Science.gov

Sample records for 17th european bioenergetics

  1. EDITORIAL The 17th Central European Workshop on Quantum Optics

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2011-02-01

    Although the origin of quantum optics can be traced back to the beginning of the 20th century, when the fundamental ideas about the quantum nature of the interaction between light and matter were put forward, the splendid blossoming of this part of physics began half a century later, after the invention of masers and lasers. It is remarkable that after another half a century the tree of quantum optics is not only very strong and spreading, but all its branches continue to grow, showing new beautiful blossoms and giving very useful fruits. A reflection of this progress has been the origin and development of the series of annual events called the Central European Workshops on Quantum Optics (CEWQO). They started at the beginning of the 1990s as rather small meetings of physicists from a few countries in central-eastern Europe, but in less than two decades they have transformed into important events, gathering 100 to 200 participants from practically all European countries. Moreover, many specialists from other continents like to attend these meetings, since they provide an excellent chance to hear about the latest results and new directions of research. Regarding this, it seems worth mentioning at least some of the most interesting and important areas of quantum optics that have attracted the attention of researchers for the past two decades. One of these areas is quantum information, which over the course of time has become an almost independent area of quantum physics. But it still maintains very close ties with quantum optics. The specific parts of this area are, in particular, quantum computing, quantum communication and quantum cryptography, and the problem of quantitative description of such genuine quantum phenomena as entanglement is one of the central items in the current stream of publications. Theory and experiment related to quantum tomography have also become important to contemporary quantum optics. They are closely related to the subject of so

  2. Native American Games & European Religious Attitudes in the 16th & 17th Centuries.

    ERIC Educational Resources Information Center

    Eisen, George

    Some aspects of the white-Indian relationship are reflected in the writings of 16th and 17th century observers of Indian pastimes. The Noble Savage image was apparently accepted by French colonists as a consequence of an intellectual disappointment in the contemporary societies. In an age of absolutism and religious intolerance, the picture of the…

  3. Footprints of the EADV: a meeting report from the 17th Congress of the European Academy of Dermatology and Venereology.

    PubMed

    Alexandroff, A B; Burd, R

    2009-05-01

    The 17th Congress of the European Academy of Dermatology and Venereology took place in Paris on 17-20 September 2008 and brought together nearly 11,000 participants. Various plenary lectures, subspecialty meetings, 'free communications', 'top ten', 'test yourself' and 'junior' sessions, 19 courses and 14 'lunches with the expert', six forums, 27 symposia and 45 workshops were pressed into the 4 days of the meeting. Over 1700 posters were presented and exhibited. The themes of a number of symposiums, workshops and sessions overlapped, offering additional educational opportunities despite a very busy schedule. The meeting was well organized. Aesthetic dermatology comprised a significant part of the meeting. It is impossible to encompass all important presentations and we highlight a few medical pearls presented at the meeting; however, our report is not intended as a substitute for reading the conference proceedings and related references quoted in this article. PMID:19309366

  4. European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.

    2011-12-01

    Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.

  5. The European League Against Rheumatism (EULAR) - 17th Annual European Congress of Rheumatology (June 8-11, 2016 - London, UK).

    PubMed

    Walker, G; Croasdell, G

    2016-06-01

    The 2016 Annual European Congress of Rheumatology, an annual conference organized by the European League Against Rheumatism (EULAR), took place in London, U.K. Over 4,000 abstracts were submitted this year with over 199 sessions and poster tours on offer. The congress has become a major event in the field of rheumatology with participants attending from around the world. The oral sessions, poster displays and lectures cover a broad spectrum of topics, including the latest understanding of disease processes, as well as recent advances in diagnosis and patient care. PMID:27458612

  6. Union catalogue of printed books of 15th, 16th and 17th centuries in European astronomical observatories.

    NASA Astrophysics Data System (ADS)

    Grassi, G.

    This catalogue deals with the scientific subjects of that historical period such as astronomy, astrology, chemistry, mathematics, physics, historia naturalis and so forth, and contains extremely rare volumes such as the first printed editions of the eminent Arab, Latin, Greek and Persian scientists Albumasar, Albohazen Aly, Aristoteles, Ptolemaeus, Pliny the Elder and Ulugh Beig. In addition the catalogue contains the first works of such great astronomers of the 16th and 17th centuries as Copernicus, Kepler, Clavius, Regiomontanus, Sacrobosco, Mercator, Newton, Gassendi, Galilei and Hevelius, just to quote the most representative ones. The catalogue is followed by a chronological index and an index of printers and publishers.

  7. Known symptoms and diseases of a number of classical European composers during 17th and 20th century in relation with their artistic musical expressions.

    PubMed

    Pucarin-Cvetković, Jasna; Zuskin, Eugenija; Mustajbegović, Jadranka; Janev-Holcer, Natasa; Rudan, Pavao; Milosević, Milan

    2011-12-01

    Medical history and relationship to the medical conditions as well as to the music creativity and productivity of some of the classical European composers have been described. In this review article we analyzed their illnesses as well as association between physical or mental diseases and their creativity and adaptability to disease. Some classical composers suffered from organic diseases, while others complained of mental disturbances. However, in spite of their disorders, the intensity of their creativity mostly remained unchanged. PMID:22397283

  8. Scientific Misconduct and Theft: Case Report from 17th Century

    PubMed Central

    Fatović-Ferenčić, Stella

    2008-01-01

    Gjuro Armen Baglivi was one of the most famous medical authorities of the 17th century. Apart from his numerous books and publications, several extensive collections of his correspondence have been preserved and are available in libraries around the world. They provide new information about the 17th century scientific culture and place of Baglivi’s work in the scientific European context. Also, they shed light on his personality more than other writings intended for the public eye. In this paper I will present the case of a theft of intellectual property, which Baglivi described in one of his letters to Jean Jacques Manget. PMID:18293461

  9. 17th Annual School Construction Report, 2012

    ERIC Educational Resources Information Center

    Abramson, Paul

    2012-01-01

    The 2012 "School Planning & Management"'s 17th Annual School Construction Report reports over the last two years although school construction had fallen from previous highs, the pipeline of projects funded before the recession was still full. And so, in 2009 total construction was a solid $16.4 billion. But the pipeline is not being…

  10. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists.

    PubMed

    Rossignol, Rodrigue

    2015-06-01

    Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. PMID:25595463

  11. Bioenergetic medicine

    PubMed Central

    Swerdlow, Russell H

    2014-01-01

    Here we discuss a specific therapeutic strategy we call ‘bioenergetic medicine’. Bioenergetic medicine refers to the manipulation of bioenergetic fluxes to positively affect health. Bioenergetic medicine approaches rely heavily on the law of mass action, and impact systems that monitor and respond to the manipulated flux. Since classically defined energy metabolism pathways intersect and intertwine, targeting one flux also tends to change other fluxes, which complicates treatment design. Such indirect effects, fortunately, are to some extent predictable, and from a therapeutic perspective may also be desirable. Bioenergetic medicine-based interventions already exist for some diseases, and because bioenergetic medicine interventions are presently feasible, new approaches to treat certain conditions, including some neurodegenerative conditions and cancers, are beginning to transition from the laboratory to the clinic. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24004341

  12. 17th World Food Day observed.

    PubMed

    1997-01-01

    The UN Food and Agriculture Organization has dubbed October 16 World Food Day in an effort to create awareness and generate interest in the efforts being made to alleviate hunger and malnutrition, and to increase food production. A flag-raising ceremony marked the 17th World Food Day, on investing in food security, in Accra, Ghana. The Vice-President of Ghana noted at the ceremony that his government has made agriculture its top priority and is determined to invest as much as needed to achieve significant growth in the sector. The government is also taking steps to make agriculture so attractive that both private individuals and companies will find it a profitable sector in which to partake. The government of Ghana will provide its fullest cooperation and support in all technical and logistical aspects of the production process to prospective investors in the sector. Enlightened government policies are needed to ensure a broader framework for improving food security through agricultural development. PMID:12348737

  13. DIMMING OF THE 17TH CENTURY SUN

    SciTech Connect

    Foukal, Peter; Ortiz, Ada; Schnerr, Roald

    2011-06-01

    Reconstructions of total solar irradiance (TSI) rely mainly on linear relations between TSI variation and indices of facular area. When these are extrapolated to the prolonged 15th-17th century Spoerer and Maunder solar activity minima, the estimated solar dimming is insufficient to explain the mid-millennial climate cooling of the Little Ice Age. We draw attention here to evidence that the relation departs from linearity at the lowest activity levels. Imaging photometry and radiometry indicate an increased TSI contribution per unit area from small network faculae by a factor of 2-4 compared with larger faculae in and around active regions. Even partial removal of this more TSI-effective network at prolonged minima could enable climatically significant solar dimming, yet be consistent with the weakened but persistent 11 yr cycle observed in Be 10 during the Maunder Minimum. The mechanism we suggest would not alter previous findings that increased solar radiative forcing is insufficient to account for 20th century global warming.

  14. 17th International Conference on Arabidopsis Research

    SciTech Connect

    Judith Bender

    2006-07-01

    The 17th International Conference on Arabidopsis Research was held at the University of Madison, Wisconsin from June 27- July 2, 2006. ICAR-2006 included approximately 625 scientists from across the world. The scientific program was of excellent quality featuring 73 talks, including 30 from invited speakers. There were also 6 community-organized workshops (facilitated by conference staff) featuring additional talks on topics including ‘Submitting data to long-term repositories,’ ‘TAIR introductory workshop,’ ‘Web services and demonstration,’ ‘Public engagement: broadening the impact of your research,’ ‘Systems biology approaches to analysis of metabolic and regulatory networks of Arabidopsis,’ and ‘Mechanotransduction in Arabidopsis.’ Approximately 440 posters were presented in general topic areas including, among others, Development, Modeling/Other Systems, Energy, Environment, and Genetic/Epigenetic mechanisms. Graduate students, postdoctoral researchers, junior faculty, and underrepresented minorities made up a significant portion of the oral presentations thereby promoting the training of young scientists and facilitating important career development opportunities for speakers. Several poster sessions provided an opportunity for younger participants to freely meet with more established scientists. The North American Arabidopsis Steering Committee (NAASC) continued its outreach effort and again sponsored two special luncheons to encourage personal and professional development of young scientists and also underrepresented minorities. The ‘Emerging Scientists Luncheon’ featured 10 graduate students selected on the basis of scientific excellence of their submitted research abstracts. The ‘Minority Funding Luncheon,’ featured 8 awardees selected by the NAASC through a widely-publicized application process. This luncheon was established specifically to provide an opportunity for underrepresented minorities, and/or scientists from

  15. 17th International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.

  16. Bioenergetic roles of mitochondrial fusion.

    PubMed

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  17. [Discovery of blood cells in the 17th century].

    PubMed

    Doubek, M

    2001-07-01

    Landmark works of the 17th century concerning observations of blood cells are quoted in the article. "Simple" and successively "compound" microscopes made their appearance in the late 16th century and early 17th century. In 1656, Frenchman Pierre Borel, physician-in-ordinary to the King Louis XIV, who first applied the microscope to medicine described a type of "worn" found in human blood. In 1657, Athanasius Kircher, a Jesuit priest and scientist from Germany, examined blood from plague victims, and described "worms" of plague. In 1661, 1664 and 1665, the blood cells were discerned by Marcello Malpighi. In 1678, the red blood corpuscles was described by Jan Swammerdam of Amsterdam, a Dutch naturalist and physician. The first complete account of the red cells was made by Anthony van Leeuwenhoek of Delft in the last quarter of the 17th century. PMID:11505724

  18. High Life: 17th Annual Residence Hall Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2006-01-01

    Residence hall construction continues to be a priority for colleges and universities. With enrollments on the upswing, higher-education institutions are spending more and building larger facilities to entice students to live on campus. This article presents the findings of "American School & University's" 17th annual Residence Hall Construction…

  19. Harvard Humanities Students Discover the 17th Century Online

    ERIC Educational Resources Information Center

    Howard, Jennifer

    2007-01-01

    This article profiles Harvard professor Stephen Greenblatt's new course, "Travel and Transformation in the Early 17th Century." The product of an intense, months-long collaboration between computing specialists, graduate students, librarians, and scholars, the course makes innovative use of all the tools and technical know-how a major university…

  20. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases.

    PubMed

    Kenney, M Cristina; Chwa, Marilyn; Atilano, Shari R; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Del Carpio, Javier Cáceres; Nesburn, Anthony B; Boyer, David S; Kuppermann, Baruch D; Vawter, Marquis P; Jazwinski, S Michal; Miceli, Michael V; Wallace, Douglas C; Udar, Nitin

    2014-02-01

    The geographic origins of populations can be identified by their maternally inherited mitochondrial DNA (mtDNA) haplogroups. This study compared human cybrids (cytoplasmic hybrids), which are cell lines with identical nuclei but mitochondria from different individuals with mtDNA from either the H haplogroup or L haplogroup backgrounds. The most common European haplogroup is H while individuals of maternal African origin are of the L haplogroup. Despite lower mtDNA copy numbers, L cybrids had higher expression levels for nine mtDNA-encoded respiratory complex genes, decreased ATP (adenosine triphosphate) turnover rates and lower levels of reactive oxygen species production, parameters which are consistent with more efficient oxidative phosphorylation. Surprisingly, GeneChip arrays showed that the L and H cybrids had major differences in expression of genes of the canonical complement system (5 genes), dermatan/chondroitin sulfate biosynthesis (5 genes) and CCR3 (chemokine, CC motif, receptor 3) signaling (9 genes). Quantitative nuclear gene expression studies confirmed that L cybrids had (a) lower expression levels of complement pathway and innate immunity genes and (b) increased levels of inflammation-related signaling genes, which are critical in human diseases. Our data support the hypothesis that mtDNA haplogroups representing populations from different geographic origins may play a role in differential susceptibilities to diseases. PMID:24200652

  1. Molecular and Bioenergetic Differences between Cells with African versus European Inherited Mitochondrial DNA Haplogroups: Implications for Population Susceptibility to Diseases

    PubMed Central

    Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres del Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis P.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin

    2015-01-01

    The geographic origins of populations can be identified by their maternally inherited mitochondrial DNA (mtDNA) haplogroups. This study compared human cybrids (cytoplasmic hybrids), which are cell lines with identical nuclei but mitochondria from different individuals with mtDNA from either the H haplogroup or L haplogroup backgrounds. The most common European haplogroup is H while individuals of maternal African origin are of the L haplogroup. Despite lower mtDNA copy numbers, L cybrids had higher expression levels for nine mtDNA-encoded respiratory complex genes, decreased ATP turnover rates and lower levels of ROS production, parameters which are consistent with more efficient oxidative phosphorylation. Surprisingly, GeneChip arrays showed that the L and H cybrids had major differences in expression of genes of the canonical complement system (5 genes), dermatan/chondroitin sulfate biosynthesis (5 genes) and CCR3 signaling (9 genes). Quantitative nuclear gene expression studies confirmed that L cybrids had (a) lower expression levels of complement pathway and innate immunity genes and (b) increased levels of inflammation-related signaling genes, which are critical in human diseases. Our data support the hypothesis that mtDNA haplogroups representing populations from different geographic origins may play a role in differential susceptibilities to diseases. PMID:24200652

  2. Anatomy and anatomists in Tuscany in the 17th century.

    PubMed

    Orlandini, Giovanni E; Paternostro, Ferdinando

    2010-01-01

    The 17th century was characterized by a real revolution in the field of scientific research due to the introduction of the experimental method, promoted by Galileo Galilei who was the most representative scientist of this period. Therefore, medical disciplines, particularly Anatomy, underwent innovative and deep changes shattering traditional culture and representing the background for the modern science. In this fermenting period, Tuscany played a significant role since numerous distinguished scientists were gathered by Medici Grand Dukes (especially Ferdinando the 2nd and Cosimo the 3rd) at Pisa University and at their court in Florence. Among them, it must be mentioned Giovanni Alfonso Borelli, creator of iathromechanics, Marcello Malpighi, founder of microscopic Anatomy, Francesco Redi, who denied the insect spontaneous generation, Nils Steensen who continued in Florence his anatomical studies on lymph nodes and salivary glands while setting also the bases of modern geology. Moreover, at the end of the 17th century, the anatomical wax modelling techniques arose and developed in Florence thanks to the work of Gaetano Zumbo (or Zummo), capable of creating some real masterpieces, still very well preserved and collected in the Museum of Natural Sciences "La Specola". PMID:21287970

  3. 17th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip (Compiler)

    2002-01-01

    The 17th Space Photovoltaic Research and Technology (SPRAT XVII) Conference was held September 11-13, 2001, at the Ohio Aerospace Institute (OAI) in Cleveland, Ohio. The SPRAT conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar technology. This year's conference continued to build on many of the trends shown in SPRAT XVI; the use of new high-efficiency cells for commercial use and the development of novel array concepts such as Boeing's Solar Tile concept. In addition, new information was presented on space environmental interactions with solar arrays.

  4. Anomalous solar rotation in the early 17th century

    NASA Technical Reports Server (NTRS)

    Eddy, J. A.; Gilman, P. A.; Trotter, D. E.

    1977-01-01

    The character of solar rotation has been examined for two periods in the early 17th century for which detailed sunspot drawings are available: A.D. 1625 through 1626 and 1642 through 1644. The first period occurred 20 years before the start of the Maunder sunspot minimum, 1645 through 1715; the second occurred just at its commencement. Solar rotation in the earlier period was much like that of today. In the later period, the equatorial velocity of the sun was faster by 3 to 5 percent and the differential rotation was enhanced by a factor of 3. The equatorial acceleration with declining solar activity is in the same sense as that found in recent Doppler data. It seems likely that the change in rotation of the solar surface between 1625 and 1645 was associated with the onset of the Maunder Minimum.

  5. The low countries - 16th/17th century.

    PubMed

    De Broe, M E; De Weerdt, D L; Ysebaert, D K; Vercauteren, S R; De Greef, K E; De Broe, L C

    1999-01-01

    Andreas Vesalius and Jan Baptist Van Helmont are the two major personalities who contributed substantially and in a different way to the early development of renal anatomy/physiology of the 16th/17th century in the Southern Low Countries. The importance of A. Vesalius' publication 'de humani corporis fabrica libri septem' cannot be overestimated. The kidney was an intriguing organ to Vesalius, the function of which he could not fully grasp. J.B. Van Helmont was the first to demonstrate the importance of the measurement of the specific gravity of the urine and relating it to physiological and pathophysiological conditions. He made accurate clinical observations supported by autopsy examinations concerning the role of the kidney in the generation of dropsy. PMID:10213829

  6. JANNAF 17th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 16 unclassified/unlimited technical papers presented at the 17th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the 35th Combustion Subcommittee (CS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include projectile and shaped charge jet impact vulnerability of munitions; thermal decomposition and cookoff behavior of energetic materials; damage and hot spot initiation mechanisms with energetic materials; detonation phenomena of solid energetic materials; and hazard classification, insensitive munitions, and propulsion systems safety.

  7. Bioenergetics in ecosystems

    USGS Publications Warehouse

    Madenjian, Charles P.

    2011-01-01

    A bioenergetics model for a fish can be defined as a quantitative description of the fish’s energy budget. Bioenergetics modeling can be applied to a fish population in a lake, river, or ocean to estimate the annual consumption of food by the fish population; such applications have proved to be useful in managing fisheries. In addition, bioenergetics models have been used to better understand fish growth and consumption in ecosystems, to determine the importance of the role of fish in cycling nutrients within ecosystems, and to identify the important factors regulating contaminant accumulation in fish from lakes, rivers, and oceans.

  8. Teaching Science in Art: Technical Examination of 17th-Century Dutch Painting as Interdisciplinary Coursework for Science Majors and Nonmajors

    ERIC Educational Resources Information Center

    Uffelman, Erich S.

    2007-01-01

    Two linked courses examining conservation science and art history of 17th-century Dutch painting are described. The two courses have been taught on campus and, most recently, as study-abroad courses in collaboration with the Center for European Studies, Universiteit Maastricht, The Netherlands. The highly interdisciplinary courses are intense, yet…

  9. A Mediterranean derecho: Catalonia (Spain), 17th August 2003

    NASA Astrophysics Data System (ADS)

    López, J. Manuel

    2007-02-01

    At approximately 6:10 UTC in the morning of 17th August 2003, a squall line developed over south Catalonia (the northeast region of Spain). During the next 9 h, the squall moved rapidly northeast and crossed Catalonia and the French regions of Languedoc-Roussillon and Province, damaging and uprooting hundreds of trees and blocking trains in the region. Wind gusts reached were recoded up to 52 m/s with evidence of F2 intensity damage. This case study shows the characteristics of a derecho (widespread convectively induced windstorm). Radar observations of the evolving squall line show signatures often correlated with damaging surface winds, including: Bow echoes, Rear inflow notches, Rear inflow jets, Medium altitude radial convergence, Narrow gradient of very marked reflectivity, Development of isolated cells ahead of the convective line, A band of convection off the northern end of the line known as a "warm advection wing". When examining the different surface observations, satellite, radar imagery and cloud-to-ground lightning data, this case shows many similarities to those investigated in the United States. The derecho is a hybrid case, but has many characteristics of warm season derechoes. This emanates from a mesoscale convective complex (MCC) moving along a quasi-stationary, low-level thermal boundary in an environment characterized by high potential instability and relatively strong mid-tropospheric winds.

  10. Nostalgia in the Army (17th-19th Centuries).

    PubMed

    Battesti, Michèle

    2016-01-01

    People died from nostalgia in the army in the 17th-19th centuries. The term 'nostalgia', created by the doctor Johannes Hofer (1669-1752), from Mulhouse, came from the Germanic Heimweh, or 'homesickness'. It affected the young people enrolled in the army, such as Swiss mercenaries. Longing for their native land, they were consumed by an ongoing desire to return home. If it was impossible to do so, they sank into 'a sadness accompanied with insomnia, anorexia and other unpleasant symptoms' that could lead to death. Nostalgia became classified as a disease during the last quarter of the 18th century and ravaged the French army during the Revolution and the Napoleonic wars. However, as soon as the wars ended, it ceased to exist in the army (except the colonial army). It was removed from the nosology in the first half of the 19th century. Rapidly explained as an example of a misdiagnosis or a confusion between 'connection and cause', nostalgia needs to be assessed in regard to the medical debate between 'alienists' and 'organicists'. Creating much concern, nostalgia needs to be considered in the historical context of a society destabilized by modernity, with some individuals uprooted by the sudden transition from civil society to military life. It raises questions about the role that the army played in the creation of the French national union. Nostalgia may have also covered psychic traumatisms later designated as combat fatigue, war neurosis, or post-traumatic stress disorder. PMID:27035922

  11. The 17th International Conference on Antiviral Research.

    PubMed

    Buckheit, Robert W

    2004-09-01

    The focus of the 17th International Conference on Antiviral Research was the discovery and development of antiviral agents (chemistry, biology, animal models and clinical trial results) against a variety of human infectious agents including HIV, herpes viruses, hepatitis viruses, respiratory viruses and emerging/re-emerging pathogens. The meeting included the symposium 'Clinical Update on Antiviral Drugs', plenary sessions dedicated to each of the individual classes of infectious agents, a symposium on new developments surrounding emerging pathogens, and three special award lectures, which discussed the history of nucleotide antiviral agents, mechanisms of viral persistence and drug resistance, and the therapy of herpes virus infections. Within each infectious agent session the presentations included those describing the development of new and novel anti-infectives, including research based on the preclinical development of new molecules, and the results of animal modelling and clinical studies on advanced-stage antiviral agents. A summary of the meeting highlights, segregated by infectious agent, will be presented in this review. PMID:15330752

  12. Arsenics as bioenergetic substrates.

    PubMed

    van Lis, Robert; Nitschke, Wolfgang; Duval, Simon; Schoepp-Cothenet, Barbara

    2013-02-01

    Although at low concentrations, arsenic commonly occurs naturally as a local geological constituent. Whereas both arsenate and arsenite are strongly toxic to life, a number of prokaryotes use these compounds as electron acceptors or donors, respectively, for bioenergetic purposes via respiratory arsenate reductase, arsenite oxidase and alternative arsenite oxidase. The recent burst in discovered arsenite oxidizing and arsenate respiring microbes suggests the arsenic bioenergetic metabolisms to be anything but exotic. The first goal of the present review is to bring to light the widespread distribution and diversity of these metabolizing pathways. The second goal is to present an evolutionary analysis of these diverse energetic pathways. Taking into account not only the available data on the arsenic metabolizing enzymes and their phylogenetical relatives but also the palaeogeochemical records, we propose a crucial role of arsenite oxidation via arsenite oxidase in primordial life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:22982475

  13. Reconstructing early 17th century estuarine drought conditions from Jamestown oysters

    PubMed Central

    Harding, Juliana M.; Spero, Howard J.; Mann, Roger; Herbert, Gregory S.; Sliko, Jennifer L.

    2010-01-01

    Oysters (Crassostrea virginica) were a central component of the Chesapeake Bay ecosystem in 1607 when European settlers established Jamestown, VA, the first permanent English settlement in North America. These estuarine bivalves were an important food resource during the early years of the James Fort (Jamestown) settlement while the colonists were struggling to survive in the face of inadequate supplies and a severe regional drought. Although oyster shells were discarded as trash after the oysters were eaten, the environmental and ecological data recorded in the bivalve geochemistry during shell deposition remain intact over centuries, thereby providing a unique window into conditions during the earliest Jamestown years. We compare oxygen isotope data from these 17th century oyster shells with modern shells to quantify and contrast estuarine salinity, season of oyster collection, and shell provenance during Jamestown colonization (1609–1616) and the 21st century. Data show that oysters were collected during an extended drought between fall 1611 and summer 1612. The drought shifted the 14 psu isohaline above Jamestown Island, facilitating individual oyster growth and extension of oyster habitat upriver toward the colony, thereby enhancing local oyster food resources. Data from distinct well layers suggest that the colonists also obtained oysters from reefs near Chesapeake Bay to augment oyster resources near Jamestown Island. The oyster shell season of harvest reconstructions suggest that these data come from either a 1611 well with a very short useful period or an undocumented older well abandoned by late 1611. PMID:20534581

  14. Overview of mitochondrial bioenergetics.

    PubMed

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  15. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  16. Portuguese tin-glazed earthenware from the 17th century. Part 1: Pigments and glazes characterization

    NASA Astrophysics Data System (ADS)

    Vieira Ferreira, L. F.; Casimiro, T. M.; Colomban, Ph.

    2013-03-01

    Two sherds representative of the Portuguese faience production of the first and second halves of the 17th century were studied carefully with the use of non-invasive spectroscopies, namely: Ground State Diffuse Reflectance Absorption (GSDR), micro-Raman, Fourier-Transform Infrared (FT-IR), Laser Induced Luminescence (LIL) and Proton Induced X-ray (PIXE). These results were compared with the ones obtained for a Chinese Ming porcelain, Wanli period (16th/beginning of the 17th centuries), which served as an influence for the initial Lisbon's faience production. By combining information of the different non-destructive spectroscopic techniques used in this work, it was possible to conclude that: Co3O4 (Co II and Co III) can be found in the silicate matrix and is the blue pigment in the "Especieiro" sample (1st half of the 17th C.). Cobalt olivine silicate (Co2SiO4, Co II only) was clearly identified as the blue pigment in "Aranhões" sample (2nd half of the17th C.) - 824 cm-1 band in the micro-Raman-spectrum. Cobalt aluminate (CoAl2O4, Co II only) is the blue pigment in the Wanli plate - 203 and 512 cm-1 bands in the micro-Raman spectrum. The blue pigment in the 1st half 17th century of Lisbon's production was obtained by addition of a cobalt ore in low concentrations, which gives no specific Raman signature, because of complete dissolution in the glass. However, in most cases of the 2nd half 17th century, the Raman signature was quite evident, from a cobalt silicate. These findings point to the use of higher temperature kilns in the second case.

  17. My Experience with Alcohol, a 17th-Century Mathematician, and a Personal Decision

    ERIC Educational Resources Information Center

    Eaton, Dennis R.; Rector, Sheila M.

    2009-01-01

    This writing shares the first author's personal experience with alcohol, the negative consequences of his choices, and the ultimate answering of the question, "Am I an alcoholic and should I drink again?" The decision-making process and the eventual answer come from Blaise Pascal, a 17th-century mathematician. This process is explained and…

  18. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients.

    PubMed

    Kistowska, Magdalena; Meier, Barbara; Proust, Tatiana; Feldmeyer, Laurence; Cozzio, Antonio; Kuendig, Thomas; Contassot, Emmanuel; French, Lars E

    2015-01-01

    Propionibacterium acnes is a Gram-positive commensal bacterium thought to be involved in the pathogenesis of acne vulgaris. Although the ability of P. acnes in the initiation of pro-inflammatory responses is well documented, little is known about adaptive immune responses to this bacterium. The observation that infiltrating immune cells consist mainly of CD4(+) T cells in the perifollicular space of early acne lesions suggests that helper T cells may be involved in immune responses caused by the intra-follicular colonization of P. acnes. A recent report showing that P. acnes can induce IL-17 production by T cells suggests that acne might be a T helper type 17 (Th17)-mediated disease. In line with this, we show in this work that, in addition to IL-17A, both Th1 and Th17 effector cytokines, transcription factors, and chemokine receptors are strongly upregulated in acne lesions. Furthermore, we found that, in addition to Th17, P. acnes can promote mixed Th17/Th1 responses by inducing the concomitant secretion of IL-17A and IFN-γ from specific CD4(+) T cells in vitro. Finally, we show that both P. acnes-specific Th17 and Th17/Th1 cells can be found in the peripheral blood of patients suffering from acne and, at lower frequencies, in healthy individuals. We therefore identified P. acnes-responding Th17/Th1 cells as, to our knowledge, a previously unreported CD4(+) subpopulation involved in inflammatory acne. PMID:25010142

  19. Concurrent phenomena of science and history in the 17th century and their essential interdependence.

    PubMed

    Bloch, H

    1992-06-01

    The explanation for the explosion of science in the 17th century lies in history and medical historiography. Without this approach, it becomes fantasy, accidents, or success stories. Sigerist grasped the essential interdependence of science and history, and had no need for devised reasons or speculation. He realized that once the dark night of the Middle Ages was over, the sciences arose with undreamt of force and accelerated development. The advances in astronomy, mathematics, mechanics, and experimental science benefitted a society developing in seafaring, manufacture, and trade in the 17th century. Sigerist's views make the scientific explosion understandable in human and social terms. He did not overlook the capabilities of some extraordinary individuals, such as Paracelsus (1493-1541), to shape the course of medicine, nor the importance of the mechanistic philosophy in the 17th century. Man makes history and science; hence, we find concurrent phenomena of history and science essentially interdependent. The spirit of experimental science of 17th century England was inspired by the new needs of commercial enterprise for more means of transportation and communication. Likewise, the interest in the mechanics of the pump for waterworks and for the drainage of swamps led Harvey to think of the heart as a pump, and to explain the circulation of the blood in terms of its functioning. PMID:1608066

  20. Construction of a 17th Century Telescope: An Experiment in the History of Astronomy.

    ERIC Educational Resources Information Center

    Gainer, Michael K.

    1981-01-01

    Describes the construction of a 17th-century telescope using old lenses and compares observations using this instrument with Galileo's observations. Describes experiments with modern eyepieces, the educational value of the activity, and given recommendations for construction of similar telescopes. (JN)

  1. Why "Worser" Is Better: The Double Comparative in 16th- to 17th-Century English.

    ERIC Educational Resources Information Center

    Schluter, Julia

    2001-01-01

    Investigates the redundantly marked comparative "worser" in relation to its irregular, but etymologically justified, counterpart, "worse." Examines the diachronic development of the form as well as its distribution in the written language of the 16th and 17th centuries. (Author/VWL)

  2. Computers in Libraries Annual Conference (17th, Washington, DC, March 13-15, 2002): Collected Presentations.

    ERIC Educational Resources Information Center

    Nixon, Carol, Comp.

    This book contains presentations from the 17th annual Computers in Libraries Conference. Topics covered include: chatting with a librarian; verbots for library Web sites; collaborative IT (Information Technology) planning at Montgomery County Public Library (Maryland); designing a local government taxonomy; Weblogs; new roles for librarians in…

  3. Mosquito Vector Control and Biology in Latin America - A 17th Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 17th Annual Latin America American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 73rd Annual Meeting in Orlando, FL, in April 2007. The principal objective, as for the previous 16 symposia, was to promote participation in the AMCA by vector cont...

  4. Concurrent phenomena of science and history in the 17th century and their essential interdependence.

    PubMed Central

    Bloch, H.

    1992-01-01

    The explanation for the explosion of science in the 17th century lies in history and medical historiography. Without this approach, it becomes fantasy, accidents, or success stories. Sigerist grasped the essential interdependence of science and history, and had no need for devised reasons or speculation. He realized that once the dark night of the Middle Ages was over, the sciences arose with undreamt of force and accelerated development. The advances in astronomy, mathematics, mechanics, and experimental science benefitted a society developing in seafaring, manufacture, and trade in the 17th century. Sigerist's views make the scientific explosion understandable in human and social terms. He did not overlook the capabilities of some extraordinary individuals, such as Paracelsus (1493-1541), to shape the course of medicine, nor the importance of the mechanistic philosophy in the 17th century. Man makes history and science; hence, we find concurrent phenomena of history and science essentially interdependent. The spirit of experimental science of 17th century England was inspired by the new needs of commercial enterprise for more means of transportation and communication. Likewise, the interest in the mechanics of the pump for waterworks and for the drainage of swamps led Harvey to think of the heart as a pump, and to explain the circulation of the blood in terms of its functioning. PMID:1608066

  5. Power Relationships on the Unionized Campus. Proceedings, Annual Conference (17th, April 1989).

    ERIC Educational Resources Information Center

    Douglas, Joel M., Ed.

    Papers from the 17th Annual Conference present observations and analysis of how the power equation has, or has not, been altered by the introduction of faculty and support staff unionism. The first section on power relationships between professors and senates contains: "The Academic as Political Man or Woman" (Seymour Lipset); "Governance: Senates…

  6. Nonmilitary applications of the rocket between the 17th and 20th centuries

    NASA Technical Reports Server (NTRS)

    Sharpe, M. R.

    1977-01-01

    Nonmilitary uses of the rocket through history were investigated. It was found that through the 17th century rockets were used in whaling as harpoon drives. In later years, rockets were used in lifesaving and in commercial signalling at sea. Rocket utilization was traced up to the present application of sending the first men to the moon.

  7. Bioenergetics and Life's Origins

    PubMed Central

    Deamer, David; Weber, Arthur L.

    2010-01-01

    Bioenergetics is central to our understanding of living systems, yet has attracted relatively little attention in origins of life research. This article focuses on energy resources available to drive primitive metabolism and the synthesis of polymers that could be incorporated into molecular systems having properties associated with the living state. The compartmented systems are referred to as protocells, each different from all the rest and representing a kind of natural experiment. The origin of life was marked when a rare few protocells happened to have the ability to capture energy from the environment to initiate catalyzed heterotrophic growth directed by heritable genetic information in the polymers. This article examines potential sources of energy available to protocells, and mechanisms by which the energy could be used to drive polymer synthesis. PMID:20182625

  8. Bioenergetics of the Archaea

    PubMed Central

    Schäfer, Günter; Engelhard, Martin; Müller, Volker

    1999-01-01

    In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane

  9. Traces and echoes of De Architectura by Marcus Vitruvius Pollio in the work of Xu Guangqi in 17th century China

    NASA Astrophysics Data System (ADS)

    Cigola, Michela; Fang, Yibing

    2016-03-01

    This study aims to investigate the role played by Xu Guangqi (1562-1633), minister of the Ming Dynasty, in the development of European scientific and technical knowledge in China between the 16th and 17th centuries by analyzing a book of Western technology that he wrote, namely, Taixi Shuifa ( On Western Hydraulics). Several Western books related to machine knowledge are searched to trace the source of the illustrations in Taixi Shuifa. We found that Archimedes' screw and Ctesibius' machine, which are included in Vitruvius' De Architectura volumes, also appear in the work of Xu Guangqi.

  10. Solutions To the Problem of Impact in the 17th and 18th Centuries and Teaching Newton's Third Law Today.

    ERIC Educational Resources Information Center

    Gauld, Colin

    1998-01-01

    Compares the ideas of young people about Newton's third law, focusing on youth of today and youth of the 17th and 18th centuries. Examines the use of Newton's third law in understanding impact phenomena in the 17th and 18th centuries. Contains 46 references. (DDR)

  11. 17th Edition of TOP500 List of World's Fastest SupercomputersReseased

    SciTech Connect

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack J.; Simon,Horst D.

    2001-06-21

    17th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, GERMANY; KNOXVILLE, TENN.; BERKELEY, CALIF. In what has become a much-anticipated event in the world of high-performance computing, the 17th edition of the TOP500 list of the world's fastest supercomputers was released today (June 21). The latest edition of the twice-yearly ranking finds IBM as the leader in the field, with 40 percent in terms of installed systems and 43 percent in terms of total performance of all the installed systems. In second place in terms of installed systems is Sun Microsystems with 16 percent, while Cray Inc. retained second place in terms of performance (13 percent). SGI Inc. was third both with respect to systems with 63 (12.6 percent) and performance (10.2 percent).

  12. Acupuncture points & use of moxibustion, found in the popular literature & paintings of 17th century Japan.

    PubMed

    Omura, Y

    1984-01-01

    Acupuncture and moxibustion have long been an integral part of Far Eastern oriental medicine. Moxibustion and acupuncture cannot be discussed without each other since both use the same acupuncture point locations and nomenclatures. In the late 17th century, the famous travel diary of Basho, a Japanese master of haiku poetry, made reference to personal use of moxibustion on one of the well-known acupuncture points, stomach 36. Recently, the author found 2 paintings of a 17th century Kyoto geisha house and its surroundings in the Boston Museum of Fine Arts, painted in realistic color by Moronobu, the originator of the Ukiyoe style and a contemporary of Basho. Part of the scene depicts some professional porters at work; on their legs are white scars at some of the well-known acupuncture points, including stomach 36 and spleen 6. The scars appear to be the result of moxibustion. This may indicate the common use of moxibustion on well-known acupuncture points of the lower extremities in late 17th century Japan for professional porters and for people making extensive journeys. Further support of the relatively widespread use of acupuncture and moxibustion is even found in the popular, non-medical literature of late 17th century Japan. In one of the short stories about the life of average people, written by the novelist Saikaku, the details of a young woman giving moxibustion on the back of a young man is realistically described with illustrations. Reports written by some of the foreign physicians who visited Japan during this period were published, describing these methods with illustrations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6152509

  13. 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings

    SciTech Connect

    Sopori, B. L.

    2007-08-01

    The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

  14. Building a Foundation for Bioenergetics

    ERIC Educational Resources Information Center

    Hamori, Eugene

    2002-01-01

    To give students a lasting comprehension of bioenergetics, first such basics as heat, work, equilibrium, entropy, free energy, closed "versus" open systems, steady state, and reversibility should be explained to them in a meticulous manner, albeit with a minimal use of mathematical formulae. The unique feature of thermodynamics, that it does not…

  15. Bioenergetics: Proton fronts on membranes

    NASA Astrophysics Data System (ADS)

    Agmon, Noam; Gutman, Menachem

    2011-11-01

    Proton migration on membranes is a crucial step in the bioenergetics of the cell. It has typically been regarded as slow successive proton transfers between ionizable moieties within the membrane, but recent measurements suggest fast lateral diffusion in the membrane's hydration layer.

  16. [Rules of hygiene and moral guidance in medical practice, 16th-17th centuries Spain].

    PubMed

    Ruiz Somavilla, María José

    2002-01-01

    In recent decades, we have seen how members of the illiterate, popular classes gained access to specific contents of elite culture by means of oral expression collected through texts. This development may be related to the target readership of medical texts published in Spain during the 16th and 17th centuries. The study also analyses how information about preventive measures in health care was passed on through medical books from professionals to lay-people. This represents one of the key methods used by medical practice in the modern world. PMID:12678024

  17. Transient uplift after a 17th-century earthquake along the kuril subduction zone

    USGS Publications Warehouse

    Sawai, Y.; Satake, K.; Kamataki, T.; Nasu, H.; Shishikura, M.; Atwater, B.F.; Horton, B.P.; Kelsey, H.M.; Nagumo, T.; Yamaguchi, M.

    2004-01-01

    In eastern Hokkaido, 60 to 80 kilometers above a subducting oceanic plate, tidal mudflats changed into freshwater forests during the first decades after a 17th-century tsunami. The mudflats gradually rose by a meter, as judged from fossil diatom assemblages. Both the tsunami and the ensuing uplift exceeded any in the region's 200 years of written history, and both resulted from a shallow plate-boundary earthquake of unusually large size along the Kuril subduction zone. This earthquake probably induced more creep farther down the plate boundary than did any of the region's historical events.

  18. Pigment characterization of important golden age panel paintings of the 17th century

    NASA Astrophysics Data System (ADS)

    Pięta, Ewa; Proniewicz, Edyta; Szmelter-Fausek, Bożena; Olszewska-Świetlik, Justyna; Proniewicz, Leonard M.

    2015-02-01

    Samples were obtained from two world-famous 17th century panel paintings of the Gdańsk school of panting: 'Seven Acts of Charity' (1607, in St. Mary's Church in Gdańsk, Poland) by Anton Möller and 'Angelic Concert' (1611, in Diocesan Museum in Pelplin, Poland) by Hermann Han. Micro-Raman spectroscopy (MRS), optical microscopy (OM), and X-ray fluorescence (XRF) spectroscopy studies of the samples were performed to characterize the pigments present in the individual painting layers (a rich palette of white, black, blue, red, and yellow pigments) and the pictorial techniques used by the artists.

  19. Too Little too Soon: The Literature of Deaf Education in 17th-Century Britain (Part II).

    ERIC Educational Resources Information Center

    Hoolihan, Christopher

    1985-01-01

    The article describes the growth in literature on deaf education in 17th century Britain. Noted is the work of John Wallis, William Holder, George Dalgarno, Anton Deusing, and Johann Conrad Amman. (CL)

  20. Bioenergetics of Continental Serpentinites

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Meyer-Dombard, D. R.

    2011-12-01

    methanogenesis. We find that there is strong energetic yield from most reactions considered, except for transformation of nitrite to nitrate, ammonia to nitrite, ferrous to ferric iron, and carbon dioxide to methane. Laying out foundational metabolic models for microbiological communities sustained by chemosynthesis in this setting (mining energy from ultramafic rocks and chemical systems, not tied to photosynthesis in any way) has enticing relevance to the search for extraterrestrial life, in that similar rocks have been detected on our sibling planet Mars, with transient atmospheric detection of hydrogen and methane (Schulte et al., 2006, Mumma et al., 2009). To a first order, this work explores the intersection of serpentinite groundwater chemistry and bioenergetics to determine what kinds of life can be sustained in these significant subsurface settings. References cited: Kelley et al. 2005. Science 307:1428-1434. McCollom and Bach. 2009. GCA 73:856-875. Mumma et al., 2009. Science 323:1041-1045. Schulte et al., 2006. Astrobiology 6:364-376.

  1. Food flora in 17th century northeast region of Brazil in Historia Naturalis Brasiliae

    PubMed Central

    2014-01-01

    Background This article reports historical ethnobotany research conducted from a study of the work Historia Naturalis Brasiliae (Natural History of Brazil), authored by Piso and Marcgrave and published in 1648, with main focus on Caatinga of northeast region of Brazil. Methods Focusing the content analysis on the section dedicated to plant species with multiple uses, Marcgrave's contribution to the aforementioned work, this research had the following objectives: the retrieval of 17th century knowledge about the food uses of the flora in the northeast region of Brazil, including the taxonomic classifications; the identification of plant parts, their modes of consumption and the ethnic group of consumers; and the verification of the use of these species over time. Results The use of 80 food species at the time of the publication of the work is indicated, some of which are endemic to the Caatinga, such as “umbu” (Spondias tuberosa Arruda), “mandacaru” (Cereus jamacaru DC.) and “carnauba” (Copernicia cerifera Mart.). It is noticeable that among the species listed by Marcgrave, some species still lack current studies indicating their real nutritional value. The present study is an unprecedented work because it introduces, in a systematic way, the food plants described in a study of 17th century Brazil. Conclusions Finally, this study makes information about plants consumed in the past accessible, aiming to provide material for studies that could develop new food products today. PMID:24965737

  2. The place of the 17th century in Jung's encounter with China.

    PubMed

    Cambray, Joe

    2005-04-01

    After recounting several dreams and related alchemical interests of Jung's tied to the 17(th) century, a contextualizing look at select scientific and philosophical developments of that century is presented. Several precursors of the contemporary debates on the mind/body relation are noted, with special reference to the work of Antonio Damasio. This in turn leads to a reconsideration of the work of the 17(th) century polymath Gottfried Wilhelm Leibniz, which Jung read as a major precursor to his formulation of synchronicity (via Leibniz's concept of 'pre-established harmony'). Leibniz was the first philosopher to articulate the mind/body relationship in terms of supervenience, sharing an accord with those contemporary philosophers and scientists who see the mind as being an emergent property of the body-brain. Similarly, these ideas are also consistent with a reformulation of synchronicity in terms of emergence. Tracing Leibniz's interest in China reveals another set of links to Jung and to emergentism. Jung's use of Taoist concepts in developing the synchronicity principle is well known. According to scholars, Leibniz was the first major Western intellect to study the I-Ching, through the assistance of a Jesuit missionary in Beijing, Fr. Joachim Bouvet. Some details of the Leibniz-Bouvet correspondence are discussed here. Despite Helmut Wilhelm's presenting aspects of this correspondence at an Eranos conference, Jung does not appear to have integrated it into his writing on synchronicity--a possible reason for this omission is suggested. PMID:15817042

  3. Raman spectroscopy analysis of pigments on 16-17th c. Persian manuscripts

    NASA Astrophysics Data System (ADS)

    Muralha, Vânia S. F.; Burgio, Lucia; Clark, Robin J. H.

    2012-06-01

    The palette of four Persian manuscripts of the 16th and 17th centuries were established by Raman microscopy to include lazurite, red lead, vermilion, orpiment, a carbon-based black, lead white, malachite, haematite, indigo, carmine and pararealgar. The first five pigments were identified on all four manuscripts, as previously found for other Islamic manuscripts of this period. The findings were compared with information available in treatises on Persian painting techniques. Red lead, although identified on all of the manuscripts analysed in this study as the main red pigment, is seldom mentioned in the literature. Two unusual pigments were also identified: the intermediate phase between realgar and pararealgar in the manuscript Timur namah, and carmine in the manuscript Shah namah. Although the established palette comprises few pigments, it was found that the illuminations were enhanced by the use of pigment mixtures, the components of which could be identified by Raman microscopy.

  4. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669

    PubMed Central

    Thalassinou, Eleni; Poulakou-Rebelakou, Effie; Hatzakis, Angelos

    2015-01-01

    A little-known effort to conduct biological warfare occurred during the 17th century. The incident transpired during the Venetian–Ottoman War, when the city of Candia (now Heraklion, Greece) was under siege by the Ottomans (1648–1669). The data we describe, obtained from the Archives of the Venetian State, are related to an operation organized by the Venetian Intelligence Services, which aimed at lifting the siege by infecting the Ottoman soldiers with plague by attacking them with a liquid made from the spleens and buboes of plague victims. Although the plan was perfectly organized, and the deadly mixture was ready to use, the attack was ultimately never carried out. The conception and the detailed cynical planning of the attack on Candia illustrate a dangerous way of thinking about the use of biological weapons and the absence of reservations when potential users, within their religious framework, cast their enemies as undeserving of humanitarian consideration. PMID:26894254

  5. Binary Star Measurements with a 17th Century, Long-Focal, Non-Achromatic Refractor

    NASA Astrophysics Data System (ADS)

    Binder, Alan

    2010-10-01

    As part of the evaluation of my long-focal, non-achromatic refractor of the type developed during the first century, i.e., the 17th century, of optical astronomy, I have observed 175 double and multiple stars. After having observed most of these binary stars visually, I decided to see if it would be possible to measure their position angles and separations. Thus, I built a micrometer and began a program to determine if - and how accurately - I could measure the characteristics of these binaries. To my great surprise, the average error of the measured position angles is only 2 degrees and that of the separations is only 1 arc-second - values that are almost a good as modern measurements. These results further indicate that these very early and relatively primitive telescopes were much better that modern astronomical historians believe.

  6. In the sign of Galileo: pictorial representation in the 17th-century Copernican debate.

    PubMed

    Remmert, Volker R

    2003-03-01

    After Galileo had discovered the four moons of Jupiter in 1609 he became increasingly convinced that the Copernican, heliocentric system of the world was correct. However, this ran against the opinions of the Church and a large number of contemporary astronomers and natural philosophers. The ensuing development culminated in the condemnation of the Copernican system by the Church in 1616 and of Galileo himself, who had propagated the Copernican system in his Dialogue Concerning the Two Chief World Systems (1632), in 1633. Nevertheless, there was a constant debate about the right world system during the whole 17th century. Pictorial representation played an important role in it and the illustrations used as book frontispieces were a significant medium for the dispute. PMID:12642143

  7. Study of 2012 may 17th solar particle event with PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Mergè, Matteo

    The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment has been collecting data in orbit since July 2006, providing accurate measurements of the energy spectra and composition of the cosmic radiation from about one hundred MeV/n up to hundreds GeV/n. The energy interval explored makes PAMELA well suited to observe Solar Energetic Particle (SEP) events measuring their energy spectra and composition and overlapping with the ground based observation capability of neutron monitors (NM). In particular, on 17th of May 2012, a Ground Level Enhancement has been observed by PAMELA and many NMs in the polar regions, the event was classified as GLE 71. The high accuracy achieved in the measurement of the particle rigidity as well as the sampling of the spatial distribution of the trajectories for this event may contribute to the understanding of several issues of the injection and propagation of SEPs in the Heliosphere.

  8. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669.

    PubMed

    Thalassinou, Eleni; Tsiamis, Costas; Poulakou-Rebelakou, Effie; Hatzakis, Angelos

    2015-12-01

    A little-known effort to conduct biological warfare occurred during the 17th century. The incident transpired during the Venetian–Ottoman War, when the city of Candia (now Heraklion, Greece) was under siege by the Ottomans (1648–1669). The data we describe, obtained from the Archives of the Venetian State, are related to an operation organized by the Venetian Intelligence Services, which aimed at lifting the siege by infecting the Ottoman soldiers with plague by attacking them with a liquid made from the spleens and buboes of plague victims. Although the plan was perfectly organized, and the deadly mixture was ready to use, the attack was ultimately never carried out. The conception and the detailed cynical planning of the attack on Candia illustrate a dangerous way of thinking about the use of biological weapons and the absence of reservations when potential users, within their religious framework, cast their enemies as undeserving of humanitarian consideration. PMID:26894254

  9. [Pharmacies in Rzeszów (17th-19th centuries)].

    PubMed

    Swieboda, J

    2000-01-01

    This dissertation is available thanks to many years investigation into the development of education and the history of the church in Galicia and the surrounding region. On the basis of gathered record materials and works concerning medical care, the author presents a history of drug stores in Rzezów in 17th-19th centuries. First, he deals with a pharmacy run by the Pijar monks in the years 1670-1697. There is a unique polychromy in it showing the different way of treating sick patients in the years 1695-1697. Next, he depicts the development of pharmacies according to Austrian law, when southern Poland came under the rule of the Habsburg family between 1772-1918. The lot of all pharmacies, the role of their owners, illustrious pharmacists, Polish - Austrian marriages among pharmacists, their connections with doctors and their position in society during this period are also described. PMID:11770491

  10. Quantifying early 17th century changes in Chesapeake Bay estuarine carbon dynamics from James River, VA oyster geochemistry

    NASA Astrophysics Data System (ADS)

    Grimm, B. L.; Spero, H. J.; Harding, J. M.

    2012-12-01

    same shells provide seasonal signals and also show an offset from modern that is consistent with drought conditions during the early 17th century. These high fidelity records allow for a direct, high-resolution comparison of the residence time of carbon in the environment immediately prior to European colonization and during the first century of land use change in mid-Atlantic North America.

  11. The origin of membrane bioenergetics.

    PubMed

    Lane, Nick; Martin, William F

    2012-12-21

    Harnessing energy as ion gradients across membranes is as universal as the genetic code. We leverage new insights into anaerobe metabolism to propose geochemical origins that account for the ubiquity of chemiosmotic coupling, and Na(+)/H(+) transporters in particular. Natural proton gradients acting across thin FeS walls within alkaline hydrothermal vents could drive carbon assimilation, leading to the emergence of protocells within vent pores. Protocell membranes that were initially leaky would eventually become less permeable, forcing cells dependent on natural H(+) gradients to pump Na(+) ions. Our hypothesis accounts for the Na(+)/H(+) promiscuity of bioenergetic proteins, as well as the deep divergence between bacteria and archaea. PMID:23260134

  12. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells.

    PubMed

    Guedan, Sonia; Chen, Xi; Madar, Aviv; Carpenito, Carmine; McGettigan, Shannon E; Frigault, Matthew J; Lee, Jihyun; Posey, Avery D; Scholler, John; Scholler, Nathalie; Bonneau, Richard; June, Carl H

    2014-08-14

    With the notable exception of B-cell malignancies, the efficacy of chimeric antigen receptor (CAR) T cells has been limited, and CAR T cells have not been shown to expand and persist in patients with nonlymphoid tumors. Here we demonstrate that redirection of primary human T cells with a CAR containing the inducible costimulator (ICOS) intracellular domain generates tumor-specific IL-17-producing effector cells that show enhanced persistence. Compared with CARs containing the CD3ζ chain alone, or in tandem with the CD28 or the 4-1BB intracellular domains, ICOS signaling increased IL-17A, IL-17F, and IL-22 following antigen recognition. In addition, T cells redirected with an ICOS-based CAR maintained a core molecular signature characteristic of TH17 cells and expressed higher levels of RORC, CD161, IL1R-1, and NCS1. Of note, ICOS signaling also induced the expression of IFN-γ and T-bet, consistent with a TH17/TH1 bipolarization. When transferred into mice with established tumors, TH17 cells that were redirected with ICOS-based CARs mediated efficient antitumor responses and showed enhanced persistence compared with CD28- or 4-1BB-based CAR T cells. Thus, redirection of TH17 cells with a CAR encoding the ICOS intracellular domain is a promising approach to augment the function and persistence of CAR T cells in hematologic malignancies. PMID:24986688

  13. Guglielmo Riva (1627-1677) and the end of hepatocentrism: a 17th-century painting.

    PubMed

    Riva, Michele Augusto; Benedetti, Marta; Vaglienti, Francesca; Torre, Chiara; Baggieri, Gaspare; Cesana, Giancarlo

    2014-01-01

    During the seventeenth century, the description of the lymphatic system provided a decisive contribution to resolving the misconceptions of Galenic physiology concerning the production of blood in the liver. The transition from a liver-centered (hepatocentrism) to a heart-centered model (cardiocentrism) was fundamental in the history of medicine, since it allowed the role of the liver and of the heart in the bodily processes to be more correctly identified. The modification of the medical knowledge on the liver and its functions during that period is well represented in a 17th-century painting,"ll Fegato" ("The Liver"), probably belonging to the "anatomical museum" of the Roman surgeon Giovanni Guglielmo Riva (1627-1677). In particular, this Italian physician significantly contributed to the discovery of the lymphatic system and to the study of the hematopoiesis. Thus, this painting as well as the figure of Guglielmo Riva would deserve a major consideration in the history of medicine and of hepatology in particular. PMID:25739148

  14. Radiological Diagnosis of Congenital Diaphragmatic Hernia in 17th Century Korean Mummy

    PubMed Central

    Kim, Yi-Suk; Lee, In Sun; Jung, Go-Un; Kim, Myeung Ju; Oh, Chang Seok; Yoo, Dong Su; Lee, Won-Joon; Lee, Eunju; Cha, Soon Chul; Shin, Dong Hoon

    2014-01-01

    Congenital diaphragmatic hernia (CDH) is a birth defect of the diaphragm resulting in pulmonary sequelae that threaten the lives of infants. In computed tomography (CT) images of a 17th century middle-aged male mummy (the Andong mummy), we observed that the abdominal contents had protruded into the right thoracic cavity through the diaphragmatic defect, accompanied by a mediastinal shift to the left. On autopsy, the defect in the right posterolateral aspect of the diaphragm was reconfirmed, as was the herniation of the abdominal organs. The herniated contents included the right lobe of the liver, the pyloric part of the stomach, a part of the greater omentum, and the right colic flexure connecting the superior part of the ascending colon and the right part of the transverse colon. Taking our CT and autopsy results together, this case was diagnosed as the Bochdalek-type CDH. Herein we make the first ever report of a CT-assisted diagnosis of a pre-modern historical case of CDH. Our results show the promising utility of this modality in investigations of mummified human remains archaeologically obtained. PMID:24988465

  15. A Possible Case of Cherubism in a 17th-Century Korean Mummy

    PubMed Central

    Spigelman, Mark; Sarig, Rachel; Lim, Do-Sun; Lee, In Sun; Oh, Chang Seok; May, Hila; Boaretto, Elisabetta; Kim, Yi-Suk; Lee, Soong Deok; Peled, Nathan; Kim, Myeung Ju; Toledano, Talya; Bar-Gal, Gila Kahila

    2014-01-01

    Cherubism is a benign fibro-osseous disease of childhood limited specifically to the maxilla and mandible. The progressive replacement of the jaw bones with expansile multilocular cystic lesions causes eventual prominence of the lower face, and hence the classic “cherubic” phenotype reflecting variable extents of jaw hypertrophy. Histologically, this condition has been characterized as replacement of the normal bone matrix with multicystic pockets of fibrous stroma and osteoclastic giant cells. Because of radiographic features common to both, primarily the presence of multiloculated lucencies with heterogeneous “ground-glass” sclerosis on CT imaging, cherubism was long mistaken for a craniofacial subtype of fibrous dysplasia. In 1999, however, the distinct genetic basis for cherubism was mapped to chromosome 4p16.3 and the SH-3 binding protein SH3BP2. But while there are already three suspected cases of fibrous dysplasia amongst archaeological populations, no definitive cases of cherubism have yet been reported in historical populations. In the current study we describe micro- and macro-structural changes in the face of a 17th century Joseon Dynasty Korean mummy which may coincide with the clinic-pathologic and radiologic features of cherubism. PMID:25093864

  16. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    NASA Astrophysics Data System (ADS)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  17. [Chemistry of life: ferments and fermentation in 17th-century iatrochemistry].

    PubMed

    Clericuzio, Antonio

    2003-01-01

    The concepts of ferment and fermentation played an important, though heretofore neglected, role in 17th-century physiology. Though these notions can be found in ancient philosophy and medicine, as well as in medieval medicine, they became integral part of the chemical medicine that was advocated by Paracelsus and his school. Paracelsians made fermentation a central concept in their successful effort to give chemical foundation to medicine. Jean Baptiste van Helmont and Sylvius used the concepts of ferment and fermentation to explain a variety of physiological processes in human body. Corpuscular philosophers like Robert Boyle and Thomas Willis reinterpreted these notions in corpuscular terms and separated the concept of ferment from that of fermentation. In the second half of the seventeenth century, physiologist tried to explain fermentation by means of chemical reactions, as for instance acid -alkali, and ruled out the notion of ferment as superfluous to their investigations. At the end of hte seventeenth century fermentation attracted the interest of physicists like Johannes Bernoulli and Isaac Newton, who tried to explain fermentative processes in terms of matter and motion (Bernoulli) and short-range forces (Newton). George Ernst Stahl devoted a work to fermentation: the Zymotechnia. He explained fermentation as the outcome of the reactions of molecules formed of saline, oily and earthy corpuscles with particles of water. He saw fermentation as a mechanical process, i.e. as collision of different kinds of corpuscles. PMID:15311436

  18. Bioenergetic Progress and Heat Barriers

    NASA Astrophysics Data System (ADS)

    Zotin, A. A.; Lamprecht, I.; Zotin, A. I.

    2001-07-01

    Progressing biological evolution is discussed in the framework of nonequilibrium thermodynamics. It is connected with an increase of the mass specific standard metabolism given by coefficient a in the allometric relation (1) between oxygen consumption rate and body mass of an animal. Three “heat barriers” are found in the course of such a bioenergetic evolution. The first heat barrier concerns an animal's overheating during active movement and is overcome by the development of thermoregulation and the appearance of homeothermic animals. A second barrier arises when the coefficient a reaches values connected with lethal body temperatures. The transition across this second heat barrier occurs as result of reasonable activities and the appearance of civilization. The third heat barrier will arise during the further development of human civilization, connected with a highly increased energy production and a fatal warming of the Earth atmosphere. The manner to overcome this barrier will probably depend on the assimilation of space and the establishment of energy consuming industries outside the Earth. The bioenergetic evolution discussed in this paper does not exclude other trends of evolution, e.g. increase of size, and does not mean to be the only aspect of biological evolution.

  19. 76 FR 70178 - Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th Street NW., Suite 1000, Washington, DC 20036; Notice of Intention to Cancel Registration Pursuant...

  20. A summary of ground motion effects at SLAC (Stanford Linear Accelerator Center) resulting from the Oct 17th 1989 earthquake

    SciTech Connect

    Ruland, R.E.

    1990-08-01

    Ground motions resulting from the October 17th 1989 (Loma Prieta) earthquake are described and can be correlated with some geologic features of the SLAC site. Recent deformations of the linac are also related to slow motions observed over the past 20 years. Measured characteristics of the earthquake are listed. Some effects on machine components and detectors are noted. 18 refs., 16 figs.

  1. 76 FR 67005 - Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... COMMISSION Investment Advisers Act of 1940; In the Matter of Creative Investment Research, Inc., 1050 17th... the Investment Advisers Act of 1940 (the ``Act''), cancelling the registration of Creative Investment... application for registration filed under that section, is no longer in existence, is not engaged in...

  2. The "System of Chymists" and the "Newtonian Dream" in Greek-Speaking Communities in the 17th-18th Centuries

    ERIC Educational Resources Information Center

    Bokaris, Efthymios P.; Koutalis, Vangelis

    2008-01-01

    The acceptance of new chemical ideas, before the Chemical Revolution of Lavoisier, in Greek-speaking communities in the 17th and 18th centuries did not create a discourse of chemical philosophy, as it did in Europe, but rather a "philosophy" of chemistry as it was formed through the evolution of didactic traditions of Chemistry. This…

  3. Forming, transfer and globalization of medical-pharmaceutical knowledge in South East Asian missions (17th to 18th c.) - historical dimensions and modern perspectives.

    PubMed

    Anagnostou, Sabine

    2015-06-01

    From the 17th to the 18th centuries, missionaries in Southeast Asia dedicated themselves to providing and establishing a professional medical-pharmaceutical supply for the local population and therefore explored the genuine Materia medica for easily available and affordable remedies, especially medicinal plants. In characteristic medical-pharmaceutical compendia, which can be classified as missionary pharmacopoeias, they laid down their knowledge to advise others and to guarantee a professional health care. As their knowledge often resulted from an exchange with indigenous communities, these compendia provide essential information about traditional plant uses of Southeast Asian people. Individual missionaries such as the Jesuit Georg Joseph Kamel (1661-1706) not only strove to explore medicinal plants but performed botanical studies and even composed comprehensive herbals. The Jesuit missionaries in particular played roles in both the order's own global network of transfer of medicinal drugs and knowledge about the application, and within the contemporary local and European scientific networks which included, for example, the famous Royal Society of London. The results of their studies were distributed all over the world, were introduced into the practical Materia medica of other regions, and contributed significantly to the academization of knowledge. In our article we will explain the different intentions and methods of exploring, the resulting works and the consequences for the forming of the pharmaceutical and scientific knowledge. Finally, we will show the options which the works of the missionaries can offer for the saving of traditional ethnopharmacological knowledge and for the development of modern phytotherapeutics and pharmaceutical supply. The publication is based on a comprehensive study on the phenomenon of missionary pharmacy which has been published as a book in 2011 (Anagnostou, 2011a) and shows now the potential of historical medical

  4. Bioenergetic Profiling of Zebrafish Embryonic Development

    PubMed Central

    Stackley, Krista D.; Beeson, Craig C.; Rahn, Jennifer J.; Chan, Sherine S. L.

    2011-01-01

    Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility. PMID:21980518

  5. Analysis the flash floods occurred in the South Tyne river watershed (United Kingdom) on the 17th of July 2007

    NASA Astrophysics Data System (ADS)

    Bain, V.; Milan, D.; Preciso, E.; Gaume, E.

    2009-04-01

    On the 17th, 19th and 23rd of July 2007, a series of local thunderstorms induced flash floods in the upper part of the South Tyne river in Northumberland, a rural area located near the border between England and Scotland. These events led to moderate damages in the villages and losses of livestock in local farms. They were shadowed in comparison to the widespread lowland floods that occurred throughout the UK during the same period but were nevertheless extreme events for the region. One of the affected streams, the Thinhope Burn, has been surveyed by the University of Gloucestershire during recent years. It is an active river from a geomorphological point of view. A survey conducted after the 2007 flood revealed that many of the boulders along the banks of the river, which had been deposited 50 to 100 years before, had been displaced, indicating a high return period for the flood (see EGU abstract EGU2008-A-04713). A complementary survey was conducted in July 2008 with the objective of gathering information on the discharges, the rainfall amounts and the active runoff processes. 14 cross-sections were surveyed, pictures were collected enabling a validation of peak discharge estimates, 5 witnesses were interviewed and additional rainfall data and geomorphological evidence were collected. This survey revealed that the peak discharges exceeded 5 m3/s/km2 in the most affected areas. Unfortunately, no rainfall measurements are available that would enable further analysis, including the computation of runoff rates. Nevertheless, witness accounts and field observations give a good insight into the hydrological processes indicating a significant initial storage capacity of the peat layer covering the affected watersheds. Concerning the boulders, the field observations suggest surprising and unexplained transport processes. Blocks of up to one meter diameter were displaced over short distances and deposited on the river banks without any sign of established debris flow, as

  6. The historical archaeology of the 17th- and 18th-century Jewish community of Nevis, British West Indies

    NASA Astrophysics Data System (ADS)

    Terrell, Michelle M.

    2000-11-01

    This is an historical archaeological examination of a 17th- and 18th-century Jewish community on the island of Nevis in the British West Indies. Unlike earlier archaeological studies of the Jewish Caribbean Diaspora that focused on single sites, this investigation used a community-wide approach to elucidate the daily experience of Sephardic Jews within the colonial Caribbean. This project included an archaeological excavation at the purported location of the community's synagogue, an electrical resistivity survey of the surviving cemetery, the construction of a map of property ownership in 18th-century Charlestown, and archival research. This study was carded out within a multiscalar and contextual framework that emphasized the importance of understanding the diaspora that brought the Jews to the West Indies, the development of the colonial Caribbean, and the surrounding environs of the port city of Charlestown, Nevis. The archaeological analysis of the supposed site of the synagogue proved that it was in fact that of a late 18th-century townhouse, but the associated land record research revealed the actual location of the community's former synagogue. Furthermore, the reconstruction of the physical layout of colonial-period Charlestown from the land records indicated the presence of a distinct Jewish quarter in the undesirable southern portion of the town. Evidence from the public records of Nevis and the social history of the members of the Jewish population unveiled external social and political pressures placed upon the Sephardim as well as internal religious and ethnic ties dig bound the community together. It is argued in closing that the archival evidence, in conjunction with the continued presence of a clustered settlement pattern like that of European Jewish communities during the medieval period, indicates that the Jews of the Caribbean were not fully integrated socially or politically into British colonial society. This examination of the Nevis community

  7. Re-estimated fault model of the 17th century great earthquake off Hokkaido using tsunami deposit data

    NASA Astrophysics Data System (ADS)

    Ioki, Kei; Tanioka, Yuichiro

    2016-01-01

    Paleotsunami researches revealed that a great earthquake occurred off eastern Hokkaido, Japan and generated a large tsunami in the 17th century. Tsunami deposits from this event have been found at far inland from the Pacific coast in eastern Hokkaido. Previous study estimated the fault model of the 17th century great earthquake by comparing locations of lowland tsunami deposits and computed tsunami inundation areas. Tsunami deposits were also traced at high cliff near the coast as high as 18 m above the sea level. Recent paleotsunami study also traced tsunami deposits at other high cliffs along the Pacific coast. The fault model estimated from previous study cannot explain the tsunami deposit data at high cliffs near the coast. In this study, we estimated the fault model of the 17th century great earthquake to explain both lowland widespread tsunami deposit areas and tsunami deposit data at high cliffs near the coast. We found that distributions of lowland tsunami deposits were mainly explained by wide rupture area at the plate interface in Tokachi-Oki segment and Nemuro-Oki segment. Tsunami deposits at high cliff near the coast were mainly explained by very large slip of 25 m at the shallow part of the plate interface near the trench in those segments. The total seismic moment of the 17th century great earthquake was calculated to be 1.7 ×1022 Nm (Mw 8.8). The 2011 great Tohoku earthquake ruptured large area off Tohoku and very large slip amount was found at the shallow part of the plate interface near the trench. The 17th century great earthquake had the same characteristics as the 2011 great Tohoku earthquake.

  8. A mitochondrial bioenergetic etiology of disease

    PubMed Central

    Wallace, Douglas C.

    2013-01-01

    The classical Mendelian genetic perspective has failed to adequately explain the biology and genetics of common metabolic and degenerative diseases. This is because these diseases are primarily systemic bioenergetic diseases, and the most important energy genes are located in the cytoplasmic mitochondrial DNA (mtDNA). Therefore, to understand these “complex” diseases, we must investigate their bioenergetic pathophysiology and consider the genetics of the thousands of copies of maternally inherited mtDNA, the more than 1,000 nuclear DNA (nDNA) bioenergetic genes, and the epigenomic and signal transduction systems that coordinate these dispersed elements of the mitochondrial genome. PMID:23543062

  9. Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study

  10. Giacomo Castelvetro's salads. Anti-HER2 oncogene nutraceuticals since the 17th century?

    PubMed

    Colomer, R; Lupu, R; Papadimitropoulou, A; Vellón, L; Vázquez-Martín, A; Brunet, J; Fernández-Gutiérrez, A; Segura-Carretero, A; Menéndez, J A

    2008-01-01

    We are accumulating evidence to suggest that 17(th) century Renaissance foodways -largely based on the old "Mediterranean dietary traditions"- may provide new nutraceutical management strategies against HER2-positive breast cancer disease in the 21st century. Epidemiological and experimental studies begin to support the notion that "The Sacred Law of Salads" (i.e., "raw vegetables... plenty of generous (olive) oil") -originally proposed in 1614 by Giacomo Castelvetro in its book The Fruit, Herbs & Vegetables of Italy- might be considered the first (unintended) example of customised diets for breast cancer prevention based on individual genetic make-up (i.e., nutraceuticals against human breast carcinomas bearing HER2 oncogene amplification/overexpression). First, the so-called salad vegetables dietary pattern (i.e., a high consumption of raw vegetables and olive oil) appears to exert a protective effect mostly confined to the HER2-positive breast cancer subtype, with no significant influence on the occurrence of HER2-negative breast cancers. Second, all the main olive oil constituents (i.e., the omega-9 monounsaturated fatty acid oleic acid and polyphenolic compounds such as the secoiridoid oleuropein or the lignan 1-[+]-acetoxypinoresinol) dramatically reduce HER2 expression and specifically induce apoptotic cell death in cultured HER2- positive breast cancer cells, with marginal effects against HER2-negative cells. Third, an olive oil-rich diet negatively influences experimental mammary tumorigenesis in rats likewise decreasing HER2 expression levels. If early 1600s Castelvetro's salads can be used as dietary protocols capable to protecting women against biologically aggressive HER2-positive breast cancer subtypes is an intriguing prospect that warrants to be evaluated in human pilot studies in the future. Here, at least, we would like to recognise Giacomo Castelvetro as the father of modern nutritional genomics in oncology. PMID:18208790

  11. [Semantics of learned quackery in the 17th and 18th centuries].

    PubMed

    Füssel, Marian

    2004-06-01

    In the 17th and 18th century republic of letters the problem of scientific fraud was met with a discourse of charlatanism. Departing from Johann Burchhard Menckes famous treatise on the Charlatanry of the learned the following essay traces how the accusations of academic and scientific misconduct put in terms of 'charlatanry' primarily helped to produce the new species of the erudite 'charlatan'. Facing a growing complexity of scientific culture this new frame of meaning, structured by numerous examples of scientific misconduct offered a new way of orientation in the world of learning. But besides its cognitive impacts the discourse of charlatanry allowed to create symbolic boundaries, which determined decisions upon the affiliation or non affiliation to the new forming scientific community by separating honourable from dishonourable scientific personae. Speaking of charlatanry therefore always implied a social distinction as much as a scientific. The discourses on charlatanry also mirror differentiations within the scientific field. At first dominated by a critique built on courteous or bourgeois values, the scientific field later on developed its own criteria of appraisal like authorship, originality, transparency etc. Attracting the attention of a further growing public sphere, the explicit verbalisation of claims not relating to the value system of a republic of letters primarily concerned with the production and distribution of knowledge finally led up to a more implicit moral economy of science. A change that at a large scale level can be described both as an internalisation of the values of scientific conduct and differentiation between justiciable and unjusticiable transgressions of the norms set up by the scientific community. PMID:15338535

  12. Plastic surgery in 17th century Europe. case study: Nicolae Milescu, the snub-nosed.

    PubMed

    Dumbravă, Daniela; Luchian, Stefan

    2013-01-01

    The rising and the existence of plastic and aesthetic surgery in early modern Europe did not have a specific pattern, but was completely different from one nation to another. Colleges of Physicians could only be found in some places in Europe; different Parliaments of Europe's nations did not always elevate being a surgeon to the dignity of a profession, and being a surgeon did not always come with corporate and municipal privileges, or with attractive stipends. Conversely, corporal punishments for treacherous surgeons were ubiquitous. Rhinoplasty falls into the category of what Ambroise Paré named "facial plastic surgery". The technique is a medical source from which many histories derive, one more fascinating than the other: the history of those whose nose was cut off (because of state betrayal, adultery, abjuration, or duelling with swords), the history of those who invented the surgery of nose reconstruction (e.g. SuSruta-samhita or Tagliacozzi?), the history of surgeries kept secret in early modern Europe (e.g. Tropea, Calabria, Leiden, Padua, Paris, Berlin), and so on. Where does the history of Nicolae Milescu the Snub-nosed fall in all of this? How much of this history do the Moldavian Chronicles record? Is there any "scholarly gossip" in the aristocratic and diplomatic environments at Constantinople? What exactly do the British ambassadors learn concerning Rhinoplasty when they meet Milescu? How do we "walk" within these histories, and why should we be interested at all? What is their stike for modernity? Such are the interrogations that this article seeks to provoke; its purpose is to question (and eventually, synchronise) histories, and not exclusively history, both in academic terms but also by reassessing the practical knowledge of the 17th century. PMID:24502038

  13. Bioenergetics

    PubMed Central

    2008-01-01

    Natural life is chemical. Chemistry, not abstract logic, determines and constrains its potentialities. One of the potentialities is cognition. Humans have two equivalent cognitive systems: the immune and the nervous ones. The principle of functioning is the same for both: rooted in the previously acquired and embodied knowledge, the system is intrinsically generating many new chemical states and the environment selects and stabilizes appropriate of them. From the fundamental level of complicated brain chemistry (“biochemese”) higher levels emerge: the physiological (“physiologese”) and the mental (“mentalese”). Processes are causal at the basic chemical level; they are mere isomorphic, tautological translations at the other levels. The thermodynamic necessity to maintain correlations in the complicated chemical system and to generate variants makes the nervous system energetically expensive: it runs continuously at full speed and external inputs only trigger and modulate the ongoing dynamics. Models of the brain as a universal computer are utterly inadequate. PMID:19513208

  14. Bioenergetics modeling of percid fishes: Chapter 14

    USGS Publications Warehouse

    Madenjian, Charles P.

    2015-01-01

    A bioenergetics model for a percid fish represents a quantitative description of the fish’s energy budget. Bioenergetics modeling can be used to identify the important factors determining growth of percids in lakes, rivers, or seas. For example, bioenergetics modeling applied to yellow perch (Perca flavescens) in the western and central basins of Lake Erie revealed that the slower growth in the western basin was attributable to limitations in suitably sized prey in western Lake Erie, rather than differences in water temperature between the two basins. Bioenergetics modeling can also be applied to a percid population to estimate the amount of food being annually consumed by the percid population. For example, bioenergetics modeling applied to the walleye (Sander vitreus) population in Lake Erie has provided fishery managers valuable insights into changes in the population’s predatory demand over time. In addition, bioenergetics modeling has been used to quantify the effect of the difference in growth between the sexes on contaminant accumulation in walleye. Field and laboratory evaluations of percid bioenergetics model performance have documented a systematic bias, such that the models overestimate consumption at low feeding rates but underestimate consumption at high feeding rates. However, more recent studies have shown that this systematic bias was due, at least in part, to an error in the energy budget balancing algorithm used in the computer software. Future research work is needed to more thoroughly assess the field and laboratory performance of percid bioenergetics models and to quantify differences in activity and standard metabolic rate between the sexes of mature percids.

  15. First European Congress on Documentation Systems and Networks. Luxembourg, 16th, 17th and 18th May 1973.

    ERIC Educational Resources Information Center

    Commission des Communautes Europeennes (Luxembourg).

    The conference proceedings contained in this document include invited papers, transcripts of discussions following those papers, and the reports of topical committees that met during the three day conference held in Luxembourg, May 1973. The focus of the conference was on the design and use of information retrieval and data base systems in various…

  16. Morphological likeness of the skeletal remains in a Central European family from 17th to 19th century.

    PubMed

    Veleminský, P; Dobisíková, M

    2005-01-01

    In spite of a recent preferential application of molecular genetic methods to kinship determination of anonymous human skeletal remains, the classical anthropological methods cannot be rejected as they are simple, quick and give access to a large part of a genome. This paper deals with the extent of morphological skeletal similarity in persons of known genealogical relationship. The skeletal remains of eight individuals from the family tomb of the Swéerts-Sporck's noble family in castle Kuks, East Bohemia, Czech Republic were analysed. Basic personal details, as well as data on their genealogical relationship, were available. Individuals were compared according to 173 anatomical variants--epigenetic traits, 90 of which were located on the skull and 83 on the postcranial skeleton. For each trait the percentile coincidence and/or difference were calculated. We observed the highest coincidence between the father and his son. These two individuals showed both closest correlation in the presence and the least difference in the occurrence of anatomical variants, as well as a high value of paternal probability. Clear kinship was also detected among cousins of the same or opposite sex. However, kinship between brother and sister was not so evident. The greatest difference was observed amongst biologically unrelated family members such as women who married into the family. The individuals under investigation showed a significantly higher occurrence of three among four traits of the sella turcica (ponticulus carotico-clinoideus, ponticulus interclinoideus, taenia interclinoidea; 99% confidence). A significantly higher occurrence of the ponticuli basales ossis sphenoidalis, palatine torus and the costal articular surface on the body of 7th cervical vertebrae was also found (95% confidence). Our results, therefore, suggest that these morphological variants might be considered as family-specific traits. PMID:16130840

  17. [The apothecaries of the quartier de la Harpe in Paris in the 16th and 17th centuries].

    PubMed

    Warolin, Christian

    2015-09-01

    Large families of apothecaries, some of them very famous, lived in the Quartier de la Harpe in Paris, on the left bank of Seine, from the 16th to the 17th century. The study confirms a well-established fact that apothecaries practised endogamy, in others words marriage within the same social class. The biographical research includes ten apothecaries, most of whom lived in the rue Saint-André-des-Arts. PMID:26529892

  18. Invitation to the 17th international congress on photosynthesis research in 2016: photosynthesis in a changing world.

    PubMed

    van Amerongen, Herbert; Croce, Roberta

    2016-02-01

    The 17th International Congress on Photosynthesis will be held from August 7 to 12, 2016 in Maastricht, The Netherlands. The congress will include an opening reception, 15 plenary lectures, 28 scientific symposia, many poster sessions, displays by scientific companies, excursions, congress dinner, social activities, and the first photosynthesis soccer world championship. See http://www.ps2016.com/ . The congress is organized as an official event of the International Society of Photosynthesis Research (see http://www.photosynthesisresearch.org/). PMID:26572769

  19. PREFACE: 17th International Conference on Textures of Materials (ICOTOM 17)

    NASA Astrophysics Data System (ADS)

    Skrotzki, Werner; Oertel, Carl-Georg

    2015-04-01

    The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the "triennial" series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8. Texture

  20. PREFACE: 17th International Conference on Recent Progress in Many-Body Theories (MBT17)

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Boronat, Jordi

    2014-08-01

    These are the proceedings of the XVII International Conference on Recent Progress in Many-Body Theories, which was held from 8-13 September 2013 in Rostock, Germany. The conference continued the triennial series initiated in Trieste in 1978 and was devoted to new developments in the field of many-body theories. The conference series encourages the exchange of ideas between physicists working in such diverse areas as nuclear physics, quantum chemistry, lattice Hamiltonians or quantum uids. Many-body theories are an integral part in different fields of theoretical physics such as condensed matter, nuclear matter and field theory. Phase transitions and macroscopic quantum effects such as magnetism, Bose-Einstein condensation, super uidity or superconductivity have been investigated within ultra-cold gases, finite systems or various nanomaterials. The conference series on Recent Progress in Many-Body Theories is devoted to foster the interaction and to cross-fertilize between different fields and to discuss future lines of research. The topics of the 17th meeting were Cluster Physics Cold Gases High Energy Density Matter and Intense Lasers Magnetism New Developments in Many-Body Techniques Nuclear Many-Body and Relativistic Theories Quantum Fluids and Solids Quantum Phase Transitions Topological Insulators and Low Dimensional Systems. 109 participants from 20 countries participated. 44 talks and 61 posters werde presented. As a particular highlight of the conference, The Eugene Feenberg Memorial Medal for outstanding results in the field of many-body theory and The Hermann Kümmel Early Achievement Award in Many-Body Physics for young scientists in that field were awarded. The Feenberg Medal went jointly to Patrick Lee (MIT, USA) for his fundamental contributions to condensed-matter theory, especially in regard to the quantum Hall effect, to universal conductance uctuations, and to the Kondo effect in quantum dots, and Douglas Scalapino (UC Santa Barbara, USA) for his

  1. PREFACE: 17th International Conference on Microscopy of Semiconducting Materials 2011

    NASA Astrophysics Data System (ADS)

    Walther, T.; Midgley, P. A.

    2011-11-01

    This volume contains invited and contributed papers from the 17th international conference on 'Microscopy of Semiconducting Materials' held at Churchill College, University of Cambridge, on 4-7 April 2011. The meeting was organised under the auspices of the Institute of Physics and supported by the Royal Microscopical Society as well as the Materials Research Society of the USA. This conference series deals with recent advances in semiconductor studies carried out by all forms of microscopy, with an emphasis on electron microscopy and related techniques with high spatial resolution. This time the meeting was attended by 131 delegates from 25 countries world-wide, a record in terms of internationality. As semiconductor devices shrink further new routes of device processing and characterisation need to be developed, and, for the latter, methods that offer sub-nanometre spatial resolution are particularly valuable. The various forms of imaging, diffraction and spectroscopy available in modern microscopes are powerful tools for studying the microstructure, the electronic structure, the chemistry and also electric fields in semiconducting materials. Recent advances in instrumentation, from lens aberration correction in both TEM and STEM instruments, to the development of a wide range of scanning probe techniques, as well as new methods of signal quantification have been presented at this conference. Two examples of topics at this meeting that have attracted a number of interesting studies were: the correlation of microstructural, optical and chemical information at atomic resolution with nanometre-scale resolved maps of the local electrical fields in (In,Al)GaN based semiconductors and tomographic approaches to characterise ensembles of nanowires and stacks of processed layers in devices Figure 1 Figure 1. Opening lecture by Professor Sir Colin J Humphreys. Each manuscript submitted for publication in this proceedings volume has been independently reviewed and revised

  2. [Effects of the periodical spread of rinderpest on famine, epidemic, and tiger disasters in the late 17th Century].

    PubMed

    Kim, Dong Jin; Yoo, Han Sang; Lee, Hang

    2014-04-01

    This study clarifies the causes of the repetitive occurrences of such phenomena as rinderpest, epidemic, famine, and tiger disasters recorded in the Joseon Dynasty Chronicle and the Seungjeongwon Journals in the period of great catastrophe, the late 17th century in which the great Gyeongsin famine (1670~1671) and the great Eulbyeong famine (1695~1696) occurred, from the perspective that they were biological exchanges caused by the new arrival of rinderpest in the early 17th century. It is an objection to the achievements by existing studies which suggest that the great catastrophes occurring in the late 17th century are evidence of phenomena in a little ice age. First of all, rinderpest has had influence on East Asia as it had been spread from certain areas in Machuria in May 1636 through Joseon, where it raged throughout the nation, and then to the west part of Japan. The new arrival of rinderpest was indigenized in Joseon, where it was localized and spread periodically while it was adjusted to changes in the population of cattle with immunity in accordance with their life spans and reproduction rates. As the new rinderpest, which showed high pathogenicity in the early 17th century, was indigenized with its high mortality and continued until the late 17th century, it broke out periodically in general. Contrastively, epidemics like smallpox and measles that were indigenized as routine ones had occurred constantly from far past times. As a result, the rinderpest, which tried a new indigenization, and the human epidemics, which had been already indigenized long ago, were unexpectedly overlapped in their breakout, and hence great changes were noticed in the aspects of the human casualty due to epidemics. The outbreak of rinderpest resulted in famine due to lack of farming cattle, and the famine caused epidemics among people. The casualty of the human population due to the epidemics in turn led to negligence of farming cattle, which constituted factors that triggered

  3. The bioenergetics of salt tolerance

    SciTech Connect

    Packer, L.

    1991-01-01

    The aims of this project was to try to understand the adaptive mechanisms that organisms develop in order to respond to a sudden transformation in their environment to a salt shock.'' To study this problem we used a fresh water oxygenic photosynthetic cyanobacterium known as Synecoccus 6311. This organism suffers injury after this sudden exposure to high concentrations of sodium chloride equivalent to or even higher than that in sea water. Yet they are able to re-establish their photosynthetic activity which is partially injured and return to virtually normal growth rates. Identification of the temporal sequence of changes involved in adaptation to this stress was the rationale. Indeed this project employed a wide variety of biochemical and biophysical methods, including electron spin resonance techniques and nuclear magnetic resonance to study the bioenergetics and transport mechanisms, growth and energy changes in these organisms and how the structural components of the cells changed in response to adaptation to growth at high salinity. The problem has relevance for higher plants because most of the arable farmland in the world is already under use and that which is not used is usually in salite environments. Hence, understanding basic mechanisms of salt tolerance is a fundamental biological problem with great applications for bioproductivity and agriculture.

  4. The bioenergetics of salt tolerance

    SciTech Connect

    Packer, L.

    1991-01-01

    The aim of this project was to try to understand the adaptive mechanisms that organisms develop in order to respond to a sudden transformation in their environment to a salt shock.'' To study this problem we used a fresh water oxygenic photosynthetic cyanobacterium known as Synecoccus 6311. This organism suffers injury after this sudden exposure to high concentrations of sodium chloride equivalent to or even higher than that in sea water. Yet they are able to re-establish their photosynthetic activity which is partially injured and return to virtually normal growth rates. Identification of the temporal sequence of changes involved in adaptation to this stress was the rationale. Indeed this project employed a wide variety of biochemical and biophysical methods, including electron spin resonance techniques and nuclear magnetic resonance to study the bioenergetics and transport mechanisms, growth and energy changes in these organisms and how the structural components of the cells changed in response to adaptation to growth at high salinity. The problem has relevance for higher plants because most of the arable farmland in the work is already under use and that which is not used is usually in salite environments. Hence, understanding basic mechanisms of salt tolerance is a fundamental biological problem with great applications for bioproductivity and agriculture. 18 refs.

  5. Genotyping Yersinia pestis in Historical Plague: Evidence for Long-Term Persistence of Y. pestis in Europe from the 14th to the 17th Century

    PubMed Central

    Seifert, Lisa; Wiechmann, Ingrid; Harbeck, Michaela; Thomas, Astrid; Grupe, Gisela; Projahn, Michaela; Scholz, Holger C.; Riehm, Julia M.

    2016-01-01

    Ancient DNA (aDNA) recovered from plague victims of the second plague pandemic (14th to 17th century), excavated from two different burial sites in Germany, and spanning a time period of more than 300 years, was characterized using single nucleotide polymorphism (SNP) analysis. Of 30 tested skeletons 8 were positive for Yersinia pestis-specific nucleic acid, as determined by qPCR targeting the pla gene. In one individual (MP-19-II), the pla copy number in DNA extracted from tooth pulp was as high as 700 gene copies/μl, indicating severe generalized infection. All positive individuals were identical in all 16 SNP positions, separating phylogenetic branches within nodes N07_N10 (14 SNPs), N07_N08 (SNP s19) and N06_N07 (s545), and were highly similar to previously investigated plague victims from other European countries. Thus, beside the assumed continuous reintroduction of Y. pestis from central Asia in multiple waves during the second pandemic, long-term persistence of Y. pestis in Europe in a yet unknown reservoir host has also to be considered. PMID:26760973

  6. Composition of Façon de Venise glass from early 17th century London in comparison with luxury glass of the same age

    NASA Astrophysics Data System (ADS)

    Cagno, S.; De Raedt, I.; Jeffries, T.; Janssens, K.

    SEM-EDX and LA-ICP-MS analyses were performed on a set of early 17th century London glass fragments. The samples originate from two archaeological sites (Aldgate and Old Broad Street) where glass workshops were active in this period. The great majority of the samples are made of soda glass. Two distinct compositional groups are observed, each typical of one site of provenance. The samples originating from the Old Broad Street excavation feature a silica-soda-lime composition, with a moderate amount of potash. The samples from Aldgate are richer in potassium and feature higher amounts of trace elements such as Rb, Zr and Cu. The distinction between the two groups stems from different flux and silica sources used for glassmaking. A comparison with different European glass compositions of that time reveals no resemblance with genuine Venetian production, yet the composition of the Old Broad Street glass shows a close similarity to that of fragments produced `à la façon de Venise' in Antwerp at the end of the 16th century. This coincides with historical sources attesting the arrival of glassworkers from the Low Countries in England and suggests that a transfer of technology took place near the turn of the century.

  7. Genotyping Yersinia pestis in Historical Plague: Evidence for Long-Term Persistence of Y. pestis in Europe from the 14th to the 17th Century.

    PubMed

    Seifert, Lisa; Wiechmann, Ingrid; Harbeck, Michaela; Thomas, Astrid; Grupe, Gisela; Projahn, Michaela; Scholz, Holger C; Riehm, Julia M

    2016-01-01

    Ancient DNA (aDNA) recovered from plague victims of the second plague pandemic (14th to 17th century), excavated from two different burial sites in Germany, and spanning a time period of more than 300 years, was characterized using single nucleotide polymorphism (SNP) analysis. Of 30 tested skeletons 8 were positive for Yersinia pestis-specific nucleic acid, as determined by qPCR targeting the pla gene. In one individual (MP-19-II), the pla copy number in DNA extracted from tooth pulp was as high as 700 gene copies/μl, indicating severe generalized infection. All positive individuals were identical in all 16 SNP positions, separating phylogenetic branches within nodes N07_N10 (14 SNPs), N07_N08 (SNP s19) and N06_N07 (s545), and were highly similar to previously investigated plague victims from other European countries. Thus, beside the assumed continuous reintroduction of Y. pestis from central Asia in multiple waves during the second pandemic, long-term persistence of Y. pestis in Europe in a yet unknown reservoir host has also to be considered. PMID:26760973

  8. Bioenergetics modeling to investigate habitat use by the non-indigenous crab, Carcinus maenas, in Willapa Bay, Washington, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bioenergetics model was developed and applied to questions of habitat use and migration behavior of non-indigenous European green crab (Carcinus maenas) in Willapa Bay, Washington, USA. The model was parameterized using existing data from published studies on the ecology and physiology of C. maena...

  9. Evolutionary primacy of sodium bioenergetics

    PubMed Central

    Mulkidjanian, Armen Y; Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2008-01-01

    Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section. PMID:18380897

  10. PREFACE: 17th International Conference on Textures of Materials (ICOTOM 17)

    NASA Astrophysics Data System (ADS)

    Skrotzki, Werner; Oertel, Carl-Georg

    2015-04-01

    The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the "triennial" series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8. Texture

  11. PREFACE: 17th International Conference on the Physics of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The 17th edition of the International Conference on the Physics of Highly Charged Ions (HCI 2014) was held in San Carlos de Bariloche, in the southern region of Argentina known as Patagonia, from August 31 to September 5, 2014. This meeting corresponds to a series of HCI conferences, which has been held every other year since 1982 in cities in Europe, USA, Japan and China. This was the first time that the conference took place in Latin America. This edition was organized by a Local Committee made up of physicists mainly from the cities of Bariloche and Rosario and also from Buenos Aires and Bahía Blanca, all sites where research on Atomic Collisions is developed. The conference was attended by delegates coming from 18 countries, more that 23% of whom were women. The field of highly charged ions has seen in recent years a promising evolution originating from bold progress in theory and significant advances in experimental techniques. The HCI conferences aim at bringing together experimentalists and theoreticians from as wide a range of fields as, for instance, Fundamental Aspects, Structure and Spectroscopy, Collisions with Electrons, Ions, Atoms and Molecules, Interaction with Clusters, Surfaces and Solids, Interactions with Photons and Plasmas, Strong Field Processes, and Production, Experimental Developments and Applications. The Scientific Programme, selected by an International Advisory Board, included 5 Review Lectures, 11 Progress Reports, 1 Local Report and 24 Special Reports. In addition, the results of 132 contributed works were presented as poster communications and a Public Lecture on 'The wonders of the Southern Skies' was delivered by an Argentinean expert. Thus, a wide range of subjects comprising a balanced mix of topics was covered throughout the course of the conference. The HCI 2014 was a resounding success for the international and local communities, from both the scientific and social aspects, considering that the attendees and accompanying

  12. PREFACE: 17th International Conference on the Physics of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The 17th edition of the International Conference on the Physics of Highly Charged Ions (HCI 2014) was held in San Carlos de Bariloche, in the southern region of Argentina known as Patagonia, from August 31 to September 5, 2014. This meeting corresponds to a series of HCI conferences, which has been held every other year since 1982 in cities in Europe, USA, Japan and China. This was the first time that the conference took place in Latin America. This edition was organized by a Local Committee made up of physicists mainly from the cities of Bariloche and Rosario and also from Buenos Aires and Bahía Blanca, all sites where research on Atomic Collisions is developed. The conference was attended by delegates coming from 18 countries, more that 23% of whom were women. The field of highly charged ions has seen in recent years a promising evolution originating from bold progress in theory and significant advances in experimental techniques. The HCI conferences aim at bringing together experimentalists and theoreticians from as wide a range of fields as, for instance, Fundamental Aspects, Structure and Spectroscopy, Collisions with Electrons, Ions, Atoms and Molecules, Interaction with Clusters, Surfaces and Solids, Interactions with Photons and Plasmas, Strong Field Processes, and Production, Experimental Developments and Applications. The Scientific Programme, selected by an International Advisory Board, included 5 Review Lectures, 11 Progress Reports, 1 Local Report and 24 Special Reports. In addition, the results of 132 contributed works were presented as poster communications and a Public Lecture on 'The wonders of the Southern Skies' was delivered by an Argentinean expert. Thus, a wide range of subjects comprising a balanced mix of topics was covered throughout the course of the conference. The HCI 2014 was a resounding success for the international and local communities, from both the scientific and social aspects, considering that the attendees and accompanying

  13. Evaluation of a lake whitefish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Pothoven, Steven A.; Schneeberger, Philip J.; Rediske, Richard R.; O'Keefe, James P.; Bergstedt, Roger A.; Argyle, Ray L.; Brandt, Stephen B.

    2006-01-01

    We evaluated the Wisconsin bioenergetics model for lake whitefish Coregonus clupeaformis in the laboratory and in the field. For the laboratory evaluation, lake whitefish were fed rainbow smelt Osmerus mordax in four laboratory tanks during a 133-d experiment. Based on a comparison of bioenergetics model predictions of lake whitefish food consumption and growth with observed consumption and growth, we concluded that the bioenergetics model furnished significantly biased estimates of both food consumption and growth. On average, the model overestimated consumption by 61% and underestimated growth by 16%. The source of the bias was probably an overestimation of the respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit of the model to the observed consumption and growth in our laboratory tanks. Based on the adjusted model, predictions of food consumption over the 133-d period fell within 5% of observed consumption in three of the four tanks and within 9% of observed consumption in the remaining tank. We used polychlorinated biphenyls (PCBs) as a tracer to evaluate model performance in the field. Based on our laboratory experiment, the efficiency with which lake whitefish retained PCBs from their food (I?) was estimated at 0.45. We applied the bioenergetics model to Lake Michigan lake whitefish and then used PCB determinations of both lake whitefish and their prey from Lake Michigan to estimate p in the field. Application of the original model to Lake Michigan lake whitefish yielded a field estimate of 0.28, implying that the original formulation of the model overestimated consumption in Lake Michigan by 61%. Application of the bioenergetics model with the adjusted respiration component resulted in a field I? estimate of 0.56, implying that this revised model underestimated consumption by 20%.

  14. Half a century of molecular bioenergetics.

    PubMed

    Junge, Wolfgang

    2013-10-01

    Molecular bioenergetics deals with the construction, function and regulation of the powerhouses of life. The present overview sketches scenes and actors, farsighted goals and daring hypotheses, meticulous tool-making, painstaking benchwork, lucky discovery, serious scepticism, emphatic believing and strong characters with weak and others with hard arguments, told from a personal, admittedly limited, perspective. Bioenergetics will blossom further with the search focused on both where there is bright light for ever-finer detail and the obvious dark spots for surprise and discovery. PMID:24059510

  15. Non Destructive Investigation on the 17th/18th Century Sicilian Jewellery Collection at the Messina Regional Museum Using Mobile Raman Equipment

    NASA Astrophysics Data System (ADS)

    Barone, G.; Bersani, D.; Jehlicka, J.; Lottici, P. P.; Mazzoleni, P.; Raneri, S.; Vandenabeele, P.; Di Giacomo, C.; Larinà, G.

    2014-06-01

    A handheld Raman spectrometer operating at 785 nm was used for the in situ analysis of the gems present in the 17th/18th century Sicilian jewelry collection preserved in the Messina Regional Museum (Italy).

  16. JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Mulder, Edwin J. (Editor); Gomez-Knight, Sylvia J. (Editor)

    1999-01-01

    This volume contains 37 unclassified/unlimited-distribution technical papers that were presented at the JANNAF 28th Propellant Development & Characterization Subcommittee (PDCS) and 17th Safety & Environmental Protection Subcommittee (S&EPS) Joint Meeting, held 26-30 April 1999 at the Town & Country Hotel and the Naval Submarine Base, San Diego, California. Volume II contains 29 unclassified/limited-distribution papers that were presented at the 28th PDCS and 17th S&EPS Joint Meeting. Volume III contains a classified paper that was presented at the 28th PDCS Meeting on 27 April 1999. Topics covered in PDCS sessions include: solid propellant rheology; solid propellant surveillance and aging; propellant process engineering; new solid propellant ingredients and formulation development; reduced toxicity liquid propellants; characterization of hypergolic propellants; and solid propellant chemical analysis methods. Topics covered in S&EPS sessions include: space launch range safety; liquid propellant hazards; vapor detection methods for toxic propellant vapors and other hazardous gases; toxicity of propellants, ingredients, and propellant combustion products; personal protective equipment for toxic liquid propellants; and demilitarization/treatment of energetic material wastes.

  17. Myocardial bioenergetic abnormalities in experimental uremia

    PubMed Central

    Chesser, Alistair MS; Harwood, Steven M; Raftery, Martin J; Yaqoob, Muhammad M

    2016-01-01

    Purpose Cardiac bioenergetics are known to be abnormal in experimental uremia as exemplified by a reduced phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. However, the progression of these bioenergetic changes during the development of uremia still requires further study and was therefore investigated at baseline, 4 weeks and 8 weeks after partial nephrectomy (PNx). Methods A two-stage PNx uremia model in male Wistar rats was used to explore in vivo cardiac and skeletal muscles’ bioenergetic changes over time. High-energy phosphate nucleotides were determined by phosphorus-31 nuclear magnetic resonance (31P-NMR) and capillary zone electrophoresis. Results 31P-NMR spectroscopy revealed lower PCr/ATP ratios in PNx hearts compared to sham (SH)-operated animals 4 weeks after PNx (median values given ± SD, 0.64±0.16 PNx, 1.13±0.31 SH, P<0.02). However, 8 weeks after PNx, the same ratio was more comparable between the two groups (0.84±0.15 PNx, 1.04±0.44 SH, P= not significant), suggestive of an adaptive mechanism. When 8-week hearts were prestressed with dobutamine, the PCr/ATP ratio was again lower in the PNx group (1.08±0.36 PNx, 1.55±0.38 SH, P<0.02), indicating a reduced energy reserve during the progression of uremic heart disease. 31P-NMR data were confirmed by capillary zone electrophoresis, and the changes in myocardial bioenergetics were replicated in the skeletal muscle. Conclusion This study provides evidence of the changes that occur in myocardial energetics in experimental uremia and highlights how skeletal muscle bioenergetics mirror those found in the cardiac tissue and so might potentially serve as a practical surrogate tissue during clinical cardiac NMR investigations. PMID:27307758

  18. Finding ancient parasite larvae in a sample from a male living in late 17th century Korea.

    PubMed

    Shin, D H; Chai, J Y; Park, E A; Lee, W; Lee, H; Lee, J S; Choi, Y M; Koh, B J; Park, J B; Oh, C S; Bok, G D; Kim, W L; Lee, E; Lee, E J; Seo, M

    2009-06-01

    Parasitological examination of samples from tombs of the Korean Joseon Dynasty (1392-1910) could be helpful to researchers in understanding parasitic infection prevalence in pre-industrial Korean society. Whereas most of our previous parasitological studies revealed the presence of ancient parasite eggs in coprolites of Korean mummies, a sample from a man living in late 17th century Korea proved to be relatively unique in possessing what appeared to be several species of parasite larvae. The larvae identified included Strongyloides stercoralis and Trichostrongylus spp., along with eggs of Ascaris lumbricoides, Trichuris trichiura, and Paragonimus westermani. Since ancient parasite larvae retain enough morphology to make proper species identification possible, even after long burial times, the examination of parasite larvae within ancient samples will be conducted more carefully in our future work. PMID:19071966

  19. International Society for Aerosols in Medicine, 17th congress, 10-14 May 2009, Monterey, California, USA.

    PubMed

    Newman, Steve

    2009-08-01

    The 17th biennial congress of the International Society for Aerosols in Medicine (ISAM) was held in Monterey, California, between 10 and 14 May 2009. The congress was attended by approximately 300 delegates from 18 countries. Podium presentations were focused on advances in pulmonary drug delivery, but clearance of materials from the lungs by a variety of processes and the potential harmful effects of inhaled particles were also covered. There were > 100 proffered posters, and a commercial exhibition in which 20 companies displayed their products. There were excellent networking opportunities, and the inauguration of more formal networking groups will allow dialogue to continue. Abstracts of podium and poster presentations were provided in the Journal of Aerosol Medicine and Pulmonary Drug Delivery, and it is likely that some of the podium presentations will appear as full papers in that journal in due course. The next conference in this series takes place in Rotterdam, The Netherlands, in June 2011. PMID:19637975

  20. Venetian Rule and Control of Plague Epidemics on the Ionian Islands during 17th and 18th Centuries

    PubMed Central

    Konstantinidou, Katerina; Mantadakis, Elpis; Sardi, Thalia; Samonis, George

    2009-01-01

    During the 17th and 18th centuries, measures were taken by the Venetian administration to combat plague on the Ionian Islands. At that time, although the scientific basis of plague was unknown, the Venetians recognized its infectious nature and successfully decreased its spread by implementing an information network. Additionally, by activating a system of inspection that involved establishing garrisons along the coasts, the Venetians were able to control all local movements in plague-infested areas, which were immediately isolated. In contrast, the neighboring coast of mainland Greece, which was under Ottoman rule, was a plague-endemic area during the same period. We conclude that even in the absence of scientific knowledge, close observation and social and political measures can effectively restrain infectious outbreaks to the point of disappearance. PMID:19116047

  1. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    USGS Publications Warehouse

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  2. Immunology's first priority dispute--an account of the 17th-century Rudbeck-Bartholin feud.

    PubMed

    Ambrose, Charles T

    2006-07-01

    Modern immunology has been notably free of public disputes over credit for major discoveries in this discipline. But the early recognition of the lymphatic system witnessed two examples of heated priority feuds. The first in the 17th-century concerned the greater anatomical organization of the system, while the second in the 18th-century concerned its function. This essay reviews the earlier of the two disputes, in which a Swedish medical student (Ole Rudbeck) charged a respected Danish Professor (T. Bartholin) with plagiarism and antedating his observations. Thus ethical issues in immunology predate modern times. How this discipline reached this point in its history is another focus of this essay and also an excuse to review briefly the anatomy of the lymphatic system. The influence of nationalistic pride on priority disputes is also discussed. PMID:17083923

  3. Anatomical Confirmation of Computed Tomography-Based Diagnosis of the Atherosclerosis Discovered in 17th Century Korean Mummy

    PubMed Central

    Kim, Myeung Ju; Kim, Yi-Suk; Oh, Chang Seok; Go, Jai-Hyang; Lee, In Sun; Park, Won-Kyu; Cho, Seok-Min; Kim, Soon-Kwan; Shin, Dong Hoon

    2015-01-01

    In the present study on a newly discovered 17th century Korean mummy, computed tomography (CT) revealed multiple aortic calcifications within the aortic wall that were indicative of ancient atherosclerosis. The CT-based findings were confirmed by our subsequent post-factum dissection, which exhibited possible signs of the disease including ulcerated plaques, ruptured hemorrhages, and intimal thickening where the necrotic core was covered by the fibrous cap. These findings are strong indicators that the mummy suffered from aortic atherosclerosis during her lifetime. The present study is a good example of how CT images of vascular calcifications can be a useful diagnostic tool in forming at least preliminary diagnoses of ancient atherosclerosis. PMID:25816014

  4. Venetian rule and control of plague epidemics on the Ionian Islands during 17th and 18th centuries.

    PubMed

    Konstantinidou, Katerina; Mantadakis, Elpis; Falagas, Matthew E; Sardi, Thalia; Samonis, George

    2009-01-01

    During the 17th and 18th centuries, measures were taken by the Venetian administration to combat plague on the Ionian Islands. At that time, although the scientific basis of plague was unknown, the Venetians recognized its infectious nature and successfully decreased its spread by implementing an information network. Additionally, by activating a system of inspection that involved establishing garrisons along the coasts, the Venetians were able to control all local movements in plague-infested areas, which were immediately isolated. In contrast, the neighboring coast of mainland Greece, which was under Ottoman rule, was a plague-endemic area during the same period. We conclude that even in the absence of scientific knowledge, close observation and social and political measures can effectively restrain infectious outbreaks to the point of disappearance. PMID:19116047

  5. EDITORIAL: 17th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2011)

    NASA Astrophysics Data System (ADS)

    van de Sanden, M. C. M.; Dimitrova, Miglena; Ghelev, Chavdar

    2012-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977, when the VEIT Summer School series was launched by the Institute of Electronics, Bulgarian Academy of Sciences. The aim was to act as a forum for the exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion- and plasma-assisted technologies. The organizers of the 2011 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. Whilst the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions and exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers and Journal of Physics: Conference Series. The Seventeenth edition of VEIT was held in the Black Sea resort of Sunny Beach, Bulgaria on 19-23 September 2011. It was attended by 96 participants from 18 countries: Belgium, Brazil, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, The Netherlands, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this special issue of Journal of

  6. EDITORIAL: 17th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2011)

    NASA Astrophysics Data System (ADS)

    van de Sanden, M. C. M.; Dimitrova, Miglena; Ghelev, Chavdar

    2012-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977, when the VEIT Summer School series was launched by the Institute of Electronics, Bulgarian Academy of Sciences. The aim was to act as a forum for the exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion- and plasma-assisted technologies. The organizers of the 2011 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. Whilst the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions and exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers and Journal of Physics: Conference Series. The Seventeenth edition of VEIT was held in the Black Sea resort of Sunny Beach, Bulgaria on 19-23 September 2011. It was attended by 96 participants from 18 countries: Belgium, Brazil, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, The Netherlands, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this special issue of Journal of

  7. The Second Law of Thermodynamics in Bioenergetics

    PubMed Central

    Kemeny, Gabor

    1974-01-01

    Bioenergetic processes are viewed as processes of free energy transduction. The free energies of both local equilibrium and fluctuation states are being considered. It is shown that the exchange of thermal energy with the surrounding medium, acting as a reservoir, does not violate the second law of thermodynamics within broad limits. There is sufficient latitude for proteins to carry out their function of transduction utilizing thermal energy in the process. PMID:16592167

  8. Evaluation of a Mysis bioenergetics model

    USGS Publications Warehouse

    Chipps, S.R.; Bennett, D.H.

    2002-01-01

    Direct approaches for estimating the feeding rate of the opossum shrimp Mysis relicta can be hampered by variable gut residence time (evacuation rate models) and non-linear functional responses (clearance rate models). Bioenergetics modeling provides an alternative method, but the reliability of this approach needs to be evaluated using independent measures of growth and food consumption. In this study, we measured growth and food consumption for M. relicta and compared experimental results with those predicted from a Mysis bioenergetics model. For Mysis reared at 10??C, model predictions were not significantly different from observed values. Moreover, decomposition of mean square error indicated that 70% of the variation between model predictions and observed values was attributable to random error. On average, model predictions were within 12% of observed values. A sensitivity analysis revealed that Mysis respiration and prey energy density were the most sensitive parameters affecting model output. By accounting for uncertainty (95% CLs) in Mysis respiration, we observed a significant improvement in the accuracy of model output (within 5% of observed values), illustrating the importance of sensitive input parameters for model performance. These findings help corroborate the Mysis bioenergetics model and demonstrate the usefulness of this approach for estimating Mysis feeding rate.

  9. Diet impact on mitochondrial bioenergetics and dynamics

    PubMed Central

    Putti, Rosalba; Sica, Raffaella; Migliaccio, Vincenzo; Lionetti, Lillà

    2015-01-01

    Diet induced obesity is associated with impaired mitochondrial function and dynamic behavior. Mitochondria are highly dynamic organelles and the balance in fusion/fission is strictly associated with their bioenergetics. Fusion processes are associated with the optimization of mitochondrial function, whereas fission processes are associated with the removal of damaged mitochondria. In diet-induced obesity, impaired mitochondrial function and increased fission processes were found in liver and skeletal muscle. Diverse dietary fat sources differently affect mitochondrial dynamics and bioenergetics. In contrast to saturated fatty acids, omega 3 polyunsaturated fatty acids induce fusion processes and improve mitochondrial function. Moreover, the pro-longevity effect of caloric restriction has been correlated with changes in mitochondrial dynamics leading to decreased cell oxidative injury. Noteworthy, emerging findings revealed an important role for mitochondrial dynamics within neuronal populations involved in central regulation of body energy balance. In conclusion, mitochondrial dynamic processes with their strict interconnection with mitochondrial bioenergetics are involved in energy balance and diet impact on metabolic tissues. PMID:25904870

  10. Glacier length fluctuations in southern Norway back to the 17th century based on historical data: opposite behaviour compared to the Alps?

    NASA Astrophysics Data System (ADS)

    Nussbaumer, S. U.; Luterbacher, J.; Nesje, A.; Wanner, H.; Zumbühl, H. J.

    2009-04-01

    The understanding of past and present glacier variations is a key task for evaluating current climate change. Historical and proxy-records have documented a partly asynchronous evolution in temperature, precipitation and glacial variations between European regions during the Little Ice Age (LIA), with the causes of these temporal anomalies yet being poorly understood. The comparison between the Alps and Scandinavia allows an assessment of the spatial distribution of glacier fluctuations in the studied areas during the last few centuries. Here we present temporally high-resolved glacier reconstructions for southern Norway covering the period back to the 17th century, based on newly discovered historical material. Length changes were determined by the interpretation of high-quality historical documents such as drawings, paintings, prints, photographs, maps and written sources that are abundant for selected glaciers in the area (Folgefonna, Jostedalsbreen). Historical material is only available in adequate quantity for those glaciers which drew the attention of travellers, scientists and artists through their reputation and scenic attraction, reflecting also the glacier perception at that time. A critical quality check of the documentary data was necessary in order to get reliable information on past glacier extents. The glacier extents obtained were finally compared with existing moraine findings in the glacier forefield. Results from outlet glaciers from Folgefonna (Bondhusbreen, Buerbreen) and Jostedalsbreen (Briksdalsbreen, Bøyabreen, Suphellebreen, Bergsetbreen, Nigardsbreen, Lodalsbreen) indicate a highly different glacier evolution compared to the Alps. According to the historical record, the maximum glacier extent occurred at Folgefonna at around 1890, and at Jostedalsbreen at around 1750, respectively. In the Alps, existing glacier length records (e.g. for Unterer Grindelwaldgletscher, Switzerland, or Mer de Glace, France) show glacier advances around 1600

  11. Report from the European Prison Education Association, September 2007

    ERIC Educational Resources Information Center

    Behan, Cormac

    2007-01-01

    The main activity of the European Prison Education Association (EPEA) since the last edition of the Journal was the 11th European Prison Education Association International Conference, which took place in Dublin, Ireland from June 13th to 17th. The conference, Learning for Liberation, was the largest EPEA conference to date with 180 participants…

  12. Evidence for Precise Calendrical Observations in the 17th Century at the `Bruchhauser Steine', Olsberg, Northrhine-Westphalia, Germany

    NASA Astrophysics Data System (ADS)

    Steinrücken, B.

    The `Bruchhauser Steine', four large rocks of volcanic origin in southern Westphalia, form perfect foresights for calendrical observations from the surrounding country. The ancient walls and embankments on the `Istenberg' with the rocks as cornerstones were built 500 BC. In the landscape are placed shrines with images of Christian saints, erected in the late 17th and the early 18th century. The positions of these shrines can be interpreted as observing sites with respect to the stones. The foresights reach several degrees to the sky, so variations in the astronomical refraction are strongly suppressed. The most impressive observing site with a shrine of 1699 (8o31'13'' E, 51o18'49'' N) is exactly at the position to observe the summer solstice sunrise at the topmost rock, the `Feldstein'. The solstice sun rises between two stones and grazes the Feldstein at 6:20 CEST. Today the sun is obstructed 2'-3' by the stone. Taking into account the slight variation of the obliquity of the ecliptic of 2' since 1699 the grazing procedure at the time of erection was perfect, without any obstruction of the suns disc. Similar shrines are placed at positions to observe the sunrise on May 1st in the identical manner (8o29'39'' E, 51o18'41'' N) and the lunar declination minimum on the meridian (8o32'44'' E, 51o20'33'' N). Some evidence indicates a prehistoric origin of this calendrical system.

  13. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    SciTech Connect

    Hargis, Kenneth Marshall

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  14. [Genealogical study of the Pijart dynasty, goldsmiths or apothecaries in Paris in the 16th and 17th centuries].

    PubMed

    Warolin, Christian

    2007-10-01

    The Pijart dynasty, established in Paris during the 16th and 17th centuries, included apothecaries and goldsmiths who had a common ancestor, Michel Pijart, warden of the goldsmith's guild (garde de l'orfèvrerie) in 1507. He was married to Jehanne Daumont and died 23rd July 1524. This couple had four sons, all goldsmiths, Pierre, Michel, Jehan and Nicolas. Pierre married twice. His first wife, Philippe Dusseau, was the sister of a famous apothecary. Only their eldest son, François, chose the profession of apothecary; the other three, Jacques, Jehan and Philibert, all followed their father's profession. By his second marriage to Marie de Mézières, Pierre had two sons, Claude the elder and Claude the younger, who both became goldsmiths. Thus, the goldsmith's trade became the favoured profession of the Pijart family. Professional endogamy prevailed in this dynasty, after the fashion of merchants belonging to the six most prestigious guilds (Six-Corps de métiers). Goldsmiths and apothecaries retained strong family ties, demonstrated by family reunions (baptisms, betrothals, etc.). It is undisputable that the renown of this dynasty is based on the fame of its goldsmiths. However, through marriage, the Pijart's developed links with other families of apothecaries, of which the most outstanding were the Boulduc's. PMID:18348497

  15. Microscopy and Microanalysis of an Extreme Case of Salt and Biodegradation in 17th Century Wall Paintings.

    PubMed

    Gil, Milene; Martins, Maria Rosário; Carvalho, Maria Luisa; Souto, Cátia; Longelin, Stephane; Cardoso, Ana; Mirão, José; Candeias, António Estevão

    2015-06-01

    The present study characterizes the main deterioration mechanisms affecting the early 17th frescoes of Casa de Fresco, the only known example in Portugal of a semi-underground leisure room richly decorated with a balcony over a water well. Frescoes from the vault are at risk due to salt weathering and biodeterioration. The aim of the research was identification of the deterioration materials, determination of their origin, and their effect on the frescoes before future intervention. Scanning electron microscopy with an energy-dispersive X-ray detector (SEM-EDS) was used to determine salt morphology and microanalysis. The mineralogical characterization was performed by X-ray powder diffraction, complemented with µ-Raman and µ-Fourier transform infrared spectroscopy. Biological assessment was evaluated with optical microscopy and SEM-EDS. Bacterial and fungal isolation and identification were performed using standard culture media and methods according to Bergey's Manual of Systematic Bacteriology and from the Compendium of Soil Fungi. The results show that Ca and Ca-Mg carbonates from the paint renderings are the predominant salt species affecting the site. Bacterial strains from the genera Bacillus and Pseudomonas and fungal strains from the Cladosporium spp. and Penicillium spp. were isolated in the salt formations, within and between the mortar layers. Azurite, malachite, and smalt paint layers are the most affected by the weathering conditions. PMID:26149345

  16. Providing Quality Education and Training for Rural Australians. SPERA National Conference Proceedings (17th, Wagga Wagga, New South Wales, Australia, July 8-11, 2001).

    ERIC Educational Resources Information Center

    Hemmings, Brian, Ed.; Boylan, Colin, Ed.

    This proceedings of the 17th annual conference of the Society for the Provision of Education in Rural Australia (SPERA) contains 28 keynote addresses and conference papers. Major conference themes were vocational education and training (VET) in rural schools, small schools, flexible rural delivery systems, and the community as a resource and…

  17. Landscape paintings of the 17th and 19th century as a tool for coastal zone management

    NASA Astrophysics Data System (ADS)

    Jungerius, P. D.; van den Ancker, J.

    2012-04-01

    For more than fifty years many Dutch landscapes suffered severe damage. For their management, it is valuable to know what they looked like in the past. Historic maps give inadequate information, and landscape and aerial photographs are scarcely available until the 1940s. Before then landscapes have been documented chiefly by landscape painters. Interpreted with care, Dutch landscape paintings of the 17th and 19th century are an invaluable geoheritage archive and also hold information that is relevant for present-day landscape management. We present paintings of the Dutch coastal zone as an example. The coastal zone of the Netherlands is geomorphologically well developed, with beaches, foredunes, medieval 'Young dunes', and 5000 year old beach ridges with several anthropic modifications. Each of these terrains attracted landscape painters. Representative paintings can be found in museums and art galleries. We evaluated hundreds of paintings of the collection of Simonis & Buunk, an art gallery in Ede specialised in 19th and early 20th century landscape paintings, for the geoheritage information they contain. The collection, which is the largest on the subject on¬line available in Europe, can be freely consulted (www.simonis--buunk.com). The freedom taken by the painters to adjust reality for compositional or stylistic reasons is still subject of discussion. The paintings became more realistic in the middle of the 19th century when paints became available in tubes and the painters could leave their studio to work in the field. We selected paintings that are sufficiently realistic to be translated in real landscape features, including geomorphological processes and elements. Some insights: • Because of the overriding control of marine and eolian processes, the appearance of the beaches has not changed since the 16th century. • The difference between the flat beaches of the Netherlands and the steeper beaches is accurately registered by the painters. • On a coast

  18. Noninvasive, Nondestructive Approaches to Cell Bioenergetics

    NASA Astrophysics Data System (ADS)

    Chance, B.; Eleff, S.; Leigh, J. S.

    1980-12-01

    To demonstrate the feasibility of using NMR spectra of human limbs and larger animals for continuous, noninvasive, nondestructive evaluation of cell bioenergetics, we have constructed a relatively simple and inexpensive 31P NMR apparatus. This apparatus consists of an 18-cm (7-in.) bore superconducting magnet and appropriate transmit-receive components for Fourier transform NMR. The principal signals observed by this instrument in the tissues are due to phosphocreatine and inorganic phosphate. The apparatus can be used to detect tissue normoxia and hypoxia. The large phosphocreatine/phosphate ratio (>10:1), and the low phosphate signal from normoxic tissue (≈ 10% of the phosphocreatine signal from brain and human skeletal tissue) make an increased phosphate peak a very sensitive indicator of tissue hypoxia. Direct experiments on the human forearm and leg and the brains of dog and rabbit suggest the applicability of 31P NMR to humans and animals. This method and optical methods can both be used for quantitative determination of oxygen delivery to tissue, function of mitochondria, and the coupling of bioenergetic processes to functional activity in skeletal tissue and brain.

  19. Programmed death-1 pathway in host tissues ameliorates Th17/Th1-mediated experimental chronic graft-versus-host disease.

    PubMed

    Fujiwara, Hideaki; Maeda, Yoshinobu; Kobayashi, Koichiro; Nishimori, Hisakazu; Matsuoka, Ken-Ichi; Fujii, Nobuharu; Kondo, Eisei; Tanaka, Takehiro; Chen, Lieping; Azuma, Miyuki; Yagita, Hideo; Tanimoto, Mitsune

    2014-09-01

    Chronic graft-versus-host disease (GVHD) is a major cause of late death and morbidity after allogeneic hematopoietic cell transplantation, but its pathogenesis remains unclear. We investigated the role of the programmed death-1 (PD-1) pathway in chronic GVHD using a well-defined mouse model of B10.D2 (H-2(d)) donor to BALB/c (H-2(d)) recipients. PD-1 expression on allogeneic donor T cells was upregulated continuously in chronic GVHD development, whereas PD-L1 expression in host tissues was transiently upregulated and declined to basal levels in the late posttransplant period. Blockade of the PD-1 pathway by anti-PD-1, anti-PD-L1, or anti-PD-L2 mAbs exacerbated clinical and pathologic chronic GVHD. Chimeric mice revealed that PD-L1 expression in host tissues suppressed expansion of IL-17(+)IFN-γ(+) T cells, and that PD-L1 expression on hematopoietic cells plays a role in the development of regulatory T cells only during the early transplantation period but does not affect the severity of chronic GVHD. Administration of the synthetic retinoid Am80 overcame the IL-17(+)IFN-γ(+) T cell expansion caused by PD-L1 deficiency, resulting in reduced chronic GVHD damage in PD-L1(-/-) recipients. Stimulation of the PD-1 pathway also alleviated chronic GVHD. These results suggest that the PD-1 pathway contributes to the suppression of Th17/Th1-mediated chronic GVHD and may represent a new target for the prevention or treatment of chronic GVHD. PMID:25080485

  20. Floods of the Lower Tisza from the late 17th century onwards: frequency, magnitude, seasonality and great flood events

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2016-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred on the lower sections of the Tisza river in Hungary, with special emphasis on the area of Szeged town. The study area is well-represented by contemporary source evidence from the late 17th century onwards, when the town and its broader area was reoccupied from the Ottoman Turkish Empire. Concerning the applied source materials, the main bases of investigation are the administrative (archival) sources such as town council protocols of Szeged and county meeting protocols of Csanád and Csongrád Counties. In these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers as well as town chronicles and other contemporary narratives. In the presentation the main focus is on the analysis of flood-rich flood-poor periods of the last ca. 330 years; moreover, the seasonality distribution as well as the magnitude of Tisza flood events are also discussed. Another important aim of the poster is to provide a short overview, in the form of case studies, on the greatest flood events (e.g. duration, magnitude, damages, multi-annual consequences), and their further impacts on the urban and countryside development as well as on (changes in) flood defence strategies. In this respect, especially two flood events, the great (1815-)1816 and the catastrophic 1879 flood (shortly with causes and consequences) - that practically erased Szeged town from the ground - are presented in more detail.

  1. Hydrometeorological extremes reconstructed from documentary evidence for the Jihlava region in the 17th-19th centuries

    NASA Astrophysics Data System (ADS)

    Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Belinova, Monika; Reznickova, Ladislava

    2016-04-01

    Different documentary evidence (taxation records, chronicles, insurance reports etc.) is used for reconstruction of hydrometeorological extremes (HMEs) in the Jihlava region (central part of the recent Czech Republic) in the 17th-19th centuries. The aim of the study is description of the system of tax alleviation in Moravia, presentation of utilization of early fire and hail damage insurance claims and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 400 HMEs were analysed for the 16 estates (past basic economic units). Late frost on 16 May 1662 on the Nove Mesto na Morave estate, which destroyed whole cereals and caused damage in the forests, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Moreover, floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. Archival records, preserved in the Moravian Land Archives in Brno and other district archives, create a unique source of data contributing to the better understanding of extreme events and their impacts.

  2. [Scholarly life in the late 17th century: the Giessen professor of medicine Michael Bernhard Valentini (1657-1729)].

    PubMed

    Enke, Ulrike

    2007-01-01

    Towards the end of the 17th century the university of Giessen was--compared to, for example, Leipzig or the newly founded university of Halle--a rather small university in terms of student numbers. Situated in a provincial town of about 5,000 inhabitants and far away from the capital, Darmstadt, the university was a firmly denominational, i.e. orthodox Lutheran, counter-foundation against the neighbouring university of Marburg in Calvinist Hesse-Kassel. This paper describes under what circumstances Michael Bernhard Valentini (1657-1729), a typical and well-known scholar in his time, became successful and influential in the early Enlightenment. Born in 1657 as the son of a university servant (Pedell) and therefore underprivileged, he succeeded in becoming dean of the medical faculty and eventually rector of Giessen University. He was professor of Physica naturalis as well as of medicine and gained importance and influence by establishing experimental physics in Giessen. Numerous publications, not only in medicine but also in natural history and about curiosities, attracted the attention of many scientific societies whose membership he obtained. Valentini had studied philosophy and medicine in Giessen at a time when the curricula in medicine and natural philosophy were still taught in the traditional scholastic manner. After having worked as a medical practitioner, he made an educational tour through Western Europe in 1686, during which he met Robert Boyle in London. In 1687 Valentini became professor of physics in Giessen. In the same year, he bought several physical instruments--including an air pump from the Musschenbroek workshop in Leiden, at that time a centre of technical and scientific innovation. Thanks to Valentini Giessen became the third university in Germany (after Altdorf and Marburg) that offered the "new" experimental physics in its curriculum. PMID:18196757

  3. The ``System of Chymists'' and the ``Newtonian dream'' in Greek-speaking Communities in the 17th-18th Centuries

    NASA Astrophysics Data System (ADS)

    Bokaris, Efthymios P.; Koutalis, Vangelis

    2008-06-01

    The acceptance of new chemical ideas, before the Chemical Revolution of Lavoisier, in Greek-speaking communities in the 17th and 18th centuries did not create a discourse of chemical philosophy, as it did in Europe, but rather a “philosophy” of chemistry as it was formed through the evolution of didactic traditions of Chemistry. This “philosophical” chemistry was not based on the existence of any academic institutions, it was focused on the ontology of principles and forces governing the analysis/synthesis of matter and formulated two didactic traditions. The one, named “the system of chymists”, close to the Boylean/Cartesian tradition, accepted, contrary to Aristotelianism, the five “chymical” principles and also the analytical ideal, but the “chymical” principles were not under a conceptual and experimental investigation, as they were in Europe. Also, a crucial issue for this tradition remained the “mechanical” principles which were under the influence of the metaphysical nature of the Aristotelian principles. The other, close to the Boylean/Newtonian tradition, was the integrated presentation of the Newtonian “dream”, which maintained a discursive attitude with reference to the “chemical attractions”-“chemical affinities” and actualised the mathematical atomism of Boscovich, according to which the elementary texture of matter could be causally explained within this complex architecture of mathematical “ punkta”. In this tradition also coexisted, in a discursive synthesis, the “chemical element” of Lavoisier and the arguments of the new theory and its opposition to the phlogiston theory, but the “chemical affinities” were under the realm of the “physical element” as “metaphysical point”.

  4. Reevaluation of a walleye (Sander vitreus) bioenergetics model.

    PubMed

    Madenjian, Charles P; Wang, Chunfang

    2013-08-01

    Walleye (Sander vitreus) is an important sport fish throughout much of North America, and walleye populations support valuable commercial fisheries in certain lakes as well. Using a corrected algorithm for balancing the energy budget, we reevaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks each day during a 126-day experiment. Feeding rates ranged from 1.4 to 1.7% of walleye body weight per day. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with observed monthly consumption, we concluded that the bioenergetics model estimated food consumption by walleye without any significant bias. Similarly, based on a statistical comparison of bioenergetics model predictions of weight at the end of the monthly test period with observed weight, we concluded that the bioenergetics model predicted walleye growth without any detectable bias. In addition, the bioenergetics model predictions of cumulative consumption over the 126-day experiment differed from observed cumulative consumption by less than 10%. Although additional laboratory and field testing will be needed to fully evaluate model performance, based on our laboratory results, the Wisconsin bioenergetics model for walleye appears to be providing unbiased predictions of food consumption. PMID:23124865

  5. Reevaluation of a walleye (Sander vitreus) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; Wang, Chunfang

    2013-01-01

    Walleye (Sander vitreus) is an important sport fish throughout much of North America, and walleye populations support valuable commercial fisheries in certain lakes as well. Using a corrected algorithm for balancing the energy budget, we reevaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks each day during a 126-day experiment. Feeding rates ranged from 1.4 to 1.7 % of walleye body weight per day. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with observed monthly consumption, we concluded that the bioenergetics model estimated food consumption by walleye without any significant bias. Similarly, based on a statistical comparison of bioenergetics model predictions of weight at the end of the monthly test period with observed weight, we concluded that the bioenergetics model predicted walleye growth without any detectable bias. In addition, the bioenergetics model predictions of cumulative consumption over the 126-day experiment differed fromobserved cumulative consumption by less than 10 %. Although additional laboratory and field testing will be needed to fully evaluate model performance, based on our laboratory results, the Wisconsin bioenergetics model for walleye appears to be providing unbiased predictions of food consumption.

  6. Bioenergetic Origins of Complexity and Disease

    PubMed Central

    Wallace, D.C.

    2015-01-01

    The organizing power of energy flow is hypothesized to be the origin of biological complexity and its decline the basis of “complex” diseases and aging. Energy flow through organic systems creates nucleic acids, which store information, and the annual accumulation of information generates today's complexity. Energy flow through our bodies is mediated by the mitochondria, symbiotic bacteria whose genomes encompass the mitochondrial DNA (mtDNA) and more than 1000 nuclear genes. Inherited and/or epigenomic variation of the mitochondrial genome determines our initial energetic capacity, but the age-related accumulation of somatic cell mtDNA mutations further erodes energy flow, leading to disease. This bioenergetic perspective on disease provides a unifying pathophysiological and genetic mechanism for neuropsychiatric diseases such as Alzheimer and Parkinson Disease, metabolic diseases such as diabetes and obesity, autoimmune diseases, aging, and cancer. PMID:22194359

  7. Simulated weightlessness - Effects on bioenergetic balance

    NASA Technical Reports Server (NTRS)

    Jordan, J. P.; Sykes, H. A.; Crownover, J. C.; Schatte, C. L.; Simmons, J. B., II; Jordan, D. P.

    1980-01-01

    As a prelude to a flight experiment, an attempt was made to separate energy requirements associated with gravity from all other metabolic needs. The biological effects of weightlessness were simulated by suspending animals in a harness so that antigravity muscles were not supporting the body. Twelve pairs of rats were allowed to adapt to wearing a harness for 5 d. Experimental animals were then suspended in harness for 7 d followed by recovery for 7 d. Control animals were harnessed but never suspended. Oxygen consumption, carbon dioxide production and rate of (C-14)O2 expiration from radio-labeled glucose were monitored on selected days. Food intake and body mass were recorded daily. Metabolic rate decreased in experimental animals during 7 d of suspension and returned to normal during recovery. Although some of the metabolic changes may have related to variation in food intake, simulated weightlessness appears to directly affect bioenergetic balance.

  8. Cosmic ray composition between 10 to the 15th power - 10 to the 17th power eV obtained by air shower experiments

    NASA Technical Reports Server (NTRS)

    Muraki, Y.

    1985-01-01

    Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.

  9. BIOENERGETICS OF A SEMI-TROPICAL CLADOCERAN, DAPHNIA LUMHOLTZI

    EPA Science Inventory

    The bioenergetics of D.lumholtzi from Kentucky Lake, USA was investigated across a wide range of temperatures and food concentrations...This suggests a physiological adaptation to competitive ability under differing climatic conditions.

  10. Integration of cellular bioenergetics with mitochondrial quality control and autophagy

    PubMed Central

    Hill, Bradford G.; Benavides, Gloria A.; Lancaster, Jack R.; Ballinger, Scott; Dell’Italia, Lou; Zhang, Jianhua; Darley-Usmar, Victor M.

    2013-01-01

    Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes, cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of “healthy” mitochondrial populations. The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally, the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a “healthy” population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review. PMID:23092819

  11. Reevaluation of lake trout and lake whitefish bioenergetics models

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steve A.; Kao, Yu-Chun

    2013-01-01

    Using a corrected algorithm for balancing the energy budget, we reevaluated the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush) in the laboratory and for lake whitefish (Coregonus clupeaformis) in the laboratory and in the field. For lake trout, results showed that the bioenergetics model slightly overestimated food consumption by the lake trout when they were fed low and intermediate rations, whereas the model predicted food consumption by lake trout fed ad libitum without any detectable bias. The slight bias in model predictions for lake trout on restricted rations may have been an artifact of the feeding schedule for these fish, and we would therefore recommend application of the Wisconsin lake trout bioenergetics model to lake trout populations in the field without any revisions to the model. Use of the Wisconsin bioenergetics model for coregonids resulted in overestimation of food consumption by lake whitefish both in the laboratory and in the field by between 20 and 30%, on average. This overestimation of food consumption was most likely due to overestimation of respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit to the observed consumption in our laboratory tanks. The adjusted model predicted the consumption in the laboratory and the field without any detectable bias. Until a detailed lake whitefish respiration study can be conducted, we recommend application of our adjusted version of the Wisconsin generalized coregonid bioenergetics model to lake whitefish populations in the field.

  12. Report from the European Prison Education Association, December 2006

    ERIC Educational Resources Information Center

    Behan, Cormac

    2006-01-01

    The main activity of the European Prison Education Association over the last number of months has been organizing the 11th EPEA conference in Dublin, Ireland in 2007. Application forms to attend the conference (13th-17th June 2007), are available to download at www.epea.org. Applications can be submitted online or by regular mail. The closing date…

  13. Human Resources for Science & Technology: The European Region. Surveys of Science Resources Series Special Report.

    ERIC Educational Resources Information Center

    Johnson, Jean M.

    The countries discussed in this report are mainly Western European and are those from which modern science, analytical methods, and inductive and deductive reasoning arose in the 17th and 18th centuries. This report has been prepared to provide as consistent a database as possible on human resources for science in the specified European countries.…

  14. Development of a bioenergetics model for age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.

    2011-01-01

    Bioenergetics modeling can be used as a tool to investigate the impact of non-native age-0 American shad (Alosa sapidissima) on reservoir and estuary food webs. The model can increase our understanding of how these fish influence lower trophic levels as well as predatory fish populations that feed on juvenile salmonids. Bioenergetics modeling can be used to investigate ecological processes, evaluate alternative research hypotheses, provide decision support, and quantitative prediction. Bioenergetics modeling has proven to be extremely useful in fisheries research (Ney et al. 1993,Chips and Wahl 2008, Petersen et al. 2008). If growth and diet parameters are known, the bioenergetics model can be used to quantify the relative amount of zooplankton or insects consumed by age-0 American shad. When linked with spatial and temporal information on fish abundance, model output can guide inferential hypothesis development to demonstrate where the greatest impacts of age-0 American shad might occur.


    Bioenergetics modeling is particularly useful when research questions involve multiple species and trophic levels (e.g. plankton communities). Bioenergetics models are mass-balance equations where the energy acquired from food is partitioned between maintenance costs, waste products, and growth (Winberg 1956). Specifically, the Wisconsin bioenergetics model (Hanson et al. 1997) is widely used in fisheries science. Researchers have extensively tested, reviewed, and improved on this modeling approach for over 30 years (Petersen et al. 2008). Development of a bioenergetics model for any species requires three key components: 1) determine physiological parameters for the model through laboratory experiments or incorporate data from a closely related species, 2) corroboration of the model with growth and consumption estimates from independent research, and 3) error analysis of model parameters.


    Wisconsin bioenergetics models have been parameterized for

  15. Bioenergetics of salt tolerance. Final report

    SciTech Connect

    Packer, L.

    1986-10-28

    Major findings are presented on how Synechococcus responds to a transition from low salt (12mM NaCl) to high salt (0.5 M NaCl) medium; we have studied immediate and long-term osmotic responses, identified deleterious effects of NaCl on cellular processes, and analyzed adaptations of the bioenergetic systems that permit the organism to tolerate a high salt environment. We have also developed new electron spin resonance methods for measuring intracellular O/sub 2/ concentrations and intracellular pH. In addition studies on the physiology and molecular mechanism of light-driven chloride transport by halorhodopsin in the halobacteria are reported. The ion-transport ATPase of halobacteria and the respiration-linked sodium transport system of the halotolerant bacterium, Bal were studied with respect to the role and functioning of ionic pumps. Chloride transport was shown to be an integral componet of the overall ion circulation in halobacterial cells, one which maintains internal salt concentration and therefore cellular volume. How halorhodopsin functions, its photointermediates, the nature of chloride-binding sites, the role of the deprotonation of the retinal Schiff-base, and how removal of most of the arginine residues, does not affect chloride-binding are reported. Methods were developed for the study of membrane-bound halobacterial ATPase, its solubilization and partial purification. 43 refs., 1 fig.

  16. NMR methodologies for studying mitochondrial bioenergetics.

    PubMed

    Alves, Tiago C; Jarak, Ivana; Carvalho, Rui A

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed. PMID:22057574

  17. [The beginnings of the nursing profession : the complementary relationship between secular caregivers and hospital nuns in France in the 17th and 18th centuries].

    PubMed

    Diebolt, Evelyne

    2013-06-01

    The words used for designating the caregivers are ambiguous. Little by little, the word "nurse" becomes widely used, mainly in the feminine form due to the need of specialized staff. Health care structures are developing in the 17th and 18 centuries, the remains of which you can find in today hospitals (Salpêtrière hospital, Hôtel-Dieu hospital in Paris). The government of Louis XIV cares for the poor sick people, the vagabonds and the beggars. It opens new general hospitals as it will be the case later in all Europe. In the 17th century, the staff of the general hospital in Paris is entirely secular. The Paris general hospital is headed by the magistrates of Paris Parliament. The healthcare institutions employ both secular and religious staff for example the Hotel Dieu in Paris and the one in Marseilles. In the 17th century, there are 2000 secular caregivers in France. The order of the "Filles de la Charité" (grey sisters) is not submitted to the rule of enclosure. They renew their vows every year. For their founders Vincent de Paul and Louise de Marcillac, their monastery should be the cells of the sick, their cloister should be the rooms of the hospitals or the streets of the town. The secular or religious caregivers are excellent in the apothecary and they open a network of small dispensaries. It improves the health of the French population and allows fighting against the epidemics. This activity allowed some women to have a rewarding activity and a social status of which they were apparently satisfied. PMID:23923734

  18. Portuguese tin-glazed earthenware from the 17th century. Part 2: A spectroscopic characterization of pigments, glazes and pastes of the three main production centers.

    PubMed

    Vieira Ferreira, L F; Ferreira, D P; Conceição, D S; Santos, L F; Pereira, M F C; Casimiro, T M; Ferreira Machado, I

    2015-01-01

    Sherds representative of the three Portuguese faience production centers of the 17th century - Lisbon, Coimbra and Vila Nova were studied with the use of mostly non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE) or X-ray fluorescence emission (XRF). X-ray diffraction (XRD) experiments were also performed. The obtained results evidence a clear similarity in the pastes of the pottery produced Vila Nova and some of the ceramic pastes from Lisbon, in accordance with documental sources that described the use of Lisbon clays by Vila Nova potters, at least since mid 17th century. Quartz and Gehlenite are the main components of the Lisbon's pastes, but differences between the ceramic pastes were detected pointing out to the use of several clay sources. The spectroscopic trend exhibited Coimbra's pottery is remarkably different, Quartz and Diopside being the major components of these pastes, enabling one to well define a pattern for these ceramic bodies. The blue pigment from the Lisbon samples is a cobalt oxide that exists in the silicate glassy matrix, which enables the formation of detectable cobalt silicate microcrystals in most productions of the second half of the 17th century. No micro-Raman cobalt blue signature could be detected in the Vila Nova and Coimbra blue glazes. This is in accordance with the lower kiln temperatures in these two production centers and with Co(2+) ions dispersed in the silicate matrix. In all cases the white glaze is obtained with the use of tin oxide. Hausmannite was detected as the manganese oxide mineral used to produce the purple glaze (wine color "vinoso") in Lisbon. PMID:25965511

  19. Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase.

    PubMed

    Vicente, João B; Malagrinò, Francesca; Arese, Marzia; Forte, Elena; Sarti, Paolo; Giuffrè, Alessandro

    2016-08-01

    Merely considered as a toxic gas in the past, hydrogen sulfide (H2S) is currently viewed as the third 'gasotransmitter' in addition to nitric oxide (NO) and carbon monoxide (CO), playing a key signalling role in human (patho)physiology. H2S can either act as a substrate or, similarly to CO and NO, an inhibitor of mitochondrial respiration, in the latter case by targeting cytochrome c oxidase (CcOX). The impact of H(2)S on mitochondrial energy metabolism crucially depends on the bioavailability of this gaseous molecule and its interplay with the other two gasotransmitters. The H(2)S-producing human enzyme cystathionine β-synthase (CBS), sustaining cellular bioenergetics in colorectal cancer cells, plays a role in the interplay between gasotransmitters. The enzyme was indeed recently shown to be negatively modulated by physiological concentrations of CO and NO, particularly in the presence of its allosteric activator S-adenosyl-l-methionine (AdoMet). These newly discovered regulatory mechanisms are herein reviewed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27039165

  20. Laboratory evaluation of a walleye (Sander vitreus) bioenergetics model.

    PubMed

    Madenjian, Charles P; Wang, Chunfang; O'Brien, Timothy P; Holuszko, Melissa J; Ogilvie, Lynn M; Stickel, Richard G

    2010-03-01

    Walleye (Sander vitreus) is an important game fish throughout much of North America. We evaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks during a 126-day experiment. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with the observed monthly consumption, we concluded that the bioenergetics model significantly underestimated food consumption by walleye in the laboratory. The degree of underestimation appeared to depend on the feeding rate. For the tank with the lowest feeding rate (1.4% of walleye body weight per day), the agreement between the bioenergetics model prediction of cumulative consumption over the entire 126-day experiment and the observed cumulative consumption was remarkably close, as the prediction was within 0.1% of the observed cumulative consumption. Feeding rates in the other three tanks ranged from 1.6% to 1.7% of walleye body weight per day, and bioenergetics model predictions of cumulative consumption over the 126-day experiment ranged between 11 and 15% less than the observed cumulative consumption. PMID:18979219

  1. Laboratory evaluation of a walleye (Sander vitreus) bioenergetics model

    USGS Publications Warehouse

    Madenjian, C.P.; Wang, C.; O'Brien, T. P.; Holuszko, M.J.; Ogilvie, L.M.; Stickel, R.G.

    2010-01-01

    Walleye (Sander vitreus) is an important game fish throughout much of North America. We evaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks during a 126-day experiment. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with the observed monthly consumption, we concluded that the bioenergetics model significantly underestimated food consumption by walleye in the laboratory. The degree of underestimation appeared to depend on the feeding rate. For the tank with the lowest feeding rate (1.4% of walleye body weight per day), the agreement between the bioenergetics model prediction of cumulative consumption over the entire 126-day experiment and the observed cumulative consumption was remarkably close, as the prediction was within 0.1% of the observed cumulative consumption. Feeding rates in the other three tanks ranged from 1.6% to 1.7% of walleye body weight per day, and bioenergetics model predictions of cumulative consumption over the 126-day experiment ranged between 11 and 15% less than the observed cumulative consumption. ?? 2008 Springer Science+Business Media B.V.

  2. Determination of droughts and high floods of the Bermejo River (Argentina) based on documentary evidence (17th to 20th century)

    NASA Astrophysics Data System (ADS)

    Prieto, M. R.; Rojas, F.

    2015-10-01

    This study reconstructs a series of droughts and high flow volumes of the Bermejo River from the 17th to 20th century based on a content analysis of historic documentary evidence, which is calibrated with instrumental climate data. The historic data series shows an increase in the frequency of extraordinarily high waters beginning in the 19th century and a significant decrease in extreme droughts beginning in 1890. The data are compared to variations in the Mendoza River for the same period, which show that there was a long-standing lack of correlation between the rivers.

  3. The Pancreatic β-Cell: A Bioenergetic Perspective.

    PubMed

    Nicholls, David G

    2016-10-01

    The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field. PMID:27582250

  4. Neurohormetic phytochemicals: An evolutionary-bioenergetic perspective.

    PubMed

    Murugaiyah, Vikneswaran; Mattson, Mark P

    2015-10-01

    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the

  5. Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF

    NASA Astrophysics Data System (ADS)

    Alfeld, Matthias; Siddons, D. Peter; Janssens, Koen; Dik, Joris; Woll, Arthur; Kirkham, Robin; van de Wetering, Ernst

    2013-04-01

    In 17th century Old Master Paintings, the underpainting generally refers to the first sketch of a composition. The underpainting is applied to a prepared ground using a monochrome, brown oil paint to roughly indicate light, shade and contours. So far, methods to visualize the underpainting—other than in localized cross-sections—have been very limited. Neither infrared reflectography nor neutron induced autoradiography have proven to be practical, adequate visualization tools. Thus, although of fundamental interest in the understanding of a painting's genesis, the underpainting has virtually escaped all imaging efforts. In this contribution we will show that 17th century underpainting may consist of a highly heterogeneous mixture of pigments, including copper pigments. We suggest that this brown pigment mixture is actually the recycled left-over of a palette scraping. With copper as the heaviest exclusive elemental component, we will hence show in a case study on a Portrait of an Old Man attributed to Rembrandt van Rijn how scanning macro-XRF can be used to efficiently visualize the underpainting below the surface painting and how this information can contribute to the discussion of the painting's authenticity.

  6. Cartier, Champlain, and the fruits of the New World: botanical exchange in the 16th and 17th centuries.

    PubMed

    Dickenson, Victoria

    2008-01-01

    Much has been written of the Columbian exchange, the transfer between New World and Old of people, pathogens, flora and fauna. The biota of two hemispheres, once seemingly irredeemably separated, were interpenetrated, both through accident and through human agency. Part of this exchange involved medicinal and food plants, discovered in the New World and adopted into the Old. This paper examines the translation of a number of New World plants that were part of the 'Cartierian' or 'Champlinian' exchange that followed the voyages to North America by Jacques Cartier (1491-1557) between 1534 and 1541, and the explorations and settlements undertaken by Samuel de Champlain (1580?-1635) from 1603 to his death at Quebec in 1635. During this period, a number of North American plants were propagated in European nurseries and even found their way into everyday use in gardens or kitchens. How were these new plants viewed on their introduction and how were they incorporated into Europe's "vegetable" consciousness? Where did these new plants fit in the classification of the edible and the exotic? PMID:19569386

  7. A bioenergetic model for zebrafish Danio rerio (Hamilton)

    USGS Publications Warehouse

    Chizinski, C.J.; Sharma, Bibek; Pope, K.L.; Patino, R.

    2008-01-01

    A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

  8. Lon protease: A key enzyme controlling mitochondrial bioenergetics in cancer

    PubMed Central

    Quirós, Pedro M; Bárcena, Clea; López-Otín, Carlos

    2014-01-01

    We have recently explored the in vivo functional and oncologic relevance of Lon protease (LONP1), an enzyme involved in mitochondrial quality control. We found that LONP1 is an essential protein for life and that it also performs a critical function in tumorigenesis by regulating the bioenergetics of cancer cells. PMID:27308364

  9. Comparative bioenergetics modeling of two Lake Trout morphotypes

    USGS Publications Warehouse

    Kepler, Megan V.; Wagner, Tyler; Sweka, John A.

    2014-01-01

    Efforts to restore Lake Trout Salvelinus namaycush in the Laurentian Great Lakes have been hampered for decades by several factors, including overfishing and invasive species (e.g., parasitism by Sea Lampreys Petromyzon marinus and reproductive deficiencies associated with consumption of Alewives Alosa pseudoharengus). Restoration efforts are complicated by the presence of multiple body forms (i.e., morphotypes) of Lake Trout that differ in habitat utilization, prey consumption, lipid storage, and spawning preferences. Bioenergetics models constitute one tool that is used to help inform management and restoration decisions; however, bioenergetic differences among morphotypes have not been evaluated. The goal of this research was to investigate bioenergetic differences between two actively stocked morphotypes: lean and humper Lake Trout. We measured consumption and respiration rates across a wide range of temperatures (4–22°C) and size-classes (5–100 g) to develop bioenergetics models for juvenile Lake Trout. Bayesian estimation was used so that uncertainty could be propagated through final growth predictions. Differences between morphotypes were minimal, but when present, the differences were temperature and weight dependent. Basal respiration did not differ between morphotypes at any temperature or size-class. When growth and consumption differed between morphotypes, the differences were not consistent across the size ranges tested. Management scenarios utilizing the temperatures presently found in the Great Lakes (e.g., predicted growth at an average temperature of 11.7°C and 14.4°C during a 30-d period) demonstrated no difference in growth between the two morphotypes. Due to a lack of consistent differences between lean and humper Lake Trout, we developed a model that combined data from both morphotypes. The combined model yielded results similar to those of the morphotype-specific models, suggesting that accounting for morphotype differences may

  10. Collaborations in population-based health research: the 17th annual HMO Research Network Conference, March 23-25, 2011, Boston, Massachusetts, USA.

    PubMed

    Lieu, Tracy A; Hinrichsen, Virginia L; Moreira, Andrea; Platt, Richard

    2011-11-01

    The HMO Research Network (HMORN) is a consortium of 16 health care systems with integrated research centers. Approximately 475 people participated in its 17(th) annual conference, hosted by the Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School. The theme, "Collaborations in Population-Based Health Research," reflected the network's emphasis on collaborative studies both among its members and with external investigators. Plenary talks highlighted the initial phase of the HMORN's work to establish the NIH-HMO Collaboratory, opportunities for public health collaborations, the work of early career investigators, and the state of the network. Platform and poster presentations showcased a broad spectrum of innovative public domain research in areas including disease epidemiology and treatment, health economics, and information technology. Special interest group sessions and ancillary meetings provided venues for informal conversation and structured work among ongoing groups, including networks in cancer, cardiovascular diseases, lung diseases, medical product safety, and mental health. PMID:22090515

  11. [[The apothecaries of the district of Les Halles in Paris in the 17th century. Molière's ancestors in Les Halles].

    PubMed

    Warolin, Christian

    2016-03-01

    Les Halles were created by King Louis VI at the begining of the 12th century as a central market for food and trade. Apothecaries conducted their trade there from that time. In the 17th century, eleven apothecaries were established in this district, bordered on the south by the rue Saint-Honoré, on the east by the rue Saint-Denis, on the west by the rue de la Tonnellerie, and the north by the rue Montmartre. Their biographies have been analysed, and the data that has been collected has enabled their précise location to be fixed on a map of 1700. Molière's ancestors, both maternal (the Cressé family) and paternal (the Pocquelin's), lived in this district. Details of their relationships with their apothecary neighbours have been revealed. PMID:27281935

  12. Historical and Metallurgical Characterization of a "Falchion" Sword Manufactured in Caino (Brescia, Italy) in the Early 17th Century A.D.

    NASA Astrophysics Data System (ADS)

    Tonelli, G.; Faccoli, M.; Gotti, R.; Roberti, R.; Cornacchia, G.

    2016-04-01

    A historical and metallurgical characterization of a "falchion" sword manufactured in Caino (Brescia, northern Italy) and dating from the early 17th century was performed to understand the manufacture methods of a Renaissance sword. At first, a set of size measurements was carried out to look for the existence of constant and/or recurring macroscopic sizes, which would indicate a standardized production, or of any type of proportionality between different parts of a sword, which would prove an intentional design activity. Light optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, quantometer analyses, and Vickers microhardness tests were then employed to analyze the microstructure and obtain the mechanical properties. All the metallurgical work is supported by an accurate study on the chemical composition of both metal-matrix and nonmetallic inclusions, which allowed for rebuilding and evaluating the efficiency of the whole production process.

  13. Cellular Bioenergetics as a Target for Obesity Therapy

    PubMed Central

    Tseng, Yu-Hua; Cypess, Aaron M.; Kahn, C. Ronald

    2010-01-01

    Summary Obesity develops when energy intake exceeds energy expenditure. While most current obesity therapies are focused on reducing caloric intake, recent data suggest that increasing cellular energy expenditure (bioenergetics) may be an attractive alternative approach. This is especially true for adaptive thermogenesis - the physiological process whereby energy is dissipated in the form of heat in response to external stimuli. There have been significant recent advances in identifying factors that control the development and function of these tissues and in techniques to measure brown fat in human adults. In this review, we integrate these developments in relation to the classic understandings of cellular bioenergetics to explore the potential for developing novel anti-obesity therapies that target cellular energy expenditure. PMID:20514071

  14. Cellular bioenergetics of guanidinoacetic acid: the role of mitochondria.

    PubMed

    Ostojic, Sergej M

    2015-10-01

    Guanidinoacetic acid (GAA) is a natural precursor of creatine, and a possible substrate for the creatine kinase (CK) enzyme system, serving as a creatine mimetic. Its direct role in cellular bioenergetics has been confirmed in several studies, however GAA utilization by CK seems to be a second-rate as compared to creatine, and compartment-dependent. Here we discuss various factors that might affect GAA use in high-energy phosphoryl transfer in the cytosol and mitochondria. PMID:26255041

  15. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics

    PubMed Central

    Prabhu, Dolly; Goldstein, Amy C.; El-Khoury, Riyad; Rak, Malgorzata; Edmunds, Lia; Rustin, Pierre; Vockley, Jerry; Schiff, Manuel

    2015-01-01

    Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblast basal mitochondrial bioenergetics. PMID:26000237

  16. Brain and skeletal muscle bioenergetic failure in familial hypobetalipoproteinaemia.

    PubMed Central

    Lodi, R; Rinaldi, R; Gaddi, A; Iotti, S; D'Alessandro, R; Scoz, N; Battino, M; Carelli, V; Azzimondi, G; Zaniol, P; Barbiroli, B

    1997-01-01

    OBJECTIVE: To determine whether a multisystemic bioenergetic deficit is an underlying feature of familial hypobetalipoproteinaemia. METHODS: Brain and skeletal muscle bioenergetics were studied by in vivo phosphorus MR spectroscopy (31P-MRS) in two neurologically affected members (mother and son) and in one asymptomatic member (daughter) of a kindred with familial hypobetalipoproteinaemia. Plasma concentrations of vitamin E and coenzyme Q10 (CoQ10) were also assessed. RESULTS: Brain 31P-MRS disclosed in all patients a reduced phosphocreatine (PCr) concentration whereas the calculated ADP concentration was increased. Brain phosphorylation potential was reduced in the members by about 40%. Skeletal muscle was studied at rest in the three members and during aerobic exercise and recovery in the son and daughter. Only the mother showed an impaired mitochondrial function at rest. Both son and daughter showed an increased end exercise ADP concentration whereas the rates of postexercise recovery of PCr and ADP were slow in the daughter. The rate of inorganic phosphate recovery was reduced in both cases. Plasma concentration of vitamin E and CoQ10 was below the normal range in all members. CONCLUSIONS: Structural changes in mitochondrial membranes and deficit of vitamin E together with reduced availability of CoQ10 can be responsible for the multisystemic bioenergetic deficit. Present findings suggest that CoQ10 supplementation may be important in familial hypobetalipoproteinaemia. PMID:9219741

  17. A new approach toward evaluation of fish bioenergetics models

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Nortrup, David A.

    2000-01-01

    A new approach was used to evaluate the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush). Lake trout in laboratory tanks were fed alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), prey typical of lake trout in Lake Michigan. Food consumption and growth by lake trout during the experiment were measured. Polychlorinated biphenyl (PCB) concentrations of the alewife and rainbow smelt, as well as of the lake trout at the beginning and end of the experiment, were determined. From these data, we calculated that lake trout retained 81% of the PCBs contained within their food. In an earlier study, application of the Wisconsin lake trout bioenergetics model to growth and diet data for lake trout in Lake Michigan, in conjunction with PCB data for lake trout and prey fish from Lake Michigan, yielded an estimate of PCB assimilation efficiency from food of 81%. This close agreement in the estimates of efficiency with which lake trout retain PCBs from their food indicated that the bioenergetics model was furnishing accurate predictions of food consumption by lake trout in Lake Michigan.

  18. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas.

    PubMed

    Olson, R J; Young, J W; Ménard, F; Potier, M; Allain, V; Goñi, N; Logan, J M; Galván-Magaña, F

    2016-01-01

    Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts. PMID:27573052

  19. Quantification of the Early Small-Scale Fishery in the North-Eastern Baltic Sea in the Late 17th Century

    PubMed Central

    Verliin, Aare; Ojaveer, Henn; Kaju, Katre; Tammiksaar, Erki

    2013-01-01

    Historical perspectives on fisheries and related human behaviour provide valuable information on fishery resources and their exploitation, helping to more appropriately set management targets and determine relevant reference levels. In this study we analyse historical fisheries and fish trade at the north-eastern Baltic Sea coast in the late 17th century. Local consumption and export together amounted to the annual removal of about 200 tonnes of fish from the nearby sea and freshwater bodies. The fishery was very diverse and exploited altogether one cyclostome and 17 fish species with over 90% of the catch being consumed locally. The exported fish consisted almost entirely of high-valued species with Stockholm (Sweden) being the most important export destination. Due to rich political history and natural features of the region, we suggest that the documented evidence of this small-scale fishery should be considered as the first quantitative summary of exploitation of aquatic living resources in the region and can provide a background for future analyses. PMID:23861914

  20. Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baumer, Ursula; Dietemann, Patrick; Koller, Johann

    2009-07-01

    Objects of hinterglasmalerei, reverse-glass paintings, are painted on the back side of glass panels. Obviously, the paint layers are applied in reverse order, starting with the uppermost layer. The finished hinterglas painting is viewed through the glass, thus revealing an impressive gloss and depth of colour. The binding media of two precious objects of hinterglasmalerei from the 16th and 17th century have been identified as almost exclusively resinous. Identification was performed by a special optimised analysis procedure, which is discussed in this paper: solvent extracts are analysed by gas chromatography/mass spectrometry, both with and without derivatisation or hydrolysis. In an additional step, oxalic acid is added to the methanol extracts prior to injection. This attenuates the peaks of the non-acidic compounds, whereas the acids elute with good resolution. The non-acidic compounds are emphasised after injection of the underivatised extracts. This approach minimises compositional changes caused by the sample preparation and derivatisation steps. Chromatograms of aged samples with a very complex composition are simplified, which allows a more reliable and straightforward identification of significant markers for various materials. The binding media of the hinterglas objects were thus shown to consist of mixtures of different natural resins, larch turpentine, heat-treated Pinaceae resin or mastic. Typical compounds of dragon's blood, a natural red resin, were also detectable in red glazes by the applied analysis routine. Identification of the binding media provides valuable information that can be used in the development of an adequate conservation treatment.

  1. The Shaping of the Lutheran Teaching Profession and Lutheran Families of Teachers in the 16th and 17th Centuries (Illustrated by the Example of the Trencín, Liptov and Orava Superintendency)

    ERIC Educational Resources Information Center

    Bernát, Libor

    2012-01-01

    The article deals with changes in the status of teachers and the shaping of Lutheran families of teachers in the 16th and 17th centuries in the Trencín, Liptov and Orava districts of the superintendency. It describes the formation of the families and their background.

  2. The Teaching of Russian Language and Literature in Europe = L'enseignement de la langue et de la litterature russes en Europe = Prepodavanie russkogo yaeyka i literatury v Europe. Proceedings of the AIMAV Seminar (17th, Brussels, Belgium, 1986).

    ERIC Educational Resources Information Center

    Blankoff, Jean, Ed.; And Others

    Papers from the Proceedings of the 17th meeting of the AIMAV (Association internationale pour le developpement de la communication interculturelle) are collected in this volume. Conference papers appear either in English, in French, or in Russian. For purposes of this abstract, all titles below have been translated into English. The…

  3. Applications of bioenergetics models to fish ecology and management: where do we go from here?

    USGS Publications Warehouse

    Hansen, Michael J.; Boisclair, Daniel; Brandt, Stephen B.; Hewett, Steven W.; Kitchell, James F.; Lucas, Martyn C.; Ney, John J.

    1993-01-01

    Papers and panel discussions given during a 1992 symposium on bioenergetics models are summarized. Bioenergetics models have been applied to a variety of research and management questions related to fish stocks, populations, food webs, and ecosystems. Applications include estimates of the intensity and dynamics of predator-prey interactions, nutrient cycling within aquatic food webs of varying trophic structure, and food requirements of single animals, whole populations, and communities of fishes. As tools in food web and ecosystem applications, bioenergetics models have been used to compare forage consumption by salmonid predators across the Laurentian Great Lakes for single populations and whole communities, and to estimate the growth potential of pelagic predators in Chesapeake Bay and Lake Ontario. Some critics say that bioenergetics models lack sufficient detail to produce reliable results in such field applications, whereas others say that the models are too complex to be useful tools for fishery managers. Nevertheless, bioenergetics models have achieved notable predictive successes. Improved estimates are needed for model parameters such as metabolic costs of activity, and more complete studies are needed of the bioenergetics of larval and juvenile fishes. Future research on bioenergetics should include laboratory and field measurements of key model parameters such as weight-dependent maximum consumption, respiration and activity, and thermal habitats actually occupied by fish. Future applications of bioenergetics models to fish populations also depend on accurate estimates of population sizes and survival rates.

  4. [Louis XIV's Ginseng: Shaping of Knowledge on an Herbal Medicine in the Late 17th and the Early 18th Century France].

    PubMed

    Lee, Hye-Min

    2016-04-01

    This article aims to investigate the shaping of knowledge and discourse on ginseng, especially among physicians and botanists, since its introduction to France from the 17th century until the early 18th century. In France, knowledge on herbal medicine, including that of ginseng, was shaped under the influence of the modern state's policy and institution: mercantilism and the Académie royale des sciences. The knowledge of herbal medicine developed as an important part of the mercantilist policy supported systematically by the Académie. The East Asian ginseng, renowned as a panacea, was first introduced into France in the 17th century, initially in a roundabout way through transportation and English and Dutch publications of travel tales from various foreign countries. The publication activity was mainly conducted by Thévenot company with the intention to meet the needs of French mercantilism promoted by Colbert. It also implied interests on medicine in order to bolster the people's health. The Thévenot company's activity thus offered vital information on plants and herbs abroad, one of which was ginseng. Furthermore, with Louis XIV's dispatching of the Jesuit missionaries to East Asia, the Frenchmen were able to directly gather information on ginseng. These information became a basis for research of the Académie. In the Académie, founded in 1666 by Colbert, the king's physicians and botanists systematically and collectively studied on exotic plants and medical herbs including ginseng. They were also key figures of the Jardin du Roi. These institutions bore a striking contrast to the faculty of medicine at the University of Paris which has been a center of the traditional Galenic medicine. The research of the Académie on ginseng was greatly advanced, owing much to the reports and samples sent from China and Canada by Jartoux, Sarrazin, and Lapitau. From the early 18th century, the conservative attitude of the University of Paris, which was a stronghold of

  5. Stellar Occultations by Large TNOs on 2012: The February 3rd by (208996) 2003 AZ84, and the February 17th by (50000) Quaoar

    NASA Astrophysics Data System (ADS)

    Braga Ribas, Felipe; Sicardy, B.; Ortiz, J. L.; Duffard, R.; Camargo, J. I. B.; Lecacheux, J.; Colas, F.; Vachier, F.; Tanga, P.; Sposetti, S.; Brosch, N.; Kaspi, S.; Manulis, I.; Baug, T.; Chandrasekhar, T.; Ganesh, S.; Jain, J.; Mohan, V.; Sharma, A.; Garcia-Lozano, R.; Klotz, A.; Frappa, E.; Jehin, E.; Assafin, M.; Vieira Martins, R.; Behrend, R.; Roques, F.; Widemann, T.; Morales, N.; Thirouin, A.; Mahasena, P.; Benkhaldoun, Z.; Daassou, A.; Rinner, C.; Ofek, E. O.

    2012-10-01

    On February 2012, two stellar occultation's by large Trans-neptunian Objects (TNO's) were observed by our group. On the 3rd, an event by (208996) 2003 AZ84 was recorded from Mont Abu Observatory and IUCAA Girawali Observatory in India and from Weizmann Observatory in Israel. On the 17th, a stellar occultation by (50000) Quaoar was observed from south France and Switzerland. Both occultations are the second observed by our group for each object, and will be used to improve the results obtained on the previous events. The occultation by 2003 AZ84 is the first multi-chord event recorded for this object. From the single chord event on January 8th 2011, Braga-Ribas et al. 2011 obtained a lower limit of 573 +/- 21 km. From the 2012 occultation the longest chord has a size of 662 +/- 50 km. The other chords will permit to determine the size and shape of the TNO, and derive other physical parameters, such as the geometric albedo. The Quaoar occultation was observed from south of France (Observatoire de la Côte d'Azur, TAROT telescope and Valensole) and from Gnosca, Switzerland. Unfortunately, all three sites in France are almost at the same Quaoar's latitude, so in practice, we have two chords that can be used to fit Quaoar's limb. The resulting fit will be compared with the results obtained by Braga-Ribas et al. 2011. Braga-Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.

  6. N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis.

    PubMed

    Grigorian, Ani; Araujo, Lindsey; Naidu, Nandita N; Place, Dylan J; Choudhury, Biswa; Demetriou, Michael

    2011-11-18

    Current treatments and emerging oral therapies for multiple sclerosis (MS) are limited by effectiveness, cost, and/or toxicity. Genetic and environmental factors that alter the branching of Asn (N)-linked glycans result in T cell hyperactivity, promote spontaneous inflammatory demyelination and neurodegeneration in mice, and converge to regulate the risk of MS. The sugar N-acetylglucosamine (GlcNAc) enhances N-glycan branching and inhibits T cell activity and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Here, we report that oral GlcNAc inhibits T-helper 1 (Th1) and T-helper 17 (Th17) responses and attenuates the clinical severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE when administered after disease onset. Oral GlcNAc increased expression of branched N-glycans in T cells in vivo as shown by high pH anion exchange chromatography, MALDI-TOF mass spectroscopy and FACS analysis with the plant lectin l-phytohemagglutinin. Initiating oral GlcNAc treatment on the second day of clinical disease inhibited MOG-induced EAE as well as secretion of interferon-γ, tumor necrosis factor-α, interleukin-17, and interleukin-22. In the more severe 2D2 T cell receptor transgenic EAE model, oral GlcNAc initiated after disease onset also inhibits clinical disease, except for those with rapid lethal progression. These data suggest that oral GlcNAc may provide an inexpensive and nontoxic oral therapeutic agent for MS that directly targets an underlying molecular mechanism causal of disease. PMID:21965673

  7. Social differences in oral health: Dental status of individuals buried in and around Trakai Church in Lithuania (16th-17th c.c.).

    PubMed

    Miliauskienė, Žydrūnė; Jankauskas, Rimantas

    2015-01-01

    The evaluation of social differences in dental health is based on the assumption that individuals belonging to a higher social class consumed a different diet than a common people. The aim of our study was to analyse and compare dental health of 16(th) - 17(th) c. individuals, buried inside and around the Roman Catholic Church in Trakai (Lithuania). All material (189 adult individuals) was divided in two samples of a presumably different social status: the Churchyard (ordinary townsmen) and the Presbytery (elite). Dental status analysis included that of tooth loss, tooth wear, caries, abscesses and calculus. Results revealed higher prevalence of dental disease in the Churchyard sample compared to the Presbytery. Individuals buried around the church had statistically higher prevalence of caries, antemortem tooth loss and abscesses compared to those who were buried inside the church. The Churchyard sample was also characterised by a higher increase in severity of caries with age, and a more rapid tooth wear. Differences in dental health between the samples the most probably reflect different dietary habits of people from different social groups: poor quality carbohydrate based diet of laymen buried in the churchyard and more varied diet with proteins and of a better quality of local elite, buried inside the church. Substantial sex differences in dental health were found only in the Churchyard sample: males had statistically higher prevalence of abscesses and calculus, while females had higher prevalence of caries and AMTL (antemortem tooth loss). Females were also characterised by a higher increase in the number of dental decay and tooth loss with age and had higher prevalence of gross caries, which indicates a more rapid progression of the disease. Worse dental health of females could be a result of culturally based dietary differences between females (more carbohydrates) and males (more proteins) and different physiological demands (hormonal fluctuations and

  8. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  9. Biology and Metabolism of Sepsis: Innate Immunity, Bioenergetics, and Autophagy.

    PubMed

    Lewis, Anthony J; Billiar, Timothy R; Rosengart, Matthew R

    2016-06-01

    Sepsis is a complex, heterogeneous physiologic condition that represents a significant public health concern. While many insights into the pathophysiology of sepsis have been elucidated over the past decades of research, important questions remain. This article serves as a review of several important areas in sepsis research. Understanding the innate immune response has been at the forefront as of late, especially in the context of cytokine-directed therapeutic trials. Cellular bioenergetic changes provide insight into the development of organ dysfunction in sepsis. Autophagy and mitophagy perform crucial cell housekeeping and stress response functions. Finally, age-related changes and their potential impact on the septic response are reviewed. PMID:27093228

  10. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation

    PubMed Central

    Diender, Martijn; Stams, Alfons J. M.; Sousa, Diana Z.

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved. PMID:26635746

  11. Bioenergetic and physiological studies of hyperthermophilic archaea. Final report

    SciTech Connect

    Kelly, R.M.

    1999-03-01

    This project focuses on physiological and bioenergetic characteristics of two representative hyperthermophilic archaea: Thermococcus litoralis (T{sub opt} 88 C) and Pyrococcus furiosus (T{sub opt} 98 C). Both are obligately anaerobic heterotrophs which grow in the presence or absence of reducible sulfur compounds. T. litoralis was studied in relation to information previously developed for P. furiosus: effect of sulfur reduction on bioenergetics, preferred fermentation patterns, tungsten requirement, etc. A defined medium was developed for T. litoralis consisting of amino acids, vitamins and nucleotides. This serves as the basis for continuous culture studies probing metabolic response to media changes. P. furiosus and T. litoralis have also been found to produce a polysaccharide in the presence of maltose and yeast extract. The composition and chemical structure of this polysaccharide was investigated as well as the metabolic motivation for its production. A novel and, perhaps, primitive intracellular proteolytic complex (previously designated as protease S66) in P. furiosus was isolated and the gene encoding the subunit of the complex was cloned, sequenced and the protease expressed in active form in Eschericia coli. Among other issues, the role of this complex in protein turnover and stress response was examined in the context of this organism in addition to comparing it to other complexes in eubacterial and eukaryotic cells. Biochemical characteristics of the protease have been measured in addition to examining other proteolytic species in P. furiosus.

  12. A Full Lifecycle Bioenergetic Model for Bluefin Tuna

    PubMed Central

    Jusup, Marko; Klanjscek, Tin; Matsuda, Hiroyuki; Kooijman, S. A. L. M.

    2011-01-01

    We formulated a full lifecycle bioenergetic model for bluefin tuna relying on the principles of Dynamic Energy Budget theory. Traditional bioenergetic models in fish research deduce energy input and utilization from observed growth and reproduction. In contrast, our model predicts growth and reproduction from food availability and temperature in the environment. We calibrated the model to emulate physiological characteristics of Pacific bluefin tuna (Thunnus orientalis, hereafter PBT), a species which has received considerable scientific attention due to its high economic value. Computer simulations suggest that (i) the main cause of different growth rates between cultivated and wild PBT is the difference in average body temperature of approximately 6.5°C, (ii) a well-fed PBT individual can spawn an average number of 9 batches per spawning season, (iii) food abundance experienced by wild PBT is rather constant and sufficiently high to provide energy for yearly reproductive cycle, (iv) energy in reserve is exceptionally small, causing the weight-length relationship of cultivated and wild PBT to be practically indistinguishable and suggesting that these fish are poorly equipped to deal with starvation, (v) accelerated growth rate of PBT larvae is connected to morphological changes prior to metamorphosis, while (vi) deceleration of growth rate in the early juvenile stage is related to efficiency of internal heat production. Based on these results, we discuss a number of physiological and ecological traits of PBT, including the reasons for high Feed Conversion Ratio recorded in bluefin tuna aquaculture. PMID:21779352

  13. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.

    2004-01-01

    We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.

  14. Increased mitochondrial arginine metabolism supports bioenergetics in asthma.

    PubMed

    Xu, Weiling; Ghosh, Sudakshina; Comhair, Suzy A A; Asosingh, Kewal; Janocha, Allison J; Mavrakis, Deloris A; Bennett, Carole D; Gruca, Lourdes L; Graham, Brian B; Queisser, Kimberly A; Kao, Christina C; Wedes, Samuel H; Petrich, John M; Tuder, Rubin M; Kalhan, Satish C; Erzurum, Serpil C

    2016-07-01

    High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma. PMID:27214549

  15. The inverse association of cancer and Alzheimer's: a bioenergetic mechanism

    PubMed Central

    Demetrius, Lloyd A.; Simon, David K.

    2013-01-01

    The sporadic forms of cancer and Alzheimer's disease (AD) are both age-related metabolic disorders. However, the molecular mechanisms underlying the two diseases are distinct: cancer is described by essentially limitless replicative potential, whereas neuronal death is a key feature of AD. Studies of the origin of both diseases indicate that their sporadic forms are the result of metabolic dysregulation, and a compensatory increase in energy transduction that is inversely related. In cancer, the compensatory metabolic effect is the upregulation of glycolysis—the Warburg effect; in AD, a bioenergetic model based on the interaction between astrocytes and neurons indicates that the compensatory metabolic alteration is the upregulation of oxidative phosphorylation—an inverse Warburg effect. These two modes of metabolic alteration could contribute to an inverse relation between the incidence of the two diseases. We invoke this bioenergetic mechanism to furnish a molecular basis for an epidemiological observation, namely the incidence of sporadic forms of cancer and AD is inversely related. We furthermore exploit the molecular mechanisms underlying the diseases to propose common therapeutic strategies for cancer and AD based on metabolic intervention. PMID:23427097

  16. Paleoclimate Reconstruction during the 17th to 18th Century Using Fossil Coral Tsunami Boulders from Ishigaki Island, the Ryukyus, Japan

    NASA Astrophysics Data System (ADS)

    Tsuzuki, K.; Yokoyama, Y.; Seki, A.; Kawakubo, Y.; Araoka, D.; Suzuki, A.

    2014-12-01

    Resolution Inductively Coupled Plasma Mass Spectrometry) to reconstruct paleo SST during LIA (Kawakubo et al., 2014). LA-HR-ICPMS enables us to measure the long coral core rapidly. Our result shows SST variation in 17th-18th century in this area and SST declined in around 1700. This result reveals the response of Little Ice Age in the northwestern Pacific.

  17. PGC-1α Integrates Insulin Signaling, Mitochondrial Regulation, and Bioenergetic Function in Skeletal Muscle*S⃞

    PubMed Central

    Pagel-Langenickel, Ines; Bao, Jianjun; Joseph, Joshua J.; Schwartz, Daniel R.; Mantell, Benjamin S.; Xu, Xiuli; Raghavachari, Nalini; Sack, Michael N.

    2008-01-01

    The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1α. Overexpression of PGC-1α rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1α expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1α in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1α and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1α. Moreover, PGC-1α is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle. PMID:18579525

  18. Kinetic and bioenergetic studies of Spirulina platensis in chemostat and turbidostat culture

    SciTech Connect

    Lee, H.Y.; Erickson, L.E.; Scott, C.D.

    1986-01-01

    The growth kinetics and bioenergetics of S. platensis were investigated as a function of pH, temperature, light intensity, and HCO/sub 3/ concentration. The effects of pH and temperature on growth rate and bioenergetic yield were examined using turbidostat operation. The Arrhenius activation energy for growth appears to be independent of light intensity for the range of values that were investigated. Under light-limited growth conditions, the values of pH and temperature which provide for the maximum growth rate also correspond to the maximum bioenergetic yield. Chemostat operation was used to investigate C-limited growth.

  19. Shedding light on fish otolith biomineralization using a bioenergetic approach.

    PubMed

    Fablet, Ronan; Pecquerie, Laure; de Pontual, Hélène; Høie, Hans; Millner, Richard; Mosegaard, Henrik; Kooijman, Sebastiaan A L M

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves. PMID:22110601

  20. Shedding Light on Fish Otolith Biomineralization Using a Bioenergetic Approach

    PubMed Central

    Fablet, Ronan; Pecquerie, Laure; de Pontual, Hélène; Høie, Hans; Millner, Richard; Mosegaard, Henrik; Kooijman, Sebastiaan A. L. M.

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves. PMID:22110601

  1. Review of methods to probe single cell metabolism and bioenergetics

    PubMed Central

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    2015-01-01

    Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed. PMID:25448400

  2. Bioenergetic Constraints on the Evolution of Complex Life

    PubMed Central

    Lane, Nick

    2014-01-01

    All morphologically complex life on Earth, beyond the level of cyanobacteria, is eukaryotic. All eukaryotes share a common ancestor that was already a complex cell. Despite their biochemical virtuosity, prokaryotes show little tendency to evolve eukaryotic traits or large genomes. Here I argue that prokaryotes are constrained by their membrane bioenergetics, for fundamental reasons relating to the origin of life. Eukaryotes arose in a rare endosymbiosis between two prokaryotes, which broke the energetic constraints on prokaryotes and gave rise to mitochondria. Loss of almost all mitochondrial genes produced an extreme genomic asymmetry, in which tiny mitochondrial genomes support, energetically, a massive nuclear genome, giving eukaryotes three to five orders of magnitude more energy per gene than prokaryotes. The requirement for endosymbiosis radically altered selection on eukaryotes, potentially explaining the evolution of unique traits, including the nucleus, sex, two sexes, speciation, and aging. PMID:24789818

  3. Laboratory evaluation of a lake trout bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.

    1999-01-01

    Lake trout Salvelinus namaycush, aged 3 and 6 years and with average weights of 700 and 2,000 g, were grown in laboratory tanks for up to 407 d under a thermal regime similar to that experienced by lake trout in nearshore Lake Michigan. Lake trout were fed alewifeAlosa pseudoharengus and rainbow smelt Osmerus mordax, prey typical of lake trout in Lake Michigan. Of the 120 lake trout used in the experiment, 40 were fed a low ration (0.25% of their body weight per day), 40 were fed a medium ration (0.5% of their body weight per day), and 40 were fed a high ration (ad libitum). We measured consumption and growth, and we compared observed consumption with that predicted by the Wisconsin bioenergetics model. For lake trout fed the medium ration, model predictions for monthly consumption were unbiased. Moreover, predicted cumulative consumption by medium-ration lake trout for the entire experiment (320 d for smaller lake trout and 407 d for larger lake trout) agreed quite well with observed cumulative consumption; predictions were as close as within 0.1 to 5.2% of observed cumulative consumption. Even so, the model consistently overestimated consumption by low-ration fish and underestimated consumption by high-ration fish. The bias was significant in both cases, but was more severe for the low-ration trout. Because the low-ration and high-ration regimes were probably unrealistic for lake trout residing in Lake Michigan and because the model fit our laboratory data rather well for medium-ration trout, we conclude that applying the Wisconsin bioenergetics model to the Lake Michigan lake trout population in order to estimate the amount of prey fish consumed by lake trout each year is appropriate.

  4. A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria

    PubMed Central

    Sojo, Víctor; Pomiankowski, Andrew; Lane, Nick

    2014-01-01

    Membrane bioenergetics are universal, yet the phospholipid membranes of archaea and bacteria—the deepest branches in the tree of life—are fundamentally different. This deep divergence in membrane chemistry is reflected in other stark differences between the two domains, including ion pumping and DNA replication. We resolve this paradox by considering the energy requirements of the last universal common ancestor (LUCA). We develop a mathematical model based on the premise that LUCA depended on natural proton gradients. Our analysis shows that such gradients can power carbon and energy metabolism, but only in leaky cells with a proton permeability equivalent to fatty acid vesicles. Membranes with lower permeability (equivalent to modern phospholipids) collapse free-energy availability, precluding exploitation of natural gradients. Pumping protons across leaky membranes offers no advantage, even when permeability is decreased 1,000-fold. We hypothesize that a sodium-proton antiporter (SPAP) provided the first step towards modern membranes. SPAP increases the free energy available from natural proton gradients by ∼60%, enabling survival in 50-fold lower gradients, thereby facilitating ecological spread and divergence. Critically, SPAP also provides a steadily amplifying advantage to proton pumping as membrane permeability falls, for the first time favoring the evolution of ion-tight phospholipid membranes. The phospholipids of archaea and bacteria incorporate different stereoisomers of glycerol phosphate. We conclude that the enzymes involved took these alternatives by chance in independent populations that had already evolved distinct ion pumps. Our model offers a quantitatively robust explanation for why membrane bioenergetics are universal, yet ion pumps and phospholipid membranes arose later and independently in separate populations. Our findings elucidate the paradox that archaea and bacteria share DNA transcription, ribosomal translation, and ATP synthase

  5. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.

    PubMed

    Wilkins, Heather M; Koppel, Scott; Carl, Steven M; Ramanujan, Suruchi; Weidling, Ian; Michaelis, Mary L; Michaelis, Elias K; Swerdlow, Russell H

    2016-04-01

    We tested how the addition of oxaloacetate (OAA) to SH-SY5Y cells affected bioenergetic fluxes and infrastructure, and compared the effects of OAA to malate, pyruvate, and glucose deprivation. OAA displayed pro-glycolysis and pro-respiration effects. OAA pro-glycolysis effects were not a consequence of decarboxylation to pyruvate because unlike OAA, pyruvate lowered the glycolysis flux. Malate did not alter glycolysis flux and reduced mitochondrial respiration. Glucose deprivation essentially eliminated glycolysis and increased mitochondrial respiration. OAA increased, while malate decreased, the cell NAD+/NADH ratio. Cytosolic malate dehydrogenase 1 protein increased with OAA treatment, but not with malate or glucose deprivation. Glucose deprivation increased protein levels of ATP citrate lyase, an enzyme which produces cytosolic OAA, whereas OAA altered neither ATP citrate lyase mRNA nor protein levels. OAA, but not glucose deprivation, increased cytochrome oxidase subunit 2, PGC1α, PGC1β, and PGC1 related co-activator protein levels. OAA increased total and phosphorylated SIRT1 protein. We conclude that adding OAA to SH-SY5Y cells can support or enhance both glycolysis and respiration fluxes. These effects appear to depend, at least partly, on OAA causing a shift in the cell redox balance to a more oxidized state, that it is not a glycolysis pathway intermediate, and possibly its ability to act in an anaplerotic fashion. We examined how oxaloacetate (OAA) affects bioenergetic fluxes. To advance the understanding of how OAA mediates these changes, we compared the effects of OAA to malate, pyruvate, and glucose deprivation. We further examined how OAA affects levels of enzymes that facilitate its cytosolic metabolism, and found OAA increased the expression of malate dehydrogenase 1 (MDH1-cytosolic). We propose the following: OAA supports both glycolysis and respiration fluxes, shifts the cell redox balance toward a more oxidized state, and acts in an anaplerotic

  6. Regulation of cardiac cellular bioenergetics: mechanisms and consequences

    PubMed Central

    Tran, Kenneth; Loiselle, Denis S; Crampin, Edmund J

    2015-01-01

    The regulation of cardiac cellular bioenergetics is critical for maintaining normal cell function, yet the nature of this regulation is not fully understood. Different mechanisms have been proposed to explain how mitochondrial ATP production is regulated to match changing cellular energy demand while metabolite concentrations are maintained. We have developed an integrated mathematical model of cardiac cellular bioenergetics, electrophysiology, and mechanics to test whether stimulation of the dehydrogenase flux by Ca2+ or Pi, or stimulation of complex III by Pi can increase the rate of mitochondrial ATP production above that determined by substrate availability (ADP and Pi). Using the model, we show that, under physiological conditions the rate of mitochondrial ATP production can match varying demand through substrate availability alone; that ATP production rate is not limited by the supply of reducing equivalents in the form of NADH, as a result of Ca2+ or Pi activation of the dehydrogenases; and that ATP production rate is sensitive to feedback activation of complex III by Pi. We then investigate the mechanistic implications on cytosolic ion homeostasis and force production by simulating the concentrations of cytosolic Ca2+, Na+ and K+, and activity of the key ATPases, SERCA pump, Na+/K+ pump and actin-myosin ATPase, in response to increasing cellular energy demand. We find that feedback regulation of mitochondrial complex III by Pi improves the coupling between energy demand and mitochondrial ATP production and stabilizes cytosolic ADP and Pi concentrations. This subsequently leads to stabilized cytosolic ionic concentrations and consequentially reduced energetic cost from cellular ATPases. PMID:26229005

  7. Estrogen: A master regulator of bioenergetic systems in the brain and body

    PubMed Central

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer’s disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. PMID:23994581

  8. Mitochondrial bioenergetics in young, adult, middle-age and senescent brown Norway rats

    EPA Science Inventory

    Mitochondria are central regulators of energy homeostasis and may play a pivotal role in mechanisms of cellular senescence and age-related neurodegenerative and metabolic disorders. However, mitochondrial bioenergetic parameters have not been systematically evaluated under identi...

  9. [Pierre and Philippe Ranquet, father and son, apothecaries in rue Saint-Honoré, Paris in the 17th century, suppliers to the duchess of Vendôme].

    PubMed

    Warolin, Christian

    2008-05-01

    This research concerns two apothecaries in Paris living in the rue Saint-Honoré in the 17th century. Pierre Ranquet, father of Philippe Ranquet, was apothecary to the Duchess of Mercoeur and her daughter the Duchess of Vendôme, members of the nobility. Philippe was a member of the community of apothecary-grocers of Paris, keeping shop and dispensing drugs to a large clientele in the Saint-Honoré district, including many noblemen and women. He became supplier to the Duchess of Vendôme following the death of his father in 1652. PMID:19069198

  10. Michael Mästlin as a Tübingen professor - academic everyday life at the beginning of the 17th century. (German Title: Michael Mästlin als Tübinger Professor - akademischer Alltag an der Schwelle zum 17. Jahrhundert)

    NASA Astrophysics Data System (ADS)

    Wischnath, Johannes Michael

    This contribution elucidates everyday academic at Tübingen University at the beginning of the 17th century, which formed a framework for Michael Mästlin's life as a teacher ad researcher. These activities included administrative tasks, meetings and negotiations, disputations and examinations, church services, academic festivities, group ceremonies and meals. This reconstruction is not only based on unpublished files and minutes of the university and the faculty of arts, but also on the diary of the Greek scholar Martin Crusius, which contains numerous surprising and colourful details from the life of the astronomer.

  11. The Bioenergetic Health Index is a sensitive measure of oxidative stress in human monocytes

    PubMed Central

    Chacko, Balu K.; Zhi, Degui; Darley-Usmar, Victor M.; Mitchell, Tanecia

    2015-01-01

    Metabolic and bioenergetic dysfunction are associated with oxidative stress and thought to be a common underlying mechanism of chronic diseases such as atherosclerosis, diabetes, and neurodegeneration. Recent findings support an emerging concept that circulating leukocytes and platelets can act as sensors or biomarkers of mitochondrial function in patients subjected to metabolic diseases. It is proposed that systemic stress-induced alterations in leukocyte bioenergetics are the consequence of several factors including reactive oxygen species. This suggests that oxidative stress mediated changes in leukocyte mitochondrial function could be used as an indicator of bioenergetic health in individuals. To test this concept, we investigated the effect of the redox cycling agent, 2,3 dimethoxynaphthoquinone (DMNQ) on the bioenergetic profiles of monocytes isolated from healthy human subjects using the extracellular flux analyzer. In addition, we tested the hypothesis that the bioenergetic health index (BHI), a single value that represents the bioenergetic health of individuals, is dynamically sensitive to oxidative stress in human monocytes. DMNQ decreased monocyte ATP-linked respiration, maximal respiration, and reserve capacity and caused an increase in proton leak and non-mitochondrial respiration compared to monocytes not treated with DMNQ. The BHI was a more sensitive indicator of the DMNQ-dependent changes in bioenergetics than any individual parameter. These data suggest that monocytes are susceptible to oxidative stress mediated by DMNQ and this can be accurately assessed by the BHI. Taken together, our findings suggest that the BHI has the potential to act as a functional biomarker of the impact of systemic oxidative stress in patients with metabolic disorders. PMID:26748041

  12. The Bioenergetic Health Index is a sensitive measure of oxidative stress in human monocytes.

    PubMed

    Chacko, Balu K; Zhi, Degui; Darley-Usmar, Victor M; Mitchell, Tanecia

    2016-08-01

    Metabolic and bioenergetic dysfunction are associated with oxidative stress and thought to be a common underlying mechanism of chronic diseases such as atherosclerosis, diabetes, and neurodegeneration. Recent findings support an emerging concept that circulating leukocytes and platelets can act as sensors or biomarkers of mitochondrial function in patients subjected to metabolic diseases. It is proposed that systemic stress-induced alterations in leukocyte bioenergetics are the consequence of several factors including reactive oxygen species. This suggests that oxidative stress mediated changes in leukocyte mitochondrial function could be used as an indicator of bioenergetic health in individuals. To test this concept, we investigated the effect of the redox cycling agent, 2,3 dimethoxynaphthoquinone (DMNQ) on the bioenergetic profiles of monocytes isolated from healthy human subjects using the extracellular flux analyzer. In addition, we tested the hypothesis that the bioenergetic health index (BHI), a single value that represents the bioenergetic health of individuals, is dynamically sensitive to oxidative stress in human monocytes. DMNQ decreased monocyte ATP-linked respiration, maximal respiration, and reserve capacity and caused an increase in proton leak and non-mitochondrial respiration compared to monocytes not treated with DMNQ. The BHI was a more sensitive indicator of the DMNQ-dependent changes in bioenergetics than any individual parameter. These data suggest that monocytes are susceptible to oxidative stress mediated by DMNQ and this can be accurately assessed by the BHI. Taken together, our findings suggest that the BHI has the potential to act as a functional biomarker of the impact of systemic oxidative stress in patients with metabolic disorders. PMID:26748041

  13. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  14. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  15. Preliminary evaluation of a lake whitefish (Coregonus clupeaformis) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; O'Connor, Daniel V.; Brandt, Stephen B.

    2005-01-01

    We conducted a preliminary evaluation of a lake whitefish (Coregonus clupeaformis) bioenergetics model by applying the model to size-at-age data for lake whitefish from northern Lake Michigan. We then compared estimates of gross growth efficiency (GGE) from our bioenergetis model with previously published estimates of GGE for bloater (C. hoyi) in Lake Michigan and for lake whitefish in Quebec. According to our model, the GGE of Lake Michigan lake whitefish decreased from 0.075 to 0.02 as age increased from 2 to 5 years. In contrast, the GGE of lake whitefish in Quebec inland waters decreased from 0.12 to 0.05 for the same ages. When our swimming-speed submodel was replaced with a submodel that had been used for lake trout (Salvelinus namaycush) in Lake Michigan and an observed predator energy density for Lake Michigan lake whitefish was employed, our model predicted that the GGE of Lake Michigan lake whitefish decreased from 0.12 to 0.04 as age increased from 2 to 5 years.

  16. BDE-154 induces mitochondrial permeability transition and impairs mitochondrial bioenergetics.

    PubMed

    Pereira, Lílian Cristina; Miranda, Luiz Felippe Cabral; de Souza, Alecsandra Oliveira; Dorta, Daniel Junqueira

    2014-01-01

    Brominated flame retardants are used in various consumer goods to make these materials difficult to burn. Polybrominated diphenyl ethers (PBDE), which are representative of this class of retardants, consist of two benzene rings linked by an oxygen atom, and contain between 1 and 10 bromine atoms in their chemical structure, with the possibility of up to 209 different congeners. Among these congeners, BDE-154 (hexa-BDE) is persistent in the environment and easy to detect in the biota, but no apparent information regarding the mechanism underlying action and toxicity is available. Mitochondria, as the main energy-producing organelles, play an important role in the maintenance of various cellular functions. Therefore, mitochondria were used in the present study as an experimental model to determine the effects of BDE-154 congener at concentrations ranging from 0.1 μM to 50 μM. Our results demonstrated that BDE-154 interacts with the mitochondrial membrane, preferably by inserting into the hydrophobic core of the mitochondrial membrane, which partially inhibits respiration, dissipates Δψ, and permeabilizes the inner mitochondrial membrane to deplete ATP. These effects are more pronounced at concentrations equal to or higher than 10 μM. Results also showed that BDE-154 did not induce reactive oxygen species (ROS) accumulation within the mitochondria, indicating the absence of oxidative stress. Therefore, BDE-154 impairs mitochondrial bioenergetics and permeabilizes the mitochondrial membrane, potentially leading to cell death but not via mechanisms involving oxidative stress. PMID:24555644

  17. The ins and outs of Na(+) bioenergetics in Acetobacterium woodii.

    PubMed

    Schmidt, Silke; Biegel, Eva; Müller, Volker

    2009-06-01

    The acetogenic bacterium Acetobacterium woodii uses a transmembrane electrochemical sodium ion potential for bioenergetic reactions. A primary sodium ion potential is established during carbonate (acetogenesis) as well as caffeate respiration. The electrogenic Na(+) pump connected to the Wood-Ljungdahl pathway (acetogenesis) still remains to be identified. The pathway of caffeate reduction with hydrogen as electron donor was investigated and the only membrane-bound activity was found to be a ferredoxin-dependent NAD(+) reduction. This exergonic electron transfer reaction may be catalyzed by the membrane-bound Rnf complex that was discovered recently and is suggested to couple exergonic electron transfer from ferredoxin to NAD(+) to the vectorial transport of Na(+) across the cytoplasmic membrane. Rnf may also be involved in acetogenesis. The electrochemical sodium ion potential thus generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. The ATP synthase is a member of the F(1)F(O) class of enzymes but has an unusual and exceptional feature. Its membrane-embedded rotor is a hybrid made of F(O) and V(O)-like subunits in a stoichiometry of 9:1. This stoichiometry is apparently not variable with the growth conditions. The structure and function of the Rnf complex and the Na(+) F(1)F(O) ATP synthase as key elements of the Na(+) cycle in A. woodii are discussed. PMID:19167341

  18. A shortened and deformed humerus from early modern Lithuania (16th/17th century A.D.) : an unusual case of amputation in childhood?

    PubMed Central

    TEEGEN, WOLF-RÜDIGER; SCHULTZ, MICHAEL; JANKAUSKAS, RIMANTAS

    1997-01-01

    During archaeological excavations in the early modern cemetery in Kernavé, Lithuania, a complete skeleton of a presumed adult male individual was found (grave 108). This skeleton showed a short right humerus and missing radius, ulna and hand. Other parts of the skeleton appeared to be normal, characteristic of a robust constitution. The skeletal material was analysed by macroscopic and radiological techniques. Sex and age were determined following the suggestions of the European Association of Anthropologists (Ferembach et al. 1980), measurements were recorded according to Martin (1928) and Bräuer (1988), and the pathological alterations according to Schultz (1988). The robustness and the measurements indicate a male individual, whose age was put at 40–45 y using the combined method (cf. Ferembach et al. 1980; Szilvássy, 1988) of cranial suture closure, spongiosa structure of the proximal humerus and femur and structure of the pubic symphysis. Skeletal elements analysed included both humeri, clavicles and scapulae. PMID:9419007

  19. Archaeological remains accounting for the presence and exploitation of the North Atlantic right whale Eubalaena glacialis on the Portuguese Coast (Peniche, West Iberia), 16th to 17th Century.

    PubMed

    Teixeira, António; Venâncio, Rui; Brito, Cristina

    2014-01-01

    The former occurrence of the North Atlantic right whale Eubalaena glacialis on the Portuguese coast may be inferred from the historical range of that species in Europe and in NW Africa. It is generally accepted that it was the main prey of coastal whaling in the Middle Ages and in the pre-modern period, but this assumption still needs firming up based on biological and archaeological evidence. We describe the skeletal remains of right whales excavated at Peniche in 2001-2002, in association with archaeological artefacts. The whale bones were covered by sandy sediments on the old seashore and they have been tentatively dated around the 16th to 17th centuries. This study contributes material evidence to the former occurrence of E. glacialis in Portugal (West Iberia). Some whale bones show unequivocal man-made scars. These are associated to wounds from instruments with a sharp-cutting blade. This evidence for past human interaction may suggest that whaling for that species was active at Peniche around the early 17th century. PMID:24505251

  20. Archaeological Remains Accounting for the Presence and Exploitation of the North Atlantic Right Whale Eubalaena glacialis on the Portuguese Coast (Peniche, West Iberia), 16th to 17th Century

    PubMed Central

    Teixeira, António; Venâncio, Rui; Brito, Cristina

    2014-01-01

    The former occurrence of the North Atlantic right whale Eubalaena glacialis on the Portuguese coast may be inferred from the historical range of that species in Europe and in NW Africa. It is generally accepted that it was the main prey of coastal whaling in the Middle Ages and in the pre-modern period, but this assumption still needs firming up based on biological and archaeological evidence. We describe the skeletal remains of right whales excavated at Peniche in 2001–2002, in association with archaeological artefacts. The whale bones were covered by sandy sediments on the old seashore and they have been tentatively dated around the 16th to 17th centuries. This study contributes material evidence to the former occurrence of E. glacialis in Portugal (West Iberia). Some whale bones show unequivocal man-made scars. These are associated to wounds from instruments with a sharp-cutting blade. This evidence for past human interaction may suggest that whaling for that species was active at Peniche around the early 17th century. PMID:24505251

  1. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea.

    PubMed

    Rascovan, Nicolás; Maldonado, Javier; Vazquez, Martín P; Eugenia Farías, María

    2016-02-01

    Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics. PMID:26140530

  2. Advanced and High-Throughput Method for Mitochondrial Bioenergetics Evaluation in Neurotrauma.

    PubMed

    Pandya, Jignesh D; Sullivan, Patrick G; Leung, Lai Yee; Tortella, Frank C; Shear, Deborah A; Deng-Bryant, Ying

    2016-01-01

    Mitochondrial dysfunction is one of the key posttraumatic neuropathological events observed in various experimental models of traumatic brain injury (TBI). The extent of mitochondrial dysfunction has been associated with the severity and time course of secondary injury following brain trauma. Critically, several mitochondrial targeting preclinical drugs used in experimental TBI models have shown improved mitochondrial bioenergetics, together with cortical tissue sparing and cognitive behavioral outcome. Mitochondria, being a central regulator of cellular metabolic pathways and energy producer of cells, are of a great interest for researchers aiming to adopt cutting-edge methodology for mitochondrial bioenergetics assessment. The traditional way of mitochondrial bioenergetics analysis utilizing a Clark-type oxygen electrode (aka. oxytherm) is time-consuming and labor-intensive. In the present chapter, we describe an advanced and high-throughput method for mitochondrial bioenergetics assessments utilizing the Seahorse Biosciences XF(e)24 Flux Analyzer. This allows for simultaneous measurement of multiple samples with higher efficiency than the oxytherm procedure. This chapter provides helpful guidelines for conducting mitochondrial isolation and studying mitochondrial bioenergetics in brain tissue homogenates following experimental TBI. PMID:27604740

  3. History of health in the Indian Ocean: care, prevention, teaching, and research from the 17(th) to the mid-20th century.

    PubMed

    Aubry, P; Gaüzère, B-A

    2016-05-01

    In 1498, the Portuguese crossed the Cape of Good Hope. It was not until the period of 1633 and 1666, dates of the founding, respectively, of the Compagnie de l'Orient and the Compagnie des Indes orientales, that the way was definitively opened for trade between France and India. Because so many sailors developed scurvy after voyages that lasted 4 to 5 months, the French settled on Bourbon Island (Réunion) and Ile de France (Mauritius), to provide them with medical care. Created in 1689 by Louis XIV, the Navy Health Service was responsible for health in the colonies until it was replaced in 1890 by the Colonial Health Service. European medicine began its slow diffusion around the Indian Ocean in Pondicherry (India). The naval doctors reported their experiences in the Archives de médecine navale (1864-1889), and the colonial doctors afterwards in the Archives de médecine navale et coloniale (1890-1896). The health system in Madagascar developed strongly during 19(th) and 20(th) centuries, and the subsequent development of health care in the other Indian Ocean islands became closely linked to that of Madagascar. On Bourbon, the two navy hospitals in Saint-Paul and Saint-Denis treated only naval and military personnel. The colony had no hospital providing care for civilians and poor people until three civilian doctors opened a maison de santé (health house) in 1846. PMID:27412971

  4. Impaired Myocardial Bioenergetics in HFpEF and the Role of Antioxidants

    PubMed Central

    Hiebert, John B.; Shen, Qiuhua; Thimmesch, Amanda; Pierce, Janet

    2016-01-01

    Heart failure with preserved ejection fraction (HFpEF) is a significant cardiovascular condition for more than 50% of patients with heart failure. Currently, there is no effective treatment to decrease morbidity and mortality rates associated with HFpEF because of its pathophysiological heterogeneity. Recent evidence shows that deficiency in myocardial bioenergetics is one of the key pathophysiological factors contributing to diastolic dysfunction in HFpEF. Another known mechanism for HFpEF is an overproduction of free radicals, specifically reactive oxygen species. To reduce free radical formation, antioxidants are often used. This article is a summative review of the recent relevant literature that addresses cardiac bioenergetics, deficiency in myocardial bioenergetics, and increased reactive oxygen species associated with HFpEF and the promising potential use of antioxidants in managing this condition. PMID:27583040

  5. Bioenergetic disruption of human micro-vascular endothelial cells by antipsychotics.

    PubMed

    Elmorsy, Ekramy; Smith, Paul A

    2015-05-01

    Antipsychotics (APs) are widely used medications, however these are not without side effects such as disruption of blood brain barrier function (BBB). To investigate this further we have studied the chronic effects of the typical APs, chlorpromazine (CPZ) and haloperidol (HAL) and the atypical APs, risperidone (RIS) and clozapine (CLZ), on the bioenergetics of human micro-vascular endothelial cells (HBVECs) of the BBB. Alamar blue (AB) and ATP assays showed that these APs impair bioenergenesis in HBVECs in a concentration and time dependent manner. However since these effects were incomplete they suggest a population of cell bioenergetically heterogeneous, an idea supported by the bistable nature by which APs affected the mitochondrial transmembrane potential. CPZ, HAL and CLZ inhibited the activity of mitochondrial complexes I and III. Our data demonstrates that at therapeutic concentrations, APs can impair the bioenergetic status of HBVECs, an action that help explains the adverse side effects of these drugs when used clinically. PMID:25824037

  6. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of Mycobacterium tuberculosis

    PubMed Central

    Saini, Vikram; Cumming, Bridgette M.; Guidry, Loni; Lamprecht, Dirk; Adamson, John H.; Reddy, Vineel P.; Chinta, Krishna C.; Mazorodzo, James; Glasgow, Joel N.; Richard-Greenblatt, Melissa; Gomez-Velasco, Anaximandro; Bach, Horacio; Av-Gay, Yossef; Eoh, Hyungjin; Rhee, Kyu; Steyn, Adrie J.C.

    2016-01-01

    SUMMARY The mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping, but distinct functions of EGT and MSH. Lastly, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity. PMID:26774486

  7. Development and evaluation of a bioenergetics model for bull trout

    USGS Publications Warehouse

    Mesa, Matthew G.; Welland, Lisa K.; Christiansen, Helena E.; Sauter, Sally T.; Beauchamp, David A.

    2013-01-01

    We conducted laboratory experiments to parameterize a bioenergetics model for wild Bull Trout Salvelinus confluentus, estimating the effects of body mass (12–1,117 g) and temperature (3–20°C) on maximum consumption (C max) and standard metabolic rates. The temperature associated with the highest C max was 16°C, and C max showed the characteristic dome-shaped temperature-dependent response. Mass-dependent values of C max (N = 28) at 16°C ranged from 0.03 to 0.13 g·g−1·d−1. The standard metabolic rates of fish (N = 110) ranged from 0.0005 to 0.003 g·O2·g−1·d−1 and increased with increasing temperature but declined with increasing body mass. In two separate evaluation experiments, which were conducted at only one ration level (40% of estimated C max), the model predicted final weights that were, on average, within 1.2 ± 2.5% (mean ± SD) of observed values for fish ranging from 119 to 573 g and within 3.5 ± 4.9% of values for 31–65 g fish. Model-predicted consumption was within 5.5 ± 10.9% of observed values for larger fish and within 12.4 ± 16.0% for smaller fish. Our model should be useful to those dealing with issues currently faced by Bull Trout, such as climate change or alterations in prey availability.

  8. Application of a bioenergetics model for hatchery production: Largemouth bass fed commercial diets

    USGS Publications Warehouse

    Csargo, Isak J.; Michael L. Brown; Chipps, Steven R.

    2012-01-01

    Fish bioenergetics models based on natural prey items have been widely used to address research and management questions. However, few attempts have been made to evaluate and apply bioenergetics models to hatchery-reared fish receiving commercial feeds that contain substantially higher energy densities than natural prey. In this study, we evaluated a bioenergetics model for age-0 largemouth bass Micropterus salmoidesreared on four commercial feeds. Largemouth bass (n ≈ 3,504) were reared for 70 d at 25°C in sixteen 833-L circular tanks connected in parallel to a recirculation system. Model performance was evaluated using error components (mean, slope, and random) derived from decomposition of the mean square error obtained from regression of observed on predicted values. Mean predicted consumption was only 8.9% lower than mean observed consumption and was similar to error rates observed for largemouth bass consuming natural prey. Model evaluation showed that the 97.5% joint confidence region included the intercept of 0 (−0.43 ± 3.65) and slope of 1 (1.08 ± 0.20), which indicates the model accurately predicted consumption. Moreover model error was similar among feeds (P = 0.98), and most error was probably attributable to sampling error (unconsumed feed), underestimated predator energy densities, or consumption-dependent error, which is common in bioenergetics models. This bioenergetics model could provide a valuable tool in hatchery production of largemouth bass. Furthermore, we believe that bioenergetics modeling could be useful in aquaculture production, particularly for species lacking historical hatchery constants or conventional growth models.

  9. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms

    SciTech Connect

    Spotila, J.R.

    1992-11-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During this project we conducted studies: to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina; to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field; to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also completed our research on the three-dimensional bioenergetic climate space for freshwater turtles.

  10. Tick-borne encephalitis as a notifiable disease--Status quo and the way forward. Report of the 17th annual meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE).

    PubMed

    Kunze, Ursula

    2015-07-01

    The 17th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE), a group of neurologists, general practicioners, clinicians, travel physicians, virologists, pediatricians, and epidemiologists, was held under the title "Tick-borne encephalitis as a notifiable disease--status quo and the way forward". The conference agenda was divided into three parts on the first day: "Epidemiology & Risk areas", "Poster Walk: Epidemiological Update in Europe", and "News in TBE Research". On the second day, a World Café Working Session took place where the participants could choose three tables out of six to join for discussion. Key topics on current epidemiological developments and investigations, risk areas, cases, travel and mobility, TBE in children, vaccination rates, and latest news on vaccination were presented and extensively discussed. PMID:26025269

  11. On the antiquity of metalloenzymes and their substrates in bioenergetics.

    PubMed

    Nitschke, Wolfgang; McGlynn, Shawn E; Milner-White, E James; Russell, Michael J

    2013-01-01

    Many metalloenzymes that inject and extract reducing equivalents at the beginning and the end of electron transport chains involved in chemiosmosis are suggested, through phylogenetic analysis, to have been present in the Last Universal Common Ancestor (LUCA). Their active centres are affine with the structures of minerals presumed to contribute to precipitate membranes produced on the mixing of hydrothermal solutions with the Hadean Ocean ~4 billion years ago. These mineral precipitates consist of transition element sulphides and oxides such as nickelian mackinawite ([Fe>Ni]2S2), a nickel-bearing greigite (~FeSS[Fe3NiS4]SSFe), violarite (~NiSS[Fe2Ni2S4]SSNi), a molybdenum bearing complex (~Mo(IV/VI)2Fe3S(0/2-)9) and green rust or fougerite (~[Fe(II)Fe(III)(OH)4](+)[OH](-)). They may be respectively compared with the active centres of Ni-Fe hydrogenase, carbon monoxide dehydrogenase (CODH), acetyl coenzyme-A synthase (ACS), the complex iron-sulphur molybdoenzyme (CISM) superfamily and methane monooxygenase (MMO). With the look of good catalysts - a suggestion that gathers some support from prebiotic hydrothermal experimentation - and sequestered by short peptides, they could be thought of as the original building blocks of proto-enzyme active centres. This convergence of the makeup of the LUCA-metalloenzymes with mineral structure and composition of hydrothermal precipitates adds credence to the alkaline hydrothermal (chemiosmotic) theory for the emergence of life, specifically to the possibility that the first metabolic pathway - the acetyl CoA pathway - was initially driven from either end, reductively from CO2 to CO and oxidatively and reductively from CH4 through to a methane thiol group, the two entities assembled with the help of a further thiol on a violarite cluster sequestered by peptides. By contrast, the organic coenzymes were entirely a product of the first metabolic pathways. This article is part of a Special Issue entitled: Metals in Bioenergetics and

  12. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability.

    PubMed

    Bohovych, Iryna; Fernandez, Mario R; Rahn, Jennifer J; Stackley, Krista D; Bestman, Jennifer E; Anandhan, Annadurai; Franco, Rodrigo; Claypool, Steven M; Lewis, Robert E; Chan, Sherine S L; Khalimonchuk, Oleh

    2015-01-01

    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism - intramitochondrial quality control (IMQC) - is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1-associated disease phenotypes in humans. PMID:26365306

  13. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome[S

    PubMed Central

    Kiebish, Michael A.; Yang, Kui; Liu, Xinping; Mancuso, David J.; Guan, Shaoping; Zhao, Zhongdan; Sims, Harold F.; Cerqua, Rebekah; Cade, W. Todd; Han, Xianlin; Gross, Richard W.

    2013-01-01

    Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease. PMID:23410936

  14. LETM1-dependent mitochondrial Ca2+ flux modulates cellular bioenergetics and proliferation.

    PubMed

    Doonan, Patrick J; Chandramoorthy, Harish C; Hoffman, Nicholas E; Zhang, Xueqian; Cárdenas, César; Shanmughapriya, Santhanam; Rajan, Sudarsan; Vallem, Sandhya; Chen, Xiongwen; Foskett, J Kevin; Cheung, Joseph Y; Houser, Steven R; Madesh, Muniswamy

    2014-11-01

    Dysregulation of mitochondrial Ca(2+)-dependent bioenergetics has been implicated in various pathophysiological settings, including neurodegeneration and myocardial infarction. Although mitochondrial Ca(2+) transport has been characterized, and several molecules, including LETM1, have been identified, the functional role of LETM1-mediated Ca(2+) transport remains unresolved. This study examines LETM1-mediated mitochondrial Ca(2+) transport and bioenergetics in multiple cell types, including fibroblasts derived from patients with Wolf-Hirschhorn syndrome (WHS). The results show that both mitochondrial Ca(2+) influx and efflux rates are impaired in LETM1 knockdown, and similar phenotypes were observed in ΔEF hand, (D676A D688K)LETM1 mutant-overexpressed cells, and in cells derived from patients with WHS. Although LETM1 levels were lower in WHS-derived fibroblasts, the mitochondrial Ca(2+) uniporter components MCU, MCUR1, and MICU1 remain unaltered. In addition, the MCU mitoplast patch-clamp current (IMCU) was largely unaffected in LETM1-knockdown cells. Silencing of LETM1 also impaired basal mitochondrial oxygen consumption, possibly via complex IV inactivation and ATP production. Remarkably, LETM1 knockdown also resulted in increased reactive oxygen species production. Further, LETM1 silencing promoted AMPK activation, autophagy, and cell cycle arrest. Reconstitution of LETM1 or antioxidant overexpression rescued mitochondrial Ca(2+) transport and bioenergetics. These findings reveal the role of LETM1-dependent mitochondrial Ca(2+) flux in shaping cellular bioenergetics. PMID:25077561

  15. Predation rates by North Sea cod (Gadus morhua) - Predictions from models on gastric evacuation and bioenergetics

    USGS Publications Warehouse

    Hansson, S.; Rudstam, L. G.; Kitchell, J.F.; Hilden, M.; Johnson, B.L.; Peppard, P.E.

    1996-01-01

    We compared four different methods for estimating predation rates by North Sea cod (Gadus moi hua). Three estimates, based on gastric evacuation rates, came from an ICES multispecies working group and the fourth from a bioenergetics model. The bioenergetics model was developed from a review of literature on cod physiology. The three gastric evacuation rate models produced very different prey consumption estimates for small (2 kg) fish. For most size and age classes, the bioenergetics model predicted food consumption rates intermediate to those predicted by the gastric evacuation models. Using the standard ICES model and the average population abundance and age structure for 1974-1989, annual, prey consumption by the North Sea cod population (age greater than or equal to 1) was 840 kilotons. The other two evacuation rate models produced estimates of 1020 and 1640 kilotons, respectively. The bioenergetics model estimate was 1420 kilotons. The major differences between models were due to consumption rate estimates for younger age groups of cod. (C) 1996 International Council for the Exploration of the Sea

  16. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  17. Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells

    PubMed Central

    D'Aurelio, M.; Vives-Bauza, C.; Davidson, M.M.; Manfredi, G.

    2010-01-01

    Mutations in the mitochondrial DNA (mtDNA) encoded subunit 6 of ATPase (ATP6) are associated with variable disease expression, ranging from adult onset neuropathy, ataxia and retinitis pigmentosa (NARP) to fatal childhood maternally inherited Leigh's syndrome (MILS). Phenotypical variations have largely been attributed to mtDNA heteroplasmy. However, there is often a discrepancy between the levels of mutant mtDNA and disease severity. Therefore, the correlation among genetic defect, bioenergetic impairment and clinical outcome in NARP/MILS remains to be elucidated. We investigated the bioenergetics of cybrids from five patients carrying different ATP6 mutations: three harboring the T8993G, one with the T8993C and one with the T9176G mutation. The bioenergetic defects varied dramatically, not only among different ATP6 mutants, but also among lines carrying the same T8993G mutation. Mutants with the most severe ATP synthesis impairment showed defective respiration and disassembly of respiratory chain complexes. This indicates that respiratory chain defects modulate the bioenergetic impairment in NARP/MILS cells. Sequencing of the entire mtDNA from the different mutant cell lines identified variations in structural genes, resulting in amino acid changes that destabilize the respiratory chain. Taken together, these results indicate that the mtDNA background plays an important role in modulating the biochemical defects and clinical outcome in NARP/MILS. PMID:19875463

  18. Bioenergetic components of reproductive effort in viviparous snakes: costs of vitellogenesis exceed costs of pregnancy.

    PubMed

    Van Dyke, James U; Beaupre, Steven J

    2011-12-01

    Reproductive effort has been defined as the proportion of an organism's energy budget that is allocated to reproduction over a biologically meaningful time period. Historically, studies of reproductive bioenergetics considered energy content of gametes, but not costs of gamete production. Although metabolic costs of vitellogenesis (MCV) fundamentally reflect the primary bioenergetic cost of reproductive allocation in female reptiles, the few investigations that have considered costs of reproductive allocation have focused on metabolic costs of pregnancy (MCP) in viviparous species. We define MCP as energetic costs incurred by pregnant females, including all costs of maintaining gestation conditions necessary for embryogenesis. MCP by our definition do not include fetal costs of embryogenesis. We measured metabolic rates in five species of viviparous snakes (Agkistrodon contortrix, Boa constrictor, Eryx colubrinus, Nerodia sipedon, and Thamnophis sirtalis) during vitellogenesis and pregnancy in order to estimate MCV and MCP. Across all species, MCV were responsible for 30% increases in maternal metabolism. Phylogenetically-independent contrasts showed that MCV were significantly greater in B. constrictor than in other species, likely because B. constrictor yolk energy content was greater than that of other species. Estimates of MCP were not significantly different from zero in any species. In viviparous snakes, MCV appear to represent significant bioenergetic expenditures, while MCP do not. We suggest that MCV, together with yolk energy content, represent the most significant component of reptilian reproductive effort, and therefore deserve greater attention than MCP in studies of reptilian reproductive bioenergetics. PMID:21884815

  19. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

    PubMed Central

    Bohovych, Iryna; Fernandez, Mario R.; Rahn, Jennifer J.; Stackley, Krista D.; Bestman, Jennifer E.; Anandhan, Annadurai; Franco, Rodrigo; Claypool, Steven M.; Lewis, Robert E.; Chan, Sherine S. L.; Khalimonchuk, Oleh

    2015-01-01

    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1-associated disease phenotypes in humans. PMID:26365306

  20. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    SciTech Connect

    Alsuwaidi, Ahmed R.; Albawardi, Alia; Almarzooqi, Saeeda; Benedict, Sheela; Othman, Aws R.; Hartwig, Stacey M.; Varga, Steven M.; Souid, Abdul-Kader

    2014-04-15

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.

  1. Modelling and interpreting fish bioenergetics: a role for behaviour, life-history traits and survival trade-offs

    PubMed Central

    Jørgensen, C; Enberg, K; Mangel, M

    2016-01-01

    Bioenergetics is used as the mechanistic foundation of many models of fishes. As the context of a model gradually extends beyond pure bioenergetics to include behaviour, life-history traits and function and performance of the entire organism, so does the need for complementing bioenergetic measurements with trade-offs, particularly those dealing with survival. Such a broadening of focus revitalized and expanded the domain of behavioural ecology in the 1980s. This review makes the case that a similar change of perspective is required for physiology to contribute to the types of predictions society currently demands, e.g. regarding climate change and other anthropogenic stressors. PMID:26768979

  2. The 17th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The proceedings of the Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft tether, magnetic bearing suspension, explosive welding, and a deployable/retractable mast are also described.

  3. 17th Annual ALS Users' Association Meeting

    SciTech Connect

    Robinson, Art; Tamura, Lori

    2004-11-29

    It's not exactly Russian roulette, but scheduling October events outdoors is not risk-free, even in usually sunny California. An overflow crowd of more than 400 registered users, ALS staff, and vendors enjoyed a full indoor program featuring science highlights and workshops spread over two and a half days from October 18 to October 20. However, a major storm, heralding the onset of the San Francisco Bay Area rainy season, posed a few weather challenges for the events on the ALS patio.

  4. The 17th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1981-01-01

    Progress made by the Low-Cost Solar Array Project during the period September 1980 to February 1981 is described. Included are reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. A report on and copies of visual presentations made at the Project Integration Meeting held at Pasadena, California on February 4 and 5, 1981 are also included.

  5. A combined Raman microscopy, XRF and SEM-EDX study of three valuable objects - A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London

    NASA Astrophysics Data System (ADS)

    Chaplin, Tracey D.; Clark, Robin J. H.; Martinón-Torres, Marcos

    2010-07-01

    Raman microscopy has been used to identify the pigments decorating three valuable items owned by the Worshipful Company of Barbers (established in 1308 in London), one being a large leather screen dating to before 1712, the other two being illuminated title pages of books of ordinances of the Company dating to 1605 and 1658. Pigments which could not be fully characterised by this technique (particularly the green paints) have also been subject to XRF or SEM-EDX analysis. The combined analytical approach has shown that the pigments identified on all three items are typical of those in use as artists' pigments in the 17th C and include azurite, indigo, vermilion, red lead, pink and yellow lakes, verdigris, lead white, calcite (and chalk), gypsum, carbon-based black, and gold and silver leaf. However in the case of the screen alone, restoration in the 1980s has been carried out with different pigments - haematite, phthalocyanine green, rutile, and a mixture of azurite, malachite and barium sulfate. This work constitutes the first in-depth study of painted leatherwork and demonstrates that the palette used for this purpose is similar to that used on other works of art of the same date. It has also allowed the original colour schemes of the decorations to be determined where pigment degradation has occurred. The combined analysis has also provided a more complete understanding of the materials used for, or on, objects to which access is limited.

  6. Parameter uncertainty, sensitivity, and sediment coupling in bioenergetics-based food web models

    SciTech Connect

    Barron, M.G.; Cacela, D.; Beltman, D.

    1995-12-31

    A bioenergetics-based food web model was developed and calibrated using measured PCB water and sediment concentrations in two Great Lakes food webs: Green Bay, Michigan and Lake Ontario. The model incorporated functional based trophic levels and sediment, water, and food chain exposures of PCBs to aquatic biota. Sensitivity analysis indicated the parameters with the greatest influence on PCBs in top predators were lipid content of plankton and benthos, planktivore assimilation efficiency, Kow, prey selection, and ambient temperature. Sediment-associated PCBs were estimated to contribute over 90% of PCBs in benthivores and less than 50% in piscivores. Ranges of PCB concentrations in top predators estimated by Monte Carlo simulation incorporating parameter uncertainty were within one order of magnitude of modal values. Model applications include estimation of exceedences of human and ecological thresholds. The results indicate that point estimates from bioenergetics-based food web models have substantial uncertainty that should be considered in regulatory and scientific applications.

  7. Bioenergetics estimate of the effects of stocking density on hatchery production of smallmouth bass fingerlings

    USGS Publications Warehouse

    Robel, G.L.; Fisher, W.L.

    1999-01-01

    Production of and consumption by hatchery-reared tingerling (age-0) smallmouth bass Micropterus dolomieu at various simulated stocking densities were estimated with a bioenergetics model. Fish growth rates and pond water temperatures during the 1996 growing season at two hatcheries in Oklahoma were used in the model. Fish growth and simulated consumption and production differed greatly between the two hatcheries, probably because of differences in pond fertilization and mortality rates. Our results suggest that appropriate stocking density depends largely on prey availability as affected by pond fertilization and on fingerling mortality rates. The bioenergetics model provided a useful tool for estimating production at various stocking density rates. However, verification of physiological parameters for age-0 fish of hatchery-reared species is needed.

  8. Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity.

    PubMed

    Galina, Antonio

    2014-09-01

    Enhanced glycolysis, the classic bioenergetic phenotype of cancer cells was described by Otto Warburg approximately 90 years ago. However, the Warburg hypothesis does not necessarily imply mitochondrial dysfunction. The alkyl-halogen, 3-bromopyruvate (3BP), would not be expected to have selective targets for cancer therapy due to its high potential reactivity toward many SH side groups. Contrary to predictions, 3BP interferes with glycolysis and oxidative phosphorylation in cancer cells without side effects in normal tissues. The mitochondrial hexokinase II has been claimed as the main target. This "Organelle in focus" article presents a historical view of the use of 3BP in biochemistry and its effects on ATP-producing pathways of cancer cells. I will discuss how the alkylated enzymes contribute to the cooperative collapse of mitochondria and apoptosis. Perspectives for targeting 3BP to bioenergetics enzymes for cancer treatment will be considered. PMID:24842108

  9. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics.

    PubMed

    Affourtit, Charles

    2016-10-01

    Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis. PMID:27473535

  10. First principles design of a core bioenergetic transmembrane electron-transfer protein.

    PubMed

    Goparaju, Geetha; Fry, Bryan A; Chobot, Sarah E; Wiedman, Gregory; Moser, Christopher C; Dutton, P Leslie; Discher, Bohdana M

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26672896

  11. Development of a bioenergetics model for the threespine stickleback Gasterosteus aculeatus

    USGS Publications Warehouse

    Hovel, Rachel A.; Beauchamp, David A.; Hansen, Adam G.; Sorel, Mark H.

    2016-01-01

    The Threespine Stickleback Gasterosteus aculeatus is widely distributed across northern hemisphere ecosystems, has ecological influence as an abundant planktivore, and is commonly used as a model organism, but the species lacks a comprehensive model to describe bioenergetic performance in response to varying environmental or ecological conditions. This study parameterized a bioenergetics model for the Threespine Stickleback using laboratory measurements to determine mass- and temperature-dependent functions for maximum consumption and routine respiration costs. Maximum consumption experiments were conducted across a range of temperatures from 7.5°C to 23.0°C and a range of fish weights from 0.5 to 4.5 g. Respiration experiments were conducted across a range of temperatures from 8°C to 28°C. Model sensitivity was consistent with other comparable models in that the mass-dependent parameters for maximum consumption were the most sensitive. Growth estimates based on the Threespine Stickleback bioenergetics model suggested that 22°C is the optimal temperature for growth when food is not limiting. The bioenergetics model performed well when used to predict independent, paired measures of consumption and growth observed from a separate wild population of Threespine Sticklebacks. Predicted values for consumption and growth (expressed as percent body weight per day) only deviated from observed values by 2.0%. Our model should provide insight into the physiological performance of this species across a range of environmental conditions and be useful for quantifying the trophic impact of this species in food webs containing other ecologically or economically important species.

  12. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors.

    PubMed

    Issaq, Sameer H; Teicher, Beverly A; Monks, Anne

    2014-01-01

    Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy. PMID:24553119

  13. Age- and brain region-specific differences in mitochondrial bioenergetics in Brown Norway rats.

    PubMed

    Pandya, Jignesh D; Royland, Joyce E; MacPhail, Robert C; Sullivan, Patrick G; Kodavanti, Prasada Rao S

    2016-06-01

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bioenergetic parameters in 5 brain regions (brain stem [BS], frontal cortex, cerebellum, striatum, hippocampus [HIP]) of 4 diverse age groups (1 month [young], 4 months [adult], 12 months [middle-aged], 24 months [old age]) to understand age-related differences in selected brain regions and their possible contribution to age-related chemical sensitivity. Mitochondrial bioenergetic parameters and enzyme activities were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5/group). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State III respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12, and 24-months age groups. Activities of mitochondrial pyruvate dehydrogenase complex and electron transport chain complexes I, II, and IV enzymes were also age and brain region specific. In general, changes associated with age were more pronounced with enzyme activities declining as the animals aged (young > adult > middle-aged > old age). These age- and brain region-specific observations may aid in evaluating brain bioenergetic impact on the age-related susceptibility to environmental chemical stressors. PMID:27143418

  14. Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (Review)

    PubMed Central

    STEFANO, GEORGE B.; KREAM, RICHARD M.

    2016-01-01

    Mitochondria and chloroplasts represent endosymbiotic models of complex organelle development, driven by intense evolutionary pressure to provide exponentially enhanced ATP-dependent energy production functionally linked to cellular respiration and photosynthesis. Within the realm of translational medicine, it has become compellingly evident that mitochondrial dysfunction, resulting in compromised cellular bioenergetics, represents a key causative factor in the etiology and persistence of major diseases afflicting human populations. As a pathophysiological consequence of enhanced oxygen utilization that is functionally uncoupled from the oxidative phosphorylation of ADP, significant levels of reactive oxygen species (ROS) may be generated within mitochondria and chloroplasts, which may effectively compromise cellular energy production following prolonged stress/inflammatory conditions. Empirically determined homologies in biochemical pathways, and their respective encoding gene sequences between chloroplasts and mitochondria, suggest common origins via entrapped primordial bacterial ancestors. From evolutionary and developmental perspectives, the elucidation of multiple biochemical and molecular relationships responsible for errorless bioenergetics within mitochondrial and plastid complexes will most certainly enhance the depth of translational approaches to ameliorate or even prevent the destructive effects of multiple disease states. The selective choice of discussion points contained within the present review is designed to provide theoretical bases and translational insights into the pathophysiology of human diseases from a perspective of dysregulated mitochondrial bioenergetics with special reference to chloroplast biology. PMID:26821064

  15. Toxicity of brominated flame retardants, BDE-47 and BDE-99 stems from impaired mitochondrial bioenergetics.

    PubMed

    Pazin, Murilo; Pereira, Lilian Cristina; Dorta, Daniel Junqueira

    2015-01-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants, and they have been detected in human blood, adipose tissue and breast milk, a consequence of their physicochemical and bioaccumulative properties, as well as their high environmental persistence. Many studies report liver toxicity related to exposure to PBDEs. In the present study, we investigated the toxicity of BDE-47 and BDE-99 at concentrations ranging from 0.1 to 50 µM in isolated rat liver mitochondria. We evaluated how incubation of a mitochondrial suspension with the PBDEs affected the mitochondrial inner membrane, membrane potential, oxygen consumption, calcium release, mitochondrial swelling, and ATP levels to find out whether the tested compound interfered with the bioenergetics of this organelle. Both PBDEs were toxic to mitochondria: BDE-47 and BDE-99 concentrations equal to or higher than 25 and 50 µM, respectively, modified all the parameters used to assess mitochondrial bioenergetics, which culminated in ATP depletion. These effects stemmed from the ability of both PBDEs to cause Membrane Permeability Transition (MPT) in mitochondria, which impaired mitochondrial bioenergetics. In particular, BDE-47, which has fewer bromine atoms in the molecule, can easily overcome biological membranes what would be responsible for the major negative effects exerted by this congener when compared with BDE-99. PMID:25299509

  16. Age Related Bioenergetics Profiles in Isolated Rat Cardiomyocytes Using Extracellular Flux Analyses

    PubMed Central

    Mdaki, Kennedy S.; Larsen, Tricia D.; Weaver, Lucinda J.; Baack, Michelle L.

    2016-01-01

    Mitochondrial dysfunction is increasingly recognized and studied as a mediator of heart disease. Extracellular flux analysis (XF) has emerged as a powerful tool to investigate cellular bioenergetics in the context of cardiac health and disease, however its use and interpretation requires improved understanding of the normal metabolic differences in cardiomyocytes (CM) at various stages of maturation. This study standardized XF analyses methods (mitochondrial stress test, glycolytic stress test and palmitate oxidation test) and established age related differences in bioenergetics profiles of healthy CMs at newborn (NB1), weaning (3WK), adult (10WK) and aged (12–18MO) time points. Findings show that immature CMs demonstrate a more robust and sustained glycolytic capacity and a relative inability to oxidize fatty acids when compared to older CMs. The study also highlights the need to recognize the contribution of CO2 from the Krebs cycle as well as lactate from anaerobic glycolysis to the proton production rate before interpreting glycolytic capacity in CMs. Overall, this study demonstrates that caution should be taken to assure that translatable developmental time points are used to investigate mitochondrial dysfunction as a cause of cardiac disease. Specifically, XF analysis of newborn CMs should be reserved to study fetal/neonatal disease and older CMs (≥10 weeks) should be used to investigate adult disease pathogenesis. Knowledge gained will aid in improved investigation of developmentally programmed heart disease and stress the importance of discerning maturational differences in bioenergetics when developing mitochondrial targeted preventative and therapeutic strategies for cardiac disease. PMID:26872351

  17. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.

    PubMed

    Hosseinzadeh, Parisa; Lu, Yi

    2016-05-01

    Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26301482

  18. Over-Expressing Mitofusin-2 in Healthy Mature Mammalian Skeletal Muscle Does Not Alter Mitochondrial Bioenergetics

    PubMed Central

    Lally, James S. V.; Herbst, Eric A. F.; Matravadia, Sarthak; Maher, Amy C.; Perry, Christopher G. R.; Ventura-Clapier, Renée; Holloway, Graham P.

    2013-01-01

    The role of mitofusin-2 (MFN-2) in regulating mitochondrial dynamics has been well-characterized in lower order eukaryotic cell lines through the complete ablation of MFN-2 protein. However, to support the contractile function of mature skeletal muscle, the subcellular architecture and constituent proteins of this tissue differ substantially from simpler cellular organisms. Such differences may also impact the role of MFN-2 in mature mammalian muscle, and it is unclear if minor fluctuations in MFN-2, as observed in response to physiological perturbations, has a functional consequence. Therefore, we have transiently transfected MFN-2 cDNA into rat tibialis anterior muscle to determine the effect of physiolgically relevant increases in MFN-2 protein on mitochondrial bioenergetics. Permeabilized muscle fibres generated from muscle following MFN-2-transfection were used for functional assessments of mitochondrial bioenergetics. In addition, we have further established a novel method for selecting fibre bundles that are positively transfected, and using this approach transient transfection increased MFN-2 protein ∼2.3 fold in selected muscle fibres. However, this did not alter maximal rates of oxygen consumption or the sensitivity for ADP-stimulated respiration. In addition, MFN-2 over-expression did not alter rates of H2O2 emission. Altogether, and contrary to evidence from lower order cell lines, our results indicate that over-expressing MFN-2 in healthy muscle does not influence mitochondrial bioenergetics in mature mammalian skeletal muscle. PMID:23383258

  19. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance

    PubMed Central

    Kakimoto, Pâmela A.; Kowaltowski, Alicia J.

    2016-01-01

    Human metabolic diseases can be mimicked in rodents by using dietary interventions such as high fat diets (HFD). Nonalcoholic fatty liver disease (NAFLD) develops as a result of HFD and the disease may progress in a manner involving increased production of oxidants. The main intracellular source of these oxidants are mitochondria, which are also responsible for lipid metabolism and thus widely recognized as important players in the pathology and progression of steatosis. Here, we review publications that study redox and bioenergetic effects of HFD in the liver. We find that dietary composition and protocol implementations vary widely, as do the results of these dietary interventions. Overall, all HFD promote steatosis, changes in β-oxidation, generation and consequences of oxidants, while effects on body weight, insulin signaling and other bioenergetic parameters are more variable with the experimental models adopted. Our review provides a broad analysis of the bioenergetic and redox changes promoted by HFD as well as suggestions for changes and specifications in methodologies that may help explain apparent disparities in the current literature. PMID:26826574

  20. Age Related Bioenergetics Profiles in Isolated Rat Cardiomyocytes Using Extracellular Flux Analyses.

    PubMed

    Mdaki, Kennedy S; Larsen, Tricia D; Weaver, Lucinda J; Baack, Michelle L

    2016-01-01

    Mitochondrial dysfunction is increasingly recognized and studied as a mediator of heart disease. Extracellular flux analysis (XF) has emerged as a powerful tool to investigate cellular bioenergetics in the context of cardiac health and disease, however its use and interpretation requires improved understanding of the normal metabolic differences in cardiomyocytes (CM) at various stages of maturation. This study standardized XF analyses methods (mitochondrial stress test, glycolytic stress test and palmitate oxidation test) and established age related differences in bioenergetics profiles of healthy CMs at newborn (NB1), weaning (3WK), adult (10WK) and aged (12-18MO) time points. Findings show that immature CMs demonstrate a more robust and sustained glycolytic capacity and a relative inability to oxidize fatty acids when compared to older CMs. The study also highlights the need to recognize the contribution of CO2 from the Krebs cycle as well as lactate from anaerobic glycolysis to the proton production rate before interpreting glycolytic capacity in CMs. Overall, this study demonstrates that caution should be taken to assure that translatable developmental time points are used to investigate mitochondrial dysfunction as a cause of cardiac disease. Specifically, XF analysis of newborn CMs should be reserved to study fetal/neonatal disease and older CMs (≥10 weeks) should be used to investigate adult disease pathogenesis. Knowledge gained will aid in improved investigation of developmentally programmed heart disease and stress the importance of discerning maturational differences in bioenergetics when developing mitochondrial targeted preventative and therapeutic strategies for cardiac disease. PMID:26872351

  1. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance.

    PubMed

    Kakimoto, Pâmela A; Kowaltowski, Alicia J

    2016-08-01

    Human metabolic diseases can be mimicked in rodents by using dietary interventions such as high fat diets (HFD). Nonalcoholic fatty liver disease (NAFLD) develops as a result of HFD and the disease may progress in a manner involving increased production of oxidants. The main intracellular source of these oxidants are mitochondria, which are also responsible for lipid metabolism and thus widely recognized as important players in the pathology and progression of steatosis. Here, we review publications that study redox and bioenergetic effects of HFD in the liver. We find that dietary composition and protocol implementations vary widely, as do the results of these dietary interventions. Overall, all HFD promote steatosis, changes in β-oxidation, generation and consequences of oxidants, while effects on body weight, insulin signaling and other bioenergetic parameters are more variable with the experimental models adopted. Our review provides a broad analysis of the bioenergetic and redox changes promoted by HFD as well as suggestions for changes and specifications in methodologies that may help explain apparent disparities in the current literature. PMID:26826574

  2. A Multi-Analytical Approach for the Evaluation of the Efficiency of the Conservation-Restoration Treatment of Moroccan Historical Manuscripts Dating to the 16th, 17th, and 18th Centuries.

    PubMed

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Kerbal, Abdelali; Kajjout, Mohamed; Doumenq, Pierre; De Carvalho, Maria Luisa

    2015-08-01

    The most critical steps during the conservation-restoration treatment applied in Moroccan libraries are the deacidification using immersion in a saturated aqueous calcium hydroxide (Ca(OH)2) solution and the consolidation of degraded manuscripts using Japanese paper. The present study aims to assess the efficiency of this restoration method using a multi-analytical approach. For this purpose, three ancient Arabic Moroccan manuscript papers dating back to the 16th, 17th, and 18th centuries were investigated to characterize the paper support and make a comparative study between pre-restoration and post-restoration states. Three structural and molecular characterization techniques including solid-state nuclear magnetic resonance spectroscopy on (13)C with cross-polarization and magic-angle spinning nuclear magnetic resonance ((13)C CP-MAS NMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and X-ray diffraction (XRD) were used to elucidate the cellulose main features, to identify the inorganic composition of the papers, and to study the crystallinity of the samples. Inductively coupled plasma atomic emission spectrometry (ICP-AES) allowed us to obtain a qualitative and quantitative characterization of the mineral fillers used in the manufacturing of the papers. Scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) ascertained the state of conservation of the different papers and helped us to study the elemental composition of the samples. After restoration, it was shown that the deacidification improved the stability of papers by providing an important alkaline buffer, as demonstrated using FT-IR and energy dispersive spectrometry (EDS) results. However, XRD and ICP-AES did not confirm the pertinence of the treatment for all samples because of the unequal distribution of Ca on the paper surface during the restoration. The consolidation process was studied using SEM analysis; its effectiveness in restoring

  3. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms: Progress report, 1 January 1988-31 December 1988

    SciTech Connect

    Spotila, J.R.

    1988-08-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During 1988, we conducted studies: (1) to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina, (2) to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field, (3) to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and (4) to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also continued our research on the three-dimensional bioenergetic climate space for freshwater turtles. In addition, we completed editing the symposium volume from our symposium on Constraints of Bioenergetics on Animal Population Dynamics that was held at the last meeting of the American Society of Zoologists. 43 refs., 1 fig., 1 tab.

  4. Systems Analysis of Bioenergetics and Growth of the Extreme Halophile Halobacterium salinarum

    PubMed Central

    Gonzalez, Orland; Gronau, Susanne; Pfeiffer, Friedhelm; Mendoza, Eduardo; Zimmer, Ralf; Oesterhelt, Dieter

    2009-01-01

    Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly “greedy” behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting

  5. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics

    PubMed Central

    Szeto, Hazel H

    2014-01-01

    A decline in energy is common in aging, and the restoration of mitochondrial bioenergetics may offer a common approach for the treatment of numerous age-associated diseases. Cardiolipin is a unique phospholipid that is exclusively expressed on the inner mitochondrial membrane where it plays an important structural role in cristae formation and the organization of the respiratory complexes into supercomplexes for optimal oxidative phosphorylation. The interaction between cardiolipin and cytochrome c determines whether cytochrome c acts as an electron carrier or peroxidase. Cardiolipin peroxidation and depletion have been reported in a variety of pathological conditions associated with energy deficiency, and cardiolipin has been identified as a target for drug development. This review focuses on the discovery and development of the first cardiolipin-protective compound as a therapeutic agent. SS-31 is a member of the Szeto-Schiller (SS) peptides known to selectively target the inner mitochondrial membrane. SS-31 binds selectively to cardiolipin via electrostatic and hydrophobic interactions. By interacting with cardiolipin, SS-31 prevents cardiolipin from converting cytochrome c into a peroxidase while protecting its electron carrying function. As a result, SS-31 protects the structure of mitochondrial cristae and promotes oxidative phosphorylation. SS-31 represents a new class of compounds that can recharge the cellular powerhouse and restore bioenergetics. Extensive animal studies have shown that targeting such a fundamental mechanism can benefit highly complex diseases that share a common pathogenesis of bioenergetics failure. This review summarizes the mechanisms of action and therapeutic potential of SS-31 and provides an update of its clinical development programme. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014

  6. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms

    PubMed Central

    Szabo, Csaba; Ransy, Céline; Módis, Katalin; Andriamihaja, Mireille; Murghes, Baptiste; Coletta, Ciro; Olah, Gabor; Yanagi, Kazunori; Bouillaud, Frédéric

    2014-01-01

    Until recently, hydrogen sulfide (H2S) was exclusively viewed a toxic gas and an environmental hazard, with its toxicity primarily attributed to the inhibition of mitochondrial Complex IV, resulting in a shutdown of mitochondrial electron transport and cellular ATP generation. Work over the last decade established multiple biological regulatory roles of H2S, as an endogenous gaseous transmitter. H2S is produced by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). In striking contrast to its inhibitory effect on Complex IV, recent studies showed that at lower concentrations, H2S serves as a stimulator of electron transport in mammalian cells, by acting as a mitochondrial electron donor. Endogenous H2S, produced by mitochondrially localized 3-MST, supports basal, physiological cellular bioenergetic functions; the activity of this metabolic support declines with physiological aging. In specialized conditions (calcium overload in vascular smooth muscle, colon cancer cells), CSE and CBS can also associate with the mitochondria; H2S produced by these enzymes, serves as an endogenous stimulator of cellular bioenergetics. The current article overviews the biochemical mechanisms underlying the stimulatory and inhibitory effects of H2S on mitochondrial function and cellular bioenergetics and discusses the implication of these processes for normal cellular physiology. The relevance of H2S biology is also discussed in the context of colonic epithelial cell physiology: colonocytes are exposed to high levels of sulfide produced by enteric bacteria, and serve as a metabolic barrier to limit their entry into the mammalian host, while, at the same time, utilizing it as a metabolic ‘fuel’. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991830

  7. Bioenergetics model for estimating food requirements of female Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Noren, S.R.; Udevitz, M.S.; Jay, C.V.

    2012-01-01

    Pacific walruses Odobenus rosmarus divergens use sea ice as a platform for resting, nursing, and accessing extensive benthic foraging grounds. The extent of summer sea ice in the Chukchi Sea has decreased substantially in recent decades, causing walruses to alter habitat use and activity patterns which could affect their energy requirements. We developed a bioenergetics model to estimate caloric demand of female walruses, accounting for maintenance, growth, activity (active in-water and hauled-out resting), molt, and reproductive costs. Estimates for non-reproductive females 0–12 yr old (65−810 kg) ranged from 16359 to 68960 kcal d−1 (74−257 kcal d−1 kg−1) for years with readily available sea ice for which we assumed animals spent 83% of their time in water. This translated into the energy content of 3200–5960 clams per day, equivalent to 7–8% and 14–9% of body mass per day for 5–12 and 2–4 yr olds, respectively. Estimated consumption rates of 12 yr old females were minimally affected by pregnancy, but lactation had a large impact, increasing consumption rates to 15% of body mass per day. Increasing the proportion of time in water to 93%, as might happen if walruses were required to spend more time foraging during ice-free periods, increased daily caloric demand by 6–7% for non-lactating females. We provide the first bioenergetics-based estimates of energy requirements for walruses and a first step towards establishing bioenergetic linkages between demography and prey requirements that can ultimately be used in predicting this population’s response to environmental change.

  8. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma.

    PubMed

    Patel, Samir P; Sullivan, Patrick G; Pandya, Jignesh D; Goldstein, Glenn A; VanRooyen, Jenna L; Yonutas, Heather M; Eldahan, Khalid C; Morehouse, Johnny; Magnuson, David S K; Rabchevsky, Alexander G

    2014-07-01

    Mitochondrial dysfunction is becoming a pivotal target for neuroprotective strategies following contusion spinal cord injury (SCI) and the pharmacological compounds that maintain mitochondrial function confer neuroprotection and improve long-term hindlimb function after injury. In the current study we evaluated the efficacy of cell-permeating thiol, N-acetylcysteine amide (NACA), a precursor of endogenous antioxidant glutathione (GSH), on mitochondrial function acutely, and long-term tissue sparing and hindlimb locomotor recovery following upper lumbar contusion SCI. Some designated injured adult female Sprague-Dawley rats (n=120) received either vehicle or NACA (75, 150, 300 or 600mg/kg) at 15min and 6h post-injury. After 24h the total, synaptic, and non-synaptic mitochondrial populations were isolated from a single 1.5cm spinal cord segment (centered at injury site) and assessed for mitochondrial bioenergetics. Results showed compromised total mitochondrial bioenergetics following acute SCI that was significantly improved with NACA treatment in a dose-dependent manner, with maximum effects at 300mg/kg (n=4/group). For synaptic and non-synaptic mitochondria, only 300mg/kg NACA dosage showed efficacy. Similar dosage (300mg/kg) also maintained mitochondrial GSH near normal levels. Other designated injured rats (n=21) received continuous NACA (150 or 300mg/kg/day) treatment starting at 15min post-injury for one week to assess long-term functional recovery over 6weeks post-injury. Locomotor testing and novel gait analyses showed significantly improved hindlimb function with NACA that were associated with increased tissue sparing at the injury site. Overall, NACA treatment significantly maintained acute mitochondrial bioenergetics and normalized GSH levels following SCI, and prolonged delivery resulted in significant tissue sparing and improved recovery of hindlimb function. PMID:24805071

  9. Adaptive responses of mitochondria to mild copper deprivation involve changes in morphology, OXPHOS remodeling and bioenergetics.

    PubMed

    Ruiz, Lina María; Jensen, Erik L; Bustos, Rodrigo I; Argüelloa, Graciela; Gutierrez-Garcia, Ricardo; González, Mauricio; Hernández, Claudia; Paredes, Rodolfo; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A

    2014-05-01

    Copper is an essential cofactor of complex IV of the electron transfer chain, and it is directly involved in the generation of mitochondrial membrane potential. Its deficiency induces the formation of ROS, large mitochondria and anemia. Thus, there is a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis. Copper depletion might end in cellular apoptosis or necrosis. However, before entering into those irreversible processes, mitochondria may execute a series of adaptive responses. Mitochondrial adaptive responses (MAR) may involve multiple and diverse mechanisms for preserving cell life, such as mitochondrial dynamics, OXPHOS remodeling and bioenergetics output. In this study, a mild copper deficiency was produced in an animal model through intraperitoneal injections of bathocuproine disulfonate in order to study the MAR. Under these conditions, a new type of mitochondrial morphology was discovered in the liver. Termed the "butternut squash" mitochondria, it coexisted with normal and swollen mitochondria. Western blot analyses of mitochondrial dynamics proteins showed an up-regulation of MFN-2 and OPA1 fusion proteins. Furthermore, isolated liver mitochondria displayed OXPHOS remodeling through a decrease in supercomplex activity with a concomitant increase at an individual level of complexes I and IV, higher respiratory rates at complex I and II levels, higher oligomycin-insensitive respiration, and lower respiratory control ratio values when compared to the control group. As expected, total ATP and ATP/ADP values were not significantly different, since animal's health was not compromised. As a whole, these results describe a compensatory and adaptive response of metabolism and bioenergetics under copper deprivation. PMID:24446197

  10. Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest

    PubMed Central

    Kilbaugh, Todd J; Sutton, Robert M; Karlsson, Michael; Hansson, Magnus J; Naim, Maryam Y; Morgan, Ryan W; Bratinov, George; Lampe, Joshua W; Nadkarni, Vinay M; Becker, Lance B; Margulies, Susan S; Berg, Robert A

    2015-01-01

    Background Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia-associated ventricular fibrillation CA. Methods and Results After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1-month-old swine (4 sham) received blood pressure–targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure >20 mm Hg. All animals received protocol-based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI+CII) in cortex (P<0.02) and hippocampus (P<0.02), as well as decreased phosphorylation and coupling efficiency (cortex, P<0.05; hippocampus, P<0.05). Complex I– and complex II–driven respiration were both significantly decreased after CA (cortex: OXPHOSCI P<0.01, ETSCII P<0.05; hippocampus: OXPHOSCI P<0.03, ETSCII P<0.01). In the hippocampus, there was a significant decrease in maximal uncoupled, nonphosphorylating respiration (ETSCI+CII), as well as a 30% reduction in citrate synthase activity (P<0.04). Conclusions Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia-associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial

  11. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging.

    PubMed

    Oblong, John E

    2014-11-01

    Human skin is exposed to daily environmental insults, particularly solar radiation, that triggers a range of molecular responses. These perturbations to the normal homeostatic state can lead to cellular dysfunction and, ultimately, impacts tissue integrity and accelerates skin aging (photoaging). One of the responses is increased oxidative stress which has been shown to disrupt cellular bioenergetics. This can be detected by depletion of the nucleotide energy metabolites NAD+ and ATP as both an acute transient decrease and, over time, a more permanent chronic reduction due in part to cumulative damage of mitochondria. NAD+ and its primary precursor nicotinamide have been known for some time to impact skin homeostasis based on linkages to dietary requirements, treatment of various inflammatory conditions, photoaging, and prevention of cancer. Cellular NAD+ pools are known to be lower in aged skin and treatment with nicotinamide is hypothesized to restore these levels, thereby mitigating cellular bioenergetics dysfunction. In dermal fibroblasts, nicotinamide is able to protect against oxidative stress to glycolysis, oxidative phosphorylation as well as increase mitochondrial efficiency via sirtuin-dependent selective mitophagy. Recent research has found that NAD+ cellular pools are more dynamic than previously thought, oscillating in tandem with free nicotinamide, and serves as a regulatory point and feedback loop in cellular metabolism regulation, maintenance of mitochondrial efficiency, and circadian rhythmicity. Since UV-induced oxidative stress in skin can disrupt these processes, continued molecular understanding of the role of NAD+ and nicotinamide in skin biology is important to identify interventions that would help maintain its normal homeostatic functions and efficient cellular bioenergetics. PMID:24794404

  12. N-acetylcysteineamide Preserves Mitochondrial Bioenergetics and Improves Functional Recovery Following Spinal Trauma

    PubMed Central

    Patel, Samir P.; Sullivan, Patrick G.; Pandya, Jignesh D.; Goldstein, Glenn A.; VanRooyen, Jenna L.; Yonutas, Heather M.; Eldahan, Khalid C.; Morehouse, Johnny; Magnuson, David S. K.; Rabchevsky, Alexander G.

    2014-01-01

    Mitochondrial dysfunction is becoming a pivotal target for neuroprotective strategies following contusion spinal cord injury (SCI) and the pharmacological compounds that maintain mitochondrial function confer neuroprotection and improve long-term hindlimb function after injury. In the current study we evaluated the efficacy of cell-permeating thiol, N-acetylcysteineamide (NACA), a precursor of endogenous antioxidant glutathione (GSH), on mitochondrial function acutely, and long-term tissue sparing and hindlimb locomotor recovery following upper lumbar contusion SCI. Some designated injured adult female Sprague-Dawley rats (n=120) received either Vehicle or NACA (75, 150, 300 or 600 mg/kg) at 15min and 6hrs post-injury. After 24hr the total, synaptic, and non-synaptic mitochondrial populations were isolated from a single 1.5cm spinal cord segment (centered at injury site) and assessed for mitochondrial bioenergetics. Results showed compromised total mitochondrial bioenergetics following acute SCI that was significantly improved with NACA treatment in a dose-dependent manner, with maximum effects at 300 mg/kg (n=4/group). For synaptic and non-synaptic mitochondria, only 300 mg/kg NACA dosage showed efficacy. Similar dosage (300mg/kg) also maintained mitochondrial GSH near normal levels. Other designated injured rats (n=21) received continuous NACA (150 or 300mg/kg/day) treatment starting at 15min post-injury for one week to assess long-term functional recovery over 6 weeks post-injury. Locomotor testing and novel gait analyses showed significantly improved hindlimb function with NACA that were associated with increased tissue sparing at the injury site. Overall, NACA treatment significantly maintained acute mitochondrial bioenergetics and normalized GSH levels following SCI, and prolonged delivery resulted in significant tissue sparing and improved recovery of hindlimb function. PMID:24805071

  13. Bioenergetical and Cardiac Adaptations of Pilots to a 24-Hour Team Kart Race.

    PubMed

    Durand, Sylvain; Ripamonti, Michael; Rahmani, Abderrahmane; Beaune, Bruno

    2015-11-01

    This study aimed to evaluate energy expenditure (EE) and heart rate (HR) response in kart pilots to successive driving bouts during a 24-hour team race. Eight adult male pilots (22.8 ± 4.1 years) participated to a team 24-hour speedway kart race in Le Mans (France). They alternatively piloted a 390 cm kart. Each relay was 45 minutes long and each pilot performed 4 relays. For each pilot, mean speeds were calculated from lap-to-lap duration recordings using a telemetric infrared timing device. Heart rate values were recorded continuously on 5-second intervals using a portable cardiometric device. Total energy expenditure (EET) and physical activity ratio (PAR) were determined by accelerometry. To pilot a kart during 45 minutes at a mean speed around 62 km·h induces a 300-kcal EET, corresponding to a 5.6-Mets PAR. This effort is responsive for a 73 b·min increase in HR, from 84.1 ± 7.6 to 157.4 ± 11.0 b·min (82% maximal heart rate intensity). However, during this relay period, HR values seemed independent to mean speed performance and bioenergetical values. Thus, in the context of the 24-hour team race, the variability in effort made during each relay and relay succession did not alter bioenergetical adaptation of pilots to kart driving. The high EE and HR values would be better explained by both emotional stress and environmental constraints such as speedway configuration and vibrations. The way how these factors specifically influence bioenergetical demand, and their relative importance, has to be specified to optimize training procedure and recommendations. PMID:25029011

  14. European Mistletoe

    MedlinePlus

    ... gov Key References American mistletoe. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July 7, 2009. European mistletoe. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July ...

  15. Distinct Effects of Rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on Cellular Bioenergetics and Cell Death

    PubMed Central

    Giordano, Samantha; Lee, Jisun; Darley-Usmar, Victor M.; Zhang, Jianhua

    2012-01-01

    Parkinson’s disease is characterized by dopaminergic neurodegeneration and is associated with mitochondrial dysfunction. The bioenergetic susceptibility of dopaminergic neurons to toxins which induce Parkinson’s like syndromes in animal models is then of particular interest. For example, rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP+), and 6-hydroxydopamine (6-OHDA), have been shown to induce dopaminergic cell death in vivo and in vitro. Exposure of animals to these compounds induce a range of responses characteristics of Parkinson’s disease, including dopaminergic cell death, and Reactive Oxygen Species (ROS) production. Here we test the hypothesis that cellular bioenergetic dysfunction caused by these compounds correlates with induction of cell death in differentiated dopaminergic neuroblastoma SH-SY5Y cells. At increasing doses, rotenone induced significant cell death accompanied with caspase 3 activation. At these concentrations, rotenone had an immediate inhibition of mitochondrial basal oxygen consumption rate (OCR) concomitant with a decrease of ATP-linked OCR and reserve capacity, as well as a stimulation of glycolysis. MPP+ exhibited a different behavior with less pronounced cell death at doses that nearly eliminated basal and ATP-linked OCR. Interestingly, MPP+, unlike rotenone, stimulated bioenergetic reserve capacity. The effects of 6-OHDA on bioenergetic function was markedly less than the effects of rotenone or MPP+ at cytotoxic doses, suggesting a mechanism largely independent of bioenergetic dysfunction. These studies suggest that these dopaminergic neurotoxins induce cell death through distinct mechanisms and differential effects on cellular bioenergetics. PMID:22970265

  16. Transfer of computer software technology through workshops: The case of fish bioenergetics modeling

    USGS Publications Warehouse

    Johnson, B.L.

    1992-01-01

    A three-part program is proposed to promote the availability and use of computer software packages to fishery managers and researchers. The approach consists of journal articles that announce new technologies, technical reports that serve as user's guides, and hands-on workshops that provide direct instruction to new users. Workshops, which allow experienced users to directly instruct novices in software operation and application are important, but often neglected. The author's experience with organizing and conducting bioenergetics modeling workshops suggests the optimal workshop would take 2 days, have 10-15 participants, one computer for every two users, and one instructor for every 5-6 people.

  17. European Community.

    PubMed

    1987-05-01

    The European Community was established in 1951 to reconcile France and Germany after World War II and to make possible the eventual federation of Europe. By 1986, there were 12 member countries: France, Italy, Belgium, the Federal Republic of Germany, Luxembourg, the Netherlands, Denmark, Ireland, the United Kingdom, Greece, Spain, and Portugal. Principal areas of concern are internal and external trade, agriculture, monetary coordination, fisheries, common industrial and commercial policies, assistance, science and research, and common social and regional policies. The European Community has a budget of US$34.035 billion/year, funded by customs duties and 1.4% of each member's value-added tax. The treaties establishing the European Community call for members to form a common market, a common customs tariff, and common agricultural, transport, economic, and nuclear policies. Major European Community institutions include the Commission, Council of Ministers, European Parliament, Court of Justice, and Economic and Social Committee. The Community is the world's largest trading unit, accounting for 15% of world trade. The 2 main goals of the Community's industrial policy are to create an open internal market and to promote technological innovation in order to improve international competitiveness. The European Community aims to contribute to the economic and social development of Third World countries as well. PMID:12177941

  18. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. Final report, 1 September 1988--30 June 1990

    SciTech Connect

    Spotila, J.R.

    1992-11-01

    The constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms were quantified. During this project we conducted studies: to determine the role of incubation temperature on the post-hatching growth rate of the snapping turtle, Chelydra serpentina; to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field; to determine the field metabolic rates, body temperatures and selected microclimates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also completed our research on the three-dimensional bioenergetic climate space for freshwater turtles.

  19. Tycho Brahe and Prague: Crossroads of European Science

    NASA Astrophysics Data System (ADS)

    Christianson, John Robert; Hadravová, Alena; Hadrava, Petr; Šolc, Martin

    On the occasion of the 400th anniversary of Tycho Brahe's death (Prague, October 24, 1601) an international symposium ``Tycho Brahe and Prague: Crossroads of European Science'' has been organized by the Research Centre for the History of Sciences and Humanities (founded by Charles University and the Academy of Sciences of the Czech Republic) in Prague from October 22 to 25, 2001. This volume contains the proceedings of the symposium. Thirty-seven contributions dealing with the life and work of Tycho Brahe, the astronomy from the 15th to the 17th century as well as the aspects of Rudolphine Prague as the center of scientific and intellectual life were written by prominent specialists from eleven countries.

  20. N-acetylcysteineamide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI

    PubMed Central

    Pandya, Jignesh D.; Readnower, Ryan D.; Patel, Samir P.; Yonutas, Heather M.; Pauly, James R.; Goldstein, Glenn A.; Rabchevsky, Alexander G.; Sullivan, Patrick G.

    2014-01-01

    Traumatic brain injury (TBI) has become a growing epidemic but no approved pharmacological treatment has been identified. Our previous work indicates that mitochondrial oxidative stress/damage and loss of bioenergetics play a pivotal role in neuronal cell death and behavioral outcome following experimental TBI. One tactic that has had some experimental success is to target glutathione using its precursor N-acetylcysteine (NAC). However, this approach has been hindered by the low CNS bioavailability of NAC. The current study evaluated a novel, cell permeant amide form of N-acetylcysteine (NACA), which has high permeability through cellular and mitochondrial membranes resulting in increased CNS bioavailability. Cortical tissue sparing, cognitive function and oxidative stress markers were assessed in rats treated with NACA, NAC, or vehicle following a TBI. At 15 days post-injury, animals treated with NACA demonstrated significant improvements in cognitive function and cortical tissue sparing compared to NAC or vehicle treated animals. NACA treatment also was shown to reduce oxidative damage (HNE levels) at 7 days post-injury. Mechanistically, post-injury NACA administration was demonstrated to maintain levels of mitochondrial glutathione and mitochondrial bioenergetics comparable to sham animals. Collectively these data provide a basic platform to consider NACA as a novel therapeutic agent for treatment of TBI. PMID:24792639

  1. Abamectin affects the bioenergetics of liver mitochondria: A potential mechanism of hepatotoxicity.

    PubMed

    Castanha Zanoli, Juliana C; Maioli, Marcos A; Medeiros, Hyllana C D; Mingatto, Fábio E

    2012-02-01

    Abamectin (ABA) is a macrocyclic lactone of the avermectin family used worldwide as an antiparasitic agent in farm animals and pets and as the active ingredient of insecticides and nematicides. In this study, the effects of abamectin on the bioenergetics of mitochondria isolated from rat liver were evaluated. Mitochondria are responsible for converting the energy released by electron transport and stored as the binding energy molecule ATP. Xenobiotics that interfere with its synthesis or utilization can be acutely or chronically toxic. Abamectin (5-25μM) caused concentration-dependent inhibition of the respiratory chain without affecting the membrane potential or the activity of enzymes NADH dehydrogenase or succinate dehydrogenase. This behavior is similar to oligomycin and carboxyatractyloside and suggests direct action on F(o)F(1)-ATPase and/or the adenine nucleotide translocator (ANT). ABA more pronouncedly inhibited ATPase phosphohydrolase activity in intact, uncoupled mitochondria than in freeze-thawed disrupted mitochondria. ADP-stimulated depolarization of the mitochondrial membrane potential was also inhibited by ABA. Our results indicate that ABA interacts more specifically with the ANT, resulting in functional inhibition of the translocator with consequent impairment of mitochondrial bioenergetics. This effect could be involved in the ABA toxicity to hepatocytes. PMID:22024101

  2. Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch

    USGS Publications Warehouse

    Chipps, Steven R.; Travis W. Schaeffer; Daniel E. Spengler; Casey W. Schoenebeck; Michael L. Brown

    2012-01-01

    We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.

  3. Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies.

    PubMed

    Tepp, Kersti; Timohhina, Natalja; Puurand, Marju; Klepinin, Aleksandr; Chekulayev, Vladimir; Shevchuk, Igor; Kaambre, Tuuli

    2016-07-01

    Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated. PMID:27063513

  4. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis.

    PubMed

    Seo, Jae Ho; Rivadeneira, Dayana B; Caino, M Cecilia; Chae, Young Chan; Speicher, David W; Tang, Hsin-Yao; Vaira, Valentina; Bosari, Silvano; Palleschi, Alessandro; Rampini, Paolo; Kossenkov, Andrew V; Languino, Lucia R; Altieri, Dario C

    2016-07-01

    Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB) in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating "stress" signals of 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a "drugable" therapeutic target in cancer. PMID:27389535

  5. Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons.

    PubMed

    Pacelli, Consiglia; Giguère, Nicolas; Bourque, Marie-Josée; Lévesque, Martin; Slack, Ruth S; Trudeau, Louis-Éric

    2015-09-21

    Although the mechanisms underlying the loss of neurons in Parkinson's disease are not well understood, impaired mitochondrial function and pathological protein aggregation are suspected as playing a major role. Why DA (dopamine) neurons and a select small subset of brain nuclei are particularly vulnerable to such ubiquitous cellular dysfunctions is presently one of the key unanswered questions in Parkinson's disease research. One intriguing hypothesis is that their heightened vulnerability is a consequence of their elevated bioenergetic requirements. Here, we show for the first time that vulnerable nigral DA neurons differ from less vulnerable DA neurons such as those of the VTA (ventral tegmental area) by having a higher basal rate of mitochondrial OXPHOS (oxidative phosphorylation), a smaller reserve capacity, a higher density of axonal mitochondria, an elevated level of basal oxidative stress, and a considerably more complex axonal arborization. Furthermore, we demonstrate that reducing axonal arborization by acting on axon guidance pathways with Semaphorin 7A reduces in parallel the basal rate of mitochondrial OXPHOS and the vulnerability of nigral DA neurons to the neurotoxic agents MPP(+) (1-methyl-4-phenylpyridinium) and rotenone. Blocking L-type calcium channels with isradipine was protective against MPP(+) but not rotenone. Our data provide the most direct demonstration to date in favor of the hypothesis that the heightened vulnerability of nigral DA neurons in Parkinson's disease is directly due to their particular bioenergetic and morphological characteristics. PMID:26320949

  6. Real-Time Monitoring of Cellular Bioenergetics with a Multi-Analyte Screen-Printed Electrode

    PubMed Central

    McKenzie, Jennifer R.; Cognata, Andrew C.; Davis, Anna N.; Wikswo, John P.; Cliffel, David E.

    2016-01-01

    Real-time monitoring of changes to cellular bioenergetics can provide new insights into mechanisms of action for disease and toxicity. This work describes the development of a multi-analyte screen-printed electrode for the detection of analytes central to cellular bioenergetics: glucose, lactate, oxygen, and pH. Platinum screen-printed electrodes were designed in-house and printed by Pine Research Instrumentation. Electrochemical plating techniques were used to form quasi-reference and pH electrodes. A Dimatix materials inkjet printer was used to deposit enzyme and polymer films to form sensors for glucose, lactate, and oxygen. These sensors were evaluated in bulk solution and microfluidic environments, and found to behave reproducibly and possess a lifetime of up to six weeks. Linear ranges and limits of detection for enzyme-based sensors were found to have an inverse relationship with enzyme loading, and iridium oxide pH sensors were found to have super-Nernstian responses. Preliminary measurements where the sensor was enclosed within a microfluidic channel with RAW 264.7 macrophages were performed to demonstrate the sensors’ capabilities for performing real-time microphysiometry measurements. PMID:26125545

  7. Bioenergetic Impairment in Animal and Cellular Models of Alzheimer's Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions.

    PubMed

    Martire, Sara; Fuso, Andrea; Mosca, Luciana; Forte, Elena; Correani, Virginia; Fontana, Mario; Scarpa, Sigfrido; Maras, Bruno; d'Erme, Maria

    2016-08-10

    Amyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a post-translational modification of proteins, cleaving the substrate NAD+ and transferring the ADP-ribose moieties to the enzyme itself or to an acceptor protein to form branched polymers of ADP-ribose. In this paper, we demonstrate that a mitochondrial dysfunction occurs in Alzheimer's transgenic mice TgCRND8, in SH-SY5Y treated with amyloid-beta and in 7PA2 cells. Moreover, PARP-1 activation contributes to the functional energetic decline affecting cytochrome oxidase IV protein levels, oxygen consumption rates, and membrane potential, resulting in cellular bioenergetic deficit. We also observed, for the first time, an increase of pyruvate kinase 2 expression, suggesting a modulation of the glycolytic pathway by PARP-1. PARP-1 inhibitors are able to restore both mitochondrial impairment and pyruvate kinase 2 expression. The overall data here presented indicate a pivotal role for this enzyme in the bioenergetic network of neuronal cells and open new perspectives for investigating molecular mechanisms underlying energy charge decline in Alzheimer's disease. In this scenario, PARP-1 inhibitors might represent a novel therapeutic intervention to rescue cellular energetic metabolism. PMID:27567805

  8. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics.

    PubMed

    Dibrova, D V; Galperin, M Y; Koonin, E V; Mulkidjanian, A Y

    2015-05-01

    Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes. PMID:26071768

  9. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI.

    PubMed

    Pandya, Jignesh D; Readnower, Ryan D; Patel, Samir P; Yonutas, Heather M; Pauly, James R; Goldstein, Glenn A; Rabchevsky, Alexander G; Sullivan, Patrick G

    2014-07-01

    Traumatic brain injury (TBI) has become a growing epidemic but no approved pharmacological treatment has been identified. Our previous work indicates that mitochondrial oxidative stress/damage and loss of bioenergetics play a pivotal role in neuronal cell death and behavioral outcome following experimental TBI. One tactic that has had some experimental success is to target glutathione using its precursor N-acetylcysteine (NAC). However, this approach has been hindered by the low CNS bioavailability of NAC. The current study evaluated a novel, cell permeant amide form of N-acetylcysteine (NACA), which has high permeability through cellular and mitochondrial membranes resulting in increased CNS bioavailability. Cortical tissue sparing, cognitive function and oxidative stress markers were assessed in rats treated with NACA, NAC, or vehicle following a TBI. At 15days post-injury, animals treated with NACA demonstrated significant improvements in cognitive function and cortical tissue sparing compared to NAC or vehicle treated animals. NACA treatment also was shown to reduce oxidative damage (HNE levels) at 7days post-injury. Mechanistically, post-injury NACA administration was demonstrated to maintain levels of mitochondrial glutathione and mitochondrial bioenergetics comparable to sham animals. Collectively these data provide a basic platform to consider NACA as a novel therapeutic agent for treatment of TBI. PMID:24792639

  10. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics

    PubMed Central

    Codonho, Bárbara Santoni; Costa, Solange dos Santos; Peloso, Eduardo de Figueiredo; Joazeiro, Paulo Pinto; Gadelha, Fernanda Ramos; Giorgio, Selma

    2016-01-01

    The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity. PMID:27304024

  11. Differential Modulation of Cellular Bioenergetics by Poly(L-lysine)s of Different Molecular Weights.

    PubMed

    Hall, Arnaldur; Wu, Lin-Ping; Parhamifar, Ladan; Moghimi, Seyed Moein

    2015-07-13

    Poly(L-lysine)s (PLLs), and related derivatives, have received considerable attention as nonviral vectors. High molecular weight PLLs (H-PLLs) are superior transfectants compared with low Mw PLLs (L-PLLs), but suggested to be more cytotoxic. Through a pan-integrated metabolomic approach using Seahorse XF technology, we studied the impact of PLL size on cellular bioenergetic processes in two human cell lines. In contrast to L-PLLs (1-5 kDa), H-PLLs (15-30 kDa) were more detrimental to both mitochondrial oxidative phosphorylation (OXPHOS) and glycolytic activity resulting in considerable intracellular ATP depletion, thereby initiating necrotic-type cell death. The cellular differences to polycation sensitivity were further related to the mitochondrial state, where the impact was substantial on cells with hyperpolarized mitochondria. These medium-throughput approaches offer better opportunities for understanding inter-related intracellular and cell type-dependent processes instigating a bioenergetics crisis, thus, aiding selection (from available libraries) and improved design of safer biodegradable polycations for nucleic acid compaction and cell type-specific delivery. PMID:26053306

  12. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  13. Bioenergetics of Juvenile Salmon During the Spring Outmigration, 1983 Annual Report.

    SciTech Connect

    Rondorf, Dennis W.

    1985-07-01

    Main stem reservoirs in the Columbia River Basin may have increased the energy demands of smolts during outmigration by prolonging migration and exposing smolts to seasonally rising water temperatures. A bioenergetic model for spring chinook salmon smolts (Oncorhynchus tshawytscha) is being developed to test these hypotheses. Results have thus far indicated that the seaward migration can be separated into two distinct phases. Phase I can be described as a period of intense smolt development in which there was a post hatchery release surge in gill Na/sup +/-K/sup +/ ATPase activity, depletion of energy available in body lipids, and a concurrent decline in caloric density. Phase II was characterized by maintenence of smolt status in apparent anticipation of reaching the estuary. Phase II is the period most affected by impoundments and annual changes in water flow; the latter period will therefore be modeled in bioenergetic simulations. Laboratory and field observations provided input parameters for the model and empirical data to verify model simmulations. Total calories, caloric density, proximate body composition, ration, and caloric intake were determined in smolts as seaward migration progressed. The effect of swimming and starvation on energy reserves and seawater survival were determined in the laboratory. Fatty acid analysis indicated ..omega..3 neutral fatty acids influenced smolt development and seawater survival. 46 refs., 13 figs., 4 tabs.

  14. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    PubMed

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart. PMID:25749501

  15. Homeostatic bioenergetic network regulation – a novel concept to avoid pharmacoresistance in epilepsy

    PubMed Central

    Boison, Detlev; Masino, Susan A.; Geiger, Jonathan D.

    2011-01-01

    Introduction Despite epilepsy being one of the most prevalent neurological disorders, one third of all patients with epilepsy cannot adequately be treated with available antiepileptic drugs. One of the significant causes for the failure of conventional pharmacotherapeutic treatment is the development of pharmacoresistance in many forms of epilepsy. The problem of pharmacoresistance has called for the development of new conceptual strategies that improve future drug development efforts. Areas covered A thorough review of the recent literature on pharmacoresistance in epilepsy was completed and select examples were chosen to highlight the mechanisms of pharmacoresistance in epilepsy and to demonstrate how those mechanistic findings might lead to improved treatment of pharmacoresistant epilepsy. The reader will gain a thorough understanding of pharmacoresistance in epilepsy and an appreciation of the limitations of conventional drug development strategies. Expert opinion Conventional drug development efforts aim to achieve specificity of symptom control by enhancing the selectivity of drugs acting on specific downstream targets; this conceptual strategy bears the undue risk of development of pharmacoresistance. Modulation of homeostatic bioenergetic network regulation is a novel conceptual strategy to affect whole neuronal networks synergistically by mobilizing multiple endogenous biochemical and receptor-dependent molecular pathways. In our expert opinion we conclude that homeostatic bioenergetic network regulation might thus be used as an innovative strategy for the control of pharmacoresistant seizures. Recent focal adenosine augmentation strategies support the feasibility of this strategy. PMID:21731576

  16. Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux.

    PubMed

    Mathupala, Saroj P

    2011-01-01

    Metabolism in tumors deviates significantly from that of normal tissues. Increasingly, the underlying aberrant metabolic pathways are being considered as novel targets for cancer therapy. Denoted "metabolic targeting", small molecule drugs are under investigation for focused inhibition of key metabolic steps that are utilized by tumors, since such inhibitors should harbor minimal toxicity towards surrounding normal tissues. This review will examine the primary biochemical pathways that tumors harness to enhance their bioenergetic capacity, which in turn, help their rapid proliferation and metastasis within the host. It is hoped that "metabolite-mimetic" drugs can be utilized to interfere with metabolic flux pathways active within the tumor, and across tumor-microenvironment boundary. In fact, the major pathways of mammalian metabolism, i.e., the carbohydrate, amino-acid, and fatty-acid metabolic pathways have been examined as putative targets for drug development, with some drug candidates advancing to phase II/III stages. In this regard, glucose metabolism, i.e., the glycolytic pathway - that predominates the bio-energetic flux in tumors, and the associated mitochondrial metabolism have received the most attention as suitable "druggable" targets, focused either at the pathway enzymes or at the plasma-membrane-bound metabolite transporters. Outlined in this review are pre-clinical studies that have led to the discovery of promising drug candidates to target tumor-metabolic flux, and ensuing patents, with descriptions of the biochemical rationale for the combinatorial strategy of a particular metabolic pathway-drug candidate pair. PMID:21110820

  17. Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals.

    PubMed

    Nicholls, David G; Brand, Martin D; Gerencser, Akos A

    2015-04-01

    Mitochondria play multiple roles in the maintenance of neuronal function under physiological and pathological conditions. In addition to ATP generation, they can act as major short-term calcium sinks and can both generate, and be damaged by, reactive oxygen species. Two complementary preparations have been extensively employed to investigate in situ neuronal mitochondrial bioenergetics, primary neuronal cultures and acutely isolated nerve terminals, synaptosomes. A major focus of the cell culture preparation has been the investigation of glutamate excitotoxicity. Oxidative phosphorylation, calcium transport and reactive oxygen species play complex interlocking roles in the life and death of the glutamate exposed neuron. Synaptosomes may be isolated from specific brain regions at any developmental stage and therefore provide a valuable ex vivo approach in studying mouse models. Recent advances have allowed synaptosomal bioenergetics to be studied on a microgram scale, and, in combination with approaches to correct for functional and transmitter heterogeneity, have allowed hypotheses concerning presynaptic mitochondrial dysfunction to be tested on a variety of genetic models of neurodegenerative disorders. PMID:25172197

  18. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis

    PubMed Central

    Seo, Jae Ho; Rivadeneira, Dayana B.; Caino, M. Cecilia; Chae, Young Chan; Speicher, David W.; Vaira, Valentina; Bosari, Silvano; Rampini, Paolo; Kossenkov, Andrew V.; Languino, Lucia R.; Altieri, Dario C.

    2016-01-01

    Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB) in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating “stress” signals of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a “drugable” therapeutic target in cancer. PMID:27389535

  19. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics.

    PubMed

    Codonho, Bárbara Santoni; Costa, Solange Dos Santos; Peloso, Eduardo de Figueiredo; Joazeiro, Paulo Pinto; Gadelha, Fernanda Ramos; Giorgio, Selma

    2016-06-10

    The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity. PMID:27304024

  20. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians

    PubMed Central

    Pinti, Marcello; Lanzarini, Catia; Ascione, Barbara; Gibellini, Lara; Dika, Emi; Patrizi, Annalisa; Tommasino, Chiara; Capri, Miriam; Cossarizza, Andrea; Baracca, Alessandra; Lenaz, Giorgio; Solaini, Giancarlo; Franceschi, Claudio; Malorni, Walter; Salvioli, Stefano

    2014-01-01

    Mitochondria have been considered for long time as important determinants of cell aging because of their role in the production of reactive oxygen species. In this study we investigated the impact of mitochondrial metabolism and biology as determinants of successful aging in primary cultures of fibroblasts isolated from the skin of long living individuals (LLI) (about 100 years old) compared with those from young (about 27 years old) and old (about 75 years old) subjects. We observed that fibroblasts from LLI displayed significantly lower complex I-driven ATP synthesis and higher production of H2O2 in comparison with old subjects. Despite these changes, bioenergetics of these cells appeared to operate normally. This lack of functional consequences was likely due to a compensatory phenomenon at the level of mitochondria, which displayed a maintained supercomplexes organization and an increased mass. This appears to be due to a decreased mitophagy, induced by hyperfused, elongated mitochondria. The overall data indicate that longevity is characterized by a preserved bioenergetic function likely attained by a successful mitochondria remodeling that can compensate for functional defects through an increase in mass, i.e. a sort of mitochondrial “hypertrophy”. PMID:24799450

  1. Growth, condition factor, and bioenergetics modeling link warmer stream temperatures below a small dam to reduced performance of juvenile steelhead

    USGS Publications Warehouse

    Sauter, S.T.; Connolly, P.J.

    2010-01-01

    We investigated the growth and feeding performance of juvenile steelhead Oncorhynchus mykiss using field measures and bioenergetics modeling. Juvenile steelhead populations were sampled from mid-June through August 2004 at study sites upstream and downstream of Hemlock Dam. The growth and diet of juvenile steelhead were determined for a warm (summer) and subsequent (late summer) transitional period at each study site. Empirical data on the growth and diet of juvenile steelhead and mean daily temperatures were used in a bioenergetics model to estimate the proportion of maximum consumption achieved by juvenile steelhead by site and period. Modeled estimates of feeding performance were better for juvenile steelhead at the upstream compared to the downstream site during both periods. The median condition factor of juvenile steelhead did not change over the summer at the upstream site, but showed a significant decline over time at the downstream site. A negative trend in median condition factor at the downstream site supported bioenergetics modeling results that suggested the warmer stream temperatures had a negative impact on juvenile steelhead. Bioenergetics modeling predicted a lower feeding performance for juvenile steelhead rearing downstream compared to upstream of Hemlock Dam although food availability appeared to be limited at both study sites during the warm period. Warmer water temperatures, greater diel variation, and change in diel pattern likely led to the reduced feeding performance and reduced growth, which could have affected the overall survival of juvenile steelhead downstream of Hemlock Dam. ?? 2010 by the Northwest Scientific Association.

  2. Growth and food consumption by tiger muskellunge: Effects of temperature and ration level on bioenergetic model predictions

    USGS Publications Warehouse

    Chipps, S.R.; Einfalt, L.M.; Wahl, David H.

    2000-01-01

    We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.

  3. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    SciTech Connect

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  4. The bioenergetic consequences of invasive-induced food web disruption to Lake Ontario alewives

    USGS Publications Warehouse

    Stewart, Thomas J.; O'Gorman, Robert; Sprules, W. Gary; Lantry, B.F.

    2010-01-01

    Alewives Alosa pseudoharengus are the dominant prey fish in Lake Ontario, and their response to ecological change can alter the structure and function of the Lake Ontario food web. Using stochastic population-based bioenergetic models of Lake Ontario alewives for 1987–1991 and 2001–2005, we evaluated changes to alewife production, consumption, and associated bioenergetic ratios after invasive-induced food web disruption. After the disruption, mean biomass of alewives declined from 28.0 to 14.6 g/m2, production declined from 40.8 to 13.6 g·m−2·year−1, and consumption declined from 342.1 to 137.2 g·m−2·year−1, but bootstrapping of error sources suggested that the changes were not statistically significant. Population-based bioenergetic ratios of production to biomass (P/B ratio), total consumption to biomass (Q/B ratio), and production efficiency did not change. Pathways of energy flow measured as prey-group-specific Q/B ratios changed significantly between the two time periods for invasive predatory cladocerans (from 0.6 to 1.3), Mysis diluviana (from 0.4 to 2.5), and other prey (from 0.8 to 0.1), but the observed decline in the zooplankton Q/B ratio (from 10.6 to 5.5) was not significant. Gross production efficiency did not change; values ranged from 8% to 15%. Age-group mean gross conversion efficiency (GCE) declined with age; GCE ranged from 7.5% to 11.0% for yearlings, was approximately 5% for age-2 alewives, and was less than 2% for age-3 and older alewives. The GCE increased significantly between the time periods for yearling alewives. Our analyses support the hypothesis that after 2003, alewives could not sustain their growth while feeding on zooplankton closer to shore. Modeling of observed spatial variation in diet and alternative occupied temperatures demonstrates the potential for reducing consumption by alewives. Our results suggest that Lake Ontario alewives can exploit spatial heterogeneity in resource patches and thermal habitat to

  5. Improving consumption rate estimates by incorporating wild activity into a bioenergetics model.

    PubMed

    Brodie, Stephanie; Taylor, Matthew D; Smith, James A; Suthers, Iain M; Gray, Charles A; Payne, Nicholas L

    2016-04-01

    Consumption is the basis of metabolic and trophic ecology and is used to assess an animal's trophic impact. The contribution of activity to an animal's energy budget is an important parameter when estimating consumption, yet activity is usually measured in captive animals. Developments in telemetry have allowed the energetic costs of activity to be measured for wild animals; however, wild activity is seldom incorporated into estimates of consumption rates. We calculated the consumption rate of a free-ranging marine predator (yellowtail kingfish, Seriola lalandi) by integrating the energetic cost of free-ranging activity into a bioenergetics model. Accelerometry transmitters were used in conjunction with laboratory respirometry trials to estimate kingfish active metabolic rate in the wild. These field-derived consumption rate estimates were compared with those estimated by two traditional bioenergetics methods. The first method derived routine swimming speed from fish morphology as an index of activity (a "morphometric" method), and the second considered activity as a fixed proportion of standard metabolic rate (a "physiological" method). The mean consumption rate for free-ranging kingfish measured by accelerometry was 152 J·g(-1)·day(-1), which lay between the estimates from the morphometric method (μ = 134 J·g(-1)·day(-1)) and the physiological method (μ = 181 J·g(-1)·day(-1)). Incorporating field-derived activity values resulted in the smallest variance in log-normally distributed consumption rates (σ = 0.31), compared with the morphometric (σ = 0.57) and physiological (σ = 0.78) methods. Incorporating field-derived activity into bioenergetics models probably provided more realistic estimates of consumption rate compared with the traditional methods, which may further our understanding of trophic interactions that underpin ecosystem-based fisheries management. The general methods used to estimate active metabolic rates of free-ranging fish

  6. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria.

    PubMed

    Bertsch, Johannes; Müller, Volker

    2015-01-01

    Synthesis gas (syngas) is a gas mixture consisting mainly of H2, CO, and CO2 and can be derived from different sources, including renewable materials like lignocellulose. The fermentation of syngas to certain biofuels, using acetogenic bacteria, has attracted more and more interest over the last years. However, this technology is limited by two things: (1) the lack of complete knowledge of the energy metabolism of acetogenic bacteria, and (2) the lack of sophisticated genetic tools for the modification of acetogens. In this review, we discuss the bioenergetic constraints for the conversion of syngas to different biofuels. We will mainly focus on Acetobacterium woodii, which is the best understood acetogen in terms of energy conservation. Syngas fermentation with Clostridium autoethanogenum will also be discussed, since this organism is well suited to convert syngas to certain products and already used in large-scale industrial processes. PMID:26692897

  7. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function

    PubMed Central

    Stauch, Kelly L.; Purnell, Phillip R.; Fox, Howard S.

    2014-01-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function. PMID:24827396

  8. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology.

    PubMed

    Shah-Simpson, Sheena; Pereira, Camila F A; Dumoulin, Peter C; Caradonna, Kacey L; Burleigh, Barbara A

    2016-08-01

    Energy metabolism is an attractive target for the development of new therapeutics against protozoan pathogens, including Trypanosoma cruzi, the causative agent of human Chagas disease. Despite emerging evidence that mitochondrial electron transport is essential for the growth of intracellular T. cruzi amastigotes in mammalian cells, fundamental knowledge of mitochondrial energy metabolism in this parasite life stage remains incomplete. The Clark-type electrode, which measures the rate of oxygen consumption, has served as the traditional tool to study mitochondrial energetics and has contributed to our understanding of it in T. cruzi. Here, we evaluate the Seahorse XF(e)24 extracellular flux platform as an alternative method to assess mitochondrial bioenergetics in isolated T. cruzi parasites. We report optimized assay conditions used to perform mitochondrial stress tests with replicative life cycle stages of T. cruzi using the XF(e)24 instrument, and discuss the advantages and potential limitations of this methodology, as applied to T. cruzi and other trypanosomatids. PMID:27392747

  9. Mitochondria and Cell Bioenergetics: Increasingly Recognized Components and a Possible Etiologic Cause of Alzheimer's Disease

    PubMed Central

    2012-01-01

    Abstract Significance: Mitochondria and brain bioenergetics are increasingly thought to play an important role in Alzheimer's disease (AD). Recent Advances: Data that support this view are discussed from the perspective of the amyloid cascade hypothesis, which assumes beta-amyloid perturbs mitochondrial function, and from an opposite perspective that assumes mitochondrial dysfunction promotes brain amyloidosis. A detailed review of cytoplasmic hybrid (cybrid) studies, which argue mitochondrial DNA (mtDNA) contributes to sporadic AD, is provided. Recent AD endophenotype data that further suggest an mtDNA contribution are also summarized. Critical Issues and Future Directions: Biochemical, molecular, cybrid, biomarker, and clinical data pertinent to the mitochondria–bioenergetics–AD nexus are synthesized and the mitochondrial cascade hypothesis, which represents a mitochondria-centric attempt to conceptualize sporadic AD, is discussed. Antioxid. Redox Signal. 16, 1434–1455. PMID:21902597

  10. Bioaccumulation of polychlorinated biphenyls by zebra mussel populations predicted on the basis of bioenergetics

    SciTech Connect

    Yankovich, T.

    1995-12-31

    Hydrophobic organic contaminants, such as PCBs, partition between several phases in aquatic environments. In order to predict contaminant partitioning and flux rates between aquatic biota and other environmental phases, it is necessary to have a basic understanding of the physico-chemical properties characteristic of the contaminant of interest, in addition to exposure rates of organisms to various contaminated phases. Exposure regimes are often dictated by food availability and corresponding feeding rates necessary to meet organism energetic requirements. Therefore, a model coupling zebra mussel bioenergetics and predicted PCB bioaccumulation has been constructed to assess the impact of zebra mussel populations on organic contaminant transfer in freshwater systems. The potential impact of mussel populations on organic contaminant transfer and energy flow will be discussed.

  11. Interventions that improve body and brain bioenergetics for Parkinson's disease risk reduction and therapy.

    PubMed

    Mattson, Mark P

    2014-01-01

    Studies of Parkinson's disease (PD) patients, animal models and pathogenic actions of genetic mutations that cause familial PD have established that neuronal bioenergetics are compromised with brainstem and midbrain monoaminergic neurons being particularly vulnerable. Peripheral insulin resistance and diabetes in midlife may increase the risk of PD, and diet and lifestyle changes that increase insulin sensitivity (exercise and intermittent energy restriction) can counteract neurodegenerative processes and improve functional outcome in animal models. Insulin sensitizing glucagon-like peptide 1 (GLP-1) analogs are beneficial in animal models of PD, and the results of an initial clinical trial in PD patients are promising. In addition to improving peripheral and brain energy metabolism, exercise, intermittent energy restriction and GLP-1 analogs may bolster neuronal adaptive stress response pathways that enhance neurotrophic signaling, DNA repair, proteostasis and mitochondrial biogenesis. PMID:24473219

  12. Bioenergetic Dysfunction and Inflammation in Alzheimer’s Disease: A Possible Connection

    PubMed Central

    Wilkins, Heather M.; Carl, Steven M.; Greenlief, Alison C. S.; Festoff, Barry W.; Swerdlow, Russell H.

    2014-01-01

    Inflammation is observed in Alzheimer’s disease (AD) subject brains. Inflammation-relevant genes are increasingly implicated in AD genetic studies, and inflammatory cytokines to some extent even function as peripheral biomarkers. What underlies AD inflammation is unclear, but no “foreign” agent has been implicated. This suggests that internally produced damage-associated molecular pattern (DAMPs) molecules may drive inflammation in AD. A more complete characterization and understanding of AD-relevant DAMPs could advance our understanding of AD and suggest novel therapeutic strategies. In this review, we consider the possibility that mitochondria, intracellular organelles that resemble bacteria in many ways, trigger and maintain chronic inflammation in AD subjects. Data supporting the possible nexus between AD-associated bioenergetic dysfunction are discussed. PMID:25426068

  13. Nanomolar melatonin enhances nNOS expression and controls HaCaT-cells bioenergetics.

    PubMed

    Arese, Marzia; Magnifico, Maria Chiara; Mastronicola, Daniela; Altieri, Fabio; Grillo, Caterina; Blanck, Thomas J J; Sarti, Paolo

    2012-03-01

    A novel role of melatonin was unveiled, using immortalized human keratinocyte cells (HaCaT) as a model system. Within a time window compatible with its circadian rhythm, melatonin at nanomolar concentration raised both the expression level of the neuronal nitric oxide synthase mRNA and the nitric oxide oxidation products, nitrite and nitrate. On the same time scale, a depression of the mitochondrial membrane potential was detected together with a decrease of the oxidative phosphorylation efficiency, compensated by glycolysis as testified by an increased production of lactate. The melatonin concentration, ∼ nmolar, inducing the bioenergetic effects and their time dependence, both suggest that the observed nitric oxide-induced mitochondrial changes might play a role in the metabolic pathways characterizing the circadian melatonin chemistry. PMID:22271455

  14. Photobiomodulatory effects of superpulsed 904nm laser therapy on bioenergetics status in burn wound healing.

    PubMed

    Yadav, Anju; Gupta, Asheesh; Keshri, Gaurav K; Verma, Saurabh; Sharma, Sanjeev K; Singh, Shashi Bala

    2016-09-01

    Burn wounds exhibit impaired healing as the progression through the normal sequential stages of tissue repair gets hampered by epidermal barrier disruption, compromised blood circulation, abrogated defence mechanism, pathologic inflammation, and septicemia. Our earlier results reported that superpulsed 904nm LLLT enhanced healing and attenuated inflammatory response in burn wounds. The present study investigated the effect of superpulsed 904nm LLLT (200ns pulse width; 100Hz; 0.7mW mean output power; 0.4mW/cm(2) average irradiance) on biochemical and molecular markers pertaining to bioenergetics and redox homeostasis on full-thickness burn wounds in experimental rats. Results indicated that superpulsed laser irradiation for 7days post-wounding propelled the cellular milieu towards aerobic energy metabolism as evidenced by significantly enhanced activities of key energy regulatory enzymes viz. HK, PFK, CS and G6PD, whereas LDH showed reduced activity as compared to the non-irradiated controls. LLLT showed a significant increased CCO activity and ATP level. Moreover, LLLT also regulated redox homeostasis as evidenced by enhanced NADPH levels and decreased NADP/NADPH ratio. Western blot analysis demonstrated that LLLT produced an up-regulation of GLUT1, pAMPKα and down-regulation of glycogen synthase1 (GS1). Our findings suggest that superpulsed 904nm LLLT augments burn wound healing by enhancing intracellular energy contents through modulation of aerobic metabolism for maximum energy output. Bioenergetic activation and maintenance of redox homeostasis could be one of the noteworthy mechanisms responsible for the beneficial NIR photobiomodulatory effect mediated through superpulsed 904nm LLLT in burn wound healing. PMID:27344636

  15. Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing

    USGS Publications Warehouse

    Anderson, Karl R.; Chapman, Duane C.; Wynne, Timothy; Masagounder, Karthik; Paukert, Craig

    2015-01-01

    Algal blooms in the Great Lakes are a potential food source for silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis; together bigheaded carps). Understanding these blooms thus plays an important role in understanding the invasion potential of bigheaded carps. We used remote sensing imagery, temperatures, and improved species specific bioenergetics models to determine algal concentrations sufficient for adult bigheaded carps. Depending on water temperature we found that bigheaded carp require between 2 and 7 μg/L chlorophyll or between 0.3 and 1.26 × 105cells/mL Microcystis to maintain body weight. Algal concentrations in the western basin and shoreline were found to be commonly several times greater than the concentrations required for weight maintenance. The remote sensing images show that area of sufficient algal foods commonly encompassed several hundred square kilometers to several thousands of square kilometers when blooms form. From 2002 to 2011, mean algal concentrations increased 273%–411%. This indicates Lake Erie provides increasingly adequate planktonic algal food for bigheaded carps. The water temperatures and algal concentrations detected in Lake Erie from 2008 to 2012 support positive growth rates such that a 4 kg silver carp could gain between 19 and 57% of its body weight in a year. A 5 kg bighead carp modeled at the same water temperatures could gain 20–81% of their body weight in the same period. The remote sensing imagery and bioenergetic models suggest that bigheaded carps would not be food limited if they invaded Lake Erie.

  16. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity☆

    PubMed Central

    Dott, William; Mistry, Pratibha; Wright, Jayne; Cain, Kelvin; Herbert, Karl E

    2014-01-01

    Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR) was significantly increased whereas extracellular acidification rate (ECAR), a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2•– level compared to cells in the glucose model. An antimycin A (AA) dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a galactose media model

  17. ROLE OF CELLULAR BIOENERGETICS IN SMOOTH MUSCLE CELL PROLIFERATION INDUCED BY PLATELET-DERIVED GROWTH FACTOR

    PubMed Central

    Perez, Jessica; Hill, Bradford G.; Benavides, Gloria A.; Dranka, Brian P.; Darley-Usmar, Victor M.

    2013-01-01

    SYNOPSIS Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that platelet-derived growth factor (PDGF) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux, and mitochondrial oxygen consumption were measured after treatment of primary rat aortic smooth muscle cells with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, lactate dehydrogenase protein levels and activity were significantly increased after PDGF treatment. Moreover, L-lactate substitution for D-glucose was sufficient for increasing the mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the lactate dehydrogenase inhibitor, oxamate. These data suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMC in the diseased vasculature. PMID:20331438

  18. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.

    PubMed

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100-500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50-500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3-100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100-300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging. PMID:23537657

  19. Quantifying the role of woody debris in providing bioenergetically favorable habitat for juvenile salmon

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Hafs, A. W.; Utz, R.; Dunne, T.

    2013-12-01

    The habitat complexity of a riverine ecosystem substantially influences aquatic communities, and especially the bioenergetics of drift feeding fish. We coupled hydrodynamic and bioenergetic models to assess the influence of habitat complexity, generated via large woody debris (LWD) additions, on juvenile Chinook salmon (Oncorhynchus tshawytscha) growth potential in a river that lacked large wood. Model simulations indicated that LWD diversified the flow field, creating pronounced velocity gradients, which enhanced fish feeding and resting activities at the micro-habitat (sub-meter) scale. Fluid drag created by individual wood structures was increased under higher wood loading rates, leading to a 5-19% reduction in the reach-averaged velocity. We found that wood loading was asymptotically related to the reach-scale growth potential, suggesting that the river became saturated with LWD and additional loading would produce minimal benefit. In our study reach, LWD additions could potentially quadruple the potential growth area available before that limit was reached. Wood depletion in the world's rivers has been widely documented, leading to widespread attempts by river managers to reverse this trend by adding wood to simplified aquatic habitats, though systematic prediction of the effects of wood on fish growth has not been previously accomplished. We offer a quantitative, theory-based approach for assessing the role of wood on habitat potential as it affects fish growth at the micro-habitat and reach-scales. Fig. 1. Predicted flow field and salmon growth potential maps produced from model simulations with no woody debris (Graphs A and D), a low density (Graphs B and E), and a high density (Graphs C and E) of woody debris.

  20. Behavioural thermoregulation and bioenergetics of riverine smallmouth bass associated with ambient cold-period thermal refuge

    USGS Publications Warehouse

    Westhoff, J.T.; Paukert, Craig P.; Ettinger-Dietzel, Sarah; Dodd, H.R.; Siepker, Michael

    2016-01-01

    Smallmouth bass in thermally heterogeneous streams may behaviourally thermoregulate during the cold period (i.e., groundwater temperature greater than river water temperature) by inhabiting warm areas in the stream that result from high groundwater influence or springs. Our objectives were to determine movement of smallmouth bass (Micropterus dolomieu) that use thermal refuge and project differences in growth and consumption among smallmouth bass exhibiting different thermal-use patterns. We implanted radio transmitters in 29 smallmouth bass captured in Alley Spring on the Jacks Fork River, Missouri, USA, during the winter of 2012. Additionally, temperature archival tags were implanted in a subset of nine fish. Fish were tracked using radio telemetry monthly from January 2012 through January of 2013. The greatest upstream movement was 42.5 km, and the greatest downstream movement was 22.2 km. Most radio tagged fish (69%) departed Alley Spring when daily maximum river water temperature first exceeded that of the spring (14 °C) and during increased river discharge. Bioenergetic modelling predicted that a 350 g migrating smallmouth bass that used cold-period thermal refuge would grow 16% slower at the same consumption level as a fish that did not seek thermal refuge. Contrary to the bioenergetics models, extrapolation of growth scope results suggested migrating fish grow 29% more than fish using areas of stream with little groundwater influence. Our results contradict previous findings that smallmouth bass are relatively sedentary, provide information about potential cues for migratory behaviour, and give insight to managers regarding use and growth of smallmouth bass in thermally heterogeneous river systems.

  1. EDITORIAL: The 15th Central European Workshop on Quantum Optics The 15th Central European Workshop on Quantum Optics

    NASA Astrophysics Data System (ADS)

    Bozic, Mirjana; Man'ko, Margarita; Arsenovic, Dusan

    2009-07-01

    The development of quantum optics was part and parcel of the formation of modern physics following the fundamental work of Max Planck and Albert Einstein, which gave rise to quantum mechanics. The possibility of working with pure quantum objects, like single atoms and single photons, has turned quantum optics into the main tool for testing the fundamentals of quantum physics. Thus, despite a long history, quantum optics nowadays remains an extremely important branch of physics. It represents a natural base for the development of advanced technologies, like quantum information processing and quantum computing. Previous Central European Workshops on Quantum Optics (CEWQO) took place in Palermo (2007), Vienna (2006), Ankara (2005), Trieste (2004), Rostock (2003), Szeged (2002), Prague (2001), Balatonfüred (2000), Olomouc (1999), Prague (1997), Budmerice (1995, 1996), Budapest (1994) and Bratislava (1993). Those meetings offered excellent opportunities for the exchange of knowledge and ideas between leading scientists and young researchers in quantum optics, foundations of quantum mechanics, cavity quantum electrodynamics, photonics, atom optics, condensed matter optics, and quantum informatics, etc. The collaborative spirit and tradition of CEWQO were a great inspiration and help to the Institute of Physics, Belgrade, and the Serbian Academy of Sciences and Arts, as the organizers of CEWQO 2008. The 16th CEWQO will take place in 2009 in Turku, Finland, and the 17th CEWQO will be organized in 2010 in St Andrews, United Kingdom. The 15th CEWQO was organized under the auspices and support of the Ministry of Science of the Republic of Serbia, the Serbian Physical Society, the European Physical Society with sponsorship from the University of Belgrade, the Central European Initiative, the FP6 Program of the European Commission under INCO project QUPOM No 026322, the FP7 Program of the European Commission under project NANOCHARM, Europhysics Letters (EPL), The European

  2. Problema vizual'noj registratsii nablyudenij v opticheskoj astronomii XVII-XVIII vekov %t Problem of visual registration of observations in optical astronomy in the 17th-18th centuries

    NASA Astrophysics Data System (ADS)

    Ivanov, Kostantin V.

    This paper attempts to explain the growth of optical astronomy as a result of more general social and cultural change in European life during the two post-Renaissance centuries. It shows how the introduction of optical instruments into astronomical work was accompanied (and partly conditioned) by a few nonastronomical practices, such as collecting unusual things and their images, producing illusionary effects by means of optical devices, manufacturing pictures that could disturb the common visual perception, etc. The paper draws particular attention to the practices of manipulation with visual images that could help to introduce "illusionary" optical knowledge into making "true" drawings from natural objects, including celestial ones. In this way, the formation of new astronomical language can be understood as closely connected to the explicit formulation of technological instructions and legal rules for making copies from natural objects, as well as the general development of printing production and broadening of the market of printed illustrations. These often not enough co-ordinated practices stipulated the shift of optical astronomy into a significant part of seigniorial culture, where it obtained recognition as an essentially new and elite knowledge, associated with particular technological vigilance. During the transition of European monarchies into the absolutist social order, astronomy, on a level with other court services, assumed a shape of professional occupation supplied with certain monetary salaries, a stable position in official hierarchy, and supreme privileges. This was the way by which astronomy merged with the other natural studies and became one of the publicly recognised scientific disciplines.

  3. Removal of algae by the zebra mussel (Dreissena polymorpha) population in western Lake Erie: a bioenergetics approach

    USGS Publications Warehouse

    Madenjian, Charles P.

    1995-01-01

    A bioenergetics model for growth of a zebra mussel (Dreissena polymorpha) individual was verified with observations on zebra mussel growth in western Lake Erie. The bioenergetics model was then applied to the zebra mussel population in the western basin of Lake Erie to estimate the removal of phytoplankton by mussels. According to the modeling results, the zebra mussel population consumed 5.0 million tonnes of phytoplankton, while 1.4 million tonnes of phytoplankton was deposited in pseudofeces from the mussels. Thus, a total of 6.4 ± 2.4 million tonnes of phytoplankton was removed from the water column by zebra mussel in western Lake Erie during 1990. Primary production was estimated to be 24.8 million tonnes; therefore, zebra mussel removed the equivalent of 26 ± 10% of the primary production for western Lake Erie.

  4. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms: Progress report, 1 January 1988-31 August 1988

    SciTech Connect

    Spotila, J.R.

    1988-07-01

    We quantified the constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. During the first eight months of 1988 we conducted studies to determine the role of incubation temperature on the post hatching growth rate of the snapping turtle, Chelydra serpentina, to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field, to determine the field metabolic rates, body temperatures, and water flux rates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. We also organized and chaired a national symposium on Constraints of Bioenergetics on Animal Population Dynamics at the 1987 meeting of the American Society of Zoologists. 18 refs.

  5. A mitochondrial RNAi screen defines cellular bioenergetic determinants and identifies an adenylate kinase as a key regulator of ATP levels

    PubMed Central

    Lanning, Nathan J.; Looyenga, Brendan D.; Kauffman, Audra L.; Niemi, Natalie M.; Sudderth, Jessica; DeBerardinis, Ralph J.; MacKeigan, Jeffrey P.

    2014-01-01

    Summary Altered cellular bioenergetics and mitochondrial function are major features of several diseases including cancer, diabetes, and neurodegenerative disorders. Given this important link to human health, we sought to define proteins within mitochondria that are critical for maintaining homeostatic ATP levels. We screened an RNAi library targeting >1,000 nuclear-encoded genes whose protein products localize to the mitochondria in multiple metabolic conditions to examine their effect on cellular ATP levels. We identified a mechanism by which electron transport chain perturbation under glycolytic conditions increased ATP production through enhanced glycolytic flux; thereby highlighting the cellular potential for metabolic plasticity. Additionally, we identified a mitochondrial adenylate kinase (AK4) that regulates cellular ATP levels, AMPK signaling, and whose expression significantly correlates with glioma patient survival. As a result, this study maps the bioenergetic landscape of >1,000 mitochondrial proteins in the context of varied metabolic substrates and begins to link key metabolic genes with clinical outcome. PMID:24767988

  6. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer.

    PubMed Central

    Isidoro, Antonio; Martínez, Marta; Fernández, Pedro L; Ortega, Alvaro D; Santamaría, Gema; Chamorro, Margarita; Reed, John C; Cuezva, José M

    2004-01-01

    Recent findings indicate that the expression of the beta-catalytic subunit of the mitochondrial H+-ATP synthase (beta-F1-ATPase) is depressed in liver, kidney and colon carcinomas, providing further a bioenergetic signature of cancer that is associated with patient survival. In the present study, we performed an analysis of mitochondrial and glycolytic protein markers in breast, gastric and prostate adenocarcinomas, and in squamous oesophageal and lung carcinomas. The expression of mitochondrial and glycolytic markers varied significantly in these carcinomas, when compared with paired normal tissues, with the exception of prostate cancer. Overall, the relative expression of beta-F1-ATPase was significantly reduced in breast and gastric adenocarcinomas, as well as in squamous oesophageal and lung carcinomas, strongly suggesting that alteration of the bioenergetic function of mitochondria is a hallmark of these types of cancer. PMID:14683524

  7. Development and corroboration of a bioenergetics model for northern pikeminnow (Ptychocheilus oregonensis) feeding on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Ward, D.L.

    1999-01-01

    A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.

  8. Accumulation of 3-hydroxytetradecenoic acid: Cause or corollary of glucolipotoxic impairment of pancreatic β-cell bioenergetics?

    PubMed Central

    Doliba, Nicolai M.; Liu, Qing; Li, Changhong; Chen, Jie; Chen, Pan; Liu, Chengyang; Frederick, David W.; Baur, Joseph A.; Bennett, Michael J.; Naji, Ali; Matschinsky, Franz M.

    2015-01-01

    Objectives Hyperglycemia and elevated blood lipids are the presumed precipitating causes of β-cell damage in T2DM as the result of a process termed “glucolipotoxicity”. Here, we tested whether glucolipotoxic pathophysiology is caused by defective bioenergetics using islets in culture. Methods Insulin secretion, respiration, ATP generation, fatty acid (FA) metabolite profiles and gene expression were determined in isolated islets treated under glucolipotoxic culture conditions. Results Over time, chronic exposure of mouse islets to FAs with glucose leads to bioenergetic failure and reduced insulin secretion upon stimulation with glucose or amino acids. Islets exposed to glucolipotoxic conditions displayed biphasic changes of the oxygen consumption rate (OCR): an initial increase in baseline and Vmax of OCR after 3 days, followed by decreased baseline and glucose stimulated OCR after 5 days. These changes were associated with lower islet ATP levels, impaired glucose-induced ATP generation, a trend for reduced mitochondrial DNA content and reduced expression of mitochondrial transcription factor A (Tfam). We discovered the accumulation of carnitine esters of hydroxylated long chain FAs, in particular 3-hydroxytetradecenoyl-carnitine. Conclusions As long chain 3-hydroxylated FA metabolites are known to uncouple heart and brain mitochondria [53], [54], [55], we propose that under glucolipotoxic condition, unsaturated hydroxylated long-chain FAs accumulate, uncouple and ultimately inhibit β-cell respiration. This leads to the slow deterioration of mitochondrial function progressing to bioenergetics β-cell failure. PMID:26909309

  9. Exploring geomorphic controls on fish bioenergetics in mountain streams: linkages between channel morphology and rearing habitat for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Hassan, M. A.

    2013-12-01

    Landscape heterogeneity constitutes an important control on spatial distribution of habitat for living organisms, at a range of spatial scales. For example, spatial variation in geomorphic processes can spatially structure populations as well as entire communities, and affect various ecosystem processes. We have coupled a 2D hydrodynamic model with a bioenergetic model to study the effects of various channel morphologies and bed textures on rearing habitat for coastal cutthroat trout (Oncorhynchus clarki clarki) in four reaches of a mountain stream. The bioenergetic model uses energy conservation principle to calculate energy budget for fish at any point of the study domain, given a set of relevant local conditions. Specifically, the energy intake is a function of food availability (invertebrate drift) while the energy expenditure occurs through, for example, basal metabolism and swimming to hold position against the flow. Channel morphology and bed texture, through their influence on channel hydraulics, can exert strong control on the spatial pattern of both food flux and swimming cost for drift-feeding fish. Therefore, the coupled hydrodynamic and bioenergetic models, parameterized using an extensive field data set, enabled us to explore mechanistic linkages between geomorphic properties of the study reaches, food resource availability, and the energetic profitability of rearing habitat for different age-classes at both between- and within-reach spatial scales.

  10. , Testing a bioenergetics-based habitat choice model: bluegill (Lepomis macrochirus) responses to food availability and temperature

    USGS Publications Warehouse

    Wildhaber, Mark L.; Crowder, Larry B.

    2011-01-01

    Using an automated shuttlebox system, we conducted patch choice experiments with 32, 8–12 g bluegill sunfish (Lepomis macrochirus) to test a behavioral energetics hypothesis of habitat choice. When patch temperature and food levels were held constant within patches but different between patches, we expected bluegill to choose patches that maximized growth based on the bioenergetic integration of food and temperature as predicted by a bioenergetics model. Alternative hypotheses were that bluegill may choose patches based only on food (optimal foraging) or temperature (behavioral thermoregulation). The behavioral energetics hypothesis was not a good predictor of short-term (from minutes to weeks) patch choice by bluegill; the behavioral thermoregulation hypothesis was the best predictor. In the short-term, food and temperature appeared to affect patch choice hierarchically; temperature was more important, although food can alter temperature preference during feeding periods. Over a 19-d experiment, mean temperatures occupied by fish offered low rations did decline as predicted by the behavioral energetics hypothesis, but the decline was less than 1.0 °C as opposed to a possible 5 °C decline. A short-term, bioenergetic response to food and temperature may be precluded by physiological costs of acclimation not considered explicitly in the behavioral energetics hypothesis.

  11. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function.

    PubMed

    Carraretto, Luca; Teardo, Enrico; Checchetto, Vanessa; Finazzi, Giovanni; Uozumi, Nobuyuki; Szabo, Ildiko

    2016-03-01

    Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future. PMID:26751960

  12. Sexual Dimorphism in the Alterations of Cardiac Muscle Mitochondrial Bioenergetics Associated to the Ageing Process.

    PubMed

    Colom, Bartomeu; Oliver, Jordi; Garcia-Palmer, Francisco J

    2015-11-01

    The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function. PMID:24682352

  13. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects.

    PubMed

    Módis, Katalin; Bos, Eelke M; Calzia, Enrico; van Goor, Harry; Coletta, Ciro; Papapetropoulos, Andreas; Hellmich, Mark R; Radermacher, Peter; Bouillaud, Frédéric; Szabo, Csaba

    2014-04-01

    Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2 S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2 S on complex IV is enhanced, which may shift the balance of H2 S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2 S (e.g. sepsis), while in other disease states H2 S levels and H2 S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2 S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2 S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2 S-induced therapeutic 'suspended animation', a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation. PMID:23991749

  14. The Perimenopausal Aging Transition in the Female Rat Brain: Decline in Bioenergetic Systems and Synaptic Plasticity

    PubMed Central

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C.; Morgan, Todd E.; Finch, Caleb E.; Pike, Christian J.; Mack, Wendy J.; Cadenas, Enrique; Brinton, Roberta D.

    2015-01-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the current study determined genomic, biochemical, brain metabolic and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in FDG-PET brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/IGF1 and AMPK/PGC1α signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later life vulnerability to hypometabolic conditions such as Alzheimer’s. PMID:25921624

  15. Disruption of normal cellular bioenergetics in Balb/c mice by mitomycin C.

    PubMed Central

    Pritsos, C. A.; Briggs, L. A.

    1996-01-01

    Mitomycin C (MMC) is an antineoplastic agent with activity against a wide variety of tumours. The primary cellular target for MMC's antineoplastic activity is thought to be nuclear DNA. The interactions of MMC with nuclear DNA have been studied extensively. This laboratory has shown recently that MMC also interacts with mitochondrial DNA, resulting in a conformational change from the supercoiled to the relaxed state. This interaction could cause mitochondrial dysfunction, resulting in a loss of cellular ATP. The present studies were designed to test whether treatment with MMC would affect tissue ATP levels in Balb/c mice. Mice were treated with single, or multiple (2) i.p. injections of 0, 5, 10 or 20 mg MMC kg-1 body wt. Forty-eight hours after the final MMC treatment, heart, liver and kidney tissues were excised and tissue ATP levels were assessed. Heart tissue was the most sensitive to the MMC treatment and significant decreases in ATP levels were observed at all MMC dosages tested. Liver and kidney tissues showed significant decreases only at the highest dosages tested. These studies demonstrate that tissue specific disruption of cellular bioenergetics occurs following MMC exposure resulting in a decrease of tissue ATP levels. PMID:8763838

  16. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes.

    PubMed

    Burch, Tanya C; Rhim, Johng S; Nyalwidhe, Julius O

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT(2) PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  17. Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies.

    PubMed

    Onyango, Isaac G; Dennis, Jameel; Khan, Shaharyah M

    2016-03-01

    Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far. PMID:27114851

  18. In vivo and in vitro assessment of brain bioenergetics in aging rats

    PubMed Central

    Vančová, Ol’ga; Bačiak, Ladislav; Kašparová, Svatava; Kucharská, Jarmila; Palacios, Hector H; Horecký, Jaromír; Aliev, Gjumrakch

    2010-01-01

    Abstract Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age-dependent mitochondrial respiration and adenosine-3-phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age-related disorders of brain energy metabolism. PMID:19906014

  19. Photoheterotrophic Fluxome in Synechocystis sp. Strain PCC 6803 and Its Implications for Cyanobacterial Bioenergetics

    PubMed Central

    You, Le; He, Lian

    2014-01-01

    This study investigated metabolic responses in Synechocystis sp. strain PCC 6803 to photosynthetic impairment. We used 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; a photosystem II inhibitor) to block O2 evolution and ATP/NADPH generation by linear electron flow. Based on 13C-metabolic flux analysis (13C-MFA) and RNA sequencing, we have found that Synechocystis sp. PCC 6803 employs a unique photoheterotrophic metabolism. First, glucose catabolism forms a cyclic route that includes the oxidative pentose phosphate (OPP) pathway and the glucose-6-phosphate isomerase (PGI) reaction. Glucose-6-phosphate is extensively degraded by the OPP pathway for NADPH production and is replenished by the reversed PGI reaction. Second, the Calvin cycle is not fully functional, but RubisCO continues to fix CO2 and synthesize 3-phosphoglycerate. Third, the relative flux through the complete tricarboxylic acid (TCA) cycle and succinate dehydrogenase is small under heterotrophic conditions, indicating that the newly discovered cyanobacterial TCA cycle (via the γ-aminobutyric acid pathway or α-ketoglutarate decarboxylase/succinic semialdehyde dehydrogenase) plays a minimal role in energy metabolism. Fourth, NAD(P)H oxidation and the cyclic electron flow (CEF) around photosystem I are the two main ATP sources, and the CEF accounts for at least 40% of total ATP generation from photoheterotrophic metabolism (without considering maintenance loss). This study not only demonstrates a new topology for carbohydrate oxidation but also provides quantitative insights into metabolic bioenergetics in cyanobacteria. PMID:25535269

  20. Acetate is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases

    PubMed Central

    Mashimo, Tomoyuki; Pichumani, Kumar; Vemireddy, Vamsidhara; Hatanpaa, Kimmo J.; Singh, Dinesh Kumar; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara G.; Kovacs, Zoltan; Foong, Chan; Huang, Zhiguang; Barnett, Samuel; Mickey, Bruce E.; DeBerardinis, Ralph J.; Tu, Benjamin P.; Maher, Elizabeth A.; Bachoo, Robert M.

    2015-01-01

    Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using 13C-NMR analysis of brain tumors resected from patients during infusion of 13C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-13C]acetate and can do so simultaneously with [1,6-13C]glucose oxidation. The tumors do not oxidize [U-13C]glutamine. In vivo oxidation of [1,2-13C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth. PMID:25525878

  1. Early preservation of mitochondrial bioenergetics supports both structural and functional recovery after neurotrauma.

    PubMed

    Semple, Bridgette D

    2014-11-01

    N-acetylcysteine, a precursor to the potent antioxidant glutathione, has been investigated as a potential therapeutic agent for several decades; however, inconsistent efficacy has been reported for diseases of the central nervous system, postulated to result from restricted passage of this molecule across the blood-brain/spinal cord barriers and cellular membranes, resulting in low bioavailability. The amide form of N-acetylcysteine (NACA) overcomes these limitations while maintaining a high antioxidant potential, and shows promise for combating secondary pathogenesis attributed to oxidative stress. Neurotrauma precipitates a rapid and prolonged disruption of mitochondrial bioenergetics, whereby the production of reactive oxygen species overwhelms the endogenous antioxidant capacity of the cells. Two noteworthy papers from collaborative teams have recently been published in Experimental Neurology, in which NACA was applied to rodent models of traumatic brain and spinal cord injury, respectively. Using sensitive methods to measure respiratory rates in isolated mitochondrial populations, treatment with NACA was shown to maintain mitochondrial function and boost antioxidant reserves, which corresponded with improvements in structural and functional outcomes in both studies. This commentary aims to highlight key findings from this research in a broader context, with an emphasis on methodological advances, future research possibilities, and potential applicability to brain and/or spinal cord injured patients. PMID:25079371

  2. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity.

    PubMed

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C; Morgan, Todd E; Finch, Caleb E; Pike, Christian J; Mack, Wendy J; Cadenas, Enrique; Brinton, Roberta D

    2015-07-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's. PMID:25921624

  3. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    PubMed Central

    Burch, Tanya C.; Rhim, Johng S.

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT2 PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  4. Waterbird predation on fish in western Lake Erie: a bioenergetics model application

    USGS Publications Warehouse

    Madenjian, Charles P.; Gabrey, Steven W.

    1995-01-01

    To better understand the role of piscivorous waterbirds in the food web of western Lake Erie, we applied a bioenergetics model to determine their total fish consumption, The important nesting species included the Herring Gull (Larus argentatus), Ring-billed Gull (L. delawarensis), Double-crested Cormorant (Phalacrocorax auritus), Great Blue Heron (Ardea herodias), Black-crowned Night-Heron (Nycticorax nycticorax), and Great Egret (Casmerodius albus). The impact of migrant waterbirds, including the Red-breasted Merganser (Mergus serrator), on western Lake Erie fish biomass was also considered in the analysis. According to the modeling results, during the early 1990s, piscivorous waterbirds consumed 13,368 tonnes of fish from western Lake Erie each year. This tonnage was equivalent to 15.2% of the prey fish biomass needed to support the walleye (Stizostedion vitreum) population in western Lake Erie during a single growing season. The model application was useful in quantifying energy flow between birds and fish in a large lake ecosystem.

  5. Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models

    USGS Publications Warehouse

    Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle

    2016-01-01

    Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.

  6. Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer.

    PubMed

    van der Windt, Gerritje J W; Chang, Chih-Hao; Pearce, Erika L

    2016-01-01

    This unit contains several protocols to determine the energy utilization of T cells in real-time using a Seahorse Extracellular Flux Analyzer (http://www.seahorsebio.com). The advantages to using this machine over traditional metabolic assays include the simultaneous measurement of glycolysis and mitochondrial respiration, in real-time, on relatively small numbers of cells, without any radioactivity. The Basic Protocol describes a standard mitochondrial stress test on the XF(e) 96, which yields information about oxidative phosphorylation and glycolysis, two energy-generating pathways. The alternate protocols provide examples of adaptations to the Basic Protocol, including adjustments for the use of the XF(e) 24. A protocol for real-time bioenergetic responses to T cell activation allows for the analysis of immediate metabolic changes after T cell receptor stimulation. Specific substrate utilization can be determined by the use of differential assay media, or the injection of drugs that specifically affect certain metabolic processes. Accurate cell numbers, purity, and viability are critical to obtain reliable results. © 2016 by John Wiley & Sons, Inc. PMID:27038461

  7. Bioenergetic and pharmacokinetic model for exposure of common loon (Gavia immer) chicks to methylmercury

    USGS Publications Warehouse

    Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Fournier, F.

    2007-01-01

    A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.4, and 1.2 ??g/g wet mass (delivered as CH3HgCl). Predicted food intake matched observed intake through 50 d of age but then exceeded observed intake by an amount that grew progressively larger with age, reaching a significant overestimate of 28% by the end of the trial. Respiration in older, nongrowing birds probably was overestimated by using rates measured in younger, growing birds. Close agreement was found between simulations and measured blood Hg, which varied significantly with dietary Hg and age. Although chicks may hatch with different blood Hg levels, their blood level is determined mainly by dietary Hg level beyond approximately two weeks of age. The model also may be useful for predicting Hg levels in adults and in the eggs that they lay, but its accuracy in both chicks and adults needs to be tested in free-living birds. ?? 2007 SETAC.

  8. Bioenergetic cues shift FXR splicing towards FXRα2 to modulate hepatic lipolysis and fatty acid metabolism

    PubMed Central

    Correia, Jorge C.; Massart, Julie; de Boer, Jan Freark; Porsmyr-Palmertz, Margareta; Martínez-Redondo, Vicente; Agudelo, Leandro Z.; Sinha, Indranil; Meierhofer, David; Ribeiro, Vera; Björnholm, Marie; Sauer, Sascha; Dahlman-Wright, Karin; Zierath, Juleen R.; Groen, Albert K.; Ruas, Jorge L.

    2015-01-01

    Objective Farnesoid X receptor (FXR) plays a prominent role in hepatic lipid metabolism. The FXR gene encodes four proteins with structural differences suggestive of discrete biological functions about which little is known. Methods We expressed each FXR variant in primary hepatocytes and evaluated global gene expression, lipid profile, and metabolic fluxes. Gene delivery of FXR variants to Fxr−/− mouse liver was performed to evaluate their role in vivo. The effects of fasting and physical exercise on hepatic Fxr splicing were determined. Results We show that FXR splice isoforms regulate largely different gene sets and have specific effects on hepatic metabolism. FXRα2 (but not α1) activates a broad transcriptional program in hepatocytes conducive to lipolysis, fatty acid oxidation, and ketogenesis. Consequently, FXRα2 decreases cellular lipid accumulation and improves cellular insulin signaling to AKT. FXRα2 expression in Fxr−/− mouse liver activates a similar gene program and robustly decreases hepatic triglyceride levels. On the other hand, FXRα1 reduces hepatic triglyceride content to a lesser extent and does so through regulation of lipogenic gene expression. Bioenergetic cues, such as fasting and exercise, dynamically regulate Fxr splicing in mouse liver to increase Fxrα2 expression. Conclusions Our results show that the main FXR variants in human liver (α1 and α2) reduce hepatic lipid accumulation through distinct mechanisms and to different degrees. Taking this novel mechanism into account could greatly improve the pharmacological targeting and therapeutic efficacy of FXR agonists. PMID:26909306

  9. Development of a methodology to assess organometallic effects on bioenergetic systems

    SciTech Connect

    Packer, L.; Mehlhorn, R.J.

    1981-06-01

    A methodology for assessing the impact of subacute concentrations of organometallic agents on bioenergetic and oxidative damage processes in animals, cells and energy transducing subcellular organelles is being developed. Several of the assays are noninvasive and thus lend themselves to human tests. At the whole-animal level we utilize a treadmill chamber where physiological parameters of exercising animals are monitored. These include parameters of whole animals' work performance such as oxygen consumption, carbon dioxide evolution and endurance. Oxidative damage can be monitored in experiments by analyzing expired air of the animals for ethane and n-pentane. These alkanes correlate with lipid peroxidation in vivo. At the cellular and subcellular levels, respiratory activity, lipid peroxidation and free radical species are assayed. Respiratory activity is measured in muscle homogenates and isolated mitochondria using substrates which feed into different segments of the electron transport chain. To demonstrate how these assay procedures correlate, iron deficiency anemia in rats was analyzed. Physiologically, iron deficiency caused a 90% decrease in endurance which correlated with an 80% decrease in pyruvate-malate oxidation rates in muscle homogenates. Significant but smaller effects were seen in hemoglobin/hematocrit levels (50% decrease) and in maximal oxygen consumption (50% decrease). Tissue free-radical signals observed by ESR at room temperature increased with exercise.

  10. Mitochondrial Dysfunction in Alzheimer’s Disease and the Rationale for Bioenergetics Based Therapies

    PubMed Central

    Onyango, Isaac G.; Dennis, Jameel; Khan, Shaharyah M.

    2016-01-01

    Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far. PMID:27114851

  11. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells.

    PubMed

    Radde, Brandie N; Ivanova, Margarita M; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P; Muluhngwi, Penn; Kalbfleisch, Ted S; Rouchka, Eric C; Hill, Bradford G; Klinge, Carolyn M

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. PMID:27515002

  12. MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics.

    PubMed

    Tomar, Dhanendra; Dong, Zhiwei; Shanmughapriya, Santhanam; Koch, Diana A; Thomas, Toby; Hoffman, Nicholas E; Timbalia, Shrishiv A; Goldman, Samuel J; Breves, Sarah L; Corbally, Daniel P; Nemani, Neeharika; Fairweather, Joseph P; Cutri, Allison R; Zhang, Xueqian; Song, Jianliang; Jaña, Fabián; Huang, Jianhe; Barrero, Carlos; Rabinowitz, Joseph E; Luongo, Timothy S; Schumacher, Sarah M; Rockman, Michael E; Dietrich, Alexander; Merali, Salim; Caplan, Jeffrey; Stathopulos, Peter; Ahima, Rexford S; Cheung, Joseph Y; Houser, Steven R; Koch, Walter J; Patel, Vickas; Gohil, Vishal M; Elrod, John W; Rajan, Sudarsan; Madesh, Muniswamy

    2016-05-24

    Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism. PMID:27184846

  13. Effects of Sleep Deprivation on Brain Bioenergetics, Sleep, and Cognitive Performance in Cocaine-Dependent Individuals

    PubMed Central

    Trksak, George H.; Bracken, Bethany K.; Jensen, J. Eric; Plante, David T.; Penetar, David M.; Tartarini, Wendy L.; Maywalt, Melissa A.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent [31]P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, [31]P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse. PMID:24250276

  14. Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics.

    PubMed

    Ding, Yang; Batista, Bruno; Steinbock, Oliver; Cartwright, Julyan H E; Cardoso, Silvana S S

    2016-08-16

    To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms. PMID:27486248

  15. Genome Analysis of Structure–Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme

    PubMed Central

    Degli Esposti, Mauro

    2016-01-01

    Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni–Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure–function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function. PMID:26615219

  16. Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress

    PubMed Central

    Bravo, Roberto; Vicencio, Jose Miguel; Parra, Valentina; Troncoso, Rodrigo; Munoz, Juan Pablo; Bui, Michael; Quiroga, Clara; Rodriguez, Andrea E.; Verdejo, Hugo E.; Ferreira, Jorge; Iglewski, Myriam; Chiong, Mario; Simmen, Thomas; Zorzano, Antonio; Hill, Joseph A.; Rothermel, Beverly A.; Szabadkai, Gyorgy; Lavandero, Sergio

    2011-01-01

    Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca2+ uptake. Accordingly, uncoupling of the organelles or blocking Ca2+ transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca2+ transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response. PMID:21628424

  17. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential.

    PubMed

    Salvioli, Alessandra; Ghignone, Stefano; Novero, Mara; Navazio, Lorella; Venice, Francesco; Bagnaresi, Paolo; Bonfante, Paola

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) occur in the rhizosphere and in plant tissues as obligate symbionts, having key roles in plant evolution and nutrition. AMF possess endobacteria, and genome sequencing of the endobacterium Candidatus Glomeribacter gigasporarum revealed a reduced genome and a dependence on the fungal host. To understand the effect of bacteria on fungal fitness, we used next-generation sequencing to analyse the transcriptional profile of Gigaspora margarita in the presence and in the absence of its endobacterium. Genomic data on AMF are limited; therefore, we first generated a gene catalogue for G. margarita. Transcriptome analysis revealed that the endobacterium has a stronger effect on the pre-symbiotic phase of the fungus. Coupling transcriptomics with cell biology and physiological approaches, we demonstrate that the bacterium increases the fungal sporulation success, raises the fungal bioenergetic capacity, increasing ATP production, and eliciting mechanisms to detoxify reactive oxygen species. By using TAT peptide to translocate the bioluminescent calcium reporter aequorin, we demonstrated that the line with endobacteria had a lower basal intracellular calcium concentration than the cured line. Lastly, the bacteria seem to enhance the fungal responsiveness to strigolactones, the plant molecules that AMF perceive as branching factors. Although the endobacterium exacts a nutritional cost on the AMF, endobacterial symbiosis improves the fungal ecological fitness by priming mitochondrial metabolic pathways and giving the AMF more tools to face environmental stresses. Thus, we hypothesise that, as described for the human microbiota, endobacteria may increase AMF innate immunity. PMID:26046255

  18. Resorcylidene aminoguanidine (RAG) improves cardiac mitochondrial bioenergetics impaired by hyperglycaemia in a model of experimental diabetes.

    PubMed

    Labieniec-Watala, Magdalena; Siewiera, Karolina; Jozwiak, Zofia

    2011-01-01

    Diabetes is associated with a mitochondrial dysfunction. Hyperglycaemia is also clearly recognized as the primary culprit in the pathogenesis of cardiac complications. In response to glycation and oxidative stress, cardiac mitochondria undergo cumulative alterations, often leading to heart deterioration. There is a continuous search for innovative treatment strategies for protecting the heart mitochondria from the destructive impact of diabetes. Aminoguanidine derivatives have been successfully used in animal model studies on the treatment of experimental diabetes, as well as the diabetes-driven dysfunctions of peripheral tissues and cells. Considerable attention has been paid particularly to β-resorcylidene aminoguanidine (RAG), often shown as the efficient anti-glycation and anti-oxidant agent in both animal studies and in vitro experiments. The aim of the present study was to test the hypothesis that RAG improves oxidative phosphorylation and electron transport capacity in mitochondria impaired by hyperglycaemia. Diabetes mellitus was induced in Wistar rats by a single intraperitoneal injection of streptozotocin (70 mg/kg body weight). Heart mitochondria were isolated from healthy rats and rats with streptozotocin-diabetes. Mitochondrial respiratory capacity was measured by high resolution respirometry with the OROBOROS Oxygraph-2k according to experimental protocol including respiratory substrates and inhibitors. The results revealed that RAG protects the heart against diabetes-associated injury by improving the mitochondrial bioenergetics, thus suggesting a possible novel pharmacological strategy for cardioprotection. PMID:22174647

  19. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms: Progress report for period 1 January 1987 to 31 December 1987

    SciTech Connect

    Spotila, J.R.; Standora, E.A.

    1987-09-01

    We quantified the constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. We completed studies on the thermoregulation of largemouth bass, on the bioenergetics of the slider turtle, Trachemys scripta, and on the role of temperature dependent sex determination in the extinction of dinosaurs. We also began research to develop the three dimensional bioenergetic climate space for freshwater turtles, to determine the role of incubation temperature on the post hatching growth rate of the snapping turtle, Chelydra serpentina, to establish the rate of energy expenditure of the slider turtle, Trachemys scripta, in the field, to determine the field metabolic rates, body temperatures and water flux rates of the box turtle, Terrapene carolina, and to measure the effect of diet type on the consumption rate, digestion rate and digestive efficiency of adult T. scripta. 60 refs., 9 figs.

  20. Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction-transport simulations

    NASA Astrophysics Data System (ADS)

    Dale, A. W.; Van Cappellen, P.; Aguilera, D. R.; Regnier, P.

    2008-01-01

    A simplified version of a kinetic-bioenergetic reaction model for anaerobic oxidation of methane (AOM) in marine sediments [Dale, A.W., Regnier, P., Van Cappellen, P., 2006. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am. J. Sci. 306, 246-294.] is used to assess the impact of transport processes on biomass distributions, AOM rates and methane release fluxes from the sea floor. The model explicitly represents the functional microbial groups and the kinetic and bioenergetic limitations of the microbial metabolic pathways involved in AOM. Model simulations illustrate the dominant control exerted by the transport regime on the activity and abundance of AOM communities. Upward fluid flow at active seep systems restricts AOM to a narrow subsurface reaction zone and sustains high rates of methane oxidation. In contrast, pore-water transport dominated by molecular diffusion leads to deeper and broader zones of AOM, characterized by much lower rates and biomasses. Under steady-state conditions, less than 1% of the upward dissolved methane flux reaches the water column, irrespective of the transport regime. However, a sudden increase in the advective flux of dissolved methane, for example as a result of the destabilization of methane hydrates, causes a transient efflux of methane from the sediment. The benthic efflux of dissolved methane is due to the slow growth kinetics of the AOM community and lasts on the order of 60 years. This time window is likely too short to allow for a significant escape of pore-water methane following a large scale gas hydrate dissolution event such as the one that may have accompanied the Paleocene/Eocene Thermal Maximum (PETM).

  1. Mitochondrial bioenergetics and oxidative status disruption in brainstem of weaned rats: Immediate response to maternal protein restriction.

    PubMed

    Ferreira, Diorginis José Soares; da Silva Pedroza, Anderson Apolônio; Braz, Glauber Ruda Feitoza; da Silva-Filho, Reginaldo Correia; Lima, Talitta Arruda; Fernandes, Mariana Pinheiro; Doi, Sonia Q; Lagranha, Claudia Jacques

    2016-07-01

    Mitochondrial bioenergetics dysfunction has been postulated as an important mechanism associated to a number of cardiovascular diseases in adulthood. One of the hypotheses is that this is caused by the metabolic challenge generated by the mismatch between prenatal predicted and postnatal reality. Perinatal low-protein diet produces several effects that are manifested in the adult animal, including altered sympathetic tone, increased arterial blood pressure and oxidative stress in the brainstem. The majority of the studies related to nutritional programming postulates that the increased risk levels for non-communicable diseases are associated with the incompatibility between prenatal and postnatal environment. However, little is known about the immediate effects of maternal protein restriction on the offspring's brainstem. The present study aimed to test the hypothesis that a maternal low-protein diet causes tissue damage immediately after exposure to the nutritional insult that can be assessed in the brainstem of weaned offspring. In this regard, a series of assays was conducted to measure the mitochondrial bioenergetics and oxidative stress biomarkers in the brainstem, which is the brain structure responsible for the autonomic cardiovascular control. Pregnant Wistar rats were fed ad libitum with normoprotein (NP; 17% casein) or low-protein (LP; 8% casein) diet throughout pregnancy and lactation periods. At weaning, the male offsprings were euthanized and the brainstem was quickly removed to assess the mitochondria function, reactive oxygen species (ROS) production, mitochondrial membrane electric potential (ΔΨm), oxidative biomarkers, antioxidant defense and redox status. Our data demonstrated that perinatal LP diet induces an immediate mitochondrial dysfunction. Furthermore, the protein restriction induced a marked increase in ROS production, with a decrease in antioxidant defense and redox status. Altogether, our findings suggest that LP-fed animals may be at

  2. Cellular Bioenergetics is an Important Determinant of the Molecular Imaging Signal Derived from Luciferase and the Sodium-Iodide Symporter

    PubMed Central

    Chang, Connie; Chan, Angel; Lin, Xiaoping; Higuchi, Takahiro; Terrovitis, John; Afzal, Junaid M.; Rittenbach, Andrew; Sun, Dongdong; Vakrou, Styliani; Woldemichael, Kirubel; O’Rourke, Brian; Wahl, Richard; Pomper, Martin; Tsui, Benjamin; Abraham, M. Roselle

    2013-01-01

    Rationale Molecular imaging is useful for longitudinal assessment of engraftment. However, it is not known which factors, other than cell number can influence the molecular imaging signal obtained from reporter genes. Objective The effects of cell dissociation/suspension on cellular bioenergetics and the signal obtained by firefly luciferase(fluc) and human Na-I symporter(hNIS) labeling of cardiosphere-derived cells (CDCs) was investigated. Methods and Results 18FDG uptake, ATP levels, 99mTc-pertechnetate uptake and bioluminescence were measured in vitro, in adherent and suspended CDCs. In vivo dual isotope SPECT-CT imaging or bioluminescence imaging (BLI) were performed 1hr and 24hrs following CDC transplantation. SPECT quantification was performed using a phantom for signal calibration. Cell loss between 1hr & 24hrs post-transplantation was quantified by qPCR and ex vivo luciferase assay. Cell dissociation followed by suspension for 1hr resulted in decreased glucose uptake, cellular ATP, 99mTc uptake and BLI signal by 82%, 43%, 42%, and 44% respectively, when compared to adherent cells, in vitro. In vivo 99mTc uptake was significantly lower at 1hr, when compared to 24hrs following cell transplantation in the non-infarct (p<0.001, n=3) and infarct (p<0.001, n =4) model, despite significant cell loss during this period. The in vivo BLI signal was significantly higher at 1hr than at 24hrs (p<0.01), with the BLI signal being higher when CDCs were suspended in glucose-containing medium compared to saline(PBS). Conclusion Adhesion is an important determinant of cellular bioenergetics, 99mTc-pertechnetate uptake and BLI signal. BLI and NIS imaging may be useful for in vivo optimization of bioenergetics in transplanted cells. PMID:23255420

  3. Bioenergetic Mechanisms in Astrocytes May Contribute to Amyloid Plaque Deposition and Toxicity*

    PubMed Central

    Fu, Wen; Shi, Diya; Westaway, David; Jhamandas, Jack H.

    2015-01-01

    Alzheimer disease (AD) is characterized neuropathologically by synaptic disruption, neuronal loss, and deposition of amyloid β (Aβ) protein in brain structures that are critical for memory and cognition. There is increasing appreciation, however, that astrocytes, which are the major non-neuronal glial cells, may play an important role in AD pathogenesis. Unlike neurons, astrocytes are resistant to Aβ cytotoxicity, which may, in part, be related to their greater reliance on glycolytic metabolism. Here we show that, in cultures of human fetal astrocytes, pharmacological inhibition or molecular down-regulation of a main enzymatic regulator of glycolysis, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3), results in increased accumulation of Aβ within and around astrocytes and greater vulnerability of these cells to Aβ toxicity. We further investigated age-dependent changes in PFKFB3 and astrocytes in AD transgenic mice (TgCRND8) that overexpress human Aβ. Using a combination of Western blotting and immunohistochemistry, we identified an increase in glial fibrillary acidic protein expression in astrocytes that paralleled the escalation of the Aβ plaque burden in TgCRND8 mice in an age-dependent manner. Furthermore, PFKFB3 expression also demonstrated an increase in these mice, although at a later age (9 months) than GFAP and Aβ. Immunohistochemical staining showed significant reactive astrogliosis surrounding Aβ plaques with increased PFKFB3 activity in 12-month-old TgCRND8 mice, an age when AD pathology and behavioral deficits are fully manifested. These studies shed light on the unique bioenergetic mechanisms within astrocytes that may contribute to the development of AD pathology. PMID:25814669

  4. Bioenergetics and the epigenome: interface between the environment and genes in common diseases.

    PubMed

    Wallace, Douglas C

    2010-01-01

    Extensive efforts have been directed at using genome-wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl-CoA, NADH + H(+), and FADH(2) to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)-encoded genes plus 37 mitochondrial DNA (mtDNA)-encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA-encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially-generated ATP and acetyl-CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially-mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. PMID:20818725

  5. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects

    PubMed Central

    Módis, Katalin; Bos, Eelke M; Calzia, Enrico; van Goor, Harry; Coletta, Ciro; Papapetropoulos, Andreas; Hellmich, Mark R; Radermacher, Peter; Bouillaud, Frédéric; Szabo, Csaba

    2014-01-01

    Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2S on complex IV is enhanced, which may shift the balance of H2S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2S (e.g. sepsis), while in other disease states H2S levels and H2S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2S-induced therapeutic ‘suspended animation’, a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991749

  6. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    NASA Astrophysics Data System (ADS)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the

  7. Comparison of Selenium bioaccumulation in the clams Corbicula fluminea and Potamocorbula amurensis: a bioenergetic modeling approach.

    PubMed

    Lee, Byong-Gweon; Lee, Jung-Suk; Luoma, Samuel N

    2006-07-01

    Selenium uptake from food (assimilation efficiency) and dissolved phase (influx rate) as well as loss kinetics (efflux rate) were compared between two bivalves, Corbicula fluminea and Potamocorbula amurensis. The effects of salinity and temperature on these kinetic parameters for both clam species also were evaluated. The Asiatic clam, C. fluminea, more efficiently assimilated Se associated with algae (66-87%) than Se associated with oxic sediments (20-37%). However, no consistent difference was found between Se assimilation efficiencies from both food types (19-60%) for P. amurensis. The temperature and salinity had a minor influence on the Se assimilation from ingested food. However, the effects of temperature and salinity were more evident in the uptake from dissolved sources. The influx rate of Se(IV) increased by threefold with the increase of temperature from 5 to 21 degrees C for C. fluminea. The increase of salinity from 4 to 20 psu decreased the uptake rate constant (ku) of Se in P. amurensis from 0.011 to 0.005 L/g/h, whereas salinity change (0-8 psu) had a negligible effect on the Se influx rate of C. fluminea. The Se influx rate of P. amurensis decreased by half with the 3.5-fold increase in tissue dry weight. The rate constant of loss was greater for P. amurensis (0.029/d at 8 psu) than for C. fluminea (0.014/d at 0 psu and 0.01/d at 8 psu). A bioenergetic model suggests that dietary uptake is the dominant pathway for Se bioaccumulation in the two clams in San Francisco Bay and that interspecies differences in Se bioaccumulation can be explained by differences in food ingestion rates. PMID:16833157

  8. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics.

    PubMed

    Porter, Craig; Herndon, David N; Bhattarai, Nisha; Ogunbileje, John O; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S

    2016-02-01

    Altered skeletal muscle mitochondrial function contributes to the pathophysiological stress response to burns. However, the acute and chronic impact of burn trauma on skeletal muscle bioenergetics remains poorly understood. Here, we determined the temporal relationship between burn trauma and mitochondrial function in murine skeletal muscle local to and distal from burn wounds. Male BALB/c mice (8-10 weeks old) were burned by submersion of the dorsum in water (∼ 95 °C) to create a full thickness burn on ∼ 30% of the body. Skeletal muscle was harvested spinotrapezius underneath burn wounds (local) and the quadriceps (distal) of sham and burn treated mice at 3h, 24h, 4d and 10d post-injury. Mitochondrial respiration was determined in permeabilized myofiber bundles by high-resolution respirometry. Caspase 9 and caspase 3 protein concentration were determined by western blot. In muscle local to burn wounds, respiration coupled to ATP production was significantly diminished at 3h and 24h post-injury (P<0.001), as was mitochondrial coupling control (P<0.001). There was a 5- (P<0.05) and 8-fold (P<0.001) increase in respiration in response to cytochrome at 3h and 24h post burn, respectively, indicating damage to the outer mitochondrial membranes. Moreover, we also observed greater active caspase 9 and caspase 3 in muscle local to burn wounds, indicating the induction of apoptosis. Distal muscle mitochondrial function was unaltered by burn trauma until 10d post burn, where both respiratory capacity (P<0.05) and coupling control (P<0.05) were significantly lower than sham. These data highlight a differential response in muscle mitochondrial function to burn trauma, where the timing, degree and mode of dysfunction are dependent on whether the muscle is local or distal to the burn wound. PMID:26615714

  9. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    NASA Astrophysics Data System (ADS)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  10. Comparison of selenium bioaccumulation in the clams Corbicula fluminea and Potamocorbula amurensis: A bioenergetic modeling approach

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.

    2006-01-01

    Selenium uptake from food (assimilation efficiency) and dissolved phase (influx rate) as well as loss kinetics (efflux rate) were compared between two bivalves, Corbicula fluminea and Potamocorbula amurensis. The effects of salinity and temperature on these kinetic parameters for both clam species also were evaluated. The Asiatic clam, C. fluminea, more efficiently assimilated Se associated with algae (66-87%) than Se associated with oxic sediments (20-37%). However, no consistent difference was found between Se assimilation efficiencies from both food types (19-60%) for P. amurensis. The temperature and salinity had a minor influence on the Se assimilation from ingested food. However, the effects of temperature and salinity were more evident in the uptake from dissolved sources. The influx rate of Se(IV) increased by threefold with the increase of temperature from 5 to 21??C for C. fluminea. The increase of salinity from 4 to 20 psu decreased the uptake rate constant (ku) of Se in P. amurensis from 0.011 to 0.005 L/g/h, whereas salinity change (0-8 psu) had a negligible effect on the Se influx rate of C. fluminea. The Se influx rate of P. amurensis decreased by half with the 3.5-fold increase in tissue dry weight. The rate constant of loss was greater for P. amurensis (0.029/d at 8 psu) than for C. fluminea (0.014/d at 0 psu and 0.01/d at 8 psu). A bioenergetic model suggests that dietary uptake is the dominant pathway for Se bioaccumulation in the two clams in San Francisco Bay and that interspecies differences in Se bioaccumulation can be explained by differences in food ingestion rates. ?? 2006 SETAC.

  11. The energy blockers 3-bromopyruvate and lonidamine: effects on bioenergetics of brain mitochondria.

    PubMed

    Macchioni, Lara; Davidescu, Magdalena; Roberti, Rita; Corazzi, Lanfranco

    2014-10-01

    Tumor cells favor abnormal energy production via aerobic glycolysis and show resistance to apoptosis, suggesting the involvement of mitochondrial dysfunction. The differences between normal and cancer cells in their energy metabolism provide a biochemical basis for developing new therapeutic strategies. The energy blocker 3-bromopyruvate (3BP) can eradicate liver cancer in animals without associated toxicity, and is a potent anticancer towards glioblastoma cells. Since mitochondria are 3BP targets, in this work the effects of 3BP on the bioenergetics of normal rat brain mitochondria were investigated in vitro, in comparison with the anticancer agent lonidamine (LND). Whereas LND impaired oxygen consumption dependent on any complex of the respiratory chain, 3BP was inhibitory to malate/pyruvate and succinate (Complexes I and II), but preserved respiration from glycerol-3-phosphate and ascorbate (Complex IV). Accordingly, although electron flow along the respiratory chain and ATP levels were decreased by 3BP in malate/pyruvate- and succinate-fed mitochondria, they were not significantly influenced from glycerol-3-phosphate- or ascorbate-fed mitochondria. LND produced a decrease in electron flow from all substrates tested. No ROS were produced from any substrate, with the exception of 3BP-induced H(2)O(2) release from succinate, which suggests an antimycin-like action of 3BP as an inhibitor of Complex III. We can conclude that 3BP does not abolish completely respiration and ATP synthesis in brain mitochondria, and has a limited effect on ROS production, confirming that this drug may have limited harmful effects on normal cells. PMID:25194986

  12. Alveolar type II cells maintain bioenergetic homeostasis in hypoxia through metabolic and molecular adaptation

    PubMed Central

    Lottes, Robyn G.; Newton, Danforth A.; Spyropoulos, Demetri D.

    2014-01-01

    Although many lung diseases are associated with hypoxia, alveolar type II epithelial (ATII) cell impairment, and pulmonary surfactant dysfunction, the effects of O2 limitation on metabolic pathways necessary to maintain cellular energy in ATII cells have not been studied extensively. This report presents results of targeted assays aimed at identifying specific metabolic processes that contribute to energy homeostasis using primary ATII cells and a model ATII cell line, mouse lung epithelial 15 (MLE-15), cultured in normoxic and hypoxic conditions. MLEs cultured in normoxia demonstrated a robust O2 consumption rate (OCR) coupled to ATP generation and limited extracellular lactate production, indicating reliance on oxidative phosphorylation for ATP production. Pharmacological uncoupling of respiration increased OCR in normoxic cultures to 175% of basal levels, indicating significant spare respiratory capacity. However, when exposed to hypoxia for 20 h, basal O2 consumption fell to 60% of normoxic rates, and cells maintained only ∼50% of normoxic spare respiratory capacity, indicating suppression of mitochondrial function, although intracellular ATP levels remained at near normoxic levels. Moreover, while hypoxic exposure stimulated glycogen synthesis and storage in MLE-15, glycolytic rate (as measured by lactate generation) was not significantly increased in the cells, despite enhanced expression of several enzymes related to glycolysis. These results were largely recapitulated in murine primary ATII, demonstrating MLE-15 suitability for modeling ATII metabolism. The ability of ATII cells to maintain ATP levels in hypoxia without enhancing glycolysis suggests that these cells are exceptionally efficient at conserving ATP to maintain bioenergetic homeostasis under O2 limitation. PMID:24682450

  13. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990649

  14. An overview of methods for developing bioenergetic and life history models for rare and endangered species

    USGS Publications Warehouse

    Petersen, J.H.; DeAngelis, D.L.; Paukert, C.P.

    2008-01-01

    Many fish species are at risk to some degree, and conservation efforts are planned or underway to preserve sensitive populations. For many imperiled species, models could serve as useful tools for researchers and managers as they seek to understand individual growth, quantify predator-prey dynamics, and identify critical sources of mortality. Development and application of models for rare species however, has been constrained by small population sizes, difficulty in obtaining sampling permits, limited opportunities for funding, and regulations on how endangered species can be used in laboratory studies. Bioenergetic and life history models should help with endangered species-recovery planning since these types of models have been used successfully in the last 25 years to address management problems for many commercially and recreationally important fish species. In this paper we discuss five approaches to developing models and parameters for rare species. Borrowing model functions and parameters from related species is simple, but uncorroborated results can be misleading. Directly estimating parameters with laboratory studies may be possible for rare species that have locally abundant populations. Monte Carlo filtering can be used to estimate several parameters by means of performing simple laboratory growth experiments to first determine test criteria. Pattern-oriented modeling (POM) is a new and developing field of research that uses field-observed patterns to build, test, and parameterize models. Models developed using the POM approach are closely linked to field data, produce testable hypotheses, and require a close working relationship between modelers and empiricists. Artificial evolution in individual-based models can be used to gain insight into adaptive behaviors for poorly understood species and thus can fill in knowledge gaps. ?? Copyright by the American Fisheries Society 2008.

  15. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts

    PubMed Central

    Liang, Qiuli; Benavides, Gloria A.; Vasilopulos, Athanasios; Gius, David; Darley-Usmar, Victor; Zhang, Jianhua

    2014-01-01

    Synopsis Sirtuin 3 (Sirt3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival but the role of Sirt3 is unclear. To examine this, we used Sirt3 knockout (KO) mouse embryonic fibroblast cells, and found that under basal conditions, Sirt3 KO cells exhibited increased autophagy flux compared to Wildtype (WT) cells. In response to nutrient deprivation, both WT and KO cells exhibited increased basal and ATP linked mitochondrial respiration, indicating an increased energy demand. Both cells exhibited lower levels of phosphorylated mTOR, and higher autophagy flux, with KO cells exhibiting lower maximal mitochondrial respiration and reserve capacity and higher levels of autophagy than WT cells. KO cells exhibit higher phospho-JNK and phospho-c-Jun than WT cells under starvation conditions. However, inhibition of JNK activity in Sirt3 KO cells did not affect LC3-I and LC3-II levels, indicating the Sirt3-regulated autophagy is independent of the JNK pathway. Caspase 3 activation and cell death are significantly higher in Sirt3 KO cells compared to WT cells in response to nutrient deprivation. Inhibition of autophagy by chloroquine, exacerbated cell death in both WT and Sirt3 KO cells, and by 3-methyadenine exacerbated cell death in Sirt3 KO cells. These data suggest that nutrient deprivation-induced autophagy plays a protective role in cell survival, and Sirt3 decreases the requirement for enhanced autophagy and improves cellular bioenergetics. PMID:23767918

  16. Magnesium Sulfate Protects Against the Bioenergetic Consequences of Chronic Glutamate Receptor Stimulation

    PubMed Central

    Clerc, Pascaline; Young, Christina A.; Bordt, Evan A.; Grigore, Alina M.; Fiskum, Gary; Polster, Brian M.

    2013-01-01

    Extracellular glutamate is elevated following brain ischemia or trauma and contributes to neuronal injury. We tested the hypothesis that magnesium sulfate (MgSO4, 3 mM) protects against metabolic failure caused by excitotoxic glutamate exposure. Rat cortical neuron preparations treated in medium already containing a physiological concentration of Mg2+ (1 mM) could be segregated based on their response to glutamate (100 µM). Type I preparations responded with a decrease or small transient increase in oxygen consumption rate (OCR). Type II neurons responded with >50% stimulation in OCR, indicating a robust response to increased energy demand without immediate toxicity. Pre-treatment with MgSO4 improved the initial bioenergetic response to glutamate and ameliorated subsequent loss of spare respiratory capacity, measured following addition of the uncoupler FCCP, in Type I but not Type II neurons. Spare respiratory capacity in Type I neurons was also improved by incubation with MgSO4 or NMDA receptor antagonist MK801 in the absence of glutamate treatment. This finding indicates that the major difference between Type I and Type II preparations is the amount of endogenous glutamate receptor activity. Incubation of Type II neurons with 5 µM glutamate prior to excitotoxic (100 µM) glutamate exposure recapitulated a Type I phenotype. MgSO4 protected against an excitotoxic glutamate-induced drop in neuronal ATP both with and without prior 5 µM glutamate exposure. Results indicate that MgSO4 protects against chronic moderate glutamate receptor stimulation and preserves cellular ATP following treatment with excitotoxic glutamate. PMID:24236167

  17. Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria.

    PubMed

    Peters, J; Giudici-Orticoni, M T; Zaccai, G; Guiral, M

    2013-07-01

    Various models on membrane structure and organization of proteins and complexes in natural membranes emerged during the last years. However, the lack of systematic dynamical studies to complement structural investigations hindered the establishment of a more complete picture of these systems. Elastic incoherent neutron scattering gives access to the dynamics on a molecular level and was applied to natural membranes extracted from the hyperthermophile Aquifex aeolicus and the mesophile Wolinella succinogenes bacteria. The results permitted to extract a hierarchy of dynamic flexibility and atomic resilience within the samples, which correlated with the organization of proteins in bioenergetics complexes and the functionality of the membranes. PMID:23880731

  18. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction.

    PubMed

    Onukwufor, John O; Stevens, Don; Kamunde, Collins

    2016-09-01

    The mitochondrial ATP-sensitive K(+) (mitoKATP) channel plays a significant role in mitochondrial physiology and protects against ischemic reperfusion injury in mammals. Although fish frequently face oxygen fluctuations in their environment, the role of the mitoKATP channel in regulating the responses to oxygen stress is rarely investigated in this class of animals. To elucidate whether and how the mitoKATP channel protects against hypoxia-reoxygenation (H-R)-induced mitochondrial dysfunction in fish, we first determined the mitochondrial bioenergetic effects of two key modulators of the channel, diazoxide and 5-hydroxydecanoate (5-HD), using a wide range of doses. Subsequently, the effects of low and high doses of the modulators on mitochondrial bioenergetics and volume under normoxia and after H-R using buffers with and without magnesium and ATP (Mg-ATP) were tested. In the absence of Mg-ATP (mitoKATP channel open), both low and high doses of diazoxide improved mitochondrial coupling, but only the high dose of 5-HD reversed the post-H-R coupling-enhancing effect of diazoxide. In the presence of Mg-ATP (mitoKATP channel closed), diazoxide at the low dose improved coupling post-H-R, and this effect was abolished by 5-HD at the low dose. Interestingly, both low and high doses of diazoxide reversed H-R-induced swelling under mitoKATP channel open conditions, but this effect was not sensitive to 5-HD. Under mitoKATP channel closed conditions, diazoxide at the low dose protected the mitochondria from H-R-induced swelling and 5-HD at the low dose reversed this effect. In contrast, diazoxide at the high dose failed to reduce the swelling caused by H-R, and the addition of the high dose of 5-HD enhanced mitochondrial swelling. Overall, our study showed that in the presence of Mg-ATP, both opening of mitoKATP channels and bioenergetic effects of diazoxide were protective against H-R in fish mitochondria, while in the absence of Mg-ATP only the bioenergetic effect of

  19. A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors.

    PubMed

    Alam, Md Maksudul; Lal, Sneha; FitzGerald, Keely E; Zhang, Li

    2016-03-01

    Since Otto Warburg made the first observation that tumor cells exhibit altered metabolism and bioenergetics in the 1920s, many scientists have tried to further the understanding of tumor bioenergetics. Particularly, in the past decade, the application of the state-of the-art metabolomics and genomics technologies has revealed the remarkable plasticity of tumor metabolism and bioenergetics. Firstly, a wide array of tumor cells have been shown to be able to use not only glucose, but also glutamine for generating cellular energy, reducing power, and metabolic building blocks for biosynthesis. Secondly, many types of cancer cells generate most of their cellular energy via mitochondrial respiration and oxidative phosphorylation. Glutamine is the preferred substrate for oxidative phosphorylation in tumor cells. Thirdly, tumor cells exhibit remarkable versatility in using bioenergetics substrates. Notably, tumor cells can use metabolic substrates donated by stromal cells for cellular energy generation via oxidative phosphorylation. Further, it has been shown that mitochondrial transfer is a critical mechanism for tumor cells with defective mitochondria to restore oxidative phosphorylation. The restoration is necessary for tumor cells to gain tumorigenic and metastatic potential. It is also worth noting that heme is essential for the biogenesis and proper functioning of mitochondrial respiratory chain complexes. Hence, it is not surprising that recent experimental data showed that heme flux and function are elevated in non-small cell lung cancer (NSCLC) cells and that elevated heme function promotes intensified oxygen consumption, thereby fueling tumor cell proliferation and function. Finally, emerging evidence increasingly suggests that clonal evolution and tumor genetic heterogeneity contribute to bioenergetic versatility of tumor cells, as well as tumor recurrence and drug resistance. Although mutations are found only in several metabolic enzymes in tumors, diverse

  20. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source.

    PubMed

    Putti, Rosalba; Migliaccio, Vincenzo; Sica, Raffaella; Lionetti, Lillà

    2015-01-01

    It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance. PMID:26834644

  1. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source

    PubMed Central

    Putti, Rosalba; Migliaccio, Vincenzo; Sica, Raffaella; Lionetti, Lillà

    2016-01-01

    It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance. PMID:26834644

  2. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function.

    PubMed

    Esteras, Noemí; Dinkova-Kostova, Albena T; Abramov, Andrey Y

    2016-05-01

    The nuclear factor erythroid-derived 2 (NF-E2)-related factor 2 (Nrf2) is a transcription factor well-known for its function in controlling the basal and inducible expression of a variety of antioxidant and detoxifying enzymes. As part of its cytoprotective activity, increasing evidence supports its role in metabolism and mitochondrial bioenergetics and function. Neurodegenerative diseases are excellent candidates for Nrf2-targeted treatments. Most neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia and Friedreich's ataxia are characterized by oxidative stress, misfolded protein aggregates, and chronic inflammation, the common targets of Nrf2 therapeutic strategies. Together with them, mitochondrial dysfunction is implicated in the pathogenesis of most neurodegenerative disorders. The recently recognized ability of Nrf2 to regulate intermediary metabolism and mitochondrial function makes Nrf2 activation an attractive and comprehensive strategy for the treatment of neurodegenerative disorders. This review aims to focus on the potential therapeutic role of Nrf2 activation in neurodegeneration, with special emphasis on mitochondrial bioenergetics and function, metabolism and the role of transporters, all of which collectively contribute to the cytoprotective activity of this transcription factor. PMID:26812787

  3. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    SciTech Connect

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  4. Ca²⁺ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance.

    PubMed

    Hoffman, Nicholas E; Miller, Barbara A; Wang, JuFang; Elrod, John W; Rajan, Sudasan; Gao, Erhe; Song, Jianliang; Zhang, Xue-Qian; Hirschler-Laszkiewicz, Iwona; Shanmughapriya, Santhanam; Koch, Walter J; Feldman, Arthur M; Madesh, Muniswamy; Cheung, Joseph Y

    2015-03-15

    Ubiquitously expressed Trpm2 channel limits oxidative stress and preserves mitochondrial function. We first demonstrated that intracellular Ca(2+) concentration increase after Trpm2 activation was due to direct Ca(2+) influx and not indirectly via reverse Na(+)/Ca(2+) exchange. To elucidate whether Ca(2+) entry via Trpm2 is required to maintain cellular bioenergetics, we injected adenovirus expressing green fluorescent protein (GFP), wild-type (WT) Trpm2, and loss-of-function (E960D) Trpm2 mutant into left ventricles of global Trpm2 knockout (gKO) or WT hearts. Five days post-injection, gKO-GFP heart slices had higher reactive oxygen species (ROS) levels but lower oxygen consumption rate (OCR) than WT-GFP heart slices. Trpm2 but not E960D decreased ROS and restored OCR in gKO hearts back to normal levels. In gKO myocytes expressing Trpm2 or its mutants, Trpm2 but not E960D reduced the elevated mitochondrial superoxide (O2(.-)) levels in gKO myocytes. After hypoxia-reoxygenation (H/R), Trpm2 but not E906D or P1018L (inactivates Trpm2 current) lowered O2(.-) levels in gKO myocytes and only in the presence of extracellular Ca(2+), indicating sustained Ca(2+) entry is necessary for Trpm2-mediated preservation of mitochondrial function. After ischemic-reperfusion (I/R), cardiac-specific Trpm2 KO hearts exhibited lower maximal first time derivative of LV pressure rise (+dP/dt) than WT hearts in vivo. After doxorubicin treatment, Trpm2 KO mice had worse survival and lower +dP/dt. We conclude 1) cardiac Trpm2-mediated Ca(2+) influx is necessary to maintain mitochondrial function and protect against H/R injury; 2) Ca(2+) influx via cardiac Trpm2 confers protection against H/R and I/R injury by reducing mitochondrial oxidants; and 3) Trpm2 confers protection in doxorubicin cardiomyopathy. PMID:25576627

  5. Relating suborganismal processes to ecotoxicological and population level endpoints using a bioenergetic model.

    PubMed

    Ananthasubramaniam, Bharath; McCauley, Edward; Gust, Kurt A; Kennedy, Alan J; Muller, Erik B; Perkins, Edward J; Nisbet, Roger M

    2015-09-01

    Ecological effects of environmental stressors are commonly evaluated using organismal or suborganismal data, such as standardized toxicity tests that characterize responses of individuals (e.g., mortality and reproduction) and a rapidly growing body of "omics" data. A key challenge for environmental risk assessment is relating such information to population dynamics. One approach uses dynamic energy budget (DEB) models that relate growth and reproduction of individuals to underlying flows of energy and elemental matter. We hypothesize that suborganismal information identifies DEB parameters that are most likely impacted by a particular stressor and that the DEB model can then project suborganismal effects on life history and population endpoints. We formulate and parameterize a model of growth and reproduction for the water flea Daphnia magna. Our model resembles previous generic bioenergetic models, but has explicit representation of discrete molts, an important feature of Daphnia life history. We test its ability to predict six endpoints commonly used in chronic toxicity studies in specified food environments. With just one adjustable parameter, the model successfully predicts growth and reproduction of individuals from a wide array of experiments performed in multiple laboratories using different clones of D. magna raised on different food sources. Fecundity is the most sensitive endpoint, and there is broad correlation between the sensitivities of fecundity and long-run growth rate, as is desirable for the default metric used in chronic toxicity tests. Under some assumptions, we can combine our DEB model with the Euler-Lotka equation to estimate longrun population growth rates at different food levels. A review of Daphnia gene-expression experiments on the effects of contaminant exposure reveals several connections to model parameters, in particular a general trend of increased transcript expression of genes involved in energy assimilation and utilization at

  6. Bioenergetic response of the extreme thermoacidophile Metallosphaera sedula to thermal and nutritional stresses

    SciTech Connect

    Peeples, T.L.; Kelly, R.M.

    1995-06-01

    The bioenergetic response of the extremely thermoacidophilic archaeon Metallosphaera sedula to thermal and nutritional stresses was examined. Continuous cultures (pH 2.0, 70{degrees}C, and dilution rate of 0.05h{sup {minus}1}) in which the levels of Casamino Acids and ferrous iron in growth media were reduced by a step change of 25 to 50% resulted in higher levels of several proteins. At 70{degrees}C under optimal growth conditions, M. sedula was typically found to have a {triangle}p of approximately -190 to -200{sub m}V, the result of an intracellular {sub p}H of 5.4 (extracellular {sub p}H, 2.0) and a {triangle}{Psi} of +40 to +50 {sub m}V, (positive inside). After cells had been shifted to either 80 or 85{degrees}C, {triangle}{Psi} decreased to nearly 0 {sub m}V and internal {sub p}H approached 4.0 within 4 h of the shift; respiratory activity, as evidenced by iron speciation in parallel temperature-shifted cultures on iron pyrite, had ceased by this point. If cultures shifted from ;70 to 80{degrees}C were shifted back to 70{degrees}C after 4 h, cells were able to regain pyrite oxidation capacity and internal {sub p}H increased to nearly normal levels after 13 h. However, {triangle}{Psi} remained close to 9 {sub m}V, possibly the result of enhanced ionic exchange with media upon thermal damage to cell membranes. Further, when M. sedula was subjected to an intermediate temperature shift from 73 to 79{degrees}C, an increase in pyrite dissolution (ferric iron levels doubled) over that of the unshifted control at 73{degrees}C was noted. The improvement in leaching was attributed to the synergistic effect of chemical and biological factors. As such, periodic exposure to higher temperatures, followed by a suitable recovery period, may provide a basis for improving bioleaching rates of acidophilic chemolithotrophs. 38 refs., 9 figs., 1 tab.

  7. Characterization of European sword blades through neutron imaging techniques

    NASA Astrophysics Data System (ADS)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  8. Otto von Guericke and 17th century cosmology

    NASA Astrophysics Data System (ADS)

    Knobloch, Eberhard

    Otto von Guericke's scientific method was based on reason and experimental science. His cosmology was embedded in theology and can be interpreted as a refutation of Descartes' worldview. He used Nicolaus Cusanus' theory of quantities in order to characterize space. The notion of space has to be distinguished from that of world or heaven. Forces play a crucial role in this respect described by Athanasius Kircher in his "Celestial Journey". Guericke read this work very diligently. In spite of some obvious similarities between Guericke's and Newton's scientific aims and methods there are crucial differences between the scientific convictions and results of these scholars.

  9. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    SciTech Connect

    First, M.W.

    1983-02-01

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

  10. 17th Environmental Quality Index: Troubling Times with Toxics.

    ERIC Educational Resources Information Center

    National Wildlife, 1986

    1986-01-01

    Presents a subjective analysis of the status of United States' natural resources, reviewing 1985's key environmental events, problems, and successes. Reports current conditions and/or dilemmas concerning wildlife, air, water, energy, forests, and soils. Provides both a public rating of the quality of life and a priority ranking of environmental…

  11. [Jan Swammerdam, physician and naturalist of the 17th century].

    PubMed

    Hoerni, Bernard

    2015-01-01

    Jan Swammerdam (1637-1680) was a physician and a naturalist who clarified some details of human anatomy and who made many microscopic observations on insects and their metamorphosis. His life was marked by spirituality and a malaria which caused his death and prevented him from publishing his works which were edited after a long delay. PMID:26050429

  12. Athanasius Kircher: The 17th Century Science at the Crossroads

    NASA Astrophysics Data System (ADS)

    Buonanno, R.

    2011-06-01

    Athanasius Kircher, who entered the Society of Jesus in 1628, is a peculiar scientist who is in love with everything he sees and with everything he thinks he sees. He is a non-Galilean scientist whose general attitude is not obscurantism but rather a defense of established faith. He arrives in Rome in the fall of 1633 when he is in his thirties. Even if at the epoch Kircher has already written some of his many books, it is amazing that Galileo does not even quote him in the letters he will wrote in the rest of his life. In spite of having stridden along a minor scientific path, opposite of that shown by Galileo, it is nonetheless surprising to find out that Athanasius Kircher was gifted with remarkable intuition, and was in some cases even decades in advance with respect to the age he lived in.

  13. Deafness in the 17th Century: Into Empiricism.

    ERIC Educational Resources Information Center

    Conrad, R; Weiskrantz, Barbara C.

    1984-01-01

    Recounts the history of deaf education in Britain and of studies into the abilities of those born deaf, beginning with the influence of Kenelm Digby's "Treatise on the Nature of Bodies" published in 1644 to about 100 years later when Henry Baker became the first professional teacher of the deaf in Britain. (SED)

  14. The 17th Symposium on Biotechnology for Fuels and Chemicals

    NASA Astrophysics Data System (ADS)

    This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

  15. Final Report: 17th international Symposium on Plant Lipids

    SciTech Connect

    Christoph Benning

    2007-03-07

    This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.

  16. IL-17/Th17 Pathway Is Activated in Acne Lesions

    PubMed Central

    Kelhälä, Hanna-Leena; Palatsi, Riitta; Fyhrquist, Nanna; Lehtimäki, Sari; Väyrynen, Juha P.; Kallioinen, Matti; Kubin, Minna E.; Greco, Dario; Tasanen, Kaisa; Alenius, Harri; Bertino, Beatrice; Carlavan, Isabelle; Mehul, Bruno; Déret, Sophie; Reiniche, Pascale; Martel, Philippe; Marty, Carine; Blume-Peytavi, Ulrike; Voegel, Johannes J.; Lauerma, Antti

    2014-01-01

    The mechanisms of inflammation in acne are currently subject of intense investigation. This study focused on the activation of adaptive and innate immunity in clinically early visible inflamed acne lesions and was performed in two independent patient populations. Biopsies were collected from lesional and non-lesional skin of acne patients. Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed at the RNA and also protein level with real-time PCR (RT-PCR) and Luminex technology. Cytokines involved in Th17 lineage differentiation (IL-1β, IL-6, TGF-β, IL23p19) were remarkably induced at the RNA level. In addition, proinflammatory cytokines and chemokines (TNF-α, IL-8, CSF2 and CCL20), Th1 markers (IL12p40, CXCR3, T-bet, IFN-γ), T regulatory cell markers (Foxp3, IL-10, TGF-β) and IL-17 related antimicrobial peptides (S100A7, S100A9, lipocalin, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL-17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway is activated and may play a pivotal role in the disease process, possibly offering new targets of therapy. PMID:25153527

  17. Bioenergetic Response of the Extreme Thermoacidophile Metallosphaera sedula to Thermal and Nutritional Stresses

    PubMed Central

    Peeples, T. L.; Kelly, R. M.

    1995-01-01

    The bioenergetic response of the extremely thermoacidophilic archaeon Metallosphaera sedula to thermal and nutritional stresses was examined. Continuous cultures (pH 2.0, 70(deg)C, and dilution rate of 0.05 h(sup-1)) in which the levels of Casamino Acids and ferrous iron in growth media were reduced by a step change of 25 to 50% resulted in higher levels of several proteins, including a 62-kDa protein immunologically related to the molecular chaperone designated thermophilic factor 55 in Sulfolobus shibatae (J. D. Trent, J. Osipiuk, and T. Pinkau, J. Bacteriol. 172:1478-1484, 1990), on sodium dodecyl sulfate-polyacrylamide gels. The 62-kDa protein was also noted at elevated levels in cells that had been shifted from 70 to either 80 or 85(deg)C. The proton motive force ((Delta)p), transmembrane pH ((Delta)pH), and membrane potential ((Delta)(psi)) were determined for samples obtained from continuous cultures (pH 2.0, 70(deg)C, and dilution rate of 0.05 h(sup-1)) and incubated under nutritionally and/or thermally stressed and unstressed conditions. At 70(deg)C under optimal growth conditions, M. sedula was typically found to have a (Delta)p of approximately -190 to -200 mV, the result of an intracellular pH of 5.4 (extracellular pH, 2.0) and a (Delta)(psi) of +40 to +50 mV (positive inside). After cells had been shifted to either 80 or 85(deg)C, (Delta)(psi) decreased to nearly 0 mV and internal pH approached 4.0 within 4 h of the shift; respiratory activity, as evidenced by iron speciation in parallel temperature-shifted cultures on iron pyrite, had ceased by this point. If cultures shifted from 70 to 80(deg)C were shifted back to 70(deg)C after 4 h, cells were able to regain pyrite oxidation capacity and internal pH increased to nearly normal levels after 13 h. However, (Delta)(psi) remained close to 0 mV, possibly the result of enhanced ionic exchange with media upon thermal damage to cell membranes. Further, when M. sedula was subjected to an intermediate

  18. Compatibility of Superparamagnetic Iron Oxide Nanoparticle Labeling for 1H MRI Cell Tracking with 31P MRS for Bioenergetic Measurements

    PubMed Central

    Zhang, Zhuoli; Hancock, Brynne; Leen, Stephanie; Ramaswamy, Sharan; Sollott, Steven J.; Boheler, Kenneth R.; Juhaszova, Magdalena; Lakatta, Edward G.; Spencer, Richard G.; Fishbein, Kenneth W.

    2011-01-01

    Labeling of cells with superparamagnetic iron oxide nanoparticles permits cell tracking by 1H MRI while 31P MRS allows non-invasive evaluation of cellular bioenergetics. We evaluated the compatibility of these two techniques by obtaining 31P NMR spectra of iron-labeled and unlabeled immobilized C2C12 myoblast cells in vitro. Broadened but usable 31P spectra were obtained, and peak area ratios of resonances corresponding to intracellular metabolites showed no significant differences between labeled and unlabeled cell populations. We conclude that 31P NMR spectra can be obtained from cells labeled with sufficient iron to permit visualization by 1H imaging protocols and that these spectra have sufficient quality to be used in assessing metabolic status. This result introduces the possibility of using localized 31P MRS to evaluate the viability of iron-labeled therapeutic cells as well as surrounding host tissue in vivo. PMID:20853523

  19. Tissue-specific bioenergetic effects and increased enzymatic activities following acute sublethal peroral exposure to cyanide in the mallard duck.

    PubMed

    Ma, J; Pritsos, C A

    1997-02-01

    Protection of wildlife and in particular migratory birds, which are protected by the Migratory Bird Treaty Act, from cyanide waste in and around gold mining operations is an important environmental issue. We have investigated the bioenergetic effects of sublethal peroral cyanide exposure using the mallard duck (Anus platyrhynchos) as a model migratory bird. At cyanide concentrations well below levels considered safe by the mining industry and some regulatory agencies (50 ppm weak acid dissociable (WAD) cyanide) significant depletions of heart, liver, and brain tissue ATP levels were observed. Tissue ATP levels were restored to normal by 24 hr postexposure. Rhodanese and 3-mercaptopyruvate sulfurtransferase activities were determined in these tissues both for basal activity and post-cyanide exposure. Only brain tissue showed increased enzymatic activity following cyanide exposure, suggesting tissue-specific regulation of these enzymatic activities. These studies suggest that 50 ppm WAD cyanide is not a safe level of cyanide in water where avian wildlife exposure can occur. PMID:9070352

  20. The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase

    PubMed Central

    Kaludercic, Nina

    2016-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) targeting mitochondria are major causative factors in disease pathogenesis. The mitochondrial permeability transition pore (PTP) is a mega-channel modulated by calcium and ROS/RNS modifications and it has been described to play a crucial role in many pathophysiological events since prolonged channel opening causes cell death. The recent identification that dimers of ATP synthase form the PTP and the fact that posttranslational modifications caused by ROS/RNS also affect cellular bioenergetics through the modulation of ATP synthase catalysis reveal a dual function of these modifications in the cells. Here, we describe mitochondria as a major site of production and as a target of ROS/RNS and discuss the pathophysiological conditions in which oxidative and nitrosative modifications modulate the catalytic and pore-forming activities of ATP synthase. PMID:27034734

  1. Anti-leishmanial evaluation of C2-aryl quinolines: mechanistic insight on bioenergetics and sterol biosynthetic pathway of Leishmania braziliensis.

    PubMed

    Bompart, Daznia; Núñez-Durán, Jorge; Rodríguez, Daniel; Kouznetsov, Vladimir V; Meléndez Gómez, Carlos M; Sojo, Felipe; Arvelo, Francisco; Visbal, Gonzalo; Alvarez, Alvaro; Serrano-Martín, Xenón; García-Marchán, Yael

    2013-07-15

    A series of diverse simple C2-aryl quinolines was synthesized de novo via a straightforward synthesis based on the acid-catalyzed multicomponent imino Diels-Alder reactions. Seven selected quinolines were evaluated at different stages of Leishmania braziliensis parasite. Among them, the 6-ethyl-2-phenylquinoline 5f was able to inhibit the growth of promastigotes of this parasite without affecting the mammalian cells viability and decreasing the number of intracellular L. braziliensis amastigotes on BMDM macrophages. The mechanism of action studied for the selected compound consisted in: (1) alteration of parasite bioenergetics, by disrupting mitochondrial electrochemical potential and alkalinization of acidocalcisomes, and (2) inhibition of ergosterol biosynthetic pathway in promastigote forms. These results validate the efficiency of quinoline molecules as leishmanicide compounds. PMID:23719286

  2. Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the north Pacific Ocean

    USGS Publications Warehouse

    Atcheson, Margaret E.; Myers, Katherine W.; Beauchamp, David A.; Mantua, Nathan J.

    2012-01-01

    Energetic responses of steelhead Oncorhynchus mykiss to climate-driven changes in marine conditions are expected to affect the species’ ocean distribution, feeding, growth, and survival. With a unique 18-year data series (1991–2008) for steelhead sampled in the open ocean, we simulated interannual variation in prey consumption and growth efficiency of steelhead using a bioenergetics model to evaluate the temperature-dependent growth response of steelhead to past climate events and to estimate growth potential of steelhead under future climate scenarios. Our results showed that annual ocean growth of steelhead is highly variable depending on prey quality, consumption rates, total consumption, and thermal experience. At optimal growing temperatures, steelhead can compensate for a low-energy diet by increasing consumption rates and consuming more prey, if available. Our findings suggest that steelhead have a narrow temperature window in which to achieve optimal growth, which is strongly influenced by climate-driven changes in ocean temperature.

  3. Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    PubMed Central

    Silva da Costa, Leandro; Pereira da Silva, Ana Paula; Da Poian, Andrea T.; El-Bacha, Tatiana

    2012-01-01

    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis

  4. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession.

    PubMed

    Liu, Dong; Pitta, Michael; Jiang, Haiyang; Lee, Jong-Hwan; Zhang, Guofeng; Chen, Xinzhi; Kawamoto, Elisa M; Mattson, Mark P

    2013-06-01

    Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathologic accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated tau in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the β-nicotinamide adenine dinucleotide precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling, and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration, and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. β-Nicotinamide adenine dinucleotide biosynthesis, autophagy, and phosphatidylinositol-3-kinase signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and hyperphosphorylated tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (protein kinase B [Akt] and extracellular signal-regulated kinases) and the transcription factor cyclic adenosine monophosphate (AMP) response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system. PMID:23273573

  5. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis

    PubMed Central

    Preiss, Laura; Hicks, David B.; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann

    2015-01-01

    Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH. PMID:26090360

  6. High-Throughput Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms

    PubMed Central

    Jayasundara, Nishad; Kozal, Jordan S.; Arnold, Mariah C.; Chan, Sherine S. L.; Di Giulio, Richard T.

    2015-01-01

    Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR) analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2), which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2) and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism’s vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate—a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important applications in

  7. Development of a bioenergetics model for humpback chub and evaluation of water temperature changes in the Grand Canyon, Colorado River

    USGS Publications Warehouse

    Petersen, J.H.; Paukert, C.P.

    2005-01-01

    The construction of Glen Canyon Dam above the Grand Canyon (Arizona) has reduced the water temperature in the Colorado River and altered the growth rate and feeding patterns of the federally endangered humpback chub Gila cypha. A bioenergetics model for humpback chub was developed and used to examine how warmer water temperatures in the lower Colorado River (achieved through a temperature control device [TCD] at Glen Canyon Dam) might influence their growth rate and food requirements. Parameter values for humpback chub were developed by Monte Carlo filtering and fitting to laboratory growth. Parameter bounds were established from the literature for Gila species, random parameter sets were selected within these bounds, and the growth of modeled humpback chub was compared with criteria from a laboratory growth experiment at 24??C. This method of parameter estimation could be applied to other imperiled fishes where physiological studies are impractical. Final parameter values were corroborated by comparison with the growth rates of humpback chub from independent field and laboratory studies. Simulations indicated that increasing water temperatures from approximately 9??C to 16??C during summer and fall, the change expected from the TCD, may have a minimal effect on humpback chub growth rate unless food availability also increases with temperature. To evaluate the effects of increased temperatures on humpback chub in the lower Colorado River, it will be essential to monitor their growth rate, the invertebrate community, and the predators of humpback chub, which are also influenced by temperature changes. Bioenergetics models for humpback chub and their predators should be helpful tools for identifying potential scenarios and evaluating the complex interactions resulting from a TCD. ?? Copyright by the American Fisheries Society 2005.

  8. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis.

    PubMed

    Preiss, Laura; Hicks, David B; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann

    2015-01-01

    Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH. PMID:26090360

  9. Hemorrhagic shock-induced cerebral bioenergetic imbalance is corrected by pharmacologic treatment with EF24 in a rat model.

    PubMed

    Rao, Geeta; Xie, Jun; Hedrick, Andria; Awasthi, Vibhudutta

    2015-12-01

    Maintenance of cerebral viability and function is an important goal of critical care in victims of injury due to ischemia and hypovolemia. As part of the multiple organ dysfunction syndrome, the brain function after trauma is influenced by the systemic inflammatory response. We investigated the effect of EF24, an anti-inflammatory bis-chalcone, on cerebral bioenergetics in a rat model of 45% hemorrhagic shock. The rats were treated with EF24 (0.4 mg/kg) or EF24 with an artificial oxygen carrier liposome-encapsulated hemoglobin (LEH). The volume of LEH administered was equal to the shed blood. The brain was collected after 6 h of shock for biochemical assays. EF24 treatment showed significant recovery of ATP, phosphocreatine, and NAD/NADH ratio. It also increased citrate synthase activity and cytochrome c oxidase subunit IV expression which were reduced in shock brain. Furthermore, it reduced the shock-induced accumulation of pyruvate and pyruvate dehydrogenase kinase-1 expression, suggesting that EF24 treatment improves cerebral energetics by restoring perturbed pyruvate metabolism in the mitochondria. These effects of EF24 were associated with reduced poly(ADP-ribose) polymerase cleavage and a significant improvement in the levels of nerve growth factor and brain-derived neurotrophic factor in shock brain. Co-administration of LEH with EF24 was only marginally more effective as compared to the treatment with EF24 alone. These results show that EF24 treatment sets up a pro-survival phenotype in shock by resurrecting cerebral bioenergetics. Since EF24 was effective in the absence of accompanying fluid resuscitation, it has potential utility as a pre-hospital pharmacotherapy in shock due to accidental blood loss. PMID:26232641

  10. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons

    PubMed Central

    Shields, L Y; Kim, H; Zhu, L; Haddad, D; Berthet, A; Pathak, D; Lam, M; Ponnusamy, R; Diaz-Ramirez, L G; Gill, T M; Sesaki, H; Mucke, L; Nakamura, K

    2015-01-01

    Disrupting particular mitochondrial fission and fusion proteins leads to the death of specific neuronal populations; however, the normal functions of mitochondrial fission in neurons are poorly understood, especially in vivo, which limits the understanding of mitochondrial changes in disease. Altered activity of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) may contribute to the pathophysiology of several neurologic diseases. To study Drp1 in a neuronal population affected by Alzheimer's disease (AD), stroke, and seizure disorders, we postnatally deleted Drp1 from CA1 and other forebrain neurons in mice (CamKII-Cre, Drp1lox/lox (Drp1cKO)). Although most CA1 neurons survived for more than 1 year, their synaptic transmission was impaired, and Drp1cKO mice had impaired memory. In Drp1cKO cell bodies, we observed marked mitochondrial swelling but no change in the number of mitochondria in individual synaptic terminals. Using ATP FRET sensors, we found that cultured neurons lacking Drp1 (Drp1KO) could not maintain normal levels of mitochondrial-derived ATP when energy consumption was increased by neural activity. These deficits occurred specifically at the nerve terminal, but not the cell body, and were sufficient to impair synaptic vesicle cycling. Although Drp1KO increased the distance between axonal mitochondria, mitochondrial-derived ATP still decreased similarly in Drp1KO boutons with and without mitochondria. This indicates that mitochondrial-derived ATP is rapidly dispersed in Drp1KO axons, and that the deficits in axonal bioenergetics and function are not caused by regional energy gradients. Instead, loss of Drp1 compromises the intrinsic bioenergetic function of axonal mitochondria, thus revealing a mechanism by which disrupting mitochondrial dynamics can cause dysfunction of axons. PMID:25880092

  11. [Biobanks European infrastructure].

    PubMed

    Kinkorová, Judita; Topolčan, Ondřej

    2016-01-01

    Biobanks are structured repositories of human tissue samples connected with specific information. They became an integral part of personalized medicine in the new millennium. At the European research area biobanks are isolated not well coordinated and connected to the network. European commission supports European infrastructure BBMRI-ERIC (Biobanks and Biomolecular Resources Research Infrastructure European Research Infrastructure Consortium), consortium of 54 members with more than 225 associated organizations, largely biobanks from over 30 countries. The aim is to support biomedical research using stored samples. Czech Republic is a member of the consortium as a national node BBMRI_CZ, consisting of five partners. PMID:27256149

  12. Application of matrix-assisted laser desorption and ionization time of flight mass spectrometry to the study of the proteinaceous binders in paint: blue paint composition in the series "The Life of Virgin" by Alonso Cano (17th century) as a case study.

    PubMed

    Romero-Pastor, Julia; Natalia Navas, Natalia Navas; Rodríguez-Simón, Luís; Lario-Simón, Antonio; Kuckova, Stepanka; Manzano, Eloísa

    2015-01-01

    The identification of proteinaceous materials in paint constituents provides very valuable information regarding the techniques used by the painter and the most suitable procedures for conserving and restoring their works. Although the analysis of proteinaceous materials is nowadays a common task when dealing with works of art, the reliable detection and identification of protein traces is still complicated, particularly when very small samples can be taken that may contain a mixture of different organic materials (oils, waxes, resins, gums etc.). We therefore proposed a proteomic approach to investigate protein materials in paintings at trace levels in order to obtain a better understanding of the painter's technique. After trypsin digestion of the paint samples, mass spectra were obtained by matrix-assisted laser desorption and ionization time of flight mass spectrometry (MALDI-TOF-MS) and they were compared with the Mascot database and with theoretical digested proteins. This study contributes to the knowledge about the technique used by Alonso Cano (Granada, Spain, 1601-1667), one of the most original and brilliant artists from the Spanish Golden Age (17th century), in the series called the Life of the Virgin (six paintings), part of the iconographic program about the life of the Virgin Mary, nowadays seen in the main chapel of Granada Cathedral. The objective of the present study was to test the use of proteinaceous material, mainly egg yolk, in the paint used by Cano, as suggested in previous research, although this would have been unusual at that time when most artists used oil paints. Based on the results of the analysis here presented, the use of protein in the binding media can most likely be excluded. PMID:25906031

  13. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro

    PubMed Central

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R.; Szabo, Csaba

    2014-01-01

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1 – 3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time-and concentration-dependent modulatory effects on cell proliferation. At 0.1–1 mM SAM increased HCT116 proliferation between 0–12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12–24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at

  14. European auxiliary propulsion, 1972

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1972-01-01

    The chemical and electric auxiliary propulsion technology of the United Kingdom, France, and West Germany is discussed in detail, and the propulsion technology achievements of Italy, India, Japan, and Russia are reviewed. A comparison is presented of Shell 405 catalyst and a European spontaneous hydrazine catalyst called CNESRO I. Finally, conclusions are drawn regarding future trends in European auxiliary propulsion technology development.

  15. AMP-activated protein kinase mediates apoptosis in response to bioenergetic stress through activation of the pro-apoptotic Bcl-2 homology domain-3-only protein BMF.

    PubMed

    Kilbride, Seán M; Farrelly, Angela M; Bonner, Caroline; Ward, Manus W; Nyhan, Kristine C; Concannon, Caoimhín G; Wollheim, Claes B; Byrne, Maria M; Prehn, Jochen H M

    2010-11-12

    Heterozygous loss-of-function mutations in the hepatocyte nuclear factor 1A (HNF1A) gene result in the pathogenesis of maturity-onset diabetes-of-the-young type 3, (HNF1A-MODY). This disorder is characterized by a primary defect in metabolism-secretion coupling and decreased beta cell mass, attributed to excessive beta cell apoptosis. Here, we investigated the link between energy stress and apoptosis activation following HNF1A inactivation. This study employed single cell fluorescent microscopy, flow cytometry, gene expression analysis, and gene silencing to study the effects of overexpression of dominant-negative (DN)-HNF1A expression on cellular bioenergetics and apoptosis in INS-1 cells. Induction of DN-HNF1A expression led to reduced ATP levels and diminished the bioenergetic response to glucose. This was coupled with activation of the bioenergetic stress sensor AMP-activated protein kinase (AMPK), which preceded the onset of apoptosis. Pharmacological activation of AMPK using aminoimidazole carboxamide ribonucleotide (AICAR) was sufficient to induce apoptosis in naive cells. Conversely, inhibition of AMPK with compound C or AMPKα gene silencing protected against DN-HNF1A-induced apoptosis. Interestingly, AMPK mediated the induction of the pro-apoptotic Bcl-2 homology domain-3-only protein Bmf (Bcl-2-modifying factor). Bmf expression was also elevated in islets of DN-HNF1A transgenic mice. Furthermore, knockdown of Bmf expression in INS-1 cells using siRNA was sufficient to protect against DN-HNF1A-induced apoptosis. Our study suggests that overexpression of DN-HNF1A induces bioenergetic stress and activation of AMPK. This in turn mediates the transcriptional activation of the pro-apoptotic Bcl-2-homology protein BMF, coupling prolonged energy stress to apoptosis activation. PMID:20841353

  16. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8(+) T Cell Exhaustion.

    PubMed

    Bengsch, Bertram; Johnson, Andy L; Kurachi, Makoto; Odorizzi, Pamela M; Pauken, Kristen E; Attanasio, John; Stelekati, Erietta; McLane, Laura M; Paley, Michael A; Delgoffe, Greg M; Wherry, E John

    2016-08-16

    Dynamic reprogramming of metabolism is essential for T cell effector function and memory formation. However, the regulation of metabolism in exhausted CD8(+) T (Tex) cells is poorly understood. We found that during the first week of chronic lymphocytic choriomeningitis virus (LCMV) infection, before severe dysfunction develops, virus-specific CD8(+) T cells were already unable to match the bioenergetics of effector T cells generated during acute infection. Suppression of T cell bioenergetics involved restricted glucose uptake and use, despite persisting mechanistic target of rapamycin (mTOR) signaling and upregulation of many anabolic pathways. PD-1 regulated early glycolytic and mitochondrial alterations and repressed transcriptional coactivator PGC-1α. Improving bioenergetics by overexpression of PGC-1α enhanced function in developing Tex cells. Therapeutic reinvigoration by anti-PD-L1 reprogrammed metabolism in a subset of Tex cells. These data highlight a key metabolic control event early in exhaustion and suggest that manipulating glycolytic and mitochondrial metabolism might enhance checkpoint blockade outcomes. PMID:27496729

  17. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  18. A single bio-energetics growth and reproduction model for the oyster Crassostrea gigas in six Atlantic ecosystems

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; Bourlès, Yves; Maurer, Danièle; Robert, Stéphane; Mazurié, Joseph; Gangnery, Aline; Goulletquer, Philippe; Pouvreau, Stéphane

    2011-11-01

    Many studies based on bioenergetics growth models have investigated the effects of environmental factors on oyster ( Crassostrea gigas) growth and physiology. However, most of these models are site-specific and cannot be applied to other culture sites without the re-estimation of parameters or re-formulation of some processes. We aimed to develop a generic growth model suitable for application in contrasting environments, with a constant set of parameters. We tested the oyster-DEB model (Bourlès et al. 2009) for the stimulation of C. gigas growth in different cohorts (spats and adults) at major shellfish culture sites in France, in several years: Arcachon (1993-1994); Marennes-Oléron (2007); Quiberon (1999, 2000, 2001); Brest Harbour (2008); Mont-Saint-Michel Bay (2003); Baie-des-Veys (2002). These different ecosystems offer a wide range of values for the two forcing variables of the model: water temperature (range: 6-24 °C) and phytoplankton concentration (annual average: 110-700 × 10 3 cell L -1). The validation data (dry flesh mass of C. gigas) were obtained from various growth surveys carried out by IFREMER. The oyster-DEB model simulated the oyster growth dynamics of both spat and adult stages of C. gigas accurately over time at the various culture sites. The model captures: i) the active spring growth; ii) the timing and amplitude of spawning events; and iii) the lean periods ( i.e. loss of dry flesh mass) in autumn and winter. The half-saturation coefficient Xk is the only model parameter that varied between sites and years. This environment-specific coefficient reflects variability in the food of the oysters: quantitative and qualitative effects of the inorganic material and of the phytoplankton species on the feeding response of C. gigas. With a single set of parameters (other than for Xk), this is thus the first bio-energetic growth model for C. gigas robust enough and of a sufficiently generic nature for the accurate simulation of oyster growth in

  19. Filling the Eastern European gap in millennium-long temperature reconstructions.

    PubMed

    Büntgen, Ulf; Kyncl, Tomáš; Ginzler, Christian; Jacks, David S; Esper, Jan; Tegel, Willy; Heussner, Karl-Uwe; Kyncl, Josef

    2013-01-29

    Tree ring-based temperature reconstructions form the scientific backbone of the current global change debate. Although some European records extend into medieval times, high-resolution, long-term, regional-scale paleoclimatic evidence is missing for the eastern part of the continent. Here we compile 545 samples of living trees and historical timbers from the greater Tatra region to reconstruct interannual to centennial-long variations in Eastern European May-June temperature back to 1040 AD. Recent anthropogenic warming exceeds the range of past natural climate variability. Increased plague outbreaks and political conflicts, as well as decreased settlement activities, coincided with temperature depressions. The Black Death in the mid-14th century, the Thirty Years War in the early 17th century, and the French Invasion of Russia in the early 19th century all occurred during the coldest episodes of the last millennium. A comparison with summer temperature reconstructions from Scandinavia, the Alps, and the Pyrenees emphasizes the seasonal and spatial specificity of our results, questioning those large-scale reconstructions that simply average individual sites. PMID:23319641

  20. Filling the Eastern European gap in millennium-long temperature reconstructions

    PubMed Central

    Büntgen, Ulf; Kyncl, Tomáš; Ginzler, Christian; Jacks, David S.; Esper, Jan; Tegel, Willy; Heussner, Karl-Uwe; Kyncl, Josef

    2013-01-01

    Tree ring–based temperature reconstructions form the scientific backbone of the current global change debate. Although some European records extend into medieval times, high-resolution, long-term, regional-scale paleoclimatic evidence is missing for the eastern part of the continent. Here we compile 545 samples of living trees and historical timbers from the greater Tatra region to reconstruct interannual to centennial-long variations in Eastern European May–June temperature back to 1040 AD. Recent anthropogenic warming exceeds the range of past natural climate variability. Increased plague outbreaks and political conflicts, as well as decreased settlement activities, coincided with temperature depressions. The Black Death in the mid-14th century, the Thirty Years War in the early 17th century, and the French Invasion of Russia in the early 19th century all occurred during the coldest episodes of the last millennium. A comparison with summer temperature reconstructions from Scandinavia, the Alps, and the Pyrenees emphasizes the seasonal and spatial specificity of our results, questioning those large-scale reconstructions that simply average individual sites. PMID:23319641

  1. Premutation in the Fragile X Mental Retardation 1 (FMR1) Gene Affects Maternal Zn-milk and Perinatal Brain Bioenergetics and Scaffolding

    PubMed Central

    Napoli, Eleonora; Ross-Inta, Catherine; Song, Gyu; Wong, Sarah; Hagerman, Randi; Gane, Louise W.; Smilowitz, Jennifer T.; Tassone, Flora; Giulivi, Cecilia

    2016-01-01

    Fragile X premutation alleles have 55–200 CGG repeats in the 5′ UTR of the FMR1 gene. Altered zinc (Zn) homeostasis has been reported in fibroblasts from >60 years old premutation carriers, in which Zn supplementation significantly restored Zn-dependent mitochondrial protein import/processing and function. Given that mitochondria play a critical role in synaptic transmission, brain function, and cognition, we tested FMRP protein expression, brain bioenergetics, and expression of the Zn-dependent synaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (Shank3) in a knock-in (KI) premutation mouse model with 180 CGG repeats. Mitochondrial outcomes correlated with FMRP protein expression (but not FMR1 gene expression) in KI mice and human fibroblasts from carriers of the pre- and full-mutation. Significant deficits in brain bioenergetics, Zn levels, and Shank3 protein expression were observed in the Zn-rich regions KI hippocampus and cerebellum at PND21, with some of these effects lasting into adulthood (PND210). A strong genotype × age interaction was observed for most of the outcomes tested in hippocampus and cerebellum, whereas in cortex, age played a major role. Given that the most significant effects were observed at the end of the lactation period, we hypothesized that KI milk might have a role at compounding the deleterious effects on the FMR1 genetic background. A higher gene expression of ZnT4 and ZnT6, Zn transporters abundant in brain and lactating mammary glands, was observed in the latter tissue of KI dams. A cross-fostering experiment allowed improving cortex bioenergetics in KI pups nursing on WT milk. Conversely, WT pups nursing on KI milk showed deficits in hippocampus and cerebellum bioenergetics. A highly significant milk type × genotype interaction was observed for all three-brain regions, being cortex the most influenced. Finally, lower milk-Zn levels were recorded in milk from lactating women carrying the premutation as well

  2. Premutation in the Fragile X Mental Retardation 1 (FMR1) Gene Affects Maternal Zn-milk and Perinatal Brain Bioenergetics and Scaffolding.

    PubMed

    Napoli, Eleonora; Ross-Inta, Catherine; Song, Gyu; Wong, Sarah; Hagerman, Randi; Gane, Louise W; Smilowitz, Jennifer T; Tassone, Flora; Giulivi, Cecilia

    2016-01-01

    Fragile X premutation alleles have 55-200 CGG repeats in the 5' UTR of the FMR1 gene. Altered zinc (Zn) homeostasis has been reported in fibroblasts from >60 years old premutation carriers, in which Zn supplementation significantly restored Zn-dependent mitochondrial protein import/processing and function. Given that mitochondria play a critical role in synaptic transmission, brain function, and cognition, we tested FMRP protein expression, brain bioenergetics, and expression of the Zn-dependent synaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (Shank3) in a knock-in (KI) premutation mouse model with 180 CGG repeats. Mitochondrial outcomes correlated with FMRP protein expression (but not FMR1 gene expression) in KI mice and human fibroblasts from carriers of the pre- and full-mutation. Significant deficits in brain bioenergetics, Zn levels, and Shank3 protein expression were observed in the Zn-rich regions KI hippocampus and cerebellum at PND21, with some of these effects lasting into adulthood (PND210). A strong genotype × age interaction was observed for most of the outcomes tested in hippocampus and cerebellum, whereas in cortex, age played a major role. Given that the most significant effects were observed at the end of the lactation period, we hypothesized that KI milk might have a role at compounding the deleterious effects on the FMR1 genetic background. A higher gene expression of ZnT4 and ZnT6, Zn transporters abundant in brain and lactating mammary glands, was observed in the latter tissue of KI dams. A cross-fostering experiment allowed improving cortex bioenergetics in KI pups nursing on WT milk. Conversely, WT pups nursing on KI milk showed deficits in hippocampus and cerebellum bioenergetics. A highly significant milk type × genotype interaction was observed for all three-brain regions, being cortex the most influenced. Finally, lower milk-Zn levels were recorded in milk from lactating women carrying the premutation as well as

  3. The European Spallation Source

    NASA Astrophysics Data System (ADS)

    Lindroos, M.; Bousson, S.; Calaga, R.; Danared, H.; Devanz, G.; Duperrier, R.; Eguia, J.; Eshraqi, M.; Gammino, S.; Hahn, H.; Jansson, A.; Oyon, C.; Pape-Møller, S.; Peggs, S.; Ponton, A.; Rathsman, K.; Ruber, R.; Satogata, T.; Trahern, G.

    2011-12-01

    In 2003 the joint European effort to design a European Spallation Source (ESS) resulted in a set of reports, and in May 2009 Lund was agreed to be the ESS site. The ESS Scandinavia office has since then worked on setting all the necessary legal and organizational matters in place so that the Design Update and construction can be started in January 2011, in collaboration with European partners. The Design Update phase is expected to end in 2012, to be followed by a construction phase, with first neutrons expected in 2018-2019.

  4. Spatially-explicit bioenergetics of Pacific sardine in the Southern California Bight: are mesoscale eddies areas of exceptional prerecruit production?

    NASA Astrophysics Data System (ADS)

    Logerwell, Elizabeth A.; Lavaniegos, Bertha; Smith, Paul E.

    Previous research shows that offshore mesoscale eddies in the Southern California Bight region are areas where sardine larval abundance is significantly increased relative to inshore, slope and surrounding offshore waters. In order for mesoscale eddies to be a mechanism linking climate and sardine population variability they must be areas of exceptional prerecruit production. Temperature and prey data from various Southern California Bight (SCB) habitats, including offshore eddies, were applied to a spatially-explicit bioenergetic model which predicts sardine prerecruit growth potential. Growth potential was similar in inshore, slope, and eddy regions (11% and 12% day -1), and was lower in the offshore region, 9% day -1. To estimate production in eddy and non-eddy habitats, growth potential was multiplied by habitat-specific estimates of sardine larval biomass from at-sea surveys. A production index, a measure of potential production resulting from individual growth rate potential and local abundance, was greater in the model cyclonic eddy than in all other regions by more than an order of magnitude. In fact, the production index in the eddy was four times greater than in all other regions combined.

  5. Comparisons between consumption estimates from bioenergetics simulations and field measurements for walleyes from Oneida Lake, New York

    USGS Publications Warehouse

    Lantry, B.F.; Rudstam, L. G.; Forney, J.L.; VanDeValk, A.J.; Mills, E.L.; Stewart, D.J.; Adams, J.V.

    2008-01-01

    Daily consumption was estimated from the stomach contents of walleyes Sander vitreus collected weekly from Oneida Lake, New York, during June-October 1975, 1992, 1993, and 1994 for one to four age-groups per year. Field rations were highly variable between weeks, and trends in ration size varied both seasonally and annually. The coefficient of variation for weekly field rations within years and ages ranged from 45% to 97%. Field estimates were compared with simulated consumption from a bioenergetics model. The simulation averages of daily ration deviated from those of the field estimates by -20.1% to +70.3%, with a mean across all simulations of +14.3%. The deviations for each time step were much greater than those for the simulation averages, ranging from -92.8% to +363.6%. A systematic trend in the deviations was observed, the model producing overpredictions at rations less than 3.7% of body weight. Analysis of variance indicated that the deviations were affected by sample year and week but not age. Multiple linear regression using backwards selection procedures and Akaike's information criterion indicated that walleye weight, walleye growth, lake temperature, prey energy density, and the proportion of gizzard shad Dorosoma cepedianum in the diet significantly affected the deviations between simulated and field rations and explained 32% of the variance. ?? Copyright by the American Fisheries Society 2008.

  6. Bioenergetics assessment of fish and crayfish consumption by river otter (Lontra canadensis): integrating prey availability, diet, and field metabolic rate

    USGS Publications Warehouse

    Dekar, Matthew P.; Magoulick, Daniel D.; Beringer, J.

    2010-01-01

    River otters (Lontra canadensis) are important predators in aquatic ecosystems, but few studies quantify their prey consumption. We trapped crayfish monthly as an index of availability and collected otter scat for diet analysis in the Ozark Mountains of northwestern Arkansas, USA. We measured otter daily energy expenditure (DEE) with the doubly labeled water method to develop a bioenergetics model for estimating monthly prey consumption. Meek's crayfish (Orconectes meeki) catch-per-unit-effort was positively related to stream temperature, indicating that crayfish were more available during warmer months. The percentage frequency of occurrence for crayfish in scat samples peaked at 85.0% in summer and was lowest (42.3%) in winter. In contrast, the percentage occurrence of fish was 13.3% in summer and 57.7% in winter. Estimates of DEE averaged 4738 kJ·day-1 for an otter with a body mass of 7842 g. Total biomass consumption ranged from 35 079 to 52 653 g·month-1 (wet mass), corresponding to a high proportion of fish and crayfish in the diet, respectively. Otter consumption represents a large fraction of prey production, indicating potentially strong effects of otters on trophic dynamics in stream ecosystems.

  7. Climate regimes and water temperature changes in the Columbia River: bioenergetic implications for predators of juvenile salmon

    USGS Publications Warehouse

    Petersen, J.H.; Kitchell, J.F.

    2001-01-01

    We examined how climatic regime shifts may have affected predation rates on juvenile Pacific salmonids (Oncorhynchus spp.) by northern squawfish (Ptychocheilus oregonensis, also called northern pikeminnow), smallmouth bass (Micropterus dolomieu), and walleye (Stizostedion vitreum) in the Columbia River. During 1933-1996, oceanic, coastal, and freshwater indices of climate were highly correlated, and an index for the Columbia River Basin suggested that climate shifts may have occurred about 1946, 1958, 1969, and 1977. Summer water temperature varied as much as 2??C between climate periods. We used a bioenergetics model for northern squawfish, the most important piscivore, to predict that predation on salmonids would have been 26-31% higher during two periods with relatively warm spring-summer water temperatures (1933-1946, 1978-1996) than during an extremely cold period (1947-1958). Predicted predation rates of northern squawfish were 68-96% higher in the warmest year compared with the coldest year. Predation rates of smallmouth bass and walleye on juvenile salmonids varied among climate periods similar to rates predicted for northern squawfish. Climatic effects need to be understood in both freshwater and nearshore marine habitats, since growth rates of salmon populations are especially sensitive to mortality during early life stages.

  8. Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen.

    PubMed

    Radde, Brandie N; Ivanova, Margarita M; Mai, Huy Xuan; Salabei, Joshua K; Hill, Bradford G; Klinge, Carolyn M

    2015-01-01

    Oestrogen receptor α (ERα+) breast tumours rely on mitochondria (mt) to generate ATP. The goal of the present study was to determine how oestradiol (E2) and 4-hydroxytamoxifen (4-OHT) affect cellular bioenergetic function in MCF-7 and T47D ERα+ breast cancer cells in serum-replete compared with dextran-coated charcoal (DCC)-stripped foetal bovine serum (FBS)-containing medium ('serum-starved'). Serum-starvation reduced oxygen consumption rate (OCR), extracellular acidification rate (ECAR), ATP-linked OCR and maximum mt capacity, reflecting lower ATP demand and mt respiration. Cellular respiratory stateapparent was unchanged by serum deprivation. 4-OHT reduced OCR independent of serum status. Despite having a higher mt DNA/nuclear DNA ratio than MCF-7 cells, T47D cells have a lower OCR and ATP levels and higher proton leak. T47D express higher nuclear respiratory factor-1 (NRF-1) and NRF-1-regulated, nuclear-encoded mitochondrial transcription factor TFAM and cytochrome c, but lower levels of cytochrome c oxidase, subunit IV, isoform 1 (COX4, COX4I1). Mitochondrial reserve capacity, reflecting tolerance to cellular stress, was higher in serum-starved T47D cells and was increased by 4-OHT, but was decreased by 4-OHT in MCF-7 cells. These data demonstrate critical differences in cellular energetics and responses to 4-OHT in these two ERα+ cell lines, likely reflecting cancer cell avoidance of apoptosis. PMID:25279503

  9. Population dynamics, production, and prey consumption of fathead minnows (Pimephales promelas) in prairie wetlands: A bioenergetics approach

    USGS Publications Warehouse

    Duffy, W.G.

    1998-01-01

    I assessed the population dynamics of fathead minnows (Pimephales promelas) in prairie wetlands and developed a bioenergetics model to estimate their production and prey consumption. I sampled populations in four wetlands weekly from late May through June and biweekly during July and August using a Kushlan 1-m2 throw trap. I imposed commercial harvest on two populations; the other two populations served as controls. Weekly population density estimates ranged from 52 000 to 356 000??ha-1 during early June and from 5400 to 19 700??ha-1 in late August. Simulated commercial harvest did not influence population density, mortality rates, or size of fathead minnows. Standing stock biomass differed among wetlands sampled, ranging from 144 to 482 kg??ha-1 in early June and from 1 to 33 kg??ha-1 during late August. However, differences were attributed to differential predation pressure rather than harvest pressure. Net production during the period ranged from 71.5 to 202.7 kg??ha-1. Daily net production was greatest in early June (2.6-13.5 kg??ha-1??day-1) and then declined during July and August (0.1-1.2 kg??ha-1??day-1). Total mass of prey consumed by fathead minnows ranged from 332.7-1104.8 kg??ha-1 among wetlands.

  10. Defective Mitochondrial Morphology and Bioenergetic Function in Mice Lacking the Transcription Factor Yin Yang 1 in Skeletal Muscle

    PubMed Central

    Blättler, Sharon M.; Verdeguer, Francisco; Liesa, Marc; Cunningham, John T.; Vogel, Rutger O.; Chim, Helen; Liu, Huifei; Romanino, Klaas; Shirihai, Orian S.; Vazquez, Francisca; Rüegg, Markus A.; Shi, Yang

    2012-01-01

    The formation, distribution, and maintenance of functional mitochondria are achieved through dynamic processes that depend strictly on the transcription of nuclear genes encoding mitochondrial proteins. A large number of these mitochondrial genes contain binding sites for the transcription factor Yin Yang 1 (YY1) in their proximal promoters, but the physiological relevance is unknown. We report here that skeletal-muscle-specific YY1 knockout (YY1mKO) mice have severely defective mitochondrial morphology and oxidative function associated with exercise intolerance, signs of mitochondrial myopathy, and short stature. Gene set enrichment analysis (GSEA) revealed that the top pathways downregulated in YY1mKO mice were assigned to key metabolic and regulatory mitochondrial genes. This analysis was consistent with a profound decrease in the level of mitochondrial proteins and oxidative phosphorylation (OXPHOS) bioenergetic function in these mice. In contrast to the finding for wild-type mice, inactivation of the mammalian target of rapamycin (mTOR) did not suppress mitochondrial genes in YY1mKO mice. Mechanistically, mTOR-dependent phosphorylation of YY1 resulted in a strong interaction between YY1 and the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α), a major regulator of mitochondrial function. These results underscore the important role of YY1 in the maintenance of mitochondrial function and explain how its inactivation might contribute to exercise intolerance and mitochondrial myopathies. PMID:22711985

  11. Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1.

    PubMed

    Kunisawa, Jun; Sugiura, Yuki; Wake, Taichi; Nagatake, Takahiro; Suzuki, Hidehiko; Nagasawa, Risa; Shikata, Shiori; Honda, Kurara; Hashimoto, Eri; Suzuki, Yuji; Setou, Mitsutoshi; Suematsu, Makoto; Kiyono, Hiroshi

    2015-10-01

    Bioenergetic metabolism varies during cell differentiation, but details of B cell metabolism remain unclear. Here, we show the metabolic changes during B cell differentiation in the intestine, where B cells differentiate into IgA(+) plasma cells (PCs). Naive B cells in the Peyer's patches (PPs) and IgA(+) PCs in the intestinal lamina propria (iLP) both used the tricarboxylic acid (TCA) cycle, but only IgA(+) PCs underwent glycolysis. These metabolic differences reflected their dependencies on vitamin B1, an essential cofactor for the TCA cycle. Indeed, the diminished activity of the TCA cycle after dietary vitamin B1 depletion decreased the number of naive B cells in PPs without affecting IgA(+) PCs in the iLP. The maintenance of naive B cells by dietary vitamin B1 was required to induce-but not maintain-intestinal IgA responses against oral antigens. These findings reveal the diet-mediated maintenance of B cell immunometabolism in organized and diffuse intestinal tissues. PMID:26411688

  12. Nitric Oxide–Triggered Remodeling of Chloroplast Bioenergetics and Thylakoid Proteins upon Nitrogen Starvation in Chlamydomonas reinhardtii[W

    PubMed Central

    Wei, Lili; Derrien, Benoit; Gautier, Arnaud; Houille-Vernes, Laura; Boulouis, Alix; Saint-Marcoux, Denis; Malnoë, Alizée; Rappaport, Fabrice; de Vitry, Catherine; Vallon, Olivier; Choquet, Yves; Wollman, Francis-André

    2014-01-01

    Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated. PMID:24474630

  13. A bioenergetics modeling evaluation of top-down control of ruffe in the St. Louis River, western Lake Superior

    USGS Publications Warehouse

    Mayo, Kathleen R.; Selgeby, James H.; McDonald, Michael E.

    1998-01-01

    Ruffe (Gymnocephalus cernuus), were accidentally introduced into the St. Louis River estuary, western Lake Superior, in the mid 1980s and it was feared that they might affect native fish through predation on eggs and competition for forage and habitat. In an effort to control the abundance of ruffe and limit dispersal, a top-down control strategy using predators was implemented in 1989. We used bioenergetics modeling to examine the efficacy of top-down control in the St. Louis River from 1991 to 1994. Five predators--northern pike (Esox lucius), walleye (Stizostedion vitreum vitreum), smallmouth bass (Micropterus dolomieui), brown bullhead (Ictalurus nebulosus), and yellow perch (Perca flavescens)--were modeled to determine their consumption of ruffe and four other native prey species-spottail shiner (Notropis hudsonius), emerald shiner (Notropis atherinoides), yellow perch (Perca flavescens), and black crappie (Pomoxis nigromaculatus). Although predators ate as much as 47% of the ruffe biomass in 1 year, they were not able to halt the increase in ruffe abundance. The St. Louis River is an open system that allows predators to move freely out of the system, and the biomass of managed predators did not increase. A selectivity index showed all five predators selected the native prey and avoided ruffe. The St. Louis River has several predator and prey species creating many complex predator-prey interactions; and top-down control of ruffe by the predators examined in this study did not occur.

  14. Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source.

    PubMed

    Sassano, Carlos E N; Carvalho, João C M; Gioielli, Luiz A; Sato, Sunao; Torre, Paolo; Converti, Attilio

    2004-03-01

    The cyanobacterium Spirulina platensis was cultivated in bench-scale miniponds on bicarbonate/carbonate solutions using urea as nitrogen source. To minimize limitation and inhibition phenomena, urea was supplied semicontinuously using exponentially increasing feeding rates. The average growth rates obtained alternately varying the total mass of urea added per unit reactor volume (275 < mT < 725 mg/L) and the total feeding time (9 < tT < 15 d) clearly evidenced nitrogen limitation for mT< 500 mg/L and excess nitrogen inhibition above this threshold. The time behavior of the specific growth rate at variable urea feeding patterns allowed estimation of the time-dependent Gibbs energy dissipation for cell growth under the actual depletion conditions of fed-batch cultivations. Comparison of the yield of growth on Gibbs energy obtained using either urea or KNO3 pointed to the preference of S. platensis for the former nitrogen source, likely owing to more favorable bioenergetic conditions. PMID:15007182

  15. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers☆

    PubMed Central

    Kramer, Philip A.; Ravi, Saranya; Chacko, Balu; Johnson, Michelle S.; Darley-Usmar, Victor M.

    2014-01-01

    The assessment of metabolic function in cells isolated from human blood for treatment and diagnosis of disease is a new and important area of translational research. It is now becoming clear that a broad range of pathologies which present clinically with symptoms predominantly in one organ, such as the brain or kidney, also modulate mitochondrial energetics in platelets and leukocytes allowing these cells to serve as “the canary in the coal mine” for bioenergetic dysfunction. This opens up the possibility that circulating platelets and leukocytes can sense metabolic stress in patients and serve as biomarkers of mitochondrial dysfunction in human pathologies such as diabetes, neurodegeneration and cardiovascular disease. In this overview we will describe how the utilization of glycolysis and oxidative phosphorylation differs in platelets and leukocytes and discuss how they can be used in patient populations. Since it is clear that the metabolic programs between leukocytes and platelets are fundamentally distinct the measurement of mitochondrial function in distinct cell populations is necessary for translational research. PMID:24494194

  16. Landscape scale measures of steelhead (Oncorhynchus mykiss) bioenergetic growth rate potential in Lake Michigan and comparison with angler catch rates

    USGS Publications Warehouse

    Hook, T.O.; Rutherford, E.S.; Brines, Shannon J.; Geddes, C.A.; Mason, D.M.; Schwab, D.J.; Fleischer, G.W.

    2004-01-01

    The relative quality of a habitat can influence fish consumption, growth, mortality, and production. In order to quantify habitat quality, several authors have combined bioenergetic and foraging models to generate spatially explicit estimates of fish growth rate potential (GRP). However, the capacity of GRP to reflect the spatial distributions of fishes over large areas has not been fully evaluated. We generated landscape scale estimates of steelhead (Oncorhynchus mykiss) GRP throughout Lake Michigan for 1994-1996, and used these estimates to test the hypotheses that GRP is a good predictor of spatial patterns of steelhead catch rates. We used surface temperatures (measured with AVHRR satellite imagery) and acoustically measured steelhead prey densities (alewife, Alosa pseudoharengus) as inputs for the GRP model. Our analyses demonstrate that potential steelhead growth rates in Lake Michigan are highly variable in both space and time. Steelhead GRP tended to increase with latitude, and mean GRP was much higher during September 1995, compared to 1994 and 1996. In addition, our study suggests that landscape scale measures of GRP are not good predictors of steelhead catch rates throughout Lake Michigan, but may provide an index of interannual variation in system-wide habitat quality.

  17. European PTTI report

    NASA Technical Reports Server (NTRS)

    Cordara, Franco; Grimaldi, Sabrina; Leschiutta, Sigfrido

    1994-01-01

    Time and frequency metrology in Europe presents some peculiar features in its three main components: research on clocks, comparisons and dissemination methods, and dissemination services. Apart from the usual activities of the national metrological laboratories, an increasing number of cooperation between the European countries are promoted inside some European organizations, such as the ECC, EFTA, EUROMET, and WECC. Cooperation between these organizations is covered. The present, evolving situation will be further influenced by the recent political changes in Eastern Europe.

  18. Selective dendritic susceptibility to bioenergetic, excitotoxic and redox perturbations in cortical neurons☆

    PubMed Central

    Hasel, Philip; Mckay, Sean; Qiu, Jing; Hardingham, Giles E.

    2015-01-01

    Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca2+. Interestingly, while mitochondrial Ca2+ uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca2+ uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. PMID:25541281

  19. European Education, European Citizenship? On the Role of Education in Constructing Europeanness.

    ERIC Educational Resources Information Center

    Ollikainen, Aaro

    2000-01-01

    Focuses on the role of the European Union (EU) education programs in fostering a sense of European citizenship. Addresses the five meanings given to the concept of European citizenship: (1) recognition of European heritage; (2) EU loyalty; (3) right of free movement; (4) political participation; and (5) active citizenship. (CMK)

  20. WFPDB: European Plate Archives

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Milcho

    2007-08-01

    The Wide-Field Plate Database (WFPDB) gives an inventory of all wide-field (>~ 1 sq. deg) photographic observations archived in astronomical institutions over the world. So it facilitates and stimulates their use and preservation as a valuable source of information for future investigations in astronomy. At present WFPDB manages plate-index information for 25% of all existing plates providing on-line access from Sofia (http://www.skyarchive.org/search) and in CDS, Strasbourg. Here we present the new development of WFPDB as an instrument for searching of long term brightness variations of different sky objects stressing on the European photographic plate collections (from existing 2 million wide-field plates more than 55% are in Europe: Germany, Russia, Ukraine, Italy, Czech Republic, etc.). We comment examples of digitization (with flatbed scanners) of the European plate archives in Sonneberg, Pulkovo, Asiago, Byurakan, Bamberg, etc. and virtual links of WFPDB with European AVO, ADS, IBVS.

  1. European Universe Awareness

    NASA Astrophysics Data System (ADS)

    Russo, P.; Miley, G.; Westra van Holthe, F.; Schrier, W.; Reed, S.

    2011-10-01

    The European Universe Awareness (EU-UNAWE) programme uses the beauty and grandeur of the cosmos to encourage young children, particularly those from underprivileged backgrounds, to develop an interest in science and technology and to foster a sense of global citizenship. EU-UNAWE is already active in 40 countries and comprises a global network of almost 500 astronomers, teachers and other educators. The programme was recently awarded a grant of 1.9 million euros by the European Union so that it can be further developed in five European countries and South Africa. The grant will be used to organise teacher training workshops and to develop educational materials, such as an astronomy news service for children and games. During this presentation we will outline some of the biggest achievements of EU-UNAWE to date and discuss future plans for the programme.

  2. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress.

    PubMed

    Schneider, Lonnie; Giordano, Samantha; Zelickson, Blake R; S Johnson, Michelle; A Benavides, Gloria; Ouyang, Xiaosen; Fineberg, Naomi; Darley-Usmar, Victor M; Zhang, Jianhua

    2011-12-01

    Cell differentiation is associated with changes in metabolism and function. Understanding these changes during differentiation is important in the context of stem cell research, cancer, and neurodegenerative diseases. An early event in neurodegenerative diseases is the alteration of mitochondrial function and increased oxidative stress. Studies using both undifferentiated and differentiated SH-SY5Y neuroblastoma cells have shown distinct responses to cellular stressors; however, the mechanisms remain unclear. We hypothesized that because the regulation of glycolysis and oxidative phosphorylation is modulated during cellular differentiation, this would change bioenergetic function and the response to oxidative stress. To test this, we used retinoic acid (RA) to induce differentiation of SH-SY5Y cells and assessed changes in cellular bioenergetics using extracellular flux analysis. After exposure to RA, the SH-SY5Y cells had an increased mitochondrial membrane potential, without changing mitochondrial number. Differentiated cells exhibited greater stimulation of mitochondrial respiration with uncoupling and an increased bioenergetic reserve capacity. The increased reserve capacity in the differentiated cells was suppressed by the inhibitor of glycolysis 2-deoxy-d-glucose. Furthermore, we found that differentiated cells were substantially more resistant to cytotoxicity and mitochondrial dysfunction induced by the reactive lipid species 4-hydroxynonenal or the reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone. We then analyzed the levels of selected mitochondrial proteins and found an increase in complex IV subunits, which we propose contributes to the increase in reserve capacity in the differentiated cells. Furthermore, we found an increase in MnSOD that could, at least in part, account for the increased resistance to oxidative stress. Our findings suggest that profound changes in mitochondrial metabolism and antioxidant defenses occur upon

  3. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification.

    PubMed

    Yuan, Xiutang; Shao, Senlin; Yang, Xiaolong; Yang, Dazuo; Xu, Qinzeng; Zong, Humin; Liu, Shilin

    2016-05-01

    Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %·day(-1) decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output. PMID:26782325

  4. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: a bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  5. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: A bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  6. A dynamic-bioenergetics model to assess depth selection and reproductive growth by lake trout (Salvelinus namaycush).

    PubMed

    Plumb, John M; Blanchfield, Paul J; Abrahams, Mark V

    2014-06-01

    We coupled dynamic optimization and bioenergetics models to assess the assumption that lake trout (Salvelinus namaycush) depth distribution is structured by temperature, food availability, and predation risk to maximize reproductive mass by autumn spawning. Because the model uses empirical daily thermal-depth profiles recorded in a small boreal shield lake (lake 373 at the Experimental Lakes Area, northwestern Ontario) during 2 years of contrasting thermal stratification patterns, we also assessed how climate-mediated changes in lakes may affect the vertical distribution, growth, and fitness of lake trout, a cold-water top predator. The depths of acoustic-tagged lake trout were recorded concurrently with thermal-depth profiles and were compared to model output, enabling an assessment of model performance in relation to the observed fish behavior and contrasting thermal conditions. The depths and temperatures occupied by simulated fish most closely resembled those of the tagged fish when risk of predation was included in the model, indicating the model may incorporate the most important underlying mechanisms that determine lake trout depth. Annual differences suggest less use of shallow (warm), productive habitats, resulting in markedly less reproductive mass, during the year with the warm stratification pattern. Mass for reproduction may be lower in warmer conditions because of reduced reproductive investment, yet survival may be inadvertently higher because risky surface waters may be avoided more often in warmer, shallower, and metabolically costly conditions. At a minimum our study suggests that lake trout reproductive mass and fitness may be expected to change under the anticipated longer and warmer stratification patterns. PMID:24682254

  7. The circadian gene Rev-erbα improves cellular bioenergetics and provides preconditioning for protection against oxidative stress.

    PubMed

    Sengupta, Shaon; Yang, Guang; O'Donnell, John C; Hinson, Maurice D; McCormack, Shana E; Falk, Marni J; La, Ping; Robinson, Michael B; Williams, Monica L; Yohannes, Mekdes T; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Dennery, Phyllis A

    2016-04-01

    Diurnal oscillations in the expression of antioxidant genes imply that protection against oxidative stress is circadian-gated. We hypothesized that stabilization of the core circadian gene Rev-erbα (Nr1d1) improves cellular bioenergetics and protects against nutrient deprivation and oxidative stress. Compared to WT, mouse lung fibroblasts (MLG) stably transfected with a degradation resistant Rev-erbα (Ser(55/59) to Asp; hence referred to as SD) had 40% higher protein content, 1.5-fold higher mitochondrial area (confocal microscopy), doubled oxidative phosphorylation by high-resolution respirometry (Oroboros) and were resistant to glucose deprivation for 24h. This resulted from a 4-fold reduction in mitophagy (L3CB co-localized with MitoTracker Red) versus WT. Although PGC1α protein expression was comparable between SD and WT MLG cells, the role of mitochondrial biogenesis in explaining increased mitochondrial mass in SD cells was less clear. Embryonic fibroblasts (MEF) from C57Bl/6-SD transgenic mice, had a 9-fold induction of FoxO1 mRNA and increased mRNA of downstream antioxidant targets heme oxygenase-1 (HO-1), Mn superoxide dismutase and catalase (1.5, 2 fold and 2 fold respectively) versus WT. This allowed the SD cells to survive 1h incubation with 500 µM H2O2 as well as 24h of exposure to 95% O2 and remain attached whereas most WT cells did not. These observations establish a mechanistic link between the metabolic functions of Rev-erbα with mitochondrial homeostasis and protection against oxidative stress. PMID:26855417

  8. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    PubMed

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. PMID:27125544

  9. Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening.

    PubMed

    Rana, Payal; Anson, Blake; Engle, Sandra; Will, Yvonne

    2012-11-01

    Cardiotoxicity remains the number one reason for drug withdrawal from the market, and Food and Drug Administration issued black box warnings, thus demonstrating the need for more predictive preclinical safety screening, especially early in the drug discovery process when much chemical substrate is available. Whereas human-ether-a-go-go related gene screening has become routine to mitigate proarrhythmic risk, the development of in vitro assays predicting additional on- and off-target biochemical toxicities will benefit from cellular models exhibiting true cardiomyocyte characteristics such as native tissue-like mitochondrial activity. Human stem cell-derived tissue cells may provide such a model. This hypothesis was tested using a combination of flux analysis, gene and protein expression, and toxicity-profiling techniques to characterize mitochondrial function in induced pluripotent stem cell (iPSC) derived human cardiomyocytes in the presence of differing carbon sources over extended periods in cell culture. Functional analyses demonstrate that iPSC-derived cardiomyocytes are (1) capable of utilizing anaerobic or aerobic respiration depending upon the available carbon substrate and (2) bioenergetically closest to adult heart tissue cells when cultured in galactose or galactose supplemented with fatty acids. We utilized this model to test a variety of kinase inhibitors with known clinical cardiac liabilities for their potential toxicity toward these cells. We found that the kinase inhibitors showed a dose-dependent toxicity to iPSC cardiomyocytes grown in galactose and that oxygen consumption rates were significantly more affected than adenosine triphosphate production. Sorafenib was found to have the most effect, followed by sunitinib, dasatinib, imatinib, lapatinib, and nioltinib. PMID:22843568

  10. Bioenergetics of Nutrient Reserves and Metabolism in Spiny Lobster Juveniles Sagmariasus verreauxi: Predicting Nutritional Condition from Hemolymph Biochemistry.

    PubMed

    Simon, C J; Fitzgibbon, Q P; Battison, A; Carter, C G; Battaglene, S C

    2015-01-01

    The nutritional condition of cultured Sagmariasus verreauxi juveniles over the molt and during starvation was investigated by studying their metabolism, bioenergetics of nutrient reserves, and hemolymph biochemistry. Juveniles were shown to downregulate standard metabolic rate by as much as 52% within 14 d during starvation. Hepatopancreas (HP) lipid was prioritized as a source of energy, but this reserve represented only between 1% and 13% of the total measured energy reserve and was used quickly during starvation, especially in the immediate postmolt period when as much as 60% was depleted within 3 d. Abdominal muscle (AM) protein represented between 74% and 90% of the total measured energy reserve in juvenile lobsters, and as much as 40% of available AM protein energy was used over 28 d of starvation after the molt. Carbohydrate reserves represented less than 2% of the measured total energy reserve in fed intermolt lobsters and provided negligible energy during starvation. Eighteen hemolymph parameters were measured to identify a nondestructive biomarker of condition that would reflect accurately the state of energy reserves of the lobster. Among these, the hemolymph Brix index was the most accurate and practical method to predict HP lipid and the total energy content of both the HP and the AM in juvenile S. verreauxi. The Brix index was strongly correlated with hemolymph proteins, triglyceride, cholesterol, calcium, and phosphorus concentrations, as well as lipase activity; all were useful in predicting condition. Electrolytes such as chloride, magnesium, and potassium and metabolites such as glucose and lactate were poor indicators of nutritional condition. Uric acid and the "albumin"-to-"globulin" ratio provided complementary information to the Brix index, which may assist in determining nutritional condition of wild juvenile lobsters of unknown intermolt development. This study will greatly assist future ecological studies examining the nutritional condition

  11. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime.

    PubMed

    Skov, Peter V; Lund, Ivar; Pargana, Alexandre M

    2015-01-01

    Sustained swimming at moderate speeds is considered beneficial in terms of the productive performance of salmonids, but the causative mechanisms have yet to be unequivocally established. In the present study, the effects of moderate exercise on the bioenergetics of rainbow trout were assessed during a 15 week growth experiment, in which fish were reared at three different current speeds: 1 BL s(-1), 0.5 BL s(-1) and still water (≈ 0 BL s(-1)). Randomly selected groups of 100 fish were distributed among twelve 600 L tanks and maintained on a restricted diet regime. Specific growth rate (SGR) and feed conversion ratio (FCR) were calculated from weight and length measurements every 3 weeks. Routine metabolic rate (RMR) was measured every hour as rate of oxygen consumption in the tanks, and was positively correlated with swimming speed. Total ammonia nitrogen (TAN) excretion rates showed a tendency to decrease with increasing swimming speeds, yet neither they nor the resulting nitrogen quotients (NQ) indicated that swimming significantly reduced the fraction of dietary protein used to fuel metabolism. Energetic budgets revealed a positive correlation between energy expenditure and the current speed at which fish were reared, fish that were forced to swim and were fed restrictively consequentially had poorer growth and feed utilization. The results show that for rainbow trout, water current can negatively affect growth despite promoting minor positive changes in substrate utilization. We hypothesize that this may be the result of either a limited dietary energy supply from diet restriction being insufficient for both covering the extra costs of swimming and supporting enhanced growth. PMID:25705195

  12. Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions

    NASA Astrophysics Data System (ADS)

    Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.

    2009-08-01

    A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.

  13. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Rizo-Roca, D; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2015-08-20

    We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise

  14. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime

    PubMed Central

    Skov, Peter V.; Lund, Ivar; Pargana, Alexandre M.

    2015-01-01

    Sustained swimming at moderate speeds is considered beneficial in terms of the productive performance of salmonids, but the causative mechanisms have yet to be unequivocally established. In the present study, the effects of moderate exercise on the bioenergetics of rainbow trout were assessed during a 15 week growth experiment, in which fish were reared at three different current speeds: 1 BL s−1, 0.5 BL s−1 and still water (≈ 0 BL s−1). Randomly selected groups of 100 fish were distributed among twelve 600 L tanks and maintained on a restricted diet regime. Specific growth rate (SGR) and feed conversion ratio (FCR) were calculated from weight and length measurements every 3 weeks. Routine metabolic rate (RMR) was measured every hour as rate of oxygen consumption in the tanks, and was positively correlated with swimming speed. Total ammonia nitrogen (TAN) excretion rates showed a tendency to decrease with increasing swimming speeds, yet neither they nor the resulting nitrogen quotients (NQ) indicated that swimming significantly reduced the fraction of dietary protein used to fuel metabolism. Energetic budgets revealed a positive correlation between energy expenditure and the current speed at which fish were reared, fish that were forced to swim and were fed restrictively consequentially had poorer growth and feed utilization. The results show that for rainbow trout, water current can negatively affect growth despite promoting minor positive changes in substrate utilization. We hypothesize that this may be the result of either a limited dietary energy supply from diet restriction being insufficient for both covering the extra costs of swimming and supporting enhanced growth. PMID:25705195

  15. Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-β or hyperphosphorylated tau protein.

    PubMed

    Grimm, Amandine; Biliouris, Emily E; Lang, Undine E; Götz, Jürgen; Mensah-Nyagan, Ayikoe Guy; Eckert, Anne

    2016-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease marked by a progressive cognitive decline. Metabolic impairments are common hallmarks of AD, and amyloid-β (Aβ) peptide and hyperphosphorylated tau protein--the two foremost histopathological signs of AD--have been implicated in mitochondrial dysfunction. Neurosteroids have recently shown promise in alleviating cognitive and neuronal sequelae of AD. The present study evaluates the impact of neurosteroids belonging to the sex hormone family (progesterone, estradiol, estrone, testosterone, 3α-androstanediol) on mitochondrial dysfunction in cellular models of AD: human neuroblastoma cells (SH-SY5Y) stably transfected with constructs encoding (1) the human amyloid precursor protein (APP) resulting in overexpression of APP and Aβ, (2) wild-type tau (wtTau), and (3) mutant tau (P301L), that induces abnormal tau hyperphosphorylation. We show that while APP and P301L cells both display a drop in ATP levels, they present distinct mitochondrial impairments with regard to their bioenergetic profiles. The P301L cells presented a decreased maximal respiration and spare respiratory capacity, while APP cells exhibited, in addition, a decrease in basal respiration, ATP turnover, and glycolytic reserve. All neurosteroids showed beneficial effects on ATP production and mitochondrial membrane potential in APP/Aβ overexpressing cells while only progesterone and estradiol increased ATP levels in mutant tau cells. Of note, testosterone was more efficient in alleviating Aβ-induced mitochondrial deficits, while progesterone and estrogen were the most effective neurosteroids in our model of AD-related tauopathy. Our findings lend further support to the neuroprotective effects of neurosteroids in AD and may open new avenues for the development of gender-specific therapeutic approaches in AD. PMID:26198711

  16. Growth of juvenile steelhead Oncorhynchus mykiss under size-selective pressure limited by seasonal bioenergetic and environmental constraints.

    PubMed

    Thompson, J N; Beauchamp, D A

    2016-09-01

    Increased freshwater growth of juvenile steelhead Oncorhynchus mykiss improved survival to smolt and adult stages, thus prompting an examination of factors affecting growth during critical periods that influenced survival through subsequent life stages. For three tributaries with contrasting thermal regimes, a bioenergetics model was used to evaluate how feeding rate and energy density of prey influenced seasonal growth and stage-specific survival of juvenile O. mykiss. Sensitivity analysis examined target levels for feeding rate and energy density of prey during the growing season that improved survival to the smolt and adult stages in each tributary. Simulated daily growth was greatest during warmer months (1 July to 30 September), whereas substantial body mass was lost during cooler months (1 December to 31 March). Incremental increases in annual feeding rate or energy density of prey during summer broadened the temperature range at which faster growth occurred and increased the growth of the average juvenile to match those that survived to smolt and adult stages. Survival to later life stages could be improved by increasing feeding rate or energy density of the diet during summer months, when warmer water temperatures accommodated increased growth potential. Higher growth during the summer period in each tributary could improve resiliency during subsequent colder periods that lead to metabolic stress and weight loss. As growth and corresponding survival rates in fresh water are altered by shifting abiotic regimes, it will be increasingly important for fisheries managers to better understand the mechanisms affecting growth limitations in rearing habitats and what measures might maintain or improve growth conditions and survival. PMID:27397641

  17. Growth of juvenile steelhead Oncorhynchus mykiss under size-selective pressure limited by seasonal bioenergetic and environmental constraints

    USGS Publications Warehouse

    Thompson, Jamie N.; Beauchamp, David A.

    2016-01-01

    Increased freshwater growth of juvenile steelhead Oncorhynchus mykiss improved survival to smolt and adult stages, thus prompting an examination of factors affecting growth during critical periods that influenced survival through subsequent life stages. For three tributaries with contrasting thermal regimes, a bioenergetics model was used to evaluate how feeding rate and energy density of prey influenced seasonal growth and stage-specific survival of juvenile O. mykiss. Sensitivity analysis examined target levels for feeding rate and energy density of prey during the growing season that improved survival to the smolt and adult stages in each tributary. Simulated daily growth was greatest during warmer months (1 July to 30 September), whereas substantial body mass was lost during cooler months (1 December to 31 March). Incremental increases in annual feeding rate or energy density of prey during summer broadened the temperature range at which faster growth occurred and increased the growth of the average juvenile to match those that survived to smolt and adult stages. Survival to later life stages could be improved by increasing feeding rate or energy density of the diet during summer months, when warmer water temperatures accommodated increased growth potential. Higher growth during the summer period in each tributary could improve resiliency during subsequent colder periods that lead to metabolic stress and weight loss. As growth and corresponding survival rates in fresh water are altered by shifting abiotic regimes, it will be increasingly important for fisheries managers to better understand the mechanisms affecting growth limitations in rearing habitats and what measures might maintain or improve growth conditions and survival.

  18. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics.

    PubMed

    Santos, Sandra M; Dinis, Augusto M; Peixoto, Francisco; Ferreira, Lino; Jurado, Amália S; Videira, Romeu A

    2014-03-01

    Partition and localization of C60 and its derivative C60(OH)18-22 in lipid membranes and their impact on mitochondrial activity were studied, attempting to correlate those events with fullerene characteristics (size, surface chemistry, and surface charge). Fluorescence quenching studies suggested that C60(OH)18-22 preferentially populated the outer regions of the bilayer, whereas C60 preferred to localize in deeper regions of the bilayer. Partition coefficient values indicated that C60 exhibited higher affinity for dipalmitoylphosphatidylcholine and mitochondrial membranes than C60(OH)18-22. Both fullerenes affected the mitochondrial function, but the inhibitory effects promoted by C60 were more pronounced than those induced by C60(OH)18-22 (up to 20 nmol/mg of mitochondrial protein). State 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations are inhibited by both fullerenes when glutamate/malate or succinate was used as substrate. Phosphorylation system and electron transport chain of mitochondria are affected by both fullerenes, but only C60 increased the inner mitochondrial membrane permeability to protons, suggesting perturbations in the structure and dynamics of that membrane. At concentrations of C60(OH)18-22 above 20 nmol/mg of mitochondrial protein, the activity of FoF1-ATP synthase was also decreased. The evaluation of transmembrane potential showed that the mitochondria phosphorylation cycle decreased upon adenosine diphosphate addition with increasing fullerenes concentration and the time of the repolarization phase increased as a function of C60(OH)18-22 concentration. Our results suggest that the balance between hydrophilicity and hydrophobicity resulting from the surface chemistry of fullerene nanoparticles, rather than the cluster size or the surface charge acquired by fullerenes in water, influences their membrane interactions and consequently their effects on mitochondrial bioenergetics. PMID:24361870

  19. European security and France

    SciTech Connect

    deRose, A.

    1985-01-01

    A French authority on security argues for new European initiatives in the face of the ''danger represented by Soviet military power deployed in support of an imperialistic ideology.'' His proposals, including the strengthening of conventional forces without abandoning the option of the first use of nuclear weapons, are meant to give substance to President Mitterrand's declaration in 1983: ''The European nations now need to realize that their defense is also their responsibility....'' A part of the increasingly important debate in France over defense policy in Europe.

  20. Teaching European Identities

    ERIC Educational Resources Information Center

    Raento, Pauliina

    2008-01-01

    The political, cultural and social make-up of Europe is changing fast. A new European identity is under construction, but old contradictions and diversity challenge its contents, forms and boundaries. Migration, the changing role of the nation-state and Europe's regions, the reshaping of politico-administrative and perceptional boundaries, the…

  1. The European VLBI network

    NASA Technical Reports Server (NTRS)

    Schilizzi, R. T.

    1980-01-01

    The capabilities of the European very long baseline interferometry (VLBI) network are summarized. The range of baseline parameters, sensitivities, and recording and other equipment available are included. Plans for upgrading the recording facilities and the use of geostationary satellites for signal transfer and clock synchronization are discussed.

  2. European Music Year 1985.

    ERIC Educational Resources Information Center

    Alexanderson, Thomas; And Others

    1984-01-01

    Articles concerning music are included in this newsletter dedicated to cultural venture to be jointly carried out by the Council of Europe and the European communities. Many events will mark Music Year 1985, including concerts, dance performances, operas, publications, recordings, festivals, exhibitions, competitions, and conferences on musical…

  3. Multilingualism in European Workplaces

    ERIC Educational Resources Information Center

    Gunnarsson, Britt-Louise

    2014-01-01

    This state-of-the-art article includes a review of past and recent studies on multilingualism at work in European environments. One aim is to provide the reader with a cross-cultural picture of workplace studies on various languages in Europe, another to discuss both positive and problem-based accounts of multilingualism at work. The overview…

  4. European Civilization. Teacher's Manual.

    ERIC Educational Resources Information Center

    Leppert, Ella C.; Halac, Dennis

    The instructional materials in this teaching guide for Course II, Unit IV, follow and build upon a previous sequential course described in SO 003 169 offering ninth grade students a study on the development of Western European Civilization. Focus is upon four periods of high development: The High Middle Ages (12th Century), The Renaissance (15th…

  5. Scientists attack European MRI rules

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2010-08-01

    A report by the European Science Foundation (ESF) has sharply criticized a European Union (EU) directive on electromagnetic fields, arguing that limits on workers' exposure will have "potentially disastrous" consequences for magnetic resonance imaging (MRI).

  6. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature.

    PubMed

    Cerveira, Joana F; Sánchez-Aragó, María; Urbano, Ana M; Cuezva, José M

    2014-01-01

    Previous studies on the impact of hexavalent chromium [Cr(VI)] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI) and of their molecular basis, we assessed the impact of a mild Cr(VI) exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels). Cells derived from normal human bronchial epithelium (BEAS-2B cell line), the main in vivo target of Cr(VI) carcinogenicity, were subjected for 48 h to 1 μM Cr(VI). We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β) of the mitochondrial H(+)-ATP synthase (β-F1-ATPase) and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature) upon Cr(VI) exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI) effects. PMID:25161867

  7. Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions

    PubMed Central

    Connolly, Niamh M. C.; D’Orsi, Beatrice; Monsefi, Naser; Huber, Heinrich J.; Prehn, Jochen H. M.

    2016-01-01

    Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK), re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult. PMID:26840769

  8. Deranged bioenergetics and defective redox capacity in T lymphocytes and neutrophils are related to cellular dysfunction and increased oxidative stress in patients with active systemic lupus erythematosus.

    PubMed

    Li, Ko-Jen; Wu, Cheng-Han; Hsieh, Song-Chou; Lu, Ming-Chi; Tsai, Chang-Youh; Yu, Chia-Li

    2012-01-01

    Urinary excretion of N-benzoyl-glycyl-Nε-(hexanonyl)lysine, a biomarker of oxidative stress, was higher in 26 patients with active systemic lupus erythematosus (SLE) than in 11 non-SLE patients with connective tissue diseases and in 14 healthy volunteers. We hypothesized that increased oxidative stress in active SLE might be attributable to deranged bioenergetics, defective reduction-oxidation (redox) capacity, or other factors. We demonstrated that, compared to normal cells, T lymphocytes (T) and polymorphonuclear neutrophils (PMN) of active SLE showed defective expression of facilitative glucose transporters GLUT-3 and GLUT-6, which led to increased intracellular basal lactate and decreased ATP production. In addition, the redox capacity, including intracellular GSH levels and the enzyme activity of glutathione peroxidase (GSH-Px) and γ-glutamyl-transpeptidase (GGT), was decreased in SLE-T. Compared to normal cells, SLE-PMN showed decreased intracellular GSH levels, and GGT enzyme activity was found in SLE-PMN and enhanced expression of CD53, a coprecipitating molecule for GGT. We conclude that deranged cellular bioenergetics and defective redox capacity in T and PMN are responsible for cellular immune dysfunction and are related to increased oxidative stress in active SLE patients. PMID:22007252

  9. Environmental factors which affect growth of Japanese common squid, Todarodes pacificus, analyzed by a bioenergetics model coupled with a lower trophic ecosystem model

    NASA Astrophysics Data System (ADS)

    Kishi, Michio J.; Nakajima, Kazuto; Fujii, Masahiko; Hashioka, Taketo

    2009-09-01

    Bioenergetics model is applied to Japanese common squid, Todarodes pacificus. The temporal change of wet weight of common squid, which migrates in the Sea of Japan, is simulated. The time dependent horizontal distribution of prey is calculated a priori by 3-D coupled physical-biological model. The biological model NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) is used to simulate the lower-trophic ecosystem including three kinds of zooplankton biomass two of which is used as prey of common squid. A bioenergetics model reproduced appropriate growth curve of common squid, migrating in the North Pacific and the Sea of Japan. The results show that the wet weight of common squid in the northern Sea of Japan is heavier than that migrating in the central Sea of Japan, because prey density of the northern Sea of Japan is higher than that of the central Sea of Japan. We also investigate the wet weight anomaly for a global warming scenario. In this case, wet weight of common squid decreases because water temperature exceeds the optimum temperature for common squid. This result indicates that migration route and spawning area of common squid might change with global warming.

  10. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature

    PubMed Central

    Cerveira, Joana F.; Sánchez-Aragó, María; Urbano, Ana M.; Cuezva, José M.

    2014-01-01

    Previous studies on the impact of hexavalent chromium [Cr(VI)] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI) and of their molecular basis, we assessed the impact of a mild Cr(VI) exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels). Cells derived from normal human bronchial epithelium (BEAS-2B cell line), the main in vivo target of Cr(VI) carcinogenicity, were subjected for 48 h to 1 μM Cr(VI). We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β) of the mitochondrial H+-ATP synthase (β-F1-ATPase) and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature) upon Cr(VI) exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI) effects. PMID:25161867

  11. A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions.

    PubMed

    da Silva, Milena Fernandes; Casazza, Alessandro Alberto; Ferrari, Pier Francesco; Perego, Patrizia; Bezerra, Raquel Pedrosa; Converti, Attilio; Porto, Ana Lucia Figueiredo

    2016-05-01

    Photobioreactor configuration, mode of operation and light intensity are known to strongly impact on cyanobacteria growth. To shed light on these issues, kinetic, bioenergetic and thermodynamic parameters of batch Arthrospira platensis cultures were estimated along the time at photosynthetic photon flux density (PPFD) of 70μmolm(-2)s(-1) in different photobioreactors with different surface/volume ratio (S/V), namely open pond (0.25cm(-1)), shaken flask (0.48cm(-1)), horizontal photobioreactor (HoP) (1.94cm(-1)) and helicoidal photobioreactor (HeP) (3.88cm(-1)). Maximum biomass concentration and productivity remarkably increased with S/V up to 1.94cm(-1). HoP was shown to be the best-performing system throughout the whole runs, while HeP behaved better only at the start. Runs carried out in HoP increasing PPFD from 40 to 100μmolm(-2)s(-1) revealed a progressive enhancement of bioenergetics and thermodynamics likely because of favorable light distribution. HoP appeared to be a promising configuration to perform high-yield indoor cyanobacterial cultures. PMID:26890797

  12. The European Mobile System (EMS)

    NASA Technical Reports Server (NTRS)

    Jongejans, A.; Rogard, R.; Mistretta, I.; Ananasso, F.

    1993-01-01

    The European Space Agency is presently procuring an L band payload in order to promote a regional European L band system coping with the specific needs of the European market. The payload, and the two communications systems to be supported, are described below. The potential market for EMS in Europe is discussed.

  13. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour

  14. Education and European integration

    NASA Astrophysics Data System (ADS)

    Lowe, John

    1992-11-01

    The main purpose of this article is to discuss the implications for education and training of the movement towards integration in Europe in the historic context of the creation of a single market within the European Community (EC) and the end of the Communist regimes in Central and Eastern Europe. The experience of the EC is used to illustrate trends and problems in the development of international cooperation in education and training. Common concerns and priorities throughout the new Europe are then identified and discussed. These include the pursuit of quality in schooling, efforts to serve the interests of disadvantaged learners, and the treatment of European Studies in the curriculum, including the improvement of the teaching of foreign languages.

  15. Telemedicine and European law.

    PubMed

    Callens, Stefaan

    2003-01-01

    A Directive of the European Union was first published in 2000, which dealt with telemedicine as part of its provisions. This E-Commerce Directive, as it became known, was subjected to further study which revealed some problems relative to the practice of telemedicine. Among the subjects discussed in this paper are those of privacy, data protection, free movement of services, the impact of electronic communication and ethical issues. PMID:15074761

  16. The European Spallation Source

    SciTech Connect

    Peggs, S; Eshraqi, M; Hahn, H; Jansson, A; Lindroos, M; Ponton, A; Rathsman, K; Trahern, G; Bousso, S; Calaga, R; Devanz, G; Duperrier, R D; Eguia, J; Gammino, S; Moller, S P; Oyon, C; Ruber, R.J.M.Y.; Satogata, T

    2011-03-01

    The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.

  17. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    SciTech Connect

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  18. Biophotonics: a European perspective

    NASA Astrophysics Data System (ADS)

    Robin, Thierry; Cochard, Jacques; Breussin, Frédéric

    2013-03-01

    The objective of the present work is to determine the opportunities and challenges for Biophotonics business development in Europe for the next five years with a focus on sensors and systems: for health diagnostics and monitoring; for air, water and food safety and quality control. The development of this roadmap was initiated and supported by EPIC (The European Photonics Industry Consortium). We summarize the final roadmap data: market application segments and trends, analysis of the market access criteria, analysis of the technology trends and major bottlenecks and challenges per application.

  19. Eastern European risk management

    SciTech Connect

    Honey, J.A. )

    1992-01-01

    Here the authors assess Eastern European risk management practices through the evaluation of the nuclear power plants in the region. This evaluation is limited to the Soviet-designed and -built VVER-440 pressurized water reactors (PWRs) that are currently operating in Bulgaria, Czechoslovakia, Hungary, Russia, and the Ukraine and until recently operated at Greifswald in the former East Germany. This evaluation is based on the basic design of the plants, a safety evaluation of the Greifswald facility by representatives from the Federal Republic of Germany and personal visits by the author to Greifswald and Loviisa.

  20. Bioenergetic Aspects of Halophilism

    PubMed Central

    Oren, Aharon

    1999-01-01

    Examinination of microbial diversity in environments of increasing salt concentrations indicates that certain types of dissimilatory metabolism do not occur at the highest salinities. Examples are methanogenesis for H2 + CO2 or from acetate, dissimilatory sulfate reduction with oxidation of acetate, and autotrophic nitrification. Occurrence of the different metabolic types is correlated with the free-energy change associated with the dissimilatory reactions. Life at high salt concentrations is energetically expensive. Most bacteria and also the methanogenic archaea produce high intracellular concentrations of organic osmotic solutes at a high energetic cost. All halophilic microorganisms expend large amounts of energy to maintain steep gradients of NA+ and K+ concentrations across their cytoplasmic membrane. The energetic cost of salt adaptation probably dictates what types of metabolism can support life at the highest salt concentrations. Use of KCl as an intracellular solute, while requiring far-reaching adaptations of the intracellular machinery, is energetically more favorable than production of organic-compatible solutes. This may explain why the anaerobic halophilic fermentative bacteria (order Haloanaerobiales) use this strategy and also why halophilic homoacetogenic bacteria that produce acetate from H2 + CO2 exist whereas methanogens that use the same substrates in a reaction with a similar free-energy yield do not. PMID:10357854

  1. Population dynamics and bioenergetics of a fossorial herbivore, Thomomys talpoides (Rodentia: Geomyidae), in a spruce-fir sere

    USGS Publications Warehouse

    Andersen, Douglas C.; MacMahon, James A.

    1981-01-01

    Studies of the bioenergetics of the northern pocket gopher, Thomomys talpoides, are coupled with data on demography, activity budgets, and microclimates to model the energy requirements of individuals and populations in the Wasatch Mountains of Utah during 1976-1979. Metabolic rates during rest increased linearly with decreasing ambient temperature, but burrowing metabolic rates (16.3 mL O2 • h-1 • g-9.75) were independent of both temperature and physical properties of the soil. Radio-telemetry studies indicated that free-ranging gophers are active =50% of each day. Conservative estimates of true energy consumption were calculated using estimates of habitat-specific minimum daily burrowing requirements. Rates of burrowing measured in the laboratory were either ∞ 0.0 or ∞ 2.0 cm/min. The low burrowing rate was observed when the soil was frozen or saturated with water, as would occur in the field in early winter and in spring, respectively. Gophers burrowed through soil at the study site at an average rate of ∞ 1.5 cm/min. Belowground food energy densities at gopher foraging depth declined from 24.6 to 3.2 J/cm3 along a successional gradient (subalpine forb meadow to Engelmann spruce dominated forest). We conclude that individual gophers are food limited within the climax spruce seral stage. Further, daily energy costs associated with reproduction in females may exceed the belowground energy supply available in intermediate seral stages (aspen and subalpine fir). Reduction of burrowing rates for any reason will affect gophers in the late seral stages proportionately more than those resident in the meadow. The peak gopher densities recorded (from 62 individuals/ha in the meadow to 2 individuals/ha in spruce forest) support these inferences. Detailed demographic information was obtained only in the meadow seral stage. Adult survivorship was lower in winter than in summer and varied greatly between years (0.18-0.70 yr-1). Juvenile survivorship from weaning

  2. EAC: The European Astronauts Centre

    NASA Astrophysics Data System (ADS)

    Ripoll, Andres

    The newly established European Astronauts Centre (EAC) in Cologne represents the European Astronauts Home Base and will become a centre of expertise on European astronauts activities. The paper gives an overview of the European approach to man-in-space, describes the European Astronauts Policy and presents the major EAC roles and responsibilities including the management of selection, recruitment and flight assignment of astronauts; the astronauts support and medical surveillance; the supervision of the astronauts' non-flight assignments; crew safety; the definition of the overall astronauts training programme; the scheduling and supervision of the training facilities; the implementation of Basic Training; the recruitment, training and certification of instructors, and the interface to NASA in the framework of the Space Station Freedom programme. An overview is given on the organisation of EAC, and on the European candidate astronauts selection performed in 1991.

  3. Geographic analysis of thermal equilibria: a bioenergetic model for predicting thermal response of aquatic insect communities. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Vannote, R L; Sweeney, B W

    1980-04-01

    This report summarizes the first 9 months of field and laboratory work to test our central hypothesis. Five river systems were selected for intensive studies on insect growth, metabolism, and fecundity as well as determination of community structure for distinct assemblages of insect species exploiting various trophic and habitat resources. Laboratory studies were initiated to test the relative importance of temperature and food quality on growth, size, and fecundity of insects. Our project is intended to test the hypothesis that population stability, within the geographic range of many stream species, reflects largely a dynamic equilibrium between temperature and individual growth, metabolism, reproductive potential, and generation time. We propose to delineate the significance of natural thermal variation by quantifying the bioenergetics, developmental dynamics, and spatial distribution of major representative groups of stream insects throughout their geographic range.

  4. Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy.

    PubMed

    Pucar, Darko; Dzeja, Petras P; Bast, Peter; Gumina, Richard J; Drahl, Carmen; Lim, Lynette; Juranic, Nenad; Macura, Slobodan; Terzic, Andre

    2004-01-01

    Brief hypoxia or ischemia perturbs energy metabolism inducing paradoxically a stress-tolerant state, yet metabolic signals that trigger cytoprotection remain poorly understood. To evaluate bioenergetic rearrangements, control and hypoxic hearts were analyzed with 18O-assisted 31P NMR and 1H NMR spectroscopy. The 18O-induced isotope shift in the 31P NMR spectrum of CrP, betaADP and betaATP was used to quantify phosphotransfer fluxes through creatine kinase and adenylate kinase. This analysis was supplemented with determination of energetically relevant metabolites in the phosphomonoester (PME) region of 31P NMR spectra, and in both aromatic and aliphatic regions of 1H NMR spectra. In control conditions, creatine kinase was the major phosphotransfer pathway processing high-energy phosphoryls between sites of ATP consumption and ATP production. In hypoxia, creatine kinase flux was dramatically reduced with a compensatory increase in adenylate kinase flux, which supported heart energetics by regenerating and transferring beta- and gamma-phosphoryls of ATP. Activation of adenylate kinase led to a build-up of AMP, IMP and adenosine, molecules involved in cardioprotective signaling. 31P and 1H NMR spectral analysis further revealed NADH and H+ scavenging by alpha-glycerophosphate dehydrogenase (alphaGPDH) and lactate dehydrogenase contributing to maintained glycolysis under hypoxia. Hypoxia-induced accumulation of alpha-glycerophosphate and nucleoside 5'-monophosphates, through alphaGPDH and adenylate kinase reactions, respectively, was mapped within the increased PME signal in the 31P NMR spectrum. Thus, 18O-assisted 31P NMR combined with 1H NMR provide a powerful approach in capturing rearrangements in cardiac bioenergetics, and associated metabolic signaling that underlie the cardiac adaptive response to stress. PMID:14977188

  5. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  6. Prey size and availability limits maximum size of rainbow trout in a large tailwater: insights from a drift-foraging bioenergetics model

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W

    2016-01-01

    The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.

  7. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Seminotti, Bianca; Ribeiro, César Augusto; Lagranha, Valeska Lizzi; Pereira, Carolina Coffi; de Oliveira, Francine Hehn; de Souza, Diogo Gomes; Goodman, Stephen; Woontner, Michael; Wajner, Moacir

    2015-09-16

    Bioenergetics dysfunction has been postulated as an important pathomechanism of brain damage in glutaric aciduria type I, but this is still under debate. We investigated activities of citric acid cycle (CAC) enzymes, lactate release, respiration and membrane potential (ΔΨm) in mitochondrial preparations from cerebral cortex and striatum of 30-day-old glutaryl-CoA dehydrogenase deficient (Gcdh-/-) and wild type mice fed a baseline or a high lysine (Lys, 4.7%) chow for 60 or 96h. Brain histological analyses were performed in these animals, as well as in 90-day-old animals fed a baseline or a high Lys chow during 30 days starting at 60-day-old. A moderate reduction of citrate synthase and isocitrate dehydrogenase activities was observed only in the striatum from 30-day-old Gcdh-/- animals submitted to a high Lys chow. In contrast, the other CAC enzyme activities, lactate release, the respiratory parameters state 3, state 4, the respiratory control ratio and CCCP-stimulated (uncoupled) state, as well as ΔΨm were not altered in the striatum. Similarly, none of the evaluated parameters were changed in the cerebral cortex from these animals under baseline or Lys overload. On the other hand, histological analyses revealed the presence of intense vacuolation in the cerebral cortex of 60 and 90-day-old Gcdh-/- mice fed a baseline chow and in the striatum of 90-day-old Gcdh-/- mice submitted to Lys overload for 30 days. Taken together, the present data demonstrate mild impairment of bioenergetics homeostasis and marked histological alterations in striatum from Gcdh-/- mice under a high Lys chow, suggesting that disruption of energy metabolism is not mainly involved in the brain injury of these animals. PMID:25998543

  8. European Conference on Health Economics.

    PubMed

    Malmivaara, Antti

    2010-12-01

    The biennial European Conference on Health Economics was held in Finland this year, at the Finlandia Hall in the centre of Helsinki. The European conferences rotate among European countries and fall between the biennial world congresses organized by the International Health Economics Association (iHEA). A record attendance of approximately 800 delegates from 50 countries around the world were present at the Helsinki conference. The theme of the conference was 'Connecting Health and Economics'. All major topics of health economics were covered in the sessions. For the first time, social care economics was included in the agenda of the European Conference as a session of its own. PMID:21155696

  9. A New Impetus for European Youth. European Commission White Paper.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium).

    Despite their highly divergent situations, young people largely share the same values, ambitions, and difficulties. Despite the more complex social and economic context in which young Europeans are currently living, they are well equipped to adapt. National and European policymakers must facilitate this process of change by making young people…

  10. European Schoolnet: Enabling School Networking

    ERIC Educational Resources Information Center

    Scimeca, Santi; Dumitru, Petru; Durando, Marc; Gilleran, Anne; Joyce, Alexa; Vuorikari, Riina

    2009-01-01

    School networking is increasingly important in a globalised world, where schools themselves can be actors on an international stage. This article builds on the activities and experience of the longest established European initiative in this area, European Schoolnet (EUN), a network of 31 Ministries of Education. First, we offer an introduction…

  11. What Audience for European Television?

    ERIC Educational Resources Information Center

    Wendelbo, Harald Arni

    This discussion of the audience for European television argues that satellite television has taken an upside-down approach, i.e., it has begun by focusing on the hardware, and then the software, before checking to see if there would be a user at the end of the line willing to pay for the whole operation. "European television" is then defined as…

  12. The European Dimension in Education.

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Directorate of Education, Culture and Sport, Documentation Section.

    This paper addresses concerns about a European dimension in education that has been created by the enlargement of the European Union (EU) (the inclusion of Austria, Finland, and Sweden) and the gradual transformations of institutions into a future federal state. Sections of the paper include: (1) "Introduction"; (2) "Defining the European…

  13. An American Construction of European Education Space

    ERIC Educational Resources Information Center

    Silova, Iveta; Brehm, William C.

    2010-01-01

    The construction of the European education space has typically been attributed to European education policy makers, institutions, and networks. Rarely do scholars consider the role of outside, non-European actors in shaping the terrain of European education thought and practice. This article considers the construction of the European education…

  14. European Citizenship and European Union Expansion: Perspectives on Europeanness and Citizenship Education from Britain and Turkey

    ERIC Educational Resources Information Center

    Wilkins, Chris; Busher, Hugh; Lawson, Tony; Acun, Ismail; Goz, Nur Leman

    2010-01-01

    This article discusses some perspectives on citizenship education in Turkey and Britain in the context of current contested discourses on the nature of European identity and of the European Union (EU). It is based on data collected during an EU-funded student teacher exchange programme between three universities in Turkey and Leicester University…

  15. Europeans: an endangered species?

    PubMed

    Von Cube, A

    1986-10-01

    Below replacement fertility has become the norm in 21 of Europe's 27 countries. Their average total fertility rate is 1.69. This trend has raised concerns about insufficient numbers in the economically active population and prospective personnel shortages in the military. In the Federal Republic of Germany, fertility has been below replacement for the past 17 years and its 1985 total fertility rate of 1.28 is a record low. Only a few European countries (Bulgaria, France, and Romania) have explicitly pronatalist policies. Other nations (Belgium, Finland, Luxembourg, and the German Democratic Republic) have instituted a progressive system of child allowances, increasing payments with each additional birth. Ironically, policies that seek to promote social opportunities for women, such as participation in the labor force, are likely to reduce fertility even farther. Without increased services such as reasonably priced housing, child care centers, and economic incentives to compensate women for lost opportunity costs in the labor market, policies that seek to increase fertility will not succeed. Policy options that were once available to increase fertility (for example, prohibiting abortion) are no longer socially acceptable. New policies will have to be developed through research on the determinants of fertility behavior in postindustrial societies. PMID:12315251

  16. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro.

    PubMed

    Szczesny, Bartosz; Módis, Katalin; Yanagi, Kazunori; Coletta, Ciro; Le Trionnaire, Sophie; Perry, Alexis; Wood, Mark E; Whiteman, Matthew; Szabo, Csaba

    2014-09-15

    The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage. PMID:24755204

  17. Comprehensive Application of Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS) for Ionic Imaging and Bio-energetic Analysis of Club Drug-induced Cognitive Deficiency

    PubMed Central

    Youn, Su-Chung; Chen, Li-You; Chiou, Ruei-Jen; Lai, Te-Jen; Liao, Wen-Chieh; Mai, Fu-Der; Chang, Hung-Ming

    2015-01-01

    Excessive exposure to club drug (GHB) would cause cognitive dysfunction in which impaired hippocampal Ca2+-mediated neuroplasticity may correlate with this deficiency. However, the potential changes of in vivo Ca2+ together with molecular machinery engaged in GHB-induced cognitive dysfunction has never been reported. This study aims to determine these changes in bio-energetic level through ionic imaging, spectrometric, biochemical, morphological, as well as behavioral approaches. Adolescent rats subjected to GHB were processed for TOF-SIMS, immunohistochemistry, biochemical assay, together with Morris water maze to detect the ionic, molecular, neurochemical, and behavioral changes of GHB-induced cognitive dysfunction, respectively. Extent of oxidative stress and bio-energetics were assessed by levels of lipid peroxidation, Na+/K+ ATPase, cytochrome oxidase, and [14C]-2-deoxyglucose activity. Results indicated that in GHB intoxicated rats, decreased Ca2+ imaging and reduced NMDAR1, nNOS, and p-CREB reactivities were detected in hippocampus. Depressed Ca2+-mediated signaling corresponded well with intense oxidative stress, diminished Na+/K+ ATPase, reduced COX, and decreased 2-DG activity, which all contributes to the development of cognitive deficiency. As impaired Ca2+-mediated signaling and oxidative stress significantly contribute to GHB-induced cognitive dysfunction, delivering agent(s) that improves hippocampal bio-energetics may thus serve as a promising strategy to counteract the club drug-induced cognitive dysfunction emerging in our society nowadays. PMID:26674573

  18. European Neutron Activation System.

    2013-01-11

    Version 03 EASY-2010 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit, which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high-energymore » neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2007 inventory code, the EAF-2003, EAF-2005, EAF-2007 and EAF-2010 libraries, and the EASY User Interface for the Window version. The activation package EASY-2010 is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2010 library contains 66,256 reactions, almost five times more than in EAF-2003 (12,617). Deuteron-induced and proton-induced cross section libraries are also included, and can be used with EASY to enable calculations of the activation due to deuterons and proton [2].« less

  19. European MEMS foundries

    NASA Astrophysics Data System (ADS)

    Salomon, Patric R.

    2003-01-01

    According to the latest release of the NEXUS market study, the market for MEMS or Microsystems Technology (MST) is predicted to grow to $68B by the year 2005, with systems containing these components generating even higher revenues and growth. The latest advances in MST/MEMS technology have enabled the design of a new generation of microsystems that are smaller, cheaper, more reliable, and consume less power. These integrated systems bring together numerous analog/mixed signal microelectronics blocks and MEMS functions on a single chip or on two or more chips assembled within an integrated package. In spite of all these advances in technology and manufacturing, a system manufacturer either faces a substantial up-front R&D investment to create his own infrastructure and expertise, or he can use design and foundry services to get the initial product into the marketplace fast and with an affordable investment. Once he has a viable product, he can still think about his own manufacturing efforts and investments to obtain an optimized high volume manufacturing for the specific product. One of the barriers to successful exploitation of MEMS/MST technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities, including packaging and test. This paper discusses Multi-project wafer (MPW) runs, requirements for foundries and gives some examples of foundry business models. Furthermore, this paper will give an overview on MST/MEMS services that are available in Europe, including pure commercial activities, European project activities (e.g. Europractice), and some academic services.

  20. [French European military haemovigilance guidelines].

    PubMed

    Sailliol, A; Clavier, B; Cap, A; Ausset, S

    2010-12-01

    European military transfusion services follow operational guidelines established by their respective national health systems and conform with European Union directives and NATO standards as applicable to member countries. Certain features are common to all of these standards, especially the pre-selection of volunteer, almost exclusively unpaid donors. NATO requirements are very close to European guidelines, with the exception that NATO permits the use of blood products collected in emergency conditions in theater when circumstances allow no better option. Blood product traceability exists for every country but is not always centralized or computerized. Serious adverse event reporting relies on national haemovigilance networks. Military considerations become important mainly in overseas operations, where the overall policy is to implement the relevant national, European or NATO guidelines with adjustments made for unique wartime circumstances and the risk/benefit ratio for the individual patient needing a transfusion. PMID:21051263