel population in the western basin of Lake Erie to estimate the removal of phytoplankton by mussels. According to the modeling results, the zebra mussel population consumed 5.0 million tonnes of phytoplankton, while 1.4 million tonnes of phytoplankton was deposited in pseudofeces from the mussels. Thus, a total of 6.4 ± 2.4 million tonnes of phytoplankton was removed from the water column by zebra mussel in western Lake Erie during 1990. Primary production was estimated to be 24.8 million tonnes; therefore, zebra mussel removed the equivalent of 26 ± 10% of the primary production for western Lake Erie.

  2. Development and corroboration of a bioenergetics model for northern pikeminnow (Ptychocheilus oregonensis) feeding on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Ward, D.L.

    1999-01-01

    A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.

  3. Chemiosmotic concept of the membrane bioenergetics: what is already clear and what is still waiting for elucidation?

    PubMed

    Skulachev, V P

    1994-12-01

    The present state of the chemiosmotic concept is reviewed. Special attention is paid to (i) further progress in studies on the Na(+)-coupled energetics and (ii) paradoxical bioenergetic effects when protonic or sodium potentials are utilized outside the coupling membrane (TonB-mediated uphill transports across the outer bacterial membrane). A hypothesis is put forward assuming that the same principle is employed in the bacterial flagellar motor.

  4. Arabidopsis Seed Mitochondria Are Bioenergetically Active Immediately upon Imbibition and Specialize via Biogenesis in Preparation for Autotrophic Growth.

    PubMed

    Paszkiewicz, Gaël; Gualberto, José M; Benamar, Abdelilah; Macherel, David; Logan, David C

    2017-01-01

    Seed germination is a vital developmental transition for production of progeny by sexual reproduction in spermatophytes. Quiescent cells in nondormant dry embryos are reawakened first by imbibition and then by perception of germination triggers. Reanimated tissues enter into a germination program requiring energy for expansion growth. However, germination requires that embryonic tissues develop to support the more energy-demanding processes of cell division and organogenesis of the new seedling. Reactivation of mitochondria to supply the required energy is thus a key process underpinning germination and seedling survival. Using live imaging, we investigated reactivation of mitochondrial bioenergetics and dynamics using Arabidopsis thaliana as a model. Bioenergetic reactivation, visualized by presence of a membrane potential, is immediate upon rehydration. However, reactivation of mitochondrial dynamics only occurs after transfer to germination conditions. Reactivation of mitochondrial bioenergetics is followed by dramatic reorganization of the chondriome (all mitochondrial in a cell, collectively) involving massive fusion and membrane biogenesis to form a perinuclear tubuloreticular structure enabling mixing of previously discrete mitochondrial DNA nucleoids. The end of germination coincides with fragmentation of the chondriome, doubling of mitochondrial number, and heterogeneous redistribution of nucleoids among the mitochondria, generating a population of mitochondria tailored to seedling growth.

  5. Exploring geomorphic controls on fish bioenergetics in mountain streams: linkages between channel morphology and rearing habitat for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2013-12-01

    Landscape heterogeneity constitutes an important control on spatial distribution of habitat for living organisms, at a range of spatial scales. For example, spatial variation in geomorphic processes can spatially structure populations as well as entire communities, and affect various ecosystem processes. We have coupled a 2D hydrodynamic model with a bioenergetic model to study the effects of various channel morphologies and bed textures on rearing habitat for coastal cutthroat trout (Oncorhynchus clarki clarki) in four reaches of a mountain stream. The bioenergetic model uses energy conservation principle to calculate energy budget for fish at any point of the study domain, given a set of relevant local conditions. Specifically, the energy intake is a function of food availability (invertebrate drift) while the energy expenditure occurs through, for example, basal metabolism and swimming to hold position against the flow. Channel morphology and bed texture, through their influence on channel hydraulics, can exert strong control on the spatial pattern of both food flux and swimming cost for drift-feeding fish. Therefore, the coupled hydrodynamic and bioenergetic models, parameterized using an extensive field data set, enabled us to explore mechanistic linkages between geomorphic properties of the study reaches, food resource availability, and the energetic profitability of rearing habitat for different age-classes at both between- and within-reach spatial scales.

  6. Determinants of Anti-Cancer Effect of Mitochondrial Electron Transport Chain Inhibitors: Bioenergetic Profile and Metabolic Flexibility of Cancer Cells.

    PubMed

    Urra, Félix A; Weiss-López, Boris; Araya-Maturana, Ramiro

    2016-01-01

    Recent evidence highlights that energy requirements of cancer cells vary greatly from normal cells and they exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation (OXPHOS). Interestingly, mitochondrial electron transport chain (ETC) has been identified as an essential component in bioenergetics, biosynthesis and redox control during proliferation and metastasis of cancer cells. This dependence converts ETC of cancer cells in a promising target to design small molecules with anti-cancer actions. Several small molecules have been described as ETC inhibitors with different consequences on mitochondrial bioenergetics, viability and proliferation of cancer cells, when the substrate availability is controlled to favor either the glycolytic or OXPHOS pathway. These ETC inhibitors can be grouped as 1) inhibitors of a respiratory complex (e.g. rotenoids, vanilloids, alkaloids, biguanides and polyphenols), 2) inhibitors of several respiratory complexes (e.g. capsaicin, ME-344 and epigallocatechin-3 gallate) and 3) inhibitors of ETC activity (e.g. elesclomol and VLX600). Although pharmacological ETC inhibition may produce cell death and a decrease of proliferation of cancer cells, factors such as degree of inhibition of ETC activity by small molecules, bioenergetic profile and metabolic flexibility of different cancer types or subpopulations of cells in a particular cancer type, can affect the impact of the anti-cancer actions. Particularly interesting are the adaptive mechanisms induced by ETC inhibition, such as induction of glutamine-dependent reductive carboxylation, which may offer a strategy to sensitize cancer cells to inhibitors of glutamine metabolism.

  7. Testing a bioenergetics-based habitat choice model: bluegill (Lepomis macrochirus) responses to food availability and temperature

    USGS Publications Warehouse

    2011-01-01

    Using an automated shuttlebox system, we conducted patch choice experiments with 32, 8–12 g bluegill sunfish (Lepomis macrochirus) to test a behavioral energetics hypothesis of habitat choice. When patch temperature and food levels were held constant within patches but different between patches, we expected bluegill to choose patches that maximized growth based on the bioenergetic integration of food and temperature as predicted by a bioenergetics model. Alternative hypotheses were that bluegill may choose patches based only on food (optimal foraging) or temperature (behavioral thermoregulation). The behavioral energetics hypothesis was not a good predictor of short-term (from minutes to weeks) patch choice by bluegill; the behavioral thermoregulation hypothesis was the best predictor. In the short-term, food and temperature appeared to affect patch choice hierarchically; temperature was more important, although food can alter temperature preference during feeding periods. Over a 19-d experiment, mean temperatures occupied by fish offered low rations did decline as predicted by the behavioral energetics hypothesis, but the decline was less than 1.0 °C as opposed to a possible 5 °C decline. A short-term, bioenergetic response to food and temperature may be precluded by physiological costs of acclimation not considered explicitly in the behavioral energetics hypothesis.

  8. Arabidopsis Seed Mitochondria Are Bioenergetically Active Immediately upon Imbibition and Specialize via Biogenesis in Preparation for Autotrophic Growth[OPEN

    PubMed Central

    Benamar, Abdelilah

    2017-01-01

    Seed germination is a vital developmental transition for production of progeny by sexual reproduction in spermatophytes. Quiescent cells in nondormant dry embryos are reawakened first by imbibition and then by perception of germination triggers. Reanimated tissues enter into a germination program requiring energy for expansion growth. However, germination requires that embryonic tissues develop to support the more energy-demanding processes of cell division and organogenesis of the new seedling. Reactivation of mitochondria to supply the required energy is thus a key process underpinning germination and seedling survival. Using live imaging, we investigated reactivation of mitochondrial bioenergetics and dynamics using Arabidopsis thaliana as a model. Bioenergetic reactivation, visualized by presence of a membrane potential, is immediate upon rehydration. However, reactivation of mitochondrial dynamics only occurs after transfer to germination conditions. Reactivation of mitochondrial bioenergetics is followed by dramatic reorganization of the chondriome (all mitochondrial in a cell, collectively) involving massive fusion and membrane biogenesis to form a perinuclear tubuloreticular structure enabling mixing of previously discrete mitochondrial DNA nucleoids. The end of germination coincides with fragmentation of the chondriome, doubling of mitochondrial number, and heterogeneous redistribution of nucleoids among the mitochondria, generating a population of mitochondria tailored to seedling growth. PMID:28062752

  9. Nutrition and Training Influences on the Regulation of Mitochondrial Adenosine Diphosphate Sensitivity and Bioenergetics.

    PubMed

    Holloway, Graham P

    2017-03-01

    Since the seminal finding almost 50 years ago that exercise training increases mitochondrial content in skeletal muscle, a considerable amount of research has been dedicated to elucidate the mechanisms inducing mitochondrial biogenesis. The discovery of peroxisome proliferator-activated receptor γ co-activator 1α as a major regulator of exercise-induced gene transcription was instrumental in beginning to understand the signals regulating this process. However, almost two decades after its discovery, our understanding of the signals inducing mitochondrial biogenesis remain poorly defined, limiting our insights into possible novel training modalities in elite athletes that can increase the oxidative potential of muscle. In particular, the role of mitochondrial reactive oxygen species has received very little attention; however, several lifestyle interventions associated with an increase in mitochondrial reactive oxygen species coincide with the induction of mitochondrial biogenesis. Furthermore, the diminishing returns of exercise training are associated with reductions in exercise-induced, mitochondrial-derived reactive oxygen species. Therefore, research focused on altering redox signaling in elite athletes may prove to be effective at inducing mitochondrial biogenesis and augmenting training regimes. In the context of exercise performance, the biological effect of increasing mitochondrial content is an attenuated rise in free cytosolic adenosine diphosphate (ADP), and subsequently decreased carbohydrate flux at a given power output. Recent evidence has shown that mitochondrial ADP sensitivity is a regulated process influenced by nutritional interventions, acute exercise, and exercise training. This knowledge raises the potential to improve mitochondrial bioenergetics in the absence of changes in mitochondrial content. Elucidating the mechanisms influencing the acute regulation of mitochondrial ADP sensitivity could have performance benefits in athletes

  10. Bioenergetic and pharmacokinetic model for exposure of common loon (Gavia immer) chicks to methylmercury

    USGS Publications Warehouse

    Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Fournier, F.

    2007-01-01

    A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.4, and 1.2 ??g/g wet mass (delivered as CH3HgCl). Predicted food intake matched observed intake through 50 d of age but then exceeded observed intake by an amount that grew progressively larger with age, reaching a significant overestimate of 28% by the end of the trial. Respiration in older, nongrowing birds probably was overestimated by using rates measured in younger, growing birds. Close agreement was found between simulations and measured blood Hg, which varied significantly with dietary Hg and age. Although chicks may hatch with different blood Hg levels, their blood level is determined mainly by dietary Hg level beyond approximately two weeks of age. The model also may be useful for predicting Hg levels in adults and in the eggs that they lay, but its accuracy in both chicks and adults needs to be tested in free-living birds. ?? 2007 SETAC.

  11. Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models

    USGS Publications Warehouse

    Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle

    2016-04-05

    Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.

  12. p53/CEP-1 Increases or Decreases Lifespan, Depending on Level of Mitochondrial Bioenergetic Stress

    PubMed Central

    Ventura, Natascia; Rea, Shane L.; Schiavi, Alfonso; Torgovnick, Alessandro; Testi, Roberto; Johnson, Thomas E.

    2009-01-01

    SUMMARY Mitochondrial pathologies underlie a number of life-shortening diseases in humans. In the nematode Caenorhabditis elegans, severely reduced expression of mitochondrial proteins involved in electron transport chain-mediated energy production also leads to pathological phenotypes, including arrested development and/or shorter life; in sharp contrast, mild suppression of these same proteins extends lifespan. Here we show that the C. elegans p53 ortholog cep-1 mediates these opposite effects. We find that cep-1 is required to extend longevity in response to mild suppression of several bioenergetically relevant mitochondrial proteins, including frataxin - the protein defective in patients with Friedreich’s Ataxia. Importantly we show that cep-1 also mediates both the developmental arrest and life shortening induced by severe mitochondrial stress. Our findings support an evolutionarily conserved function for p53 in modulating organismal responses to mitochondrial dysfunction and suggest that metabolic checkpoint responses may play a role in longevity control and in human mitochondrial-associated diseases. PMID:19416129

  13. Huntingtin protein is essential for mitochondrial metabolism, bioenergetics and structure in murine embryonic stem cells.

    PubMed

    Ismailoglu, Ismail; Chen, Qiuying; Popowski, Melissa; Yang, Lili; Gross, Steven S; Brivanlou, Ali H

    2014-07-15

    Mutations in the Huntington locus (htt) have devastating consequences. Gain-of-poly-Q repeats in Htt protein causes Huntington's disease (HD), while htt(-/-) mutants display early embryonic lethality. Despite its importance, the function of Htt remains elusive. To address this, we compared more than 3700 compounds in three syngeneic mouse embryonic stem cell (mESC) lines: htt(-/-), extended poly-Q (Htt-Q140/7), and wild-type mESCs (Htt-Q7/7) using untargeted metabolite profiling. While Htt-Q140/7 cells did not show major differences in cellular bioenergetics, we find extensive metabolic aberrations in htt(-/-) mESCs, including (i) complete failure of ATP production despite preservation of the mitochondrial membrane potential; (ii) near-maximal glycolysis, with little or no glycolytic reserve; (iii) marked ketogenesis; (iv) depletion of intracellular NTPs; (v) accelerated purine biosynthesis and salvage; and (vi) loss of mitochondrial structural integrity. Together, our findings reveal that Htt is necessary for mitochondrial structure and function from the earliest stages of embryogenesis, providing a molecular explanation for htt(-/-) early embryonic lethality.

  14. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law.

    PubMed

    Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo

    2006-03-01

    The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation-contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for 'metabolic pacing', synchronizing the cellular electrical and mechanical activities with energy supply processes.

  15. Cytochrome bd-Dependent Bioenergetics and Antinitrosative Defenses in Salmonella Pathogenesis

    PubMed Central

    Jones-Carson, Jessica; Husain, Maroof; Liu, Lin; Orlicky, David J.

    2016-01-01

    ABSTRACT In the course of an infection, Salmonella enterica occupies diverse anatomical sites with various concentrations of oxygen (O2) and nitric oxide (NO). These diatomic gases compete for binding to catalytic metal groups of quinol oxidases. Enterobacteriaceae express two evolutionarily distinct classes of quinol oxidases that differ in affinity for O2 and NO as well as stoichiometry of H+ translocated across the cytoplasmic membrane. The investigations presented here show that the dual function of bacterial cytochrome bd in bioenergetics and antinitrosative defense enhances Salmonella virulence. The high affinity of cytochrome bd for O2 optimizes respiratory rates in hypoxic cultures, and thus, this quinol oxidase maximizes bacterial growth under O2-limiting conditions. Our investigations also indicate that cytochrome bd, rather than cytochrome bo, is an intrinsic component of the adaptive antinitrosative toolbox of Salmonella. Accordingly, induction of cytochrome bd helps Salmonella grow and respire in the presence of inhibitory NO. The combined antinitrosative defenses of cytochrome bd and the flavohemoglobin Hmp account for a great part of the adaptations that help Salmonella recover from the antimicrobial activity of NO. Moreover, the antinitrosative defenses of cytochrome bd and flavohemoglobin Hmp synergize to promote Salmonella growth in systemic tissues. Collectively, our investigations indicate that cytochrome bd is a critical means by which Salmonella resists the nitrosative stress that is engendered in the innate response of mammalian hosts while it concomitantly allows for proper O2 utilization in tissue hypoxia. PMID:27999164

  16. The Bioenergetics of Isolated Mitochondria from Different Animal Models for Diabetes.

    PubMed

    Rendon, Dairo A

    2016-01-01

    Diabetes is a metabolic alteration characterized by a higher than normal blood glucose level. For the experimental study of the metabolic changes that occur during this illness, various animal models have been introduced: alloxan- and streptozotocin-injected animals, as well as depancreatized animals, as models for type 1 diabetes, and high-fat fed diabetic animals and laboratory animals with genetic diabetes as models for type 2 diabetes. All these models have been used to investigate specific events on the cellular and organ levels that occur as a consequence of diabetes. In particular, mitochondrial energy metabolism has been extensively studied using these experimental models for diabetes. The experimental results for the bioenergetics of isolated mitochondria harvested from different animal models for diabetes, with the exception of those obtained with high-fat fed diabetic animals, are conflicting; nevertheless, many researchers now consider mitochondrial energy dysfunction as one of the direct causes of the serious complications, in various organs and tissues, that are exhibited as a result of this illness. For this reason, it is important that future research clarify the true energy functional state of these organelles isolated from diabetic animals. In the present paper, the published data on this controversial but important issue of the energetic functioning of the mitochondria isolated from diabetic animals is reviewed. This paper also includes commentary on the status of current research and makes useful suggestions for the future direction of research on this topic.

  17. Mitochondrial Dysfunction in Alzheimer’s Disease and the Rationale for Bioenergetics Based Therapies

    PubMed Central

    Onyango, Isaac G.; Dennis, Jameel; Khan, Shaharyah M.

    2016-01-01

    Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far. PMID:27114851

  18. Photoheterotrophic Fluxome in Synechocystis sp. Strain PCC 6803 and Its Implications for Cyanobacterial Bioenergetics

    PubMed Central

    You, Le; He, Lian

    2014-01-01

    This study investigated metabolic responses in Synechocystis sp. strain PCC 6803 to photosynthetic impairment. We used 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; a photosystem II inhibitor) to block O2 evolution and ATP/NADPH generation by linear electron flow. Based on 13C-metabolic flux analysis (13C-MFA) and RNA sequencing, we have found that Synechocystis sp. PCC 6803 employs a unique photoheterotrophic metabolism. First, glucose catabolism forms a cyclic route that includes the oxidative pentose phosphate (OPP) pathway and the glucose-6-phosphate isomerase (PGI) reaction. Glucose-6-phosphate is extensively degraded by the OPP pathway for NADPH production and is replenished by the reversed PGI reaction. Second, the Calvin cycle is not fully functional, but RubisCO continues to fix CO2 and synthesize 3-phosphoglycerate. Third, the relative flux through the complete tricarboxylic acid (TCA) cycle and succinate dehydrogenase is small under heterotrophic conditions, indicating that the newly discovered cyanobacterial TCA cycle (via the γ-aminobutyric acid pathway or α-ketoglutarate decarboxylase/succinic semialdehyde dehydrogenase) plays a minimal role in energy metabolism. Fourth, NAD(P)H oxidation and the cyclic electron flow (CEF) around photosystem I are the two main ATP sources, and the CEF accounts for at least 40% of total ATP generation from photoheterotrophic metabolism (without considering maintenance loss). This study not only demonstrates a new topology for carbohydrate oxidation but also provides quantitative insights into metabolic bioenergetics in cyanobacteria. PMID:25535269

  19. Restoration of myocardial bioenergetic metabolism in swine after periods of ischemic ventricular fibrillation.

    PubMed

    Skinner, F P; Levitzky, M G; Scott, R F; Fricks, J

    1975-05-01

    Myocardial mitochondrial function and high energy phosphate levels were measured in normal swine, in swine after either 5 or 10 minutes of ischemic ventricular fibrillation (IVF) while on cardiopulmonary bypass, and in swine defibrillated after either 5 or 10 minutes of IVE. The damage to myocardial mitochondria induced by IVF, such as partial uncoupling, decreased oxygen uptake, and loss of cytochrome oxidase activity, was completely reversed almost instantly by coronary artery perfusion and the restoration of sinus rhythm. After either 5 or 10 minutes of IVF followed by coronary artery reperfusion and defibrillation, myocardial creatine phosphate (CP), adenosine monophosphate (AMP) and adenosine diphosphate (ADP) return to normal levels very rapidly. However, adenosine triphosphate (ATP) levels remain significantly lower than control levels. If the bioenergetic mechanisms of swine and human myocardium are similar, it appears that IVF at least for a 10 minute period produces no damage to myocardial mitochondria that is not corrected by perfusion of the coronary arteries and re-establishment of sinus rhythm. Furthermore, sinus rhythm can be re-established and maintained despite signficantly lower levels of myocardial ATP.

  20. Genome Analysis of Structure–Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme

    PubMed Central

    Degli Esposti, Mauro

    2016-01-01

    Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni–Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure–function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function. PMID:26615219

  1. The use of bioenergetic measurements for detecting sublethal pollutant-induced stress in aquatic animals

    SciTech Connect

    Carr, R.S. )

    1988-09-01

    A number of different techniques have been used to measure stress-induced shifts in metabolic pathways that influence growth and reproductive potential in aquatic animals. The different techniques that have been employed include bioenergetic measurements such as scope for growth, carbon flux, and O:N ratios. As part of the EPA monitoring program at the 106-Mile Deepwater Municipal Sludge Site, short-term toxicity tests will be conducted at sea during the summer of 1988 to determine the near-field effects of discharging sewage sludge at the 106-Mile Site. The toxicity tests will include exposing both indigenous zooplankton as well as standardized test species to water column and sea-surface microlayer samples obtained from sewage sludge discharge plumes. At the termination of these short-term tests O:N ratio measurements will be made on surviving individuals as an additional measure of sublethal effects. The presentation will include the preliminary results from these field studies as well as a discussion of the utility of this approach for both laboratory and field investigations.

  2. The Plasma Membrane of the Cyanobacterium Gloeobacter violaceus Contains Segregated Bioenergetic Domains[C][W

    PubMed Central

    Rexroth, Sascha; Mullineaux, Conrad W.; Ellinger, Dorothea; Sendtko, Esther; Rögner, Matthias; Koenig, Friederike

    2011-01-01

    The light reactions of oxygenic photosynthesis almost invariably take place in the thylakoid membranes, a highly specialized internal membrane system located in the stroma of chloroplasts and the cytoplasm of cyanobacteria. The only known exception is the primordial cyanobacterium Gloeobacter violaceus, which evolved before the appearance of thylakoids and harbors the photosynthetic complexes in the plasma membrane. Thus, studies on G. violaceus not only shed light on the evolutionary origin and the functional advantages of thylakoid membranes but also might include insights regarding thylakoid formation during chloroplast differentiation. Based on biochemical isolation and direct in vivo characterization, we report here structural and functional domains in the cytoplasmic membrane of a cyanobacterium. Although G. violaceus has no internal membranes, it does have localized domains with apparently specialized functions in its plasma membrane, in which both the photosynthetic and the respiratory complexes are concentrated. These bioenergetic domains can be visualized by confocal microscopy, and they can be isolated by a simple procedure. Proteomic analysis of these domains indicates their physiological function and suggests a protein sorting mechanism via interaction with membrane-intrinsic terpenoids. Based on these results, we propose specialized domains in the plasma membrane as evolutionary precursors of thylakoids. PMID:21642550

  3. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law

    PubMed Central

    Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo

    2006-01-01

    The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283

  4. Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol.

    PubMed

    Papazi, Aikaterini; Ioannou, Andreas; Symeonidi, Myrto; Doulis, Andreas G; Kotzabasis, Kiriakos

    2017-02-07

    Olive mill wastewater has significant polluting properties due to its high phenolic content [mainly tyrosol (trs) and hydroxytyrosol (htrs)]. Growth kinetics and a series of fluorescence induction measurements for Scenedesmus obliquus cultures showed that microalgae can be tolerant of these phenolic compounds. Changes in the cellular energy reserves and concentration of the phenolic compounds adjust the "toxicity" of these compounds to the microalgae and are, therefore, the main parameters that affect biodegradation. Autotrophic growth conditions of microalgae and high concentrations of trs or htrs induce higher biodegradation compared with mixotrophic conditions and lower phenolic concentrations. When microalgae face trs and htrs simultaneously, biodegradation begins from htrs, the more energetically demanding compound. All these lead to the conviction that microalgae have a "rational" management of cellular energy balance. Low toxicity levels lead to higher growth and lower biodegradation, whereas higher toxicity levels lead to lower growth and higher biodegradation. The selection of appropriate conditions (compatible to the bioenergetic strategies of microalgae) seems to be the key for a successful biodegradation of a series of toxic compounds, thus paving the way for future biotechnological applications for solving complicated pollution problems, like the detoxification of olive mill wastewater.

  5. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    PubMed Central

    Burch, Tanya C.; Rhim, Johng S.

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT2 PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  6. Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics

    PubMed Central

    Ding, Yang; Batista, Bruno; Steinbock, Oliver; Cardoso, Silvana S. S.

    2016-01-01

    To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms. PMID:27486248

  7. Bioenergetic cues shift FXR splicing towards FXRα2 to modulate hepatic lipolysis and fatty acid metabolism

    PubMed Central

    Correia, Jorge C.; Massart, Julie; de Boer, Jan Freark; Porsmyr-Palmertz, Margareta; Martínez-Redondo, Vicente; Agudelo, Leandro Z.; Sinha, Indranil; Meierhofer, David; Ribeiro, Vera; Björnholm, Marie; Sauer, Sascha; Dahlman-Wright, Karin; Zierath, Juleen R.; Groen, Albert K.; Ruas, Jorge L.

    2015-01-01

    Objective Farnesoid X receptor (FXR) plays a prominent role in hepatic lipid metabolism. The FXR gene encodes four proteins with structural differences suggestive of discrete biological functions about which little is known. Methods We expressed each FXR variant in primary hepatocytes and evaluated global gene expression, lipid profile, and metabolic fluxes. Gene delivery of FXR variants to Fxr−/− mouse liver was performed to evaluate their role in vivo. The effects of fasting and physical exercise on hepatic Fxr splicing were determined. Results We show that FXR splice isoforms regulate largely different gene sets and have specific effects on hepatic metabolism. FXRα2 (but not α1) activates a broad transcriptional program in hepatocytes conducive to lipolysis, fatty acid oxidation, and ketogenesis. Consequently, FXRα2 decreases cellular lipid accumulation and improves cellular insulin signaling to AKT. FXRα2 expression in Fxr−/− mouse liver activates a similar gene program and robustly decreases hepatic triglyceride levels. On the other hand, FXRα1 reduces hepatic triglyceride content to a lesser extent and does so through regulation of lipogenic gene expression. Bioenergetic cues, such as fasting and exercise, dynamically regulate Fxr splicing in mouse liver to increase Fxrα2 expression. Conclusions Our results show that the main FXR variants in human liver (α1 and α2) reduce hepatic lipid accumulation through distinct mechanisms and to different degrees. Taking this novel mechanism into account could greatly improve the pharmacological targeting and therapeutic efficacy of FXR agonists. PMID:26909306

  8. Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics.

    PubMed

    Ding, Yang; Batista, Bruno; Steinbock, Oliver; Cartwright, Julyan H E; Cardoso, Silvana S S

    2016-08-16

    To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms.

  9. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function.

    PubMed

    Carraretto, Luca; Teardo, Enrico; Checchetto, Vanessa; Finazzi, Giovanni; Uozumi, Nobuyuki; Szabo, Ildiko

    2016-03-07

    Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.

  10. Waterbird predation on fish in western Lake Erie: a bioenergetics model application

    USGS Publications Warehouse

    Madenjian, Charles P.; Gabrey, Steven W.

    1995-01-01

    To better understand the role of piscivorous waterbirds in the food web of western Lake Erie, we applied a bioenergetics model to determine their total fish consumption, The important nesting species included the Herring Gull (Larus argentatus), Ring-billed Gull (L. delawarensis), Double-crested Cormorant (Phalacrocorax auritus), Great Blue Heron (Ardea herodias), Black-crowned Night-Heron (Nycticorax nycticorax), and Great Egret (Casmerodius albus). The impact of migrant waterbirds, including the Red-breasted Merganser (Mergus serrator), on western Lake Erie fish biomass was also considered in the analysis. According to the modeling results, during the early 1990s, piscivorous waterbirds consumed 13,368 tonnes of fish from western Lake Erie each year. This tonnage was equivalent to 15.2% of the prey fish biomass needed to support the walleye (Stizostedion vitreum) population in western Lake Erie during a single growing season. The model application was useful in quantifying energy flow between birds and fish in a large lake ecosystem.

  11. Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans

    PubMed Central

    2010-01-01

    Background The gene daf-2 encodes the single insulin/insulin growth factor-1-like receptor of Caenorhabditis elegans. The reduction-of-function allele e1370 induces several metabolic alterations and doubles lifespan. Results We found that the e1370 mutation alters aerobic energy production substantially. In wild-type worms the abundance of key mitochondrial proteins declines with age, accompanied by a dramatic decrease in energy production, although the mitochondrial mass, inferred from the mitochondrial DNA copy number, remains unaltered. In contrast, the age-dependent decrease of both key mitochondrial proteins and bioenergetic competence is considerably attenuated in daf-2(e1370) adult animals. The increase in daf-2(e1370) mitochondrial competence is associated with a higher membrane potential and increased reactive oxygen species production, but with little damage to mitochondrial protein or DNA. Together these results point to a higher energetic efficiency of daf-2(e1370) animals. Conclusions We conclude that low daf-2 function alters the overall rate of ageing by a yet unidentified mechanism with an indirect protective effect on mitochondrial function. PMID:20584279

  12. Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics.

    PubMed

    Pancrazi, Laura; Di Benedetto, Giulietta; Colombaioni, Laura; Della Sala, Grazia; Testa, Giovanna; Olimpico, Francesco; Reyes, Aurelio; Zeviani, Massimo; Pozzan, Tullio; Costa, Mario

    2015-11-10

    Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277-302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (ΔΨm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272-481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions.

  13. Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics

    PubMed Central

    Pancrazi, Laura; Di Benedetto, Giulietta; Colombaioni, Laura; Della Sala, Grazia; Testa, Giovanna; Olimpico, Francesco; Reyes, Aurelio; Zeviani, Massimo; Pozzan, Tullio; Costa, Mario

    2015-01-01

    Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277–302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (ΔΨm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272–481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions. PMID:26508630

  14. Acetate is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases

    PubMed Central

    Mashimo, Tomoyuki; Pichumani, Kumar; Vemireddy, Vamsidhara; Hatanpaa, Kimmo J.; Singh, Dinesh Kumar; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara G.; Kovacs, Zoltan; Foong, Chan; Huang, Zhiguang; Barnett, Samuel; Mickey, Bruce E.; DeBerardinis, Ralph J.; Tu, Benjamin P.; Maher, Elizabeth A.; Bachoo, Robert M.

    2015-01-01

    Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using 13C-NMR analysis of brain tumors resected from patients during infusion of 13C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-13C]acetate and can do so simultaneously with [1,6-13C]glucose oxidation. The tumors do not oxidize [U-13C]glutamine. In vivo oxidation of [1,2-13C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth. PMID:25525878

  15. Bio-energetic changes in human gastrocnemius muscle 1-2 days after strenuous exercise.

    PubMed

    Kemp, G J; Taylor, D J; Radda, G K; Rajagopalan, B

    1992-09-01

    [31P]magnetic resonance spectroscopy was used to study the metabolic sequelae of intense muscular activity in gastrocnemius of seven subjects 1-2 days after a 67-mile bicycle ride. The muscle was examined at rest, during a test exercise and during recovery from test exercise. Post-ride and pre-ride results were compared. At rest, the ratio of phosphocreatine to ATP (PCr/ATP) was increased post-ride; during test exercise PCr/(PCr+Pi) was lower post-ride; and the recoveries of PCr, Pi and PCr/(PCr+Pi) after test exercise were delayed, with decreased 'overshoot' of PCr/(PCr+Pi) (which is due to recovery of Pi to below its resting value). Mild mitochondrial damage (perhaps due to exposure to high cytosolic [Pi] during the bicycle ride) may explain some of these results. In contrast to reports of largely eccentric exercise there was no increase in resting Pi/ATP. We have thus demonstrated perturbations of muscle bio-energetics 1-2 days after strenuous exercise, in the absence of convincing enzymological evidence of muscle damage.

  16. Sexual Dimorphism in the Alterations of Cardiac Muscle Mitochondrial Bioenergetics Associated to the Ageing Process.

    PubMed

    Colom, Bartomeu; Oliver, Jordi; Garcia-Palmer, Francisco J

    2015-11-01

    The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function.

  17. Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging.

    PubMed

    Lores-Arnaiz, Silvia; Lombardi, Paulina; Karadayian, Analía G; Orgambide, Federico; Cicerchia, Daniela; Bustamante, Juanita

    2016-02-01

    Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton leak were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.

  18. A novel method for pulmonary research: assessment of bioenergetic function at the air-liquid interface.

    PubMed

    Xu, Weiling; Janocha, Allison J; Leahy, Rachel A; Klatte, Ryan; Dudzinski, Dave; Mavrakis, Lori A; Comhair, Suzy A A; Lauer, Mark E; Cotton, Calvin U; Erzurum, Serpil C

    2014-01-01

    Air-liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air-liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases.

  19. Citicoline enhances frontal lobe bioenergetics as measured by phosphorus magnetic resonance spectroscopy.

    PubMed

    Silveri, M M; Dikan, J; Ross, A J; Jensen, J E; Kamiya, T; Kawada, Y; Renshaw, P F; Yurgelun-Todd, D A

    2008-11-01

    Citicoline supplementation has been used to ameliorate memory disturbances in older people and those with Alzheimer's disease. This study used MRS to characterize the effects of citicoline on high-energy phosphate metabolites and constituents of membrane synthesis in the frontal lobe. Phosphorus ((31)P) metabolite data were acquired using a three-dimensional chemical-shift imaging protocol at 4 T from 16 healthy men and women (mean +/- SD age 47.3 +/- 5.4 years) who orally self-administered 500 mg or 2000 mg Cognizin Citicoline (Kyowa Hakko Kogyo Co., Ltd, Ibaraki, Japan) for 6 weeks. Individual (31)P metabolites were quantified in the frontal lobe (anterior cingulate cortex) and a comparison region (parieto-occipital cortex). Significant increases in phosphocreatine (+7%), beta-nucleoside triphosphates (largely ATP in brain, +14%) and the ratio of phosphocreatine to inorganic phosphate (+32%), as well as significant changes in membrane phospholipids, were observed in the anterior cingulate cortex after 6 weeks of citicoline treatment. These treatment-related alterations in phosphorus metabolites were not only regionally specific, but tended to be of greater magnitude in subjects who received the lower dose. These data show that citicoline improves frontal lobe bioenergetics and alters phospholipid membrane turnover. Citicoline supplementation may therefore help to mitigate cognitive declines associated with aging by increasing energy reserves and utilization, as well as increasing the amount of essential phospholipid membrane components needed to synthesize and maintain cell membranes.

  20. Effects of sleep deprivation on brain bioenergetics, sleep, and cognitive performance in cocaine-dependent individuals.

    PubMed

    Trksak, George H; Bracken, Bethany K; Jensen, J Eric; Plante, David T; Penetar, David M; Tartarini, Wendy L; Maywalt, Melissa A; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent ³¹P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, ³¹P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse.

  1. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics.

    PubMed

    Módis, Katalin; Ju, YoungJun; Ahmad, Akbar; Untereiner, Ashley A; Altaany, Zaid; Wu, Lingyun; Szabo, Csaba; Wang, Rui

    2016-11-01

    Mammalian cells can utilize hydrogen sulfide (H2S) to support mitochondrial respiration. The aim of our study was to explore the potential role of S-sulfhydration (a H2S-induced posttranslational modification, also known as S-persulfidation) of the mitochondrial inner membrane protein ATP synthase (F1F0 ATP synthase/Complex V) in the regulation of mitochondrial bioenergetics. Using a biotin switch assay, we have detected S-sulfhydration of the α subunit (ATP5A1) of ATP synthase in response to exposure to H2S in vitro. The H2S generator compound NaHS induced S-sulfhydration of ATP5A1 in HepG2 and HEK293 cell lysates in a concentration-dependent manner (50-300μM). The activity of immunocaptured mitochondrial ATP synthase enzyme isolated from HepG2 and HEK293 cells was stimulated by NaHS at low concentrations (10-100nM). Site-directed mutagenesis of ATP5A1 in HEK293 cells demonstrated that cysteine residues at positions 244 and 294 are subject to S-sulfhydration. The double mutant ATP synthase protein (C244S/C294S) showed a significantly reduced enzyme activity compared to control and the single-cysteine-mutated recombinant proteins (C244S or C294S). To determine whether endogenous H2S plays a role in the basal S-sulfhydration of ATP synthase in vivo, we compared liver tissues harvested from wild-type mice and mice deficient in cystathionine-gamma-lyase (CSE, one of the three principal mammalian H2S-producing enzymes). Significantly reduced S-sulfhydration of ATP5A1 was observed in liver homogenates of CSE(-/-) mice, compared to wild-type mice, suggesting a physiological role for CSE-derived endogenous H2S production in the S-sulfhydration of ATP synthase. Various forms of critical illness (including burn injury) upregulate H2S-producing enzymes and stimulate H2S biosynthesis. In liver tissues collected from mice subjected to burn injury, we detected an increased S-sulfhydration of ATP5A1 at the early time points post-burn. At later time points (when systemic H2S

  2. Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model

    PubMed Central

    Bianchi, Daniele; Galbraith, Eric D.

    2017-01-01

    Human exploitation of marine resources is profoundly altering marine ecosystems, while climate change is expected to further impact commercially-harvested fish and other species. Although the global fishery is a highly complex system with many unpredictable aspects, the bioenergetic limits on fish production and the response of fishing effort to profit are both relatively tractable, and are sure to play important roles. Here we describe a generalized, coupled biological-economic model of the global marine fishery that represents both of these aspects in a unified framework, the BiOeconomic mArine Trophic Size-spectrum (BOATS) model. BOATS predicts fish production according to size spectra as a function of net primary production and temperature, and dynamically determines harvest spectra from the biomass density and interactive, prognostic fishing effort. Within this framework, the equilibrium fish biomass is determined by the economic forcings of catchability, ex-vessel price and cost per unit effort, while the peak harvest depends on the ecosystem parameters. Comparison of a large ensemble of idealized simulations with observational databases, focusing on historical biomass and peak harvests, allows us to narrow the range of several uncertain ecosystem parameters, rule out most parameter combinations, and select an optimal ensemble of model variants. Compared to the prior distributions, model variants with lower values of the mortality rate, trophic efficiency, and allometric constant agree better with observations. For most acceptable parameter combinations, natural mortality rates are more strongly affected by temperature than growth rates, suggesting different sensitivities of these processes to climate change. These results highlight the utility of adopting large-scale, aggregated data constraints to reduce model parameter uncertainties and to better predict the response of fisheries to human behaviour and climate change. PMID:28103280

  3. Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status.

    PubMed

    Cardoso, Susana; Carvalho, Cristina; Marinho, Ricardo; Simões, Anabel; Sena, Cristina M; Matafome, Paulo; Santos, Maria S; Seiça, Raquel M; Moreira, Paula I

    2014-10-01

    Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects.

  4. The energy blockers 3-bromopyruvate and lonidamine: effects on bioenergetics of brain mitochondria.

    PubMed

    Macchioni, Lara; Davidescu, Magdalena; Roberti, Rita; Corazzi, Lanfranco

    2014-10-01

    Tumor cells favor abnormal energy production via aerobic glycolysis and show resistance to apoptosis, suggesting the involvement of mitochondrial dysfunction. The differences between normal and cancer cells in their energy metabolism provide a biochemical basis for developing new therapeutic strategies. The energy blocker 3-bromopyruvate (3BP) can eradicate liver cancer in animals without associated toxicity, and is a potent anticancer towards glioblastoma cells. Since mitochondria are 3BP targets, in this work the effects of 3BP on the bioenergetics of normal rat brain mitochondria were investigated in vitro, in comparison with the anticancer agent lonidamine (LND). Whereas LND impaired oxygen consumption dependent on any complex of the respiratory chain, 3BP was inhibitory to malate/pyruvate and succinate (Complexes I and II), but preserved respiration from glycerol-3-phosphate and ascorbate (Complex IV). Accordingly, although electron flow along the respiratory chain and ATP levels were decreased by 3BP in malate/pyruvate- and succinate-fed mitochondria, they were not significantly influenced from glycerol-3-phosphate- or ascorbate-fed mitochondria. LND produced a decrease in electron flow from all substrates tested. No ROS were produced from any substrate, with the exception of 3BP-induced H(2)O(2) release from succinate, which suggests an antimycin-like action of 3BP as an inhibitor of Complex III. We can conclude that 3BP does not abolish completely respiration and ATP synthesis in brain mitochondria, and has a limited effect on ROS production, confirming that this drug may have limited harmful effects on normal cells.

  5. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    NASA Astrophysics Data System (ADS)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the

  6. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.

  7. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    NASA Astrophysics Data System (ADS)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  8. An overview of methods for developing bioenergetic and life history models for rare and endangered species

    USGS Publications Warehouse

    Petersen, J.H.; DeAngelis, D.L.; Paukert, C.P.

    2008-01-01

    Many fish species are at risk to some degree, and conservation efforts are planned or underway to preserve sensitive populations. For many imperiled species, models could serve as useful tools for researchers and managers as they seek to understand individual growth, quantify predator-prey dynamics, and identify critical sources of mortality. Development and application of models for rare species however, has been constrained by small population sizes, difficulty in obtaining sampling permits, limited opportunities for funding, and regulations on how endangered species can be used in laboratory studies. Bioenergetic and life history models should help with endangered species-recovery planning since these types of models have been used successfully in the last 25 years to address management problems for many commercially and recreationally important fish species. In this paper we discuss five approaches to developing models and parameters for rare species. Borrowing model functions and parameters from related species is simple, but uncorroborated results can be misleading. Directly estimating parameters with laboratory studies may be possible for rare species that have locally abundant populations. Monte Carlo filtering can be used to estimate several parameters by means of performing simple laboratory growth experiments to first determine test criteria. Pattern-oriented modeling (POM) is a new and developing field of research that uses field-observed patterns to build, test, and parameterize models. Models developed using the POM approach are closely linked to field data, produce testable hypotheses, and require a close working relationship between modelers and empiricists. Artificial evolution in individual-based models can be used to gain insight into adaptive behaviors for poorly understood species and thus can fill in knowledge gaps. ?? Copyright by the American Fisheries Society 2008.

  9. Comparison of selenium bioaccumulation in the clams Corbicula fluminea and Potamocorbula amurensis: A bioenergetic modeling approach

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.

    2006-01-01

    Selenium uptake from food (assimilation efficiency) and dissolved phase (influx rate) as well as loss kinetics (efflux rate) were compared between two bivalves, Corbicula fluminea and Potamocorbula amurensis. The effects of salinity and temperature on these kinetic parameters for both clam species also were evaluated. The Asiatic clam, C. fluminea, more efficiently assimilated Se associated with algae (66-87%) than Se associated with oxic sediments (20-37%). However, no consistent difference was found between Se assimilation efficiencies from both food types (19-60%) for P. amurensis. The temperature and salinity had a minor influence on the Se assimilation from ingested food. However, the effects of temperature and salinity were more evident in the uptake from dissolved sources. The influx rate of Se(IV) increased by threefold with the increase of temperature from 5 to 21??C for C. fluminea. The increase of salinity from 4 to 20 psu decreased the uptake rate constant (ku) of Se in P. amurensis from 0.011 to 0.005 L/g/h, whereas salinity change (0-8 psu) had a negligible effect on the Se influx rate of C. fluminea. The Se influx rate of P. amurensis decreased by half with the 3.5-fold increase in tissue dry weight. The rate constant of loss was greater for P. amurensis (0.029/d at 8 psu) than for C. fluminea (0.014/d at 0 psu and 0.01/d at 8 psu). A bioenergetic model suggests that dietary uptake is the dominant pathway for Se bioaccumulation in the two clams in San Francisco Bay and that interspecies differences in Se bioaccumulation can be explained by differences in food ingestion rates. ?? 2006 SETAC.

  10. Bioenergetic Mechanisms in Astrocytes May Contribute to Amyloid Plaque Deposition and Toxicity*

    PubMed Central

    Fu, Wen; Shi, Diya; Westaway, David; Jhamandas, Jack H.

    2015-01-01

    Alzheimer disease (AD) is characterized neuropathologically by synaptic disruption, neuronal loss, and deposition of amyloid β (Aβ) protein in brain structures that are critical for memory and cognition. There is increasing appreciation, however, that astrocytes, which are the major non-neuronal glial cells, may play an important role in AD pathogenesis. Unlike neurons, astrocytes are resistant to Aβ cytotoxicity, which may, in part, be related to their greater reliance on glycolytic metabolism. Here we show that, in cultures of human fetal astrocytes, pharmacological inhibition or molecular down-regulation of a main enzymatic regulator of glycolysis, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3), results in increased accumulation of Aβ within and around astrocytes and greater vulnerability of these cells to Aβ toxicity. We further investigated age-dependent changes in PFKFB3 and astrocytes in AD transgenic mice (TgCRND8) that overexpress human Aβ. Using a combination of Western blotting and immunohistochemistry, we identified an increase in glial fibrillary acidic protein expression in astrocytes that paralleled the escalation of the Aβ plaque burden in TgCRND8 mice in an age-dependent manner. Furthermore, PFKFB3 expression also demonstrated an increase in these mice, although at a later age (9 months) than GFAP and Aβ. Immunohistochemical staining showed significant reactive astrogliosis surrounding Aβ plaques with increased PFKFB3 activity in 12-month-old TgCRND8 mice, an age when AD pathology and behavioral deficits are fully manifested. These studies shed light on the unique bioenergetic mechanisms within astrocytes that may contribute to the development of AD pathology. PMID:25814669

  11. Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress

    PubMed Central

    Módis, Katalin; Gerő, Domokos; Erdélyi, Katalin; Szoleczky, Petra; DeWitt, Douglas; Szabo, Csaba

    2012-01-01

    Purpose The goal of the current studies was to elucidate the role of the principal poly(ADP-ribose)polymerase isoform, PARP1 in the regulation of cellular energetics in endothelial cells under resting conditions and during oxidative stress. Methods We utilized bEnd.3 endothelial cells and A549 human transformed epithelial cells. PARP1 was inhibited either by pharmacological inhibitors or by siRNA silencing. The Seahorse XF24 Extracellular Flux Analyzer was used to measure indices of mitochondrial respiration (oxygen consumption rate) and of glycolysis (extracellular acidification rate). Cell viability, cellular and mitochondrial NAD+ levels and mitochondrial biogenesis were also measured. Results Silencing of PARP1 increased basal cellular parameters of oxidative phosphorylation, providing direct evidence that PARP1 is a regulator of mitochondrial function in resting cells. Pharmacological inhibitors of PARP1 and siRNA silencing of PARP1 protected against the development of mitochondrial dysfunction and elevated the respiratory reserve capacity in endothelial cells exposed to oxidative stress. The observed effects were unrelated to an effect on mitochondrial biogenesis. Isolated mitochondria of A549 human transformed epithelial cells exhibited an improved resting bioenergetic status after stable lentiviral silencing of PARP1; these effects were associated with elevated resting mitochondrial NAD+ levels in PARP1 silenced cells. Conclusions PARP1 is a regulator of basal cellular energetics in resting endothelial and epithelial cells. Furthermore, endothelial cells respond with a decrease in their mitochondrial reserve capacity during low-level oxidative stress, an effect, which is attenuated by PARP1 inhibition. While PARP1 is a regulator of oxidative phosphorylation in resting and oxidatively stressed cells, it only exerts a minor effect on glycolysis. PMID:22198485

  12. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects

    PubMed Central

    Módis, Katalin; Bos, Eelke M; Calzia, Enrico; van Goor, Harry; Coletta, Ciro; Papapetropoulos, Andreas; Hellmich, Mark R; Radermacher, Peter; Bouillaud, Frédéric; Szabo, Csaba

    2014-01-01

    Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2S on complex IV is enhanced, which may shift the balance of H2S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2S (e.g. sepsis), while in other disease states H2S levels and H2S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2S-induced therapeutic ‘suspended animation’, a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991749

  13. Pancreatic cancer cell migration and metastasis is regulated by chemokine-biased agonism and bioenergetic signaling

    PubMed Central

    Roy, Ishan; McAllister, Donna M.; Gorse, Egal; Dixon, Kate; Piper, Clinton T.; Zimmerman, Noah P.; Getschman, Anthony E.; Tsai, Susan; Engle, Dannielle D.; Evans, Douglas B.; Volkman, Brian F.; Kalyanaraman, Balaraman; Dwinell, Michael B.

    2015-01-01

    Patients with pancreatic ductal adenocarcinoma (PDAC) invariably succumb to metastatic disease, but the underlying mechanisms that regulate PDAC cell movement and metastasis remain little understood. In this study, we investigated the effects of the chemokine gene CXCL12, which is silenced in PDAC tumors yet is sufficient to suppress growth and metastasis when re-expressed. Chemokines like CXCL12 regulate cell movement in a biphasic pattern, with peak migration typically in the low nanomolar concentration range. Herein, we tested the hypothesis that the biphasic cell migration pattern induced by CXCL12 reflected a bias of agonist bioenergetic signaling that might be exploited to interfere with PDAC metastasis. In human and murine PDAC cell models, we observed that non-migratory doses of CXCL12 were sufficient to decrease oxidative phosphorylation and glycolytic capacity and to increase levels of phosphorylated forms of the master metabolic kinase AMPK. Those same doses of CXCL12 locked myosin light chain into a phosphorylated state, thereby decreasing F-actin polymerization and preventing cell migration in a manner dependent upon AMPK and the calcium-dependent kinase CAMKII. Notably, at elevated concentrations of CXCL12 that were insufficient to trigger chemotaxis of PDAC cells, AMPK blockade resulted in increased cell movement. In two preclinical mouse models of PDAC, administration of CXCL12 decreased tumor dissemination, supporting our hypothesis that chemokine-biased agonist signaling may offer a useful therapeutic strategy. Our results offer a mechanistic rationale for further investigation of CXCL12 as a potential therapy to prevent or treat PDAC metastasis. PMID:26330165

  14. Acute starvation in C57BL/6J mice increases myocardial UCP2 and UCP3 protein expression levels and decreases mitochondrial bio-energetic function.

    PubMed

    Wang, Chun-Ming; Almsherqi, Zakaria A; McLachlan, Craig S; Matthews, Slade; Ramachandran, Malarmathy; Tay, Stacey Kh; Deng, Yuru

    2011-01-01

    Associations between uncoupling protein (UCP) expression and functional changes in myocardial mitochondrial bio-energetics have not been well studied during periods of starvation stress. Our aim was to study the effects of acute starvation, for 24 or 48 h, on combined cardiac mitochondrial function and UCP expression in mice. Isolated heart mitochondria from female mice starved for 48 h compared to that from mice fed revealed a significantly (p < 0.05) decreased adenosine diphosphate-to-oxygen ratio, a significantly increased proton leak and an increased GTP inhibition on palmitic acid-induced state 4 oxygen consumption (p < 0.05). These bio-energetic functional changes were associated with increases in mitochondrial UCP2 and UCP3 protein expression. In conclusion, our findings suggest that increased UCP2 and UCP3 levels may contribute to decreased myocardial mitochondrial bio-energetic function due to starvation.

  15. Genetic ablation of calcium-independent phospholipase A2gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype.

    PubMed

    Mancuso, David J; Sims, Harold F; Han, Xianlin; Jenkins, Christopher M; Guan, Shao Ping; Yang, Kui; Moon, Sung Ho; Pietka, Terri; Abumrad, Nada A; Schlesinger, Paul H; Gross, Richard W

    2007-11-30

    Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A(2) gamma (iPLA(2)gamma), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA(2)gamma in cellular bioenergetics, we generated mice null for the iPLA(2)gamma gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA(2)gamma display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA(2)gamma is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.

  16. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms: Progress report for period 1 January 1987 to 31 December 1987

    SciTech Connect

    Spotila, J.R.; Standora, E.A.

    1987-09-01

    We quantified the constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. We completed studies on the thermoregulation of largemouth bass, on the bioenergetics of the slider turtle, Trachemys scripta, and on the role of temperature dependent sex determination in the extinction of dinosaurs. We also began research to develop the three dimensional bioenergetic climate space for freshwater turtles, to determine the role of incubation temperature on the post hatching growth rate of the snapping turtle, Chelydra serpentina, to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field, to determine the field metabolic rates, body temperatures and water flux rates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. 60 refs., 9 figs.

  17. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer

    PubMed Central

    Szabo, Csaba; Coletta, Ciro; Chao, Celia; Módis, Katalin; Szczesny, Bartosz; Papapetropoulos, Andreas; Hellmich, Mark R.

    2013-01-01

    The physiological functions of hydrogen sulfide (H2S) include vasorelaxation, stimulation of cellular bioenergetics, and promotion of angiogenesis. Analysis of human colon cancer biopsies and patient-matched normal margin mucosa revealed the selective up-regulation of the H2S-producing enzyme cystathionine-β-synthase (CBS) in colon cancer, resulting in an increased rate of H2S production. Similarly, colon cancer-derived epithelial cell lines (HCT116, HT-29, LoVo) exhibited selective CBS up-regulation and increased H2S production, compared with the nonmalignant colonic mucosa cells, NCM356. CBS localized to the cytosol, as well as the mitochondrial outer membrane. ShRNA-mediated silencing of CBS or its pharmacological inhibition with aminooxyacetic acid reduced HCT116 cell proliferation, migration, and invasion; reduced endothelial cell migration in tumor/endothelial cell cocultures; and suppressed mitochondrial function (oxygen consumption, ATP turnover, and respiratory reserve capacity), as well as glycolysis. Treatment of nude mice with aminooxyacetic acid attenuated the growth of patient-derived colon cancer xenografts and reduced tumor blood flow. Similarly, CBS silencing of the tumor cells decreased xenograft growth and suppressed neovessel density, suggesting a role for endogenous H2S in tumor angiogenesis. In contrast to CBS, silencing of cystathionine-γ-lyase (the expression of which was unchanged in colon cancer) did not affect tumor growth or bioenergetics. In conclusion, H2S produced from CBS serves to (i) maintain colon cancer cellular bioenergetics, thereby supporting tumor growth and proliferation, and (ii) promote angiogenesis and vasorelaxation, consequently providing the tumor with blood and nutritients. The current findings identify CBS-derived H2S as a tumor growth factor and anticancer drug target. PMID:23836652

  18. Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica.

    PubMed

    Wallace, Bryan P; Williams, Cassondra L; Paladino, Frank V; Morreale, Stephen J; Lindstrom, R Todd; Spotila, James R

    2005-10-01

    Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20-0.74 W kg(-1)) and water fluxes (16-30% TBW day(-1), where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8+/-2.4 min (+/-1 s.d.), bottom times (2.7+/-0.8 min), and percentage of time spent in water temperatures (Tw) < or =24 degrees C (9.5+/-5.7%) increased with increasing mean maximum dive depths (22.6+/-7.1 m; all P< or =0.001). The FMRs increased with longer mean dive durations, bottom times and surface intervals and increased time spent in Tw< or =24 degrees C (all r2> or =0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7-44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.

  19. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line.

    PubMed

    Dier, Usawadee; Shin, Dong-Hui; Hemachandra, L P Madhubhani P; Uusitalo, Larissa M; Hempel, Nadine

    2014-01-01

    Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that

  20. Blood flow and muscle bio-energetics by 31P-nuclear magnetic resonance after local cold acclimation.

    PubMed

    Savourey, G; Clerc, L; Vallerand, A L; Leftheriotis, G; Mehier, H; Bittel, J H

    1992-01-01

    To clarify the origin of local cold adaptation and to define precisely its influence on muscle bio-energetics during local exercise, five subjects were subjected to repeated 5 degrees C cold water immersion of the right hand and forearm. The first aim of our investigation was therefore carried out by measuring local skin temperatures and peripheral blood flow during a cold hand test (5 degrees C, 5 min) followed by a 10-min recovery period. The 31P by nuclear magnetic resonance (31PNMR) muscle bio-energetic changes, indicating possible heat production changes, were measured during the recovery period. The second aim of our investigation was carried out by measuring 31PNMR muscle bioenergetics during handgrip exercise (10% of the maximal voluntary contraction for 5 min followed by a 10-min recovery period) performed both at a comfortable ambient temperature (22 degrees C; E) and after a cold hand test (EC), before and after local cold adaptation. Local cold adaptation, confirmed by warmer skin temperatures of the extremities (+30%, P less than 0.05), was related more to an increased peripheral blood flow, as shown by the smaller decrease in systolic peak [-245 (SEM 30) Hz vs -382 (SEM 95) Hz, P less than 0.05] than to a change in local heat production, because muscle bioenergetics did not vary. Acute local cold immersion decreased the inorganic phosphate:phosphocreatine (PC) ratio during EC compared to E [+0.006 (SEM 0.010) vs +0.078 (SEM 0.002) before acclimation and +0.029 (SEM 0.002) vs +0.090 (SEM 0.002) after acclimation respectively, P less than 0.05] without significant change in the PC:beta-adenosine triphosphate ratio and pH. Local adaptation did not modify these results statistically. The recovery of PC during E increased after acclimation [9.0 (SEM 0.2) min vs 3.0 (SEM 0.4) min, P less than 0.05]. These results suggested that local cold adaptation is related more to peripheral blood flow changes than to increased metabolic heat production in the muscle.

  1. Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria.

    PubMed

    Peters, J; Giudici-Orticoni, M T; Zaccai, G; Guiral, M

    2013-07-01

    Various models on membrane structure and organization of proteins and complexes in natural membranes emerged during the last years. However, the lack of systematic dynamical studies to complement structural investigations hindered the establishment of a more complete picture of these systems. Elastic incoherent neutron scattering gives access to the dynamics on a molecular level and was applied to natural membranes extracted from the hyperthermophile Aquifex aeolicus and the mesophile Wolinella succinogenes bacteria. The results permitted to extract a hierarchy of dynamic flexibility and atomic resilience within the samples, which correlated with the organization of proteins in bioenergetics complexes and the functionality of the membranes.

  2. [Effect of 17β-estradiol on bioenergetic processes in the heart mitochondria of ovariectomized rats with insulin resistance].

    PubMed

    Gorbenko, N I; Borikov, A Y; Ivanova, O V; Taran, E V; Zvyagina, T S

    2014-01-01

    Тhe bioenergetic processes in the heart mitochondria of Wistar rats with fructose-induced insulin resistance was investigated in female animals with different estrogen status. Respiration studies on isolated heart mitochondria by the polarographic method revealed that estrogen deficiency reduced complex IV activity, while its combination with high-fructose diet induced additional disturbances in the coupling of respiration and oxidative phosphorylation at the level of complex I of the electron transport chain. Exogenous 17b-estradiol inhibited the development of mitochondrial dysfunction in cardiomyocytes of ovariectomized rats with insulin resistance.

  3. Test of a foraging-bioenergetics model to evaluate growth dynamics of endangered pallid sturgeon (Scaphirhynchus albus)

    USGS Publications Warehouse

    Deslauriers, David; Heironimus, Laura B.; Chipps, Steven R.

    2016-01-01

    Factors affecting feeding and growth of early life stages of the federally endangered pallid sturgeon (Scaphirhynchus albus) are not fully understood, owing to their scarcity in the wild. In this study was we evaluated the performance of a combined foraging-bioenergetics model as a tool for assessing growth of age-0 pallid sturgeon in the Missouri River. In the laboratory, three size classes of sturgeon larvae (18–44 mm; 0.027–0.329 g) were grown for 7 to 14 days under differing temperature (14–24 °C) and prey density (0–9 Chironomidae larvae/d) regimes. After accounting for effects of water temperature and prey density on fish activity, we compared observed final weight, final length, and number of prey consumed to values generated from the foraging-bioenergetics model. When confronted with an independent dataset, the combined model provided reliable estimates (within 13% of observations) of fish growth and prey consumption, underscoring the usefulness of the modeling approach for evaluating growth dynamics of larval fish when empirical data are lacking.

  4. The impact of mitochondrial and thermal stress on the bioenergetics and reserve respiratory capacity of fish cell lines.

    PubMed

    Beck, Benjamin H; Fuller, S Adam

    2012-12-01

    Various stressors affect the health of wild and cultured fish and can cause metabolic disturbances that first manifest at the cellular level. Here, we sought to further our understanding of cellular metabolism in fish by examining the metabolic responses of cell lines derived from channel catfish Ictalurus puntatus (CCO), white bass Morone chrysops (WBE), and fathead minnow Pimephales promelas (EPC) to both mitochondrial and thermal stressors. Using extracellular flux (EF) technology, we simultaneously measured the oxygen consumption rate (OCR; a measure of mitochondrial function) and extracellular acidification rate (ECAR; a surrogate of glycolysis) in each cell type. We performed a mitochondrial function protocol whereby compounds modulating different components of mitochondrial respiration were sequentially exposed to cells. This provided us with basal and maximal OCR, OCR linked to ATP production, OCR from ion movement across the mitochondrial inner membrane, the reserve capacity, and OCR independent of the electron transport chain. After heat shock, EPC and CCO significantly decreased OCR and all three cell lines modestly increased ECAR. After heat shock, the reserve capacity, the mitochondrial energetic reserve used to cope with stress and increased bioenergetic demand, was unaffected in EPC and CCO and completely abrogated in WBE. These findings provide proof-of-concept experimental data that further highlight the utility of fish cell lines as tools for modeling bioenergetics.

  5. Nicotinamide Forestalls Pathology and Cognitive Decline in Alzheimer Mice: Evidence for Improved Neuronal Bioenergetics and Autophagy Procession

    PubMed Central

    Liu, Dong; Pitta, Michael; Jiang, Haiyang; Lee, Jong-Hwan; Zhang, Guofeng; Chen, Xinzhi; Kawamoto, Elisa M.; Mattson, Mark P.

    2012-01-01

    Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathological accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated Tau (p-Tau) in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the NAD+ precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. NAD+ biosynthesis, autophagy and PI3K signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and p-Tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (Akt and ERKs) and the transcription factor cyclic AMP response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system. PMID:23273573

  6. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    SciTech Connect

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  7. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism.

    PubMed

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna; Hardy, Micael; Ouari, Olivier; Joseph, Joy; Dwinell, Michael B; Kalyanaraman, Balaraman

    2015-08-28

    One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide.

  8. Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGFβ2-bioenergetics-mitochondrial priming

    PubMed Central

    Zhang, Wei; Shi, Ivy; Bagai, Rakesh; Leahy, Patrick; Feng, Yan; Veigl, Martina; Lindner, Daniel; Danielpour, David; Yin, Lihong; Rosell, Rafael; Bivona, Trever G.; Zhang, Zhenfeng; Ma, Patrick C.

    2016-01-01

    The impact of EGFR-mutant NSCLC precision therapy is limited by acquired resistance despite initial excellent response. Classic studies of EGFR-mutant clinical resistance to precision therapy were based on tumor rebiopsies late during clinical tumor progression on therapy. Here, we characterized a novel non-mutational early adaptive drug-escape in EGFR-mutant lung tumor cells only days after therapy initiation, that is MET-independent. The drug-escape cell states were analyzed by integrated transcriptomic and metabolomics profiling uncovering a central role for autocrine TGFβ2 in mediating cellular plasticity through profound cellular adaptive Omics reprogramming, with common mechanistic link to prosurvival mitochondrial priming. Cells undergoing early adaptive drug escape are in proliferative-metabolic quiescent, with enhanced EMT-ness and stem cell signaling, exhibiting global bioenergetics suppression including reverse Warburg, and are susceptible to glutamine deprivation and TGFβ2 inhibition. Our study further supports a preemptive therapeutic targeting of bioenergetics and mitochondrial priming to impact early drug-escape emergence using EGFR precision inhibitor combined with broad BH3-mimetic to interrupt BCL-2/BCL-xL together, but not BCL-2 alone. PMID:27852038

  9. Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark.

    PubMed

    Sims, David W; Wearmouth, Victoria J; Southall, Emily J; Hill, Jacqueline M; Moore, Pippa; Rawlinson, Kate; Hutchinson, Neil; Budd, Georgina C; Righton, David; Metcalfe, Julian D; Nash, Jon P; Morritt, David

    2006-01-01

    -choice scenarios indicated dogfish adopting a 'hunt warm - rest cool' strategy could lower daily energy costs by just over 4%. Our results provide the first clear evidence that are consistent with the hypothesis that a benthic marine-fish predator utilizes DVM as an energy conservation strategy that increases bioenergetic efficiency.

  10. Biooxidation capacity of the extremely thermoacidophilic archaeon metallosphaera sedula under bioenergetic challenge

    PubMed

    Han; Kelly

    1998-06-20

    The biooxidation capacity of an extremely thermoacidophilic archaeon Metallosphaera sedula (DSMZ 5348) was examined under bioenergetic challenges imparted by thermal or chemical stress in regard to its potential use in microbial bioleaching processes. Within the normal growth temperature range of M. sedula (70-79 degrees C) at pH 2.0, upward temperature shifts resulted in bioleaching rates that followed an Arrhenius-like dependence. When the cells were subjected to supraoptimal temperatures through gradual thermal acclimation at 81 degrees C (Han et al., 1997), cell densities were reduced but 3 to 5 times faster specific leaching rates (Fe3+ released from iron pyrite/cell/h) could be achieved by the stressed cells compared to cells at 79 degrees C and 73 degrees C, respectively. The respiration capacity of M. sedula growing at 74 degrees C was challenged by poisoning the cells with uncouplers to generate chemical stress. When the protonophore 2,4-dinitrophenol (5-10 μM) was added to a growing culture of M. sedula on iron pyrite, there was little effect on specific leaching rates compared to a culture with no protonophore at 74 degrees C; 25 μM levels proved to be toxic to M. sedula. However, a significant stimulation in specific rate was observed when the cells were subjected to 1 μM nigericin (+135%) and 2 μM (+63%); 5 μM levels of the ionophore completely arrested cell growth. The ionophore effect was further investigated in continuous culture growing on ferrous sulfate at 74 degrees C. When 1 μM nigericin was added as a pulse to a continuous culture, a 30% increase in specific iron oxidation rate was observed for short intervals, indicating a potential positive impact on leaching when periodic chemical stress is applied. This study suggests that biooxidation rates can be increased by strategic exposure of extreme thermoacidophiles to chemical or thermal stress, and this approach should be considered for improving process performance. Copyright 1998 John

  11. Amyloid-β–Induced Changes in Molecular Clock Properties and Cellular Bioenergetics

    PubMed Central

    Schmitt, Karen; Grimm, Amandine; Eckert, Anne

    2017-01-01

    Ageing is an inevitable biological process that results in a progressive structural and functional decline, as well as biochemical alterations that altogether lead to reduced ability to adapt to environmental changes. As clock oscillations and clock-controlled rhythms are not resilient to the aging process, aging of the circadian system may also increase susceptibility to age-related pathologies such as Alzheimer's disease (AD). Besides the amyloid-beta protein (Aβ)-induced metabolic decline and neuronal toxicity in AD, numerous studies have demonstrated that the disruption of sleep and circadian rhythms is one of the common and earliest signs of the disease. In this study, we addressed the questions of whether Aβ contributes to an abnormal molecular circadian clock leading to a bioenergetic imbalance. For this purpose, we used different oscillator cellular models: human skin fibroblasts, human glioma cells, as well as mouse primary cortical and hippocampal neurons. We first evaluated the circadian period length, a molecular clock property, in the presence of different Aβ species. We report here that physiologically relevant Aβ1–42 concentrations ranging from 10 to 500 nM induced an increase of the period length in human skin fibroblasts, human A172 glioma cells as well as in mouse primary neurons whereas the reverse control peptide Aβ42-1, which is devoid of toxic action, did not influence the circadian period length within the same concentration range. To better understand the underlying mechanisms that are involved in the Aβ-related alterations of the circadian clock, we examined the cellular metabolic state in the human primary skin fibroblast model. Notably, under normal conditions, ATP levels displayed circadian oscillations, which correspond to the respective circadian pattern of mitochondrial respiration. In contrast, Aβ1–42 treatment provoked a strong dampening in the metabolic oscillations of ATP levels as well as mitochondrial respiration and

  12. Otto von Guericke and 17th century cosmology

    NASA Astrophysics Data System (ADS)

    Knobloch, Eberhard

    Otto von Guericke's scientific method was based on reason and experimental science. His cosmology was embedded in theology and can be interpreted as a refutation of Descartes' worldview. He used Nicolaus Cusanus' theory of quantities in order to characterize space. The notion of space has to be distinguished from that of world or heaven. Forces play a crucial role in this respect described by Athanasius Kircher in his "Celestial Journey". Guericke read this work very diligently. In spite of some obvious similarities between Guericke's and Newton's scientific aims and methods there are crucial differences between the scientific convictions and results of these scholars.

  13. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    SciTech Connect

    First, M.W.

    1983-02-01

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

  14. Final Report: 17th international Symposium on Plant Lipids

    SciTech Connect

    Christoph Benning

    2007-03-07

    This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.

  15. IL-17/Th17 Pathway Is Activated in Acne Lesions

    PubMed Central

    Kelhälä, Hanna-Leena; Palatsi, Riitta; Fyhrquist, Nanna; Lehtimäki, Sari; Väyrynen, Juha P.; Kallioinen, Matti; Kubin, Minna E.; Greco, Dario; Tasanen, Kaisa; Alenius, Harri; Bertino, Beatrice; Carlavan, Isabelle; Mehul, Bruno; Déret, Sophie; Reiniche, Pascale; Martel, Philippe; Marty, Carine; Blume-Peytavi, Ulrike; Voegel, Johannes J.; Lauerma, Antti

    2014-01-01

    The mechanisms of inflammation in acne are currently subject of intense investigation. This study focused on the activation of adaptive and innate immunity in clinically early visible inflamed acne lesions and was performed in two independent patient populations. Biopsies were collected from lesional and non-lesional skin of acne patients. Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed at the RNA and also protein level with real-time PCR (RT-PCR) and Luminex technology. Cytokines involved in Th17 lineage differentiation (IL-1β, IL-6, TGF-β, IL23p19) were remarkably induced at the RNA level. In addition, proinflammatory cytokines and chemokines (TNF-α, IL-8, CSF2 and CCL20), Th1 markers (IL12p40, CXCR3, T-bet, IFN-γ), T regulatory cell markers (Foxp3, IL-10, TGF-β) and IL-17 related antimicrobial peptides (S100A7, S100A9, lipocalin, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL-17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway is activated and may play a pivotal role in the disease process, possibly offering new targets of therapy. PMID:25153527

  16. The 17th Symposium on Biotechnology for Fuels and Chemicals

    NASA Astrophysics Data System (ADS)

    This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

  17. 17th Environmental Quality Index: Troubling Times with Toxics.

    ERIC Educational Resources Information Center

    National Wildlife, 1986

    1986-01-01

    Presents a subjective analysis of the status of United States' natural resources, reviewing 1985's key environmental events, problems, and successes. Reports current conditions and/or dilemmas concerning wildlife, air, water, energy, forests, and soils. Provides both a public rating of the quality of life and a priority ranking of environmental…

  18. [Biobanks European infrastructure].

    PubMed

    Kinkorová, Judita; Topolčan, Ondřej

    2016-01-01

    Biobanks are structured repositories of human tissue samples connected with specific information. They became an integral part of personalized medicine in the new millennium. At the European research area biobanks are isolated not well coordinated and connected to the network. European commission supports European infrastructure BBMRI-ERIC (Biobanks and Biomolecular Resources Research Infrastructure European Research Infrastructure Consortium), consortium of 54 members with more than 225 associated organizations, largely biobanks from over 30 countries. The aim is to support biomedical research using stored samples. Czech Republic is a member of the consortium as a national node BBMRI_CZ, consisting of five partners.

  19. [The mechanism of phenoptosis: I. Age-dependent decrease of the overall rate of protein synthesis is caused by the programmed attenuation of bio-energetics].

    PubMed

    Trubitsyn, A G

    2009-01-01

    The age-dependent degradation of all vital processes of an organism can be result of influences of destructive factors (the stochastic mechanism of aging), or effect of realizations of the genetic program (phenoptosis). The stochastic free-radical theory of aging dominating now contradicts the set of empirical data, and the semicentenial attempts to create the means to slow down aging did not give any practical results. It makes obvious that the stochastic mechanism of aging is incorrect. At the same time, the alternative mechanism of the programmed aging is not developed yet but preconditions for it development have already been created. It is shown that the genes controlling process of aging exist (contrary to the customary opinion) and the increase in the level of damaged macromolecules (basic postulate of the free-radical theory) can be explained by programmed attenuation of bio-energetics. As the bio-energetics is a driving force of all vital processes, decrease of its level is capable to cause degradation of all functions of an organism. However to transform this postulate into a basis of the theory of phenoptosis it is necessary to show, that attenuation of bio-energetics predetermines such fundamental processes accompanying aging as decrease of the overall rate of protein biosynthesis, restriction of cellular proliferations (Hayflick limit), loss of telomeres etc. This article is the first step in this direction: the natural mechanism of interaction of overall rate of protein synthesis with a level of cellular bio-energetics is shown. This is built-in into the translation machine and based on dependence of recirculation rate of eukaryotic initiation factor 2 (elF2) from ATP/ADP value that is created by mitochondrial bio-energetic machine.

  20. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function.

    PubMed

    Guzun, R; Timohhina, N; Tepp, K; Gonzalez-Granillo, M; Shevchuk, I; Chekulayev, V; Kuznetsov, A V; Kaambre, T; Saks, V A

    2011-05-01

    Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O(2) ratio of about 5-6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank-Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the

  1. European auxiliary propulsion, 1972

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1972-01-01

    The chemical and electric auxiliary propulsion technology of the United Kingdom, France, and West Germany is discussed in detail, and the propulsion technology achievements of Italy, India, Japan, and Russia are reviewed. A comparison is presented of Shell 405 catalyst and a European spontaneous hydrazine catalyst called CNESRO I. Finally, conclusions are drawn regarding future trends in European auxiliary propulsion technology development.

  2. Study of Brain Function and Bioenergetics using fMRI and In Vivo MRS at High Fields.

    PubMed

    Chen, Wei

    2005-01-01

    The greatest merit of magnetic resonance (MR) methodology applied to medicine is its capabilities of measuring a variety of physiological parameters in vivo. MR imaging (MRI) with unique imaging contrasts can provide vital information which tightly links to brain functions at both normal and diseased states. In contrast, in vivo MR spectroscopy (MRS) is capable of determining metabolites, bioenergetics and chemical reaction rates in brain noninvasively. These capabilities are further enhanced at high/ultrahigh magnetic fields because of significant gain in MR sensitivity and improvements in the spectral resolution of MRS and imaging contrasts. However, MR research also faces many technical challenges which have attracted many scientists from interdisciplinary research backgrounds to find the optimal solutions. Recent progresses in this research field have showed great promise of MRI/MRS for studying brain function, physiology, and neurochemistry. This talk will discuss the developed MR technologies and their applications in brain study at high fields.

  3. Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics

    PubMed Central

    Szczesny, Bartosz; Marcatti, Michela; Zatarain, John R.; Druzhyna, Nadiya; Wiktorowicz, John E.; Nagy, Péter; Hellmich, Mark R.; Szabo, Csaba

    2016-01-01

    Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H2S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H2S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison to adjacent lung tissue. In cultured lung adenocarcinoma but not in normal lung epithelial cells elevated H2S stimulates mitochondrial DNA repair through sulfhydration of EXOG, which, in turn, promotes mitochondrial DNA repair complex assembly, thereby enhancing mitochondrial DNA repair capacity. In addition, inhibition of H2S-producing enzymes suppresses critical bioenergetics parameters in lung adenocarcinoma cells. Together, inhibition of H2S-producing enzymes sensitize lung adenocarcinoma cells to chemotherapeutic agents via induction of mitochondrial dysfunction as shown in in vitro and in vivo models, suggesting a novel mechanism to overcome tumor chemoresistance. PMID:27808278

  4. Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the north Pacific Ocean

    USGS Publications Warehouse

    Atcheson, Margaret E.; Myers, Katherine W.; Beauchamp, David A.; Mantua, Nathan J.

    2012-01-01

    Energetic responses of steelhead Oncorhynchus mykiss to climate-driven changes in marine conditions are expected to affect the species’ ocean distribution, feeding, growth, and survival. With a unique 18-year data series (1991–2008) for steelhead sampled in the open ocean, we simulated interannual variation in prey consumption and growth efficiency of steelhead using a bioenergetics model to evaluate the temperature-dependent growth response of steelhead to past climate events and to estimate growth potential of steelhead under future climate scenarios. Our results showed that annual ocean growth of steelhead is highly variable depending on prey quality, consumption rates, total consumption, and thermal experience. At optimal growing temperatures, steelhead can compensate for a low-energy diet by increasing consumption rates and consuming more prey, if available. Our findings suggest that steelhead have a narrow temperature window in which to achieve optimal growth, which is strongly influenced by climate-driven changes in ocean temperature.

  5. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons

    PubMed Central

    Shields, L Y; Kim, H; Zhu, L; Haddad, D; Berthet, A; Pathak, D; Lam, M; Ponnusamy, R; Diaz-Ramirez, L G; Gill, T M; Sesaki, H; Mucke, L; Nakamura, K

    2015-01-01

    Disrupting particular mitochondrial fission and fusion proteins leads to the death of specific neuronal populations; however, the normal functions of mitochondrial fission in neurons are poorly understood, especially in vivo, which limits the understanding of mitochondrial changes in disease. Altered activity of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) may contribute to the pathophysiology of several neurologic diseases. To study Drp1 in a neuronal population affected by Alzheimer's disease (AD), stroke, and seizure disorders, we postnatally deleted Drp1 from CA1 and other forebrain neurons in mice (CamKII-Cre, Drp1lox/lox (Drp1cKO)). Although most CA1 neurons survived for more than 1 year, their synaptic transmission was impaired, and Drp1cKO mice had impaired memory. In Drp1cKO cell bodies, we observed marked mitochondrial swelling but no change in the number of mitochondria in individual synaptic terminals. Using ATP FRET sensors, we found that cultured neurons lacking Drp1 (Drp1KO) could not maintain normal levels of mitochondrial-derived ATP when energy consumption was increased by neural activity. These deficits occurred specifically at the nerve terminal, but not the cell body, and were sufficient to impair synaptic vesicle cycling. Although Drp1KO increased the distance between axonal mitochondria, mitochondrial-derived ATP still decreased similarly in Drp1KO boutons with and without mitochondria. This indicates that mitochondrial-derived ATP is rapidly dispersed in Drp1KO axons, and that the deficits in axonal bioenergetics and function are not caused by regional energy gradients. Instead, loss of Drp1 compromises the intrinsic bioenergetic function of axonal mitochondria, thus revealing a mechanism by which disrupting mitochondrial dynamics can cause dysfunction of axons. PMID:25880092

  6. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis

    PubMed Central

    Preiss, Laura; Hicks, David B.; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann

    2015-01-01

    Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH. PMID:26090360

  7. Combination strategy of PARP inhibitor with antioxidant prevent bioenergetic deficits and inflammatory changes in CCI-induced neuropathy.

    PubMed

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2017-02-01

    Neuropathic pain, a debilitating pain condition and the underlying pathogenic mechanisms are complex and interwoven amongst each other and still there is scant information available regarding therapies which promise to treat the condition. Evidence indicate that oxidative/nitrosative stress induced poly (ADP-ribose) polymerase (PARP) overactivation initiate neuroinflammation and bioenergetic crisis culminating into neurodegenerative changes following nerve injury. Hence, we investigated the therapeutic effect of combining an antioxidant, quercetin and a PARP inhibitor, 4-amino 1, 8-naphthalimide (4-ANI) on the hallmark deficits induced by chronic constriction injury (CCI) of sciatic nerve in rats. Quercetin (25 mg/kg, p.o.) and 4-ANI (3 mg/kg, p.o.) were administered either alone or in combination for 14 days to examine sciatic functional index, allodynia and hyperalgesia using walking track analysis, Von Frey, acetone spray and hot plate tests respectively. Malondialdehyde, nitrite and glutathione levels were estimated to detect oxidative/nitrosative stress; mitochondrial membrane potential and cytochrome c oxidase activity to assess mitochondrial function; NAD & ATP levels to examine the bioenergetic status and levels of inflammatory markers were evaluated in ipsilateral sciatic nerve. Quercetin and 4-ANI alone improved the pain behaviour and biochemical alterations but the combination therapy demonstrated an appreciable reversal of CCI-induced changes. Nitrotyrosine and Poly ADP-Ribose (PAR) immunopositivity was decreased and nuclear factor erythroid 2-related factor (Nrf-2) levels were increased significantly in micro-sections of the sciatic nerve and dorsal root ganglion (DRG) of treatment group. These results suggest that simultaneous inhibition of oxidative stress-PARP activation cascade may potentially be useful strategies for management of trauma induced neuropathic pain.

  8. Development of a bioenergetics model for humpback chub and evaluation of water temperature changes in the Grand Canyon, Colorado River

    USGS Publications Warehouse

    Petersen, J.H.; Paukert, C.P.

    2005-01-01

    The construction of Glen Canyon Dam above the Grand Canyon (Arizona) has reduced the water temperature in the Colorado River and altered the growth rate and feeding patterns of the federally endangered humpback chub Gila cypha. A bioenergetics model for humpback chub was developed and used to examine how warmer water temperatures in the lower Colorado River (achieved through a temperature control device [TCD] at Glen Canyon Dam) might influence their growth rate and food requirements. Parameter values for humpback chub were developed by Monte Carlo filtering and fitting to laboratory growth. Parameter bounds were established from the literature for Gila species, random parameter sets were selected within these bounds, and the growth of modeled humpback chub was compared with criteria from a laboratory growth experiment at 24??C. This method of parameter estimation could be applied to other imperiled fishes where physiological studies are impractical. Final parameter values were corroborated by comparison with the growth rates of humpback chub from independent field and laboratory studies. Simulations indicated that increasing water temperatures from approximately 9??C to 16??C during summer and fall, the change expected from the TCD, may have a minimal effect on humpback chub growth rate unless food availability also increases with temperature. To evaluate the effects of increased temperatures on humpback chub in the lower Colorado River, it will be essential to monitor their growth rate, the invertebrate community, and the predators of humpback chub, which are also influenced by temperature changes. Bioenergetics models for humpback chub and their predators should be helpful tools for identifying potential scenarios and evaluating the complex interactions resulting from a TCD. ?? Copyright by the American Fisheries Society 2005.

  9. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession.

    PubMed

    Liu, Dong; Pitta, Michael; Jiang, Haiyang; Lee, Jong-Hwan; Zhang, Guofeng; Chen, Xinzhi; Kawamoto, Elisa M; Mattson, Mark P

    2013-06-01

    Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathologic accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated tau in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the β-nicotinamide adenine dinucleotide precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling, and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration, and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. β-Nicotinamide adenine dinucleotide biosynthesis, autophagy, and phosphatidylinositol-3-kinase signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and hyperphosphorylated tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (protein kinase B [Akt] and extracellular signal-regulated kinases) and the transcription factor cyclic adenosine monophosphate (AMP) response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system.

  10. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure.

    PubMed

    Selfridge, J Eva; Wilkins, Heather M; E, Lezi; Carl, Steven M; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H

    2015-04-01

    Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain's aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated.

  11. Hemorrhagic shock-induced cerebral bioenergetic imbalance is corrected by pharmacologic treatment with EF24 in a rat model.

    PubMed

    Rao, Geeta; Xie, Jun; Hedrick, Andria; Awasthi, Vibhudutta

    2015-12-01

    Maintenance of cerebral viability and function is an important goal of critical care in victims of injury due to ischemia and hypovolemia. As part of the multiple organ dysfunction syndrome, the brain function after trauma is influenced by the systemic inflammatory response. We investigated the effect of EF24, an anti-inflammatory bis-chalcone, on cerebral bioenergetics in a rat model of 45% hemorrhagic shock. The rats were treated with EF24 (0.4 mg/kg) or EF24 with an artificial oxygen carrier liposome-encapsulated hemoglobin (LEH). The volume of LEH administered was equal to the shed blood. The brain was collected after 6 h of shock for biochemical assays. EF24 treatment showed significant recovery of ATP, phosphocreatine, and NAD/NADH ratio. It also increased citrate synthase activity and cytochrome c oxidase subunit IV expression which were reduced in shock brain. Furthermore, it reduced the shock-induced accumulation of pyruvate and pyruvate dehydrogenase kinase-1 expression, suggesting that EF24 treatment improves cerebral energetics by restoring perturbed pyruvate metabolism in the mitochondria. These effects of EF24 were associated with reduced poly(ADP-ribose) polymerase cleavage and a significant improvement in the levels of nerve growth factor and brain-derived neurotrophic factor in shock brain. Co-administration of LEH with EF24 was only marginally more effective as compared to the treatment with EF24 alone. These results show that EF24 treatment sets up a pro-survival phenotype in shock by resurrecting cerebral bioenergetics. Since EF24 was effective in the absence of accompanying fluid resuscitation, it has potential utility as a pre-hospital pharmacotherapy in shock due to accidental blood loss.

  12. High-Throughput Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms

    PubMed Central

    Jayasundara, Nishad; Kozal, Jordan S.; Arnold, Mariah C.; Chan, Sherine S. L.; Di Giulio, Richard T.

    2015-01-01

    Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR) analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2), which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2) and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism’s vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate—a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important applications in

  13. High-Throughput Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms.

    PubMed

    Jayasundara, Nishad; Kozal, Jordan S; Arnold, Mariah C; Chan, Sherine S L; Di Giulio, Richard T

    2015-01-01

    Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR) analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2), which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2) and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism's vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate-a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important applications in

  14. The antiestrogen 4-hydroxytamoxifen protects against isotretinoin-induced permeability transition and bioenergetic dysfunction of liver mitochondria: comparison with tamoxifen.

    PubMed

    Silva, Filomena S G; Ribeiro, Mariana P C; Santos, Maria S; Rocha-Pereira, Petronila; Santos-Silva, Alice; Custódio, José B A

    2013-08-01

    The combination of isotretinoin (13-cis-retinoic acid) with antiestrogens seems to be a promising strategy for cancer chemotherapy. The aim of the study was to evaluate the effects of isotretinoin alone or in combination with 4-hydroxytamoxifen (OHTAM) and with its prodrug tamoxifen (TAM), on the functions of rat liver mitochondria, i.e., mitochondrial permeability transition (MPT), bioenergetic functions and adenine nucleotide translocase (ANT). Isotretinoin (5 nmol/mg protein) induced the Ca²⁺-dependent MPT pore opening in mitochondria energized with succinate, which was prevented by OHTAM, cyclosporine A, TAM and ANT ligands. When mitochondria were energized with glutamate/malate and in the absence of added Ca²⁺ isotretinoin decreased the state 3 respiration, the ATP levels, the active ANT content and increased the lag phase of the phosphorylation cycle, demonstrating that isotretinoin decreased the mitochondrial phosphorylation efficiency. These changes of isotretinoin in bioenergetic parameters were not significant in the presence of succinate. The effects of isotretinoin at 5 nmol/mg protein on the Ca²⁺-dependent MPT and phosphorylative efficacy may be related with interactions with the ANT. Above 10 nmol/mg protein isotretinoin strongly diminished the active ANT content, decreased the Δψ, inhibited the complex I and induced proton leak through the Fo fraction of complex V. The combination of OHTAM with isotretinoin only induced significant changes in the energy production systems at concentrations ≥5 nmol isotretinoin/mg protein. Therefore, our results suggest that isotretinoin-associated liver toxicity is possibly related with mitochondrial dysfunctions and that the combination with OHTAM may contribute to decrease its toxicity.

  15. The European experience.

    PubMed

    Roels, Leo; Rahmel, Axel

    2011-04-01

    This mini-review on European experiences with tackling the problem of organ shortage for transplantation was based on a literature review of predominantly European publications dealing with the issue of organ donation from deceased donors. The authors tried to identify the most significant factors that have demonstrated to impact on donation rates from deceased donors and subsequent transplant successes. These factors include legislative measures (national laws and European Directives), optimization of the donation process, use of expanded criteria donors, innovative preservation and surgical techniques, organizational efforts, and improved allocation algorithms.

  16. The European Spallation Source

    SciTech Connect

    Lindroos M.; Calaga R.; Bousson S.; Danared H.; Devanz G. et al

    2011-04-20

    In 2003 the joint European effort to design a European Spallation Source (ESS) resulted in a set of reports, and in May 2009 Lund was agreed to be the ESS site. The ESS Scandinavia office has since then worked on setting all the necessary legal and organizational matters in place so that the Design Update and construction can be started in January 2011, in collaboration with European partners. The Design Update phase is expected to end in 2012, to be followed by a construction phase, with first neutrons expected in 2018-2019.

  17. European journals on microbiology.

    PubMed

    Ronda, C; Vázquez, M

    1997-12-01

    A survey on the scientific journals dealing with microbiology published in Europe has been carried out. Eighteen European countries publish microbiological journals with the United Kingdom. Netherlands and Germany leading in number of journals on this specialty. Most of the European journals on microbiology are published bimonthly (27%), and English is the most common language used (54%). Most of these journals (86%) are included in some database, but only 36 (25%) are indexed in the six databases studied. Out of the 146 journals registered, 71 (49%), published in 11 European countries, are included in the 1995 Journal Citation Reports (ISI, Philadelphia).

  18. Application of matrix-assisted laser desorption and ionization time of flight mass spectrometry to the study of the proteinaceous binders in paint: blue paint composition in the series "The Life of Virgin" by Alonso Cano (17th century) as a case study.

    PubMed

    Romero-Pastor, Julia; Natalia Navas, Natalia Navas; Rodríguez-Simón, Luís; Lario-Simón, Antonio; Kuckova, Stepanka; Manzano, Eloísa

    2015-01-01

    The identification of proteinaceous materials in paint constituents provides very valuable information regarding the techniques used by the painter and the most suitable procedures for conserving and restoring their works. Although the analysis of proteinaceous materials is nowadays a common task when dealing with works of art, the reliable detection and identification of protein traces is still complicated, particularly when very small samples can be taken that may contain a mixture of different organic materials (oils, waxes, resins, gums etc.). We therefore proposed a proteomic approach to investigate protein materials in paintings at trace levels in order to obtain a better understanding of the painter's technique. After trypsin digestion of the paint samples, mass spectra were obtained by matrix-assisted laser desorption and ionization time of flight mass spectrometry (MALDI-TOF-MS) and they were compared with the Mascot database and with theoretical digested proteins. This study contributes to the knowledge about the technique used by Alonso Cano (Granada, Spain, 1601-1667), one of the most original and brilliant artists from the Spanish Golden Age (17th century), in the series called the Life of the Virgin (six paintings), part of the iconographic program about the life of the Virgin Mary, nowadays seen in the main chapel of Granada Cathedral. The objective of the present study was to test the use of proteinaceous material, mainly egg yolk, in the paint used by Cano, as suggested in previous research, although this would have been unusual at that time when most artists used oil paints. Based on the results of the analysis here presented, the use of protein in the binding media can most likely be excluded.

  19. Filling the Eastern European gap in millennium-long temperature reconstructions

    PubMed Central

    Büntgen, Ulf; Kyncl, Tomáš; Ginzler, Christian; Jacks, David S.; Esper, Jan; Tegel, Willy; Heussner, Karl-Uwe; Kyncl, Josef

    2013-01-01

    Tree ring–based temperature reconstructions form the scientific backbone of the current global change debate. Although some European records extend into medieval times, high-resolution, long-term, regional-scale paleoclimatic evidence is missing for the eastern part of the continent. Here we compile 545 samples of living trees and historical timbers from the greater Tatra region to reconstruct interannual to centennial-long variations in Eastern European May–June temperature back to 1040 AD. Recent anthropogenic warming exceeds the range of past natural climate variability. Increased plague outbreaks and political conflicts, as well as decreased settlement activities, coincided with temperature depressions. The Black Death in the mid-14th century, the Thirty Years War in the early 17th century, and the French Invasion of Russia in the early 19th century all occurred during the coldest episodes of the last millennium. A comparison with summer temperature reconstructions from Scandinavia, the Alps, and the Pyrenees emphasizes the seasonal and spatial specificity of our results, questioning those large-scale reconstructions that simply average individual sites. PMID:23319641

  20. Magnetic declination measurements over European Russia and Siberia in the 18th century

    NASA Astrophysics Data System (ADS)

    Raspopov, O. M.; Meshcheryakov, V. V.

    2011-12-01

    The paper presents the history of measurements of the geomagnetic field parameters over the territory of Russia in the 18th century derived from archival and literature sources. Topographical mapping of the European territory and neighboring seas of the Russian Empire from the late 17th to the mid 18th century during which magnetic measurements were made was of great importance for determining magnetic declination. The magnetic declination in Siberia and its neighboring seas was measured for the first time during the first expedition of V. Bering in 1728 and then during his second expedition (the Great Northern Expedition) in 1733-1742. Magnetic measurements were carried out along the northern coast of Siberia and in the Bering Sea. The academic group of the expedition performed magnetic declination measurements over southern regions of Siberia (Krasnoyarsk, Irkutsk, Nerchinsk, Yakutsk, etc.) in 1735 and 1736. During the second half of the 18th century, Russian expeditions determined geographical coordinates of the cities of European Russia and carried out magnetic declination measurements for them. During these expeditions Inokhodtsev paid attention to the anomalous magnetic declination in the Kursk region. In his opinion, the anomaly could have been caused by the presence of iron ore.

  1. European PTTI report

    NASA Technical Reports Server (NTRS)

    Cordara, Franco; Grimaldi, Sabrina; Leschiutta, Sigfrido

    1994-01-01

    Time and frequency metrology in Europe presents some peculiar features in its three main components: research on clocks, comparisons and dissemination methods, and dissemination services. Apart from the usual activities of the national metrological laboratories, an increasing number of cooperation between the European countries are promoted inside some European organizations, such as the ECC, EFTA, EUROMET, and WECC. Cooperation between these organizations is covered. The present, evolving situation will be further influenced by the recent political changes in Eastern Europe.

  2. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro

    PubMed Central

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R.; Szabo, Csaba

    2014-01-01

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1 – 3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time-and concentration-dependent modulatory effects on cell proliferation. At 0.1–1 mM SAM increased HCT116 proliferation between 0–12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12–24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at

  3. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  4. European Composite Honeycomb Material

    NASA Astrophysics Data System (ADS)

    Tschepe, Christoph; Sauerbrey, Martin; Klebor, Maximillian; Henriksen, Torben

    2014-06-01

    A European CFRP honeycomb material for high demanding structure applications like antenna reflectors and optical benches was developed in the frame of an ESA GSTP project.The composite honeycomb was designed according to requirements defined by the European space industry. A developed manufacturing technique based on prepreg moulding enables the production of homogeneous CFRP honeycomb blocks. All characteristic material properties, including compression, tension and shear strength and CTE, were determined in a comprehensive verification test campaign. Competitiveness to comparable products was further verified by a representative breadboard.

  5. European security and France

    SciTech Connect

    deRose, A.

    1985-01-01

    A French authority on security argues for new European initiatives in the face of the ''danger represented by Soviet military power deployed in support of an imperialistic ideology.'' His proposals, including the strengthening of conventional forces without abandoning the option of the first use of nuclear weapons, are meant to give substance to President Mitterrand's declaration in 1983: ''The European nations now need to realize that their defense is also their responsibility....'' A part of the increasingly important debate in France over defense policy in Europe.

  6. Premutation in the Fragile X Mental Retardation 1 (FMR1) Gene Affects Maternal Zn-milk and Perinatal Brain Bioenergetics and Scaffolding

    PubMed Central

    Napoli, Eleonora; Ross-Inta, Catherine; Song, Gyu; Wong, Sarah; Hagerman, Randi; Gane, Louise W.; Smilowitz, Jennifer T.; Tassone, Flora; Giulivi, Cecilia

    2016-01-01

    Fragile X premutation alleles have 55–200 CGG repeats in the 5′ UTR of the FMR1 gene. Altered zinc (Zn) homeostasis has been reported in fibroblasts from >60 years old premutation carriers, in which Zn supplementation significantly restored Zn-dependent mitochondrial protein import/processing and function. Given that mitochondria play a critical role in synaptic transmission, brain function, and cognition, we tested FMRP protein expression, brain bioenergetics, and expression of the Zn-dependent synaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (Shank3) in a knock-in (KI) premutation mouse model with 180 CGG repeats. Mitochondrial outcomes correlated with FMRP protein expression (but not FMR1 gene expression) in KI mice and human fibroblasts from carriers of the pre- and full-mutation. Significant deficits in brain bioenergetics, Zn levels, and Shank3 protein expression were observed in the Zn-rich regions KI hippocampus and cerebellum at PND21, with some of these effects lasting into adulthood (PND210). A strong genotype × age interaction was observed for most of the outcomes tested in hippocampus and cerebellum, whereas in cortex, age played a major role. Given that the most significant effects were observed at the end of the lactation period, we hypothesized that KI milk might have a role at compounding the deleterious effects on the FMR1 genetic background. A higher gene expression of ZnT4 and ZnT6, Zn transporters abundant in brain and lactating mammary glands, was observed in the latter tissue of KI dams. A cross-fostering experiment allowed improving cortex bioenergetics in KI pups nursing on WT milk. Conversely, WT pups nursing on KI milk showed deficits in hippocampus and cerebellum bioenergetics. A highly significant milk type × genotype interaction was observed for all three-brain regions, being cortex the most influenced. Finally, lower milk-Zn levels were recorded in milk from lactating women carrying the premutation as well

  7. Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: effects of aging and lifelong calorie restriction.

    PubMed

    Hofer, Tim; Servais, Stephane; Seo, Arnold Young; Marzetti, Emanuele; Hiona, Asimina; Upadhyay, Shashank Jagdish; Wohlgemuth, Stephanie Eva; Leeuwenburgh, Christiaan

    2009-05-01

    Loss of cardiac mitochondrial function with age may cause increased cardiomyocyte death through mitochondria-mediated release of apoptogenic factors. We investigated ventricular subsarcolemmal (SSM) and interfibrillar (IFM) mitochondrial bioenergetics and susceptibility towards Ca(2+)-induced permeability transition pore (mPTP) opening with aging and lifelong calorie restriction (CR). Cardiac mitochondria were isolated from 8-, 18-, 29- and 37-month-old male Fischer 344 x Brown Norway rats fed either ad libitum (AL) or 40% calorie restricted diets. With age, H(2)O(2) generation did not increase and oxygen consumption did not significantly decrease in either SSM or IFM. Strikingly, IFM displayed an increased susceptibility towards mPTP opening during senescence. In contrast, Ca(2+) retention capacity of SSM was not affected by age, but SSM tolerated much less Ca(2+) than IFM. Only modest age-dependent increases in cytosolic caspase activities and cytochrome c levels were observed and were not affected by CR. Levels of putative mPTP-modulating components: cyclophilin-D, the adenine nucleotide translocase (ANT), and the voltage-dependent ion channel (VDAC) were not affected by aging or CR. In summary, the age-related reduction of Ca(2+) retention capacity in IFM may explain the increased susceptibility to stress-induced cell death in the aged myocardium.

  8. Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles.

    PubMed

    Đorđević, Mirko; Stojković, Biljana; Savković, Uroš; Immonen, Elina; Tucić, Nikola; Lazarević, Jelica; Arnqvist, Göran

    2017-02-01

    The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.

  9. Landscape scale measures of steelhead (Oncorhynchus mykiss) bioenergetic growth rate potential in Lake Michigan and comparison with angler catch rates

    USGS Publications Warehouse

    Hook, T.O.; Rutherford, E.S.; Brines, Shannon J.; Geddes, C.A.; Mason, D.M.; Schwab, D.J.; Fleischer, G.W.

    2004-01-01

    The relative quality of a habitat can influence fish consumption, growth, mortality, and production. In order to quantify habitat quality, several authors have combined bioenergetic and foraging models to generate spatially explicit estimates of fish growth rate potential (GRP). However, the capacity of GRP to reflect the spatial distributions of fishes over large areas has not been fully evaluated. We generated landscape scale estimates of steelhead (Oncorhynchus mykiss) GRP throughout Lake Michigan for 1994-1996, and used these estimates to test the hypotheses that GRP is a good predictor of spatial patterns of steelhead catch rates. We used surface temperatures (measured with AVHRR satellite imagery) and acoustically measured steelhead prey densities (alewife, Alosa pseudoharengus) as inputs for the GRP model. Our analyses demonstrate that potential steelhead growth rates in Lake Michigan are highly variable in both space and time. Steelhead GRP tended to increase with latitude, and mean GRP was much higher during September 1995, compared to 1994 and 1996. In addition, our study suggests that landscape scale measures of GRP are not good predictors of steelhead catch rates throughout Lake Michigan, but may provide an index of interannual variation in system-wide habitat quality.

  10. Comparisons between consumption estimates from bioenergetics simulations and field measurements for walleyes from Oneida Lake, New York

    USGS Publications Warehouse

    Lantry, B.F.; Rudstam, L. G.; Forney, J.L.; VanDeValk, A.J.; Mills, E.L.; Stewart, D.J.; Adams, J.V.

    2008-01-01

    Daily consumption was estimated from the stomach contents of walleyes Sander vitreus collected weekly from Oneida Lake, New York, during June-October 1975, 1992, 1993, and 1994 for one to four age-groups per year. Field rations were highly variable between weeks, and trends in ration size varied both seasonally and annually. The coefficient of variation for weekly field rations within years and ages ranged from 45% to 97%. Field estimates were compared with simulated consumption from a bioenergetics model. The simulation averages of daily ration deviated from those of the field estimates by -20.1% to +70.3%, with a mean across all simulations of +14.3%. The deviations for each time step were much greater than those for the simulation averages, ranging from -92.8% to +363.6%. A systematic trend in the deviations was observed, the model producing overpredictions at rations less than 3.7% of body weight. Analysis of variance indicated that the deviations were affected by sample year and week but not age. Multiple linear regression using backwards selection procedures and Akaike's information criterion indicated that walleye weight, walleye growth, lake temperature, prey energy density, and the proportion of gizzard shad Dorosoma cepedianum in the diet significantly affected the deviations between simulated and field rations and explained 32% of the variance. ?? Copyright by the American Fisheries Society 2008.

  11. Philosophical basis and some historical aspects of systems biology: from Hegel to Noble - applications for bioenergetic research.

    PubMed

    Saks, Valdur; Monge, Claire; Guzun, Rita

    2009-03-01

    We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed.

  12. Bioenergetic modeling reveals that Chinese green tree vipers select postprandial temperatures in laboratory thermal gradients that maximize net energy intake.

    PubMed

    Tsai, Tein-Shun; Lee, How-Jing; Tu, Ming-Chung

    2009-11-01

    With bioenergetic modeling, we tested the hypothesis that reptiles maximize net energy gain by postprandial thermal selection. Previous studies have shown that Chinese green tree vipers (Trimeresurus s. stejnegeri) have postprandial thermophily (mean preferred temperature T(p) for males =27.8 degrees C) in a linear thigmothermal gradient when seclusion sites and water existed. With some published empirical models of digestion associated factors for this snake, we calculated the average rate (E(net)) and efficiency (K(net)) of net energy gain from possible combinations of meal size, activity level, and feeding frequency at each temperature. The simulations consistently revealed that E(net) maximizes at the T(p) of these snakes. Although the K(net) peaks at a lower temperature than E(net), the value of K(net) remains high (>=0.85 in ratio to maximum) at the peak temperature of E(net). This suggested that the demands of both E(net) and K(net) can be attained by postprandial thermal selection in this snake. In conclusion, the data support our prediction that postprandial thermal selection may maximize net energy gain.

  13. A bioenergetics modeling evaluation of top-down control of ruffe in the St. Louis River, western Lake Superior

    USGS Publications Warehouse

    Mayo, Kathleen R.; Selgeby, James H.; McDonald, Michael E.

    1998-01-01

    Ruffe (Gymnocephalus cernuus), were accidentally introduced into the St. Louis River estuary, western Lake Superior, in the mid 1980s and it was feared that they might affect native fish through predation on eggs and competition for forage and habitat. In an effort to control the abundance of ruffe and limit dispersal, a top-down control strategy using predators was implemented in 1989. We used bioenergetics modeling to examine the efficacy of top-down control in the St. Louis River from 1991 to 1994. Five predators--northern pike (Esox lucius), walleye (Stizostedion vitreum vitreum), smallmouth bass (Micropterus dolomieui), brown bullhead (Ictalurus nebulosus), and yellow perch (Perca flavescens)--were modeled to determine their consumption of ruffe and four other native prey species-spottail shiner (Notropis hudsonius), emerald shiner (Notropis atherinoides), yellow perch (Perca flavescens), and black crappie (Pomoxis nigromaculatus). Although predators ate as much as 47% of the ruffe biomass in 1 year, they were not able to halt the increase in ruffe abundance. The St. Louis River is an open system that allows predators to move freely out of the system, and the biomass of managed predators did not increase. A selectivity index showed all five predators selected the native prey and avoided ruffe. The St. Louis River has several predator and prey species creating many complex predator-prey interactions; and top-down control of ruffe by the predators examined in this study did not occur.

  14. Bioenergetics assessment of fish and crayfish consumption by river otter (Lontra canadensis): integrating prey availability, diet, and field metabolic rate

    USGS Publications Warehouse

    Dekar, Matthew P.; Magoulick, Daniel D.; Beringer, J.

    2010-01-01

    River otters (Lontra canadensis) are important predators in aquatic ecosystems, but few studies quantify their prey consumption. We trapped crayfish monthly as an index of availability and collected otter scat for diet analysis in the Ozark Mountains of northwestern Arkansas, USA. We measured otter daily energy expenditure (DEE) with the doubly labeled water method to develop a bioenergetics model for estimating monthly prey consumption. Meek's crayfish (Orconectes meeki) catch-per-unit-effort was positively related to stream temperature, indicating that crayfish were more available during warmer months. The percentage frequency of occurrence for crayfish in scat samples peaked at 85.0% in summer and was lowest (42.3%) in winter. In contrast, the percentage occurrence of fish was 13.3% in summer and 57.7% in winter. Estimates of DEE averaged 4738 kJ·day-1 for an otter with a body mass of 7842 g. Total biomass consumption ranged from 35 079 to 52 653 g·month-1 (wet mass), corresponding to a high proportion of fish and crayfish in the diet, respectively. Otter consumption represents a large fraction of prey production, indicating potentially strong effects of otters on trophic dynamics in stream ecosystems.

  15. BIOENERGETIC DIFFERENCES DURING WALKING AND RUNNING IN TRANSFEMORAL AMPUTEE RUNNERS USING ARTICULATING AND NON-ARTICULATING KNEE PROSTHESES

    PubMed Central

    Highsmith, M. Jason; Kahle, Jason T.; Miro, Rebecca M.; Mengelkoch, Larry J.

    2016-01-01

    Transfemoral amputation (TFA) patients require considerably more energy to walk and run than non-amputees. The purpose of this study was to examine potential bioenergetic differences (oxygen uptake (VO2), heart rate (HR), and ratings of perceived exertion (RPE)) for TFA patients utilizing a conventional running prosthesis with an articulating knee mechanism versus a running prosthesis with a non-articulating knee joint. Four trained TFA runners (n = 4) were accommodated to and tested with both conditions. VO2 and HR were significantly lower (p ≤ 0.05) in five of eight fixed walking and running speeds for the prosthesis with an articulating knee mechanism. TFA demonstrated a trend for lower RPE at six of eight walking speeds using the prosthesis with the articulated knee condition. A trend was observed for self-selected walking speed, self-selected running speed, and maximal speed to be faster for TFA subjects using the prosthesis with the articulated knee condition. Finally, all four TFA participants subjectively preferred running with the prosthesis with the articulated knee condition. These findings suggest that, for trained TFA runners, a running prosthesis with an articulating knee prosthesis reduces ambulatory energy costs and enhances subjective perceptive measures compared to using a non-articulating knee prosthesis. PMID:28066524

  16. Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1.

    PubMed

    Kunisawa, Jun; Sugiura, Yuki; Wake, Taichi; Nagatake, Takahiro; Suzuki, Hidehiko; Nagasawa, Risa; Shikata, Shiori; Honda, Kurara; Hashimoto, Eri; Suzuki, Yuji; Setou, Mitsutoshi; Suematsu, Makoto; Kiyono, Hiroshi

    2015-10-06

    Bioenergetic metabolism varies during cell differentiation, but details of B cell metabolism remain unclear. Here, we show the metabolic changes during B cell differentiation in the intestine, where B cells differentiate into IgA(+) plasma cells (PCs). Naive B cells in the Peyer's patches (PPs) and IgA(+) PCs in the intestinal lamina propria (iLP) both used the tricarboxylic acid (TCA) cycle, but only IgA(+) PCs underwent glycolysis. These metabolic differences reflected their dependencies on vitamin B1, an essential cofactor for the TCA cycle. Indeed, the diminished activity of the TCA cycle after dietary vitamin B1 depletion decreased the number of naive B cells in PPs without affecting IgA(+) PCs in the iLP. The maintenance of naive B cells by dietary vitamin B1 was required to induce-but not maintain-intestinal IgA responses against oral antigens. These findings reveal the diet-mediated maintenance of B cell immunometabolism in organized and diffuse intestinal tissues.

  17. Dietary fat and fiber interactively modulate apoptosis and mitochondrial bioenergetic profiles in mouse colon in a site-specific manner.

    PubMed

    Fan, Yang-Yi; Vaz, Frederic M; Chapkin, Robert S

    2016-05-10

    We have demonstrated that the combination of bioactive components generated by fish oil (containing n-3 polyunsaturated fatty acids) and fermentable fiber (leading to butyrate production) act coordinately to protect against colon cancer. This is, in part, the result of an enhancement of apoptosis at the base of the crypt across all stages (initiation, promotion, and progression) of colon tumorigenesis. As mitochondria are key organelles capable of regulating the intrinsic apoptotic pathway and mediating programmed cell death, we investigated the effects of diet on mitochondrial function by measuring mucosal cardiolipin composition, mitochondrial respiratory parameters, and apoptosis in isolated crypts from the proximal and distal colon. C57BL/6 mice (n=15/treatment) were fed one of two dietary fats (corn oil and fish oil) and two fibers (pectin and cellulose) for 4 weeks in a 2×2 factorial design. In general, diet modulated apoptosis and the mucosal bioenergetic profiles in a site-specific manner. The fish/pectin diet promoted a more proapoptotic phenotype - for example, increased proton leak (Pinteraction=0.002) - compared with corn/cellulose (control) only in the proximal colon. With respect to the composition of cardiolipin, a unique phospholipid localized to the mitochondrial inner membrane where it mediates energy metabolism, fish oil feeding indirectly influenced its molecular species with a combined carbon number of C68 or greater, suggesting compensatory regulation. These data indicate that dietary fat and fiber can interactively modulate the mitochondrial metabolic profile and thereby potentially modulate apoptosis and subsequent colon cancer risk.

  18. European Civilization. Teacher's Manual.

    ERIC Educational Resources Information Center

    Leppert, Ella C.; Halac, Dennis

    The instructional materials in this teaching guide for Course II, Unit IV, follow and build upon a previous sequential course described in SO 003 169 offering ninth grade students a study on the development of Western European Civilization. Focus is upon four periods of high development: The High Middle Ages (12th Century), The Renaissance (15th…

  19. The European VLBI network

    NASA Technical Reports Server (NTRS)

    Schilizzi, R. T.

    1980-01-01

    The capabilities of the European very long baseline interferometry (VLBI) network are summarized. The range of baseline parameters, sensitivities, and recording and other equipment available are included. Plans for upgrading the recording facilities and the use of geostationary satellites for signal transfer and clock synchronization are discussed.

  20. European Study Tour Guidelines.

    ERIC Educational Resources Information Center

    Mitchell, Vicki L.; Mitchell, Kenneth E.

    Guidelines are presented for planning and financing European study tours at the community college level. First, a rationale for incorporating study tours of Europe within the community college curriculum is presented and the benefits of such tours in providing students with experiences they could not normally have are outlined. Next, the paper…

  1. European Music Year 1985.

    ERIC Educational Resources Information Center

    Alexanderson, Thomas; And Others

    1984-01-01

    Articles concerning music are included in this newsletter dedicated to cultural venture to be jointly carried out by the Council of Europe and the European communities. Many events will mark Music Year 1985, including concerts, dance performances, operas, publications, recordings, festivals, exhibitions, competitions, and conferences on musical…

  2. Multilingualism in European Workplaces

    ERIC Educational Resources Information Center

    Gunnarsson, Britt-Louise

    2014-01-01

    This state-of-the-art article includes a review of past and recent studies on multilingualism at work in European environments. One aim is to provide the reader with a cross-cultural picture of workplace studies on various languages in Europe, another to discuss both positive and problem-based accounts of multilingualism at work. The overview…

  3. Teaching European Identities

    ERIC Educational Resources Information Center

    Raento, Pauliina

    2008-01-01

    The political, cultural and social make-up of Europe is changing fast. A new European identity is under construction, but old contradictions and diversity challenge its contents, forms and boundaries. Migration, the changing role of the nation-state and Europe's regions, the reshaping of politico-administrative and perceptional boundaries, the…

  4. Selective dendritic susceptibility to bioenergetic, excitotoxic and redox perturbations in cortical neurons☆

    PubMed Central

    Hasel, Philip; Mckay, Sean; Qiu, Jing; Hardingham, Giles E.

    2015-01-01

    Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca2+. Interestingly, while mitochondrial Ca2+ uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca2+ uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. PMID:25541281

  5. The European Mobile System (EMS)

    NASA Technical Reports Server (NTRS)

    Jongejans, A.; Rogard, R.; Mistretta, I.; Ananasso, F.

    1993-01-01

    The European Space Agency is presently procuring an L band payload in order to promote a regional European L band system coping with the specific needs of the European market. The payload, and the two communications systems to be supported, are described below. The potential market for EMS in Europe is discussed.

  6. Chestnut, European (Castanea sativa).

    PubMed

    Corredoira, Elena; Valladares, Silvia; Vieitez, Ana M; Ballester, Antonio

    2015-01-01

    Development of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa) would provide an alternative approach to conventional breeding for production of chestnut trees that are tolerant to ink disease caused by Phytophthora spp. Overexpression of genes encoding PR proteins (such as thaumatin-like proteins), which display antifungal activity, may represent an important advance in control of the disease. We have used a chestnut thaumatin-like protein gene (CsTL1) isolated from European chestnut cotyledons and have achieved overexpression of the gene in chestnut somatic embryogenic lines used as target material. We have also acclimatized the transgenic plants and grown them on in the greenhouse. Here, we describe the various steps of the process, from the induction of somatic embryogenesis to the production of transgenic plants.

  7. Education and European integration

    NASA Astrophysics Data System (ADS)

    Lowe, John

    1992-11-01

    The main purpose of this article is to discuss the implications for education and training of the movement towards integration in Europe in the historic context of the creation of a single market within the European Community (EC) and the end of the Communist regimes in Central and Eastern Europe. The experience of the EC is used to illustrate trends and problems in the development of international cooperation in education and training. Common concerns and priorities throughout the new Europe are then identified and discussed. These include the pursuit of quality in schooling, efforts to serve the interests of disadvantaged learners, and the treatment of European Studies in the curriculum, including the improvement of the teaching of foreign languages.

  8. The European Spallation Source

    SciTech Connect

    Peggs, S; Eshraqi, M; Hahn, H; Jansson, A; Lindroos, M; Ponton, A; Rathsman, K; Trahern, G; Bousso, S; Calaga, R; Devanz, G; Duperrier, R D; Eguia, J; Gammino, S; Moller, S P; Oyon, C; Ruber, R.J.M.Y.; Satogata, T

    2011-03-01

    The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.

  9. A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics.

    PubMed

    Chatton, J Y; Marquet, P; Magistretti, P J

    2000-11-01

    The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.

  10. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Rizo-Roca, D; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2015-08-20

    We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise

  11. Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions

    NASA Astrophysics Data System (ADS)

    Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.

    2009-08-01

    A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.

  12. Spatial Characterization of Bioenergetics and Metabolism of Primordial to Preovulatory Follicles in Whole Ex Vivo Murine Ovary.

    PubMed

    Cinco, Rachel; Digman, Michelle A; Gratton, Enrico; Luderer, Ulrike

    2016-12-01

    Previous work characterizing ovarian bioenergetics has defined follicular metabolism by measuring metabolic by-products in culture media. However, culture conditions perturb the native state of the follicle, and these methods do not distinguish between metabolism occurring within oocytes or granulosa cells. We applied the phasor approach to fluorescence lifetime imaging microscopy (phasor FLIM) at 740-nm two-photon excitation to examine the spatial distribution of free and protein-bound nicotinamide adenine dinucleotide hydride (NADH) during primordial through preovulatory stages of follicular development in fresh ex vivo murine neonatal and gonadotropin stimulated prepubertal ovaries. We obtained subcellular resolution phasor FLIM images of primordial through primary follicles and quantified the free/bound NADH ratio (relative NADH/NAD+) separately for oocyte nucleus and oocyte cytoplasm. We found that dynamic changes in oocyte nucleus free/bound NADH paralleled the developmental maturation of primordial to primary follicles. Immunohistochemistry of NAD+-dependent deacetylase SIRTUIN 1 (SIRT1) in neonatal ovary revealed that increasing SIRT1 expression in oocyte nuclei was inversely related to decreasing free/bound NADH during the primordial to primary follicle transition. We characterized oocyte metabolism at these early stages to be NADH producing (glycolysis/Krebs). We extended the results of prior studies to show that cumulus and mural granulosa cell metabolism in secondary through preovulatory follicles is mainly NADH producing (glycolysis/Krebs cycle), while oocyte metabolism is mainly NADH consuming (oxidative phosphorylation). Taken together, our data characterize dynamic changes in free/bound NADH and SIRT1 expression during early follicular development and confirm results from previous studies defining antral and preovulatory follicle metabolism in culture.

  13. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification.

    PubMed

    Yuan, Xiutang; Shao, Senlin; Yang, Xiaolong; Yang, Dazuo; Xu, Qinzeng; Zong, Humin; Liu, Shilin

    2016-05-01

    Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %·day(-1) decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.

  14. Bio-energetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation.

    PubMed

    Falgairette, G; Bedu, M; Fellmann, N; Van-Praagh, E; Coudert, J

    1991-01-01

    The effects of growth and pubertal development on bio-energetic characteristics were studied in boys aged 6-15 years (n = 144; transverse study). Maximal oxygen consumption (VO2max, direct method), mechanical power at VO2max (PVO2max), maximal anaerobic power (Pmax; force-velocity test), mean power in 30-s sprint (P30s; Wingate test) were evaluated and the ratios between Pmax, P30s and PVO2max were calculated. Sexual maturation was determined using salivary testosterone as an objective indicator. Normalized for body mass VO2max remained constant from 6 to 15 years (49 ml.min-1.kg-1, SD 6), whilst Pmax and P30s increased from 6-8 to 14-15 years, from 6.2 W.kg-1, SD 1.1 to 10.8 W.kg-1, SD 1.4 and from 4.7 W.kg-1, SD 1.0 to 7.6 W.kg-1, SD 1.0, respectively, (P less than 0.001). The ratio Pmax:PVO2max was 1.7 SD 3.0 at 6-8 years and reached 2.8 SD 0.5 at 14-15 years and the ratio P30s:PVO2max changed similarly from 1.3 SD 0.3 to 1.9 SD 0.3. In contrast, the ratio Pmax:P30s remained unchanged (1.4 SD 0.2). Significant relationships (P less than 0.001) were observed between Pmax (W.kg-1), P30s (W.kg-1), blood lactate concentrations after the Wingate test, and age, height, mass and salivary testosterone concentration. This indicates that growth and maturation have together an important role in the development of anaerobic metabolism.

  15. Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity.

    PubMed

    Jonas, Elizabeth A

    2014-08-01

    Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease.

  16. Growth of juvenile steelhead Oncorhynchus mykiss under size-selective pressure limited by seasonal bioenergetic and environmental constraints

    USGS Publications Warehouse

    Thompson, Jamie N.; Beauchamp, David A.

    2016-01-01

    Increased freshwater growth of juvenile steelhead Oncorhynchus mykiss improved survival to smolt and adult stages, thus prompting an examination of factors affecting growth during critical periods that influenced survival through subsequent life stages. For three tributaries with contrasting thermal regimes, a bioenergetics model was used to evaluate how feeding rate and energy density of prey influenced seasonal growth and stage-specific survival of juvenile O. mykiss. Sensitivity analysis examined target levels for feeding rate and energy density of prey during the growing season that improved survival to the smolt and adult stages in each tributary. Simulated daily growth was greatest during warmer months (1 July to 30 September), whereas substantial body mass was lost during cooler months (1 December to 31 March). Incremental increases in annual feeding rate or energy density of prey during summer broadened the temperature range at which faster growth occurred and increased the growth of the average juvenile to match those that survived to smolt and adult stages. Survival to later life stages could be improved by increasing feeding rate or energy density of the diet during summer months, when warmer water temperatures accommodated increased growth potential. Higher growth during the summer period in each tributary could improve resiliency during subsequent colder periods that lead to metabolic stress and weight loss. As growth and corresponding survival rates in fresh water are altered by shifting abiotic regimes, it will be increasingly important for fisheries managers to better understand the mechanisms affecting growth limitations in rearing habitats and what measures might maintain or improve growth conditions and survival.

  17. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics.

    PubMed

    Aparicio-Trejo, Omar Emiliano; Tapia, Edilia; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Macías-Ruvalcaba, Norma Angélica; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; García-Arroyo, Fernando E; Cristóbal, Magdalena; Sánchez-Lozada, Laura Gabriela; Pedraza-Chaverri, José

    2016-11-01

    Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 00(00):000000, 2016.

  18. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: a bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  19. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: A bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  20. Physical exercise prevents and mitigates non-alcoholic steatohepatitis-induced liver mitochondrial structural and bioenergetics impairments.

    PubMed

    Gonçalves, Inês O; Passos, Emanuel; Rocha-Rodrigues, Silvia; Diogo, Cátia V; Torrella, Joan R; Rizo, David; Viscor, Ginés; Santos-Alves, Estela; Marques-Aleixo, Inês; Oliveira, Paulo J; Ascensão, António; Magalhães, José

    2014-03-01

    Exercise is considered a non-pharmacological tool against several lifestyle disorders in which mitochondrial dysfunction is involved. The present study aimed to analyze the preventive (voluntary physical activity-VPA) and therapeutic (endurance training-ET) role of exercise against non-alcoholic steatohepatitis (NASH)-induced liver mitochondrial dysfunction. Sixty male Sprague-Dawley rats were divided into standard-diet sedentary (SS, n=20), standard-diet VPA (SVPA, n=10), high-fat diet sedentary (HS, n=20) and high-fat diet VPA (HVPA, n=10). After 9weeks of diet-treatment, half of SS and HS animals were engaged in an ET program (SET and HET) for 8weeks, 5days/week and 60min/day. Liver mitochondrial oxygen consumption and transmembrane-electric potential (ΔΨ) were evaluated in the presence of glutamate-malate (G/M), palmitoyl-malate (P/M) and succinate (S/R). Mitochondrial enzymes activity, lipid and protein oxidation, oxidative phosphorylation (OXPHOS) subunits, cytochrome c, adenine nucleotide translocator (ANT) and uncoupling protein-2 (UCP2) content were assessed. HS groups show the histological features of NASH in parallel with decreased ΔΨ and respiratory control (RCR) and ADP/O ratios (G/M and P/M). A state 3 decrease (G/M and S/R), FCCP-induced uncoupling respiration (S/R) and ANT content were also observed. Both exercise types counteracted oxygen consumption (RCR, ADP/O and FCCP-uncoupling state) impairments and improved ΔΨ (lag-phase). In conclusion, exercise prevented or reverted (VPA and ET, respectively) the bioenergetic impairment induced by NASH, but only ET positively remodeled NASH-induced liver structural damage and abnormal mitochondria. It is possible that alterations in inner membrane integrity and fatty acid oxidation may be related to the observed phenotypes induced by exercise.

  1. Bioenergetics of Nutrient Reserves and Metabolism in Spiny Lobster Juveniles Sagmariasus verreauxi: Predicting Nutritional Condition from Hemolymph Biochemistry.

    PubMed

    Simon, C J; Fitzgibbon, Q P; Battison, A; Carter, C G; Battaglene, S C

    2015-01-01

    The nutritional condition of cultured Sagmariasus verreauxi juveniles over the molt and during starvation was investigated by studying their metabolism, bioenergetics of nutrient reserves, and hemolymph biochemistry. Juveniles were shown to downregulate standard metabolic rate by as much as 52% within 14 d during starvation. Hepatopancreas (HP) lipid was prioritized as a source of energy, but this reserve represented only between 1% and 13% of the total measured energy reserve and was used quickly during starvation, especially in the immediate postmolt period when as much as 60% was depleted within 3 d. Abdominal muscle (AM) protein represented between 74% and 90% of the total measured energy reserve in juvenile lobsters, and as much as 40% of available AM protein energy was used over 28 d of starvation after the molt. Carbohydrate reserves represented less than 2% of the measured total energy reserve in fed intermolt lobsters and provided negligible energy during starvation. Eighteen hemolymph parameters were measured to identify a nondestructive biomarker of condition that would reflect accurately the state of energy reserves of the lobster. Among these, the hemolymph Brix index was the most accurate and practical method to predict HP lipid and the total energy content of both the HP and the AM in juvenile S. verreauxi. The Brix index was strongly correlated with hemolymph proteins, triglyceride, cholesterol, calcium, and phosphorus concentrations, as well as lipase activity; all were useful in predicting condition. Electrolytes such as chloride, magnesium, and potassium and metabolites such as glucose and lactate were poor indicators of nutritional condition. Uric acid and the "albumin"-to-"globulin" ratio provided complementary information to the Brix index, which may assist in determining nutritional condition of wild juvenile lobsters of unknown intermolt development. This study will greatly assist future ecological studies examining the nutritional condition

  2. Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis.

    PubMed

    Zolfaghari, Parjam S; Carré, Jane E; Parker, Nadeene; Curtin, Nancy A; Duchen, Michael R; Singer, Mervyn

    2015-05-01

    Muscle dysfunction is a common feature of severe sepsis and multiorgan failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit reactive oxygen species (ROS) production. Using a murine model, we examined metabolic, cardiovascular, and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia, and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Δψm was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP3 protein abundance at 24 h, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and the phosphorylation pathway. However, UCP3 does not play an important functional role, despite its upregulation.

  3. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer's mouse brain: implication for bioenergetic intervention.

    PubMed

    Ding, Fan; Yao, Jia; Rettberg, Jamaica R; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3-15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6-9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential

  4. Cell bioenergetics in Leghorn male hepatoma cells and immortalized chicken liver cells in response to 4-hydroxy 2-nonenal-induced oxidative stress.

    PubMed

    Piekarski, A L; Kong, B-W; Lassiter, K; Hargis, B M; Bottje, W G

    2014-11-01

    The major objectives of this study were to compare cell bioenergetics in 2 avian liver cell lines under control conditions and in response to oxidative stress imposed by 4-hydroxy 2-nonenal (4-HNE). Cells in this study were from a chemically immortalized Leghorn male hepatoma (LMH) cell line and a spontaneously immortalized chicken liver (CELi) cell line. Oxygen consumption rate (OCR) was monitored in specialized microtiter plates using an XF24 Flux Analyzer (Seahorse Bioscience, Billerica, MA). Cell bioenergetics was assessed by sequential additions of oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and antimycin-A that enables the determination of a) OCR linked to adenosine triphosphate (ATP) synthase activity, b) mitochondrial oxygen reserve capacity, c) proton leak, and d) nonmitochondrial cytochrome c oxidase activity. Under control (unchallenged) conditions, LMH cells exhibited higher basal OCR and higher OCR attributed to each of the bioenergetic components listed above compared with CELi cells. When expressed as a percentage of maximal OCR (following uncoupling with FCCP), LMH cells exhibited higher OCR due to ATP synthase and proton leak activity, but lower mitochondrial oxygen reserve capacity compared with CELi cells; there were no differences in OCR associated with nonmitochondrial cytochrome c oxidase activity. Whereas the LMH cells exhibited robust ATP synthase activity up to 50 μM 4-HNE, CELi cells exhibited a progressive decline in ATP synthase activity with 10, 20, and 30 μM 4-HNE. The CELi cells exhibited higher mitochondrial oxygen reserve capacity compared with LMH cells with 0 and 20 μM 4-HNE but not with 30 μM 4-HNE. Both cell lines exhibited inducible proton leak in response to increasing levels of 4-HNE that was evident with 30 μM 4-HNE for CELi cells and with 40 and 50 μM 4-HNE in LMH cells. The results of these studies demonstrate fundamental differences in cell bioenergetics in 2 avian liver-derived cell lines

  5. Oncosecretomics coupled to bioenergetics identifies α-amino adipic acid, isoleucine and GABA as potential biomarkers of cancer: Differential expression of c-Myc, Oct1 and KLF4 coordinates metabolic changes.

    PubMed

    Bellance, Nadège; Pabst, Lisa; Allen, Genevara; Rossignol, Rodrigue; Nagrath, Deepak

    2012-11-01

    Bioenergetic profiling of tumors is a new challenge of cancer research and medicine as therapies are currently being developed. Meanwhile, methodological means must be proposed to gather information on tumor metabolism in order to adapt these potential therapies to the bioenergetic specificities of tumors. Studies performed on tumors and cancer cell lines have shown that cancer cells bioenergetics is highly variable. This profile changes with microenvironmental conditions (eg. substrate availability), the oncogenes activated (and the tumor suppressors inactivated) and the interaction with the stroma (i.e. reverse Warburg effect). Here, we assessed the power of metabolic footprinting (MFP) to unravel the bioenergetics and associated anabolic changes induced by three oncogenes, c-Myc, KLF4 and Oct1. The MFP approach provides a quantitative analysis of the metabolites secreted and consumed by cancer cells. We used ultra performance liquid chromatography for quantifying the amino acid uptake and secretion. To investigate the potential oncogene-mediated alterations in mitochondrial metabolism, we measured oxygen consumption rate and ATP production as well as the glucose uptake and lactate release. Our findings show that c-Myc deficiency initiates the Warburg effect along with a reduction of mitochondrial respiration. KLF4 deficiency also stimulated glycolysis, albeit without cellular respiration impairment. In contrast, Oct1 deficiency reduced glycolysis and enhanced oxidative phosphorylation efficiency. MFP revealed that c-Myc, KLF4 and Oct1 altered amino acid metabolism with specific patterns. We identified isoleucine, α-aminoadipic acid and GABA (γ-aminoisobutyric acid) as biomarkers related. Our findings establish the impact of Oct1, KLF4 and c-Myc on cancer bioenergetics and evidence a link between oncosecretomics and cellular bioenergetics profile.

  6. Biophotonics: a European perspective

    NASA Astrophysics Data System (ADS)

    Robin, Thierry; Cochard, Jacques; Breussin, Frédéric

    2013-03-01

    The objective of the present work is to determine the opportunities and challenges for Biophotonics business development in Europe for the next five years with a focus on sensors and systems: for health diagnostics and monitoring; for air, water and food safety and quality control. The development of this roadmap was initiated and supported by EPIC (The European Photonics Industry Consortium). We summarize the final roadmap data: market application segments and trends, analysis of the market access criteria, analysis of the technology trends and major bottlenecks and challenges per application.

  7. Eastern European risk management

    SciTech Connect

    Honey, J.A. )

    1992-01-01

    Here the authors assess Eastern European risk management practices through the evaluation of the nuclear power plants in the region. This evaluation is limited to the Soviet-designed and -built VVER-440 pressurized water reactors (PWRs) that are currently operating in Bulgaria, Czechoslovakia, Hungary, Russia, and the Ukraine and until recently operated at Greifswald in the former East Germany. This evaluation is based on the basic design of the plants, a safety evaluation of the Greifswald facility by representatives from the Federal Republic of Germany and personal visits by the author to Greifswald and Loviisa.

  8. NADPH Oxidase 4 (Nox4) Suppresses Mitochondrial Biogenesis and Bioenergetics in Lung Fibroblasts via a Nuclear Factor Erythroid-derived 2-like 2 (Nrf2)-dependent Pathway.

    PubMed

    Bernard, Karen; Logsdon, Naomi J; Miguel, Veronica; Benavides, Gloria A; Zhang, Jianhua; Carter, A Brent; Darley-Usmar, Victor M; Thannickal, Victor J

    2017-02-17

    Mitochondrial bioenergetics are critical for cellular homeostasis and stress responses. The reactive oxygen species-generating enzyme, NADPH oxidase 4 (Nox4), regulates a number of physiological and pathological processes, including cellular differentiation, host defense, and tissue fibrosis. In this study we explored the role of constitutive Nox4 activity in regulating mitochondrial function. An increase in mitochondrial oxygen consumption and reserve capacity was observed in murine and human lung fibroblasts with genetic deficiency (or silencing) of Nox4. Inhibition of Nox4 expression/activity by genetic or pharmacological approaches resulted in stimulation of mitochondrial biogenesis, as evidenced by elevated mitochondrial-to-nuclear DNA ratio and increased expression of the mitochondrial markers transcription factor A (TFAM), citrate synthase, voltage-dependent anion channel (VDAC), and cytochrome c oxidase subunit 4 (COX IV). Induction of mitochondrial biogenesis was dependent on TFAM up-regulation but was independent of the activation of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). The enhancement of mitochondrial bioenergetics as well as the increase in mitochondrial proteins in Nox4-deficient lung fibroblasts is inhibited by silencing of nuclear factor erythroid-derived 2-like 2 (Nrf2), supporting a key role for Nrf2 in control of mitochondrial biogenesis. Together, these results indicate a critical role for both Nox4 and Nrf2 in counter-regulation of mitochondrial biogenesis and metabolism.

  9. In vivo monitoring of intracellular ATP levels in Leishmania donovani promastigotes as a rapid method to screen drugs targeting bioenergetic metabolism.

    PubMed

    Luque-Ortega, J R; Rivero-Lezcano, O M; Croft, S L; Rivas, L

    2001-04-01

    A method for the rapid screening of drugs targeting the bioenergetic metabolism of Leishmania spp. was developed. The system is based on the monitoring of changes in the intracellular ATP levels of Leishmania donovani promastigotes that occur in vivo, as assessed by the luminescence produced by parasites transfected with a cytoplasmic form of Phothinus pyralis luciferase and incubated with free-membrane permeable D-luciferin analogue D-luciferin-[1-(4,5-dimethoxy-2-nitrophenyl) ethyl ester]. A significant correlation was obtained between the rapid inhibition of luminescence with parasite proliferation and the dissipation of changes in mitochondrial membrane potential (DeltaPsi(m)) produced by buparvaquone or plumbagin, two leishmanicidal inhibitors of oxidative phosphorylation. To further validate this test, a screen of 14 standard leishmanicidal drugs, using a 50 microM cutoff, was carried out. Despite its semiquantitative properties and restriction to the promastigote stage, this test compares favorably with other bioenergetic parameters with respect to time and cell number requirements for the screening of drugs that affect mitochondrial activity.

  10. A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions.

    PubMed

    da Silva, Milena Fernandes; Casazza, Alessandro Alberto; Ferrari, Pier Francesco; Perego, Patrizia; Bezerra, Raquel Pedrosa; Converti, Attilio; Porto, Ana Lucia Figueiredo

    2016-05-01

    Photobioreactor configuration, mode of operation and light intensity are known to strongly impact on cyanobacteria growth. To shed light on these issues, kinetic, bioenergetic and thermodynamic parameters of batch Arthrospira platensis cultures were estimated along the time at photosynthetic photon flux density (PPFD) of 70μmolm(-2)s(-1) in different photobioreactors with different surface/volume ratio (S/V), namely open pond (0.25cm(-1)), shaken flask (0.48cm(-1)), horizontal photobioreactor (HoP) (1.94cm(-1)) and helicoidal photobioreactor (HeP) (3.88cm(-1)). Maximum biomass concentration and productivity remarkably increased with S/V up to 1.94cm(-1). HoP was shown to be the best-performing system throughout the whole runs, while HeP behaved better only at the start. Runs carried out in HoP increasing PPFD from 40 to 100μmolm(-2)s(-1) revealed a progressive enhancement of bioenergetics and thermodynamics likely because of favorable light distribution. HoP appeared to be a promising configuration to perform high-yield indoor cyanobacterial cultures.

  11. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature.

    PubMed

    Cerveira, Joana F; Sánchez-Aragó, María; Urbano, Ana M; Cuezva, José M

    2014-01-01

    Previous studies on the impact of hexavalent chromium [Cr(VI)] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI) and of their molecular basis, we assessed the impact of a mild Cr(VI) exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels). Cells derived from normal human bronchial epithelium (BEAS-2B cell line), the main in vivo target of Cr(VI) carcinogenicity, were subjected for 48 h to 1 μM Cr(VI). We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β) of the mitochondrial H(+)-ATP synthase (β-F1-ATPase) and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature) upon Cr(VI) exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI) effects.

  12. A stochastic bioenergetics model based approach to translating large river flow and temperature in to fish population responses: the pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Dey, Rima; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.

    2015-01-01

    In managing fish populations, especially at-risk species, realistic mathematical models are needed to help predict population response to potential management actions in the context of environmental conditions and changing climate while effectively incorporating the stochastic nature of real world conditions. We provide a key component of such a model for the endangered pallid sturgeon (Scaphirhynchus albus) in the form of an individual-based bioenergetics model influenced not only by temperature but also by flow. This component is based on modification of a known individual-based bioenergetics model through incorporation of: the observed ontogenetic shift in pallid sturgeon diet from marcroinvertebrates to fish; the energetic costs of swimming under flowing-water conditions; and stochasticity. We provide an assessment of how differences in environmental conditions could potentially alter pallid sturgeon growth estimates, using observed temperature and velocity from channelized portions of the Lower Missouri River mainstem. We do this using separate relationships between the proportion of maximum consumption and fork length and swimming cost standard error estimates for fish captured above and below the Kansas River in the Lower Missouri River. Critical to our matching observed growth in the field with predicted growth based on observed environmental conditions was a two-step shift in diet from macroinvertebrates to fish.

  13. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function

    PubMed Central

    Tan, Kah Ni; Gotteland, Martin

    2017-01-01

    Cholesterol plays an important role in inducing pancreatic β-cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β-cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NFκB pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β-cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β-cell function and eventually control hyperglycemia. PMID:28386307

  14. Is European Defense a Bridge too Far?

    DTIC Science & Technology

    2006-03-08

    Defense, European Security and Defense Policy (ESDP) CLASSIFICATION: Unclassified During the last several decades the European Union has not paid much...obvious European defense shortcomings. Then, after the Cologne European Council of June 1999, the European Union launched the European Security and...considerably and the military capabilities of the European Union have been strengthened with initiatives such as the battlegroup concept and the development of

  15. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes

    PubMed Central

    Noh, Y H; Kim, K-Y; Shim, M S; Choi, S-H; Choi, S; Ellisman, M H; Weinreb, R N; Perkins, G A; Ju, W-K

    2013-01-01

    Oxidative stress contributes to dysfunction of glial cells in the optic nerve head (ONH). However, the biological basis of the precise functional role of mitochondria in this dysfunction is not fully understood. Coenzyme Q10 (CoQ10), an essential cofactor of the electron transport chain and a potent antioxidant, acts by scavenging reactive oxygen species (ROS) for protecting neuronal cells against oxidative stress in many neurodegenerative diseases. Here, we tested whether hydrogen peroxide (100 μM H2O2)-induced oxidative stress alters the mitochondrial network, oxidative phosphorylation (OXPHOS) complex (Cx) expression and bioenergetics, as well as whether CoQ10 can ameliorate oxidative stress-mediated alterations in mitochondria of the ONH astrocytes in vitro. Oxidative stress triggered the activation of ONH astrocytes and the upregulation of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) protein expression in the ONH astrocytes. In contrast, CoQ10 not only prevented activation of ONH astrocytes but also significantly decreased SOD2 and HO-1 protein expression in the ONH astrocytes against oxidative stress. Further, CoQ10 prevented a significant loss of mitochondrial mass by increasing mitochondrial number and volume density and by preserving mitochondrial cristae structure, as well as promoted mitofilin and peroxisome-proliferator-activated receptor-γ coactivator-1 protein expression in the ONH astrocyte, suggesting an induction of mitochondrial biogenesis. Finally, oxidative stress triggered the upregulation of OXPHOS Cx protein expression, as well as reduction of cellular adeonsine triphosphate (ATP) production and increase of ROS generation in the ONH astocytes. However, CoQ10 preserved OXPHOS protein expression and cellular ATP production, as well as decreased ROS generation in the ONH astrocytes. On the basis of these observations, we suggest that oxidative stress-mediated mitochondrial dysfunction or alteration may be an important

  16. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    PubMed Central

    2012-01-01

    Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Incubating bone marrow (BM) precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg) metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln) and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK) was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was decreased in MSC-1

  17. MDMA in humans: factors which affect the neuropsychobiological profiles of recreational ecstasy users, the integrative role of bioenergetic stress.

    PubMed

    Parrott, Andy C

    2006-03-01

    boost the acute effects of MDMA, and cause greater serotonergic neurotoxicity. In conclusion, the neuropsychobiological effects of MDMA are modulated by a wide range of drug and non-drug factors. These multiple influences are integrated within a bioenergetic stress model, where factors which heighten acute metabolic distress lead to more neuropsychobiological problems.

  18. A New Impetus for European Youth. European Commission White Paper.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium).

    Despite their highly divergent situations, young people largely share the same values, ambitions, and difficulties. Despite the more complex social and economic context in which young Europeans are currently living, they are well equipped to adapt. National and European policymakers must facilitate this process of change by making young people…

  19. European Renaissance and Reformation, Social Studies: 6414.12.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This survey course is one of the several quinmester courses for grades 10-12 clustering around world studies. Emphasis is upon the social change taking place during the 14-17th centuries with students analyzing the impact of the Renaissance and Reformation on Western society. Although the content focuses on history, other social science…

  20. European Cenozoic rift system

    NASA Astrophysics Data System (ADS)

    Ziegler, Peter A.

    1992-07-01

    The European Cenozoic rift system extends from the coast of the North Sea to the Mediterranean over a distance of some 1100 km; it finds its southern prolongation in the Valencia Trough and a Plio-Pleistocene volcanic chain crossing the Atlas ranges. Development of this mega-rift was paralleled by orogenic activity in the Alps and Pyrenees. Major rift domes, accompanied by subsidence reversal of their axial grabens, developed 20-40 Ma after beginning of rifting. Uplift of the Rhenish Shield is related to progressive thermal lithospheric thinning; the Vosges-Black Forest and the Massif Central domes are probably underlain by asthenoliths emplaced at the crust/mantle boundary. Evolution of this rift system, is thought to be governed by the interaction of the Eurasian and African plates and by early phases of a plate-boundary reorganization that may lead to the break-up of the present continent assembly.

  1. Optranet: a European project

    NASA Astrophysics Data System (ADS)

    Jeanjean, Marie

    2003-10-01

    In a situation where curricula did not adjust at the required pace and many students are getting attracted out of science and technology, the shortage of skilled workers at the technician and engineer level is known to be a threat to development. In spite of a serious crisis in 2001, the trend of an increased presence of optical technologies remains unchanged and is bound to remain part of the landscape for decades. The level of investment required and the markets make Europe the best scale to plan for unified curricula and a global analysis of the human resources needs. There is no agreement on the definition of a trained optician, and European countries differ in the way they educate opticians, source of a lack of clarity and visibility which is detrimental to attracting good students and to the job market. Through its closely work with companies, OPTRANET will propose measures to enhance the adequacy and the visibility of the training offer.

  2. An American Construction of European Education Space

    ERIC Educational Resources Information Center

    Silova, Iveta; Brehm, William C.

    2010-01-01

    The construction of the European education space has typically been attributed to European education policy makers, institutions, and networks. Rarely do scholars consider the role of outside, non-European actors in shaping the terrain of European education thought and practice. This article considers the construction of the European education…

  3. European Schoolnet: Enabling School Networking

    ERIC Educational Resources Information Center

    Scimeca, Santi; Dumitru, Petru; Durando, Marc; Gilleran, Anne; Joyce, Alexa; Vuorikari, Riina

    2009-01-01

    School networking is increasingly important in a globalised world, where schools themselves can be actors on an international stage. This article builds on the activities and experience of the longest established European initiative in this area, European Schoolnet (EUN), a network of 31 Ministries of Education. First, we offer an introduction…

  4. The European Dimension in Education.

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Directorate of Education, Culture and Sport, Documentation Section.

    This paper addresses concerns about a European dimension in education that has been created by the enlargement of the European Union (EU) (the inclusion of Austria, Finland, and Sweden) and the gradual transformations of institutions into a future federal state. Sections of the paper include: (1) "Introduction"; (2) "Defining the…

  5. Brazilian Portuguese Ethnonymy and Europeanisms.

    ERIC Educational Resources Information Center

    Stephens, Thomas M.

    1994-01-01

    Delineates the incorporation and analyzes the impact of European borrowings in Brazilian racio-ethnic terminology. This overview covers French, Italian, Spanish, and English influences. Borrowings from European languages have had a small impact on the calculus of Brazilian racio-ethnic terms. (43 references) (Author/CK)

  6. Vascular surgery: the European perspective.

    PubMed

    Harris, P

    1999-09-01

    Isaac Newton, among others, observed that 'we see so far because we are standing upon the shoulders of giants'. In vascular surgery most of the giants have been European, and this is a heritage which we as Europeans can take pride in and build upon if we chose to do so. As in other areas of life, commitment is essential in order to influence the future. For vascular surgeons in Europe this means active participation in the European scientific societies for vascular surgery and in the UEMS. The main value of the EBSQ.VASC assessments to date has been to expose the uneven standards of training in vascular surgery within the European Union. Only if action follows to address these inequalities will the tactics of the European Board of Vascular Surgery be vindicated.

  7. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    SciTech Connect

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  8. Bioenergetics of halophiles

    SciTech Connect

    Lanyi, Janos K.; Balashov, Sergei

    2016-02-26

    In the last grant period we explored the Na+ binding site of the recently discovered light-driven sodium ion pump. The rationale was that comparison of this novel system to the similar proton pumps and chloride ion pumps would reveal the amazingly (and unexpectedly) wide variety of structural features that govern conversion of light-energy into biologically useful transmembrane gradients and thus production of biomass. A thorough description of this system would establish the basis for continuing our funded research on these proteins.

  9. Population dynamics and bioenergetics of a fossorial herbivore, Thomomys talpoides (Rodentia: Geomyidae), in a spruce-fir sere

    USGS Publications Warehouse

    Andersen, Douglas C.; MacMahon, James A.

    1981-01-01

    Studies of the bioenergetics of the northern pocket gopher, Thomomys talpoides, are coupled with data on demography, activity budgets, and microclimates to model the energy requirements of individuals and populations in the Wasatch Mountains of Utah during 1976-1979. Metabolic rates during rest increased linearly with decreasing ambient temperature, but burrowing metabolic rates (16.3 mL O2 • h-1 • g-9.75) were independent of both temperature and physical properties of the soil. Radio-telemetry studies indicated that free-ranging gophers are active =50% of each day. Conservative estimates of true energy consumption were calculated using estimates of habitat-specific minimum daily burrowing requirements. Rates of burrowing measured in the laboratory were either ∞ 0.0 or ∞ 2.0 cm/min. The low burrowing rate was observed when the soil was frozen or saturated with water, as would occur in the field in early winter and in spring, respectively. Gophers burrowed through soil at the study site at an average rate of ∞ 1.5 cm/min. Belowground food energy densities at gopher foraging depth declined from 24.6 to 3.2 J/cm3 along a successional gradient (subalpine forb meadow to Engelmann spruce dominated forest). We conclude that individual gophers are food limited within the climax spruce seral stage. Further, daily energy costs associated with reproduction in females may exceed the belowground energy supply available in intermediate seral stages (aspen and subalpine fir). Reduction of burrowing rates for any reason will affect gophers in the late seral stages proportionately more than those resident in the meadow. The peak gopher densities recorded (from 62 individuals/ha in the meadow to 2 individuals/ha in spruce forest) support these inferences. Detailed demographic information was obtained only in the meadow seral stage. Adult survivorship was lower in winter than in summer and varied greatly between years (0.18-0.70 yr-1). Juvenile survivorship from weaning

  10. A European perspective--the European clinical research infrastructures network.

    PubMed

    Demotes-Mainard, J; Kubiak, C

    2011-11-01

    Evaluating research outcomes requires multinational cooperation in clinical research for optimization of treatment strategies and comparative effectiveness research, leading to evidence-based practice and healthcare cost containment. The European Clinical Research Infrastructures Network (ECRIN) is a distributed ESFRI (European Strategy Forum on Research Infrastructures) roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients, and unlocking latent scientific potential. Servicing multinational trials started during its preparatory phase, and ECRIN will now apply for an ERIC (European Research Infrastructures Consortium) status by 2011. By creating a single area for clinical research in Europe, this achievement will contribute to the implementation of the Europe flagship initiative 2020 'Innovation Union', whose objectives include defragmentation of the research and education capacity, tackling the major societal challenges starting with the area of healthy ageing, and removing barriers to bring ideas to the market.

  11. Proteomic responses of European flounder to temperature and hypoxia as interacting stressors: Differential sensitivities of populations.

    PubMed

    Pédron, Nicolas; Artigaud, Sébastien; Infante, José-Luis Zambonino; Le Bayon, Nicolas; Charrier, Grégory; Pichereau, Vianney; Laroche, Jean

    2017-02-16

    In the context of global change, ectotherms are increasingly impacted by abiotic perturbations. Along the distribution area of a species, the populations at low latitudes are particularly exposed to temperature increase and hypoxic events. In this study, we have compared the proteomic responses in the liver of European flounder populations, by u