Science.gov

Sample records for 1802c warp lecture

  1. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  2. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  3. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  4. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  5. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  6. Sirepo - Warp

    SciTech Connect

    Nagler, Robert; Moeller, Paul

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.

  7. Warp sculpting.

    PubMed

    Gain, James; Marais, Patrick

    2005-01-01

    The task of computer-based free-form shape design is fraught with practical and conceptual difficulties. Incorporating elements of traditional clay sculpting has long been recognized as a means of shielding the user from these complexities. We present warp sculpting, a variant of spatial deformation, which allows deformations to be initiated by the rigid body transformation or uniform scaling of volumetric tools. This is reminiscent of a tool imprinting, flexing, and molding clay. Unlike previous approaches, the deformation is truly interactive. Tools, encoded in a distance field, can have arbitrarily complex shapes. Although individual tools have a static shape, several tools can be applied simultaneously. We enhance the basic formulation of warp sculpting in two ways. First, deformation is toggled to automatically overcome the problem of "sticky" tools, where the object's surface clings to parts of a tool that are moving away. Second, unlike many other spatial deformations, we ensure that warp sculpting remains foldover-free and, hence, prevent self-intersecting objects.

  8. WarpVisit

    SciTech Connect

    Loring, Burlen; Reubel, Oliver

    2015-06-10

    WarpVisit is an insitu simulation application that integrates the Warp laser plasma accelerator simulation framework with Visit a parallel visualization application. WarpVisit is written in python and supports interactive or live mode where user can connect to Warp with the Visit GUI and batch mode for batch for non-interactive use on high-performance computing resources.

  9. Deferred Warping.

    PubMed

    Knuth, Martin; Bender, Jan; Goesele, Michael; Kuijper, Arjan

    2016-03-18

    We introduce deferred warping, a novel approach for real-time deformation of 3D objects attached to an animated or manipulated surface. Our target application is virtual prototyping of garments where 2D pattern modeling is combined with 3D garment simulation which allows an immediate validation of the design. The technique works in two steps: First, the surface deformation of the target object is determined and the resulting transformation field is stored as a matrix texture. Then the matrix texture is used as look-up table to transform a given geometry onto a deformed surface. Splitting the process in two steps yields a large flexibility since different attachment types can be realized by simply defining specific mapping functions. Our technique can directly handle complex topology changes within the surface. We demonstrate a fast implementation in the vertex shading stage allowing the use of highly decorated surfaces with millions of triangles in real-time.

  10. Warp speed ahead

    NASA Astrophysics Data System (ADS)

    Swarup, Bob

    2008-01-01

    Warp drives are a staple of science fiction, transporting the heroes of shows like Star Trek between galaxies in a matter of hours. Now, increasing numbers of cosmologists are wondering whether this technology might eventually become science fact. Dozens of scientific papers on warp drives have appeared since 1994 when Miguel Alcubierre - a theoretical physicist then at the University of Wales in Cardiff - first argued that a warp drive was theoretically possible (Class. Quantum Grav. 11 L73)

  11. WARPS and cosmic infall

    NASA Astrophysics Data System (ADS)

    Jiang, Ing-Guey; Binney, James

    1999-02-01

    N-body simulations show that when infall reorientates the outer parts of a galactic halo by several degrees per Gyr, a self-gravitating disc that is embedded in the halo develops an integral-sign warp that is comparable in amplitude to observed warps. Studies of angular-momentum acquisition suggest that the required rate of halo reorientation is realistic for galaxies like the Milky Way.

  12. A Warped Cosmic String

    SciTech Connect

    Slagter, R. J.

    2010-06-23

    We present a cosmic string solution in Einstein-Yang-Mills Gauss-Bonnet theory on a warped 5 dimensional space-time conform the Randall-Sundrum-2 theory. In a simplipied model, we find an exact solutions with exponential decreasing or periodic warp function. In a more general setting, where the metric- and Yang-Mills components depend on both scales and one of the YM components resides in the bulk, we find a time dependent numerical solution.

  13. Warp Field Mechanics 101

    NASA Technical Reports Server (NTRS)

    White, Harold

    2011-01-01

    This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.

  14. Warp Field Mechanics 101

    NASA Astrophysics Data System (ADS)

    White, H.

    This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive "technology" coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a "Chicago Pile" moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.

  15. Lecturing the lecturers

    NASA Astrophysics Data System (ADS)

    Osborne, Jonathan

    2010-02-01

    João Magueijo's article "Cargo-cult training" about the failings of compulsory educational training for lecturers (December 2009 pp16-17) is an illustration of why some university lecturers do need to be educated about education. His argument that we should use lectures because students like them ignores the large body of educational research stating that this is the least effective form of education. It might, as the well-known aphorism states, be a successful means of transferring the notes of the lecturer to the notes of the students without going through the minds of either, but the evidence shows that only 10% of students learn material in this way. Rather, all the educational literature points to the fact that interactive, discursive methods are much more likely to produce learning with understanding.

  16. Warping Background Subtraction

    DTIC Science & Technology

    2010-06-01

    significant motion, as demonstrated on image sequences of birds at a feeder station and more general, [11]. Fur- thermore, the implicit warping model...motion compared to (2-4) and is less blurred than (5). The relative difference between birds and the swinging feeder station is larger as well for our...when the camera is not moving. Natural environments, such as the forest canopy, present a significant challenge because of the complex occlusion

  17. Warped Throats at the LHC

    SciTech Connect

    Underwood, Bret

    2007-11-20

    We discuss how the detailed geometry of warped compactification can significantly impact collider data. We show how the details of the cross section for dilepton production (such as the spacing, the width, and the peaks of the KK graviton resonances) for a generic class of warped throats which are closely related to the Randall-Sundrum model depend sensitively on the precise shape of the warp factor.

  18. A breathing mode for warped compactifications

    NASA Astrophysics Data System (ADS)

    Underwood, Bret

    2011-10-01

    In general warped compactifications, non-trivial backgrounds for the warp factor and the dilaton break D-dimensional diffeomorphism invariance, so that dilaton fluctuations can be gauged away completely and eaten by the metric. More specifically, the warped volume modulus and the dilaton are not independent, but combine into a single gauge-invariant degree of freedom in the lower dimensional effective theory, the warped breathing mode. This occurs for all strengths of the warping, even the weakly warped limit. This warped breathing mode appears as a natural zero mode deformation of backgrounds sourced by p-branes and affects the identification of the independent degrees of freedom of flux compactifications.

  19. Time Warp Operating System (TWOS)

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.

    1993-01-01

    Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.

  20. Quantum effects in warp drives

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano

    2013-09-01

    Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.

  1. Warped penguin diagrams

    SciTech Connect

    Csaki, Csaba; Grossman, Yuval; Tanedo, Philip; Tsai, Yuhsin

    2011-04-01

    We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR brane-localized Higgs. These operators are finite at one-loop order and we explicitly calculate the branching ratio for {mu}{yields}e{gamma} using the mixed position/momentum space formalism. The particular bound on the anarchic Yukawa and Kaluza-Klein (KK) scales can depend on the flavor structure of the anarchic matrices. It is possible for a generic model to either be ruled out or unaffected by these bounds without any fine-tuning. We quantify how these models realize this surprising behavior. We also review tree-level lepton flavor bounds in these models and show that these are on the verge of tension with the {mu}{yields}e{gamma} bounds from typical models with a 3 TeV Kaluza-Klein scale. Further, we illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of divergence of a five-dimensional loop diagram using both the five-dimensional and KK formalism. This power counting can be obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the dominant contribution.

  2. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  3. Environmental Dependence of Warps in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}

  4. Mechanical properties of warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2014-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes at zero temperature. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h(q) in Fourier space with zero mean and variance < | h(q) | 2 > q-m . Using statistical physics tools to treat this quenched random disorder, we find that in the linear response regime, similar to thermally fluctuating polymerized membranes, an increasing scale-dependent effective bending rigidity, while the Young and the shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h(x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . Numerical results show good agreement with theoretical predictions, which are now being tested experimentally, where warped membranes are prepared with 3D printers.

  5. Cultural Warping of Childbirth, Revisited

    PubMed Central

    Budin, Wendy C.

    2007-01-01

    In this column, the editor of The Journal of Perinatal Education revisits Doris Haire's classic 1972 article, “The Cultural Warping of Childbirth,” and describes the birth culture of today. The editor also describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote normal birth.

  6. GALACTIC WARPS IN TRIAXIAL HALOS

    SciTech Connect

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae E-mail: sungsoo.kim@khu.ac.kr

    2009-05-10

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  7. Warping the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne

    2016-08-01

    The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.

  8. Atlas warping for brain morphometry

    NASA Astrophysics Data System (ADS)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  9. Galactic warp kinematics: model vs. observations

    NASA Astrophysics Data System (ADS)

    Abedi, H.; Figueras, F.; Aguilar, L.; Mateu, C.; Romero-Gómez, M.; López-Corredoira, M.; Garzón, F.

    2015-05-01

    We test the capability of several methods to identify and characterise the warping of the stellar disc of our Galaxy in the Gaia era. We have developed a first kinematic model for the galactic warp and derived the analytical expressions for the force field of a warped Miyamoto- Nagai potential. We have generated realistic mock catalogues of OB, A and red clump stars within the warped galactic disc, where a very complete model of Gaia observables and their expected errors are included. We use the family of Great Circle Cell Counts (GC3) methods and LonKin methods for detecting and characterising the galactic warp. As a complementary work, we look into one of the existing proper motion catalogue namely the UCAC4, and look for the kinematic signature of the warp. We demonstrate the necessity of correcting for a possible residual rotation of the Hipparcos celestial reference frame with respect to the extra galactic inertial one.

  10. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  11. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  12. Podcasting Lectures

    ERIC Educational Resources Information Center

    Brittain, Sarah; Glowacki, Pietrek; Van Ittersum, Jared; Johnson, Lynn

    2006-01-01

    At some point in their educations, students must learn copious amounts of information. To do this, they use a variety of well-known strategies such as study groups, note-taking services, and videotapes of lectures. In fall 2004, a group of first-year dental students at the University of Michigan (U-M) School of Dentistry asked to have all dental…

  13. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  14. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  15. Galactic warps induced by material accretion

    NASA Astrophysics Data System (ADS)

    Shen, J.; Sellwood, J. A.

    2003-12-01

    The outer regions of many edge-on disk galaxies appear noticeably warped with an integral-sign shape. The ubiquity of warps suggests that they are either long-lived or repeatedly regenerated. One of the promising methods to generate warps is by accretion of material with misaligned angular momentum (Jiang & Binney 1999). We study this process using grid-based N-body methods that allow large numbers of particles to be employed but introduce a preferred plane. We present tests that show that the grid effects are under control. Our simulations include the random motions of disk stars and explore disk-halo coupling in more detail. We pay particular attention to whether or not the resultant warps follow Briggs's rules of warp behavior.

  16. The geometry of warped product singularities

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  17. Warping the universal extra dimensions

    SciTech Connect

    McDonald, Kristian L.

    2009-07-15

    We develop the necessary ingredients for the construction of realistic models with warped universal extra dimensions. Our investigations are based on the seven-dimensional (7D) spacetime AdS{sub 5}xT{sup 2}/Z{sub 2} and we derive the Kaluza-Klein (KK) spectra for gravitons, bulk vectors, and the TeV brane localized Higgs boson. We show that, starting with a massive 7D fermion, one may obtain a single chiral massless mode whose profile is readily localized towards the Planck or TeV brane. This allows one to place the standard model fermions in the bulk and construct models of flavor as in Randall-Sundrum models. Our solution also admits the familiar KK parity of models with universal extra dimensions so that the lightest odd KK state is stable and may be a dark matter candidate. As an additional feature the AdS{sub 5} warping ensures that the excited modes on the torus, including the dark matter candidate, appear at TeV energies (as is usually assumed in models with universal extra dimensions) even though the Planck scale sets the dimensions for the torus.

  18. Warped functional analysis of variance.

    PubMed

    Gervini, Daniel; Carter, Patrick A

    2014-09-01

    This article presents an Analysis of Variance model for functional data that explicitly incorporates phase variability through a time-warping component, allowing for a unified approach to estimation and inference in presence of amplitude and time variability. The focus is on single-random-factor models but the approach can be easily generalized to more complex ANOVA models. The behavior of the estimators is studied by simulation, and an application to the analysis of growth curves of flour beetles is presented. Although the model assumes a smooth latent process behind the observed trajectories, smootheness of the observed data is not required; the method can be applied to irregular time grids, which are common in longitudinal studies.

  19. Confinement of test particles in warped spacetimes

    SciTech Connect

    Ghosh, Suman; Kar, Sayan; Nandan, Hemwati

    2010-07-15

    We investigate test particle trajectories in warped spacetimes with a thick brane warp factor, a cosmological on-brane line element, and a time dependent extra dimension. The geodesic equations are reduced to a first order autonomous dynamical system. Using analytical methods, we arrive at some useful general conclusions regarding possible trajectories. Oscillatory motion, suggesting confinement about the location of the thick brane, arises for a growing warp factor. On the other hand, we find runaway trajectories (exponential-like) for a decaying warp factor. Variations of the extra dimensional scale factor yield certain quantitative differences. Results obtained from explicit numerical evaluations match well with the qualitative conclusions obtained from the dynamical systems analysis.

  20. Hydrodynamics in type B warped spacetimes

    SciTech Connect

    Carot, J.; Nunez, L.A.

    2005-10-15

    We discuss certain general features of type B warped spacetimes which have important consequences on the material content they may admit and its associated dynamics. We show that, for warped B spacetimes, if shear and anisotropy are nonvanishing, they have to be proportional. We also study some of the physics related to the warping factor and of the underlying decomposable metric. Finally we explore the only possible cases compatible with a type B warped geometry which satisfy the dominant energy conditions. As an example of the above mentioned consequences we consider a radiating fluid and two nonspherically symmetric metrics which depend upon an arbitrary parameter a, such that for a=0 spherical symmetry is recovered.

  1. Galactic Warps Formed through Cosmic Infall

    NASA Astrophysics Data System (ADS)

    Shen, J.; Sellwood, J. A.

    2004-12-01

    The extended HI disks of many edge-on spiral galaxies appear noticeably warped away from the inner disk with an ``integral sign'' shape. At least half, perhaps all, of spiral galaxies are warped. The origin and maintenance of warps are still not well understood. We use fully self-consistent N-body simulations to study the effect of cosmic infall on an isolated disk galaxy, which we find to be a promising way of making warps. The amplitude and morphology of warps formed in an idealized experiment to test this scenario resemble observations closely. The agreement with Briggs (1990)'s rules is also very encouraging: the inner disk tilts remarkably rigidly, indicating the strong cohesion due to the self-gravity; the line of nodes (LON) inside R26.5 ˜ 4.5 Rd is straight; and the LON beyond R26.5 always forms a loosely-wound leading spiral. We show that the leading spiral arises from the torque from the misaligned inner disk. In this scenario the damping of a warp by the halo is weak, because the free precession rate of the inner disk is slow and the inner halo generally remains aligned with the inner disk. Thus warps formed this way can persist for a relatively long time (a few Gyrs), by which time another infall event can be expected. We also point out the spirality of the LON of warps in this idealized model should twist from leading to trailing at very large radii, such feature may be observable in future HI surveys.

  2. Semiclassical instability of dynamical warp drives

    SciTech Connect

    Finazzi, Stefano; Liberati, Stefano; Barcelo, Carlos

    2009-06-15

    Warp drives are very interesting configurations in general relativity: At least theoretically, they provide a way to travel at superluminal speeds, albeit at the cost of requiring exotic matter to exist as solutions of Einstein's equations. However, even if one succeeded in providing the necessary exotic matter to build them, it would still be necessary to check whether they would survive to the switching on of quantum effects. Semiclassical corrections to warp-drive geometries have been analyzed only for eternal warp-drive bubbles traveling at fixed superluminal speeds. Here, we investigate the more realistic case in which a superluminal warp drive is created out of an initially flat spacetime. First of all we analyze the causal structure of eternal and dynamical warp-drive spacetimes. Then we pass to the analysis of the renormalized stress-energy tensor (RSET) of a quantum field in these geometries. While the behavior of the RSET in these geometries has close similarities to that in the geometries associated with gravitational collapse, it shows dramatic differences too. On one side, an observer located at the center of a superluminal warp-drive bubble would generically experience a thermal flux of Hawking particles. On the other side, such Hawking flux will be generically extremely high if the exotic matter supporting the warp drive has its origin in a quantum field satisfying some form of quantum inequalities. Most of all, we find that the RSET will exponentially grow in time close to, and on, the front wall of the superluminal bubble. Consequently, one is led to conclude that the warp-drive geometries are unstable against semiclassical backreaction.

  3. Diphoton portal to warped gravity

    NASA Astrophysics Data System (ADS)

    Falkowski, Adam; Kamenik, Jernej F.

    2016-07-01

    The diphoton excess around mX=750 GeV observed by ATLAS and CMS can be interpreted as coming from a massive spin-2 excitation. We explore this possibility in the context of warped five-dimensional models with the Standard Model (SM) fields propagating in the bulk of the extra dimension. The 750 GeV resonance is identified with the first Kaluza-Klein (KK) excitation of the five-dimensional graviton that is parametrically lighter than KK resonances of SM fields. Our setup makes it possible to realize nonuniversal couplings of the spin-2 resonance to matter, and thus to explain nonobservation of the 750 GeV resonance in leptonic channels. Phenomenological predictions of the model depend on the localization of fields in the extra dimension. If, as required by naturalness arguments, the zero modes of the Higgs and top fields are localized near the IR brane, one expects large branching fractions to t t ¯, h h , W+W- and Z Z final states. Decays to Z γ can also be observable when the KK graviton couplings to the SM gauge fields are nonuniversal.

  4. Kaluza-Klein relics from warped reheating

    SciTech Connect

    Berndsen, Aaron; Cline, James M.; Stoica, Horace

    2008-06-15

    It has been suggested that after brane-antibrane inflation in a Klebanov-Strassler (KS) warped throat, metastable Kaluza-Klein excitations can be formed due to nearly-conserved angular momenta along isometric directions in the throat. If sufficiently long lived, these relics could conflict with big bang nucleosynthesis or baryogenesis by dominating the energy density of the Universe. We make a detailed estimate of the decay rate of such relics using the low-energy effective action of type IIB string theory compactified on the throat geometry, with attention to powers of the warp factor. We find that it is necessary to turn on supersymmetry (SUSY)-breaking deformations of the KS background in order to ensure that the most dangerous relics will decay fast enough. The decay rate is found to be much larger than the naive guess based on the dimension of the operators which break the angular isometries of the throat. For an inflationary warp factor of order w{approx}10{sup -4}, we obtain the bound M{sub 3/2} > or approx. 10{sup 9} GeV on the scale of SUSY breaking to avoid cosmological problems from the relics, which is satisfied in the Kachru, Kallosh, Linde, and Trivedi construction assumed to stabilize the compactification. Given the requirement that the relics decay before nucleosynthesis or baryogenesis, we place bounds on the mass of the relic as a function of the warp factor in the throat for more general warped backgrounds.

  5. Improving graphene nanoribbon gas sensing behavior through warping

    NASA Astrophysics Data System (ADS)

    Sakina, S. H.; Johari, Zaharah; Auzar, Zuriana; Ezaila Alias, N.; Abidin, M. S. Z.; Yusoff, M. Fairus M.

    2017-01-01

    The purpose of this study is to investigate the sensing behavior of deformed armchair graphene nanoribbon (AGNR) through warping using extended-Huckel theory (EHT) coupled with non-equilibrium green function (NEGF). The AGNR is warped at an angle of 180°, 270°, 360° and the sensing properties are measured for O2 and NH3 molecules, particularly on their binding energy, charge transfer and sensitivity. Simulation results have indicated that the warping exhibit 98% enhancement in binding energy when warped at 360° for NH3 molecule. Moreover, the sensitivity has been observed at two-order of magnitude for higher warping angle which most previous studies have not achieved. This indicates that there is a possibility to obtain large binding energy and large sensitivity in warping AGNR. The warping can also be an alternative method to minimize drawbacks in traditional gas sensors. The sensitivity of gas sensor could be remarkably be enhanced by introducing the warped AGNR.

  6. Origin of the warped heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Wilcox, J. M.; Hoeksema, J. T.; Scherrer, P. H.

    1980-08-01

    The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that 'ballerina skirt' effects may add small scale ripples.

  7. Warped Kähler potentials and fluxes

    NASA Astrophysics Data System (ADS)

    Martucci, Luca

    2017-01-01

    The four-dimensional effective theory for type IIB warped flux compactifications proposed in [1] is completed by taking into account the backreaction of the Kähler moduli on the three-form fluxes. The only required modification consists in a flux-dependent contribution to the chiral fields parametrising the Kähler moduli. The resulting supersymmetric effective theory satisfies the no-scale condition and consistently combines previous partial results present in the literature. Similar results hold for M-theory warped compactifications on Calabi-Yau fourfolds, whose effective field theory and Kähler potential are also discussed.

  8. WARP: accurate retrieval of shapes using phase of fourier descriptors and time warping distance.

    PubMed

    Bartolini, Ilaria; Ciaccia, Paolo; Patella, Marco

    2005-01-01

    Effective and efficient retrieval of similar shapes from large image databases is still a challenging problem in spite of the high relevance that shape information can have in describing image contents. In this paper, we propose a novel Fourier-based approach, called WARP, for matching and retrieving similar shapes. The unique characteristics of WARP are the exploitation of the phase of Fourier coefficients and the use of the Dynamic Time Warping (DTW) distance to compare shape descriptors. While phase information provides a more accurate description of object boundaries than using only the amplitude of Fourier coefficients, the DTW distance permits us to accurately match images even in the presence of (limited) phase shiftings. In terms of classical precision/recall measures, we experimentally demonstrate that WARP can gain, say, up to 35 percent in precision at a 20 percent recall level with respect to Fourier-based techniques that use neither phase nor DTW distance.

  9. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  10. Rollback Hardware For Time Warp Multiprocessor Systems

    NASA Technical Reports Server (NTRS)

    Robb, Michael J.; Buzzell, Calvin A.

    1996-01-01

    Rollback Chip (RBC) module is computer circuit board containing special-purpose memory circuits for use in multiprocessor computer system. Designed to help realize speedup potential of parallel processing for simulation of discrete events by use of Time Warp operating system.

  11. Time-warp-invariant neuronal processing.

    PubMed

    Gütig, Robert; Sompolinsky, Haim

    2009-07-01

    Fluctuations in the temporal durations of sensory signals constitute a major source of variability within natural stimulus ensembles. The neuronal mechanisms through which sensory systems can stabilize perception against such fluctuations are largely unknown. An intriguing instantiation of such robustness occurs in human speech perception, which relies critically on temporal acoustic cues that are embedded in signals with highly variable duration. Across different instances of natural speech, auditory cues can undergo temporal warping that ranges from 2-fold compression to 2-fold dilation without significant perceptual impairment. Here, we report that time-warp-invariant neuronal processing can be subserved by the shunting action of synaptic conductances that automatically rescales the effective integration time of postsynaptic neurons. We propose a novel spike-based learning rule for synaptic conductances that adjusts the degree of synaptic shunting to the temporal processing requirements of a given task. Applying this general biophysical mechanism to the example of speech processing, we propose a neuronal network model for time-warp-invariant word discrimination and demonstrate its excellent performance on a standard benchmark speech-recognition task. Our results demonstrate the important functional role of synaptic conductances in spike-based neuronal information processing and learning. The biophysics of temporal integration at neuronal membranes can endow sensory pathways with powerful time-warp-invariant computational capabilities.

  12. Needle bar for warp knitting machines

    DOEpatents

    Hagel, Adolf; Thumling, Manfred

    1979-01-01

    Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.

  13. Radiation-Driven Warping. 2; Nonisothermal Disks

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Begelman, Mitchell C.; Nowak, Michael A.

    1998-01-01

    Recent work by Pringle and by Maloney, Begelman, & Pringle has shown that geometrically thin, optically thick, accretion disks are unstable to warping driven by radiation torque from the central source. This work was confined to isothermal (i.e., surface density Sigma varies as R(sup -3/2) disks. In this paper we generalize the study of radiation-driven warping to include general power-law surface density distributions, Sigma varies as R(sup -delta).We consider the range from Delta = 3/2 (the isothermal case) to Delta = -3/2, which corresponds to a radiation-pressure-supported disk; this spans the range of surface density distributions likely to be found in real astrophysical disks. In all cases there are an infinite number of zero-crossing solutions (i.e., solutions that cross the equator), which are the physically relevant modes if the outer boundary of the disk is required to lie in a specified plane. However, unlike the isothermal disk, which is the degenerate case, the frequency eigenvalues for Delta does not equal 3/2 are all distinct. In all cases the location of the zero moves outward from the steady state (pure precession) value with increasing growth rate; thus, there is a critical minimum size for unstable disks. Modes with zeros at smaller radii are damped. The critical radius and the steady state precession rate depend only weakly on Delta. An additional analytic solution has been found for Delta = 1. The case Delta = 1 divides the solutions into two qualitatively different regimes. For Delta greater than or equal to 1, the fastest growing modes have maximum warp amplitude, close to the disk outer edge, and the ratio of Beta(sub max) to the warp amplitude at the disk inner edge, Beta(sub o), is much greater than 1. For Delta less than 1, Beta(sub max/Beta(sub o) approximately equals 1, and the warp maximum steadily approaches the origin as Delta decreases. This implies that nonlinear effects must be important if the warp extends to the disk inner edge

  14. RELAXATION OF WARPED DISKS: THE CASE OF PURE HYDRODYNAMICS

    SciTech Connect

    Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.

    2013-05-10

    Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.

  15. Relaxation of Warped Disks: The Case of Pure Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.

    2013-05-01

    Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.

  16. 431st Brookhaven Lecture

    SciTech Connect

    Robert Crease

    2007-12-12

    Crease presents "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," a lecture that follows on the 429th Brookhaven Lecture, in which Crease talked about the early history of BNL. Both lectures are part of the ongoing celebration of BNL's 60th anniversary year.

  17. Manual for CLE Lecturers.

    ERIC Educational Resources Information Center

    Shellaberger, Donna J.

    This manual is designed to help lawyers develop the skills needed to present effective, stimulating continuing legal education (CLE) lectures. It focuses on the particular purpose and nature of CLE lecturing, relationships and interplay of personalities in CLE, commitments and constraints which lecturers should observe, program structure and…

  18. 431st Brookhaven Lecture

    ScienceCinema

    Robert Crease

    2016-07-12

    Crease presents "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," a lecture that follows on the 429th Brookhaven Lecture, in which Crease talked about the early history of BNL. Both lectures are part of the ongoing celebration of BNL's 60th anniversary year.

  19. Laughter in University Lectures

    ERIC Educational Resources Information Center

    Nesi, Hilary

    2012-01-01

    This paper analyses laughter in spoken academic discourse, with the aim of discovering why lecturers provoke laughter in their lectures. A further purpose of the paper is to identify episodes in British data which may differ from those in other cultural contexts where other lecturing practices prevail, and thus to inform the design of study skills…

  20. Dynamics of warped compactifications and the shape of the warped landscape

    SciTech Connect

    Giddings, Steven B.; Maharana, Anshuman

    2006-06-15

    The dynamics of warped/flux compactifications is studied, including warping effects, providing a firmer footing for investigation of the 'landscape'. We present a general formula for the four-dimensional potential of warped compactifications in terms of ten-dimensional quantities. This allows a systematic investigation of moduli-fixing effects and potentials for mobile branes. We provide a necessary criterion, 'slope dominance', for evading 'no-go' results for de Sitter vacua. We outline the ten-dimensional derivation of the nonperturbative effects that should accomplish this in examples of Kachru, Kallosh, Linde and Trivedi and outline a systematic discussion of their corrections. We show that potentials for mobile branes receive generic contributions inhibiting slow-roll inflation. We give a linearized analysis of general scalar perturbations of warped IIB compactifications, revealing new features for both time-independent and dependent moduli, and new aspects of the kinetic part of the four-dimensional effective action. The universal Kahler modulus is found not to be a simple scaling of the internal metric, and a prescription is given for defining holomorphic Kahler moduli, including warping effects. In the presence of mobile branes, this prescription elucidates couplings between bulk and brane fields. Our results are thus relevant to investigations of the existence of de Sitter vacua in string theory, and of their phenomenology, cosmology, and statistics.

  1. Do elliptical galaxies suffer from warp?

    NASA Astrophysics Data System (ADS)

    Gamaleldin, A. I.

    1990-06-01

    Detailed surface isophotometry of NGC 1700 was performed. Luminosity profiles, ellipticity curve, reduced luminosity profiles, and the galaxy parameters are illustrated; the study also includes the variation of position angle with the distance from the center of the galaxy. An interesting feature of this object is the twisted shape of the outer isophote which does not appear as an ellipse but as an integral-sign shape, which is attributed to some kind of warp in the galaxy under investigation.

  2. Industrial applications of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Kaufmann, James R.

    1992-01-01

    Over the past few years, multiaxial warp knit (MWK) fabrics have made significant inroads into the industrial composites arena. This paper examines the use of MWK fabrics in industrial composite applications. Although the focus is on current applications of MWK fabrics in composites, this paper also discusses the physical properties, advantages and disadvantages of MWK fabrics. The author also offers possibilities for the future of MWK fabrics in the industrial composites arena.

  3. Flavor universal resonances and warped gravity

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo; Sundrum, Raman

    2017-01-01

    Warped higher-dimensional compactifications with "bulk" standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem" remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement", with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at ˜ O(10) TeV, with subdominant resonance decays into Higgs/top-rich final states, giving the LHC an early "preview" of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests.

  4. KK parity in warped extra dimension

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine

    2008-04-01

    We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.

  5. WARPED IONIZED HYDROGEN IN THE GALAXY

    SciTech Connect

    Cersosimo, J. C.; Figueroa, N. Santiago; Velez, S. Figueroa; Soto, C. Lozada; Mader, S.; Azcarate, D.

    2009-07-01

    We report observations of the H166{alpha} ({nu} = 1424.734 MHz) radio recombination line (RRL) emission from the Galactic plane in the longitude range l = 267 deg. - 302 deg. and latitude range b = -3.{sup 0}0 to +1.{sup 0}5. The line emission observed describes the Carina arm in the Galactic azimuth range from {theta} = 260 deg. to 190 deg. The structure is located at negative latitudes with respect to the formal Galactic plane. The observations are combined with RRL data from the first Galactic quadrant. Both quadrants show the signature of the warp for the ionized gas, but an asymmetry of the distribution is noted. In the fourth quadrant, the gas is located between Galactic radii R {approx} 7 and 10 kpc, and the amplitude of the warp is seen from the midplane to z {approx} -150 pc. In the first quadrant, the gas is found between R {approx} 8 and 13-16 kpc, and flares to z {approx} +350 pc. We confirm the warp of the ionized gas near the solar circle. The distribution of the ionized gas is compared with the maximum intensity H I emission (0.30 < n{sub HI} < 0.45 cm{sup -3}) at intervals of the Galactic ring. The ionized material is correlated with the H I maximum intensity in both quadrants, and both components show the same tilted behavior with respect to the mid-Galactic plane.

  6. Warp evidence in precessing galactic bar models

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, P.; Romero-Gómez, M.; Masdemont, J. J.

    2016-04-01

    Most galaxies have a warped shape when they are seen edge-on. The reason for this curious form is not completely known so far, so in this work we apply dynamical system tools to contribute to its explanation. Starting from a simple, but realistic model formed by a bar and a disc, we study the effect of a small misalignment between the angular momentum of the system and its angular velocity. To this end, a precession model was developed and considered, assuming that the bar behaves like a rigid body. After checking that the periodic orbits inside the bar continue to be the skeleton of the inner system even after inflicting a precession to the potential, we computed the invariant manifolds of the unstable periodic orbits departing from the equilibrium points at the ends of the bar to find evidence of their warped shapes. As is well known, the invariant manifolds associated with these periodic orbits drive the arms and rings of barred galaxies and constitute the skeleton of these building blocks. Looking at them from a side-on viewpoint, we find that these manifolds present warped shapes like those recognised in observations. Lastly, test particle simulations have been performed to determine how the stars are affected by the applied precession, this way confirming the theoretical results.

  7. A Generalization of Warped Product Manifolds with Spin(7) Holonomy

    NASA Astrophysics Data System (ADS)

    Bilge, Ayşe H.; Uǧuz, Selman

    2008-06-01

    We define warped-like product manifolds and prove that if M is a 3+3+2 warped-like product manifold where the fibers are connected, simply connected and complete and if M has Spin(7) holonomy, then the fibers are isometric to S3. This work is an abbreviated version of the paper [Bilge, A. H., Uǧuz, S., Warped-like products manifolds with Spin(7) holonomy, submitted for publication].

  8. Automatic boundary modification of warped basal ganglia template

    NASA Astrophysics Data System (ADS)

    Song, Enmin; Cardenas, Valerie A.; Ezekiel, Frank; Weiner, Michael W.

    2001-07-01

    Accurate segmentation of magnetic resonance images of the brain is of increasing interest in the study of many brain disorders. This paper reports our approach to obtain the segmentation by warping our segmented template to a target and then automatically modifying the boundary of each structure. Test results show that our approach can increase the overlap between the warped template of the lenticular nucleus and the manually delineated lenticular nucleus by 10% compared the approach with only warping. 17

  9. Effective lecture presentation skills.

    PubMed

    Gelula, M H

    1997-02-01

    Lectures are the most popular form of teaching in medical education. As much as preparation and organization are key to the lecture's success, the actual presentation also depends upon the presenter's ability to reach the audience. Teaching is a lively activity. It calls for more than just offering ideas and data to an audience. It calls for direct contact with the audience, effective use of language, capability to use limited time effectively, and the ability to be entertaining. This article offers a structure to effective lecturing by highlighting the importance of voice clarity and speaking speed, approaches to using audiovisual aids, effectively using the audience to the lecture, and ways to be entertaining.

  10. Re-Identification in the Function Space of Feature Warps.

    PubMed

    Martinel, Niki; Das, Abir; Micheloni, Christian; Roy-Chowdhury, Amit K

    2015-08-01

    Person re-identification in a non-overlapping multicamera scenario is an open challenge in computer vision because of the large changes in appearances caused by variations in viewing angle, lighting, background clutter, and occlusion over multiple cameras. As a result of these variations, features describing the same person get transformed between cameras. To model the transformation of features, the feature space is nonlinearly warped to get the "warp functions". The warp functions between two instances of the same target form the set of feasible warp functions while those between instances of different targets form the set of infeasible warp functions. In this work, we build upon the observation that feature transformations between cameras lie in a nonlinear function space of all possible feature transformations. The space consisting of all the feasible and infeasible warp functions is the warp function space (WFS). We propose to learn a discriminating surface separating these two sets of warp functions in the WFS and to re-identify persons by classifying a test warp function as feasible or infeasible. Towards this objective, a Random Forest (RF) classifier is employed which effectively chooses the warp function components according to their importance in separating the feasible and the infeasible warp functions in the WFS. Extensive experiments on five datasets are carried out to show the superior performance of the proposed approach over state-of-the-art person re-identification methods. We show that our approach outperforms all other methods when large illumination variations are considered. At the same time it has been shown that our method reaches the best average performance over multiple combinations of the datasets, thus, showing that our method is not designed only to address a specific challenge posed by a particular dataset.

  11. Diamond Anniversary Lecture Series.

    ERIC Educational Resources Information Center

    Adams, Dewey A.; And Others

    This document contains the texts of four lectures that were presented as part of a series commemorating the 75th anniversary of Ohio State University's Department of Agricultural Education. The first lecture, "The Conceptualization Process and Vocational Education Management," (Dewey A. Adams) discusses a five-step management behavior approach for…

  12. Lectures on Law Enforcement.

    ERIC Educational Resources Information Center

    Nettleship, Lois

    Three lectures on law enforcement are presented that were prepared for study purposes at Johnson County Community College. The first lecture examines the fundamental ideas of the Age of Enlightenment and discusses their influence on the American Revolution, the United States Constitution, and the Bill of Rights. Major provisions of the Bill of…

  13. Characterization of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  14. Warped product Finsler manifolds from Hamiltonian point of view

    NASA Astrophysics Data System (ADS)

    Joharinad, Parvaneh

    In this paper, the Finslerian warped product structures are introduced as Hamiltonian formalism without restricting Finsler functions to be absolutely homogeneous. Afterwards, the constituents of the related variational problem and Finslerian connections of this warped product are obtained according to those of its constructing Finsler manifolds.

  15. Radio frequency and infrared drying of sized textile warp yarns

    SciTech Connect

    Ruddick, H.G. )

    1990-11-01

    Drying sized textile warp yarns without contacting the warp is easily accomplished by either radio frequency or infrared techniques. Although the process is more expensive than conventional drying, the substantial savings accrued during subsequent weaving and finishing of the cloth can help keep the US textile industry competitive and support electrical load. 5 refs., 8 figs., 14 tabs.

  16. Probing the Geometry of Warped String Compactifications at the LHC

    SciTech Connect

    Walker, Devin; Shiu, Gary; Underwood, Bret; Zurek, Kathryn M.; Walker, Devin G. E.

    2007-05-28

    Warped string compactifications, characterized by the nonsingular behavior of the metric in the infrared (IR), feature departures from the usual anti?de Sitter warped extra dimensions. We study the implications of the smooth IR cutoff for Randall-Sundrum- (RS-)type models. We find that the phenomenology of the Kaluza-Klein gravitons (including their masses and couplings) depends sensitively on the precise shape of the warp factor in the IR. In particular, we analyze the warped deformed conifold, find that the spectrum differs significantly from that of RS, and present a simple prescription (a mass-gap ansatz) that can be used to study the phenomenology of IR modifications to 5D warped extra dimensions.

  17. Redirected Touching: Training and Adaptation in Warped Virtual Spaces

    PubMed Central

    Kohli, Luv; Whitton, Mary C.; Brooks, Frederick P.

    2014-01-01

    Redirected Touching is a technique in which virtual space is warped to map many virtual objects onto one real object that serves as a passive haptic prop. Recent work suggests that this mapping can often be predictably unnoticeable and have little effect on task performance. We investigated training and adaptation on a rapid aiming task in a real environment, an unwarped virtual environment, and a warped virtual environment. Participants who experienced a warped virtual space reported an initial strange sensation, but adapted to the warped space after short repeated exposure. Our data indicate that all the virtual training was less effective than real-world training, but after adaptation, participants trained as well in a warped virtual space as in an unwarped one. PMID:25621318

  18. Manifold Warp Segmentation of Human Action.

    PubMed

    Liu, Shenglan; Feng, Lin; Liu, Yang; Qiao, Hong; Wu, Jun; Wang, Wei

    2017-03-08

    Human action segmentation is important for human action analysis, which is a highly active research area. Most segmentation methods are based on clustering or numerical descriptors, which are only related to data, and consider no relationship between the data and physical characteristics of human actions. Physical characteristics of human motions are those that can be directly perceived by human beings, such as speed, acceleration, continuity, and so on, which are quite helpful in detecting human motion segment points. We propose a new physical-based descriptor of human action by curvature sequence warp space alignment (CSWSA) approach for sequence segmentation in this paper. Furthermore, time series-warp metric curvature segmentation method is constructed by the proposed descriptor and CSWSA. In our segmentation method, descriptor can express the changes of human actions, and CSWSA is an auxiliary method to give suggestions for segmentation. The experimental results show that our segmentation method is effective in both CMU human motion and video-based data sets.

  19. Observational signatures of linear warps in circumbinary discs

    NASA Astrophysics Data System (ADS)

    Juhász, Attila; Facchini, Stefano

    2017-01-01

    In recent years an increasing number of observational studies have hinted at the presence of warps in protoplanetary discs, however a general comprehensive description of observational diagnostics of warped discs was missing. We performed a series of 3D SPH hydrodynamic simulations and combined them with 3D radiative transfer calculations to study the observability of warps in circumbinary discs, whose plane is misaligned with respect to the orbital plane of the central binary. Our numerical hydrodynamic simulations confirm previous analytical results on the dependence of the warp structure on the viscosity and the initial misalignment between the binary and the disc. To study the observational signatures of warps we calculate images in the continuum at near-infrared and sub-millimetre wavelengths and in the pure rotational transition of CO in the sub-millimetre. Warped circumbinary discs show surface brightness asymmetry in near-infrared scattered light images as well as in optically thick gas lines at sub-millimetre wavelengths. The asymmetry is caused by self-shadowing of the disc by the inner warped regions, thus the strength of the asymmetry depends on the strength of the warp. The projected velocity field, derived from line observations, shows characteristic deviations, twists and a change in the slope of the rotation curve, from that of an unperturbed disc. In extreme cases even the direction of rotation appears to change in the disc inwards of a characteristic radius. The strength of the kinematical signatures of warps decreases with increasing inclination. The strength of all warp signatures decreases with decreasing viscosity.

  20. Learning from Online Video Lectures

    ERIC Educational Resources Information Center

    Brecht, H. David

    2012-01-01

    This study empirically examines the instructional value of online video lectures--videos that a course's instructor prepares to supplement classroom or online-broadcast lectures. The study examines data from a classroom course, where the videos have a slower, more step-by-step lecture style than the classroom lectures; student use of videos is…

  1. Lectures on Dispersion Theory

    DOE R&D Accomplishments Database

    Salam, A.

    1956-04-01

    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  2. DigiWarp: a method for deformable mouse atlas warping to surface topographic data

    NASA Astrophysics Data System (ADS)

    Joshi, Anand A.; Chaudhari, Abhijit J.; Li, Changqing; Dutta, Joyita; Cherry, Simon R.; Shattuck, David W.; Toga, Arthur W.; Leahy, Richard M.

    2010-10-01

    For pre-clinical bioluminescence or fluorescence optical tomography, the animal's surface topography and internal anatomy need to be estimated for improving the quantitative accuracy of reconstructed images. The animal's surface profile can be measured by all-optical systems, but estimation of the internal anatomy using optical techniques is non-trivial. A 3D anatomical mouse atlas may be warped to the estimated surface. However, fitting an atlas to surface topography data is challenging because of variations in the posture and morphology of imaged mice. In addition, acquisition of partial data (for example, from limited views or with limited sampling) can make the warping problem ill-conditioned. Here, we present a method for fitting a deformable mouse atlas to surface topographic range data acquired by an optical system. As an initialization procedure, we match the posture of the atlas to the posture of the mouse being imaged using landmark constraints. The asymmetric L2 pseudo-distance between the atlas surface and the mouse surface is then minimized in order to register two data sets. A Laplacian prior is used to ensure smoothness of the surface warping field. Once the atlas surface is normalized to match the range data, the internal anatomy is transformed using elastic energy minimization. We present results from performance evaluation studies of our method where we have measured the volumetric overlap between the internal organs delineated directly from MRI or CT and those estimated by our proposed warping scheme. Computed Dice coefficients indicate excellent overlap in the brain and the heart, with fair agreement in the kidneys and the bladder.

  3. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  4. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  5. The computer-based lecture.

    PubMed

    Wofford, M M; Spickard, A W; Wofford, J L

    2001-07-01

    Advancing computer technology, cost-containment pressures, and desire to make innovative improvements in medical education argue for moving learning resources to the computer. A reasonable target for such a strategy is the traditional clinical lecture. The purpose of the lecture, the advantages and disadvantages of "live" versus computer-based lectures, and the technical options in computerizing the lecture deserve attention in developing a cost-effective, complementary learning strategy that preserves the teacher-learner relationship. Based on a literature review of the traditional clinical lecture, we build on the strengths of the lecture format and discuss strategies for converting the lecture to a computer-based learning presentation.

  6. Warped unification, proton stability, and dark matter.

    PubMed

    Agashe, Kaustubh; Servant, Géraldine

    2004-12-03

    We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.

  7. Some examples of image warping for low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Loshin, David S.

    1988-01-01

    NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.

  8. Mechanical properties of 3D printed warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2015-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h (q) in Fourier space with zero mean and variance < | h (q) | 2 > q-m . It has been shown theoretically that in the linear response regime, this quenched random disorder increases the effective bending rigidity, while the Young's and shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h (x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . We present experimental tests of these predictions, using warped membranes prepared via high resolution 3D printing.

  9. Accelerating Universes from Compactification on a Warped Conifold

    SciTech Connect

    Neupane, Ishwaree P.

    2007-02-09

    We find a cosmological solution corresponding to the compactification of 10D supergravity on a warped conifold that easily circumvents the ''no-go'' theorem given for a warped or flux compactification, providing new perspectives for the study of supergravity or superstring theory in cosmological backgrounds. With fixed volume moduli of the internal space, the model can explain a physical Universe undergoing an accelerated expansion in the 4D Einstein frame, for a sufficiently long time. The solution found in the limit that the warp factor dependent on the radial coordinate y is extremized (giving a constant warping) is smooth and it supports a flat four-dimensional Friedmann-Robertson-Walker cosmology undergoing a period of accelerated expansion with slowly rolling or stabilized volume moduli.

  10. Star Trek's Lt. Uhura's Warp-Speed Visit to Dryden

    NASA Video Gallery

    Actress Nichelle Nichols warped to many worlds as Lt. Uhura in the 1960s Star Trek TV show. However, her real-life adventures have taken her to where no one has gone before in advocacy for NASA and...

  11. Closed timelike curves in asymmetrically warped brane universes

    SciTech Connect

    Paes, Heinrich; Pakvasa, Sandip; Dent, James; Weiler, Thomas J.

    2009-08-15

    In asymmetrically-warped spacetimes different warp factors are assigned to space and to time. We discuss causality properties of these warped brane universes and argue that scenarios with two extra dimensions may allow for timelike curves which can be closed via paths in the extra-dimensional bulk. In particular, necessary and sufficient conditions on the metric for the existence of closed timelike curves are presented. We find a six-dimensional warped metric which satisfies the CTC conditions, and where the null, weak and dominant energy conditions are satisfied on the brane (although only the former remains satisfied in the bulk). Such scenarios are interesting, since they open the possibility of experimentally testing the chronology protection conjecture by manipulating on our brane initial conditions of gravitons or hypothetical gauge-singlet fermions (''sterile neutrinos'') which then propagate in the extra dimensions.

  12. Time Warp Operating System Version 2.7 Internals Manual

    DTIC Science & Technology

    1992-02-01

    AD-A271 489 Technology and Applications Programs Time Warp Operating System Version 2.7 Internals Manual OST 2 7 1993 AU I February 1992 Prepared for... Technology and Applications Programs Time Warp Operating System Version 2.7 i Internals Manual U I February 1992 ....-...- Prepared for U.S. Army Model...Administration by JPL Jet Propulsion Laboratory * ICalifornia Institute of Technology I- Pasadena, California *93-25933, 1 93 1. - ’.- JPL D-9516

  13. Time Warp Operating System, Version 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; Younger, Herbert C.

    1993-01-01

    Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.

  14. Three-dimensional warping registration of the pelvis and prostate

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Kemper, Corey; Wilson, David L.

    2002-05-01

    We are investigating interventional MRI guided radio- frequency (RF) thermal ablation for the minimally invasive treatment of prostate cancer. Among many potential applications of registration, we wish to compare registered MR images acquired before and immediately after RF ablation in order to determine whether a tumor is adequately treated. Warping registration is desired to correct for potential deformations of the pelvic region and movement of the prostate. We created a two-step, three-dimensional (3D) registration algorithm using mutual information and thin plate spline (TPS) warping for MR images. First, automatic rigid body registration was used to capture the global transformation. Second, local warping registration was applied. Interactively placed control points were automatically optimized by maximizing the mutual information of corresponding voxels in small volumes of interest and by using a 3D TPS to express the deformation throughout the image volume. Images were acquired from healthy volunteers in different conditions simulating potential applications. A variety of evaluation methods showed that warping consistently improved registration for volume pairs whenever patient position or condition was purposely changed between acquisitions. A TPS transformation based on 180 control points generated excellent warping throughout the pelvis following rigid body registration. The prostate centroid displacement for a typical volume pair was reduced from 3.4 mm to 0.6 mm when warping was added.

  15. Large Warps and Polar Rings in H I

    NASA Astrophysics Data System (ADS)

    Józsa, G. I. G.

    2014-05-01

    At least half of all disk galaxies are warped, with polar ring galaxies in some instances being extreme cases of the same feature. Since the morphological and kinematical structure of warps and polar ring galaxies is tightly connected to their formation history and their underlying mass distribution, they are of special interest in the context of galaxy structure and formation in general. A clear, uniform picture about which of the possible formation channels play the dominant role in warp formation and maintenance has not evolved yet. Usually, warps become most pronounced beyond the optical disk and also in the case of polar rings, the H I often extends into a region beyond the optical disk. This is why observations in the neutral hydrogen component are an important ingredient in our understanding of warps. While future blind H I campaigns will yield a basis for statistical studies, a small number of deeply integrated observations of warped galaxies are at our hands to date. I discuss which clues H I observations of individual galaxies can provide and possible limitations of our analysis methods.

  16. Lectures in accelerator theory

    SciTech Connect

    Month, M

    1980-01-01

    Lecture I deals with the behavior of particles in the nonlinear field arising from the electromagnetic interaction of colliding beams. The case treated, that of counter-rotating proton beams crossing each other at a non-zero angle, has the simple feature that the force between the beam is one dimensional. In lecture II, an analysis of the development of traveling waves on particle beams is presented. The situation studied is that of a uniform beam current in a circular accelerator and the excitation for the coherent motion is induced by the resistivity of the vacuum chamber wall. Finally, in lecture III, a description of the current accumulation process used at the proton storage rings at CERN (The ISR) is given. Particle pulses of rather low average current are injected and stored along the length and width of the vacuum chamber. The efficiency is very high and large currents (over 40 amperes) have been achieved.

  17. Memory for Lectures: How Lecture Format Impacts the Learning Experience

    PubMed Central

    Varao-Sousa, Trish L.; Kingstone, Alan

    2015-01-01

    The present study investigated what impact the presentation style of a classroom lecture has on memory, mind wandering, and the subjective factors of interest and motivation. We examined if having a professor lecturing live versus on video alters the learning experience of the students in the classroom. During the lectures, students were asked to report mind wandering and later complete a memory test. The lecture format was manipulated such that all the students received two lectures, one live and one a pre-recorded video. Results indicate that lecture format affected memory performance but not mind wandering, with enhanced memory in the live lectures. Additionally, students reported greater interest and motivation in the live lectures. Given that a single change to the classroom environment, professor presence, impacted memory performance, as well as motivation and interest, the present results have several key implications for technology-based integrations into higher education classrooms. PMID:26561235

  18. The Lecture Is Dead Long Live the e-Lecture

    ERIC Educational Resources Information Center

    Folley, Duncan

    2010-01-01

    This research paper investigates if the traditional lecture is no longer appropriate for Neomillennial Learning Styles and whether an alternative blended approach could/should be used? Over the past decade the lecture as we know it, has gradually been under attack from constructivists, Twigg (1999) for example argues that the lecture is in the…

  19. Diphoton resonance from a warped extra dimension

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Hörner, Clara; Neubert, Matthias

    2016-07-01

    We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with {O} (1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the Sto γ γ, W W,ZZ,Zγ, toverline{t} and dijet decay rates. We find that the S → Zγ decay mode is strongly suppressed, such that Br( S → Zγ) /Br( S → γγ) < 0 .1. The hierarchy problem for the new scalar boson is solved in analogy with the Higgs boson by localizing it near the infrared brane. The infinite sums over the Kaluza-Klein towers of fermion states converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed pp → S → γγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.

  20. CERN LHC signals from warped extra dimensions

    SciTech Connect

    Agashe, Kaustubh; Belyaev, Alexander; Krupovnickas, Tadas; Perez, Gilad; Virzi, Joseph

    2008-01-01

    We study production of Kaluza-Klein (KK) gluons at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the standard model fields propagating in the bulk. We show that the detection of the KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for M{sub KKG} < or approx. 4 TeV, 100 fb{sup -1} of data at the LHC can provide discovery of the KK gluon. We utilize a sizable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic 'top-jets'. We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays (golden modes) are suppressed. Our analysis suggests that other frameworks, for example, little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely, (1) suppressed production rates for the new particles (such as Z{sup '}), due to their 'light-fermion-phobic' nature, and (2) difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.

  1. Seasonal variations in Saturn's plasma sheet warping

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Mitchell, D. G.

    2016-12-01

    Composite images of hydrogen and oxygen energetic neutral atoms (ENA) obtained from 2005 through 2015 from the Ion Neutral Camera on Cassini reveal the structure of Saturn's plasma sheet out to 40 Rs (1 Rs = 60,268 km). Seen from either the dawnside or duskside at low latitude, these composites reveal that the plasma sheet is concave upward (northward) near Saturn's southern solstice, has no concavity near equinox, and is concave downward (southward) near Saturn's northern solstice. This seasonal variation confirms the Arridge "bowl" model developed early in the Cassini mission based on limited magnetometer data, with the concavity depending on the tangent of the Sun's latitude at Saturn and a "hinge" parameter rH. The best fits to the ENA data indicate rH ≈ 25-30 Rs, which is close to the 29 Rs originally suggested by the magnetometer results. The bowl structure suggests other magnetodisks in the solar system and beyond may also undergo similar warping dynamics and may not have a "flat" geometry.

  2. LHC Signals from Warped Extra Dimensions

    SciTech Connect

    Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J.

    2006-12-06

    We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decaysmostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG<~;; 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic"top-jets." We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ("golden" modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their"lightfermion-phobic" nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.

  3. 410th Brookhaven Lecture

    SciTech Connect

    Peter Steinberg

    2005-12-21

    In a lecture titled "Hotter, Denser, Faster, Smaller...and Nearly Perfect: What's the Matter at RHIC?", Steinberg discusses the basic physics of the quark-gluon plasma and BNL's Relativistic Heavy Ion Collider, with a focus on several intriguing results from RHIC's recently ended PHOBOS experiment.

  4. Podcasting a Physics Lecture

    ERIC Educational Resources Information Center

    McDonald, James E. R.

    2008-01-01

    The technology of podcasting, or creating audio or video files that can be subscribed to over the Internet, has grown in popularity over the past few years. Many educators have already begun realizing the potential of delivering such customized content, but most efforts have focused on lecture-style humanities courses or multimedia arts courses.…

  5. Lecturer on tour!

    NASA Astrophysics Data System (ADS)

    1998-11-01

    Readers may recall the interview with Professor Peter Kalmus which appeared in the July issue of Physics Education and which indicated his latest role of lecturer for the 1998-9 Institute of Physics Schools and Colleges Lecture series. This year's lecture is entitled `Particles and the universe' and the tour was due to begin in St Andrews, Scotland, late in September. Professor Kalmus will be looking at various aspects of particle physics, quantum physics and relativity, and discussing how they reveal the secrets of the beginning of our universe. His own experience of working at CERN, the European centre for particle physics in Switzerland, as well as at other international research facilities will provide a unique insight into activity in one of the most exciting areas of physics. The talks are aimed at the 16-19 age group but members of the public are also welcome to attend. They will act as an opportunity to gain a sneak preview of the dynamic new topics that will soon feature in the A-level syllabus arising from the Institute's 16-19 project. Further details of attendance are available from the local organizers, a list of whom may be obtained from Catherine Wilson in the Education Department at the Institute of Physics, 76 Portland Place, London W1N 3DH (tel: 0171 470 4800, fax: 0171 470 4848). The published schedule (as of September) for the lecture series consists of the following: Dates

  6. Participatory Lecture Demonstrations.

    ERIC Educational Resources Information Center

    Battino, Rubin

    1979-01-01

    The use of participatory lecture demonstrations in the classroom is described. Examples are given for the following topics: chromatography, chemical kinetics, balancing equations, the gas laws, kinetic molecular theory, Henry's law of gas solubility, electronic energy levels in atoms, and translational, vibrational, and rotational energies of…

  7. 453rd Brookhaven Lecture

    ScienceCinema

    Richard Ferrieri

    2016-07-12

    In this lecture titled "Striving Towards Energy Sustainability: How Will Plants Play a Role in Our Future?" Richard Ferrieri discusses how radiotracers and positron emission tomography (PET imaging) are providing a new look into plant processes that could lead to more renewable biofuels.

  8. 416th Brookhaven Lecture

    ScienceCinema

    Dax Fu

    2016-07-12

    "Molecular Design of a Metal Transporter." Metal transporters are proteins residing in cell membranes that keep the amount of zinc and other metals in the body in check by selecting a nutritional metal ion against a similar and much moreabundant toxic one. How transporter proteins achieve this remarkable sensitivity is one of the questions addressed by Fu in this lecture.

  9. 412th Brookhaven Lecture

    SciTech Connect

    Peter Vanier

    2006-02-15

    With new radiation detectors, finding smuggled nuclear materials in a huge container among thousands of others in a busy port becomes possible. To learn about these new detectors from a specialist who has spent several years developing these technologies, watch the 412th Brookhaven Lecture, "Advanced Neutron Detection Methods: New Tools for Countering Nuclear Terrorism."

  10. 412th Brookhaven Lecture

    ScienceCinema

    Peter Vanier

    2016-07-12

    With new radiation detectors, finding smuggled nuclear materials in a huge container among thousands of others in a busy port becomes possible. To learn about these new detectors from a specialist who has spent several years developing these technologies, watch the 412th Brookhaven Lecture, "Advanced Neutron Detection Methods: New Tools for Countering Nuclear Terrorism."

  11. 426th Brookhaven Lecture

    ScienceCinema

    David Jaffe

    2016-07-12

    "The Pesky Neutrino". In this lecture, Jaffe describes the past, present and possible future of the "pesky" neutrino, the existence of which was first hypothesized in 1930 to rescue energy conservation in the radioactive beta decay of nuclei. Recent evidence that neutrinos are massive is the only experimental evidence in particle physics that is inconsistent with the Standard Model.

  12. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  13. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  14. 410th Brookhaven Lecture

    ScienceCinema

    Peter Steinberg

    2016-07-12

    In a lecture titled "Hotter, Denser, Faster, Smaller...and Nearly Perfect: What's the Matter at RHIC?", Steinberg discusses the basic physics of the quark-gluon plasma and BNL's Relativistic Heavy Ion Collider, with a focus on several intriguing results from RHIC's recently ended PHOBOS experiment.

  15. Organic Lecture Demonstrations.

    ERIC Educational Resources Information Center

    Silversmith, Ernest F.

    1988-01-01

    Provides a listing of 35 demonstrations designed to generate interest in organic chemistry and help put points across. Topics include opening lecture; molecular structure and properties; halogenation; nucleophilic substitution, alkenes and dienes, stereochemistry, spectroscopy, alcohols and phenols, aldehydes and ketones; carboxylic acids, amines,…

  16. 423rd Brookhaven Lecture

    ScienceCinema

    Mei Bai

    2016-07-12

    Among other things, scientists at BNL's Relativistic Heavy Ion Collider (RHIC) are studying a fundamental question of particle physics: What is responsible for proton "spin"? Physicist Mei Bai discusses this topic at the 423rd Brookhaven Lecture, "RHIC: The Worlds First High-Energy, Polarized-Proton Collider."

  17. Radiative transfer modelling of parsec-scale dusty warped discs

    NASA Astrophysics Data System (ADS)

    Jud, H.; Schartmann, M.; Mould, J.; Burtscher, L.; Tristram, K. R. W.

    2017-02-01

    Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations, we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching a warped maser disc in orientation and size. Our model is for the first time able to present a physical explanation for the observed dust morphology as coming from the active galactic nuclei heated dust. As opposed to available torus models, a warped disc morphology produces a variety of silicate feature shapes for grazing lines of sight, close to an edge-on view. This could be an attractive alternative to a claimed change of the dust composition for the case of the nearby Seyfert 2 galaxy NGC 1068, which harbours a warped maser disc as well.

  18. Local and global dynamics of warped astrophysical discs

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.; Latter, Henrik N.

    2013-08-01

    Astrophysical discs are warped whenever a misalignment is present in the system, or when a flat disc is made unstable by external forces. The evolution of the shape and mass distribution of a warped disc is driven not only by external influences but also by an internal torque, which transports angular momentum through the disc. This torque depends on internal flows driven by the oscillating pressure gradient associated with the warp, and on physical processes operating on smaller scales, which may include instability and turbulence. We introduce a local model for the detailed study of warped discs. Starting from the shearing sheet of Goldreich and Lynden-Bell, we impose the oscillating geometry of the orbital plane by means of a coordinate transformation. This warped shearing sheet (or box) is suitable for analytical and computational treatments of fluid dynamics, magnetohydrodynamics, etc., and it can be used to compute the internal torque that drives the large-scale evolution of the disc. The simplest hydrodynamic states in the local model are horizontally uniform laminar flows that oscillate at the orbital frequency. These correspond to the non-linear solutions for warped discs found in previous work by Ogilvie, and we present an alternative derivation and generalization of that theory. In a companion paper, we show that these laminar flows are often linearly unstable, especially if the disc is nearly Keplerian and of low viscosity. The local model can be used in future work to determine the non-linear outcome of the hydrodynamic instability of warped discs, and its interaction with others such as the magnetorotational instability.

  19. 10 Suggestions for Enhancing Lecturing

    ERIC Educational Resources Information Center

    Heitzmann, Ray

    2010-01-01

    Criticism of the lecture method remains a staple of discussion and writing in academia--and most of the time it's deserved! Those interested in improving this aspect of their teaching might wish to consider some or all of the following suggestions for enhancing lectures. These include: (1) Lectures must start with a "grabber"; (2)…

  20. In Defence of the Lecture

    ERIC Educational Resources Information Center

    Webster, R. Scott

    2015-01-01

    In response to the lecture format coming under "attack" and being replaced by online materials and smaller tutorials, this paper attempts to offer not only a defence but also to assert that the potential value of the lecture is difficult to replicate through other learning formats. Some of the criticisms against lectures will be…

  1. Seeking answers on lecturer training

    NASA Astrophysics Data System (ADS)

    Grozier, Jim; Austin, Jim

    2010-04-01

    Jonathan Osborne's letter (February p20) in response to João Magueijo's article on university-lecturer training (December 2009 pp16-17) surely cannot go unanswered. Contrary to what Osborne claims, Magueijo did not say that we should use lectures because students like them - in fact, he advocated the use of exactly the "interactive, discursive methods" that Osborne favours as alternatives to traditional lecture courses. The real point of Magueijo's article was that lecturer training as currently practised in the UK is a waste of time - not that lecturers need no training at all.

  2. Warped document image correction method based on heterogeneous registration strategies

    NASA Astrophysics Data System (ADS)

    Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan

    2013-03-01

    With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.

  3. Frame Shift/warp Compensation for the ARID Robot System

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1991-01-01

    The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.

  4. The Modified Dynamics is Conducive to Galactic Warp Formation.

    PubMed

    Brada; Milgrom

    2000-03-01

    There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.

  5. Exploring Tablet PC Lectures: Lecturer Experiences and Student Perceptions in Biomedicine

    ERIC Educational Resources Information Center

    Choate, Julia; Kotsanas, George; Dawson, Phillip

    2014-01-01

    Lecturers using tablet PCs with specialised pens can utilise real-time changes in lecture delivery via digital inking. We investigated student perceptions and lecturer experiences of tablet PC lectures in large-enrolment biomedicine subjects. Lecturers used PowerPoint or Classroom Presenter software for lecture preparation and in-lecture pen-based…

  6. Constraining the age of the NGC 4565 H I disk WARP: Determining the origin of gas WARPS

    SciTech Connect

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Stilp, Adrienne M.; De Jong, Roelof S.; Streich, David; Bell, Eric F.; Monachesi, Antonela; Dolphin, Andrew E.; Holwerda, Benne W.; Bailin, Jeremy

    2014-01-01

    We have mapped the distribution of young and old stars in the gaseous H I warp of NGC 4565. We find a clear correlation of young stars (<600 Myr) with the warp but no coincident old stars (>1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ∼300 Myr ago relative to the surrounding regions, is (6.3{sub −1.5}{sup +2.5})×10{sup −5} M {sub ☉} yr{sup –1} kpc{sup –2}. This implies a ∼60 ± 20 Gyr depletion time of the H I warp, similar to the timescales calculated for the outer H I disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color-magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of H I warps and the gas fueling of disk galaxies.

  7. Progressive alignment of genomic signals by multiple dynamic time warping.

    PubMed

    Skutkova, Helena; Vitek, Martin; Sedlar, Karel; Provaznik, Ivo

    2015-11-21

    This paper presents the utilization of progressive alignment principle for positional adjustment of a set of genomic signals with different lengths. The new method of multiple alignment of signals based on dynamic time warping is tested for the purpose of evaluating the similarity of different length genes in phylogenetic studies. Two sets of phylogenetic markers were used to demonstrate the effectiveness of the evaluation of intraspecies and interspecies genetic variability. The part of the proposed method is modification of pairwise alignment of two signals by dynamic time warping with using correlation in a sliding window. The correlation based dynamic time warping allows more accurate alignment dependent on local homologies in sequences without the need of scoring matrix or evolutionary models, because mutual similarities of residues are included in the numerical code of signals.

  8. Warping of unsymmetric cross-ply graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.

    1981-01-01

    Warping in unsymmetric graphite/epoxy laminates was studied with particular attention given to the change of residual stresses resulting from long term environmental exposure. Square, cured prepreg sheets were measured for edge deflection with a cathetometer, then quartered and remeasured. Two postcuring durations were then used, 7.5 and one hr at 177 C; varying cooldown rates after curing were used for other samples, and one set was stored in vacuum at 75 C. Maximum deflections and weight changes were measured periodically at room temperature. Average curvatures, the effect of postcure, and the effect of long-term exposure were determined. Larger panels exhibited cylindrical warping and smaller panels underwent anticlastic warping. The deflections were related to weight changes, i.e. moisture absorption, and the lower the moisture content, the higher the deflection. Relaxation of residual stresses at 75 C was neglibible after 220 days.

  9. Warped-AdS3 black holes with scalar halo

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Tsoukalas, Minas

    2015-09-01

    We construct a stretched (aka warped) anti-de Sitter black hole in three dimensions supported by a real scalar field configuration. The latter is regular everywhere outside and on the horizon. No-hair theorems in three dimensions demand the matter be coupled to the curvature in a nonminimal way; however, this coupling can still be of the Horndeski type, i.e. yielding second order field equations similar to those appearing in the context of Galileon theories. These warped-anti-de Sitter black holes exhibit interesting thermodynamical properties, such as finite Hawking temperature and entropy. We compute the black hole entropy in the gravity theory and speculate on the possibility of this to admit a microscopic description in terms of a dual (warped) conformal field theory. We also discuss the inner and outer black hole mechanics.

  10. Human low vision image warping - Channel matching considerations

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Smith, Alan T.; Loshin, David S.

    1992-01-01

    We are investigating the possibility that a video image may productively be warped prior to presentation to a low vision patient. This could form part of a prosthesis for certain field defects. We have done preliminary quantitative studies on some notions that may be valid in calculating the image warpings. We hope the results will help make best use of time to be spent with human subjects, by guiding the selection of parameters and their range to be investigated. We liken a warping optimization to opening the largest number of spatial channels between the pixels of an input imager and resolution cells in the visual system. Some important effects are not quantified that will require human evaluation, such as local 'squashing' of the image, taken as the ratio of eigenvalues of the Jacobian of the transformation. The results indicate that the method shows quantitative promise. These results have identified some geometric transformations to evaluate further with human subjects.

  11. VME rollback hardware for time warp multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Robb, Michael J.; Buzzell, Calvin A.

    1992-01-01

    The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.

  12. On Einstein warped products with a quarter-symmetric connection

    NASA Astrophysics Data System (ADS)

    Pahan, Sampa; Pal, Buddhadev; Bhattacharyya, Arindam

    This paper characterizes the warping functions for a multiply generalized Robertson-Walker space-time to get an Einstein space M with a quarter-symmetric connection for different dimensions of M (i.e. (1). dim M = 2, (2). dim M ≥ 3) when all the fibers are Ricci flat. Then we have also computed the warping functions for a Ricci flat Einstein multiply warped product spaces M with a quarter-symmetric connection for different dimensions of M (i.e. (1). dim M = 2, (2). dim M = 3, (3). dim M ≥ 4) and all the fibers are Ricci flat. In the last section, we have given two examples of multiply generalized Robertson-Walker space-time with respect to quarter-symmetric connection.

  13. WARPED DISK AROUND A BRIGHT BLACK HOLE (ARTWORK)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This diagram shows the geometry of a warped disk of dust surrounding a suspected black hole in the active galaxy NGC 6251. The diagram is based on NASA Hubble Space Telescope images of the disk which reveal that only one side reflects light emitted from a suspected black hole, hence the disk is warped. Such a warp could be due to gravitational perturbations in the galaxy's nucleus that keep the disk from being perfectly flat, or from precession of the rotation axis of the black hole relative to the rotation axis of the galaxy. Perpendicular to the disk is a jet of high-energy particles blasted into space along the black hole's spin axis. Illustration: James Gitlin (Space Telescope Science Institute)

  14. What causes the warp in the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Scherrer, P. H.

    1981-01-01

    A comparative discussion of the warp in the heliospheric current sheet is presented. Pioneer 10 and 11 data of the interplanetary magnetic field compared with earlier data (Helios 1 and 2) show a good agreement on the phenomenon of the warp; however, the interpretations differ. One theory (Thomas and Smith, 1980) proposes that fast solar wind streams associated with interaction regions may move the current sheet higher to heliospheric latitudes, thus causing the warp; while the earlier theory (1976) adequately explained the phenomenon by using the observed photospheric magnetic field and the Zeeman effect but omitted the solar wind dynamical considerations as part of the computations. It is shown that the Helios data of the polarity of the interplanetary magnetic field are in good agreement with the computed location of the current sheet, confirming the earlier theory.

  15. Aspects of warped AdS3/CFT2 correspondence

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang

    2013-04-01

    In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.

  16. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  17. Design of a reading test for low vision image warping

    NASA Technical Reports Server (NTRS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. S.

    1993-01-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision - maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer-generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We will describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  18. B.Gregory Lecture

    ScienceCinema

    None

    2016-07-12

    Troisième série de "Gregory lectures" en mémoire de B.Gregory (1919-1977),DG de 1965 à 1970. La première conférence B.Gregory a été donné par le Prof.V.Weisskopf, son prédécesseur. Chris Greeg (?)de Berkley prend aussi la parole

  19. B.Gregory Lecture

    SciTech Connect

    2008-01-11

    Troisième série de "Gregory lectures" en mémoire de B.Gregory (1919-1977),DG de 1965 à 1970. La première conférence B.Gregory a été donné par le Prof.V.Weisskopf, son prédécesseur. Chris Greeg (?)de Berkley prend aussi la parole

  20. Validation of an Automated Torsional and Warping Stress Analysis Program

    DTIC Science & Technology

    1992-08-19

    AD-A256 035 I HEI| I IIHAI l! VALIDATION OF AN AUTOMATED TORSIONAL AND WARPING STRESS ANALYSIS PROGRAM DI f ELECTE ND OCT 8 1992 A Special Research...7 2.2 Torsional Analysis Case Charts ....................... 8 2.3 Determination of Plane Bending, Torsional ............. 9 and Warping...Fixed-Free 6 W1Ox49 Fixed-Free 7 W6x15 Fixed-Free 8 W8x67 Fixed-Free 9 ClOx20 Fixed-Free 10 C12x30 Fixed-Free 11 C5x9 Fixed-Fire 12 MC18x42 Fixed-Free

  1. The origin of the warped heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.

    1980-03-01

    The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.

  2. Current Status of the WArP Experiment

    SciTech Connect

    Szelc, A. M.

    2009-04-17

    The WArP Collaboration is getting ready to run the WArP 100 liter detector in the Underground laboratory in Gran Sasso, Italy. The new detector, scheduled to run in 2008, should improve the current sensitivity limits by a factor of 10. Meanwhile, an active R and D program is being conducted. The highlights of this program, namely the runs with Argon depleted in the radioactive isotope {sup 39}Ar currently in preparation and the measurements of the effects of contamination with Nitrogen and Oxygen on the Liquid Argon effective light yield will be presented as well as the current status of the 100 liter detector.

  3. The dynamical settling of warped disks and angular momentum transport in galaxies

    NASA Technical Reports Server (NTRS)

    Fisher, P.

    1994-01-01

    We present results of three-dimensional, hydrodynamic models of gaseous disks settling in a nonspherical potential. As the gas settles, differential precession creates a warped disk similar to the warps seen in spiral galaxies. A logarithmic potential, indicative of a massive halo, seems to induce warps more extreme than those produced by a l/r potential with a quadrupole distortion.

  4. The Warped Nuclear Disk of Radio Galaxy 3C 449

    NASA Astrophysics Data System (ADS)

    Tremblay, G. R.; Quillen, A. C.; Floyd, D. J. E.; Noel-Storr, J.; Baum, S. A.; Axon, D. J.; O'Dea, C. P.; Chiaberge, M.; Macchetto, F. D.; Sparks, W. B.; Miley, G. K.; Capetti, A.; Madrid, J. P.; Perlman, E.

    2005-12-01

    Among radio galaxies containing nuclear dust disks, the bipolar jet axis is generally expected to be perpendicular to the disk major axis. However, the FR I radio source 3C 449, possessing a nearly parallel jet/disk orientation on the sky, is an extreme example of a system that does not conform to this expectation. We examine the 600 pc dusty disk in this galaxy with images from the Hubble Space Telescope. We find that a colormap of the disk exhibits a twist in its isocolor contours (isochromes). We model the colormap by integrating galactic starlight through an absorptive disk, and find that the anomalous twist in the isochromes can be reproduced in the model with a vertically thin, warped disk. The model predicts that the disk is nearly perpendicular to the jet axis within 100 pc of the nucleus. We discuss physical mechanisms capable of causing such a warp. We show that a torque on the disk arising from a possible binary black hole in the AGN or radiation pressure from the AGN causes precession on a timescale that is too long to generate such a warp. However, we estimate that the pressure in the X-ray emitting interstellar medium is large enough to perturb the disk. The warped disk in 3C 449 may be a new manifestation of feedback from an active galactic nucleus.

  5. Warped Products and Yang-Mills Equations on Noncommutative Spaces

    NASA Astrophysics Data System (ADS)

    Zampini, Alessandro

    2015-02-01

    This paper presents a non-self-dual solution of the Yang-Mills equations on a noncommutative version of the classical , so generalizing the classical meron solution first introduced by de Alfaro et al. (Phys Lett B 65:163-166, 1976). The basic tool for that is a generalization to noncommutative spaces of the classical notion of warped products between metric spaces.

  6. 10. View of Draper darby chain loom from warp beam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of Draper darby chain loom from warp beam end, patent date 1913, made by Drpaer Corporation, Hopedale, Massachusetts. Acquired ca. 1941. Note Draper-Northrop name on automatic spindle changer. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL

  7. Phillips funds AWG lectures

    NASA Astrophysics Data System (ADS)

    The Association for Women Geoscientists Foundation has received a $9000 grant from Phillips Petroleum Company to fund the Phillips-AWG Distinguished Lectures. The money will pay travel expenses for the women geoscientists listed with the AWG Speakers Bureau.More than 100 women geoscientists are available through the AWG Speakers Bureau. Their topics cover all the Earth sciences including geology, geophysics, geochemistry, paleobotany, planetary geology and mineral exploration. Their areas of study range from the U.S., Europe and South America to Mars. They come from academia, government and industry in 33 states and the District of Columbia.

  8. Lectures on Yangian symmetry

    NASA Astrophysics Data System (ADS)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  9. WARP interacts with collagen VI-containing microfibrils in the pericellular matrix of human chondrocytes.

    PubMed

    Hansen, Uwe; Allen, Justin M; White, Rachel; Moscibrocki, Cathleen; Bruckner, Peter; Bateman, John F; Fitzgerald, Jamie

    2012-01-01

    Collagen VI and WARP are extracellular structural macromolecules present in cartilage and associated with BM suprastructures in non-skeletal tissues. We have previously shown that in WARP-deficient mice, collagen VI is specifically reduced in regions of the peripheral nerve ECM where WARP is expressed, suggesting that both macromolecules are part of the same suprastructure. The object of this study was to conduct a detailed analysis of WARP-collagen VI interactions in vitro in cartilage, a tissue rich in WARP and collagen VI. Immunohistochemical analysis of mouse and human articular cartilage showed that WARP and collagen VI co-localize in the pericellular matrix of superficial zone articular chondrocytes. EM analysis on extracts of human articular cartilage showed that WARP associates closely with collagen VI-containing suprastructures. Additional evidence of an interaction is provided by immunogold EM and immunoblot analysis showing that WARP was present in collagen VI-containing networks isolated from cartilage. Further characterization were done by solid phase binding studies and reconstitution experiments using purified recombinant WARP and isolated collagen VI. Collagen VI binds to WARP with an apparent K(d) of approximately 22 nM and the binding site(s) for WARP resides within the triple helical domain since WARP binds to both intact collagen VI tetramers and pepsinized collagen VI. Together, these data confirm and extend our previous findings by demonstrating that WARP and collagen VI form high affinity associations in vivo in cartilage. We conclude that WARP is ideally placed to function as an adapter protein in the cartilage pericellular matrix.

  10. Surviving Lecture: A Pedagogical Alternative

    ERIC Educational Resources Information Center

    Berry, Whitney

    2008-01-01

    Lecture is the approach traditionally used to teach music theory courses. Although efficient in the delivery of large amounts of information in a short period of time, lecture lacks the effectiveness of an active learning approach. "Theory Survivor" is a unique cooperative-learning method based on the Student Teams-Achievement Divisions technique…

  11. ESP Methodology for Science Lecturers.

    ERIC Educational Resources Information Center

    Rogers, Angela; Mulyana, Cukup

    A program designed to teach university science lecturers in Indonesia how to design and teach one-semester courses in English for special purposes (ESP) is described. The program provided lecturers with training in language teaching methodology and course design. The piloting of the teacher training course, focusing on physics instruction, is…

  12. Co-ordinated Classroom Lectures.

    ERIC Educational Resources Information Center

    Harmon, Darell Boyd

    From a series of lectures, a selection of eight are oriented principally toward the biologically developing child, and the physiological operations in visual process. The numbered lectures are--(1) The Coordinated Classroom, its Philosophy and Principles, (2) An Outline of a Biological Point of View, (3) The Evolution of Structure--despite man's…

  13. Lecture on Thermal Radiation

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.

    2006-01-01

    This lecture will cover solar thermal radiation, particularly as it relates to the high energy solar processes that are the subject of this summer school. After a general review of thermal radiation from the Sun and a discussion of basic definitions, the various emission and absorption mechanisms will be described including black-body emission, bremsstrahlung, free-bound, and atomic line emissions of all kinds. The bulk of the time will be spent discussing the observational characteristics of thermal flare plasma and what can be learned about the flare energy release process from observations of the thermal radiation at all wavelengths. Information that has been learned about the morphology, temperature distribution, and composition of the flare plasma will be presented. The energetics of the thermal flare plasma will be discussed in relation to the nonthermal energy of the particles accelerated during the flare. This includes the total energy, the radiated and conductive cooling processes, and the total irradiated energy.

  14. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  15. The extracellular matrix protein WARP is a novel component of a distinct subset of basement membranes.

    PubMed

    Allen, Justin M; Brachvogel, Bent; Farlie, Peter G; Fitzgerald, Jamie; Bateman, John F

    2008-05-01

    WARP is a recently described member of the von Willebrand factor A domain superfamily of extracellular matrix proteins, and is encoded by the Vwa1 gene. We have previously shown that WARP is a multimeric component of the chondrocyte pericellular matrix in articular cartilage and intervertebral disc, where it interacts with the basement membrane heparan sulfate proteoglycan perlecan. However, the tissue-specific expression of WARP in non-cartilaginous tissues and its localization in the extracellular matrix of other perlecan-containing tissues have not been analyzed in detail. To visualize WARP-expressing cells, we generated a reporter gene knock-in mouse by targeted replacement of the Vwa1 gene with beta-galactosidase. Analysis of reporter gene expression and WARP protein localization by immunostaining demonstrates that WARP is a component of a limited number of distinct basement membranes. WARP is expressed in the vasculature of neural tissues and in basement membrane structures of the peripheral nervous system. Furthermore, WARP is also expressed in the apical ectodermal ridge of developing limb buds, and in skeletal and cardiac muscle. These findings are the first evidence for WARP expression in non-cartilaginous tissues, and the identification of WARP as a component of a limited range of specialized basement membranes provides further evidence for the heterogeneous composition of basement membranes between different tissues.

  16. Little Randall-Sundrum model and a multiply warped spacetime

    SciTech Connect

    McDonald, Kristian L.

    2008-06-15

    A recent work has investigated the possibility that the mass scale for the ultraviolet (UV) brane in the Randall-Sundrum (RS) model is of the order 10{sup 3} TeV. In this so called 'little Randall-Sundrum' (LRS) model the bounds on the gauge sector are less severe, permitting a lower Kaluza-Klein scale and cleaner discovery channels. However employing a low UV scale nullifies one major appeal of the RS model, namely, the elegant explanation of the hierarchy between the Planck and weak scales. In this work we show that by localizing the gauge, fermion, and scalar sector of the LRS model on a five dimensional slice of a doubly warped spacetime one may obtain the low UV brane scale employed in the LRS model and motivate the weak-Planck hierarchy. We also consider the generalization to an n-warped spacetime.

  17. Trigonal warping in bilayer graphene: Energy versus entanglement spectrum

    NASA Astrophysics Data System (ADS)

    Predin, Sonja; Wenk, Paul; Schliemann, John

    2016-03-01

    We present a mainly analytical study of the entanglement spectrum of Bernal-stacked graphene bilayers in the presence of trigonal warping in the energy spectrum. Upon tracing out one layer, the entanglement spectrum shows qualitative geometric differences to the energy spectrum of a graphene monolayer. However, topological quantities such as Berry-phase-type contributions to Chern numbers agree. The latter analysis involves not only the eigenvalues of the entanglement Hamiltonian but also its eigenvectors. We also discuss the entanglement spectra resulting from tracing out other sublattices. As a technical basis of our analysis, we provide closed analytical expressions for the full eigensystem of bilayer graphene in the entire Brillouin zone with a trigonally warped spectrum.

  18. Dynamic time warping for temperature compensation in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  19. Multiply-warped product metrics and reduction of Einstein equations

    NASA Astrophysics Data System (ADS)

    Gholami, Fateme; Darabi, Farhad; Haji-Badali, Ali

    It is shown that for every multidimensional metric in the multiply-warped product form M¯ = K ×f1M1 ×f2M2 with warp functions f1, f2, associated to the submanifolds M1, M2 of dimensions n1, n2 respectively, one can find the corresponding Einstein equations ḠAB = -Λ¯ḡAB, with cosmological constant Λ¯, which are reducible to the Einstein equations Gαβ = -Λ1gαβ and Gij = -Λ2hij on the submanifolds M1, M2, with cosmological constants Λ1 and Λ2, respectively, where Λ¯, Λ1 and Λ2 are functions of f1, f2 and n1, n2.

  20. Conformal Gravity and the Alcubierre Warp Drive Metric

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele; Burstein, Zily

    2013-04-01

    We present an analysis of the classic Alcubierre metric based on conformal gravity, rather than standard general relativity. The main characteristics of the resulting warp drive remain the same as in the original study by Alcubierre, namely that effective super-luminal motion is a viable outcome of the metric. We show that for particular choices of the shaping function, the Alcubierre metric in the context of conformal gravity does not violate the weak energy condition, as was the case of the original solution. In particular, the resulting warp drive does not require the use of exotic matter. Therefore, if conformal gravity is a correct extension of general relativity, super-luminal motion via an Alcubierre metric might be a realistic solution, thus allowing faster-than-light interstellar travel.

  1. Smart warping harnesses for active mirrors and stress polishing

    NASA Astrophysics Data System (ADS)

    Lemared, Sabri; Hugot, Emmanuel; Challita, Zalpha; Schnetler, Hermine; Kroes, Gabby; Marcos, Michel; Costille, Anne; Dohlen, Kjetil; Beuzit, Jean-Luc; Cuby, Jean-Gabriel

    2016-07-01

    We present two ways to generate or compensate for first order optical aberrations using smart warping harnesses. In these cases, we used the same methodology leading to replace a previous actuation system currently on-sky and to get a freeform mirror intended to a demonstrator. Starting from specifications, a warping harness is designed, followed by a meshing model in the finite elements software. For the two projects, two different ways of astigmatism generation are presented. The first one, on the VLT-SPHERE instrument, with a single actuator, is able to generate a nearly pure astigmatism via a rotating motorization. Two actuators are sufficient to produce the same aberration for the active freeform mirror, main part of the OPTICON-FAME project, in order to use stress-polishing method.

  2. Speech Recognition Using Neural Nets and Dynamic Time Warping

    DTIC Science & Technology

    1988-12-01

    AFIT/GEO/ENG/88D-1 SPEECH RECOGNITION USING NEURAL NETS AND DYNAMIC TIME WARPING THESIS Presented to the Faculty of the School of Engineering ... Engineering Gary Dean Barmore, B.S., B.S.E.E Capt, USAF December, 1988 Approved for public release; distribution unlimited Preface The purpose of this...input vector (. is smaller than the distance between any other node’s weight vector and the input vector. Hence, a sequence of input vectors

  3. Development of Warp Yarn Tension During Shedding: A Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Ghosh, Subrata; Chary, Prabhakara; Roy, Sukumar

    2015-10-01

    Theoretical investigation on the process of development of warp yarn tension during weaving for tappet shedding is carried out, based on the dynamic nature of shed geometry. The path of warp yarn on a weaving machine is divided into four different zones. The tension developed in each zone is estimated for every minute rotation of the bottom shaft. A model has been developed based on the dynamic nature of shed geometry and the possible yarn flow from one zone to another. A computer program, based on the model of shedding process, is developed for predicting the warp yarn tension variation during shedding. The output of the model and the experimental values of yarn tension developed in zone-D i.e. between the back rest and the back lease rod are compared, which shows a good agreement between them. The warp yarn tension values predicted by the model in zone-D are 10-13 % lesser than the experimentally measured values. By analyzing the theoretical data of the peak value of developed yarn tension at four zones i.e. zone-A, zone-B, zone-C and zone-D, it is observed that the peak yarn tension value of A, B, C-zones are much higher than the peak tension near the back rest i.e. at zone-D. It is about twice or more than the yarn tension near the back rest. The study also reveals that the developed yarn tension peak values are different for the extreme positions of a heald. The impact of coefficient of friction on peak value of yarn tension is nominal.

  4. The settling of warped disks in oblate dark halos

    NASA Technical Reports Server (NTRS)

    Dubinski, John; Kuijken, Konrad

    1995-01-01

    When a galaxy forms, the disk may initially be tilted with respect to a flattened dark halo. The misalignment between the disk and the halo is a common explanation for galactic disk warps, since in this state disks have precessing bending modes which resemble real warps. The gravitational response of the halo has often been ignored, and its strength and effect on possible bending modes is unknown. We therefore calculate the response of an oblate halo to a precessing inclined exponential disk using a variety of techniques. We construct models with a rigid exponential disk precessing in a particle halo, a particle disk precessing inside a static bulge/halo potential, and a self-consistent model with a particle disk, bulge, and halo. When the disk: halo mass ratio is small (approximately 10%) within 5 exponential scale radii, the disk settles to the equatorial plane of the halo within five orbital times. When the disk and halo mass are comparable, the halo rapidly aligns with the disk within a few orbital times, while the disk inclination drops. The rapid response of the halo to an inclined precessing disk suggests that the warps seen in galactic disks are not due to a misalignment between the disk and the inner halo. If a galaxy forms inclined to the principal plane of a dark halo, either the disk will settle to a pricipal plane or the inner halo will twist to align with the disk. The outer halo will remain misaligned for a much longer time and therefore may still exert a torque. Warped bending modes may still exist if the misalignment of the outer halo persists for a Hubble time.

  5. [Fast volume rendering of echocardiogram with shear-warp algorithm].

    PubMed

    Yang, Liu; Wang, Tianfu; Lin, Jiangli; Li, Deyu; Zheng, Yi; Zheng, Changqiong; Song, Haibo; Tang, Hong; Wang, Xiaoyi

    2004-04-01

    Shear-warp is a volume rendering technology based on object-order. It has the characteristics of high speed and high image quality by comparison with the conventional visualization technology. The authors introduced the principle of this algorithm and applied it to the visualization of 3-D data obtained by interpolating rotary scanning echocardiogram. The 3-D reconstruction of the echocardiogram was efficiently completed with high image quality. This algorithm has a prospective application in medical image visualization.

  6. Alcubierre warp drive: On the matter of matter

    NASA Astrophysics Data System (ADS)

    McMonigal, Brendan; Lewis, Geraint F.; O'Byrne, Philip

    2012-03-01

    The Alcubierre warp drive allows a spaceship to travel at an arbitrarily large global velocity by deforming the spacetime in a bubble around the spaceship. Little is known about the interactions between massive particles and the Alcubierre warp drive, or the effects of an accelerating or decelerating warp bubble. We examine geodesics representative of the paths of null and massive particles with a range of initial velocities from -c to c interacting with an Alcubierre warp bubble traveling at a range of globally subluminal and superluminal velocities on both constant and variable velocity paths. The key results for null particles match what would be expected of massive test particles as they approach ±c. The increase in energy for massive and null particles is calculated in terms of vs, the global ship velocity, and vp, the initial velocity of the particle with respect to the rest frame of the origin/destination of the ship. Particles with positive vp obtain extremely high energy and velocity and become “time locked” for the duration of their time in the bubble, experiencing very little proper time between entering and eventually leaving the bubble. When interacting with an accelerating bubble, any particles within the bubble at the time receive a velocity boost that increases or decreases the magnitude of their velocity if the particle is moving toward the front or rear of the bubble, respectively. If the bubble is decelerating, the opposite effect is observed. Thus Eulerian matter is unaffected by bubble accelerations/decelerations. The magnitude of the velocity boosts scales with the magnitude of the bubble acceleration/deceleration.

  7. Warped throat solutions in string theory and their cosmological applications

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly

    2007-12-01

    This thesis is devoted to a study of certain examples of gauge/string duality related to warped throat backgrounds in string theory. Namely, we consider a family of IIB SUGRA solutions dual to a moduli space of certain cascading N = 1 gauge theory. This theory exhibits rich low-energy behavior, including chiral symmetry breaking and confinement. The first part of this thesis is focused on the gravity dual description of these phenomena. In particular, we discuss string theory description of the continuous gauge theory moduli space, evaluate the tension of BPS domain wall, and calculate baryonic condensates. The second part of the thesis is devoted to the embedding of the warped throat backgrounds into flux compactifications. To this end we calculate the nonperturbative superpotential of the D3-D7 system on warped conic geometries. This superpotential plays an important role in fixing Kahler moduli and is an important ingredient in constructing consistent compactification scenarios. In the last part of the thesis we apply this superpotential to a particular cosmological inflation scenario based on the dynamics of a D3-brane moving along the throat. We conclude that the realization of stringy inflation within this scenario is possible only around an inflection point of the potential and requires a fine tuning of the parameters.

  8. The Warped Disk of Integral-Sign Galaxy PGC 20348

    NASA Astrophysics Data System (ADS)

    Ann, H. B.

    2007-03-01

    We examine the morphology and luminosity distribution of a strongly warped spiral galaxy PGC 20348 by conducting a detailed BVI CCD surface photometry using BOAO 1.8m telescope. The radial surface brightness shows a break at warp radius (r_{w}) with a shallow gradient in the inner disk and a steeper gradient in the outer disk. The luminosity of east side of the disk is ˜ 0.5 mag fainter than the west side at r > r_{w}. The reason for the asymmetric luminosity distribution is thought to be the asymmetric flarings that result in the formation of a large diffuse region at the edge of the east disk and a smaller diffuse region at the west disk. The vertical luminosity profiles show a thick disk component whose scale heights increase with increasing galactocentric distances. The warp of PGC 20348 seems to be made by the tidal interactions with the two massive companion galaxies since the flarings and radial increase of disk scale heights are thought to be general properties of tidally perturbed disks. According to the colors of the two clumps inside the diffuse region at the edge of the east disk, they seem to be sites of active star formation triggered by tidal forces from the companion galaxies.

  9. Fermion masses and mixing in general warped extra dimensional models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  10. Effective fermion couplings in warped 5D Higgsless theories

    SciTech Connect

    Bechi, J.; Casalbuoni, R.; De Curtis, S.; Dominici, D.

    2006-11-01

    We consider a 5-dimensional SU(2) gauge theory with fermions in the bulk and with additional SU(2) and U(1) kinetic terms on the branes. The electroweak breaking is obtained by boundary conditions. After deconstruction, fermions in the bulk are eliminated by using their equations of motion. In this way, standard model fermion mass terms and direct couplings to the internal gauge bosons of the moose are generated. The presence of these new couplings gives a new contribution to the {epsilon}{sub 3} parameter in addition to the gauge boson term. This allows the possibility of a cancellation between the two contributions, which can be local (site by site) or global. Going back to the continuum, we show that the implementation of local cancellation in any generic warped metric leaves massless fermions. This is due to the presence of one horizon on the infrared brane. However, we can require a global cancellation of the new physics contributions to the {epsilon}{sub 3} parameter. This fixes relations among the warp factor and the parameters of the fermion and gauge sectors. It turns out that the warping of the metric does not substantially modify the results obtained in the flat case.

  11. Teaching a Large Lecture Interpersonal Communication Course.

    ERIC Educational Resources Information Center

    Pearson, Judy C.

    Though lecturing reflects the outmoded view that communication consists of action rather than transaction, large lecture classes are a reality that must be engaged. An interpersonal communication course can be adapted to the lecture hall and need not include the traditional lecture as the only teaching method. Students should be allowed to…

  12. Introductory Lectures on Collider Physics

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  13. Introductory lecture: nanoplasmonics.

    PubMed

    Brongersma, Mark L

    2015-01-01

    Nanoplasmonics or nanoscale metal-based optics is a field of science and technology with a tremendously rich and colourful history. Starting with the early works of Michael Faraday on gold nanocolloids and optically-thin gold leaf, researchers have been fascinated by the unusual optical properties displayed by metallic nanostructures. We now can enjoy selecting from over 10 000 publications every year on the topic of plasmonics and the number of publications has been doubling about every three years since 1990. This impressive productivity can be attributed to the significant growth of the scientific community as plasmonics has spread into a myriad of new directions. With 2015 being the International Year of Light, it seems like a perfect moment to review some of the most notable accomplishments in plasmonics to date and to project where the field may be moving next. After discussing some of the major historical developments in the field, this article will analyse how the most successful plasmonics applications are capitalizing on five key strengths of metallic nanostructures. This Introductory Lecture will conclude with a brief look into the future.

  14. Leveraging the Shapley Lectures

    NASA Astrophysics Data System (ADS)

    Howard, S.

    1998-05-01

    The Shapley Lectureships are both an honor and a privilege. The program has long provided the non-specialist a rare glimpse of the latest result of astronomical investigations. Shapley Lecturers carry the banner for the most interesting of all the sciences. They share the beauty and strength of astronomy by representing the discipline to non-specialists. It is important that we contribute what we can to this program. One might benefit from the frequent travel of most astronomers. Most research trips are now covered by grant money, by university money, and by Government money. Leverage this travel. For example, many meetings are held near places with small colleges. Consider sending a Shapley brochure to the science departments before your trip. Such trips may often be used to elicit a Shapley visit. Advertise the program. When we talk about astronomy to others we help all of us to keep this science alive. I will share the results of my Shapley Visits made in the last four years while traveling for NASA and NSF.

  15. WarpIV: In Situ Visualization and Analysis of Ion Accelerator Simulations.

    PubMed

    Rubel, Oliver; Loring, Burlen; Vay, Jean-Luc; Grote, David P; Lehe, Remi; Bulanov, Stepan; Vincenti, Henri; Bethel, E Wes

    2016-01-01

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analytics to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. This supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.

  16. WarpIV: In situ visualization and analysis of ion accelerator simulations

    SciTech Connect

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; Grote, David P.; Lehe, Remi; Bulanov, Stepan; Vincenti, Henri; Bethel, E. Wes

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analytics to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.

  17. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  18. Surface states in a 3D topological insulator: The role of hexagonal warping and curvature

    SciTech Connect

    Repin, E. V.; Burmistrov, I. S.

    2015-09-15

    We explore a combined effect of hexagonal warping and a finite effective mass on both the tunneling density of electronic surface states and the structure of Landau levels of 3D topological insulators. We find the increasing warping to transform the square-root van Hove singularity into a logarithmic one. For moderate warping, an additional logarithmic singularity and a jump in the tunneling density of surface states appear. By combining the perturbation theory and the WKB approximation, we calculate the Landau levels in the presence of hexagonal warping. We predict that due to the degeneracy removal, the evolution of Landau levels in the magnetic field is drastically modified.

  19. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  20. Immunocytochemical distribution of WARP (von Willebrand A domain-related protein) in the inner ear.

    PubMed

    Duong, Trac; Lopez, Ivan A; Ishiyama, Akira; Ishiyama, Gail

    2011-01-07

    The basic components of the epithelial, perineural, and perivascular basement membranes in the inner ear have been well-documented in several animal models and in the human inner ear. The von Willebrand A domain-related protein (WARP) is an extracellular matrix molecule with restricted expression in cartilage, and a subset of basement membranes in peripheral nerves, muscle, and central nervous system vasculature. It has been suggested that WARP has an important role in maintaining the blood-brain barrier. To date no studies on WARP distribution have been performed in the inner ear, which is equipped with an intricate vasculature network. In the present study, we determined the distribution of WARP by immunocytochemistry in the human inner ear using auditory and vestibular endorgans microdissected from human temporal bones obtained at autopsy. All subjects (n=5, aged 55-87years old) had documented normal auditory and vestibular function. We also determined the WARP immunolocalization in the mouse inner ear. WARP immunoreactivity localized to the vasculature throughout the stroma of the cristae ampullaris, the maculae utricle, and saccule in the human and mouse. In the human and mouse inner ear, WARP immunoreactivity delineated blood vessels located in the stria vascularis, spiral ligament, sub-basilar region, stromal tissue, and the spiral and vestibular ganglia. The distinct localization of WARP in the inner ear vasculature suggests an important role in maintaining its integrity. In addition, WARP allows delineation of microvessels in the inner ear allowing the study of vascular pathology in the development of otological diseases.

  1. The warp of the Galactic stellar disk detected in IRAS source counts

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Sosin, Craig

    1989-01-01

    About 90,000 IRAS point sources have been used as disk tracers in order to explore the possibility of warp in the Galactic stellar disk. The results imply that the Galactic stellar disk is warped at large radii in a way similar to the H-I layer, and that the warp is an important characteristic of the Galaxy as a whole. It is suggested that the warp may be a long-lasting phenomenon, possibly caused by asymmetries of the mass distribution in the outer regions of the Galactic dark halo.

  2. ACCRETION DISK WARPING BY RESONANT RELAXATION: THE CASE OF MASER DISK NGC 4258

    SciTech Connect

    Bregman, Michal; Alexander, Tal

    2009-08-01

    The maser disk around the massive black hole (MBH) in active galaxy NGC 4258 exhibits an O(10 deg.) warp on the O(0.1 pc) scale. The physics driving the warp is still debated. Suggested mechanisms include torquing by relativistic frame dragging or by radiation pressure. We propose here a new warping mechanism: resonant torquing of the disk by stars in the dense cusp around the MBH. We show that resonant torquing can induce such a warp over a wide range of observed and deduced physical parameters of the maser disk.

  3. WARP is a novel multimeric component of the chondrocyte pericellular matrix that interacts with perlecan.

    PubMed

    Allen, Justin M; Bateman, John F; Hansen, Uwe; Wilson, Richard; Bruckner, Peter; Owens, Rick T; Sasaki, Takako; Timpl, Rupert; Fitzgerald, Jamie

    2006-03-17

    WARP is a novel member of the von Willebrand factor A domain superfamily of extracellular matrix proteins that is expressed by chondrocytes. WARP is restricted to the presumptive articular cartilage zone prior to joint cavitation and to the articular cartilage and fibrocartilaginous elements in the joint, spine, and sternum during mouse embryonic development. In mature articular cartilage, WARP is highly specific for the chondrocyte pericellular microenvironment and co-localizes with perlecan, a prominent component of the chondrocyte pericellular region. WARP is present in the guanidine-soluble fraction of cartilage matrix extracts as a disulfide-bonded multimer, indicating that WARP is a strongly interacting component of the cartilage matrix. To investigate how WARP is integrated with the pericellular environment, we studied WARP binding to mouse perlecan using solid phase and surface plasmon resonance analysis. WARP interacts with domain III-2 of the perlecan core protein and the heparan sulfate chains of the perlecan domain I with K(D) values in the low nanomolar range. We conclude that WARP forms macromolecular structures that interact with perlecan to contribute to the assembly and/or maintenance of "permanent" cartilage structures during development and in mature cartilages.

  4. Formation of warped disks by galactic flyby encounters. I. Stellar disks

    SciTech Connect

    Kim, Jeonghwan H.; An, Sung-Ho; Yoon, Suk-Jin; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae

    2014-07-01

    Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the 'flyby scenario' of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called 'S'-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.

  5. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    SciTech Connect

    Hayasaki, K.; Sohn, B.W.; Jung, T.; Zhao, G.; Okazaki, A.T.; Naito, T. E-mail: bwsohn@kasi.re.kr E-mail: thjung@kasi.re.kr E-mail: tsuguya@ygu.ac.jp

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.

  6. Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very

  7. Performance of resin transfer molded multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor

  8. Secondary Electron Interference from Trigonal Warping in Clean Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dirnaichner, A.; del Valle, M.; Götz, K. J. G.; Schupp, F. J.; Paradiso, N.; Grifoni, M.; Strunk, Ch.; Hüttel, A. K.

    2016-10-01

    We investigate Fabry-Perot interference in an ultraclean carbon nanotube resonator. The conductance shows a clear superstructure superimposed onto conventional Fabry-Perot oscillations. A sliding average over the fast oscillations reveals a characteristic slow modulation of the conductance as a function of the gate voltage. We identify the origin of this secondary interference in intervalley and intravalley backscattering processes which involve wave vectors of different magnitude, reflecting the trigonal warping of the Dirac cones. As a consequence, the analysis of the secondary interference pattern allows us to estimate the chiral angle of the carbon nanotube.

  9. TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, S. F.

    1994-01-01

    The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed

  10. DISK AROUND STAR MAY BE WARPED BY UNSEEN PLANET

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided strong evidence for the existence of a roughly Jupiter-sized planet orbiting the star Beta Pictoris. Detailed Hubble images of the inner region of the 200-billion mile diameter dust disk encircling the star reveal an unexpected warp. Researchers say the warp can be best explained as caused by the gravitational pull of an unseen planet. The suspected planet would dwell within a five-billion mile wide clear zone in the center of the disk. This zone has long been suspected of harboring planets that swept it clear of debris, but the Hubble discovery provides more definitive evidence that a planet is there. (Alternative theories suggest the clear zone is empty because it is too warm for ice particles to exist.) 'We were surprised to find that the innermost region of the disk is orbiting in a different plane from the rest of the disk,' says Chris Burrows (Space Telescope Science Institute, Baltimore, Maryland, and the European Space Agency) who is presenting his results at the meeting of the American Astronomical Society in San Antonio, Texas. As he analyzed Hubble images, taken in January 1995 with the Wide Field Planetary Camera 2, Burrows discovered an unusual bulge in the nearly edge-on disk, which was mirrored on the other side of the star. 'Such a warp cannot last for very long,' says Burrows. 'This means that something is still twisting the disk and keeping out of a basic flat shape.' 'The presence of the warp is strong though indirect evidence for the existence of planets in this system. If Beta Pictoris had a solar system like ours, it would produce a warp like the one we see.' Burrows concludes, 'The Beta Pictoris system seems to contain at least one planet not too dissimilar from Jupiter in size and orbit. Rocky planets like Earth might circle Beta Pictoris as well. However, there is no evidence for these yet. Any planet will be at least a billion- times fainter than the star, and presently impossible to view directly

  11. Orientifolds of warped throats from toric Calabi-Yau singularities

    NASA Astrophysics Data System (ADS)

    Retolaza, Ander; Uranga, Angel

    2016-07-01

    We study the complex deformations of orientifolds of D3-branes at toric CY singularities, using their description in terms of dimer diagrams. We describe orientifold quotients that have fixed lines or fixed points in the dimer, and characterize the possibilities to deform them in terms of the behaviour of zig-zag paths under the orientifold symmetry. The resulting models are holographic duals to warped throats with orientifold planes. Our systematic construction provides a general class of configurations which includes models recently appeared in the context of de Sitter uplift by nilpotent goldstino or dynamical supersymmetry breaking.

  12. DISK AROUND STAR MAY BE WARPED BY UNSEEN PLANET

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided strong evidence for the existence of a roughly Jupiter-sized planet orbiting the star Beta Pictoris. Detailed Hubble images of the inner region of the 200-billion mile diameter dust disk encircling the star reveal an unexpected warp. Researchers say the warp can be best explained as caused by the gravitational pull of an unseen planet. The suspected planet would dwell within a five-billion mile wide clear zone in the center of the disk. This zone has long been suspected of harboring planets that swept it clear of debris, but the Hubble discovery provides more definitive evidence that a planet is there. (Alternative theories suggest the clear zone is empty because it is too warm for ice particles to exist.) 'We were surprised to find that the innermost region of the disk is orbiting in a different plane from the rest of the disk,' says Chris Burrows (Space Telescope Science Institute, Baltimore, Maryland, and the European Space Agency) who is presenting his results at the meeting of the American Astronomical Society in San Antonio, Texas. As he analyzed Hubble images, taken in January 1995 with the Wide Field Planetary Camera 2, Burrows discovered an unusual bulge in the nearly edge-on disk, which was mirrored on the other side of the star. 'Such a warp cannot last for very long,' says Burrows. 'This means that something is still twisting the disk and keeping out of a basic flat shape.' 'The presence of the warp is strong though indirect evidence for the existence of planets in this system. If Beta Pictoris had a solar system like ours, it would produce a warp like the one we see.' Burrows concludes, 'The Beta Pictoris system seems to contain at least one planet not too dissimilar from Jupiter in size and orbit. Rocky planets like Earth might circle Beta Pictoris as well. However, there is no evidence for these yet. Any planet will be at least a billion- times fainter than the star, and presently impossible to view directly

  13. The WARPS survey for faint clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Jones, L. R.; Scharf, C. A.; Perlman, E.; Ebeling, H.; Wegner, G.; Malkan, M.

    1996-01-01

    The wide angle Rosat pointed survey (WARPS) of clusters is based on the Rosat position sensitive proportional counter (PSPC) archive of pointed observations. It includes extended X-ray sources and point-like X-ray sources with non-stellar optical counterparts. It was designed to minimize the selection effects while covering a large area of the sky. The purposes of the survey were to measure the low luminosity, high redshift, X-ray luminosity function of clusters and groups and to investigate cluster morphologies and unusual systems.

  14. Practical strategies for effective lectures.

    PubMed

    Lenz, Peter H; McCallister, Jennifer W; Luks, Andrew M; Le, Tao T; Fessler, Henry E

    2015-04-01

    Lecturing is an essential teaching skill for scientists and health care professionals in pulmonary, critical care, and sleep medicine. However, few medical or scientific educators have received training in contemporary techniques or technology for large audience presentation. Interactive lecturing outperforms traditional, passive-style lecturing in educational outcomes, and is being increasingly incorporated into large group presentations. Evidence-based techniques range from the very simple, such as inserting pauses for audience discussion, to more technologically advanced approaches such as electronic audience response systems. Alternative software platforms such as Prezi can overcome some of the visual limits that the ubiquitous PowerPoint imposes on complex scientific narratives, and newer technology formats can help foster the interactive learning environment. Regardless of the technology, adherence to good principles of instructional design, multimedia learning, visualization of quantitative data, and informational public speaking can improve any lecture. The storyline must be clear, logical, and simplified compared with how it might be prepared for scientific publication. Succinct outline and summary slides can provide a roadmap for the audience. Changes of pace, and summaries or other cognitive breaks inserted every 15-20 minutes can renew attention. Graphics that emphasize clear, digestible data graphs or images over tables, and simple, focused tables over text slides, are more readily absorbed. Text slides should minimize words, using simple fonts in colors that contrast to a plain background. Adherence to these well-established principles and addition of some new approaches and technologies will yield an engaging lecture worth attending.

  15. 3D volume reconstruction of a mouse brain histological sections using warp filtering

    SciTech Connect

    Ju, Tao; Warren, Joe; Carson, James P.; Bello, Musodiq; Kakadiaris, Ioannis; Chiu, Wah; Thaller, Christina; Eichele, Gregor

    2006-09-30

    Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.

  16. 3D volume reconstruction of a mouse brain from histological sections using warp filtering.

    PubMed

    Ju, Tao; Warren, Joe; Carson, James; Bello, Musodiq; Kakadiaris, Ioannis; Chiu, Wah; Thaller, Christina; Eichele, Gregor

    2006-09-30

    Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.

  17. Auditory forebrain neurons track temporal features of time-warped natural stimuli.

    PubMed

    Maddox, Ross K; Sen, Kamal; Billimoria, Cyrus P

    2014-02-01

    A fundamental challenge for sensory systems is to recognize natural stimuli despite stimulus variations. A compelling example occurs in speech, where the auditory system can recognize words spoken at a wide range of speeds. To date, there have been more computational models for time-warp invariance than experimental studies that investigate responses to time-warped stimuli at the neural level. Here, we address this problem in the model system of zebra finches anesthetized with urethane. In behavioral experiments, we found high discrimination accuracy well beyond the observed natural range of song variations. We artificially sped up or slowed down songs (preserving pitch) and recorded auditory responses from neurons in field L, the avian primary auditory cortex homolog. We found that field L neurons responded robustly to time-warped songs, tracking the temporal features of the stimuli over a broad range of warp factors. Time-warp invariance was not observed per se, but there was sufficient information in the neural responses to reliably classify which of two songs was presented. Furthermore, the average spike rate was close to constant over the range of time warps, contrary to recent modeling predictions. We discuss how this response pattern is surprising given current computational models of time-warp invariance and how such a response could be decoded downstream to achieve time-warp-invariant recognition of sounds.

  18. Mechanical Analyses of Real Time Warp Yarn Tensions in Size-Free Weaving

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 100% cotton, size-less common warp was used to study the real-time tensions of single strands of the warp during weaving on a high-speed weaving machine. The machine was operated under almost mill-like conditions. In order to investigate the independent effects of the weaving speed and fabric cons...

  19. Watershed regressions for pesticides (WARP) for predicting atrazine concentration in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2011-01-01

    The 95-percent prediction intervals are well within a factor of 10 above and below the predicted concentration statistic. WARP-CB model predictions were within a factor of 5 of the observed concentration statistic for over 90 percent of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. The WARP-CB models provide improved predictions of the probability of exceeding a specified criterion or benchmark for Corn Belt streams draining watersheds with high atrazine use intensities; however, National WARP models should be used for Corn Belt streams where atrazine use intensities are less than 17 kg/km2 of watershed area.

  20. Topological phase transition from trigonal warping in van der Waals multilayers

    NASA Astrophysics Data System (ADS)

    Zeng, Junjie; Ren, Yafei; Zhang, Kunhua; Qiao, Zhenhua

    2017-01-01

    In van der Waals multilayers of triangular lattice, trigonal warping occurs universally due to the interlayer hopping. We theoretically investigate the effect of trigonal warping upon distinctive topological phases, such as the quantum anomalous Hall effect (QAHE) and the quantum valley Hall effect (QVHE). Taking Bernal-stacked bilayer graphene as an example, we find that the trigonal warping plays a crucial role in the formation of QAHE in a large exchange field and/or interlayer potential difference by inducing extra band inversion points at a momentum further away from the high-symmetry point. The presence of trigonal warping shrinks the phase space of QAHE and QVHE, leading to the emergence of a valley-polarized QAHE with high Chern numbers ranging from C =-7 to 7 . These results suggest that the universal trigonal warping may play an important role when the Bloch states at momenta deviated from high-symmetry points are involved.

  1. Automatic view synthesis by image-domain-warping.

    PubMed

    Stefanoski, Nikolce; Wang, Oliver; Lang, Manuel; Greisen, Pierre; Heinzle, Simon; Smolic, Aljosa

    2013-09-01

    Today, stereoscopic 3D (S3D) cinema is already mainstream, and almost all new display devices for the home support S3D content. S3D distribution infrastructure to the home is already established partly in the form of 3D Blu-ray discs, video on demand services, or television channels. The necessity to wear glasses is, however, often considered as an obstacle, which hinders broader acceptance of this technology in the home. Multiviewautostereoscopic displays enable a glasses free perception of S3D content for several observers simultaneously, and support head motion parallax in a limited range. To support multiviewautostereoscopic displays in an already established S3D distribution infrastructure, a synthesis of new views from S3D video is needed. In this paper, a view synthesis method based on image-domain-warping (IDW) is presented that automatically synthesizes new views directly from S3D video and functions completely. IDW relies on an automatic and robust estimation of sparse disparities and image saliency information, and enforces target disparities in synthesized images using an image warping framework. Two configurations of the view synthesizer in the scope of a transmission and view synthesis framework are analyzed and evaluated. A transmission and view synthesis system that uses IDW is recently submitted to MPEG's call for proposals on 3D video technology, where it is ranked among the four best performing proposals.

  2. Time warp operating system version 2.7 internals manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  3. Warped basis pursuit for damage detection using lamb waves.

    PubMed

    De Marchi, Luca; Ruzzene, Massimo; Xu, Buli; Baravelli, Emanuele; Speciale, Nicolo

    2010-12-01

    This paper presents a novel time-frequency procedure based on the warped frequency transform (WFT) to process multi-mode and dispersive Lamb waves for structural health monitoring (SHM) applications. The proposed signal processing technique is applied to time waveforms recorded at an array of scan points after waveguide excitation. The WFT is combined with a basis pursuit algorithm to extract the distance traveled by the ultrasonic waves even in the case of multi-modal dispersive propagation associated with broadband excitation of the waveguide. This is obtained through a decomposition of the acquired signals using dictionaries composed by optimized atomic functions which are designed to match the spectro-temporal structure of the various propagating modes. The warped basis pursuit (W-BP) analysis of several acquired waveforms results in distance signals that can be combined through classical beamforming techniques for acoustical source imaging purposes. A masking procedure is also proposed to suppress imaging noise. This approach is tested on experimental data obtained by broadband guided wave excitation in a 1-mm-thick aluminum plate with an artificially introduced through crack and tiny holes, followed by multiple waveguide displacement recording through a scanning laser Doppler vibrometer. Dispersion compensation, high-resolution source, and defect imaging are demonstrated even in domain regions that are not directly accessible for measurement.

  4. On Direct Verification of Warped Hierarchy-and-FlavorModels

    SciTech Connect

    Davoudiasl, Hooman; Rizzo, Thomas G.; Soni, Amarjit; /Brookhaven

    2007-10-15

    We consider direct experimental verification of warped models, based on the Randall-Sundrum (RS) scenario, that explain gauge and flavor hierarchies, assuming that the gauge fields and fermions of the Standard Model (SM) propagate in the 5D bulk. Most studies have focused on the bosonic Kaluza Klein (KK) signatures and indicate that discovering gauge KK modes is likely possible, yet challenging, while graviton KK modes are unlikely to be accessible at the LHC, even with a luminosity upgrade. We show that direct evidence for bulk SM fermions, i.e. their KK modes, is likely also beyond the reach of a luminosity-upgraded LHC. Thus, neither the spin-2 KK graviton, the most distinct RS signal, nor the KK SM fermions, direct evidence for bulk flavor, seem to be within the reach of the LHC. We then consider hadron colliders with vs. = 21, 28, and 60 TeV. We find that discovering the first KK modes of SM fermions and the graviton typically requires the Next Hadron Collider (NHC) with {radical}s {approx} 60 TeV and O(1) ab-1 of integrated luminosity. If the LHC yields hints of these warped models, establishing that Nature is described by them, or their 4D CFT duals, requires an NHC-class machine in the post-LHC experimental program.

  5. Direct verification of warped hierarchy-and-flavor models

    SciTech Connect

    Davoudiasl, Hooman; Soni, Amarjit; Rizzo, Thomas G.

    2008-02-01

    We consider direct experimental verification of warped models, based on the Randall-Sundrum (RS) scenario, that explain gauge and flavor hierarchies, assuming that the gauge fields and fermions of the standard model (SM) propagate in the 5D bulk. Most studies have focused on the bosonic Kaluza-Klein (KK) signatures and indicate that discovering gauge KK modes is likely possible, yet challenging, while graviton KK modes are unlikely to be accessible at the CERN LHC, even with a luminosity upgrade. We show that direct evidence for bulk SM fermions, i.e. their KK modes, is likely also beyond the reach of a luminosity-upgraded LHC. Thus, neither the spin-2 KK graviton, the most distinct RS signal, nor the KK SM fermions, direct evidence for bulk flavor, seem to be within the reach of the LHC. We then consider hadron colliders with {radical}(s)=21, 28, and 60 TeV. We find that discovering the first KK modes of SM fermions and the graviton typically requires the Next Hadron Collider (NHC) with {radical}(s){approx_equal}60 TeV and O(1) ab{sup -1} of integrated luminosity. If the LHC yields hints of these warped models, establishing that nature is described by them, or their 4D conformal field theory duals, requires an NHC-class machine in the post-LHC experimental program.

  6. Curvature properties of some class of warped product manifolds

    NASA Astrophysics Data System (ADS)

    Deszcz, Ryszard; Głogowska, Małgorzata; Jełowicki, Jan; Zafindratafa, Georges

    2016-10-01

    We prove that warped product manifolds with p-dimensional base, p = 1, 2, satisfy some pseudosymmetry type curvature conditions. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature tensor R, the Ricci tensor S and the Weyl conformal curvature C of the considered manifolds. The main result of the paper states that if p = 2 and the fiber is a semi-Riemannian space of constant curvature (when n is greater or equal to 5) then the (0, 6)-tensors R ṡ R - Q(S,R) and C ṡ C of such warped products are proportional to the (0, 6)-tensor Q(g,C) and the tensor C is a linear combination of some Kulkarni-Nomizu products formed from the tensors g and S. We also obtain curvature properties of this kind of quasi-Einstein and 2-quasi-Einstein manifolds, and in particular, of the Goedel metric, generalized spherically symmetric metrics and generalized Vaidya metrics.

  7. Modifications to holographic entanglement entropy in warped CFT

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2017-02-01

    In [1] it was observed that asymptotic boundary conditions play an important role in the study of holographic entanglement beyond AdS/CFT. In particular, the Ryu-Takayanagi proposal must be modified for warped AdS3 (WAdS3) with Dirichlet boundary conditions. In this paper, we consider AdS3 and WAdS3 with Dirichlet-Neumann boundary conditions. The conjectured holographic duals are warped conformal field theories (WCFTs), featuring a Virasoro-Kac-Moody algebra. We provide a holographic calculation of the entanglement entropy and Rényi entropy using AdS3/WCFT and WAdS3/WCFT dualities. Our bulk results are consistent with the WCFT results derived by Castro-Hofman-Iqbal using the Rindler method. Comparing with [1], we explicitly show that the holographic entanglement entropy is indeed affected by boundary conditions. Both results differ from the Ryu-Takayanagi proposal, indicating new relations between spacetime geometry and quantum entanglement for holographic dualities beyond AdS/CFT.

  8. Using Lecture Transcripts in EAP Lecture Comprehension Courses.

    ERIC Educational Resources Information Center

    Lebauer, Roni S.

    Native speakers, when listening to lectures, sift through the information to choose what to listen to, make hypotheses about future discourse, synthesize preceding discourse, and add their own background knowledge. Nonnative speakers, in their native languages, follow the same procedures. When dealing with a foreign language, however, they are not…

  9. Mice lacking the extracellular matrix protein WARP develop normally but have compromised peripheral nerve structure and function.

    PubMed

    Allen, Justin M; Zamurs, Laura; Brachvogel, Bent; Schlötzer-Schrehardt, Ursula; Hansen, Uwe; Lamandé, Shireen R; Rowley, Lynn; Fitzgerald, Jamie; Bateman, John F

    2009-05-01

    WARP is a recently identified extracellular matrix molecule with restricted expression in permanent cartilages and a distinct subset of basement membranes in peripheral nerves, muscle, and the central nervous system vasculature. WARP interacts with perlecan, and we also demonstrate here that WARP binds type VI collagen, suggesting a function in bridging connective tissue structures. To understand the in vivo function of WARP, we generated a WARP-deficient mouse strain. WARP-null mice were healthy, viable, and fertile with no overt abnormalities. Motor function and behavioral testing demonstrated that WARP-null mice exhibited a significantly delayed response to acute painful stimulus and impaired fine motor coordination, although general motor function was not affected, suggesting compromised peripheral nerve function. Immunostaining of WARP-interacting ligands demonstrated that the collagen VI microfibrillar matrix was severely reduced and mislocalized in peripheral nerves of WARP-null mice. Further ultrastructural analysis revealed reduced fibrillar collagen deposition within the peripheral nerve extracellular matrix and abnormal partial fusing of adjacent Schwann cell basement membranes, suggesting an important function for WARP in stabilizing the association of the collagenous interstitial matrix with the Schwann cell basement membrane. In contrast, other WARP-deficient tissues such as articular cartilage, intervertebral discs, and skeletal muscle showed no detectable abnormalities, and basement membranes formed normally. Our data demonstrate that although WARP is not essential for basement membrane formation or musculoskeletal development, it has critical roles in the structure and function of peripheral nerves.

  10. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    USGS Publications Warehouse

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  11. Watershed Regressions for Pesticides (WARP) Models for Predicting Stream Concentrations of Multiple Pesticides.

    PubMed

    Stone, Wesley W; Crawford, Charles G; Gilliom, Robert J

    2013-11-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  12. How Do I Lecture Thee?

    ERIC Educational Resources Information Center

    Murray, John P.; Murray, Judy I.

    1992-01-01

    A systematic approach to preparation of successful college lectures is outlined, including four stages: anticipation (of content and expectations); preparation (selection, acquisition, design, and construction); execution (attention to speech habits, demeanor, and body language); and support (evaluation, maintenance, and enhancement). (MSE)

  13. Clinical supervision for nurse lecturers.

    PubMed

    Lewis, D

    This article builds on a previous one which discussed the use of de Bono's thinking tool, 'six thinking hats' in the clinical, managerial, educational and research areas of nursing (Lewis 1995). This article explores clinical supervision and describes how the six thinking hats may be used as a reflective tool in the supervision of nurse lecturers who teach counselling skills.

  14. Teaching More by Lecturing Less

    ERIC Educational Resources Information Center

    Knight, Jennifer K.; Wood, William B.

    2005-01-01

    We carried out an experiment to determine whether student learning gains in a large, traditionally taught, upper-division lecture course in developmental biology could be increased by partially changing to a more interactive classroom format. In two successive semesters, we presented the same course syllabus using different teaching styles: in…

  15. Cruise-ship astronomy lecturing

    NASA Astrophysics Data System (ADS)

    Telford, Garry

    2005-06-01

    In December 2004 I was invited to present a series of lectures in Astronomy aboard "Discovery", a cruise-ship operated by World Discovery Cruises Ltd of London. Discovery left Tahiti on 15th of February 2005, and arrived in Auckland on 2nd of March 2005.

  16. Legibility in the Lecture Hall.

    ERIC Educational Resources Information Center

    Bartlett, Albert A.; Thomason, Michael A.

    1983-01-01

    Recommends black chalkboards, wet-washed before every lecture and advocates the use of Railroad Crayon chalk because its softness and larger size result in a wide high-intensity line. The resulting contrast improves the visibility of material written on chalkboards. (Source for the chalk is provided.) (JM)

  17. Applied Fluid Mechanics. Lecture Notes.

    ERIC Educational Resources Information Center

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  18. TASI Lectures on Complex Structures

    NASA Astrophysics Data System (ADS)

    Denef, Frederik

    2012-11-01

    These lecture notes give an introduction to a number of ideas and methods that have been useful in the study of complex systems ranging from spin glasses to D-branes on Calabi-Yau manifolds. Topics include the replica formalism, Parisi's solution of the Sherrington-Kirkpatrick model, overlap order parameters, supersymmetric quantum mechanics, D-brane landscapes and their black hole duals.

  19. How to Podcast Campus Lectures

    ERIC Educational Resources Information Center

    Read, Brock

    2007-01-01

    Many college classrooms these days may as well have lighted signs over their doors that read "On Air" or "Recording in Progress." A growing number of professors are recording their lectures and making them available as podcasts--regularly updated sets of audio files that students can download to their computers or MP3 players. Some campus…

  20. College Students' Perception of Lecturers Using Humor.

    ERIC Educational Resources Information Center

    Tamborini, Ron; Zillmann, Dolf

    1981-01-01

    Audio-taped lectures by male or female professors were produced in four versions: no humor; sexual humor; other-disparaging humor; and self-disparaging humor. Male and female students rated lecturers' intelligence and appeal. Intelligence ratings were unaffected by humor variations, but significant lecturer-student sex interactions were found on…

  1. Experiences in Personal Lecture Video Capture

    ERIC Educational Resources Information Center

    Chandra, Surendar

    2011-01-01

    The ability of lecture videos to capture the different modalities of a class interaction make them a good review tool. Multimedia capable devices are ubiquitous among contemporary students. Many lecturers are leveraging this popularity by distributing videos of lectures. They depend on the university to provide the video capture infrastructure.…

  2. Metaphor Use in Three UK University Lectures

    ERIC Educational Resources Information Center

    Low, Graham; Littlemore, Jeannette; Koester, Almut

    2008-01-01

    It has been claimed in recent years that, on the one hand, metaphor occurs in UK university lectures in ways that are likely to confuse ESL learners (Littlemore 2001, 2003) and on the other hand that US lecturers use it in highly structured ways, particularly involving linked clusters, to help organize the lecture and indicate the opinions of the…

  3. Applications of warped geometries: From cosmology to cold atoms

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    This thesis describes several interrelated projects furthering the study of branes on warped geometries in string theory. First, we consider the non-perturbative interaction between D3 and D7 branes which stabilizes the overall volume in braneworld compactification scenarios. This interaction might offer stable nonsupersymmetric vacua which would naturally break supersymmetry if occupied by D3 branes. We derive the equations for the nonsupersymmetric vacua of the D3-brane and analyze them in the case of two particular 7-brane embeddings at the bottom of the warped deformed conifold. These geometries have negative dark energy. Stability of these models is possible but not generic. Further, we reevaluate brane/flux annihilation in a warped throat with one stabilized Kahler modulus. We find that depending on the relative size of various fluxes three things can occur: the decay process proceeds unhindered, the D3-branes are forbidden to decay classically, or the entire space decompactifies. Additionally, we show that the Kahler modulus receives a contribution from the collective 3-brane tension allowing significant changes in the compactified volume during the transition. Next, furthering the effort to describe cold atoms using AdS/CFT, we construct charged asymptotically Schrodinger black hole solutions of IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of many type IIB backgrounds and identify the resulting five-dimensional effective action. We use these results to demonstrate that the near-horizon physics and thermodynamics of asymptotically Schrodinger black holes obtained in this way are essentially inherited from their AdS progenitors, and verify that they admit zero-temperature extremal limits with AdS2 near-horizon geometries. Finally, in an effort to understand rotating nonrelativistic systems we use the null Melvin twist technology on a charged rotating AdS black hole and discover a type of Godel space-time. We

  4. Higgs boson production and decay in 5D warped models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Pourtolami, Nima; Toharia, Manuel

    2016-03-01

    We calculate the production and decay rates of the Higgs boson at the LHC in the context of general five-dimensional warped scenarios with a spacetime background modified from the usual AdS5 , with Standard Model (SM) fields propagating in the bulk. We extend previous work by considering the full flavor structure of the SM, and thus including all possible flavor effects coming from mixings with heavy fermions. We proceed in three different ways, first by only including two complete Kaluza-Klein (KK) levels (15 ×15 fermion mass matrices), then including three complete KK levels (21 ×21 fermion mass matrices) and finally we compare with the effect of including the infinite (full) KK towers. We present numerical results for the Higgs production cross section via gluon fusion and Higgs decay branching fractions in both the modified metric scenario and in the usual Randall-Sundrum metric scenario.

  5. A Higgs in the warped bulk and LHC signals

    NASA Astrophysics Data System (ADS)

    Mahmoudi, F.; Maitra, U.; Manglani, N.; Sridhar, K.

    2016-11-01

    Warped models with the Higgs in the bulk can generate light Kaluza-Klein (KK) Higgs modes consistent with the electroweak precision analysis. The first KK mode of the Higgs ( h 1) could lie in the 1-2 TeV range in the models with a bulk custodial symmetry. We find that the h 1 is gaugephobic and decays dominantly into a toverline{t} pair. We also discuss the search strategy for h 1 decaying to toverline{t} at the Large Hadron Collider. We used substructure tools to suppress the large QCD background associated with this channel. We find that h 1 can be probed at the LHC run-2 with an integrated luminosity of 300 fb-1.

  6. Spin texture of an irradiated warped topological insulator surface

    NASA Astrophysics Data System (ADS)

    Sinha, Debabrata

    2016-08-01

    Topological insulator is a new state of matter which exhibits exotic surface electronic properties. Determining the spin texture of this class of materials is of paramount importance for understanding its topological order and can lead to potential applications in spintronics. Here, we have investigated the nature of the surface state of the topological insulator with hexagonal warping subjected to an off-resonant circularly polarized light. The resulting electronic ground state exhibits a novel feature of spin texture breaking the conventional spin-momentum locking present on a topological insulator surface. The observed spin texture is shown to be a consequence of the symmetry group of the underlying crystal. The generalisation of our method to the other 2D graphene-like systems is straightforward. Our calculation traces a simple experimental route for a realisation of the non trivial spin textures.

  7. Automatic classification of killer whale vocalizations using dynamic time warping.

    PubMed

    Brown, Judith C; Miller, Patrick J O

    2007-08-01

    A set of killer whale sounds from Marineland were recently classified automatically [Brown et al., J. Acoust. Soc. Am. 119, EL34-EL40 (2006)] into call types using dynamic time warping (DTW), multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual classification. Here the effectiveness of four DTW algorithms on a larger and much more challenging set of calls by Northern Resident whales will be examined, with each call consisting of two independently modulated pitch contours and having considerable overlap in contours for several of the perceptual call types. Classification results are given for each of the four algorithms for the low frequency contour (LFC), the high frequency contour (HFC), their derivatives, and weighted sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its derivative. The best agreement with the perceptual classification was 90% attained by the Sakoe-Chiba algorithm for the low frequency contours alone.

  8. Signals of Warped Extra Dimensions at the LHC

    SciTech Connect

    Osland, P.; Pankov, A. A.; Tsytrinov, A. V.; Paver, N.

    2010-12-22

    We discuss the signatures of the spin-2 graviton excitations predicted by the Randall-Sundrum model with one warped extra dimension, in dilepton and diphoton production at LHC. By using a specific angular analysis, we assess the ranges in mass and coupling constant where such gravitons can be discriminated against competitor spin-1 and spin-0 objects, that potentially could manifest themselves in these processes with the same mass and rate of events. Depending on the value of the coupling constant to quarks and leptons, the numerical results indicate graviton identification mass ranges up to 1.1-2.4 TeV and 1.6-3.2 TeV for LHC nominal energy of 14 TeV and time-integrated luminosity of 10 and 100fb{sup -1}, respectively.

  9. Stress-warping relation in thin film coated wafers

    NASA Astrophysics Data System (ADS)

    Schicker, J.; Khan, W. A.; Arnold, T.; Hirschl, C.

    2017-02-01

    A misfit strain or stress in a thin layer on the surface of a wafer lets the composite disk warp. When the wafer is thin and large, the Stoney estimation of the film stress as function of the curvature yields large errors. We present a nonlinear analytical model that describes the relationship between warpage and film stress on an anisotropic wafer, and give evidence for its suitability for large thin wafers by a comparison to finite element results. Finally, we show the confidence limit of the Stoney estimation and the benefit by the nonlinear model. For thin coatings, it can be succesfully used even without knowledge of the film properties, which was the main advantage of the Stoney estimation.

  10. Agitating mass transfer with a warped disc's shadow

    NASA Astrophysics Data System (ADS)

    Cambier, H.

    2015-10-01

    For compact objects fed by Roche lobe overflow, accretion-generated X-rays irradiating the donor star can alter gas flow towards the Lagrange point thus varying mass transfer. The latest work specific to this topic consists of simple yet insightful two-dimensional hydrodynamics simulations stressing the role of global flow. To explore how a time-varying disc shadow affects mass transfer, I generalize the geometry, employ a robust hydrodynamics solver, and use phase space analysis near the nozzle to include coriolis lift there. Without even exposing the nozzle, a warped disc's shadow can drive mass transfer cycles by shifting the equatorial edges of the irradiation patches in turns: drawing in denser ambient gas before sweeping it into the nozzle. Other important effects remain missing in two-dimensional models, which I discuss along with prospects for more detailed yet efficient models.

  11. Warping and interactions of vortices in exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Toledo-Solano, M.; Mora-Ramos, M. E.; Figueroa, A.; Rubo, Y. G.

    2014-01-01

    We investigate the properties of the vortex singularities in two-component exciton-polariton condensates in semiconductor microcavities in the presence of transverse-electric-transverse-magnetic (TE-TM) splitting of the lower polariton branch. This splitting does not change qualitatively the basic (lemon and star) geometry of half-quantum vortices (HQVs), but results in warping of both the polarization field and the supercurrent streamlines around these entities. The TE-TM splitting has a pronounced effect on the HQV energies and interactions, as well as on the properties of integer vortices, especially on the energy of the hedgehog polarization vortex. The energy of this vortex can become smaller than the energies of HQVs. This leads to modification of the Berezinskii-Kosterlitz-Thouless transition from the proliferation of half-vortices to the proliferation of hedgehog-based vortex molecules.

  12. Emergent gravity from a mass deformation in warped spacetime

    SciTech Connect

    Gherghetta, Tony; Peloso, Marco; Poppitz, Erich

    2005-11-15

    We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wave function and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IR brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newton's law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.

  13. LHC signals for warped electroweak charged gauge bosons

    SciTech Connect

    Agashe, Kaustubh; Gopalakrishna, Shrihari; Soni, Amarjit; Han Tao; Huang Guiyu

    2009-10-01

    We study signals at the LHC for the Kaluza-Klein (KK) excitations of electroweak charged gauge bosons in the framework of the standard model (SM) fields propagating in the bulk of a warped extra dimension. Such a scenario can solve both the Planck-weak and flavor hierarchy problems of the SM. There are two such charged states in this scenario with couplings to light quarks and leptons being suppressed relative to those in the SM, whereas the couplings to top/bottom quarks are enhanced, similar to the case of electroweak neutral gauge bosons previously studied. However, unlike the case of electroweak neutral gauge bosons, there is no irreducible QCD background (including pollution from possibly degenerate KK gluons) for decays to top+bottom final states so that this channel is useful for the discovery of the charged states. Moreover, decays of electroweak charged gauge bosons to longitudinal W, Z and Higgs are enhanced just as for the neutral bosons. However, unlike for the neutral gauge bosons, the purely leptonic (and hence clean) decay mode of the WZ is fully reconstructible so that the ratio of the signal to the SM (electroweak) background can potentially be enhanced by restricting to the resonance region more efficiently. We show that such final states can give sensitivity to 2(3) TeV masses with an integrated luminosity of 100(300) fb{sup -1}. We emphasize that improvements in discriminating a QCD jet from a highly boosted hadronically decaying W, and a highly boosted top jet from a bottom jet will enhance the reach for these KK particles, and that the signals we study for the warped extra dimensional model might actually be applicable also to a wider class of nonsupersymmetric models of electroweak symmetry breaking.

  14. SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.

    2016-01-01

    We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.

  15. Weighted Dynamic Time Warping for Time Series Classification

    SciTech Connect

    Jeong, Young-Seon; Jeong, Myong K; Omitaomu, Olufemi A

    2011-01-01

    Dynamic time warping (DTW), which finds the minimum path by providing non-linear alignments between two time series, has been widely used as a distance measure for time series classification and clustering. However, DTW does not account for the relative importance regarding the phase difference between a reference point and a testing point. This may lead to misclassification especially in applications where the shape similarity between two sequences is a major consideration for an accurate recognition. Therefore, we propose a novel distance measure, called a weighted DTW (WDTW), which is a penalty-based DTW. Our approach penalizes points with higher phase difference between a reference point and a testing point in order to prevent minimum distance distortion caused by outliers. The rationale underlying the proposed distance measure is demonstrated with some illustrative examples. A new weight function, called the modified logistic weight function (MLWF), is also proposed to systematically assign weights as a function of the phase difference between a reference point and a testing point. By applying different weights to adjacent points, the proposed algorithm can enhance the detection of similarity between two time series. We show that some popular distance measures such as DTW and Euclidean distance are special cases of our proposed WDTW measure. We extend the proposed idea to other variants of DTW such as derivative dynamic time warping (DDTW) and propose the weighted version of DDTW. We have compared the performances of our proposed procedures with other popular approaches using public data sets available through the UCR Time Series Data Mining Archive for both time series classification and clustering problems. The experimental results indicate that the proposed approaches can achieve improved accuracy for time series classification and clustering problems.

  16. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  17. Warped AdS3 , dS3 , and flows from N =(0 ,2 ) SCFTs

    NASA Astrophysics Data System (ADS)

    O'Colgáin, Eoin

    2015-05-01

    We present the general form of all timelike supersymmetric solutions to three-dimensional U (1 )3 gauged supergravity, a known consistent truncation of string theory. We uncover a rich vacuum structure, including an infinite class of new timelike-warped AdS3 (Gödel) and timelike-warped dS3 critical points. We outline the construction of supersymmetric flows, driven by irrelevant scalar operators in the SCFT, which interpolate between critical points. For flows from AdS3 to Gödel, the natural candidate for the central charge decreases along the flow. Flows to timelike-warped dS3 exhibit topology change.

  18. Kindergarten Quantum Mechanics: Lecture Notes

    SciTech Connect

    Coecke, Bob

    2006-01-04

    These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns 'doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I which subsumes my Logic of Entanglement. For a survey on the 'what', the 'why' and the 'hows' I refer to a previous set of lecture notes. In a last section we provide some pointers to the body of technical literature on the subject.

  19. Lectures on Matrix Field Theory

    NASA Astrophysics Data System (ADS)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  20. TASI 2006 Lectures on Leptogenesis

    SciTech Connect

    Chen, Mu-Chun; /Fermilab /UC, Irvine

    2007-03-01

    The origin of the asymmetry between matter and anti-matter of the Universe has been one of the great challenges in particle physics and cosmology. Leptogenesis as a mechanism for generating the cosmological baryon asymmetry of the Universe has gained significant interests ever since the advent of the evidence of non-zero neutrino masses. In these lectures presented at TASI 2006, I review various realizations of leptogenesis and allude to recent developments in this subject.

  1. Three Lectures on Hadron Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig D.

    2016-04-01

    These lectures explain that comparisons between experiment and theory can expose the impact of running couplings and masses on hadron observables and thereby aid materially in charting the momentum dependence of the interaction that underlies strong-interaction dynamics. The series begins with a primer on continuum QCD, which introduces some of the basic ideas necessary in order to understand the use of Schwinger functions as a nonperturbative tool in hadron physics. It continues with a discussion of confinement and dynamical symmetry breaking (DCSB) in the Standard Model, and the impact of these phenomena on our understanding of condensates, the parton structure of hadrons, and the pion electromagnetic form factor. The final lecture treats the problem of grand unification; namely, the contemporary use of Schwinger functions as a symmetry-preserving tool for the unified explanation and prediction of the properties of both mesons and baryons. It reveals that DCSB drives the formation of diquark clusters in baryons and sketches a picture of baryons as bound-states with Borromean character. Planned experiments are capable of validating the perspectives outlined in these lectures.

  2. Model-free prediction of atmospheric warp based on artificial neural network.

    PubMed

    Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G

    2014-10-20

    This paper presents the application of artificial neural network for predicting the warping of images of remote objects or scenes ahead of time. The algorithm is based on estimating the pattern of warping of previously captured short-exposure frames through a generalized regression neural network (GRNN) and then predicting the warping of the upcoming frame. A high-accuracy optical flow technique is employed to estimate the dense motion fields of the captured frames, which are considered as training data for the GRNN. The proposed approach is independent of the pixel-oscillatory model unlike the state-of-the-art Kalman filter (KF) approach. Simulation experiments on synthetic and real-world turbulence degraded videos show that the proposed GRNN-based approach performs better than the KF approach in atmospheric warp prediction.

  3. Update of Watershed Regressions for Pesticides (WARP) for Predicting Atrazine Concentration in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2009-01-01

    Regression models for predicting atrazine concentrations in streams were updated by incorporating refined annual atrazine-use estimates and by adding an explanatory variable representing annual precipitation characteristics. The updated Watershed Regressions for Pesticides (WARP) models enable improved predictions of specific pesticide-concentration statistics for unmonitored streams. for unmonitored streams. Separate WARP regression models were derived for selected percentiles (5th, 10th, 15th, 25th, 50th, 75th, 85th, 90th and 95th), annual mean, annual maximum, and annual maximum moving-average (21-, 60-, and 90-day durations) concentration statistics. Development of the regression models involved the same model-development data, model-validation data, and regression methods as those used in the original development of WARP. The original WARP models were based on atrazine-use estimates from either 1992 or 1997. This update of the WARP models incorporates annual atrazine-use estimates. In addition, annual precipitation data were evaluated as potential explanatory variables. as potential explanatory variables. The updated WARP models include the same five explanatory variables and transformations that were used in the original WARP models, including the new annual atrazine-use data. The models also include a sixth explanatory variable, total precipitation during May and June of the year of sampling. The updated WARP models account for as much as 82 percent of the variability in the concentration statistics among the 112 sites used for model development, whereas previous WARP models accounted for no more than 77 percent. Concentration statistics predicted by the 95th percentile, annual mean, annual maximum and annual maximum moving-average concentration models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports

  4. Perceptual Performance Impact of GPU-Based WARP and Anti-Aliasing for Image Generators

    DTIC Science & Technology

    2016-06-29

    of Scalable Display’s EasyBlend SDK and NVIDIA’s Warp and Intensity adjustment API. This paper describes the results of a collaboration between... paper provides a brief review of the different filtering techniques under investigation, as well as an assessment of their performance within a flight...Warp and Intensity adjustment API. This paper describes the results of a collaboration between USAFSAM, Scalable, and NVIDIA to evaluate NVIDIA’s

  5. Generation of galactic disc warps due to intergalactic accretion flows onto the disc

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Betancort-Rijo, J.; Beckman, J. E.

    2002-04-01

    A new method is developed to calculate the amplitude of the galactic warps generated by a torque due to external forces. This takes into account that the warp is produced as a reorientation of the different rings which constitute the disc in order to compensate the differential precession generated by the external force, yielding a uniform asymptotic precession for all rings. Application of this method to gravitational tidal forces in the Milky Way due to the Magellanic Clouds leads to a very low amplitude of the warp, as has been inferred in previous studies; so, tidal forces are unlikely to generate warps, at least in the Milky Way. If the force were due to an extragalactic magnetic field, its intensity would have to be very high, greater than 1 mu G, to generate the observed warps. An alternative hypothesis is explored: the accretion of the intergalactic medium over the disk. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shape warp. The torque produced by a flow of velocity ~ 100 km s-1 and baryon density ~ 10-25 kg/m3 is enough to generate the observed warps and this mechanism offers quite a plausible explanation. First, because this order of accretion rate is inferred from other processes observed in the Galaxy, notably its chemical evolution. The inferred rate of infall of matter, ~ 1 M_sun/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of this chemical evolution resolving key issues, notably the G-dwarf problem. Second, the required density of the intergalactic medium is within the range of values compatible with observation. By this mechanism, we can explain the warp phenomenon in terms of intergalactic accretion flows onto the disk of the galaxy.

  6. Virtual time and time warp on the JPL hypercube. [operating system implementation for distributed simulation

    NASA Technical Reports Server (NTRS)

    Jefferson, David; Beckman, Brian

    1986-01-01

    This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.

  7. Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions

    NASA Astrophysics Data System (ADS)

    Ali, Akram; Laurian-Ioan, Pişcoran

    2017-04-01

    In this paper, some relations among the second fundamental form which is an extrinsic invariant, Laplacian of the warping function and constant sectional curvature of a warped product semi-slant submanifold of a Kenmotsu space form and its totally geodesic and totally umbilical submanifolds are described from the exploitation of the Gauss equation instead of the Codazzi equation in the sense of Chen's studies in (2003). These relations provide us an approach to the classifications of equalities by the following case studied of Hasegawa and Mihai (2003). These are exemplified by the classifications of the totally geodesic and totally umbilical submanifolds. Moreover, we provide some applications of the inequality case by using the harmonicity of the smooth warping functions. In particular, we prove the triviality of connected, compact warped product semi-slant manifolds isometrically immersed into a Kenmotsu space form using Hamiltonian, Hessian, and the Kinetic energy of the warped function. Further, we generalize some results for contact CR-warped products in a Kenmotsu space form.

  8. Constrained localized-warping-reduced registration errors due to lesions in functional neuroimages

    NASA Astrophysics Data System (ADS)

    Radau, Perry E.; Slomka, Piotr J.; Julin, Per; Svensson, Leif; Wahlund, Lars-Olof

    2001-07-01

    The constrained, localized warping (CLW) algorithm was developed to minimize the registration errors caused by hypoperfusion lesions. SPECT brain perfusion images from 21 Alzheimer patients and 35 controls were analyzed. CLW automatically determines homologous landmarks on patient and template images. CLW was constrained by anatomy and where lesions were probable. CLW was compared with 3rd-degree, polynomial warping (AIR 3.0). Accuracy was assessed by correlation, overlap, and variance. 16 lesion types were simulated, repeated with 5 images. The errors in defect volume and intensity after registration were estimated by comparing the images resulting from warping transforms calculated when the defects were or were not present. Registration accuracy of normal studies was very similar between CLW and polynomial warping methods, and showed marked improvement over linear registration. The lesions had minimal effect on the CLW algorithm accuracy, with small errors in volume (> -4%) and intensity (< +2%). The accuracy improvement compared with not warping was nearly constant regardless of defect: +1.5% overlap and +0.001 correlation. Polynomial warping caused larger errors in defect volume (< -10%) and intensity (> +2.5%) for most defects. CLW is recommended because it caused small errors in defect estimation and improved the registration accuracy in all cases.

  9. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  10. Lecture Notes on Multigrid Methods

    SciTech Connect

    Vassilevski, P S

    2010-06-28

    The Lecture Notes are primarily based on a sequence of lectures given by the author while been a Fulbright scholar at 'St. Kliment Ohridski' University of Sofia, Sofia, Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat expanded version of the actual one semester class he taught there. The material covered is slightly modified and adapted version of similar topics covered in the author's monograph 'Multilevel Block-Factorization Preconditioners' published in 2008 by Springer. The author tried to keep the notes as self-contained as possible. That is why the lecture notes begin with some basic introductory matrix-vector linear algebra, numerical PDEs (finite element) facts emphasizing the relations between functions in finite dimensional spaces and their coefficient vectors and respective norms. Then, some additional facts on the implementation of finite elements based on relation tables using the popular compressed sparse row (CSR) format are given. Also, typical condition number estimates of stiffness and mass matrices, the global matrix assembly from local element matrices are given as well. Finally, some basic introductory facts about stationary iterative methods, such as Gauss-Seidel and its symmetrized version are presented. The introductory material ends up with the smoothing property of the classical iterative methods and the main definition of two-grid iterative methods. From here on, the second part of the notes begins which deals with the various aspects of the principal TG and the numerous versions of the MG cycles. At the end, in part III, we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of AMG specialized for finite element matrices.

  11. Improving Lecture Quality through Training in Public Speaking

    ERIC Educational Resources Information Center

    Mowbray, Robert; Perry, Laura B.

    2015-01-01

    Lecturing is a common instructional format but poor lecturing skills can detract from students' learning experiences and outcomes. As lecturing is essentially a form of public communication, training in public speaking may improve lecture quality. Twelve university lecturers in Malaysia participated in a six-week public speaking skills training…

  12. Henry Norris Russell's Toronto Lectures

    NASA Astrophysics Data System (ADS)

    Devorkin, D. H.

    1996-12-01

    In February 1924, at the invitation of C. A. Chant, Russell presented a set of 14 public lectures on the state of astronomy and astrophysics. Designed to be inspirational, they also reveal Russell's contemporary views on the state of astrophysics as well as his sense of proper practice in astronomy. During his visit, Russell was interviewed by local reporters who asked his opinion about building a large observatory, one of Chant's major projects. What Russell had to say about such ventures did not please Chant one bit.

  13. Lecture

    PubMed Central

    2012-01-01

    The physiology of paracellular permeation of ions and solutes in the kidney is pivotally important but poorly understood. Claudins are the key components of the paracellular pathway. Defects in claudin function result in a broad range of renal diseases, including hypomagnesemia, hypercalciuria and nephrolithiasis. This review describes recent findings on the physiological function of claudins underlying paracellular transport mechanisms with a focus on renal Ca2+ handling. We have uncovered a molecular mechanism underlying paracellular Ca2+ transport in the thick ascending limb of Henle (TAL) that involves the functional interplay of three important claudin genes: claudin-14, -16 and -19, all of which are associated with human kidney diseases with hypercalciuria, nephrolithiasis and bone mineral loss. The Ca2+ sensing receptor (CaSR) signaling in the kidney has long been a mystery. By analyzing small non-coding RNA molecules in the kidney, we have uncovered a novel microRNA based signaling pathway downstream of CaSR that directly regulates claudin-14 gene expression and establishes the claudin-14 molecule as a key regulator for renal Ca2+ homeostasis. The molecular cascade of CaSR-microRNAs-claudins forms a regulatory loop to maintain proper Ca2+ homeostasis in the kidney. PMID:22504740

  14. Chemical fingerprinting of petroleum biomarkers using time warping and PCA.

    PubMed

    Christensen, Jan H; Tomasi, Giorgio; Hansen, Asger B

    2005-01-01

    A new method for chemical fingerprinting of petroleum biomakers is described. The method consists of GC-MS analysis, preprocessing of GC-MS chromatograms, and principal component analysis (PCA) of selected regions. The preprocessing consists of baseline removal by derivatization, normalization, and alignment using correlation optimized warping. The method was applied to chromatograms of m/z 217 (tricyclic and tetracyclic steranes) of oil spill samples and source oils. Oil spill samples collected from the coastal environment in the weeks after the Baltic Carrier oil spill were clustered in principal components 1 to 4 with oil samples from the tank of the Baltic Carrier (source oil). The discriminative power of PCA was enhanced by deselecting the most uncertain variables or scaling them according to their uncertainty, using a weighted least squares criterion. The four principal components were interpreted as follows: boiling point range (PC1), clay content (PC2), carbon number distribution of sterols in the source rock (PC3), and thermal maturity of the oil (PC4). In summary, the method allows for analyses of chromatograms using a fast and objective procedure and with more comprehensive data usage compared to other fingerprinting methods.

  15. Axion monodromy inflation with warped KK-modes

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Moritz, Jakob; Westphal, Alexander; Witkowski, Lukas T.

    2016-03-01

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C2 over the S2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S2 shrinks to zero size. Crucially, the S2 cycle has to be shared between two throats, such that the second locus where the S2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling gs. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  16. WOBBLING AND PRECESSING JETS FROM WARPED DISKS IN BINARY SYSTEMS

    SciTech Connect

    Sheikhnezami, Somayeh; Fendt, Christian E-mail: fendt@mpia.de

    2015-12-01

    We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion–ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star–disk–jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.

  17. Higgs phenomenology in warped extra dimensions with a fourth generation

    SciTech Connect

    Frank, Mariana; Korutlu, Beste; Toharia, Manuel

    2011-10-01

    We study a warped extra-dimension scenario where the standard model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Even without a fourth family, these couplings will be generically misaligned with respect to the standard model fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly nonsymmetrical in the (34) intergenerational mixing. The radiative corrections from the new fermions and their flavor-violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and Z{yields}bb or Z{yields}{mu}{sup +}{mu}{sup -}. On the other hand, {Delta}F=1, 2 processes, mediated by tree-level Higgs exchange, as well as radiative corrections to b{yields}s{gamma} and {mu}{yields}e{gamma} put some generic pressure on the allowed size of the flavor-violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These signals might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.

  18. Warping, extra dimensions, and a slice of AdSd

    NASA Astrophysics Data System (ADS)

    McDonald, Kristian L.

    2010-01-01

    Inspired by the Randall-Sundrum framework we consider a number of phenomenologically relevant model-building questions on a slice of compactified AdSd for d>5. Such spaces are interesting as they enable one to realize the weak scale via warping. We perform the Kaluza-Klein (KK) reduction for gravitons and bulk vectors in these spaces, and for the case of AdS6 consider the KK spectrum of gauge scalars. We further obtain the KK towers for bulk fermions on a slice of AdS7 and AdS9 and show that the Randall-Sundrum approach to flavor generalizes to these spaces with the localization of chiral zero-mode fermions controlled by their bulk Dirac mass parameters. However, for the phenomenologically interesting case where the transverse radius is R-1˜TeV, we show that bulk standard model fields are not viable due to a resulting volume suppression of the gauge-coupling constants. A similar suppression occurs for the case of UV localization. Thus it seems that the standard model fields should be confined to the infrared brane in such spaces. Sterile fields and extended gauge sectors may propagate in the bulk, with the gauge-coupling volume suppression experienced by the latter motivating a weak coupling to standard model fields. We also discuss some issues regarding the effective 4D theory description in these spaces.

  19. Conserved charges in timelike warped AdS3 spaces

    NASA Astrophysics Data System (ADS)

    Donnay, L.; Fernández-Melgarejo, J. J.; Giribet, G.; Goya, A.; Lavia, E.

    2015-06-01

    We consider the timelike version of warped anti-de Sitter space (WAdS), which corresponds to the three-dimensional section of the Gödel solution of four-dimensional cosmological Einstein equations. This geometry presents closed timelike curves (CTCs), which are inherited from its four-dimensional embedding. In three dimensions, this type of solution can be supported without matter provided the graviton acquires mass. Here, among the different ways to consistently give mass to the graviton in three dimensions, we consider the parity-even model known as new massive gravity (NMG). In the bulk of timelike WAdS3 space, we introduce defects that, from the three-dimensional point of view, represent spinning massive particlelike objects. For this type of source, we investigate the definition of quasilocal gravitational energy as seen from infinity, far beyond the region where the CTCs appear. We also consider the covariant formalism applied to NMG to compute the mass and the angular momentum of spinning particlelike defects and compare the result with the one obtained by means of the quasilocal stress tensor. We apply these methods to special limits in which the WAdS3 solutions coincide with locally AdS3 and locally AdS2×R spaces. Finally, we make some comments about the asymptotic symmetry algebra of asymptotically WAdS3 spaces in NMG.

  20. Generalized Gravitational Entropy for Warped Anti-de Sitter Space.

    PubMed

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2016-07-01

    For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS_{3}) in a consistent truncation of string theory, the so-called S-dual dipole theory. It turns out that the generalized gravitational entropy in WAdS_{3} is captured by the least action of a charged particle in WAdS_{3} space, or equivalently, by the geodesic length in an auxiliary AdS_{3}. Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS_{3}/CFT_{2} correspondence.

  1. Generalized Gravitational Entropy for Warped Anti-de Sitter Space

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2016-07-01

    For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS3 ) in a consistent truncation of string theory, the so-called S -dual dipole theory. It turns out that the generalized gravitational entropy in WAdS3 is captured by the least action of a charged particle in WAdS3 space, or equivalently, by the geodesic length in an auxiliary AdS3 . Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS3/CFT2 correspondence.

  2. Weaving and bonding method to prevent warp and fill distortion

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method to prevent fiber distortion in textile materials employed in a modified weaving process. In a first embodiment, a tacifier in powder form is applied to the yarn and melted while on the fabric. Cool air is then supplied after the tacifier has melted to expedite the solidification of the tacifier. In a second embodiment, a solution form of a tacifier is used by dissolving the tacifier into a solvent that has a high evaporation rate. The solution is then sprayed onto the fabric or fill yarn as each fill yarn is inserted into a shed of the fabric. A third embodiment applies the tacifier in a liquid form that has not been dissolved in a solvent. That is, the tacifier is melted and is sprayed as a liquid onto the fabric or fill yarn as it is being extracted from a fill yarn spool prior to the fill yarn being inserted into the shed of the fabric. A fourth embodiment employs adhesive yarns contained as an integral part of the warp or fill yarn. Additional tacifier material is not required because a matrix is used as the tacifier. The matrix is then locally melted using heating elements on clamping bars or take-up rollers, is cooled, if necessary, and solidified.

  3. Faster-Than-Light Space Warps, Status and Next Steps

    NASA Astrophysics Data System (ADS)

    Davis, E. W.

    Implementation of faster-than-light (FTL) interstellar travel via traversable wormholes or warp drives requires the engineering of spacetime into very specialized local geometries. The analysis of these via Einstein's General Theory of Relativity demonstrates that such geometries require the use of ``exotic'' matter. One can appeal to quantum field theory to find both natural and phenomenological sources of exotic matter. Such quantum fields are disturbed by the curved spacetime geometry they produce, so their energy-momentum tensor can be used to probe the back-reaction of the field effects upon the dynamics of the FTL spacetime, which has implications on the construction and control of FTL spacetimes. Also, the production, detection, and deployment of natural exotic quantum fields are seen to be key technical challenges in which basic first steps can be taken to experimentally probe their properties. FTL spacetimes also possess features that challenge the notions of momentum conservation and causality. The status of these important issues is addressed in this report, and recommended next steps for further theoretical investigations are identified in an effort to clear up a number of technical uncertainties in order to progress the present state-of-the-art in FTL spacetime physics.

  4. Overview of WARP, a particle code for Heavy Ion Fusion

    SciTech Connect

    Friedman, A.; Grote, D.P.; Callahan, D.A.; Langdon, A.B.; Haber, I.

    1993-02-22

    The beams in a Heavy Ion beam driven inertial Fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code`s 3d package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL`s planned ILSE experiments, to various ``recirculator`` configurations, and to the study of equilibria and equilibration processes. Applications of the 3d package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.

  5. Alignment physics of disks warped by Lense-Thirring precession

    NASA Astrophysics Data System (ADS)

    Krolik, Julian H.; Sorathia, Kareem; Hawley, John F.

    2014-12-01

    Accretion disks occur in a wide variety of astrophysical contexts, from planet formation to accretion onto black holes. For simplicity, they are generally imagined as thin and flat. However, whenever the disk's angular momentum is oblique to the angular momentum of the central object(s), a torque causes rings within the disk to precess, twisting and warping it. Because the torque weakens rapidly with increasing radius, it has long been thought that some unspecified ‘friction’ brings the inner portions of such disks into alignment, while the outer parts remain in their original orientation. Nearly all previous work on this topic has assumed that such a disk's internal stresses can be described by an isotropic viscosity, even though it has been known for more than four decades that fluid viscosity is far too weak to be significant in accretion disks, and for two decades that accretion stresses are actually due to anisotropic MHD turbulence. This paper reviews recent numerical simulation work showing how twisted disks align when their mechanics are described only in terms of real forces, including MHD turbulence. The detailed mechanisms of alignment are identified, the rate at which it occurs is quantified, and the isotropic viscosity model is shown to be in drastic disagreement with the simulation data.

  6. Time-warp invariant pattern detection with bursting neurons

    NASA Astrophysics Data System (ADS)

    Gollisch, Tim

    2008-01-01

    Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression.

  7. AdS4/CFT3 squashed, stretched and warped

    NASA Astrophysics Data System (ADS)

    Klebanov, Igor R.; Klose, Thomas; Murugan, Arvind

    2009-03-01

    We use group theoretic methods to calculate the spectrum of short multiplets around the extremum of Script N = 8 gauged supergravity potential which possesses Script N = 2 supersymmetry and SU(3) global symmetry. Upon uplifting to M-theory, it describes a warped product of AdS4 and a certain squashed and stretched 7-sphere. We find quantum numbers in agreement with those of the gauge invariant operators in the Script N = 2 superconformal Chern-Simons theory recently proposed to be the dual of this M-theory background. This theory is obtained from the U(N) × U(N) theory through deforming the superpotential by a term quadratic in one of the superfields. To construct this model explicitly, one needs to employ monopole operators whose complete understanding is still lacking. However, for the U(2) × U(2) gauge theory we make a proposal for the form of the monopole operators which has a number of desired properties. In particular, this proposal implies enhanced symmetry of the U(2) × U(2) ABJM theory for k = 1,2; it makes its similarity to and subtle difference from the BLG theory quite explicit.

  8. The Use of Recorded Lectures in Education and the Impact on Lecture Attendance and Exam Performance

    ERIC Educational Resources Information Center

    Bos, Nynke; Groeneveld, Caspar; van Bruggen, Jan; Brand-Gruwel, Saskia

    2016-01-01

    Universities increasingly record lectures and make them available online for students. Though the technology to record these lectures is now solidly implemented and embedded in many institutions, the impact of the usage of recorded lectures on exam performance is not clear. The purpose of the current study is to address the use of recorded…

  9. The Use of Lecture Recordings in Higher Education: A Review of Institutional, Student, and Lecturer Issues

    ERIC Educational Resources Information Center

    O'Callaghan, Frances V.; Neumann, David L.; Jones, Liz; Creed, Peter A.

    2017-01-01

    Web-based lecture technologies are being used increasingly in higher education. One widely-used method is the recording of lectures delivered during face-to-face teaching of on-campus courses. The recordings are subsequently made available to students on-line and have been variously referred to as lecture capture, video podcasts, and Lectopia. We…

  10. Lectures on Dark Matter Physics

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

  11. Radiation-driven Warping of Circumbinary Disks around Eccentric Young Star Binaries

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-12-01

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 104 L ⊙, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  12. Lecture Capture: What Can Be Automated?

    ERIC Educational Resources Information Center

    Burdet, Benoit; Bontron, Cedric; Burgi, Pierre-Yves

    2007-01-01

    Online education encompasses a variety of technologies, one of which is lecture capture--a long-standing practice at the University of Geneva. The faculty of arts has recorded most of its lectures on audiotapes since the 1970s, well before the World Wide Web existed. Modernization of the recording technologies, however, which until recently…

  13. Lecture 11: Some More Suggestions and Remarks

    ERIC Educational Resources Information Center

    Montessori, Maria

    2016-01-01

    This lecture discusses how the careful preparation of the observer, control of conditions, and precise use of materials will allow the child to "be free to manifest the phenomena which we wish to observe." This lecture was delivered at the International Training Course, London, 1921. [Reprinted from "AMI Communications" (2008).

  14. What Predicts Skill in Lecture Note Taking?

    ERIC Educational Resources Information Center

    Peverly, Stephen T.; Ramaswamy, Vivek; Brown, Cindy; Sumowski, James; Alidoost, Moona; Garner, Joanna

    2007-01-01

    Despite the importance of good lecture notes to test performance, very little is known about the cognitive processes that underlie effective lecture note taking. The primary purpose of the 2 studies reported (a pilot study and Study 1) was to investigate 3 processes hypothesized to be significantly related to quality of notes: transcription…

  15. Digital lecture recording: a cautionary tale.

    PubMed

    Johnston, Amy N B; Massa, Helen; Burne, Thomas H J

    2013-01-01

    Increasing application of information technology including web-based lectures and live-lecture recording appears to have many advantages for undergraduate nursing education. These include greater flexibility, opportunity for students to review content on demand and the improved academic management of increasing class sizes without significant increase in physical infrastructure. This study performed a quasi-experimental comparison between two groups of nursing students undertaking their first anatomy and physiology course, where one group was also provided access to streaming of recorded copies of the live lectures and the other did not. For the course in which recorded lectures were available student feedback indicated overwhelming support for such provision with 96% of students having accessed recorded lectures. There was only a weak relationship between access of recorded lectures and overall performance in the course. Interestingly, the nursing students who had access to the recorded lectures demonstrated significantly poorer overall academic performance (P < 0.001). Although this study did not specifically control for student demographics or other academic input, the data suggests that provision of recorded lectures requires improved and applied time management practices by students and caution on the part of the academic staff involved.

  16. Getting Active in the Large Lecture

    ERIC Educational Resources Information Center

    Huerta, Juan Carlos

    2007-01-01

    The benefits of active learning are well documented; nonetheless, the implementation of active learning strategies can be challenging in large lecture environments. The project will examine the research supporting active learning, present the implementation of simple active learning techniques in large lecture classes, and provide evidence to test…

  17. In Defense of the Populist Lecture

    ERIC Educational Resources Information Center

    Schrad, Mark Lawrence

    2010-01-01

    Information and communication technology (ICT) programs like Microsoft PowerPoint and Apple Keynote have become the norm for large university lecture classes, but their record in terms of student engagement and active learning is mixed at best. Here, the author presents the merits of a "populist" lecture style that takes full advantage of the…

  18. The Humanity of English. 1972 Distinguished Lectures.

    ERIC Educational Resources Information Center

    National Council of Teachers of English, Urbana, IL.

    This is a collection of lectures by distinguished members of the English profession who were invited to lecture to schools located far from large urban and cultural centers. Included are papers by: John H. Fisher, "Truth Versus Beauty: An Inquiry into the Function of Language and Literature in an Articulate Society"; Walter Loban, "The Green…

  19. Team Teaching: An Alternative to Lecture Fatigue.

    ERIC Educational Resources Information Center

    Quinn, Sandra L.; Kanter, Sanford B.

    1984-01-01

    More than an interdisciplinary format employing lecturers from different disciplines, team teaching is an approach which involves true team work between two qualified instructors who, together, make presentations to an audience. The instructional advantages of team teaching include: (1) the elimination of lecture-style instruction in favor of a…

  20. Students' Perception of Live Lectures' Inherent Disadvantages

    ERIC Educational Resources Information Center

    Petrovic, Juraj; Pale, Predrag

    2015-01-01

    This paper aims to provide insight into various properties of live lectures from the perspective of sophomore engineering students. In an anonymous online survey conducted at the Faculty of Electrical Engineering and Computing, University of Zagreb, we investigated students' opinions regarding lecture attendance, inherent disadvantages of live…

  1. Cosmology at the Beach Lecture: Wayne Hu

    SciTech Connect

    Wayne Hu

    2009-03-02

    Wayne Hu lectures on Secondary Anisotropy in the CMB. The lecture is the first in a series of 3 he delivered as part of the "Cosmology at the Beach" winter school organized by Berkeley Lab's George Smoot in Los Cabos, Mexico from Jan. 12-16, 2009.

  2. The Art of the Lecture Revisited.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Lecturing hints, periodic table, mechanistic approach to predicting inorganic reaction products for substitution reactions, reaction rates, spectroscopy, and entropy role change in establishing position of equilibrium for vaporization of water and synthesis of ammonia were topics of lectures presented at the Seventh Biennial Conference on Chemical…

  3. The Role of Lecturers and Inclusive Education

    ERIC Educational Resources Information Center

    Molina, Víctor M.; Perera Rodríguez, Víctor Hugo; Melero Aguilar, Noelia; Cotán Fernández, Almudena; Moriña, Anabel

    2016-01-01

    This paper presents an analysis of how lecturers respond to students with disabilities, the initial question being: do lecturers aid or hinder students? Findings pertain to a broader research project employing a non-usual research methodology in higher education research and students with disabilities: the biographical-narrative methodology. The…

  4. Man and His Environment. Octagon Lectures 1969.

    ERIC Educational Resources Information Center

    Appleyard, R. T., Ed.

    Utilizing the theme "Man and His Environment," the Octagon Lectures of 1969 were presented at the University of Western Australia, Nedlands, Western Australia. Problems arising from the imbalance between the ancient forces of nature and the new forces of human culture were dealt with by the lecturers. They revealed that the most important…

  5. Cosmology at the Beach Lecture: Wayne Hu

    ScienceCinema

    Wayne Hu

    2016-07-12

    Wayne Hu lectures on Secondary Anisotropy in the CMB. The lecture is the first in a series of 3 he delivered as part of the "Cosmology at the Beach" winter school organized by Berkeley Lab's George Smoot in Los Cabos, Mexico from Jan. 12-16, 2009.

  6. Richard Feynman's popular lectures on quantum electrodynamics: The 1979 Robb lectures at Auckland University

    NASA Astrophysics Data System (ADS)

    Dudley, J. M.; Kwan, A. M.

    1996-06-01

    The subject of quantum electrodynamics (QED) was the subject of QED—The Strange Theory of Light and Matter, the popular book by Richard Feynman which was published by Princeton University Press in 1985. On p. 1, Feynman makes passing reference to the fact that the book is based on a series of general lectures on QED which were, however, first delivered in New Zealand. At Auckland University, these lectures were delivered in 1979, as the Sir Douglas Robb lectures, and videotapes of the lectures are held by the Auckland University Physics Department. We have carried out a detailed examination of these videotapes, and we discuss here the major differences between the original Auckland lectures and the published version. We use selected quotations from the lectures to show that the original lectures provide additional insight into Feynman's character, and have great educational value.

  7. CERN LHC signals for warped electroweak neutral gauge bosons

    SciTech Connect

    Agashe, Kaustubh; Davoudiasl, Hooman; Gopalakrishna, Shrihari; Soni, Amarjit; Han Tao; Huang, G.-Y.; Perez, Gilad; Si Zongguo

    2007-12-01

    We study signals at the Large Hadron Collider (LHC) for Kaluza-Klein (KK) excitations of the electroweak gauge bosons in the framework with the standard model (SM) gauge and fermion fields propagating in a warped extra dimension. Such a framework addresses both the Planck-weak and flavor hierarchy problems of the SM. Unlike the often studied Z{sup '} cases, in this framework, there are three neutral gauge bosons due to the underlying SU(2){sub L}xSU(2){sub R}xU(1){sub X} gauge group in the bulk. Furthermore, couplings of these KK states to light quarks and leptons are suppressed, whereas those to top and bottom quarks are enhanced compared to the SM gauge couplings. Therefore, the production of light quark and lepton states is suppressed relative to other beyond the SM constructions, and the fermionic decays of these states are dominated by the top and bottom quarks, which are, though, overwhelmed by KK gluons dominantly decaying into them. However, as we emphasize in this paper, decays of these states to longitudinal W, Z and Higgs are also enhanced similarly to the case of top and bottom quarks. We show that the W, Z and Higgs final states can give significant sensitivity at the LHC to {approx}2(3) TeV KK scale with an integrated luminosity of {approx}100 fb{sup -1} ({approx}1 ab{sup -1}). Since current theoretical framework(s) favor KK masses > or approx. 3 TeV, a luminosity upgrade of LHC is likely to be crucial in observing these states.

  8. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  9. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms

    NASA Astrophysics Data System (ADS)

    Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien

    2014-10-01

    Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.

  10. A sinogram warping strategy for pre-reconstruction 4D PET optimization.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido

    2016-03-01

    A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction.

  11. Efficient Hybrid Image Warping for High Frame-Rate Stereoscopic Rendering.

    PubMed

    Schollmeyer, Andre; Schneegans, Simon; Beck, Stephan; Steed, Anthony; Froehlich, Bernd

    2017-04-01

    Modern virtual reality simulations require a constant high-frame rate from the rendering engine. They may also require very low latency and stereo images. Previous rendering engines for virtual reality applications have exploited spatial and temporal coherence by using image-warping to re-use previous frames or to render a stereo pair at lower cost than running the full render pipeline twice. However these previous approaches have shown artifacts or have not scaled well with image size. We present a new image-warping algorithm that has several novel contributions: an adaptive grid generation algorithm for proxy geometry for image warping; a low-pass hole-filling algorithm to address un-occlusion; and support for transparent surfaces by efficiently ray casting transparent fragments stored in per-pixel linked lists of an A-Buffer. We evaluate our algorithm with a variety of challenging test cases. The results show that it achieves better quality image-warping than state-of-the-art techniques and that it can support transparent surfaces effectively. Finally, we show that our algorithm can achieve image warping at rates suitable for practical use in a variety of applications on modern virtual reality equipment.

  12. Killing tensors, warped products and the orthogonal separation of the Hamilton-Jacobi equation

    SciTech Connect

    Rajaratnam, Krishan McLenaghan, Raymond G.

    2014-01-15

    We study Killing tensors in the context of warped products and apply the results to the problem of orthogonal separation of the Hamilton-Jacobi equation. This work is motivated primarily by the case of spaces of constant curvature where warped products are abundant. We first characterize Killing tensors which have a natural algebraic decomposition in warped products. We then apply this result to show how one can obtain the Killing-Stäckel space (KS-space) for separable coordinate systems decomposable in warped products. This result in combination with Benenti's theory for constructing the KS-space of certain special separable coordinates can be used to obtain the KS-space for all orthogonal separable coordinates found by Kalnins and Miller in Riemannian spaces of constant curvature. Next we characterize when a natural Hamiltonian is separable in coordinates decomposable in a warped product by showing that the conditions originally given by Benenti can be reduced. Finally, we use this characterization and concircular tensors (a special type of torsionless conformal Killing tensor) to develop a general algorithm to determine when a natural Hamiltonian is separable in a special class of separable coordinates which include all orthogonal separable coordinates in spaces of constant curvature.

  13. Evaluation and application of 3D lung warping and registration model using HRCT images

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Chang W.; Reinhardt, Joseph M.; Hoffman, Eric A.

    2001-05-01

    Image-based study of structure-function relationships is a challenging problem in that the structure or region of interest may vary in position and shape on images captured over time. Such variation may be caused by the change in body posture or the motion of breathing and heart beating. Therefore, the structure or region of interest should be registered before any further regional study can be carried out. In this paper, we propose a novel approach to study the structure-function relationship of ventilation using a previously developed 3D lung warping and registration model. First, we evaluate the effectiveness of the lung warping and registration model using a set of criteria, including apparent lung motion patterns and ground truths. Then, we study the ventilation by integrating the warping model with air content calibration. The warping model is applied to three CT lung data sets, obtained under volume control of FRC, 40% and 75% vital capacity (VC). Dense displacement fields are obtained to represent deformation between different lung volume steps. For any specific region of interest, we first register it between images over time using the dense displacement, and then estimate the corresponding regional inspired air content. Assessments include change of regional volume during inspiration, change of regional air content, and the distribution of regional ventilation. This is the first time that 3D warping of lung images is applied to assess clinically significant pulmonary functions.

  14. Theory of Band Warping and its Effects on Thermoelectronic Transport Properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco

    2015-03-01

    Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.

  15. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Akram; Ozel, Cenap

    It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.

  16. Lecture notes for criticality safety

    SciTech Connect

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein`s mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  17. Finite difference analysis of torsional vibrations of pretwisted, rotating, cantilever beams with effects of warping

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-03-01

    Theoretical natural frequencies of the first three modes of torsional vibration of pre-twisted, rotating cantilever beams are determined for various thickness and aspect ratios. Conclusions concerning individual and collective effects of warping, pretwist, tension-torsion coupling and tennis racket effect (twist-rotational coupling) terms on the natural frequencies are drawn from numerical results obtained by using a finite difference procedure with first order central differences. The relative importance of structural warping, inertial warping, pretwist, tension-torsion and twist-rotational coupling terms is discussed for various rotational speeds. The accuracy of results obtained by using the finite difference approach is verified by a comparison with the exact solution for specialized simple cases of the equation of motion used in this paper.

  18. The Warping of Extra Spaces Accelerates the Expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Neupane, Ishwaree P.

    Generic cosmological models derived from higher-dimensional theories with warped extra-dimensions have a nonzero cosmological constant-like term induced on the 3 + 1 space-time, or a physical three-brane. In the scenario where this 3 + 1 space-time is an inflating de Sitter "bran" embedded in a higher-dimensional space-time, described by warped geometry, the four-dimensional cosmological term is determined in terms of two length scales: one is a scale associated with the size of extra-dimension(s) and the other is a scale associated with the warping of extra-space(s). The existence of this term in four dimensions provides a tantalizing possibility of explaining the observed accelerating expansion of the universe from fundamental theories of gravity, e.g. string theory.

  19. WARP model pesticide predictions for EPA reach file 1 segments: 1992-2012

    USGS Publications Warehouse

    Stone, Wesley W.

    2017-01-01

    The Watershed Regressions for Pesticides (WARP) models were developed using linear regression methods to establish quantitative linkages between pesticide concentrations measured at U.S. Geological Survey sampling sites and a variety of human-related and natural factors that affect pesticide concentrations in streams. Such factors include pesticide use, soil characteristics, hydrology, and climate - collectively referred to as explanatory variables. Model predictions for multiple pesticides for Environmental Protection Agency River Reach 1 segments are provided in tabular format for the years 1992, 1997, 2002, 2007, and 2012. The WARP models were published in Stone, W.W., Crawford, C.G., and Gilliom, R.J., 2013, Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides. Journal of Environmental Quality, 42:1838-1851. http://dx.doi.org/10.2134/jeq2013.05.0179 .

  20. The warped galaxy MKN 306 in the interacting system MKN 305/306

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Dietrich, M.

    1990-07-01

    Optical images and spectra of the interacting galaxy system Mkn 305/306 are presented. Both galaxies have a disturbed morphology, and they show spectra with starburst or poststarburst characteristics as a result of mutual tidal interaction. Mkn 306 is shaped like an integral sign with two strong symmetrical central emission regions. The morphology, the velocity structure, and the optical spectra demonstrate that the galaxy Mkn 306 is seen nearly edge-on with a very strong warp of the stellar disk. The extreme degree of this optical distortion is comparable only with the strongest radio warps so far known; but these radio warps show only the H I gas distribution in the outer galactic regions and not the stellar distribution.

  1. The Origin of Warped, Precessing Accretion Disks in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Begelman, Mitchell C.

    1997-01-01

    The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up on earlier work to study the linear behavior of the instability in the specific context of a binary system. We treat the influence of the companion as an orbit-averaged quadrupole torque on the disk. The presence of this external torque allows the existence of solutions in which the direction of precession of the warp is retrograde with respect to disk rotation, in addition to the prograde solutions that exist in the absence of external torques.

  2. WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell

    NASA Technical Reports Server (NTRS)

    Pagni, A.; Poluzzi, R.; Rizzotto, G. G.

    1992-01-01

    During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.

  3. Stability of warped AdS3 vacua of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Esole, Mboyo; Guica, Monica

    2009-10-01

    AdS3 vacua of topologically massive gravity (TMG) have been shown to be perturbatively unstable for all values of the coupling constant except the chiral point μl = 1. We study the possibility that the warped vacua of TMG, which exist for all values of μ, are stable under linearized perturbations. In this paper, we show that spacelike warped AdS3 vacua with Compère-Detournay boundary conditions are indeed stable in the range μl>3. This is precisely the range in which black hole solutions arise as discrete identifications of the warped AdS3 vacuum. The situation somewhat resembles chiral gravity: although negative energy modes do exist, they are all excluded by the boundary conditions, and the perturbative spectrum solely consists of boundary (pure large gauge) gravitons.

  4. Design of a reading test for low-vision image warping

    NASA Astrophysics Data System (ADS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. Shane

    1993-08-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision -- maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer- generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  5. [THE DISCUSSION CONCERNING THE PLACE OF LECTURES AND COMPULSORY LECTURE ATTENDANCE IN MEDICAL EDUCATION].

    PubMed

    Reis, Shmuel

    2016-04-01

    Luder shows that there is a lack of correlation between lecture attendance in medical school and examination performance, and thus draws attention to a discourse concerning the place of lectures and lecture attendance enforcement in 2015 and beyond. The paper addresses 4 questions: First, what is the current place of the traditional lecture in the education of medical students? Second, are there alternatives to this format of teaching? Third, what are the educational consequences of mandating lecture attendance; and fourth, should there be such enforcement? The author discusses these questions and concludes that lectures should be used sparingly, after a careful evaluation that they have an added value over learning away from the classroom. Furthermore, that there are clear guidelines on how to make the traditional lecture enhanced and educationally effective, as well as alternatives such as the "flipped classroom", e-learning and more to lectures. In addition, that lectures frequently drive learning negatively and enforcing attendance in Israel entails serious unintended consequences such as a need to monitor attendance, and a host of disciplinary adverse reactions. Finally, that besides lecture efficiency and economy (when having added value) one reason to consider compulsory attendance, may be when poor attendance negatively influences teachers morale.

  6. The AWM-SIAM Sonia Kovalesvky Lecture

    SciTech Connect

    Lenhart, Suzanne; Lewis, Jennifer

    2003-06-03

    The Association for Women in Mathematics (AWM) in cooperation with the Society for Industrial and Applied Mathematics (SIAM) and with funding from the Department of Energy initiated a new lecture series. The purpose of the lecture series is to increase the visibility of women who have made significant contributions in applied or computational mathematics. The AWM-SIAM Sonia Kovalevsky Lecture is presented at the SIAM Annual Meeting which is a national conference. The lecturer is a woman who has made distinguished contributions in applied or computational mathematics. The lecturer is determined by the Selection Committee which consists of two members of AWM and two members of SIAM, appointed by the presidents of these organizations. The committee may solicit nominations from other members of the scientific and engineering community. The lectureship may be awarded to any woman in the scientific or engineering community. During the period of the grant the AWM-SIAM Sonia Kovalevsky Lecture Series (SKLS) included two lectures from 2003 and 2004.

  7. The WARPS Survey - VIII. Evolution of the galaxy cluster X-ray Luminosity Function

    NASA Astrophysics Data System (ADS)

    Koens, L. A.; Maughan, B. J.; Jones, L. R.; Ebeling, H.; Horner, D. J.; Perlman, E. S.; Phillipps, S.; Scharf, C. A.

    2013-11-01

    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 × 10-14 erg cm-2 s-1, with members out to redshift z ˜ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high-luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ≈ 1.1, as expected in a low-density universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95 per cent level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ≈ 2 × 1043 erg s-1 compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.

  8. Strain engineering for mechanical properties in graphene nanoribbons revisited: The warping edge effect

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2016-06-01

    We investigate the strain engineering and the edge effect for mechanical properties in graphene nanoribbons. The free edges of the graphene nanoribbons are warped due to compressive edge stresses. There is a structural transformation for the free edges from the three-dimensional warping configuration to the two-dimensional planar structure at the critical strain ɛc = 0.7%, at which the applied mechanical stress is equal to the intrinsic compressive edge stress. This structural transformation leads to step-like changes in several mechanical properties studied in the present work, including the Young's modulus, the Poisson's ratio, the quality factor of nanomechanical resonators, and the phonon edge mode.

  9. An arc-length warping algorithm for gesture recognition using quaternion representation.

    PubMed

    Cifuentes, Jenny; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio; Boulanger, Pierre

    2013-01-01

    This paper presents a new algorithm, called Dynamic Arc-Length Warping algorithm (DALW) for hand gesture recognition based on the orientation data. In this algorithm, after calculating the quaternion for each orientation measurement, we use DALW algorithm to obtain a similarity measure between different trajectories. We present the benefits of using quaternion alongside the implementation of Dynamic Arc Length Warping to present an optimized tool for gesture recognition.We show the advantages of this approach compared with other techniques. This tool can be used to distinguish similar and different gestures. An experimental validation is carried out to classify a series of simple human gestures.

  10. Theory of band warping and its effects on thermoelectronic transport properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2014-04-01

    Optical and transport properties of materials depend heavily upon features of electronic band structures in proximity of energy extrema in the Brillouin zone (BZ). Such features are generally described in terms of multidimensional quadratic expansions and corresponding definitions of effective masses. Multidimensional quadratic expansions, however, are permissible only under strict conditions that are typically violated when energy bands become degenerate at extrema in the BZ. Even for energy bands that are nondegenerate at critical points in the BZ there are instances in which multidimensional quadratic expansions cannot be correctly performed. Suggestive terms such as "band warping," "fluted energy surfaces," or "corrugated energy surfaces" have been used to refer to such situations and ad hoc methods have been developed to treat them. While numerical calculations may reflect such features, a complete theory of band warping has not hitherto been developed. We define band warping as referring to band structures that do not admit second-order differentiability at critical points in k space and we develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass. Our theory also accounts for effects of band nonparabolicity and anisotropy, which hitherto have not been precisely distinguished from, if not utterly confused with, band warping. Based on our theory, we develop precise procedures to evaluate band warping quantitatively. As a benchmark demonstration, we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with previous semiempirical models. As an application of major significance to thermoelectricity, we use our theory and angular effective masses to generalize derivations of tensorial transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. From that

  11. Inversion of seabed attenuation using time-warping of close range data.

    PubMed

    Zeng, Juan; Chapman, N Ross; Bonnel, Julien

    2013-11-01

    An inversion scheme based on time-warping is presented for estimating seabed sound attenuation from modal dispersion of close-range single-hydrophone data. The dispersion information is extracted directly from the warped signal spectrum. Seabed sound speed and density are inverted from the modal group velocity curves, and the attenuation is inverted from the normalized modal amplitudes. The method is applied to experimental data collected in the Yellow Sea of China during the winter of 2002. The inverted sound speed and density are consistent with the sand-silt-clay sediment at the site, and the attenuation is nonlinear over the frequency band from 125-500 Hz.

  12. WARP is a new member of the von Willebrand factor A-domain superfamily of extracellular matrix proteins.

    PubMed

    Fitzgerald, Jamie; Tay Ting, Su; Bateman, John F

    2002-04-24

    We report a new member of the von Willebrand factor A-domain protein superfamily, WARP (for von Willebrand factor A-domain-related protein). The full-length mouse WARP cDNA is 2.3 kb in size and predicts a protein of 415 amino acids which contains a signal sequence, a VA-like domain, two fibronectin type III-like repeats, and a short proline- and arginine-rich segment. WARP mRNA was expressed predominantly in chondrocytes and in vitro expression experiments in transfected 293 cells indicated that WARP is a secreted glycoprotein that forms disulphide-bonded oligomers. We conclude that WARP is a new member of the von Willebrand factor A-domain (VA-domain) superfamily of extracellular matrix proteins which may play a role in cartilage structure and function.

  13. Guide for 3D WARP simulations of hollow electron beam lenses. Practical explanation on basis of Tevatron electron lens test stand

    SciTech Connect

    Moens, Vince

    2014-06-08

    The purpose of this guide is to help successive students handle WARP. It outlines the installation of WARP on personal computers as well as super-computers and clusters. It furthermore teaches the reader how to handle the WARP environment and run basic scripts. Lastly it outlines how to execute the current Hollow Electron Beam Lens scripts.

  14. Kinematical Modeling of WARPS in the H i Disks of Galaxies

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1993-10-01

    In order to gain an appreciation for the general structure of warped gas layers in galaxies, we have constructed kinematical, tilted-ring models of 21 galaxies for which detailed H I observations already exist in the literature. In this paper we present results for the 15 normal spiral galaxies of this sample that are not viewed edge-on. A comparison between our models and tilted-ring models of the same galaxies previously constructed by other authors shows that there is generally good agreement. We make an attempt to unify the notation of diff&rent authors who have published radio observations and/or kinematical models of individual galaxies in this sample. We also suggest how, in future work of this nature, model parameters should be presented and referenced in order to maintain a reasonable degree of consistency in the literature. When viewed in the perspective of dynamical models, a twisted warped gas layer can be understood as arising from orbiting gas which is in the process of settling to a preferred orientation in the nonspherical, gravitational potential well of the galaxy. Hence, detailed kinematical modeling of a specific galaxy disk can provide not only information regarding the orientation and structure of its warp but also information about the shape (whether oblate or prolate) of the dark halo in which the disk is embedded. By examining a large number of galaxies in a consistent manner, we have deduced some general characteristics of warped disks that have heretofore gone unnoticed. We have also identified uniqueness problems that can arise in this type of modeling procedure which can considerably cloud one's ability to completely decipher an individual disk's structure. For 14 out of 15 spiral galaxies modeled here, we have been able to determine the local kinematical structure of the warp. Gas layers do not appear to warp more than ˜40° out of the plane defined by the central disk of the galaxy, but they can twist through angles as large as ˜170

  15. Michael Faraday: Prince of lecturers in Victorian England

    NASA Astrophysics Data System (ADS)

    Lan, Boon Leong; Lim, Jeanette B. S.

    2001-01-01

    In this note, we focus on Faraday as a lecturer/teacher. We trace his development as a lecturer/teacher and highlight his approaches in popular-science lecturing and in teaching chemistry to military cadets. We appraise his success and conclude with an account of his poignant last lecture.

  16. Break Up Your Lectures: Or Christaller Sliced Up.

    ERIC Educational Resources Information Center

    Gibbs, Graham; Jenkins, Alan

    1984-01-01

    Described is a method of lecturing in which the lecture period is divided into a number of segments. Only some segments involve the lecturer talking. In others students discuss topics or complete exercises. An example of such a lecture on aspects of Christaller's central place theory is described. (Author/RM)

  17. Learning from Lecture: Investigations of Study Strategies Involving Note Taking.

    ERIC Educational Resources Information Center

    Van Matre, Nicholas H.; And Others

    Two experiments were conducted with college students as subjects in an effort to determine the note taking strategy most effective for learning from lecture. In one experiment students listened to a lecture while engaging in either parallel or distributed note taking. The information density of the lecture and the lecture presentation speed were…

  18. The Impact of Online Lecture Recordings on Student Performance

    ERIC Educational Resources Information Center

    Williams, Andrew; Birch, Elisa; Hancock, Phil

    2012-01-01

    The use of online lecture recordings as a supplement to physical lectures is an increasingly popular tool at many universities. This paper combines survey data with student record data for students in a "Microeconomics Principles" class to examine the relative effects of lecture attendance and online lecture recordings. The main finding…

  19. Making lectures memorable: A cognitive perspective.

    PubMed

    Afzal, Azam; Babar, Shazia

    2016-08-01

    Lectures have been a cornerstone of medical education since the introduction of a discipline based curricular model more than two hundred years ago. Recently this instructional strategy has come under criticism because of its reliance on passive learning. There are still many medical schools that cover content predominantly through lectures due to its feasibility. With the introduction of the flipped classrooms, lectures have been given a new lease of life. Improving cognitive imprinting during lectures would enhance retrieval and promote long term storage. Simplifying the content reduces the cognitive load of the information being received and makes it more meaningful hence more memorable. To make learning memorable, rehearsal should be built into the sessions. With the exponential increase in online learning, the need for online learning technologies will require a generation of a large amount of asynchronous video content which should ideally be truly meaningful and memorable, and inspirational to our students.

  20. Drinking Water Plant Lecture-Demonstration.

    ERIC Educational Resources Information Center

    Vestling, Martha M.

    1977-01-01

    Describes a simple way to demonstrate the principles involved in a drinking water plant. This demonstration developed for a general public lecture can be used in chemistry and biology courses for an ecological and environmental emphasis. (HM)

  1. Charles Ichoku Maniac Lecture, July 25, 2016

    NASA Video Gallery

    NASA climate scientist Charles Ichoku presented a Maniac lecture entitled, "Reminiscences of a scientist's journey from Nawfia to NASA." Born in a small town in Nigeria, Charles traced his captivat...

  2. CMSC-130 Introductory Computer Science, Lecture Notes

    DTIC Science & Technology

    1993-07-01

    The CMSC 130 Introductory Computer Science lecture notes are used in the classroom for teaching CMSC 130, an introductory computer science course...using the Ada programming language. Computer science , Language concepts, Ada language, Software concepts.

  3. Lectures on probability and statistics

    SciTech Connect

    Yost, G.P.

    1984-09-01

    These notes are based on a set of statistics lectures delivered at Imperial College to the first-year postgraduate students in High Energy Physics. They are designed for the professional experimental scientist. We begin with the fundamentals of probability theory, in which one makes statements about the set of possible outcomes of an experiment, based upon a complete a priori understanding of the experiment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each die is equally likely to turn up. From that, we can calculate the probability of any specified outcome. We finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature which gave those data (e.g., the likelihood of seeing any given side of any given die turn up). This is a much more difficult problem, of course, and one's solutions often turn out to be unsatisfactory in one respect or another.

  4. A peculiar lecture by Ettore Majorana

    NASA Astrophysics Data System (ADS)

    Esposito, S.

    2006-09-01

    We give, for the first time, the English translation of a manuscript by Ettore Majorana, which probably corresponds to the text for a seminar lecture delivered at the University of Naples in 1938, where he lectured on theoretical physics. Some passages reveal a physical interpretation of quantum mechanics which anticipates for several years the Feynman approach in terms of path integrals, independent of the underlying mathematical formulation.

  5. Indian dental students' preferences regarding lecture courses.

    PubMed

    Parolia, Abhishek; Mohan, Mandakini; Kundabala, M; Shenoy, Ramya

    2012-03-01

    Teaching and learning activities in the dental clinic or hospital are a challenging area for students as well as teachers. With various teaching methodologies being used in dental schools around the world, gaining greater understanding of students' attitudes toward these methodologies would be useful for dental educators. The objective of this study was to explore the preferences of dental students in India about various aspects of lecture courses. A structured survey consisting of ten closed-ended questions was developed, and 2,680 undergraduate students from forty-three dental schools in India were approached via e-mail with a follow-up postal mailing. Of these, 1,980 students responded, for a response rate of 73.8 percent. Most of the students reported preferring lectures with the aid of PowerPoint and chalkboard. They preferred morning lectures from 8 am to 10 am for a maximum of thirty to forty minutes for each lecture, and they preferred to receive information about the lecture topic in advance. The students said that delivery of clinical demonstrations was beneficial after the lectures, and they preferred learning-based rather than exam-oriented education. The respondents also said that attendance should be made compulsory and that numerical marking of examinations should not be replaced by a grading system.

  6. A Concurrent Implementation of the Cascade-Correlation Algorithm, Using the Time Warp Operating System

    NASA Technical Reports Server (NTRS)

    Springer, P.

    1993-01-01

    This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.

  7. Mass customization of WARP{trademark} wind power plant design and construction

    SciTech Connect

    Weisbrich, A.L.; Rainey, D.L.

    1997-09-01

    Steady development of wind power technology and the accumulation of extensive operating experience with large clusters of electric utility connected turbines and have resulted in the emergence of wind power as a viable and attractive source of electricity for utilities, particularly in developing nations. A highly effective modular wind power technology, the Wind Amplified rotor Platforms (WARP{trademark}) System, which utilizes many identical vertically integrated Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark} building block modules with standard micro-turbines, forms the basis for mass customization (capacity and configuration) in power plant design and construction. WARP wind power brings the fundamentals of mass production as well as economies of scale to power plant design and construction. It can blend well with progressive engineering and construction (E and C) firm approaches which are predicated on a family of standardized designs to reduce cost, improve schedule and quality of units deployed. Since electricity has become the new world commodity with an imperative of low-cost, high-quality and environmentally responsible energy, WARP Systems designs have been proposed to meet these objectives through its inherent efficiency, mass customization and mass production features. WARP system`s ability to integrally operate with photovoltaics, gas turbines or gas diesels, provides also the opportunity to generate baseload power in an environmentally responsible manner.

  8. Features of warped geometry in presence of Gauss-Bonnet coupling

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; SenGupta, Soumitra

    2013-02-01

    We study the role of the Gauss-Bonnet corrections and two loop higher genus contribution to the gravity action on the Kaluza-Klien modes and their interactions for different bulk fields which enable one to study various phenomenological implications of string loop corrected Gauss-Bonnet modified warped geometry model in one canvas. We have explicitly derived a phenomenological bound on the Gauss-Bonnet parameter so that the required Planck to TeV scale hierarchy can be achieved through the warp factor in the light of recently discovered Higgs like boson at 125GeV. Moreover due to the presence of small perturbative Gauss-Bonnet as well as string loop corrections we have shown that the warping solution can be obtained for both de-Sitter and anti-de-Sitter bulk which is quite distinct from Randall-Sundrum scenario. Finally we have evaluated various interactions among these bulk fields and determined the coupling parameters and the Kaluza-Klien mode masses which is crucial to understand the phenomenology of a string two loop corrected Einstein-Gauss-Bonnet warp geometry.

  9. 2D warp-and-woof interwoven networks constructed by helical chains with different chirality.

    PubMed

    Feng, Yuhua; Guo, Yang; OuYang, Yan; Liu, Zhanquan; Liao, Daizheng; Cheng, Peng; Yan, Shiping; Jiang, Zonghui

    2007-09-21

    Two unprecedented 2D entangled layers of warp-and-woof threads interwoven by left- and right-handed helical chains, {[Mn(salen)Au(CN)2]4(H2O)}n (salen = N,N'-ethylenebis(salicylideneaminato)) and {Mn(acacen)Ag(CN)2}n (acacen = N,N'-ethylenebis(acetylacetonylideneiminate)) 2, have been synthesized and characterized.

  10. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    NASA Technical Reports Server (NTRS)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  11. On the role of pseudodisk warping and reconnection in protostellar disk formation in turbulent magnetized cores

    SciTech Connect

    Li, Zhi-Yun; Zhao, Bo; Krasnopolsky, Ruben; Shang, Hsien

    2014-10-01

    The formation of rotationally supported protostellar disks is suppressed in ideal MHD in non-turbulent cores with aligned magnetic fields and rotation axes. A promising way to resolve this so-called 'magnetic braking catastrophe' is through turbulence. The reason for the turbulence-enabled disk formation is usually attributed to the turbulence-induced magnetic reconnection, which is thought to reduce the magnetic flux accumulated in the disk-forming region. We advance an alternative interpretation, based on magnetic decoupling-triggered reconnection of severely pinched field lines close to the central protostar and turbulence-induced warping of the pseudodisk of Galli and Shu. Such reconnection weakens the central split magnetic monopole that lies at the heart of the magnetic braking catastrophe under flux freezing. We show, through idealized numerical experiments, that the pseudodisk can be strongly warped, but not completely destroyed, by a subsonic or sonic turbulence. The warping decreases the rates of angular momentum removal from the pseudodisk by both magnetic torque and outflow, making it easier to form a rotationally supported disk. More importantly, the warping of the pseudodisk out of the disk-forming, equatorial plane greatly reduces the amount of magnetic flux threading the circumstellar, disk-forming region, further promoting disk formation. The beneficial effects of pseudodisk warping can also be achieved by a misalignment between the magnetic field and rotation axis. These two mechanisms of disk formation, enabled by turbulence and field-rotation misalignment respectively, are thus unified. We find that the disks formed in turbulent magnetized cores are rather thick and significantly magnetized. Implications of these findings, particularly for the thick young disk inferred in L1527, are briefly discussed.

  12. Analysis of Students' Downloading of Online Audio Lecture Recordings in a Large Biology Lecture Course

    ERIC Educational Resources Information Center

    White, Brian T.

    2009-01-01

    This paper address three questions apropos of those posed by Kadel (2006) in the context of a large introductory-level undergraduate science lecture course. These questions include how podcasting is used by professors and students, whether podcasting decreases lecture attendance, and if particular podcasting options are effective teaching tools.…

  13. Quasinormal modes of self-dual warped AdS{sub 3} black hole in topological massive gravity

    SciTech Connect

    Li Ran; Ren Jirong

    2011-03-15

    We consider the scalar, vector and spinor field perturbations in the background of self-dual warped AdS{sub 3} black hole of topological massive gravity. The corresponding exact expressions for quasinormal modes are obtained by analytically solving the perturbation equations and imposing the vanishing Dirichlet boundary condition at asymptotic infinity. It is expected that the quasinormal modes agree with the poles of retarded Green's functions of the CFT dual to self-dual warped AdS{sub 3} black hole. Our results provide a quantitative test of the warped AdS/CFT correspondence.

  14. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  15. The Web-Lecture - a viable alternative to the traditional lecture format?

    NASA Astrophysics Data System (ADS)

    Meibom, S.

    2004-12-01

    Educational research shows that students learn best in an environment with emphasis on teamwork, problem-solving, and hands-on experience. Still professors spend the majority of their time with students in the traditional lecture-hall setting where the combination of large classes and limited time prevents sufficient student-teacher interaction to foster an active learning environment. Can modern computer technology be used to provide "lecture-type" information to students via the World Wide Web? If so, will that help professors make better and/or different use of their scheduled time with the students? Answering these questions was the main motivation for the Extra-Solar Planet Project. The Extra-Solar Planet Project was designed to test the effectiveness of a lecture available to the student on the World Wide Web (Web-Lecture) and to engage the students in an active learning environment were their use the information presented in the Web-Lecture. The topic of the Web-Lecture was detection of extra-solar planets and the project was implemented into an introductory astronomy course at University of Wisconsin Madison in the spring of 2004. The Web-Lecture was designed to give an interactive presentation of synchronized video, audio and lecture notes. It was created using the eTEACH software developed at the University of Wisconsin Madison School of Engineering. In my talk, I will describe the project, show excerpts of the Web-Lecture, and present assessments of student learning and results of student evaluations of the web-lecture format.

  16. Explicit constructivism: a missing link in ineffective lectures?

    PubMed

    Prakash, E S

    2010-06-01

    This study tested the possibility that interactive lectures explicitly based on activating learners' prior knowledge and driven by a series of logical questions might enhance the effectiveness of lectures. A class of 54 students doing the respiratory system course in the second year of the Bachelor of Medicine and Bachelor of Surgery program in my university was randomized to two groups to receive one of two types of lectures, "typical" lectures (n = 28, 18 women and 10 men) or "constructivist" lectures (n = 26, 19 women and 7 men), on the same topic: the regulation of respiration. Student pretest scores in the two groups were comparable (P > 0.1). Students that received the constructivist lectures did much better in the posttest conducted immediately after the lectures (6.8 +/- 3.4 for constructivist lectures vs. 4.2 +/- 2.3 for typical lectures, means +/- SD, P = 0.004). Although both types of lectures were well received, students that received the constructivist lectures appeared to have been more satisfied with their learning experience. However, on a posttest conducted 4 mo later, scores obtained by students in the two groups were not any different (6.9 +/- 3 for constructivist lectures vs. 6.9 +/- 3.7 for typical lectures, P = 0.94). This study adds to the increasing body of evidence that there is a case for the use of interactive lectures that make the construction of knowledge and understanding explicit, easy, and enjoyable to learners.

  17. A survey of first-year biology student opinions regarding live lectures and recorded lectures as learning tools.

    PubMed

    Simcock, D C; Chua, W H; Hekman, M; Levin, M T; Brown, S

    2017-03-01

    A cohort of first-year biology students was surveyed regarding their opinions and viewing habits for live and recorded lectures. Most respondents (87%) attended live lectures as a rule (attenders), with 66% attending more than two-thirds of the lectures. In contrast, only 52% accessed recordings and only 13% viewed more than two-thirds of the available recordings. Respondents regarded lectures as efficient for information delivery (75%), and 89% enjoyed live lectures because they were useful for learning (89%), understanding coursework (94%), and keeping up with the subject (93%). Lecture enjoyment was driven less by entertainment (34%) or interaction with the lecturers (47%), although most students preferred an entertaining lecturer to a factual expert (72%). Exam marks were positively correlated with the number of lectures attended (P < 0.001) and negatively correlated with the number of recordings viewed (P < 0.05), although marks were similar for lecture attenders and nonattenders (P > 0.05). Lecture attenders mostly missed lectures to complete assessments during the same week (68%), whereas nonattenders were more likely to miss lectures due to outside commitments or preference for study from books or recorded lectures (P < 0.001). Recordings were used to replace missed lectures (64%), rather than for revision, and were viewed mostly alone (96%) in one sitting (65%). Only 22% of respondents agreed that some lectures could be replaced by recordings, but 59% agreed with having some videoconference lectures from experts on another campus. Overall, this cohort showed a clear preference for live lectures over recordings, with limited support for synchronous videoconference lectures.

  18. Interactive lectures: Clickers or personal devices?

    PubMed Central

    Morrell, Lesley J.; Joyce, Domino A.

    2015-01-01

    Audience response systems (‘clickers’) are frequently used to promote participation in large lecture classes, and evidence suggests that they convey a number of benefits to students, including improved academic performance and student satisfaction. The limitations of these systems (such as limited access and cost) can be overcome using students’ personal electronic devices, such as mobile phones, tablets and laptops together with text message, web- or app-based polling systems. Using questionnaires, we compare student perceptions of clicker and smartphone based polling systems. We find that students prefer interactive lectures generally, but those that used their own device preferred those lectures over lectures using clickers. However, device users were more likely to report using their devices for other purposes (checking email, social media etc.) when they were available to answer polling questions. These students did not feel that this distracted them from the lecture, instead, concerns over the use of smartphones centred around increased battery usage and inclusivity for students without access to suitable technology. Our results suggest that students generally preferred to use their own devices over clickers, and that this may be a sensible way to overcome some of the limitations associated with clickers, although issues surrounding levels of distraction and the implications for retention and recall of information need further investigation. PMID:26594327

  19. Interactive lectures: Clickers or personal devices?

    PubMed

    Morrell, Lesley J; Joyce, Domino A

    2015-01-01

    Audience response systems ('clickers') are frequently used to promote participation in large lecture classes, and evidence suggests that they convey a number of benefits to students, including improved academic performance and student satisfaction. The limitations of these systems (such as limited access and cost) can be overcome using students' personal electronic devices, such as mobile phones, tablets and laptops together with text message, web- or app-based polling systems. Using questionnaires, we compare student perceptions of clicker and smartphone based polling systems. We find that students prefer interactive lectures generally, but those that used their own device preferred those lectures over lectures using clickers. However, device users were more likely to report using their devices for other purposes (checking email, social media etc.) when they were available to answer polling questions. These students did not feel that this distracted them from the lecture, instead, concerns over the use of smartphones centred around increased battery usage and inclusivity for students without access to suitable technology. Our results suggest that students generally preferred to use their own devices over clickers, and that this may be a sensible way to overcome some of the limitations associated with clickers, although issues surrounding levels of distraction and the implications for retention and recall of information need further investigation.

  20. On performing concepts during science lectures

    NASA Astrophysics Data System (ADS)

    Pozzer-Ardenghi, Lilian; Roth, Wolff-Michael

    2007-01-01

    When lecturing, teachers make use of both verbal and nonverbal communication. What is called teaching, therefore, involves not only the words and sentences a teacher utters and writes on the board during a lesson, but also all the hands/arms gestures, body movements, and facial expressions a teacher performs in the classroom. All of these communicative modalities constitute resources that are made available to students for making sense of and learning from lectures. Yet in the literature on teaching science, these other means of communication are little investigated and understood - and, correspondingly, they are undertheorized. The purpose of this position paper is to argue for a different view of concepts in lectures: they are performed simultaneously drawing on and producing multiple resources that are different expressions of the same holistic meaning unit. To support our point, we provide examples from a database of 26 lectures in a 12th-grade biology class, where the human body was the main topic of study. We analyze how different types of resources - including verbal and nonverbal discourse and various material artifacts - interact during lectures. We provide evidence for the unified production of these various sense-making resources during teaching to constitute a meaning unit, and we emphasize particularly the use of gestures and body orientations inside this meaning unit. We suggest that proper analyses of meaning units need to take into account not only language and diagrams but also a lecturer's pointing and depicting gestures, body positions, and the relationships between these different modalities. Scientific knowledge (conceptions) exists in the concurrent display of all sense-making resources, which we, following Vygotsky, understand as forming a unit (identity) of nonidentical entities.

  1. Intrinsic deficiencies of lectures as a teaching method.

    PubMed

    Pale, Predrag

    2013-06-01

    Lectures were, still are and seem to remain a dominant form of teaching, despite an increased research and use of other methods of teaching and leverage of technology aimed at improving teaching results and efficiency. Learning, as the result of a lecture, greatly depends on the subject, the competence and abilities of the lecturer as well as on other transient causes. However, lectures also have some intrinsic deficiencies as a teaching method pertinent to their very nature. In order to fully understand the teaching value of lectures and their role and proper use in educational systems, their deficiencies have been studied in a theoretical analysis from the perspective of cognitive learning theories. Fifteen deficiencies have been identified and clustered in three categories based on root causes of deficiencies: synchronicity problems, time constraint and individual student abilities, needs and knowledge. These findings can be used to adjust expected learning outcomes of lectures, to properly (re)design lecture content and process and to design other learning and teaching activities that would compensate and complement lectures. Recommendations are given on replacing and amending lectures with other instructional methods, amending lectures in the course of delivery with additional content and tools and complementing lectures after delivery with content, tools and activities. Suggestions on the use of information technology that could substitute, reduce or eliminate at least some of the deficiencies are made. Lecture captures seem to be valuable supplement for live lectures compensating in all three categories of deficiencies. Suggestions and directions for further research are given.

  2. The McAndrews Leadership Lecture: Origins

    PubMed Central

    Hamm, Anthony W.; Burkhart, Lori A.

    2015-01-01

    Objective This article describes the origins and rationale for the McAndrews Leadership Lecture and explains why the American Chiropractic Association honors George and Jerome McAndrews. Discussion George and Jerome McAndrews’ backgrounds demonstrate their leadership contributions to the chiropractic profession. Jerome McAndrews, a chiropractor, held substantial leadership roles in the chiropractic profession. George McAndrews, a lawyer, administered a permanent injunction forbidding the American Medical Association’s restraint of trade toward the chiropractic profession. Conclusion The American Chiropractic Association has established the McAndrews Leadership Lecture to honor their contributions to the chiropractic profession. PMID:26770176

  3. Revitalizing Ernst Mach's Popular Scientific Lectures

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2007-06-01

    Compared to Ernst Mach's influence on the conceptual development of physics, his efforts to popularize science and his reflections on science literacy are known to a much lesser degree. The approach and the impact of Mach's popular scientific lectures are discussed in view of today's problems of understanding science. The key issues of Mach's popular scientific lectures, reconsidered in the light of contemporary science, still hold a high potential in fascinating a general audience. Moreover, Mach's grand theme, the relation of the physical to the psychical, is suited to contribute to a dialogue between different knowledge cultures, e.g. science and humanities.

  4. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  5. WARP-10: A numerical simulation model for the cylindrical reconnection launcher

    SciTech Connect

    Widner, M.M.

    1989-01-01

    A fully self-consistent computer simulation code called WARP-10, used for modelling the Reconnection Launcher, is described. WARP-10 has been compared with various experiments with good agreement for performance and heating. Simulations predict that it is possible to obtain nearly uniform acceleration with high efficiency and low armature heating. There does not appear to be an armature heating limit to velocity provided the armature mass can be sufficiently large. Simulation results are presented which show it is possible to obtain conditions needed for Earth-to-Orbit (ETO) launch applications (4.15 km/s and a 950 kg launch mass). This 3100-stage launcher has an efficiency of 47.2% and a final ohmic energy/kinetic energy = .000146. The mode of launcher operation is similar to a traveling water induction launcher and is produced by properly times and tuned discrete stages. Further optimization and much high velocities appear possible. 15 refs., 6 figs.

  6. WARP-10; A numerical simulation model for the cylindrical reconnection launcher

    SciTech Connect

    Widner, M.M. )

    1991-01-01

    In this paper a fully self-consistent computer simulation code called WARP-10, used for modelling the Reconnection Launcher, is described. WARP-10 has been compared with various experiments with good agreement for performance and heating. Simulations predict that it is possible to obtain nearly uniform acceleration with high efficiency and low armature heating. There does not appear to be an armature heating limit to velocity provided the armature mass can be sufficiently large. Simulation results are presented which show it is possible to obtain conditions needed for Earth-to-Orbit (ETO) launch applications (4.15 km/s and a 850 kg launch mass). This 3100-stage launcher has an efficiency of 47.2% and a final ohmic energy/kinetic energy - .00146. The mode of launcher operation is similar to a traveling wave induction launcher and is produced by properly timed and tuned discrete stages. Further optimization and much higher velocities appear possible.

  7. Discriminating between technicolor and warped extra dimensional model via pp{yields}ZZ channel

    SciTech Connect

    Antipin, O.; Tuominen, K.

    2009-04-01

    We explore the possibility to discriminate between certain strongly coupled technicolor (TC) models and warped extra dimensional models where the standard model fields are propagating in the extra dimension. We consider a generic QCD-like TC model with running coupling as well as two TC models with walking dynamics. We argue that, due to the different production mechanisms for the lowest-lying composite tensor state in these TC theories compared to the first Kaluza-Klein graviton mode of the warped extra dimensional case, it is possible to distinguish between these models based on the angular analysis of the reconstructed longitudinal Z bosons in the pp{yields}ZZ{yields}4 charged leptons channel.

  8. Low-energy signals from kinetic mixing with a warped abelian hidden sector

    NASA Astrophysics Data System (ADS)

    McDonald, Kristian L.; Morrissey, David E.

    2011-02-01

    We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.

  9. A new concept for variance analysis of hyphenated chromatographic data avoiding signal warping.

    PubMed

    Zerzucha, Piotr; Kazura, Małgorzata; de Beer, Dalene; Joubert, Elizabeth; Schulze, Alexandra E; Beelders, Theresa; de Villiers, André; Walczak, Beata

    2013-05-24

    Analysis of variance of chromatographic data is usually performed on the peak table or on entire chromatograms. These two data forms require signal pretreatment. Peak table requires peak detection, their standards and quantification, and the second form of data organization requires warping of the studied chromatograms to eliminate the observed peak shifts, which occurs due to minor variations in chromatographic conditions. In our study, a new form of data representation well suited for chromatographic data originating from multi-channel detection is proposed. It requires neither warping of chromatograms, nor peak detection. Its principles and performance are demonstrated for a real data set (being a part of a larger research project initiated to characterize the infusion of fermented rooibos herbal tea in terms of phenolic composition and antioxidant activity). As the method of choice for the analysis of data variation, the Multiple Analysis of Variance applied to the pairwise data representation was chosen.

  10. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  11. Diphoton signal via Chern-Simons interaction in a warped geometry scenario

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup; SenGupta, Soumitra

    2017-01-01

    The Kalb-Ramond field, identifiable with bulk torsion in a five-dimensional Randall Sundrum (RS) scenario, has Chern-Simons interactions with gauge bosons, from the requirement of gauge anomaly cancellation. Its lowest Kaluza Klein (KK) mode on the visible 3-brane can be identified with a spin-0 C P -odd field, namely, the axion. By virtue of the warped geometry and Chern-Simons couplings, this axion has unsuppressed interactions with gauge bosons in contrast to ultra-suppressed interactions with fermions. The ensuing dynamics can lead to a peak in the diphoton spectrum, which could be observed at the LHC, subject to the prominence of the signal. Moreover, the results can be numerically justified when the warp factor is precisely in the range required for stabilization of the electroweak scale.

  12. Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX Experiments

    SciTech Connect

    Friedman, A; Cohen, R H; Grote, D P; Vay, J

    2007-12-14

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.

  13. Is it sensible to 'deform' dose? 3D experimental validation of dose-warping

    SciTech Connect

    Yeo, U. J.; Taylor, M. L.; Supple, J. R.; Smith, R. L.; Dunn, L.; Kron, T.; Franich, R. D.

    2012-08-15

    Purpose: Strategies for dose accumulation in deforming anatomy are of interest in radiotherapy. Algorithms exist for the deformation of dose based on patient image sets, though these are sometimes contentious because not all such image calculations are constrained by physical laws. While tumor and organ motion has been a key area of study for a considerable amount of time, deformation is of increasing interest. In this work, we demonstrate a full 3D experimental validation of results from a range of dose deformation algorithms available in the public domain. Methods: We recently developed the first tissue-equivalent, full 3D deformable dosimetric phantom-'DEFGEL.' To assess the accuracy of dose-warping based on deformable image registration (DIR), we have measured doses in undeformed and deformed states of the DEFGEL dosimeter and compared these to planned doses and warped doses. In this way we have directly evaluated the accuracy of dose-warping calculations for 11 different algorithms. We have done this for a range of stereotactic irradiation schemes and types and magnitudes of deformation. Results: The original Horn and Schunck algorithm is shown to be the best performing of the 11 algorithms trialled. Comparing measured and dose-warped calculations for this method, it is found that for a 10 Multiplication-Sign 10 mm{sup 2} square field, {gamma}{sub 3%/3mm}= 99.9%; for a 20 Multiplication-Sign 20 mm{sup 2} cross-shaped field, {gamma}{sub 3%/3mm}= 99.1%; and for a multiple dynamic arc (0.413 cm{sup 3} PTV) treatment adapted from a patient treatment plan, {gamma}{sub 3%/3mm}= 95%. In each case, the agreement is comparable to-but consistently {approx}1% less than-comparison between measured and calculated (planned) dose distributions in the absence of deformation. The magnitude of the deformation, as measured by the largest displacement experienced by any voxel in the volume, has the greatest influence on the accuracy of the warped dose distribution. Considering

  14. Comprehension by College Students of Time-compressed Lectures

    ERIC Educational Resources Information Center

    Adelson, Loretta

    1975-01-01

    This study has assessed the comprehension by 200 Brooklyn College students of a one-hour lecture at 175 wpm as compared with their comprehension of an equated time-compressed lecture at 275 wpm. (Author)

  15. Experiences of using an interactive audience response system in lectures

    PubMed Central

    Uhari, Matti; Renko, Marjo; Soini, Hannu

    2003-01-01

    Background Lectures are good for presenting information and providing explanations, but because they lack active participation they have been neglected. Methods Students' experiences were evaluated after exposing them to the use of voting during lectures in their paediatrics course. Questions were delivered to the students taking paediatrics course. Thirty-six students out of the total of 40 (90%) attended the opening lecture, at which the first survey concerning previous experiences of lectures was performed. Thirty-nine students (98%) answered the second series of questions at the end of the paediatrics course. Results Most of the students felt that voting improved their activity during lectures, enhanced their learning, and that it was easier to make questions during lectures than earlier. Conclusions The students gained new, exciting insights much more often during the paediatrics course than before. We as teachers found that voting during lectures could easily overcome some of the obstacles of good lecturing. PMID:14678571

  16. ON THE MISALIGNMENT OF THE DIRECTLY IMAGED PLANET {beta} PICTORIS b WITH THE SYSTEM'S WARPED INNER DISK

    SciTech Connect

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Fabrycky, Daniel C.

    2011-12-10

    The vertical warp in the debris disk {beta} Pictoris-an inclined inner disk extending into a flat outer disk-has long been interpreted as the signpost of a planet on an inclined orbit. Direct images spanning 2004-2010 have revealed {beta} Pictoris b, a planet with a mass and orbital distance consistent with this picture. However, it was recently reported that the orbit of planet b is aligned with the flat outer disk, not the inclined inner disk, and thus lacks the inclination to warp the disk. We explore three scenarios for reconciling the apparent misalignment of the directly imaged planet {beta} Pictoris b with the warped inner disk of {beta} Pictoris: observational uncertainty, an additional planet, and damping of planet b's inclination. We find that, at the extremes of the uncertainties, the orbit of {beta} Pictoris b has the inclination necessary to produce the observed warp. We also find that if planet b were aligned with the flat outer disk, it would prevent another planet from creating a warp with the observed properties; therefore planet b itself must be responsible for the warp. Finally, planet b's inclination could have been damped by dynamical friction and still produce the observed disk morphology, but the feasibility of damping depends on disk properties and the presence of other planets. More precise observations of the orbit of planet b and the position angle of the outer disk will allow us to distinguish between the first and third scenarios.

  17. Cloning, expression and transmission-blocking activity of anti-PvWARP, malaria vaccine candidate, in Anopheles stephensi mysorensis

    PubMed Central

    2010-01-01

    Background Notwithstanding progress in recent years, a safe, an effective and affordable malaria vaccine is not available yet. Ookinete-secreted protein, Plasmodium vivax von Willebrand factor A domain-related protein (PvWARP), is a candidate for malaria transmission-blocking vaccines (TBVs). Methods The PvWARP was expressed in Escherichia coli BL21 using the pET-23a vector and was purified using Ni-NTA affinity chromatography from a soluble fraction. Polyclonal antibody was raised against rPvWARP and transmission blocking activity was carried out in an Anopheles stephensi-P. vivax model. Results Expression of full length of PvWARP (minus signal peptide) expression showed a 35-kDa protein. The purified protein was recognized by mouse polyclonal antibody directed against rPvWARP. Sera from the animals displayed significantly a blocking activity in the membrane feeding assay of An. stephensi mysorensis. Conclusions This is the first report on P. vivax WARP expression in E. coli that provides an essential base for development of the malaria TBV against P. vivax. This may greatly assist in malaria elimination, especially in the oriental corner of WHO Eastern Mediterranean Regional Office (WHO/EMRO) including Afghanistan, Iran and Pakistan. PMID:20537198

  18. a Higher Order Theory for STATIC-DYNAMIC Analysis of Laminated Plates Using a Warping Model

    NASA Astrophysics Data System (ADS)

    HASSIS, H.

    2000-08-01

    A higher order theory is developed to model the behaviour of laminated plates. This theory is based on a warping theory of plate deformation developed by Hassis [1]. Through comparison with elasticity solutions obtained with classical models [2-6] and the higher order theory of Lo et al.[7, 8], it is shown that the present theory correctly models effects not attainable by the low order theories.

  19. Mean Performance Optimization of an Orbiting Distributed Aperture by Warped Aperture Image Plane Comparisons

    DTIC Science & Technology

    2002-09-01

    7-6 v Page 7.4 Viewing Geometry Effects on Io(ξ, η) . . . . . . . . . . . . . 7-10 7.5 Optimized Formations for Inertial... Effects of Each Aligning Rotation on Receiver Loci . . . . . . . . . 7-11 7.6. Effects of Each Aligning Rotation on Io(ξ, η)? . . . . . . . . . . . . 7-11...this solution to include the effects of non-ideal viewing geometries. xvi MEAN PERFORMANCE OPTIMIZATION OF AN ORBITING DISTRIBUTED APERTURE BY WARPED

  20. Fast maximum intensity projection algorithm using shear warp factorization and reduced resampling.

    PubMed

    Fang, Laifa; Wang, Yi; Qiu, Bensheng; Qian, Yuancheng

    2002-04-01

    Maximal intensity projection (MIP) is routinely used to view MRA and other volumetric angiographic data. The straightforward implementation of MIP is ray casting that traces a volumetric data set in a computationally expensive manner. This article reports a fast MIP algorithm using shear warp factorization and reduced resampling that drastically reduced the redundancy in the computations for projection, thereby speeding up MIP by more than 10 times.

  1. GENOCOP Algorithm and Hierarchical Grid Transformation for Image Warping of Two-Dimensional Gel Electrophoretic Maps.

    PubMed

    Robotti, Elisa; Marengo, Emilio; Demartini, Marco

    2016-01-01

    Hierarchical grid transformation is a powerful hierarchical approach to 2-D map warping, able to model both global and local deformations. The algorithm can be stopped when a desired degree of accuracy in the images alignment is obtained. The deformed image is warped and aligned to the target image using a grid where the number of nodes increases in each step of the algorithm. The numerical optimization of the position of the nodes of the grid can be efficiently solved by genetic algorithms, ensuring the achievement of the optimal position of the nodes with a low computational cost with respect to other methods. Here, the optimization of the position of the nodes is carried out by GENOCOP (genetic algorithm for numerical optimization of constrained problems), refined by the following conjugate gradient optimization step. The modeling of the warped space is then achieved by a spline model where some constraints are introduced in the choice of the nodes that are moved. The whole procedure can be intended as an evolutionary method that models the deformation of the gel map at different levels of detail.

  2. Effective Hamiltonian for surface states of Bi2Te3 nanocylinders with hexagonal warping

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Jalil, Mansoor B. A.; Ghee Tan, Seng

    2016-06-01

    The three-dimensional topological insulator \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} differs from other topological insulators in the \\text{B}{{\\text{i}}2}\\text{S}{{\\text{e}}3} family in that the effective Hamiltonian of its surface states on a flat semi-infinite slab requires the addition of a cubic momentum hexagonal warping term in order to reproduce the experimentally measured constant energy contours. In this work, we derive the appropriate effective Hamiltonian for the surface states of a \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} cylinder incorporating the corresponding hexagonal warping terms in a cylindrical geometry. We show that at the energy range where the surface states dominate, the effective Hamiltonian adequately reproduces the dispersion relation obtained from a full four-band Hamiltonian which describes both the bulk and surface states. As an example application of our effective Hamiltonian, we study the transmission between two collinear \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} cylinders magnetized in different directions perpendicular to their axes. We show that the hexagonal warping term results in a transmission profile between the cylinders which may be of utility in a multiple state magnetic memory bit.

  3. Galactic Disk Warps due to Intergalactic Accretion Flows onto the Disk

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Betancort-Rijo, J.; Beckman, J. E.

    2008-06-01

    The accretion of the intergalactic medium onto the gaseous disc is used to explain the generation of galactic warps. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small for most incident inflow angles and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shaped warp. The torque produced by a flow of velocity ˜ 100 km/s and baryon density ˜ 10-25 kg/m3, which is within the possible values for the intergalactic medium, is enough to generate the observed warps and this mechanism offers quite a plausible explanation. The inferred rate of infall of matter, ˜ 1 M⊙/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of chemical evolution resolving key issues, notably the G-dwarf problem. Sánchez-Salcedo (2006) suggests that this mechanism is not plausible because it would produce a dependence of the scaleheight of the disc with the Galactocentric azimuth in the outer disc, but rather than being an objection this is another argument in favour of the mechanism because this dependence is actually observed in our Galaxy.

  4. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    SciTech Connect

    Wang Yan; Li Xiangdong

    2012-01-10

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  5. Lecture vs. Laboratory Instruction in Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Oomes, Fred W.; Jurshak, Steve

    1978-01-01

    The effects of lecture versus laboratory method of teaching on the achievement of forty-six students enrolled in a unit on soil and water management (surveying) were studied. Results indicated no significant differences between groups as measured by cognitive and motor skill tests. (JH)

  6. Physics Meets Biology (LBNL Summer Lecture Series)

    ScienceCinema

    Chu, Steve [Director, LBNL

    2016-07-12

    Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biologys natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.

  7. Music during Lectures: Will Students Learn Better?

    ERIC Educational Resources Information Center

    Dosseville, Fabrice; Laborde, Sylvain; Scelles, Nicolas

    2012-01-01

    We investigated the influence of music during learning on the academic performance of undergraduate students, and more particularly the influence of affects induced by music. Altogether 249 students were involved in the study, divided into a control group and an experimental group. Both groups attended the same videotaped lecture, with the…

  8. Short and Sweet: Technology Shrinks the Lecture

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2008-01-01

    Many professors who have ventured into online education are finding that shorter, modular clips are a more successful teaching approach than traditional 50-minute lectures. The author cites educators from several institutions who have adapted smaller, 15-20 minute instructional units originally developed for online courses, to their face-to-face…

  9. Learning in Lectures: Do 'Interactive Windows' Help?

    ERIC Educational Resources Information Center

    Huxham, Mark

    2005-01-01

    Many educational development resources recommend making conventional lectures more interactive. However, there is little firm evidence supporting either the acceptability (to students) or efficacy of doing so. This research examined the use of short 'interactive windows' (discussions and problem-solving exercises) in first year evolution lectures…

  10. Enabling a Comprehensive Teaching Strategy: Video Lectures

    ERIC Educational Resources Information Center

    Brecht, H. David; Ogilby, Suzanne M.

    2008-01-01

    This study empirically tests the feasibility and effectiveness of video lectures as a form of video instruction that enables a comprehensive teaching strategy used throughout a traditional classroom course. It examines student use patterns and the videos' effects on student learning, using qualitative and nonparametric statistical analyses of…

  11. Physics Meets Biology (LBNL Summer Lecture Series)

    SciTech Connect

    Chu, Steve

    2006-07-01

    Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biologys natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.

  12. J.B. Nash Lecture Series.

    ERIC Educational Resources Information Center

    Gray, Howard R., Comp.; And Others

    The following lectures are presented in this publication: (1) "The Dynamics of Recreation" (Betty Van der Smissen); (2) "Recreation Prospects" (Edith L. Ball); (3) "A View of the Past--A Bridge to the Future" (Allen V. Sapora); (4) "Coming to Grips with the New Leisure" (Richard G. Kraus); (5) "The Mild Blue Yonder--Changing Lifestyles and…

  13. Movement and Character. Lecture, London, 1946

    ERIC Educational Resources Information Center

    Montesorri, Maria

    2013-01-01

    Dr. Montessori's words from the 1946 London Lectures describe principles of intelligence and character, the work of the hand, and movement with a purpose as being integral to self-construction. The perfection of movement is spiritual, says Dr. Montessori. Repetition of practical life exercises are exercises in movement with the dignity of human…

  14. Creativity and the Curriculum. Inaugural Professorial Lecture

    ERIC Educational Resources Information Center

    Wyse, Dominic

    2014-01-01

    Creativity is regarded by many as a vital aspect of the human world, and creative endeavours are seen as a central element of society. Hence student creativity is regarded as a desirable outcome of education. This inaugural professorial lecture examines the place of creativity in education and in national curricula. Beginning with examples of…

  15. Do-It-Yourself Whiteboard-Style Physics Video Lectures

    ERIC Educational Resources Information Center

    Douglas, Scott Samuel; Aiken, John Mark; Greco, Edwin; Schatz, Michael; Lin, Shih-Yin

    2017-01-01

    Video lectures are increasingly being used in physics instruction. For example, video lectures can be used to "flip" the classroom, i.e., to deliver, via the Internet, content that is traditionally transmitted by in-class lectures (e.g., presenting concepts, working examples, etc.), thereby freeing up classroom time for more interactive…

  16. The Lecture as a Transmedial Pedagogical Form: A Historical Analysis

    ERIC Educational Resources Information Center

    Friesen, Norm

    2011-01-01

    The lecture has been much maligned as a pedagogical form, yet it persists and even flourishes today in the form of the podcast, the TED talk, and the "smart" lecture hall. This article examines the lecture as a pedagogical genre, as "a site where differences between media are negotiated" (Franzel) as these media coevolve. This examination shows…

  17. The Effect of Instant Messaging on Lecture Retention

    ERIC Educational Resources Information Center

    McVaugh, Nathan Kant

    2012-01-01

    The impact of instant message interruptions via computer on immediate lecture retention for college students was examined. While watching a 24-minute video of a classroom lecture, students received various numbers of related-to-lecture ("Is consistent use of the eye contact method necessary for success?") versus not-related-to lecture…

  18. Lecturers' Experience of Using Social Media in Higher Education Courses

    ERIC Educational Resources Information Center

    Seechaliao, Thapanee

    2015-01-01

    This research paper presents lecturers' experience of using social media in higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about lecturers' experience of using social media in higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by…

  19. Annual Advances in Cancer Prevention Lecture | Division of Cancer Prevention

    Cancer.gov

    2016 Keynote Lecture Polyvalent Vaccines Targeting Oncogenic Driver Pathways A special keynote lecture became part of the NCI Summer Curriculum in Cancer Prevention in 2000. This lecture will be held on Thursday, July 21, 2016 at 1:30pm at Masur Auditorium, Building 10, NIH Main Campus, Bethesda, MD. This year’s keynote speaker is Dr. Mary L. (Nora) Disis, MD. |

  20. Engagement of Students with Lectures in Biochemistry and Pharmacology

    ERIC Educational Resources Information Center

    Davis, Elizabeth Ann; Hodgson, Yvonne; Macaulay, Janet Olwyn

    2012-01-01

    Academic staff at universities have become concerned about the decrease in student attendance at lectures and the implication of this on student achievement and learning. Few studies have measured actual lecture attendance in a coherent or comprehensive way. The aim of this study was to measure actual lecture attendance of students over two year…

  1. Student Use of Mobile Devices in University Lectures

    ERIC Educational Resources Information Center

    Roberts, Neil; Rees, Michael

    2014-01-01

    Mobile devices are increasingly used by students in university lectures. This has resulted in controversy and the banning of mobile devices in some lectures. Although there has been some research into how students use laptop computers in lectures, there has been little investigation into the wider use of mobile devices. This study was designed to…

  2. Taxonomy of Lecture Note-Taking Skills and Subskills

    ERIC Educational Resources Information Center

    Al-Musalli, Alaa M.

    2015-01-01

    Note taking (NT) in lectures is as active a skill as listening, which stimulates it, and as challenging as writing, which is the end product. Literature on lecture NT misses an integration of the processes involved in listening with those in NT. In this article, a taxonomy is proposed of lecture NT skills and subskills based on a similar list…

  3. Lecture on Female Masturbation Harassed Him, Male Student Says.

    ERIC Educational Resources Information Center

    Wilson, Robin

    1995-01-01

    A male student in a California State University-Sacramento psychology lecture on female masturbation has filed a sexual harassment complaint, claiming the lecture violated institutional policy by creating an intimidating, hostile, and offensive learning environment. He felt the lecture was inappropriately graphic and political in intent. (MSE)

  4. University Lecturer Publication Output: Qualifications, Time and Confidence Count

    ERIC Educational Resources Information Center

    Hemmings, Brian; Kay, Russell

    2010-01-01

    An investigation of factors which differentiate between university lecturers in relation to publication output is reported. The study drew on data from lecturers working full-time at two large Australian universities. Measures of research publication output were used to select two groups of lecturers (N[subscript 1] = 119; N[subscript 2] = 119);…

  5. Mathematics Lectures as Narratives: Insights from Network Graph Methodology

    ERIC Educational Resources Information Center

    Weinberg, Aaron; Wiesner, Emilie; Fukawa-Connelly, Tim

    2016-01-01

    Although lecture is the traditional method of university mathematics instruction, there has been little empirical research that describes the general structure of lectures. In this paper, we adapt ideas from narrative analysis and apply them to an upper-level mathematics lecture. We develop a framework that enables us to conceptualize the lecture…

  6. 45 CFR 73.735-706 - Teaching, lecturing, and speechmaking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Teaching, lecturing, and speechmaking. 73.735-706... OF CONDUCT Outside Activities § 73.735-706 Teaching, lecturing, and speechmaking. (a) Employees are encouraged to engage in teaching and lecturing activities which are not part of their official duties...

  7. 45 CFR 73.735-706 - Teaching, lecturing, and speechmaking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Teaching, lecturing, and speechmaking. 73.735-706... OF CONDUCT Outside Activities § 73.735-706 Teaching, lecturing, and speechmaking. (a) Employees are encouraged to engage in teaching and lecturing activities which are not part of their official duties...

  8. 45 CFR 73.735-706 - Teaching, lecturing, and speechmaking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Teaching, lecturing, and speechmaking. 73.735-706... OF CONDUCT Outside Activities § 73.735-706 Teaching, lecturing, and speechmaking. (a) Employees are encouraged to engage in teaching and lecturing activities which are not part of their official duties...

  9. 45 CFR 73.735-706 - Teaching, lecturing, and speechmaking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Teaching, lecturing, and speechmaking. 73.735-706... OF CONDUCT Outside Activities § 73.735-706 Teaching, lecturing, and speechmaking. (a) Employees are encouraged to engage in teaching and lecturing activities which are not part of their official duties...

  10. 45 CFR 73.735-706 - Teaching, lecturing, and speechmaking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Teaching, lecturing, and speechmaking. 73.735-706... OF CONDUCT Outside Activities § 73.735-706 Teaching, lecturing, and speechmaking. (a) Employees are encouraged to engage in teaching and lecturing activities which are not part of their official duties...

  11. Annual Advances in Cancer Prevention Lecture | Division of Cancer Prevention

    Cancer.gov

    2015 Keynote Lecture HPV Vaccination: Preventing More with Less A special keynote lecture became part of the NCI summer Curriculum in Cancer Prevention in 2000. This lecture will be held on Thursday, July 23, 2015 at 3:00pm at Masur Auditorium, Building 10, NIH Main Campus, Bethesda, MD. This year’s keynote speaker is Dr. Douglas Lowy, NCI Acting Director. |

  12. Goals and Design of Public Physics Lectures: Perspectives of High-School Students, Physics Teachers and Lecturers

    ERIC Educational Resources Information Center

    Kapon, S.; Ganiel, U.; Eylon, B.

    2009-01-01

    Many large scientific projects and scientific centres incorporate some kind of outreach programme. Almost all of these outreach programmes include public scientific lectures delivered by practising scientists. In this article, we examine such lectures from the perspectives of: (i) lecturers (7) who are practising scientists acknowledged to be good…

  13. BOOK REVIEW: Feynman Lectures on Gravitation

    NASA Astrophysics Data System (ADS)

    Feynman, Richard P.; Morinigo, Fernando B.; Wagner, William G.

    2003-05-01

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40

  14. Efficient 3D nonlinear warping of computed tomography: two high-performance implementations using OpenGL

    NASA Astrophysics Data System (ADS)

    Levin, David; Dey, Damini; Slomka, Piotr

    2005-04-01

    We have implemented two hardware accelerated Thin Plate Spline (TPS) warping algorithms. The first algorithm is a hardware-software approach (HW-TPS) that uses OpenGL Vertex Shaders to perform a grid warp. The second is a Graphics Processor based approach (GPU-TPS) that uses the OpenGL Shading Language to perform all warping calculations on the GPU. Comparison with a software TPS algorithm was used to gauge the speed and quality of both hardware algorithms. Quality was analyzed visually and using the Sum of Absolute Difference (SAD) similarity metric. Warping was performed using 92 user-defined displacement vectors for 512x512x173 serial lung CT studies, matching normal-breathing and deep-inspiration scans. On a Xeon 2.2 Ghz machine with an ATI Radeon 9800XT GPU the GPU-TPS required 26.1 seconds to perform a per-voxel warp compared to 148.2 seconds for the software algorithm. The HW-TPS needed 1.63 seconds to warp the same study while the GPU-TPS required 1.94 seconds and the software grid transform required 22.8 seconds. The SAD values calculated between the outputs of each algorithm and the target CT volume were 15.2%, 15.4% and 15.5% for the HW-TPS, GPU-TPS and both software algorithms respectively. The computing power of ubiquitous 3D graphics cards can be exploited in medical image processing to provide order of magnitude acceleration of nonlinear warping algorithms without sacrificing output quality.

  15. Is there an evolutionary relationship between WARP (von Willebrand factor A-domain-related protein) and the FACIT and FACIT-like collagens?

    PubMed

    Fitzgerald, Jamie; Bateman, John F

    2003-09-25

    We suggest that there is an evolutionary relationship between von Willebrand factor A-domain-related protein (WARP), and the fibril-associated collagen with interrupted triple helix (FACIT) and FACIT-like subfamilies of collagens. Data from a comparison of amino acid sequences, domain organisation and chromosomal location are consistent with the hypothesis that WARP and these collagens share a common collagen ancestor. In support of this is the observation that the WARP 3' coding region is GC-rich suggesting that this may represent the remnant of a triple helix protein domain which WARP has 'lost' during evolution.

  16. 2015 SNMMI Highlights Lecture: Oncology, Part I

    PubMed Central

    Mahmood, Umar

    2016-01-01

    From the Newsline Editor: The Highlights Lecture, presented at the closing session of each SNMMI Annual Meeting, was originated and delivered for more than 30 years by Henry N. Wagner, Jr., MD. Beginning in 2010, the duties of summarizing selected significant presentations at the meeting were divided annually among 4 distinguished nuclear and molecular medicine subject matter experts. The 2015 Highlights Lectures were delivered on June 10 at the SNMMI Annual Meeting in Baltimore, MD. Umar Mahmood, MD, PhD, a professor of radiology at Massachusetts General Hospital (Boston, MA), spoke on oncology highlights from the meeting’s sessions. Because of its length, the oncology presentation will be divided between 2 Newsline issues. Note that in the following summary, numerals in brackets represent abstract numbers as published in The Journal of Nuclear Medicine [2015;56:suppl 3). PMID:26526798

  17. Lectures series in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1987-01-01

    The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.

  18. Ida Mann Lecture 2007: Planet eye.

    PubMed

    McMenamin, Paul G

    2008-10-01

    The concept for this lecture arose as a consequence of the invitation from the College to give the 'Ida Mann Lecture' arriving recently after I had enjoyed the beautiful David Attenborough series 'Planet Earth' on television. It struck me as not too fanciful an idea at the time to make an analogy between 'Planet Earth' and the eye and thus the idea of giving an Attenborough-like tour of the ocular microenvironments and making the analogy between various immune cells in the eye and wildlife on planet Earth was born. I could only hope that in some small measure my presentation would inspire and educate an audience of ophthalmologists on the amazing world of ocular immune cells in the way that David Attenborough enraptures millions of television viewers with his beautiful series.

  19. Polarization in heavy-ion reactions. [Lectures

    SciTech Connect

    Fick, D.

    1983-08-01

    Determination of the polarization and spin alignment of reaction products emitted from heavy ion reactions should provide a sensitive test of reaction mechanisms. Techniques for producing both polarized beams and polarized targets are advancing rapidly. At the Oak Ridge National Laboraotry interest in this field has lead to the design and construction of a laser optically pumped polarized target by illuminating a supersonic gas jet. This target, which is mounted in the scattering chamber of a magnetic spectrometer, will be used to observe effects when deformed polarized targets are bombarded by heavy ions. Mutual research interests led to the invitation of Professor Fick, a pioneer in heavy ion polarization research who recently reviewed the status of this field, to Oak Ridge. While at ORNL he presented a series of lectures on this subject. Notes from these lectures are presented. (WHK)

  20. Innovative Astronomy Teaching Using Lecture Activities

    NASA Astrophysics Data System (ADS)

    Grundstrom, E.; Baines, E.; Gies, D. R.

    2005-05-01

    Interactive learning is crucial to the retention of knowledge (especially scientific) and learning in astronomy is no exception. We have developed three classroom activities that cover common astronomy concepts that are difficult to master: Phases of the Moon, Eclipses, and Impacts and Probability. These activities were planned to integrate into an introductory astronomy course for non-majors at Georgia State University. Each activity consists of hands-on models that small groups of students may utilize to complete a conceptual exercise that requires them to make predictions. We envision these three activities as prototypes for lecture activities throughout the introductory astronomy sequence. We report here on the scope of the activities and their effectiveness in the lecture tutorial context. This research has been sponsored by the Georgia Partnership for Reform In Science and Mathematics (PRISM) which is funded by the National Science Foundation.

  1. Nanoscopy with Focused Light (Nobel Lecture).

    PubMed

    Hell, Stefan W

    2015-07-06

    A picture is worth a thousand words-This doesn't only apply to everyday life but also to the natural sciences. It is, therefore, probably not by chance that the historical beginning of modern natural sciences very much coincides with the invention of light microscopy. S. W. Hell shows in his Nobel Lecture that the diffraction resolution barrier has been overcome by using molecular state transitions (e.g. on/off) to make nearby molecules transiently discernible.

  2. Analyzing the impact of supportinjg out-of-order communication on in-order performance with iWARP.

    SciTech Connect

    Balaji, P.; Feng, W.; Bhagvat, S.; Panda, D. K.; Thakur, R.; Gropp, W.; Mathematics and Computer Science; Virginia Tech; Dell Inc.; Ohio State Univ.

    2007-01-01

    Due to the growing need to tolerate network faults and congestion in high-end computing systems, supporting multiple network communication paths is becoming increasingly important. However, multi-path communication comes with the disadvantage of out-of-order arrival of packets (because packets may traverse different paths). While modern networking stacks such as the Internet Wide-Area RDMA Protocol (iWARP) over 10-Gigabit Ethernet (10GE) support multi-path communication, their current implementations do not handle out-of-order packets primarily owing to the overhead on in-order communication that it adds. Specifically, in iWARP, supporting out-of-order packets requires every packet to carry additional information causing significant overhead on packets that arrive in-order. Thus, in this paper, we analyze the trade-offs in designing a feature-complete iWARP stack, i.e., one that provides support for out-of-order arriving packets, and thus, multi-path systems, while focusing on the performance of in-order communication. We propose three feature-complete designs of iWARP and analyze the pros and cons of each of these designs using performance experiments based on several micro-benchmarks as well as an iso-surface visual rendering application. Our analysis reveals that the iWARP design providing the best overall performance depends on the particular characteristics of the upper layers and that different designs are optimal based on the metric of interest.

  3. IMAGE-WARP: a real-space restoration method for high-resolution STEM images using quantitative HRTEM analysis.

    PubMed

    Recnik, Aleksander; Möbus, Günter; Sturm, Saso

    2005-07-01

    We have developed a new method for processing distorted high-resolution scanning transmission electron microscopy (STEM) images. The method is based on finding the displaced vertices in the experimental STEM image and warping to geometrically correct reference grid of the object. As a reference grid for warping a structural model obtained using a high-resolution transmission electron microscopy (HRTEM) analysis of the area of interest is utilised. Combined with quantitative HRTEM analysis the IMAGE-WARP method provides a real-space restoration of high-resolution high-angle annular dark-field (HAADF) STEM images without affecting the original Z-contrast information. The method can be applied to extract valuable compositional atomic-column data from any HAADF-STEM image of any kind of bulk crystals with local occupancy or chemistry fluctuations, stacking faults, special grain boundaries or interfaces, for which we have an available structural model. After the warping, distortion-corrected images can be further enhanced using conventional image-filtering techniques, and finally quantified with HAADF-STEM image simulations. The applicability of the IMAGE-WARP method was illustrated using experimental HAADF-STEM images of a strontium titanate crystal disrupted with a Ruddlesden-Popper-type antiphase boundary.

  4. Improved Statistical Signal Processing of Nonstationary Random Processes Using Time-Warping

    NASA Astrophysics Data System (ADS)

    Wisdom, Scott Thomas

    A common assumption used in statistical signal processing of nonstationary random signals is that the signals are locally stationary. Using this assumption, data is segmented into short analysis frames, and processing is performed using these short frames. Short frames limit the amount of data available, which in turn limits the performance of statistical estimators. In this thesis, we propose a novel method that promises improved performance for a variety of statistical signal processing algorithms. This method proposes to estimate certain time-varying parameters of nonstationary signals and then use this estimated information to perform a time-warping of the data that compensates for the time-varying parameters. Since the time-warped data is more stationary, longer analysis frames may be used, which improves the performance of statistical estimators. We first examine the spectral statistics of two particular types of nonstationary random processes that are useful for modeling ship propeller noise and voiced speech. We examine the effect of time-varying frequency content on these spectral statistics, and in addition show that the cross-frequency spectral statistics of these signals contain significant additional information that is not usually exploited using a stationary assumption. This information, combined with our proposed method, promises improvements for a wide variety of applications in the future. We then describe and test an implementation of our time-warping method, the fan-chirp transform. We apply our method to two applications, detection of ship noise in a passive sonar application and joint denoising and dereverberation of speech. Our method yields improved results for both applications compared to conventional methods.

  5. Resolution of critical environmental issues with WARP{trademark} wind power systems

    SciTech Connect

    Weisbrich, A.L.; Rainey, D.L.; Burns, R.E.

    1996-11-01

    A modular patented wind power technology, the TARP{trademark} Windframe{trademark}, forms the basis for environmentally complying electric energy generation and power plants. A TARP Windframe provides two highly amplified wind flow fields to a set of two tailored conventional, low risk, small diameter wind turbines. It also serves as a support for the wind turbines, yaw assembly and protective housing for a core tower and other internal sub-systems. Wind Amplified Rotor Platforms (WARP{trademark}) Systems are tall TARP module arrays about a core tower. These intelligent towers can be flexibly and incrementally deployed into multi-megawatt size wind power plants. While heavily building on proven windmill technology, WARP systems may be shown to surpass current technology windmills in all aspects of system characteristics. WARPs have improved features as a result of amplified gearless and shrouded turbine performance, user friendly operation and maintenance, and high reliability and operation and maintenance, and high reliability and low risk due to small, simple and robust dynamic components. Environmental benefits include an order of magnitude less land requirement, absence of bird kill potential, attractive appearance, lower far field noise and EMI/TV interference, and improved rotor safety through containment means. Operation under extreme icing is also afforded due to both rotor shielding and inherent self-sustaining tower anti-icing shielding and inherent self-sustaining tower anti-icing capability. This avoids the large rotor imbalance and ice shedding predicaments of conventional windmills. System components are suited for low cost volume production, ease of transportation, erection and servicing.

  6. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    SciTech Connect

    Wang Shijun; Yao Jianhua; Liu Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-12-15

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.

  7. A complete distortion correction for MR images: I. Gradient warp correction.

    PubMed

    Doran, Simon J; Charles-Edwards, Liz; Reinsberg, Stefan A; Leach, Martin O

    2005-04-07

    MR images are known to be distorted because of both gradient nonlinearity and imperfections in the B0 field, the latter caused either by an imperfect shim or sample-induced distortions. This paper describes in detail a method for correcting the gradient warp distortion, based on a direct field mapping using a custom-built phantom with three orthogonal grids of fluid-filled rods. The key advance of the current work over previous contributions is the large volume of the mapping phantom and the large distortions (>25 mm) corrected, making the method suitable for use with large field of view, extra-cranial images. Experimental measurements on the Siemens AS25 gradient set, as installed on a Siemens Vision scanner, are compared with a theoretical description of the gradient set, based on the manufacturer's spherical harmonic coefficients. It was found that over a volume of 320x200x340 mm3 distortions can be successfully mapped to within the voxel resolution of the raw imaging data, whilst outside this volume, correction is still good but some systematic errors are present. The phenomenon of through-plane distortion (also known as 'slice warp') is examined in detail, and the perturbation it causes to the measurements is quantified and corrected. At the very edges of the region of support provided by the phantom, through-plane distortion is extreme and only partially corrected by the present method. Solutions to this problem are discussed. Both phantom and patient data demonstrate the efficacy of the gradient warp correction.

  8. The Trieste Lecture of John Stewart Bell

    NASA Astrophysics Data System (ADS)

    Bassi, Angelo; Carlo Ghirardi, Gian

    2007-03-01

    Delivered at Trieste on the occasion of the 25th Anniversary of the International Centre for Theoretical Physics, 2 November 1989 The video of this lecture is available here. Please see the PDF for the transcript of the lecture. General remarks by Angelo Bassi and GianCarlo Ghirardi During the autumn of 1989 the International Centre for Theoretical Physics, Trieste, celebrated the 25th anniversary of its creation. Among the many prestigious speakers, who delivered extremely interesting lectures on that occasion, was the late John Stewart Bell. All lectures have been recorded on tape. We succeeded in getting a copy of John's lecture. In the lecture, many of the arguments that John had lucidly stressed in his writings appear once more, but there are also extremely interesting new remarks which, to our knowledge, have not been presented elsewhere. In particular he decided, as pointed out by the very choice of the title of his lecture, to call attention to the fact that the theory presents two types of difficulties, which Dirac classified as first and second class. The former are those connected with the so-called macro-objectification problem, the latter with the divergences characterizing relativistic quantum field theories. Bell describes the precise position of Dirac on these problems and he stresses appropriately how, contrary to Dirac's hopes, the steps which have led to a partial overcoming of the second class difficulties have not helped in any way whatsoever to overcome those of the first class. He then proceeds to analyse the origin and development of the Dynamical Reduction Program and draws attention to the problems that still affect it, in particular that of a consistent relativistic generalization. When the two meetings Are there quantum jumps? and On the present status of Quantum Mechanics were organized in Trieste and Losinj (Croatia), on 5 10 September 2005, it occurred to us that this lecture, which has never been published, might represent an

  9. Cough Recognition Based on Mel Frequency Cepstral Coefficients and Dynamic Time Warping

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmei; Liu, Baojun; Li, Ping

    Cough recognition provides important clinical information for the treatment of many respiratory diseases, but the assessment of cough frequency over a long period of time remains unsatisfied for either clinical or research purpose. In this paper, according to the advantage of dynamic time warping (DTW) and the characteristic of cough recognition, an attempt is made to adapt DTW as the recognition algorithm for cough recognition. The process of cough recognition based on mel frequency cepstral coefficients (MFCC) and DTW is introduced. Experiment results of testing samples from 3 subjects show that acceptable performances of cough recognition are obtained by DTW with a small training set.

  10. Radiative corrections to the lightest neutral Higgs mass in warped supersymmetry

    SciTech Connect

    Bhattacharyya, Gautam; Ray, Tirtha Sankar

    2008-10-01

    We compute radiative correction to the lightest neutral Higgs mass (m{sub h}) induced by the Kaluza-Klein (KK) towers of fermions and sfermions in a minimal supersymmetric scenario embeded in a 5-dimensional warped space. The Higgs is confined to the TeV brane. The KK spectra of matter supermultiplets is tied to the explanation of the fermion mass hierarchy problem. We demonstrate that for a reasonable choice of extra-dimensional parameters, the KK-induced radiative correction can enhance the upper limit on m{sub h} by as much as 100 GeV beyond the 4d limit of 135 GeV.

  11. The impact of emerging technology on nursing care: warp speed ahead.

    PubMed

    Huston, Carol

    2013-05-31

    While myriad forces are changing the face of contemporary healthcare, one could argue that nothing will change the way nursing is practiced more than current advances in technology. Indeed, technology is changing the world at warp speed and nowhere is this more evident than in healthcare settings. This article identifies seven emerging technologies that will change the practice of nursing; three skill sets nurses will need to develop to acquire, use, and integrate these emerging technologies; and four challenges nurse leaders will face in integrating this new technology.

  12. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  13. Possibility of catastrophic black hole growth in the warped brane-world scenario at the LHC

    SciTech Connect

    Casadio, Roberto; Fabi, Sergio; Harms, Benjamin

    2009-10-15

    In this paper, we present the results of our analysis of the growth and decay of black holes possibly produced at the Large Hadron Collider, based on our previous study of black holes in the context of the warped brane-world scenario. The black hole mass accretion and decay is obtained as a function of time, and the maximum black hole mass are obtained as a function of a critical mass parameter. The latter occurs in our expression for the luminosity and is related to the size of extra-dimensional corrections to Newton's law. Based on this analysis, we argue against the possibility of catastrophic black hole growth at the LHC.

  14. The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS

    SciTech Connect

    Jiao, Jingsi; Weiss, Matthias; Rolfe, Bernard; Mendiguren, Joseba; Galdos, Lander

    2013-12-16

    To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation of the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.

  15. Investigating Cultural Evolution Using Phylogenetic Analysis: The Origins and Descent of the Southeast Asian Tradition of Warp Ikat Weaving

    PubMed Central

    Buckley, Christopher D.

    2012-01-01

    The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data. PMID:23272211

  16. Investigating cultural evolution using phylogenetic analysis: the origins and descent of the southeast Asian tradition of warp ikat weaving.

    PubMed

    Buckley, Christopher D

    2012-01-01

    The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data.

  17. An optical model for translucent volume rendering and its implementation using the preintegrated shear-warp algorithm.

    PubMed

    Li, Bin; Tian, Lianfang; Ou, Shanxing

    2010-01-01

    In order to efficiently and effectively reconstruct 3D medical images and clearly display the detailed information of inner structures and the inner hidden interfaces between different media, an Improved Volume Rendering Optical Model (IVROM) for medical translucent volume rendering and its implementation using the preintegrated Shear-Warp Volume Rendering algorithm are proposed in this paper, which can be readily applied on a commodity PC. Based on the classical absorption and emission model, effects of volumetric shadows and direct and indirect scattering are also considered in the proposed model IVROM. Moreover, the implementation of the Improved Translucent Volume Rendering Method (ITVRM) integrating the IVROM model, Shear-Warp and preintegrated volume rendering algorithm is described, in which the aliasing and staircase effects resulting from under-sampling in Shear-Warp, are avoided by the preintegrated volume rendering technique. This study demonstrates the superiority of the proposed method.

  18. Technical guidance for the development of a solid state image sensor for human low vision image warping

    NASA Technical Reports Server (NTRS)

    Vanderspiegel, Jan

    1994-01-01

    This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.

  19. Blended versus lecture learning: outcomes for staff development.

    PubMed

    Sherman, Heidi; Comer, Linda; Putnam, Lorene; Freeman, Helen

    2012-07-01

    Critical care pharmacology education is crucial to safe patient care for nurses orienting to specialized areas. Although traditionally taught as a classroom lecture, it is important to consider effectiveness of alternative methods for education. This study provided experimentally derived evidence regarding effectiveness of blended versus traditional lecture for critical care pharmacology education. Regardless of learner demographics, the findings determined no significant differences in cognitive learning outcomes or learner satisfaction between blended versus lecture formats.

  20. Finite Element Analysis of Warp-Reinforced 2.5D Woven Composites Based on a Meso-Scale Voxel Model under Compression Loading

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Wang, Yanjie; Sun, Ying; Jia, Na; Qian, Kun

    2016-11-01

    A study is conducted with the aim of developing meso-scale voxel-based model for evaluating the compressive behaviors of warp-reinforced 2.5D woven composites. The real microstructure of warp-reinforced 2.5D woven composites is established. For the validation of this model, a series of axial (warp direction) and transverse (weft direction) compressive tests are conducted. The results show that under axial and transverse compressive loading, the calculated max stress and the final damage morphology agree well with the experimental results. Moreover, it is found that the axial compressive strength is mainly dependent on the high-crimp blinder warp, while the transverse compressive strength is significantly influenced by the warp/weft interlaced regions. It is expected that such a numerical investigation will provide useful information for understanding the strength and failure characteristic of 2.5D woven composites.

  1. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    NASA Astrophysics Data System (ADS)

    Ryu, Chung-Hyeon; Joo, Sung-Jun; Kim, Hak-Sung

    2016-10-01

    A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  2. ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Qiu, Jie; Cheng, Cheng

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  3. Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code

    SciTech Connect

    Chilton, Sven H.

    2008-03-01

    The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.

  4. Novel methods in the Particle-In-Cell accelerator Code-Framework Warp

    SciTech Connect

    Vay, J-L; Grote, D. P.; Cohen, R. H.; Friedman, A.

    2012-12-26

    The Particle-In-Cell (PIC) Code-Framework Warp is being developed by the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide the development of accelerators that can deliver beams suitable for high-energy density experiments and implosion of inertial fusion capsules. It is also applied in various areas outside the Heavy Ion Fusion program to the study and design of existing and next-generation high-energy accelerators, including the study of electron cloud effects and laser wakefield acceleration for example. This study presents an overview of Warp's capabilities, summarizing recent original numerical methods that were developed by the HIFS-VNL (including PIC with adaptive mesh refinement, a large-timestep 'drift-Lorentz' mover for arbitrarily magnetized species, a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz-boosted frames, an electromagnetic solver with tunable numerical dispersion and efficient stride-based digital filtering), with special emphasis on the description of the mesh refinement capability. In addition, selected examples of the applications of the methods to the abovementioned fields are given.

  5. A method for obtaining three-dimensional computation equilibrium of non-neutral plasmas using WARP

    SciTech Connect

    Wurtele, J.; Wurtele, J.; Friedman, A.; Grote, D.P.; Vay, J-L.; Gomberoff, K.

    2006-03-25

    Computer simulation studies of the stability and transport properties of trapped non-neutral plasmas require the numerical realization of a three-dimensional plasma distribution. This paper presents a new numerical method for obtaining, without an explicit model for physical collisions in the code, a low noise three-dimensional computational equilibrium distribution. This requires both the loading of particles into an idealized distribution and the relaxation from that distribution toward an approximate numerical equilibrium. The equilibrium can then be modified through a slow change of system parameters, to generate other equilibria. In the present work we apply this method to a UC Berkeley experiment on electron confinement in magnetic geometries appropriate for the ALPHA anti-hydrogen experiment, using the three-dimensional Particle-In-Cell code WARP. WARP's guiding center mover and its option to switch between different solvers during a simulation are highly valuable because they speed up the simulations; they enable the practical use of the new technique for generating numerical equilibrium states of trapped nonneutral plasmas.

  6. Implementation of an interactive matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code

    SciTech Connect

    Chilton, Sven H.

    2008-01-01

    The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.

  7. A method for obtaining three-dimensional computational equilibrium of non-neutral plasmas using WARP

    SciTech Connect

    Gomberoff, K. . E-mail: katia@physics.technion.ac.il; Wurtele, J.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2007-08-10

    Computer simulation studies of the stability and transport properties of trapped non-neutral plasmas require the numerical realization of a three-dimensional plasma distribution. This paper presents a new numerical method for obtaining, without an explicit model for physical collisions in the code, a low noise three-dimensional computational equilibrium distribution. This requires both the loading of particles into an idealized distribution and the relaxation from that distribution toward an approximate numerical equilibrium. The equilibrium can then be modified through a slow change of system parameters, to generate other equilibria. In the present, work we apply this method to a UC Berkeley experiment on electron confinement in magnetic geometries appropriate for the ALPHA anti-hydrogen experiment, using the three-dimensional particle-in-cell code WARP. WARP's guiding center mover and its option to switch between different solvers during a simulation are highly valuable because they speed up the simulations; they enable the practical use of the new technique for generating numerical equilibrium states of trapped non-neutral plasmas.

  8. Time warp edit distance with stiffness adjustment for time series matching.

    PubMed

    Marteau, Pierre-François

    2009-02-01

    In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call Time Warp Edit Distance (TWED). TWED is slightly different in form from Dynamic Time Warping (DTW), Longest Common Subsequence (LCSS), or Edit Distance with Real Penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into downsampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to Edit Distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.

  9. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  10. Hybridization and Field Driven Phase Transitions in Hexagonally Warped Topological Insulators

    NASA Astrophysics Data System (ADS)

    Menon, Anirudha; Chowdhury, Debashree; Basu, Banasri

    2016-09-01

    In this paper, we discuss the role of material parameters and external field effects on a thin film topological insulator(TI) in the context of quantum phase transition (QPT). First, we consider an in-plane tilted magnetic field and determine the band structure of the surface states as a function of the tilt angle. We show that the presence of either a hybridization term or hexagonal warping or a combination of both leads to a semi-metal to insulator phase transition which is facilitated by their 𝒫𝒯 symmetry breaking character. We then note that while the introduction of an electric field does not allow for this QPT since it does not break 𝒫𝒯 symmetry, it can be used in conjunction with a tunneling element to reach a phase transition efficiently. The corresponding critical point is then nontrivially dependent on the electric field, which is pointed out here. Then, we demonstrate that including a hexagonal warping term leads to an immediate 𝒫𝒯 symmetry violating QPT.

  11. Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    NASA Astrophysics Data System (ADS)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2015-07-01

    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.

  12. Scalar field localization on 3-branes placed at a warped resolved conifold

    SciTech Connect

    Silva, J. E. G.; Almeida, C. A. S.

    2011-10-15

    We have studied the localization of a scalar field on a 3-brane embedded in a six-dimensional warped bulk of the form M{sub 4}xC{sub 2}, where M{sub 4} is a 3-brane and C{sub 2} is a 2-cycle of a six-dimensional resolved conifold C{sub 6} over a T{sup 1,1} space. Since the resolved conifold is singularity-free in r=0 depending on a resolution parameter a, we have analyzed the behavior of the localization of a scalar field when we vary the resolution parameter. On one hand, this enables us to study the effects that a singularity has on the field. On the other hand we can use the resolution parameter as a fine-tuning between the bulk Planck mass and 3-brane Planck mass and so it opens a new perspective to extend the hierarchy problem. Using a linear and a nonlinear warp factor, we have found that the massive and massless modes are trapped to the brane even in the singular cone (a{ne}0). We have also compared the results obtained in this geometry and those obtained in other six-dimensional models, such as stringlike geometry and cigarlike universe geometry.

  13. [Surgical frontal lecture. Still important for teaching students?].

    PubMed

    Wierlemann, A; Baur, J; Germer, C T

    2013-10-01

    In times of manifold digital learning resources open to public access lectures in surgery still play a major role in medical training. It is a platform for discussion with the medical teacher and provides the opportunity to create a vivid learning experience by showing live operations via video streaming and inviting patients to the lectures. When then change in paradigm is achieved from pure knowledge transfer to cross-linkage of knowledge, the surgical lecture will be a major future keystone in medical education, where the lecturer can reach the students with his own passion for the field of expertise and get them interested in surgery.

  14. Man's impact on the troposphere: Lectures in tropospheric chemistry

    NASA Technical Reports Server (NTRS)

    Levine, J. S. (Editor); Schryer, D. R. (Editor)

    1978-01-01

    Lectures covering a broad spectrum of current research in tropospheric chemistry with particular emphasis on the interaction of measurements, modeling, and understanding of fundamental processes are presented.

  15. Explaining the Unexplainable: Translated Scientific Explanations (TSE) in Public Physics Lectures

    ERIC Educational Resources Information Center

    Kapon, Shulamit; Ganiel, Uri; Eylon, Bat Sheva

    2010-01-01

    This paper deals with the features and design of explanations in public physics lectures. It presents the findings from a comparative study of three exemplary public physics lectures, given by practicing physicists who are acknowledged as excellent public lecturers. The study uses three different perspectives: the lecture, the lecturer, and the…

  16. Automatic Camera Control System for a Distant Lecture with Videoing a Normal Classroom.

    ERIC Educational Resources Information Center

    Suganuma, Akira; Nishigori, Shuichiro

    The growth of a communication network technology enables students to take part in a distant lecture. Although many lectures are conducted in universities by using Web contents, normal lectures using a blackboard are still held. The latter style lecture is good for a teacher's dynamic explanation. A way to modify it for a distant lecture is to…

  17. Nobel Lecture: Graphene: Materials in the Flatland

    NASA Astrophysics Data System (ADS)

    Novoselov, K. S.

    2011-07-01

    Much like the world described in Abbott’s Flatland, graphene is a two-dimensional object. And, as “Flatland” is “a romance of many dimensions,” graphene is much more than just a flat crystal. It possesses a number of unusual properties which are often unique or superior to those in other materials. In this brief lecture I would like to explain the reason for my (and many other people’s) fascination with this material, and invite the reader to share some of the excitement I’ve experienced while researching it.

  18. Do Language Proficiency and Lecture Comprehension Matter? OpenCourseWare Lectures for Vocabulary Learning

    ERIC Educational Resources Information Center

    Sun, Yu-Chih; Yang, Hui-Chi

    2012-01-01

    Open source lectures not only provide knowledge-seekers with convenient ways to obtain knowledge and information, they also serve as potential language learning resources that provide extensive language input and repeated exposure to vocabulary within specific topics or disciplines. This current study aims to examine the relationship between…

  19. Lecture capturing assisted teaching and learning experience

    NASA Astrophysics Data System (ADS)

    Chen, Li

    2015-03-01

    When it comes to learning, a deep understanding of the material and a broadband of knowledge are equally important. However, provided limited amount of semester time, instructors often find themselves struggling to reach both aspects at the same time and are often forced to make a choice between the two. On one hand, we would like to spend much time to train our students, with demonstrations, step by step guidance and practice, to develop strong critical thinking skills and problem-solving skills. On the other hand, we also would like to cover a wide range of content topics to broaden our students' understanding. In this presentation, we propose a working scheme that may assist to achieve these two goals at the same time without sacrificing either one. With the help of recorded and pre-recorded lectures and other class materials, it allows instructors to spend more class time to focus on developing critical thinking skills and problem-solving skills, and to apply and connect principle knowledge with real life phenomena. It also allows our students to digest the material at a pace they are comfortable with by watching the recorded lectures over and over. Students now have something as a backup to refer to when they have random mistakes and/or missing spots on their notes, and hence take more ownership of their learning. Advanced technology have offered flexibility of how/when the content can be delivered, and have been assisting towards better teaching and learning strategies.

  20. Introductory lecture: basic quantities in model biomembranes.

    PubMed

    Nagle, John F

    2013-01-01

    One of the many aspects of membrane biophysics dealt with in this Faraday Discussion regards the material moduli that describe energies at a supramolecular level. This introductory lecture first critically reviews differences in reported numerical values of the bending modulus K(C), which is a central property for the biologically important flexibility of membranes. It is speculated that there may be a reason that the shape analysis method tends to give larger values of K(C) than the micromechanical manipulation method or the more recent X-ray method that agree very well with each other. Another theme of membrane biophysics is the use of simulations to provide exquisite detail of structures and processes. This lecture critically reviews the application of atomic level simulations to the quantitative structure of simple single component lipid bilayers and diagnostics are introduced to evaluate simulations. Another theme of this Faraday Discussion was lateral heterogeneity in biomembranes with many different lipids. Coarse grained simulations and analytical theories promise to synergistically enhance experimental studies when their interaction parameters are tuned to agree with experimental data, such as the slopes of experimental tie lines in ternary phase diagrams. Finally, attention is called to contributions that add relevant biological molecules to bilayers and to contributions that study the exciting shape changes and different non-bilayer structures with different lipids.

  1. A Comparison of Hyperelastic Warping of PET Images with Tagged MRI for the Analysis of Cardiac Deformation

    DOE PAGES

    Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.

    2013-01-01

    Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PET image datasets.wo normal human male subjects were sequentially imaged with PET and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PET images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology.here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains.he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure.his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less

  2. Lecture Recording: Structural and Symbolic Information vs. Flexibility of Presentation

    ERIC Educational Resources Information Center

    Stolzenberg, Daniel; Pforte, Stefan

    2007-01-01

    Rapid eLearning is an ongoing trend which enables flexible and cost-effective creation of learning materials. Especially, lecture recording has turned out to be a lightweight method particularly suited for existing lectures and blended learning strategies. In order to not only sequentially play back but offer full fledged navigation, search and…

  3. Powerpoint and Pedagogy: Maintaining Student Interest in University Lectures

    ERIC Educational Resources Information Center

    Clark, Jennifer

    2008-01-01

    This author discusses the relationship between the use of presentation software and the maintenance of student interest in university lectures. The evidence of surveyed university students suggests that PowerPoint, used as a presentation tool in university lectures, is pedagogically effective only while it provides variety and stimulates interest…

  4. Student Perception of Topic Difficulty: Lecture Capture in Higher Education

    ERIC Educational Resources Information Center

    McCunn, Patrick; Newton, Genevieve

    2015-01-01

    Perception of topic difficulty is a likely predictor of lecture capture video use, as student perception of difficulty has been shown to affect a variety of outcomes in academic settings. This study measured the relationship between perceived difficulty and the use of lecture capture technology in a second year biochemistry course while…

  5. Lecturers' vs. Students' Perceptions of the Accessibility of Instructional Materials

    ERIC Educational Resources Information Center

    Price, Linda

    2007-01-01

    This goal of this study was to examine the differences between lecturers and students' perceptions of the accessibility of instructional materials. The perceptions of 12 mature computing distance education students and 12 computing lecturers were examined using the knowledge elicitation techniques of card sorting and laddering. The study showed…

  6. Man: Planetary Disease. The 1971 B. Y. Morrison Memorial Lecture.

    ERIC Educational Resources Information Center

    McHarg, Ian L.

    The 1971 B.Y. Morrison Memorial Lecture by Ian L. McHarg, noted landscape architect, planner, and lecturer, is presented in this pamphlet. His expose is two-fold. "Man is an epidemic, multiplying at a superexponential rate, destroying the environment upon which he depends, and threatening his own extinction. He treats the world as a storehouse…

  7. A Comparison of Interteaching and Lecture in the College Classroom

    PubMed Central

    Saville, Bryan K; Zinn, Tracy E; Neef, Nancy A; Van Norman, Renee; Ferreri, Summer J

    2006-01-01

    Interteaching is a new method of classroom instruction that is based on behavioral principles but offers more flexibility than other behaviorally based methods. We examined the effectiveness of interteaching relative to a traditional form of classroom instruction—the lecture. In Study 1, participants in a graduate course in special education took short quizzes after alternating conditions of interteaching and lecture. Quiz scores following interteaching were higher than quiz scores following lecture, although both methods improved performance relative to pretest measures. In Study 2, we also alternated interteaching and lecture but counterbalanced the conditions across two sections of an undergraduate research methods class. After each unit of information, participants from both sections took the same test. Again, test scores following interteaching were higher than test scores following lecture. In addition, students correctly answered more interteaching-based questions than lecture-based questions on a cumulative final test. In both studies, the majority of students reported a preference for interteaching relative to traditional lecture. In sum, the results suggest that interteaching may be an effective alternative to traditional lecture-based methods of instruction. PMID:16602385

  8. Lecture versus DVD and Attitude Change toward Female Masturbation

    ERIC Educational Resources Information Center

    Keels, Megan; Lee, Zoey; Knox, David; Wilson, Ken

    2013-01-01

    Four-hundred and ninety eight female undergraduate students at a large southeastern university participated in a study to assess how lecture versus DVD format affected attitude change towards female masturbation. All groups were given a pre and post test to assess masturbatory attitudes. Group 1 experienced a masturbation lecture. Group 2…

  9. Values in Higher Education. The Wilson Lecture Series.

    ERIC Educational Resources Information Center

    Wilson, O. Meredith

    The text of a lecture in the University of Arizona Wilson Lecture Series on values in higher education is presented, with responses by Richard H. Gallagher, Jeanne McRae McCarthy, and Raymond H. Thompson. The theme of the talk is that man is by evolution and by necessity a thinking animal, who now finds himself in a technologically dependent…

  10. Role of Physics Lecture Demonstrations in Conceptual Learning

    ERIC Educational Resources Information Center

    Miller, Kelly; Lasry, Nathaniel; Chu, Kelvin; Mazur, Eric

    2013-01-01

    Previous research suggests that students; prior knowledge can interfere with how they observe and remember lecture demonstrations. We measured students' prior knowledge in introductory mechanics and electricity and magnetism at two large universities. Students were then asked to predict the outcome of lecture demonstrations. We compare…

  11. The (Embodied) Performance of Physics Concepts in Lectures

    ERIC Educational Resources Information Center

    Hwang, SungWon; Roth, Wolff-Michael

    2011-01-01

    Lectures are often thought of in terms of information transfer: students (do not) "get" or "construct meaning of" what physics professors (lecturers) say and the notes they put on the chalkboard (overhead). But this information transfer view does not explain, for example, why students have a clear sense of understanding while they sit in a lecture…

  12. An Experimental Investigation of Videotaped Lectures in Online Courses

    ERIC Educational Resources Information Center

    Evans, Heather K.

    2014-01-01

    Lecture videos are often praised as a great medium of instruction in online education. There is a lack of research, however, that tests whether videos are superior to other teaching tools in online classes. This article examines whether videos are better than lecture notes and still slides in an online introductory political science course. The…

  13. Lecture Videos in Online Courses: A Follow-Up

    ERIC Educational Resources Information Center

    Evans, Heather K.; Cordova, Victoria

    2015-01-01

    In a recent study regarding online lecture videos, Evans (2014) shows that lecture videos are not superior to still slides. Using two Introduction to American Government courses, taught in a 4-week summer session, she shows that students in a non-video course had higher satisfaction with the course and instructor and performed better on exams than…

  14. Analysing Lecturer Practice: The Role of Orientations and Goals

    ERIC Educational Resources Information Center

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2011-01-01

    This article continues a fairly recent trend of research examining the teaching practice of university mathematics lecturers. A lecturer's pedagogical practices in a course in linear algebra were discussed via a supportive community of inquiry. We use Schoenfeld's framework describing the relationship of resources, orientations and goals to…

  15. Effective Online Lectures: Improving Practice through Design and Pedagogy

    ERIC Educational Resources Information Center

    Bese, Terry Lane

    2016-01-01

    The purpose of this research project was to improve the practice of using online lectures at a small private university. Using action research methodology, the researcher worked with a group of five university instructors to refine the use of online lectures through design and pedagogical practice. Beginning with a template or guide based on the…

  16. Expectancies and Motivations to Attend an Informal Science Lecture Series

    ERIC Educational Resources Information Center

    AbiGhannam, Niveen; Kahlor, LeeAnn; Dudo, Anthony; Liang, Ming-Ching; Rosenthal, Sonny; Banner, Jay L.

    2016-01-01

    This study explored the expectancies and motivations that prompt audiences to attend a university science lecture series. The series features talks by science experts from the host campus and around the USA. Each lecture typically attracts between 300 and 600 attendees, including middle and high school student groups, university students, and…

  17. Level of Perceived Stress Among Lectures in Nigerian Universities

    ERIC Educational Resources Information Center

    Ofoegbu, Felicia; Nwadiani, Mon

    2006-01-01

    The purpose of the study was to provide empirical evidence on the level of stress among lecturers in Nigerian universities. On the whole eight universities were used for the study. A sample of 228 (123 male and 105 female) lecturers was selected according to the variables of age, sex, marital status, experience, domicile, areas of specialization,…

  18. Lecturer's Gender and Their Valuation of Student Evaluation of Teaching

    ERIC Educational Resources Information Center

    Atek, Engku Suhaimi Engku; Salim, Hishamuddin; Halim, Zulazhan Ab.; Jusoh, Zailani; Yusuf, Mohd Ali Mohd

    2015-01-01

    Student evaluation of teaching (SET) is carried out every semester at Malaysian universities and lecturers are evaluated based on student ratings. But very little is researched about what lecturers actually think about SET and whether it serves any meaningful purpose at all. This quantitative study involving six public universities on the East…

  19. An Additional Step in the Guided Lecture Procedure.

    ERIC Educational Resources Information Center

    Toole, Robert J.

    2000-01-01

    Describes the Guided Lecture Procedure (GLP), a procedure that requires students to suspend all notetaking and listen carefully during an approximately 20-minute lecture, followed by an active notetaking and small group interaction phase. Adds one extra requirement in the active notetaking phase: requiring each learner to write a question for the…

  20. How "Flipping" the Classroom Can Improve the Traditional Lecture

    ERIC Educational Resources Information Center

    Berrett, Dan

    2012-01-01

    In this article, the author discusses a teaching technique called "flipping" and describes how "flipping" the classroom can improve the traditional lecture. As its name suggests, flipping describes the inversion of expectations in the traditional college lecture. It takes many forms, including interactive engagement, just-in-time teaching (in…

  1. The Slide-Lecture: An Alternative to Chalkdust?

    ERIC Educational Resources Information Center

    Wilkins, S. A.

    Many instructors teaching large survey courses use the chalkboard to aid their lectures in spite of the waste of class time in writing and erasing, the clutter and confusion that may result, and the messiness of chalkdust. As an alternative, the slide-lecture method has been used for several years at Bossier Community College in teaching…

  2. More Professors Could Share Lectures Online: But Should They?

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2010-01-01

    In this article, the author discusses the issues surrounding the production of lecture videos by professors and administrators which are free to the world. Professors across the country are now wrestling with this issue. More and more colleges have installed microphones or cameras in lecture halls and bought easy-to-use software to get lecture…

  3. v9 = ? The Answer Depends on Your Lecturer

    ERIC Educational Resources Information Center

    Kontorovich, Igor'

    2016-01-01

    This article is concerned with the approaches to the root concept that lecturers in calculus, linear algebra and complex analysis employ in their instruction. Three highly experienced university lecturers participated in the study. In the individual interviews the participants referred to roots of real numbers, roots of complex numbers, roots as…

  4. Curriculum Orientation of Lecturers in Teacher Training College in Malaysia

    ERIC Educational Resources Information Center

    Salleh, Halimatussaadiah; Hamdan, Abdul Rahim; Yahya, Fauziah; Jantan, Hafsah

    2015-01-01

    Curriculum development in teacher training college can be facilitated by indentifying the lecturers curriculum orientation. This study focuses on curriculum orientation of lecturer in Teacher Training Colleges (TTC) in Malaysia. Data were collected through questionnaire survey using the Curriculum Orientation Inventory, an instrument developed by…

  5. Reflections on the Lecture: Outmoded Medium or Instrument of Inspiration?

    ERIC Educational Resources Information Center

    Jones, Steve E.

    2007-01-01

    The traditional, didactic lecture is under attack from diverse quarters. With its origins rooted in the emergence of orality, the lecture now stands as only one of a plethora of educational communication tools, and has been subject to criticism particularly by constructivists for failing to deliver deep and effective learning experiences. This…

  6. Bringing Web 2.0 to Web Lectures

    ERIC Educational Resources Information Center

    Ketterl, Markus; Mertens, Robert; Vornberger, Oliver

    2009-01-01

    Purpose: At many universities, web lectures have become an integral part of the e-learning portfolio over the last few years. While many aspects of the technology involved, like automatic recording techniques or innovative interfaces for replay, have evolved at a rapid pace, web lecturing has remained independent of other important developments…

  7. Explicit Constructivism: A Missing Link in Ineffective Lectures?

    ERIC Educational Resources Information Center

    Prakash, E. S.

    2010-01-01

    This study tested the possibility that interactive lectures explicitly based on activating learners' prior knowledge and driven by a series of logical questions might enhance the effectiveness of lectures. A class of 54 students doing the respiratory system course in the second year of the Bachelor of Medicine and Bachelor of Surgery program in my…

  8. Just Do It: Flipped Lecture, Determinants and Debate

    ERIC Educational Resources Information Center

    Kensington-Miller, Barbara; Novak, Julia; Evans, Tanya

    2016-01-01

    This paper describes a case study of two pure mathematicians who flipped their lecture to teach matrix determinants in two large mathematics service courses (one at Stage I and the other at Stage II). The purpose of the study was to transform the passive lecture into an active learning opportunity and to introduce valuable mathematical skills,…

  9. Literary Lectures Presented at the Library of Congress.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC.

    This book contains 37 out-of-print lectures on American, English, and world literature that have been presented at the Library of Congress over the past 30 years. Lectures by Thomas Mann, T. S. Eliot, R. P. Blackmur, Archibald Henderson, Irving Stone, John O'Hara, MacKinlay Kantor, John Crowe Ransom, Delmore Schwartz, John Hall Wheelock, Robert…

  10. The Anatomy Lecture Then and Now: A Foucauldian Analysis

    ERIC Educational Resources Information Center

    Friesen, Norm; Roth, Wolff-Michael

    2014-01-01

    Although there are many points of continuity, there are also a number of changes in the pedagogical form of the anatomy lecture over the longue durée, over centuries of epistemic change, rather than over years or decades. The article begins with an analysis of the physical and technical arrangements of the early modern anatomy lecture, showing how…

  11. Some Abnormal Psychical Conditions in Children: Excerpts from Three Lectures

    ERIC Educational Resources Information Center

    Still, George F.

    2006-01-01

    This article presents excerpts of the three lectures delivered by George F. Still on March 4, 1902, March 6, 1902, and March 11, 1902. In the first lecture, Still discussed several points in the psychology and development of social control in the normal child and considered the occurrence of defective moral control in in association with general…

  12. Information Retention from PowerPoint[TM] and Traditional Lectures

    ERIC Educational Resources Information Center

    Savoy, April; Proctor, Robert W.; Salvendy, Gavriel

    2009-01-01

    The benefit of PowerPoint[TM] is continuously debated, but both supporters and detractors have insufficient empirical evidence. Its use in university lectures has influenced investigations of PowerPoint's effects on student performance (e.g., overall quiz/exam scores) in comparison to lectures based on overhead projectors, traditional lectures…

  13. Next-Generation Educational Technology versus the Lecture.

    ERIC Educational Resources Information Center

    Foreman, Joel

    2003-01-01

    Addresses concerns related to the replacement of large lecture courses by immersive digital environments with similarities to advanced videogames. Explains why the large lecture format deserves replacement, reviews the field of game-based learning, and illustrates the approach in the example of an introductory psychology class. (SLD)

  14. Mathematics Lecturers' Views of Examinations: Tensions and Possible Resolutions

    ERIC Educational Resources Information Center

    Iannone, Paola; Simpson, Adrian

    2015-01-01

    If assessment drives learning and the closed book examination dominates the pattern of assessment for undergraduate mathematics (as it does in the UK), lecturers need to ensure that examinations reflect the learning they value. This article uses a mixed method approach to explore lecturers' views of the closed book examination in relation to other…

  15. Reflections on High School English: NDEA Institute Lectures 1965.

    ERIC Educational Resources Information Center

    Tate, Gary, Ed.

    Lectures presented at the 1965 National Defense Education Act Institutes for Advanced Study in English are presented in this book. Selected for their interest to both experienced and prospective English teachers, the lectures are grouped into four categories. (1) Of general interest to the English teacher are John Gerrietts' portrait of the…

  16. An Audio-Visual Lecture Course in Russian Culture

    ERIC Educational Resources Information Center

    Leighton, Lauren G.

    1977-01-01

    An audio-visual course in Russian culture is given at Northern Illinois University. A collection of 4-5,000 color slides is the basis for the course, with lectures focussed on literature, philosophy, religion, politics, art and crafts. Acquisition, classification, storage and presentation of slides, and organization of lectures are discussed. (CHK)

  17. Students Approach to Learning and Their Use of Lecture Capture

    ERIC Educational Resources Information Center

    Vajoczki, Susan; Watt, Susan; Marquis, Nick; Liao, Rose; Vine, Michelle

    2011-01-01

    This study examined lecture capture as a way of enhancing university education, and explored how students with different learning approaches used lecture capturing (i.e., podcasts and vodcasts). Results indicate that both deep and surface learners report increased course satisfaction and better retention of knowledge in courses with traditional…

  18. Changing the Nature of Lectures Using a Personal Response System

    ERIC Educational Resources Information Center

    Masikunis, George; Panayiotidis, Andreas; Burke, Linda

    2009-01-01

    This article describes the use of an Electronic Voting System (EVS) in large group lectures within a business and management undergraduate degree programme, in an attempt to make them more interactive. The intention was to ensure that the introduction of the EVS-style lecture was educationally driven, linked to interactive learning activities in…

  19. Assessment, Marking and Feedback: Understanding the Lecturers' Perspective

    ERIC Educational Resources Information Center

    Norton, Lin; Norton, Bill; Sadler, Ian

    2012-01-01

    This study is part of a larger research project originally funded by the Write Now CETL looking at assessment, marking and feedback from the lecturers' perspective. Earlier findings have suggested that with new lecturers at least, there are some discipline differences in how able they feel they can put into practice what they have learned about…

  20. Attendance at Lectures and Films in Self-Paced Courses.

    ERIC Educational Resources Information Center

    Edwards, K. Anthony

    Attendance at guest lectures, instructor lectures, and films in self-paced introductory psychology courses was examined in two experiments with 180 students in an introductory psychology class at Utah State University. In the first experiment, students were given no points, one point credit toward interviews, or one point credit toward the final…

  1. Doing Business: Knowledges in the Internationalised Business Lecture

    ERIC Educational Resources Information Center

    Doherty, Catherine Ann

    2010-01-01

    This paper investigates the oracy (listening/speaking) genres enacted in an undergraduate entry point unit in the internationalised university and the kind of knowledges these genres elicit and perform. Focusing on a series of lectures in a business studies unit, it explores how anecdotal knowledge from both the lecturer's and the students' lived…

  2. Interactive lecturing for meaningful learning in large groups.

    PubMed

    Gülpinar, Mehmet Ali; Yeğen, Berrak C

    2005-11-01

    In order to enhance the quality of integration of physiological basic concepts with clinical sciences and to facilitate problem solving skills, a 'structured integrated interactive' two-hour block lecture on growth hormone physiology was implemented. A template showing the central regulation of growth hormone release and its peripheral effects was developed as an advanced organizer. Based on this template, new information was presented. Student feedback demonstrated that the lecture, based on the expository teaching model and enhanced by different forms of question and problem solving activities, was successful and interactive. It was also more motivating and was able to keep the attention of the students in relatively higher levels throughout the lecture. Furthermore, students felt that they had made important gains in transferable problem solving skills and this opinion was supported by their performance in clinical cases. These findings reinforced the idea that systematic incorporation of active learning strategies into lectures may minimize many of the weaknesses of traditional lectures.

  3. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize

  4. The Development of WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs

    NASA Astrophysics Data System (ADS)

    Bergmann, Ryan

    Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the

  5. Bayesian geoacoustic inversion of single hydrophone light bulb data using warping dispersion analysis.

    PubMed

    Bonnel, Julien; Dosso, Stan E; Ross Chapman, N

    2013-07-01

    This paper presents geoacoustic inversion of a light bulb implosion recorded during the Shallow Water 2006 experiment. The source is low frequency and impulsive, the environment is shallow water, and the acoustic signal is recorded using a single receiver. In this context, propagation is described by modal theory, and inversion is carried out by matching modal dispersion curves in the time-frequency domain. Experimental dispersion curves are estimated using an advanced signal processing method called warping, allowing inversion to be carried out at a relatively short range (~/=7 km). Moreover, the inversion itself is performed using Bayesian methodology. This allows inference of the seabed structure from the data, including the number of seabed layers resolved, optimal estimates of the seabed parameters, and quantitative uncertainty estimates. Inversion results of the experimental data are in good agreement with both ground truth and estimates from other experimental data in the same region.

  6. Thermal comfort of diving dry suit with the use of the warp-knitted fabric

    NASA Astrophysics Data System (ADS)

    Lenfeldova, I.; Hes, L.; Annayeva, M.

    2016-07-01

    Achievement of a good level of thermal comfort of under-suits for dry suit diving which enable also the required mobility of the diver in water is inevitable not only for the scuba sport and commercial diving people but also for safety and activities of people who make research under water. The aim of this work is to verify whether selected knitted structures (which are not waterproof) can substitute the currently used textile materials (nonwovens). This dry-suit innovation is intended to increase the properties which correspond to the perception of thermal comfort of the diver in water. To achieve this objective, the Alambeta thermal tester was used in the study for experimental determination of thermal resistance of spacer warp knitted fabric at varying contact pressure. The studied textiles were expected to be very suitable for the intended application due to their low compressibility which yields relatively high thickness a hence increased thermal insulation.

  7. A new method to analyze protein sequence similarity using Dynamic Time Warping.

    PubMed

    Hou, Wenbing; Pan, Qiuhui; Peng, Qianying; He, Mingfeng

    2017-03-01

    Sequences similarity analysis is one of the major topics in bioinformatics. It helps researchers to reveal evolution relationships of different species. In this paper, we outline a new method to analyze the similarity of proteins by Discrete Fourier Transform (DFT) and Dynamic Time Warping (DTW). The original symbol sequences are converted to numerical sequences according to their physico-chemical properties. We obtain the power spectra of sequences from DFT and extend the spectra to the same length to calculate the distance between different sequences by DTW. Our method is tested in different datasets and the results are compared with that of other software algorithms. In the comparison we find our scheme could amend some wrong classifications appear in other software. The comparison shows our approach is reasonable and effective.

  8. Motion data classification on the basis of dynamic time warping with a cloud point distance measure

    NASA Astrophysics Data System (ADS)

    Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.

  9. Flavor-changing decays of the top quark in 5D warped models

    NASA Astrophysics Data System (ADS)

    Díaz-Furlong, Alfonso; Frank, Mariana; Pourtolami, Nima; Toharia, Manuel; Xoxocotzi, Reyna

    2016-08-01

    We study flavor-changing neutral current decays of the top quark in the context of general warped extra dimensions, where the five-dimensional (5D) metric is slightly modified from 5D anti-de Sitter (AdS5 ). These models address the Planck-electroweak hierarchies of the Standard Model and can obey all the low-energy flavor bounds and electroweak precision tests, while allowing the scale of new physics to be at the TeV level, and thus within the reach of the LHC at Run II. We perform the calculation of these exotic top decay rates for the case of a bulk Higgs, and thus include in particular the effect of the additional Kaluza-Klein (KK) Higgs modes running in the loops, along with the usual KK fermions and KK gluons.

  10. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  11. Three-dimensional simulations of high-current beams in induction accelerators with WARP3d

    SciTech Connect

    Grote, D.P.; Friedman, A.; Haber, I.

    1995-09-01

    For many issues relevant to acceleration and propagation of heavy-ion beams for inertial confinement fusion, understanding the behavior of the beam requires the self-consistent inclusion of the self-fields of the beams in multiple dimensions. For these reasons, the three-dimensional simulation code WARP3d A.Friedman was developed. The code combines the particle-in-cell plasma simulation technique with a realistic description of the elements which make up an accelerator. In this paper, the general structure of the code is reviewed and details of two ongoing applications are presented along with a discussion of simulation techniques used. The most important results of this work are presented.

  12. Overview of the WARP code and studies of transverse resonance effects

    SciTech Connect

    Friedman, Alex

    1998-11-05

    Two papers presented at the Shelter Island workshop are very briefly summarized here, in view of recent publications elsewhere. The WARP code, developed for Heavy-Ion beam-driven inertial confinement Fusion (HIF) accelerator studies, combines features of a particle-in-cell plasma simulation and an accelerator tracking program. Its methods and architecture have been developed for efficiency both in detailed simulation of individual machine sections and in long-time beam tracking. The transverse 'slice' model in the code has been applied to the study of transverse resonance effects associated with quadrupole strength errors. These simulations confirm that rapid passage through a resonance can reduce the associated mismatch and emittance growth. References to published details and to other sources of information are supplied.

  13. Overview of the WARP code and studies of transverse resonance effects

    SciTech Connect

    Friedman, A.

    1998-11-01

    Two papers presented at the Shelter Island workshop are very briefly summarized here, in view of recent publications elsewhere. The WARP code, developed for Heavy-Ion beam-driven inertial confinement Fusion (HIF) accelerator studies, combines features of a particle-in-cell plasma simulation and an accelerator tracking program. Its methods and architecture have been developed for efficiency both in detailed simulation of individual machine sections and in long-time beam tracking. The transverse {open_quotes}slice{close_quotes} model in the code has been applied to the study of transverse resonance effects associated with quadrupole strength errors. These simulations confirm that rapid passage through a resonance can reduce the associated mismatch and emittance growth. References to published details and to other sources of information are supplied. {copyright} {ital 1998 American Institute of Physics.}

  14. Overview of the WARP code and studies of transverse resonance effects

    SciTech Connect

    Friedman, A., LLNL

    1998-05-01

    Two papers presented at the Shelter Island workshop are very briefly summarized here, in view of recent publications elsewhere The WARP code, developed for Heavy-Ion beam-driven inertial confinement Fusion (HIF) accelerator studies, combines features of a particle-in-cell plasma simulation and an accelerator tracking program. Its methods and architecture have been developed for efficiency both in detailed simulation of individual machine sections and in long-time beam tracking. The transverse ``slice`` model in the code has been applied to the study of transverse resonance effects associated with quadrupole strength errors. These simulations confirm that rapid passage through a resonance can reduce the associated mismatch and emittance growth References to published details and to other sources of information are supplied.

  15. Canonical structure of BHT massive gravity in warped AdS3 sector

    NASA Astrophysics Data System (ADS)

    Mahdavian Yekta, Davood

    2016-08-01

    We investigate the asymptotic structure of the three dimensional Warped Anti-de Sitter (WAdS3) black holes in the Bergshoeff-Hohm-Townsend (BHT) massive gravity using the canonical Hamiltonian formalism. We define the canonical asymptotic gauge generators, which produce the conserved charges and the asymptotic symmetry group for the WAdS3 black holes. The attained symmetry group is described by a semi-direct sum of a Virasoro and a Kač-Moody algebra. Using the Sugawara construction, we obtain a direct sum of two Virasoro algebras. We show that not only the asymptotic conserved charges satisfy the first law of black hole thermodynamics, but also they lead to the expected Smarr formula for the WAdS3 black holes. We also show that the black hole's entropy obeys the Cardy formula of the dual conformal field theory (CFT).

  16. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    SciTech Connect

    Stancari, Giulio; Moens, Vince; Redaelli, Stefano

    2014-07-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  17. Degree-Pruning Dynamic Programming Approaches to Central Time Series Minimizing Dynamic Time Warping Distance.

    PubMed

    Sun, Tao; Liu, Hongbo; Yu, Hong; Chen, C L Philip

    2016-06-28

    The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)²) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)²] is presented based on DTW barycenter averaging and our g(dp)² approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.

  18. The use of cross-section warping functions in composite rotor blade analysis

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1992-01-01

    During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.

  19. Fermion resonances on a thick brane with a piecewise warp factor

    SciTech Connect

    Li Haitao; Liu Yuxiao; Zhao Zhenhua; Guo Heng

    2011-02-15

    In this paper, we mainly investigate the problems of resonances of massive Kaluza-Klein (KK) fermions on a single scalar constructed thick brane with a piecewise warp factor matching smoothly. The distance between two boundaries and the other parameters are determined by one free parameter through three junction conditions. For the generalized Yukawa coupling {eta}{Psi}{phi}{sup k{Psi}} with odd k=1,3,5,..., the mass eigenvalue m, width {Gamma}, lifetime {tau}, and maximal probability P{sub max} of fermion resonances are obtained. Our numerical calculations show that the brane without internal structure also favors the appearance of resonant states for both left- and right-handed fermions. The scalar-fermion coupling and the thickness of the brane influence the resonant behaviors of the massive KK fermions.

  20. Translaminar Fracture Toughness of a Composite Wing Skin Made of Stitched Warp-knit Fabric

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1997-01-01

    A series of tests were conducted to measure the fracture toughness of carbon/epoxy composites. The composites were made from warp-knit carbon fabric and infiltrated with epoxy using a resin-film-infusion process. The fabric, which was designed by McDonnell Douglas for the skin of an all-composite subsonic transport wing, contained fibers in the 0 deg, +/-45 deg, and 90 deg directions. Layers of fabric were stacked and stitched together with Kevlar yarn to form a 3-dimensional preform. Three types of test specimens were evaluated: compact tension, center notch tension, and edge notch tension. The effects of specimen size and crack length on fracture toughness were measured for each specimen type. These data provide information on the effectiveness of the test methods and on general trends in the material response. The scope of the investigation was limited by the material that was available.