Science.gov

Sample records for 18f-fdg-avid tissue sites

  1. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues

    PubMed Central

    2014-01-01

    Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and

  2. The Hypermetabolic Giant: 18F-FDG avid Giant Cell Tumor identified on PET-CT

    PubMed Central

    O’Connor, Wendi; Quintana, Megan; Smith, Scott; Willis, Monte; Renner, Jordan

    2014-01-01

    An 87 year-old white female presented with a two-year history of intermittent discomfort in her left foot. PET-CT identified intense18F-fluorodeoxyglucose (FDG) uptake corresponding to the lesion. Histology of a fine needle aspiration and open biopsy were consistent with a benign giant cell tumor (GCT) of the bone. GCT of bone is an uncommon primary tumor typically presenting as a benign solitary lesion that arises in the end of the long bones. While GCT can occur throughout the axial and appendicular skeleton, it is exceedingly uncommon in the bone of the foot. While 18F-FDG has been established in detecting several malignant bone tumors, benign disease processes may also be identified. The degree of 18F-FDG activity in a benign GCT may be of an intensity that can be mistakenly interpreted as a malignant lesion. Therefore, GCT of the bone can be included in the differential diagnosis of an intensely 18F-FDG-avid neoplasm located within the tarsal bones. PMID:25426232

  3. (99m)Tc-MDP- and (18F)-FDG-avid florid reactive periostitis ossificans mimicking recurrent osteosarcoma.

    PubMed

    Byun, Byung Hyun; Koh, Jae-Soo; Yoo, Ji Young; Lim, Sang Moo; Kong, Chang-Bae

    2013-06-01

    Florid reactive periostitis ossificans is a rare benign lesion usually affecting the tubular bones of the hands and feet, and its histological features may be confused with those of infection and osteosarcoma. We report a case with florid reactive periostitis ossificans of the femur showing increased tracer uptake on both Tc-MDP bone scan and F-FDG PET/CT mimicking a local recurrence in a 15-year-old patient with high-grade osteosarcoma. PMID:23603597

  4. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    SciTech Connect

    Shusharina, Nadya Cho, Joseph; Sharp, Gregory C.; Choi, Noah C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.

  5. (18)F-FDG-PET/CT and (18)F-NaF-PET/CT in men with castrate-resistant prostate cancer.

    PubMed

    Zukotynski, Katherine A; Kim, Chun K; Gerbaudo, Victor H; Hainer, Jon; Taplin, Mary-Ellen; Kantoff, Philip; den Abbeele, Annick D Van; Seltzer, Steven; Sweeney, Christopher J

    2015-01-01

    To evaluate (18)F-labeled-fluorodeoxyglucose ((18)F-FDG-) and (18)F-labeled-sodium fluoride ((18)F-NaF-) positron emission tomography/computed tomography (PET/CT) as biomarkers in metastatic castrate-resistant prostate cancer (mCRPC). Nine men (53-75 years) in a phase 1 trial of abiraterone and cabozantinib had (18)F-FDG-PET/CT, (18)F-NaF-PET/CT and standard imaging ((99m)Tc-labeled-methylene-diphosphonate ((99m)Tc-MDP) bone scan and abdominal/pelvic CT) at baseline and after 8 weeks of therapy. Baseline disease was classified as widespread (18)F-FDG-avid, oligometastatic (18)F-FDG-avid (1 site), or non-(18)F-FDG-avid. Metabolic response was classified using European Organisation for Research and Treatment of Cancer (EORTC) criteria. Treatment response using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, Prostate Cancer Working Group 2 (PCWG2) guidelines and days on trial (DOT) were recorded. All men were followed for 1 year or until progression. Four men had (18)F-FDG-avid disease: two with widespread (DOT 53 and 76) and two with oligometastatic disease (DOT 231 and still on trial after 742+ days). Five men had non-(18)F-FDG-avid disease; three remained stable or improved (2 still on trial while one discontinued for non-oncologic reasons; DOT 225-563+), and 2 progressed (DOT 285 and 532). Despite the small sample size, Kaplan-Meier analysis showed a significant difference in progression free survival (PFS) between men with widespread (18)F-FDG-avid, oligometastatic (18)F-FDG-avid and non-(18)F-FDG-avid disease (p < 0.01). All men had (18)F-NaF-avid disease. Neither (18)F-NaF-avid disease extent nor intensity was predictive of treatment response. (18)F-FDG-PET/CT may be superior to (18)F-NaF-PET/CT and standard imaging in men with mCRPC on abiraterone and cabozantinib. (18)F-FDG-PET/CT may have potential to stratify men into 3 groups (widespread vs. oligometastatic (18)F-FDG-avid vs. non-(18)F-FDG-avid mCRPC) to tailor therapy. Further evaluation is

  6. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  7. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  8. Dirigent proteins and dirigent sites in lignifying tissues

    NASA Technical Reports Server (NTRS)

    Burlat, V.; Kwon, M.; Davin, L. B.; Lewis, N. G.

    2001-01-01

    Tissue-specific dirigent protein gene expression and associated dirigent (site) localization were examined in various organs of Forsythia intermedia using tissue printing, in situ mRNA hybridization and immunolabeling techniques, respectively. Dirigent protein gene expression was primarily noted in the undifferentiated cambial regions of stem sections, whereas dirigent protein sites were detected mainly in the vascular cambium and ray parenchyma cell initials. Immunolocalization also revealed cross-reactivity with particular regions of the lignified cell walls, these being coincident with the known sites of initiation of lignin deposition. These latter regions are considered to harbor contiguous arrays of dirigent (monomer binding) sites for initiation of lignin biopolymer assembly. Dirigent protein mRNA expression was also localized in the vascular regions of roots and petioles, whereas in leaves the dirigent sites were primarily associated with the palisade layers and the vascular bundle. That is, dirigent protein mediated lignan biosynthesis was initiated primarily in the cambium and ray cell initial regions of stems as well as in the leaf palisade layers, this being in accordance with the occurrence of the lignans for defense purposes. Within lignified secondary xylem cell walls, however, dirigent sites were primarily localized in the S(1) sublayer and compound middle lamella, these being coincident with previously established sites for initiation of macromolecular lignin biosynthesis. Once initiation occurs, lignification is proposed to continue through template polymerization.

  9. Soft tissue malignant lymphoma at sites of previous surgery.

    PubMed Central

    Radhi, J M; Ibrahiem, K; al-Tweigeri, T

    1998-01-01

    Three diffuse centroblastic lymphomas developed at the site of previous surgery. Two were preceded by atypical lymphoid infiltrates. Clinical data, microscopic features, and immunophenotypic studies were reviewed. All three patients presented with soft tissue masses at the site of previous surgery and metallic implants, with no evidence of lymphadenopathy, hepatosplenomegaly, or bone marrow involvement. There was no history of immunosuppression or risk factors. In two cases the initial diagnosis was of atypical lymphoid infiltrate progressing to lymphoma. Pathological examination showed a diffuse centroblastic lymphoma with an angiocentric pattern in one case. Phenotypic studies confirmed B cell origin. Soft tissue malignant lymphoma, though uncommon, can occur at the site of previous orthopaedic surgery, in particular joint replacement. Atypical lymphoid infiltrate may signal such an event. Images PMID:9828826

  10. Characterization of Heparin-binding Site of Tissue Transglutaminase

    PubMed Central

    Wang, Zhuo; Collighan, Russell J.; Pytel, Kamila; Rathbone, Daniel L.; Li, Xiaoling; Griffin, Martin

    2012-01-01

    Tissue transglutaminase (TG2) is a multifunctional Ca2+-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modeling and mutagenesis, we have identified the HS-binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS-binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate for the RGD-induced loss of cell adhesion on fibronectin via binding to syndecan-4, leading to activation of PKCα, pFAK-397, and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed. PMID:22298777

  11. Partial characterization of specific cantharidin binding sites in mouse tissues

    SciTech Connect

    Graziano, M.J.; Pessah, I.N.; Matsuzawa, M.; Casida, J.E.

    1988-06-01

    The mode of action of cantharidin, the natural vesicant of blister beetles, is examined by radioligand binding studies with mouse tissues. (3H)Cantharidin undergoes specific and saturable binding with the liver cytosol, which is characterized as follows: Kd and Bmax values of 30 nM and 1.8 pmol/mg of protein, respectively; linearity with respect to protein concentration; pH optimum of 6.5 to 7.5; association and dissociation half-times of 20 min and 12 hr, respectively; and 50% inhibition by Mg2+ at 70 microM, Ca2+ at 224 microM, pyrophosphate at 27 microM, and nucleotide triphosphates at 52-81 microM. The binding site undergoes a loss of activity at 45 degrees or higher. The toxicological relevance of this specific (3H)cantharidin binding site of mouse liver cytosol is established in three ways. First, the potency of 15 active cantharidin analogs for inhibiting (3H)cantharidin binding is correlated with their acute toxicity to mice (r = 0.829). Second, 26 related compounds that are inactive in inhibiting (3H)cantharidin binding are also of little or no toxicity to mice. Finally, the binding of (3H) cantharidin to liver cytosol from mice poisoned with increasing amounts of unlabeled cantharidin is inhibited in a dose-dependent manner. (3H)Cantharidin also specifically binds to cytosol fractions of blood, brain, heart, kidney, lung, pancreas, skin, spleen, and stomach. The characteristics of the specific binding site in brain are very similar to those determined in liver with respect to Kd, Bmax, association/dissociation kinetics, and sensitivity to inhibitors. It therefore appears that the toxicity of cantharidin and related oxabicycloheptanes, including the herbicide endothal, is attributable to binding at a specific site in liver and possibly other tissues.

  12. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites

    PubMed Central

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2016-01-01

    Phosphorylation is the most widespread and well studied reversible posttranslational modification. Discovering tissue-specific preferences of phosphorylation sites is important as phosphorylation plays a role in regulating almost every cellular activity and disease state. Here we present a comprehensive analysis of global and tissue-specific sequence and structure properties of phosphorylation sites utilizing recent proteomics data. We identified tissue-specific motifs in both sequence and spatial environments of phosphorylation sites. Target site preferences of kinases across tissues indicate that, while many kinases mediate phosphorylation in all tissues, there are also kinases that exhibit more tissue-specific preferences which, notably, are not caused by tissue-specific kinase expression. We also demonstrate that many metabolic pathways are differentially regulated by phosphorylation in different tissues. PMID:27332813

  13. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  14. Vascular tissue is the first site of damage in the TCDD-exposed fish embryo

    SciTech Connect

    Cantrell, S.; Tillitt, D.; Hannink, M.

    1995-12-31

    The planar halogenated hydrocarbons (PHHs) are a group of environmental contaminants that exert adverse biological effects in most vertebrate organisms. Embryonic development is the most sensitive life stage to the effects of these compounds. The reason for the enhanced sensitivity to PHHs during early life stages is unknown. To study TCDD-induced embryotoxicity, a fish species the medaka was the organism of choice. The authors localized the initial site of tissue damage in the developing embryo and investigated the mechanism of TCDD-induced tissue damage. There were three parts to this study, (1) observation of morphological anomalies in the TCDD-treated embryo, (2) immunohistochemical detection of DNA damage in the tissues of TCDD-treated embryos, and (3) test the ability of an antioxidant to delay the onset of initial tissue damage. Morphological observations show that the first visual lesions that occur in the TCDD treated embryo occur at stage 36, about day 6 post fertilization. The lesions are localized in the cardiac vasculature. Immunohistochemical staining, using the terminal nucleotide transferase assay (TdT-assay) which detects DNA damage showed that the initial site of tissue damage was in the vasculature in the cardiac region. Tissue damage was detected in neural tissue and muscle tissue at later time points. TCDD is known to induce oxidative stress in a variety of organisms, therefore; the authors tested to see if oxidative stress may play a role in TCDD-induced embryotoxicity. The TCDD-treated embryos were cultured in the antioxidant N-acetyl cysteine (NAC) and the morphological observations and TdT-assay were repeated. They found that NAC was able to delay the onset of tissue damage and NAC was able to reduce total mortality in the embryo. The results from this study indicate that the cardiac vasculature is the initial site of tissue damage.

  15. Localization of the binding site of tissue-type plasminogen activator to fibrin.

    PubMed Central

    Ichinose, A; Takio, K; Fujikawa, K

    1986-01-01

    Functionally active A and B chains were separated from a two-chain form of recombinant tissue-type plasminogen activator after mild reduction and alkylation. The A chain was found to be responsible for the binding to lysine-Sepharose or fibrin and the B chain contained the catalytic activity of tissue-type plasminogen activator. An extensive reduction of two-chain tissue-type plasminogen activator, however, destroyed both the binding and catalytic activities. A thermolytic fragment, Fr. 1, of tissue-type plasminogen activator that contained a growth factor and two kringle segments retained its lysine binding activity. Additional thermolytic cleavages in the kringle-2 segment of Fr. 1 caused a total loss of the binding activity. These results indicated that the binding site of tissue-type plasminogen activator to fibrin was located in the kringle-2 segment. Images PMID:3088041

  16. Quantitative morphometric measurements using site selective image cytometry of intact tissue

    PubMed Central

    Kwon, Hyuk-Sang; Nam, Yoon Sung; Wiktor-Brown, Dominika M.; Engelward, Bevin P.; So, Peter T.C.

    2008-01-01

    Site selective two-photon tissue image cytometry has previously been successfully applied to measure the number of rare cells in three-dimensional tissue specimens up to cubic millimetres in size. However, the extension of this approach for high-throughput quantification of cellular morphological states has not been demonstrated. In this paper, we report the use of site-selective tissue image cytometry for the study of homologous recombination (HR) events during cell division in the pancreas of transgenic mice. Since HRs are rare events, recombinant cells distribute sparsely inside the organ. A detailed measurement throughout the whole tissue is thus not practical. Instead, the site selective two-photon tissue cytometer incorporates a low magnification, wide field, one-photon imaging subsystem that rapidly identifies regions of interest containing recombinant cell clusters. Subsequently, high-resolution three-dimensional assays based on two-photon microscopy can be performed only in these regions of interest. We further show that three-dimensional morphology extraction algorithms can be used to analyse the resultant high-resolution two-photon image stacks providing information not only on the frequency and the distribution of these recombinant cell clusters and their constituent cells, but also on their morphology. PMID:19049958

  17. Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation.

    PubMed

    Burghard, Alice; Lenarz, Thomas; Kral, Andrej; Paasche, Gerrit

    2014-06-01

    Tissue formation around the electrode array of a cochlear implant has been suggested to influence preservation of residual hearing as well as electrical hearing performance of implanted subjects. Further, inhomogeneity in the electrical properties of the scala tympani shape the electrical field and affect current spread. Intracochlear trauma due to electrode insertion and the insertion site itself are commonly seen as triggers for the tissue formation. The present study investigates whether the insertion site, round window membrane (RWM) vs. cochleostomy (CS), or the sealing material, no seal vs. muscle graft vs. carboxylate cement, have an influence on the amount of fibrous tissue and/or new bone formation after CI implantation in the guinea pig. Hearing thresholds were determined by auditory brainstem response (ABR) measurements prior to implantation and after 28 days. The amount of tissue formation was quantified by evaluation of microscopic images obtained by a grinding/polishing procedure to keep the CI in place during histological processing. An insertion via the round window membrane resulted after 28 days in less tissue formation in the no seal and muscle seal condition compared to the cochleostomy approach. Between these two sealing techniques there was no difference. Sealing the cochlea with carboxylate cement resulted always in a strong new bone formation and almost total loss of residual hearing. The amount of tissue formation and the hearing loss correlated at 1-8 kHz. Consequently, the use of carboxylate cement as a sealing material in cochlear implantation should be avoided even in animal studies, whereas sealing the insertion site with a muscle graft did not induce an additional tissue growth compared to omitting a seal. For hearing preservation the round window approach should be used. PMID:24566091

  18. Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans

    PubMed Central

    Ragle, James Matthew; Katzman, Sol; Akers, Taylor F.; Barberan-Soler, Sergio; Zahler, Alan M.

    2015-01-01

    Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus. PMID:25922281

  19. Postloading behavior of regenerated tissues in GBR-treated implant sites.

    PubMed

    Cordioli, G; Majzoub, Z; Riachi, F

    1999-02-01

    The objective of this study was to assess, using reentry procedures, the capacity of regenerated tissues in implant-associated defects to respond to occlusal loading. Two groups of patients treated with membrane-augmented osseointegrated implants were included in the study. In group A (7 patients), a total of 9 implant-associated defects, including 6 dehiscences and 3 immediate extraction sites, were prospectively followed up 6 months following prosthesis connection. In group B (3 patients), 4 dehiscence defects were retrospectively evaluated 5 years after prosthetic loading. All defects in both groups had an uneventful healing period beyond the 6 months following implant insertion and showed complete fill with bone-like hard tissues at abutment connection surgery. A second surgical reentry was carried out to evaluate the quantitative changes in the regenerated tissues at the membrane-treated sites; it was carried out 6 months following prosthesis connection in group A, and 5 years postloading in group B. At the second reentry procedure, the mean percentage of defect fill at the dehiscence sites was 82% +/- 12.8% in group A and 83% +/- 7.3% in group B. In the 3 immediate extraction sites in group A, the most apical bone-implant contact around the implant was consistently located at about 1 mm, relative to the coronal aspect of the implant shoulder, as evidenced both radiographically and during the second reentry. The trends noted in this investigation suggest that tissues regenerated in successfully treated implant-associated defects can be maintained in the short-term and long-term periods following prosthetic loading. PMID:10379286

  20. A Novel Local Autologous Bone Graft Donor Site After Scalp Tissue Expansion in Aplasia Cutis Congenita.

    PubMed

    Hadad, Ivan; Meara, John G; Rogers-Vizena, Carolyn R

    2016-06-01

    Aplasia cutis congenita (ACC) is a rare condition often presenting as an absent area of cutaneous scalp. The calvarium and dura may also be affected. Scalp reconstruction with tissue expansion is often needed for large defects. Patients involving deficient calvarial bone present a dilemma for the reconstructive surgeon, because bone graft donor sites are limited in young children.A thick, bony rim has been noted to form around the periphery of scalp tissue expanders. The authors present a series of 3 patients with ACC for whom this bony hyperostosis was used as donor particulate bone graft at the time of scalp tissue expansion. There was 85 to 100% graft ossification on postoperative computed tomography scan. There were no bone graft-related complications.In conclusion, the hyperostotic rim that forms after scalp tissue expansion can be successfully used as particulate bone graft, decreasing the number of procedures needed for patient with ACC and obviating the need for other donor sites. PMID:27192637

  1. Site-targeted acoustic contrast agent detects molecular expression of tissue factor after balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Hall, Christopher S.; Abendschein, Dana R.; Scherrer, David E.; Scott, Michael J.; Marsh, Jon N.; Wickline, Samuel A.; Lanza, Gregory M.

    2000-04-01

    Complex molecular signaling heralds the early stages of pathologies such as angiogenesis, inflammation, and cellular responses to mechanically damaged coronary arteries after balloon angioplasty. In previous studies, we have demonstrated acoustic enhancement of blood clot morphology with the use of a nongaseous, ligand-targeted acoustic nanoparticle emulsion delivered to areas of thrombosis both in vitro and in vivo. In this paper, we characterize the early expression of tissue factor which contributes to subsequent arterial restenosis. Tissue factor is a 42kd glycoprotein responsible for blood coagulation but also plays a well-described role in cancer metastasis, angiogenesis, and vascular restenosis. This study was designed to determine whether the targeted contrast agent could localize tissue factor expressed within the wall of balloon-injured arteries. Both carotid arteries of five pigs (20 kg) were injured using an 8 X 20 mm angioplasty balloon. The carotids were treated in situ with a perfluorocarbon nanoparticle emulsion covalently complexed to either specific anti-tissue factor polyclonal F(ab) fragments (treatment) or non-specific IgG F(ab) fragments (control). Intravascular ultrasound (30 MHz) images of the arteries were obtained before and after exposure to the emulsions. Tissue- factor targeted ultrasonic contrast agent acoustically enhanced the subintima and media at the site of balloon- induced injury compared with control contrast arteries (p less than 0.05). Immunohistochemical staining confirmed the presence of increased tissue factor at the sites of acoustic enhancement. Binding of the targeted agents was demonstrated in vitro by scanning electron microscope images of cultured smooth muscle cells that constitutively express tissue factor. This study demonstrates the concept of molecular imaging and localization of carotid arteries' tissue factor in vivo using a new, nanoparticulate emulsion. Enhancement of the visualization of the molecular

  2. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  3. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    SciTech Connect

    Yamada, Tomoya Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  4. Functional integrity of the interrenal tissue of yellow perch from contaminated sites tested in vivo

    SciTech Connect

    Girard, C.; Brodeur, J.C.; Hontela, A.

    1995-12-31

    The normal activation of the hypothalamo-pituitary-interrenal axis (HPI axis) in response to capture is disrupted in fish subjected to life-long exposure to heavy metals, PCBs and PAHs. The ability to increase plasma cortisol in yellow perch (Perca flavescens) from sites contaminated by heavy metals and organic compounds, and from a reference site was assessed by the Capture stress test and by the ACTH Challenge test, a new standardized in vivo method designed for field studies. The effects of seasonal factors, such as temperature and gonadal maturity on these tests were investigated. Measures of liver and muscle glycogen and histopathology were made to further characterize the biochemical and structural changes that may occur along with hormonal changes. The Capture stress test showed that an acute source of stress induced a lower cortisol response in fish from the highly contaminated site compared to the reference site, revealing a functional impairment of the HPI axis. The ACTH Challenge test showed that the hormonal responsiveness of the cortisol-secreting interrenal tissue, stimulated by a standard dose of ACTH injected i.p., was lower in fish from the highly contaminated site than the reference site. Spring is the season during which the impairment was the most evident. The possibility of using the reduced capacity of feral fish to respond to a standardized ACTH Challenge as an early bioindicator of toxic stress is discussed.

  5. Urinary bladder matrix promotes site appropriate tissue formation following right ventricle outflow tract repair

    PubMed Central

    Remlinger, Nathaniel T; Gilbert, Thomas W; Yoshida, Masahiro; Guest, Brogan N; Hashizume, Ryotaro; Weaver, Michelle L; Wagner, William R; Brown, Bryan N; Tobita, Kimimasa; Wearden, Peter D

    2013-01-01

    The current prevalence and severity of heart defects requiring functional replacement of cardiac tissue pose a serious clinical challenge. Biologic scaffolds are an attractive tissue engineering approach to cardiac repair because they avoid sensitization associated with homograft materials and theoretically possess the potential for growth in similar patterns as surrounding native tissue. Both urinary bladder matrix (UBM) and cardiac ECM (C-ECM) have been previously investigated as scaffolds for cardiac repair with modest success, but have not been compared directly. In other tissue locations, bone marrow derived cells have been shown to play a role in the remodeling process, but this has not been investigated for UBM in the cardiac location, and has never been studied for C-ECM. The objectives of the present study were to compare the effectiveness of an organ-specific C-ECM patch with a commonly used ECM scaffold for myocardial tissue repair of the right ventricle outflow tract (RVOT), and to examine the role of bone marrow derived cells in the remodeling response. A chimeric rat model in which all bone marrow cells express green fluorescent protein (GFP) was generated and used to show the ability of ECM scaffolds derived from the heart and bladder to support cardiac function and cellular growth in the RVOT. The results from this study suggest that urinary bladder matrix may provide a more appropriate substrate for myocardial repair than cardiac derived matrices, as shown by differences in the remodeling responses following implantation, as well as the presence of site appropriate cells and the formation of immature, myocardial tissue. PMID:23974174

  6. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  7. The use of a prosthetic tissue expander to displace bowel from a brachytherapy implant site

    SciTech Connect

    Armstrong, J.G.; Harrison, L.B.; Dattoli, M.; Concepcion, R.; Minsky, B.D.; Fortner, J. )

    1990-12-01

    We describe the use of a prosthetic maneuver to displace bowel from an implant site. The patient presented with a recurrent low grade fibrosarcoma which was grossly excised with positive microscopic margins in the right paravertebral area. For this reason we performed an Iridium-192 implant using afterloading catheters. Because of several dense adhesions, it was not possible to mobilize an omental sling over the implant site. To prevent the small bowel from lying on the catheters, we inserted a prosthetic breast tissue expander. This was expanded with saline and bacitracin solution and placed in the tumor bed overlying the catheters, thereby displacing the small bowel away from the sources. A postoperative CT scan with gastrograffin demonstrated that this procedure was effective. There were no complications. We conclude that such devices are suitable for use under these circumstances and can achieve the objective of decreasing the dose of radiation to the small bowel.

  8. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  9. Inflammation drives wound hyperpigmentation in zebrafish by recruiting pigment cells to sites of tissue damage.

    PubMed

    Lévesque, Mathieu; Feng, Yi; Jones, Rebecca A; Martin, Paul

    2013-03-01

    In humans, skin is the largest organ and serves as a barrier between our body and the outside world. Skin protects our internal organs from external pathogens and other contaminants, and melanocytes within the skin protect the body from damage by ultraviolet light. These same pigment cells also determine our skin colour and complexion. Skin wounding triggers a repair response that includes a robust recruitment of inflammatory cells, which function to kill invading microbes and clear away cell and matrix debris. Once at the wound site, these innate immune cells release a barrage of cytokines that direct the activities of other cells during the repair process. Tissue damage and repair also frequently lead to alterations in skin pigmentation, in particular to wound hyperpigmentation. In this study, we describe a model of wound hyperpigmentation in the translucent zebrafish larva, where we can live-image the recruitment of melanocytes and their precursors, melanoblasts, to the wound site. We show that these pigment cells are drawn in after the initial recruitment of innate immune cells and that the inflammatory response is essential for wound hyperpigmentation. This new model will allow us to uncover the molecular link between immune and pigment cells during tissue repair and to screen for potential therapeutics to dampen wound hyperpigmentation. PMID:23104990

  10. Actinides in deer tissues at the rocky flats environmental technology site.

    PubMed

    Todd, Andrew S; Sattelberg, R Mark

    2005-11-01

    Limited hunting of deer at the future Rocky Flats National Wildlife Refuge has been proposed in U.S. Fish and Wildlife planning documents as a compatible wildlife-dependent public use. Historically, Rocky Flats site activities resulted in the contamination of surface environmental media with actinides, including isotopes of americium, plutonium, and uranium. In this study, measurements of actinides [Americium-241 (241Am); Plutonium-238 (238Pu); Plutonium-239,240 (239,240Pu); uranium-233,244 (233,234U); uranium-235,236 (235,236U); and uranium-238 (238U)] were completed on select liver, muscle, lung, bone, and kidney tissue samples harvested from resident Rocky Flats deer (N = 26) and control deer (N = 1). In total, only 17 of the more than 450 individual isotopic analyses conducted on Rocky Flats deer tissue samples measured actinide concentrations above method detection limits. Of these 17 detects, only 2 analyses, with analytical uncertainty values added, exceeded threshold values calculated around a 1 x 10(-6) risk level (isotopic americium, 0.01 pCi/g; isotopic plutonium, 0.02 pCi/g; isotopic uranium, 0.2 pCi/g). Subsequent, conservative risk calculations suggest minimal human risk associated with ingestion of these edible deer tissues. The maximum calculated risk level in this study (4.73 x 10(-6)) is at the low end of the U.S. Environmental Protection Agency's acceptable risk range. PMID:16639905

  11. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. PMID:24833131

  12. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1.

    PubMed Central

    Parekh, R B; Tse, A G; Dwek, R A; Williams, A F; Rademacher, T W

    1987-01-01

    To examine the extent to which protein structure and tissue-type influence glycosylation, we have determined the oligosaccharide structures at each of the three glycosylation sites (Asn-23, 74 and 98) of the cell surface glycoprotein Thy-1 isolated from rat brain and thymus. The results show that there is tissue-specificity of glycosylation and that superimposed on this is a significant degree of site-specificity. On the basis of the site distribution of oligosaccharides, we find that no Thy-1 molecules are in common between the two tissues despite the amino acid sequences being identical. We suggest, therefore, that by controlling N-glycosylation a tissue creates an unique set of glycoforms (same polypeptide but with oligosaccharides that differ either in sequence or disposition). The structures at each of the three sites were also determined for the thymocyte Thy-1 that binds to lentil lectin (Thy-1 L+) and for that which does not (Thy-1 L-). Segregation of intact thymus Thy-1 into two distinct sets of glycoforms by lentil lectin was found to be due to the structures at site 74. Analysis of oligosaccharide structures at the 'passenger' sites (23 and 98) suggests that either Thy-1 L+ and Thy-1 L- molecules are made in different cell-types or that the biosynthesis of oligosaccharides at one site is influenced by the glycosylation at other sites. PMID:2886334

  13. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.

    PubMed

    Mejía-Guerra, María Katherine; Li, Wei; Galeano, Narmer F; Vidal, Mabel; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2015-12-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop. PMID:26628745

  14. ABDOMINAL SUBCUTANEOUS ADIPOSE TISSUE (SAT) AND VICERAL ADIPOSE TISSUE (VAT) MEASUREMENTS IN HIV+ ADULTS: INFLUENCES OF MEASUREMENT SITE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of SAT and an increase in VAT are common with HIV lipodystrophy. Excess abdominal VAT is a known risk factor for cardiovascular disease. Computerized axial tomography (CT) can be used to measure SAT and VAT areas in cross-sectional images of the abdomen. The ideal site(s) and number of abdomina...

  15. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues.

    PubMed

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-01

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. PMID:26067555

  16. Oxidative stress in tissues of Nile Tilapia (Oreochromis niloticus) from a polluted site

    SciTech Connect

    Bainy, A.C.D.; Carvalho, P.S.M.; Saito, E.; Leitao, M.A.S.; Junqueira, V.B.C.

    1995-12-31

    Pro and antioxidant parameters were compared in the erythrocytes, gill, liver and kidney of Nile Tilapia from a fish farm (Reference group) and from a polluted site at Billings Reservoir (Reservoir group). The erythrocyte oxidative stress was characterized by the increased oxygen uptake and decreased time induction (induced by t-butyl hydroperoxide, t-BHP) evidencing a higher susceptibility to oxidative damage. Moreover, a decrease in both catalase (CAT) activity and total glutathione content (GSH) in erythrocytes of Reservoir fish were observed. The higher gill cytochrome b{sub 5} levels is probably related to the enhanced oxyradical production. This fact associated to the diminished CAT and G6PDH activities establish a gill oxidative stress of Reservoir fish. The liver pro-oxidant parameters were greatly increased in the Reservoir fish. These results together with the increase in SOD activity and decrease in CAT, glutathione reductase (GR) and G6PDH activities indicate a liver oxidative stress condition. The observed increase in kidney NADH cytochrome c reductase and in both P-450 and b{sub 5} contents did not reflect in enhanced oxyradical production. The decrease in GSH observed in this tissue is probably associated to the conjugation reactions for ulterior excretion. These results furnish useful data for prospections of polluted aquatic sites in order to correlate the presence of pollutants to associated biological effects.

  17. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site.

    PubMed

    Debela, Mekdes; Magdolen, Viktor; Grimminger, Valerie; Sommerhoff, Christian; Messerschmidt, Albrecht; Huber, Robert; Friedrich, Rainer; Bode, Wolfram; Goettig, Peter

    2006-10-01

    Human tissue kallikrein 4 (hK4) belongs to a 15-member family of closely related serine proteinases. hK4 is predominantly expressed in prostate, activates hK3/PSA, and is up-regulated in prostate and ovarian cancer. We have identified active monomers of recombinant hK4 besides inactive oligomers in solution. hK4 crystallised in the presence of zinc, nickel, and cobalt ions in three crystal forms containing cyclic tetramers and octamers. These structures display a novel metal site between His25 and Glu77 that links the 70-80 loop with the N-terminal segment. Micromolar zinc as present in prostatic fluid inhibits the enzymatic activity of hK4 against fluorogenic substrates. In our measurements, wild-type hK4 exhibited a zinc inhibition constant (IC50) of 16 microM including a permanent residual activity, in contrast to the zinc-independent mutants H25A and E77A. Since the Ile16 N terminus of wild-type hK4 becomes more accessible for acetylating agents in the presence of zinc, we propose that zinc affects the hK4 active site via the salt-bridge formed between the N terminus and Asp194 required for a functional active site. hK4 possesses an unusual 99-loop that creates a groove-like acidic S2 subsite. These findings explain the observed specificity of hK4 for the P1 to P4 substrate residues. Moreover, hK4 shows a negatively charged surface patch, which may represent an exosite for prime-side substrate recognition. PMID:16950394

  18. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    SciTech Connect

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  19. [Tissue morphology at the site of fusion after osteotomy of the proximal end of the femur in children].

    PubMed

    Wasilewski, K; Król, R; Pankowski, J

    1993-01-01

    The preliminary results of histomorphologic examination of tissue harvested at the site of bone plate junction, screw and plate-blade holes as well as from the fascia and muscle around the fusion site. The samples were taken at the time of the plate removal. A cartilage resembling growth plate, callus and bony trabeculae were found in preparations examined, what may indicate proliferation around the plate. Focal necrosis implies tissue destruction. Tawny deposits positively reacting to iron detectors and inflammatory infiltration were common findings. This may prove formulation of biologically active metallic albumins. PMID:7671705

  20. Implant Site Development for Enhancing Esthetics of Soft and Hard Tissue and Simplification of Implant Surgery Using a Forced Eruption.

    PubMed

    Joo, Ji-Young; Son, Sieun; Lee, Ju-Youn

    2016-01-01

    The keys to successful esthetic implant therapy in the anterior region are natural-looking implant restorations and an adequate alveolar ridge volume. Destruction of periodontal tissue resulting from periodontal and/or endodontic inflammation causes esthetic problems. Forced eruption is a valuable adjunct to augmenting the soft and hard tissue where the alveolar ridge is insufficient for esthetics. In this article, forced eruption was adopted for implant site development prior to implant placement and the periodontal tissue was augmented vertically using this technique. This technique simplified the surgical implant procedure without a need for advanced augmentation. PMID:27333017

  1. Stereoselective L-[3H]quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors.

    PubMed

    Murray, T F; Mpitsos, G J; Siebenaller, J F; Barker, D L

    1985-12-01

    The muscarinic antagonist L-[3H]quinuclidinyl benzilate (L-[3H]QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-[3H]QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-[3H]QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-[3H]QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-[3H]QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-[3H]QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-[3H]QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-[3H]QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution. PMID:4078624

  2. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    SciTech Connect

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.; Barker, D.L.

    1985-12-01

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.

  3. Exploring the Feasibility of Multi-Site Flow Cytometric Processing of Gut Associated Lymphoid Tissue with Centralized Data Analysis for Multi-Site Clinical Trials

    PubMed Central

    McGowan, Ian; Anton, Peter A.; Elliott, Julie; Cranston, Ross D.; Duffill, Kathryn; Althouse, Andrew D.; Hawkins, Kevin L.; De Rosa, Stephen C.

    2015-01-01

    The purpose of this study was to determine whether the development of a standardized approach to the collection of intestinal tissue from healthy volunteers, isolation of gut associated lymphoid tissue mucosal mononuclear cells (MMC), and characterization of mucosal T cell phenotypes by flow cytometry was sufficient to minimize differences in the normative ranges of flow parameters generated at two trial sites. Forty healthy male study participants were enrolled in Pittsburgh and Los Angeles. MMC were isolated from rectal biopsies using the same biopsy acquisition and enzymatic digestion protocols. As an additional comparator, peripheral blood mononuclear cells (PBMC) were collected from the study participants. For quality control, cryopreserved PBMC from a single donor were supplied to both sites from a central repository (qPBMC). Using a jointly optimized standard operating procedure, cells were isolated from tissue and blood and stained with monoclonal antibodies targeted to T cell phenotypic markers. Site-specific flow data were analyzed by an independent center which analyzed all data from both sites. Ranges for frequencies for overall CD4+ and CD8+ T cells, derived from the qPBMC samples, were equivalent at both UCLA and MWRI. However, there were significant differences across sites for the majority of T cell activation and memory subsets in qPBMC as well as PBMC and MMC. Standardized protocols to collect, stain, and analyze MMC and PBMC, including centralized analysis, can reduce but not exclude variability in reporting flow data within multi-site studies. Based on these data, centralized processing, flow cytometry, and analysis of samples may provide more robust data across multi-site studies. Centralized processing requires either shipping of fresh samples or cryopreservation and the decision to perform centralized versus site processing needs to take into account the drawbacks and restrictions associated with each method. PMID:26010577

  4. Rapid changes in number of GDP binding sites on brown adipose tissue mitochondria

    SciTech Connect

    Swick, A.G.; Swick, R.W.

    1986-08-01

    (TH)GDP binding to brown adipose tissue (BAT) mitochondria increased more than twofold in 20 min when rats were moved from 27 to 4C. When animals housed at 4C for 2 h were returned to 27C, GDP binding decreased sharply in 20 min and returned to control levels in 2 h. These results are consistent with a rapid unmasking and remasking of GDP bindings sites. GDP binding to mitochondria from warm and acutely cold treated rats was not modified by prior swelling, by freeze-thawing, nor by sonication of the mitochondria before assay. GDP-inhibitable proton conductance, as measured by passive swelling, was unaffected by this brief exposure to cold but more than doubled in rats kept at 4C for 10 days. The authors hypothesize that the rate of GDP-inhibitable swelling may be a reflection of uncoupling protein concentration in the BAT mitochondria, whereas physiological thermogenic activity is more appropriately indicated by GDP binding. The alterations in binding activity appear not to be due to changes in the mitochondrial membrane integrity.

  5. Biodistribution of etanercept to tissues and sites of inflammation in arthritic rats.

    PubMed

    Chen, Xi; DuBois, Debra C; Almon, Richard R; Jusko, William J

    2015-06-01

    Many monoclonal antibodies (mAbs) and other protein drugs have targets usually residing within tissues, making tissue concentrations of mAbs relevant to their pharmacologic effects. Therefore, knowledge of tissue distribution kinetics is important to better understand their pharmacokinetics and pharmacodynamics. The tissue distribution of mAbs is affected by many physiologic factors that may be altered in disease status. In the present work, we studied the tissue distribution kinetics of the fusion protein etanercept in inflamed joint tissues and examined the impact of inflammation on the tissue distribution of etanercept. Etanercept concentration profiles in plasma, blister fluid, and different tissues were obtained from healthy and collagen-induced arthritic (CIA) rats by use of a fluorescence quantification method via IRDye800CW labeling. Stepwise minimal and full physiologically based pharmacokinetic (PBPK) approaches were applied to characterize the distribution kinetics of etanercept in tissues in healthy and diseased animals. Etanercept exhibited modest tissue access (tissue/plasma area under the concentration curve [AUC] ratios 0.03-0.15 and estimated tissue reflection coefficients [σ] of 0.6-1.0), but with good penetration into arthritic paws (tissue/plasma AUC ratio 0.23 and σ 0.36). Etanercept exposure in the inflamed paws of CIA rats was approximately 3-fold higher than in normal paws taken from either CIA or healthy rats (tissue/plasma AUC ratios 0.23 versus 0.07 and σ 0.36 versus 0.71). The tissue distribution kinetics of etanercept in arthritic paws were well characterized with PBPK modeling approaches. Etanercept shows good penetration to arthritic paws in CIA rats. Our study indicates that inflammation produced increased tissue distribution of etanercept in CIA rats. PMID:25834031

  6. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers.

    PubMed

    Kalantzi, I; Pergantis, S A; Black, K D; Shimmield, T M; Papageorgiou, N; Tsapakis, M; Karakassis, I

    2016-03-01

    Twenty-eight metals and elements were measured in the muscle, liver, gills, bone and intestine of farmed seabass and gilthead seabream from four Mediterranean fish farms. The influence of fish species and the effect of environmental conditions on the metal accumulation in fish tissues was investigated. Most concentrations were lower in muscle and higher in liver and bone than in other body tissues. Seabass accumulates more elements in its tissues than seabream. Fish reared in coarse, oxic sites accumulate more elements with higher concentrations in muscle, bone and intestine and with lower concentrations in liver and gills than fish reared in silty, anoxic sites. This may be attributed to feed type and sediment properties. According to the metal pollution index, hazard quotient, selenium health benefit values, carcinogenic risk of arsenic, maximum safe consumption and the permitted limits, the consumption of both farmed species should be considered as safe for human health. PMID:26471605

  7. Calcitonin/calcitonin gene-related peptide transcription unit: tissue-specific expression involves selective use of alternative polyadenylation sites.

    PubMed Central

    Amara, S G; Evans, R M; Rosenfeld, M G

    1984-01-01

    Different 3' coding exons in the rat calcitonin gene are used to generate distinct mRNAs encoding either the hormone calcitonin in thyroidal C-cells or a new neuropeptide referred to as calcitonin gene-related peptide in neuronal tissue, indicating the RNA processing regulation is one strategy used in tissue-specific regulation of gene expression in the brain. Although the two mRNAs use the same transcriptional initiation site and have identical 5' terminal sequences, their 3' termini are distinct. The polyadenylation sites for calcitonin and calcitonin gene-related peptide mRNAs are located at the end of the exons 4 and 6, respectively. Termination of transcription after the calcitonin exon does not dictate the production of calcitonin mRNA, because transcription proceeds through both calcitonin and calcitonin gene-related peptide exons irrespective of which mRNA is ultimately produced. In isolated nuclei, both polyadenylation sites appear to be utilized; however, the proximal (calcitonin) site is preferentially used in nuclei from tissues producing calcitonin mRNA. These data suggest that the mechanism dictating production of each mRNA involves the selective use of alternative polyadenylation sites. Images PMID:6334229

  8. Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack

    PubMed Central

    Davis, Kimberly M.; Mohammadi, Sina; Isberg, Ralph R.

    2015-01-01

    Summary Bacterial pathogens express virulence-specific transcriptional programs that allow tissue colonization. Although phenotypic variation has been noted in the context of antibiotic exposure, no direct evidence exists for heterogeneity in virulence-specific transcriptional programs within tissues. In a mouse model of Yersinia pseudotuberculosis infection, we show that at least three subpopulations of bacteria develop within a single tissue site in response to distinct host signals. Bacteria growing on the exterior of spleen microcolonies responded to soluble signals and induced the nitric oxide (NO)-detoxifying gene, hmp. Hmp effectively eliminated NO diffusion and protected the interior bacterial population from exposure to NO-derived inducing signals. A third subpopulation, constituting the most peripherally-localized bacteria, directly contacted neutrophils and transcriptionally upregulated a virulence factor. These studies demonstrate that growth within tissues results in transcriptional specialization within a single focus of microbial replication, facilitating directed pathogen counterattack against the host response. PMID:25500192

  9. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots.

    PubMed

    Liao, Qiumei; Yu, Ying; Cao, Yujuan; Lin, Bixia; Wei, Jingjing

    2015-02-01

    The fluorescence labelling of plant hormone binding sites is an important analytical technique in research on the molecular mechanisms of plant hormone activities. The authors synthesised a jasmonic acid (JA)-conjugated ZnS:Mn quantum dot (QD) probe, with a cubic structure and average hydrodynamic sizes of about 17.0 nm. The maximum fluorescence emission of the probe was recorded at about 585 nm. The probe was used for fluorescence labelling of JA binding sites in mung bean seedling tissues. Analysis revealed that the probe exhibited high selectivity to JA binding sites and good performance in eliminating interference from background fluorescence in plant tissues. In addition, the probe did not exhibit any apparent biotoxicity, and is much more suitable than probes constructed from CdTe QDs for the analysis of biological samples. PMID:25650324

  10. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples.

    PubMed

    Jin, Wenfei; Tang, Qingsong; Wan, Mimi; Cui, Kairong; Zhang, Yi; Ren, Gang; Ni, Bing; Sklar, Jeffrey; Przytycka, Teresa M; Childs, Richard; Levens, David; Zhao, Keji

    2015-12-01

    DNase I hypersensitive sites (DHSs) provide important information on the presence of transcriptional regulatory elements and the state of chromatin in mammalian cells. Conventional DNase sequencing (DNase-seq) for genome-wide DHSs profiling is limited by the requirement of millions of cells. Here we report an ultrasensitive strategy, called single-cell DNase sequencing (scDNase-seq) for detection of genome-wide DHSs in single cells. We show that DHS patterns at the single-cell level are highly reproducible among individual cells. Among different single cells, highly expressed gene promoters and enhancers associated with multiple active histone modifications display constitutive DHS whereas chromatin regions with fewer histone modifications exhibit high variation of DHS. Furthermore, the single-cell DHSs predict enhancers that regulate cell-specific gene expression programs and the cell-to-cell variations of DHS are predictive of gene expression. Finally, we apply scDNase-seq to pools of tumour cells and pools of normal cells, dissected from formalin-fixed paraffin-embedded tissue slides from patients with thyroid cancer, and detect thousands of tumour-specific DHSs. Many of these DHSs are associated with promoters and enhancers critically involved in cancer development. Analysis of the DHS sequences uncovers one mutation (chr18: 52417839G>C) in the tumour cells of a patient with follicular thyroid carcinoma, which affects the binding of the tumour suppressor protein p53 and correlates with decreased expression of its target gene TXNL1. In conclusion, scDNase-seq can reliably detect DHSs in single cells, greatly extending the range of applications of DHS analysis both for basic and for translational research, and may provide critical information for personalized medicine. PMID:26605532

  11. Target site pharmacokinetics of linezolid after single and multiple doses in diabetic patients with soft tissue infection.

    PubMed

    Eslam, Roza Badr; Burian, Angela; Vila, Greisa; Sauermann, Robert; Hammer, Alexandra; Frenzel, Dorothea; Minichmayr, Iris K; Kloft, Charlotte; Matzneller, Peter; Oesterreicher, Zoe; Zeitlinger, Markus

    2014-09-01

    The underlying pathology of diabetic wounds, i.e. impairment of macro- and microcirculation, might also impact target site penetration of antibacterial drugs. To compare tissue concentrations of linezolid in infected and not infected tissue 10 patients suffering from type 2 diabetes with foot infection were included in the study. Tissue penetration of linezolid was assessed using in vivo microdialysis at the site of infection as well as in non-inflamed subcutaneous adipose tissue. All patients were investigated after receiving a single dose of linezolid and five patients in addition at steady state. After a single dose of linezolid significantly higher area under the concentration vs. time curve over 8 hours (AUC0-8 ) and maximum concentrations (Cmax )-values were observed in plasma (65.5 ± 21.2 mg*h/L and 16.4 ± 4.6 mg/L) as compared to inflamed (36.3 ± 22.9  mg*h/L and 6.6 ± 3.6 mg/L) and non-inflamed tissue (33.0 ± 17.7 mg*h/L and 6.7 ± 3.6 mg/L). Multiple administrations of linezolid led to disappearance of significant differences in Cmax and AUC0-8 between plasma, inflamed, and non-inflamed tissue. Approximately 2-fold increase of Cmax and AUC0-8 -values in tissue was observed at steady state as compared to the first administration. Penetration of linezolid is not impaired in diabetic foot infection but equilibrium between plasma and tissue might be delayed. PMID:24677034

  12. Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Lixin; Zhang, Miao; Yu, Ping

    2011-03-01

    We report imaging studies on site-specific peptide-targeting in tumor tissues using newly developed optical peptide probes and spectral-domain optical coherence tomography (SD-OCT). The system used two broadband superluminescent light emission diodes with different central wavelengths. An electro-optic modulation in the reference beam was used to get full-range deep imaging inside tumor tissues. The optical probes were based on Bombesin (BBN) that is a fourteen amino acid peptide. BBN has high binding affinity to gastrin-releasing peptide (GRP) receptors overexpressed on several human cancer cell lines. Fluorescence BBN probes were developed by conjugating the last eight residues of BBN, -Q-W-A-V-G-H-L-M-(NH2), with Alexa Flour 680 or Alexa Fluor 750 dye molecules via amino acid linker -G-G-G. The SD-OCT imaging can identify normal tissue and tumor tissue through the difference in scattering coefficient, and trace the BBN conjugate probes through the absorption of the dye molecules using the twowavelength algorithm. We performed the specific uptake and receptor-blocking experiments of the optical BBN probes in severely compromised immunodeficient mouse model bearing human PC-3 prostate tumor xenografts. Tumor and muscle tissues were collected and used for SD-OCT imaging. The SD-OCT images showed fluorescence traces of the BBN probes in the peptide-targeted tumor tissues. Our results demonstrated that SD-OCT is a potential tool for preclinical and clinical early cancer detection.

  13. Molecular genotyping of Echinococcus granulosus using formalin-fixed paraffin-embedded preparations from human isolates in unusual tissue sites.

    PubMed

    Hizem, A; M'rad, S; Oudni-M'rad, M; Mestiri, S; Hammedi, F; Mezhoud, H; Zakhama, A; Mokni, M; Babba, H

    2016-07-01

    Cystic echinococcosis (CE) caused by Echinococcus granulosus remains a serious problem worldwide for issues relating to public health and the economy. The most predominantly affected sites are the liver and the lungs, but other organs such as the heart, the spleen and the peritoneum can also be infected. Access to cysts from uncommon sites has limited genomic and molecular investigations. In the present study, genotypes of E. granulosus sensu lato were identified from formalin-fixed paraffin-embedded tissues (FF-PETs) implicated in human CE. Tissue samples were obtained from 57 patients with histologically confirmed CE. DNA samples were analysed using Egss 1 polymerase chain reaction (PCR) specific to the mitochondrial 12S rRNA gene of E. granulosus sensu stricto. All cysts were typed as E. granulosus sensu stricto with up to 35% of the liver and 16.6% of lungs being the most frequently infected, and up to 48.4% of samples being from rare sites. No correlation was found between cyst site and either the gender or the age of patients. This study demonstrates the possibility of exploiting atypical cysts using FF-PET samples and highlights the predominance of E. granulosus sensu stricto species in the Tunisian population, even in unusual infection sites. PMID:26190231

  14. Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site.

    PubMed Central

    Boyes, J; Felsenfeld, G

    1996-01-01

    DNase I-hypersensitive sites lack a canonical nucleosome and have binding sites for various transcription factors. To understand how the hypersensitivity is generated and maintained, we studied the chicken erythroid-specific beta(A)/epsilon globin gene enhancer, a region where both tissue-specific and ubiquitous transcription factors can bind. Constructions containing mutations of this enhancer were stably introduced into a chicken erythroid cell line. We found that the hypersensitivity was determined primarily by the erythroid factors and that their binding additively increased the accessibility. The fraction of accessible sites in clonal cell lines was quantitated using restriction endonucleases; these data implied that the formation of each hypersensitive site was an all-or-none phenomenon. Use of DNase I and micrococcal nuclease probes further indicated that the size of the hypersensitive site was influenced by the binding of transcription factors which then determined the length of the nucleosome-free gap. Our data are consistent with a model in which hypersensitive sites are generated stochastically: mutations that reduce the number of bound factors reduce the probability that these factors will prevail over a nucleosome; thus, the fraction of sites in the population that are accessible is also diminished. Images PMID:8665857

  15. Metal(loid)s in sediment, lobster and mussel tissues near historical gold mine sites.

    PubMed

    Walker, Tony R; Grant, Jon

    2015-12-15

    Previous studies near historical gold mining districts in Nova Scotia have identified significant enrichment of metal(loid)s in coastal marine sediments. Most of this inventory is buried below biologically active zones, although in some areas arsenic has bioaccumulated in marine biota resulting in localised bivalve shellfish closures. Isaacs Harbour is poised for future industrial development, but before potential impacts are predicted, current marine baseline conditions must be determined. To address this gap, this study established a baseline using surface sediments and biota (mussel and lobster tissues), to provide a broader picture of metal(loid)s in the marine environment. Results confirmed previous studies showing that most sediment metal(loid) concentrations still exceeded Canadian Marine Sediment Quality Guidelines, and also provided evidence of Canadian Food Inspection Agency fish tissue exceedances of arsenic in lobster and lead in mussel tissues indicating that some bioaccumulation of legacy contaminants in marine biota continues to the present day. PMID:26475024

  16. The Evolution of Tissue Stiffness at Radiofrequency Ablation Sites During Lesion Formation and in the Peri‐Ablation Period

    PubMed Central

    EYERLY, STEPHANIE A.; VEJDANI‐JAHROMI, MARYAM; DUMONT, DOUGLAS M.; TRAHEY, GREGG E.

    2015-01-01

    Peri‐Ablation Monitoring of RFA Lesion Stiffness Introduction Elastography imaging can provide radiofrequency ablation (RFA) lesion assessment due to tissue stiffening at the ablation site. An important aspect of assessment is the spatial and temporal stability of the region of stiffness increase in the peri‐ablation period. The aim of this study was to use 2 ultrasound‐based elastography techniques, shear wave elasticity imaging (SWEI) and acoustic radiation force impulse (ARFI) imaging, to monitor the evolution of tissue stiffness at ablation sites in the 30 minutes following lesion creation. Methods and Results In 6 canine subjects, SWEI measurements and 2‐D ARFI images were acquired at 6 ventricular endocardial RFA sites before, during, and for 30 minutes postablation. An immediate increase in tissue stiffness was detected during RFA, and the area of the postablation region of stiffness increase (RoSI) as well as the relative stiffness at the RoSI center was stable approximately 2 minutes after ablation. Of note is the observation that relative stiffness in the region adjacent to the RoSI increased slightly during the first 15 minutes, consistent with local fluid displacement or edema. The magnitude of this increase, ∼0.5‐fold from baseline, was significantly less than the magnitude of the stiffness increase directly inside the RoSI, which was greater than 3‐fold from baseline. Conclusions Ultrasound‐based SWEI and ARFI imaging detected an immediate increase in tissue stiffness during RFA, and the stability and magnitude of the stiffness change suggest that consistent elasticity‐based lesion assessment is possible 2 minutes after and for at least 30 minutes following ablation. PMID:25970142

  17. Affinity of pyridylalkylamines for nicotinic, muscarinic and histaminic recognition sites in brain tissue preparations.

    PubMed

    Repond, C; Pratt, J A; Stolerman, I P; Mayer, J M; Jenner, P; Marsden, C D; Testa, B

    1986-08-01

    The affinity of 15 regioisomeric and homologous pyridylalkylamines was examined in brain preparations for nicotinic, muscarinic, and H1-histaminic binding sites as labeled by [3H]-nicotine, [3H]-dexetimide and [3H]-mepyramine, respectively. Overall, the compounds show a clear selectivity for the nicotinic versus muscarinic binding sites, and a weak affinity for the H1-histaminic sites. Variations in affinity appear to be partly influenced by steric factors (such as position of attachment, length and rigidity of side-chain) and marginally by lipophilicity. PMID:3778556

  18. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...

  19. Site-Specific Neutrophil Migration and CXCL2 Expression in Periodontal Tissue.

    PubMed

    Greer, A; Irie, K; Hashim, A; Leroux, B G; Chang, A M; Curtis, M A; Darveau, R P

    2016-07-01

    The oral microbial community is the best-characterized bacterial ecosystem in the human host. It has been shown in the mouse that oral commensal bacteria significantly contribute to clinically healthy periodontal homeostasis by influencing the number of neutrophils that migrate from the vasculature to the junctional epithelium. Furthermore, in clinically healthy tissue, the neutrophil response to oral commensal bacteria is associated with the select expression of the neutrophil chemokine CXCL2 but not CXCL1. This preliminary study examined the contribution of commensal bacteria on neutrophil location across the tooth/gingival interface. Tissue sections from the root associated mesial (anterior) of the second molar to the root associated distal (posterior) of the second molar were examined for neutrophils and the expression of the neutrophil chemokine ligands CXCL1 and CXCL2. It was found that both the number of neutrophils as well as the expression of CXCL2 but not CXCL1 was significantly increased in tissue sections close to the interdental region, consistent with the notion of select tissue expression patterns for neutrophil chemokine expression and subsequent neutrophil location. Furthermore, mice gavaged with either oral Streptococcus or Lactobacillus sp. bacteria induced a location pattern of neutrophils and CXCL2 expression similar to the normal oral flora. These data indicate for the first time select neutrophil location and chemokine expression patterns associated with clinically healthy tissue. The results reveal an increased inflammatory load upon approaching the interproximal region, which is consistent with the observation that the interproximal region often reveals early clinical signs of periodontal disease. PMID:27013641

  20. Phylogenetic distribution of (/sup 3/H)cyclohexyladenosine binding sites in nervous tissue

    SciTech Connect

    Siebenaller, J.F.; Murray, T.F.

    1986-05-29

    The specific binding of the A/sub 1/ adenosine receptor ligand. (/sup 3/H)CHA, was investigated in membrane fractions prepared from brains of eleven vertebrate species and ganglia of four invertebrate species. Substantial amounts of specific (/sup 3/H)CHA binding sites were demonstrated in brain membranes of all vertebrate species examined; however, (/sup 3/H)CHA binding sites were not detectable in nervous sites in vertebrate brains increase in higher vertebrates. Moreover, the pharmacological characteristics of the site labeled by (/sup 3/H)CHA in two divergent classes of vertebrates were similar. The broad phylogenetic distribution of A/sub 1/ adenosine receptors in primitive as well as advanced vertebrate species suggests a fundamental role for adenosine in neuronal modulation.

  1. Elucidation of transcriptome-wide microRNA binding sites in human cardiac tissues by Ago2 HITS-CLIP

    PubMed Central

    Spengler, Ryan M.; Zhang, Xiaoming; Cheng, Congsheng; McLendon, Jared M.; Skeie, Jessica M.; Johnson, Frances L.; Davidson, Beverly L.; Boudreau, Ryan L.

    2016-01-01

    MicroRNAs (miRs) have emerged as key biological effectors in human health and disease. These small noncoding RNAs are incorporated into Argonaute (Ago) proteins, where they direct post-transcriptional gene silencing via base-pairing with target transcripts. Although miRs have become intriguing biological entities and attractive therapeutic targets, the translational impacts of miR research remain limited by a paucity of empirical miR targeting data, particularly in human primary tissues. Here, to improve our understanding of the diverse roles miRs play in cardiovascular function and disease, we applied high-throughput methods to globally profile miR:target interactions in human heart tissues. We deciphered Ago2:RNA interactions using crosslinking immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to generate the first transcriptome-wide map of miR targeting events in human myocardium, detecting 4000 cardiac Ago2 binding sites across >2200 target transcripts. Our initial exploration of this interactome revealed an abundance of miR target sites in gene coding regions, including several sites pointing to new miR-29 functions in regulating cardiomyocyte calcium, growth and metabolism. Also, we uncovered several clinically-relevant interactions involving common genetic variants that alter miR targeting events in cardiomyopathy-associated genes. Overall, these data provide a critical resource for bolstering translational miR research in heart, and likely beyond. PMID:27418678

  2. PCB in tissue concentrations in great blue heron occupying a Superfund site: Risk assessment implications

    SciTech Connect

    Halbrook, R.S.; Brewer, R.; Mitchell, J.M.

    1994-12-31

    Using existing ambient concentrations of chemicals and conservative assumptions, preliminary risk assessment has indicated that piscivorous wildlife along the Clinch River adjacent to the Oak Ridge Reservation (ORR), Oak Ridge, TN are potentially at risk from exposure to PCBs. Total PCB concentrations in great blue heron egg and chick liver tissue (7.69 {mu}g/g and 1.91 {mu}g/g, respectively) collected from a tributary to the Clinch River passing through the ORR, were significantly greater than concentrations in egg and chick liver tissue (1.24 {mu}g/g and 0.71 {mu}g/g, respectively) collected off the ORR. Mono and non-ortho CB congeners also were greater in heron tissues collected on the ORR compared to those collected off the ORR. Reproductive parameters (eggs/nest and chicks/nest) were not significantly different between locations. These data indicate that herons nesting on the ORR are exposed to PCBs, however, concentrations are insufficient to illicit a detectable adverse reproductive response in this species. Risk assessment implications are that piscivorous species utilizing habitats on the ORR are accumulating environmental contaminants greater than back ground concentrations for this region, however, only the most sensitive species are probably adversely effected. Continued monitoring will provide base-line data for evaluating natural resource damages and remediation decisions.

  3. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers.

    PubMed

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Rokhsar, Daniel S; Levine, Michael S

    2016-06-01

    Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of intrinsic and extrinsic signals. Despite the discovery of the first enhancer more than 30 y ago, the relationship between primary DNA sequence and enhancer activity remains obscure. In particular, the importance of "syntax" (the order, orientation, and spacing of binding sites) is unclear. A high-throughput screen identified synthetic notochord enhancers that are activated by the combination of ZicL and ETS transcription factors in Ciona embryos. Manipulation of these enhancers elucidated a "regulatory code" of sequence and syntax features for notochord-specific expression. This code enabled in silico discovery of bona fide notochord enhancers, including those containing low-affinity binding sites that would be excluded by standard motif identification methods. One of the newly identified enhancers maps upstream of the known enhancer that regulates Brachyury (Ci-Bra), a key determinant of notochord specification. This newly identified Ci-Bra shadow enhancer contains binding sites with very low affinity, but optimal syntax, and therefore mediates surprisingly strong expression in the notochord. Weak binding sites are compensated by optimal syntax, whereas enhancers containing high-affinity binding affinities possess suboptimal syntax. We suggest this balance has obscured the importance of regulatory syntax, as noncanonical binding motifs are typically disregarded by enhancer detection methods. As a result, enhancers with low binding affinities but optimal syntax may be a vastly underappreciated feature of the regulatory genome. PMID:27155014

  4. Results of fish tissue screening studies from sites in the Tennessee and Cumberland Rivers in 1988

    SciTech Connect

    Dycus, D.L.

    1990-07-01

    TVA analyzes tissues of Tennessee Valley area fish as part of intensive evaluations and as pat of screening level evaluations. Intensive studies are conducted in reservoirs where contamination problems are known or suspected and include analysis of individual fillets from important fish species from several areas in the reservoir. This information is used by State public health officials to determine whether fish consumption advisories are necessary to protect human health. Screening studies are based on analysis of composite rather than individual samples and are intended to provide trend information and to identify areas where problems may exist indicating need for an intensive evaluation. All studies are coordinated with State agencies because they ultimately must make management decisions regarding public health. TVA has two fish tissue screening programs. One examines fish on an annual basis at inflow points from eight of the major tributaries into the Tennessee River reservoir system. The other examines fish from within the reservoirs on a rotating basis with the goal of sampling each reservoir at least once every three years. 7 refs., 1 fig., 8 tabs.

  5. Binding of bovine thyrotropin to specific sites in thyroid tissue from control and hemithyroidectomized rats

    SciTech Connect

    Clark, O.H.; Lambert, W.R.; Amir, S.M.; Ingbar, S.H.

    1985-12-01

    The binding of 125I-bovine thyrotropin to thyroid particulate fractions from sham-operated (control) and hemithyroidectomized rats was compared to determine if a change in either the number of bovine thyroid-stimulating hormone (bTSH) binding sites or their affinity for bTSH occurs in physiological situations that evoke changes in the intensity of thyroid stimulation. Following hemithyroidectomy serum TSH levels increase and the remnant thyroid lobe enlarges. Because of compensatory thyroid hypertrophy the concentration of TSH binding sites in the thyroid glands from hemithyroidectomized and control rats was related to particulate protein concentration, to the degree of thyroid cellularity as indicated by DNA concentration, and to the concentration of the plasma membrane markers, 5'-nucleotidase and magnesium-dependent ATPase. In each of four experiments, saturation studies revealed that the maximum specific binding of TSH per unit particulate protein and per thyroid lobe was greater in particulates from remnant than from control thyroid lobes. When related to DNA concentration, the concentration of TSH binding sites in remnant lobes was approximately twice that in control lobes. Because of an increase in plasma membrane markers per lobe after hemithyroidectomy, however, there was no difference in the number of TSH binding sites when related to the concentrations of the membrane marker enzymes in the particulate fractions. As judged from Scatchard analysis, the affinity of TSH binding was lower in remnant than in control lobes. This was partially but not completely due to the increased concentration of particulate protein in the remnant thyroid. These experiments demonstrate that the increase in serum TSH levels after hemithyroidectomy in the rat is associated with alterations in TSH receptor capacity and affinity.

  6. Recurrent secondary postpartum hemorrhages due to placental site vessel subinvolution and local uterine tissue coagulopathy

    PubMed Central

    2014-01-01

    Background Postpartum hemorrhage (PPH) represents a serious problem for women and obstetricians. Because of its association with hemorrhagic shock and predisposition to disseminated coagulopathy, it is a leading cause of maternal deaths worldwide. Furthermore, the jeopardy of PPH is rising with the secondary form of PPH occurring between 24 hours and 6 weeks postpartum, when women are already discharged home. The causes of this pathology are severe inflammation (endometritis), inherited coagulation disorders, consumptive coagulopathy, and retained products of conceptions. Others are of rare occurrence, such as vessel subinvolution (VSI) of the placental implantation site, uterine artery pseudoaneurysm, or trauma. Case presentation We present a rare form of recurrent secondary postpartum hemorrhage in a woman after uncomplicated cesarean delivery, with review of the literature linked to the management of this situation originating in the rare local VSI in the placental implantation site, defective decidual homeostasis, and coagulopathy confined to the uterus. Conclusion The placental site VSI is one of the rare causes of secondary PPH, and this situation is frequently underdiagnosed by clinicians. The histological confirmation of dilated “clustered”-shaped myometrial arteries partially occluded by thrombi of variable “age” together with the presence of endovascular extravillous trophoblasts confirms the diagnosis. PMID:24558972

  7. Binding sites of muscarinic and adrenergic receptors in gastrointestinal tissues of dairy cows suffering from left displacement of the abomasum.

    PubMed

    Ontsouka, E C; Niederberger, M; Steiner, A; Bruckmaier, R M; Meylan, M

    2010-12-01

    Muscarinic acetylcholine (M) and adrenergic (AR) receptors mediate gastrointestinal motility. Using radioligand binding assays and real-time polymerase chain reaction, the densities of binding sites and mRNA levels of M₂, M₃, α₂(AD)- and β₂-AR were compared in muscle tissues from the abomasal fundus, pylorus, duodenum, caecum, and external loop of the spiral colon of eight cows with left displacement of abomasum (LDA), and of eight healthy cows. Specific binding of the [³H]-ligands to each of the four receptors was competitive and saturable. Binding sites of M₂ (all intestinal sites), M₃ (duodenum and caecum), and of α₂(AD)-AR (abomasal fundus) were lower (P < 0.05) in cows with LDA than in healthy cows. The coefficients of correlation between binding sites and mRNA transcripts of receptors were dissimilar in cows with LDA and healthy cows. The decrease in densities of M (intestine) and of α₂(AD)-AR (abomasum) receptors suggests their implication in the impairment of motility associated with or leading to LDA. PMID:19796972

  8. Further evidence for the presence of "septide-sensitive" tachykinin binding sites in tissues possessing solely NK(1) tachykinin receptors.

    PubMed

    Torrens, Y; Beaujouan, J C; Saffroy, M; Glowinski, J

    2000-04-13

    Binding experiments performed with [(125)I]-NKA allowed us to demonstrate the presence of "septide-sensitive" specific binding sites on membranes from rat CHO cells transfected with the NK(1) receptor cDNA (CHO-rat-NK1 cells), human astrocytoma U373 MG, or mouse cortical astrocytes, cells which express NK(1) but neither NK(2) nor NK(3) receptors. In all cases, [(125)I]-NKA was specifically bound with high affinity (2 to 5 nM) to a single population of sites. In the three preparations, pharmacological characteristics of [(125)I]-NKA binding sites were notably different from those of classical NK(1) binding sites selectively labelled with [(125)I]-BHSP. Indeed, the endogenous tachykinins NKA, NPK, and NKB and the septide-like compounds such as septide, SP(6-11), ALIE-124, [Apa(9-10)]SP, or [Lys(5)]NKA(4-10) had a much higher affinity for [(125)I]-NKA than [(125)I]-BHSP binding sites. Interestingly, differences were also found in the ratio of B(max) values for [(125)I]-NKA and [(125)I]-BHSP specific bindings from one tissue to another. These latter observations suggest that these two types of NK(1) binding sites are present on distinct NK(1) receptor isoforms (or conformers). Finally, while several tachykinins and tachykinin-related compounds stimulated cAMP formation or increased inositol phosphate accumulation in CHO-rat-NK1 cells, these compounds only increased the accumulation of inositol phosphates in the two other preparations. PMID:10753681

  9. Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis tissues from children.

    PubMed Central

    Yaginuma, K; Kobayashi, H; Kobayashi, M; Morishima, T; Matsuyama, K; Koike, K

    1987-01-01

    Attention was directed to hepatitis B virus (HBV) integration in tissues obtained from an hepatocellular carcinoma (HCC) of an 11-year-old boy and from the liver of his 6-year-old brother, who had chronic active hepatitis. Multiple HBV DNA integration sites were demonstrated in both tissues. Cell population(s) in the HCC and liver from the patient with chronic active hepatitis were assumed to be heterogeneous with regard to HBV integration. The integrated forms in the two tissues showed similar genetic organization without gross rearrangement. The location of one of the virus-chromosomal junctions was restricted to the 5'-end region of the minus-strand DNA of HBV. The experimental results support our previous model for the mechanism of HBV integration, in which minus-strand replicative intermediates integrate into chromosomal DNA. The integrated HBV DNAs were conserved in the same region of the viral genome, spanning from the C gene through the S gene to the X gene, which contains intrinsic promoter-enhancer sequences. Images PMID:3033312

  10. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops. PMID:23974493

  11. Influence of site on the therapeutic ratio of adjuvant radiotherapy in soft-tissue sarcoma of the extremity

    SciTech Connect

    Alektiar, Kaled M. . E-mail: alektiak@mskcc.org; Brennan, Murray F.; Singer, Samuel

    2005-09-01

    Purpose: The ultimate goal of adjuvant radiotherapy (RT) in soft-tissue sarcoma of the extremity is to improve the therapeutic ratio by increasing local control while minimizing morbidity. Most efforts in trying to improve this ratio have focused on the sequencing of RT and surgery, with little attention to the potential influence of the tumor site. The purpose of this study was to determine the influence of tumor site on local control and complications in a group of patients with primary high-grade soft-tissue sarcoma of the extremity treated at a single institution with postoperative RT. Methods and Materials: Between July 1982 and December 2000, 369 adult patients with primary high-grade soft-tissue sarcoma of the extremity were treated with limb-sparing surgery and postoperative RT. Patients who underwent surgery or RT outside our institution were excluded. The tumor site was the upper extremity (UE) in 103 (28%) and the lower extremity (LE) in 266 (72%). The tumor was {<=}5 cm in 98 patients (27%), and the microscopic margins were positive in 44 (12%). Of the 369 patients, 104 (28%) underwent postoperative external beam RT (EBRT), 233 (63%) postoperative brachytherapy (BRT), and 32 underwent a combination (9%); 325 (88%) received a 'conventional' radiation dose, defined as 60-70 Gy for EBRT, 45 Gy for BRT, and 45-50 Gy plus 15-20 Gy for EBRT plus BRT. Complications were assessed in terms of wound complications requiring repeat surgery, fracture, joint stiffness, edema, and Grade 3 or worse peripheral nerve damage. Results: The UE and LE groups were balanced with regard to age, depth, margin status, and type of RT (EBRT vs. BRT {+-} EBRT). However, more patients in the UE group had tumors {<=}5 cm and more received a conventional radiation dose (p = 0.01 and P = 0.03, respectively). With a median follow-up of 50 months, the 5-year actuarial rate of local control, distant relapse-free survival, and overall survival for the whole population was 82% (95

  12. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  13. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  14. Prevalence, site and tissue preference of myxozoan parasites infecting gills of cultured fish in Punjab (India).

    PubMed

    Kaur, Harpreet; Katoch, Anu

    2016-02-25

    Native carp species cultured in Indian farms in Punjab (catla Catla catla, rohu Labeo rohita, mrigal Cirrhinus mrigala, exotic carps such as silver carp Hypophthalmichthys molitrix, grass carp Ctenopharyngodon idella, common carp Cyprinus carpio and a catfish Sperata seenghala) were examined for the presence of myxozoan parasites infecting gills. Firstly, the gills were examined under a zoom-stereomicroscope for the presence of plasmodia. The number of plasmodia per gill was counted to determine the index for the intensity of infection. Infected tissues were processed for histology, and 3-4 µm sections of infected gills were stained with haematoxylin & eosin and Luna's method. A total of 19 species of myxosporean were found infecting various cell types in the gills. Of these, 14 species belonged to the genus Myxobolus, 3 species to the genus Thelohanellus and 2 species to the genus Henneguya. Species belonging to the genus Myxobolus formed the interlamellar and intralamellar vascular (LV) type plasmodia, and species belonging to the genus Thelohanellus and Henneguya formed intrafilamental vascular (FV) type plasmodia. Mixed infections comprising 2, 3 or 4 different myxozoan species were noted in individual fish. The most common type of parasitism was polyparasitism due to 4 myxobolids co-occuring in fish with an infection rate of 23.16%. All species caused mild to severe haemorrhagic gill disease with little clinical symptomatology. PMID:26912043

  15. Identification of Alternate Polyadenylation Sites and Analysis of their Tissue Distribution Using EST Data

    PubMed Central

    Beaudoing, Emmanuel; Gautheret, Daniel

    2001-01-01

    Alternate polyadenylation affects a large fraction of higher eucaryote mRNAs, producing mature transcripts with 3′ ends of variable length. This variation is poorly represented in the current transcript catalogs derived from whole genome sequences, mostly because such posttranscriptional events are not detectable directly at the DNA level. Alternate polydenylation of an mRNA is better understood by comparision to EST databases. Comparing ESTs to mRNAs, however, is a difficult task subjected to the pitfalls of internal priming, presence of intron sequences, repeated elements, chimerical ESTs or matches with EST from paralogous genes. We present here a computer program that addresses these problems and displays ESTs matches to a query mRNA sequence to predict alternate polyadenylation and to suggest library-specific forms. The output highlights effective polyadenylation signals, possible sources of artifacts such as A-rich stretches in the mRNA sequences, and allows for a direct visualization of EST libraries using color codes. Statistical biases in the distribution of alternative mRNA forms among EST libraries were systematically sought. About 1450 human and 200 mouse mRNAs displayed such biases, suggesting in each case a tissue- or disease-specific regulation of polyadenylation. PMID:11544195

  16. Clinicopathologic Characterization of Aggressive Natural Killer Cell Leukemia Involving Different Tissue Sites.

    PubMed

    Gao, Li-Min; Zhao, Sha; Liu, Wei-Ping; Zhang, Wen-Yan; Li, Gan-Di; Küçük, Can; Hu, Xiao-Zhou; Chan, Wing C; Tang, Yuan; Ding, Wen-Shuang; Yan, Jia-Qi; Yao, Wen-Qing; Wang, Jian Chao

    2016-06-01

    Aggressive natural killer cell leukemia (ANKL) is a rare disease with an extremely aggressive clinical course. The etiology of ANKL is unclear with few genetic/epigenetic aberrations described to date. Moreover, misdiagnosis of ANKL is a frequent problem. Clinicopathologic characteristics of 35 retrospective cases of ANKL were investigated with the aim of improving diagnosis and to find the genetic/epigenetic aberrations associated with ANKL etiology. Because of the relatively low number of leukemic cells in the peripheral blood and bone marrow, diagnosis of ANKL can be missed; therefore, it is important to perform biopsy on solid tissues, if necessary. We describe the pathology of ANKL in the lymph nodes, bone marrow, spleen, liver, and skin, with focus on diagnosis and differentiated diagnosis. We observed young male predominance in our cohort, and the clinical course was more aggressive than reported previously. Low lactate dehydrogenase (<712 IU/L), chemotherapy or L-asparaginase administration were found to be associated with more favorable outcomes. SH2 domains of STAT5B and STAT3 also were screened for the presence of activating mutations. Moreover, CpG island methylation status of HACE1, a candidate tumor-suppressor gene, was determined in ANKL samples. We observed activating STAT5B mutations (1/5) and hypermethylation of HACE1 (3/4) in ANKL cases, suggesting that these aberrations may contribute to ANKL pathogenesis. PMID:26975038

  17. Benzodiazepine binding sites in rat interscapular brown adipose tissue: effect of cold environment, denervation and endocrine ablations

    SciTech Connect

    Solveyra, C.G.; Romeo, H.E.; Rosenstein, R.E.; Estevez, A.G.; Cardinali, D.P.

    1988-01-01

    /sup 3/H-Flunitrazepam (FNZP) binding was examined in a crude membrane fraction obtained from rat interscapular brown adipose tissue (IBAT). A single population of binding sites was apparent with dissociation constant (K/sub D/) = 0.47 +/- 0.04 uM and maximal number of binding sites (B/sub max/ = 31 +/- 5 pmol.mg prot/sup -1/. From the activity of several benzodiazepine (BZP) analogs to compete for the binding, the peripheral nature of FNZP binding was tentatively established. Similar BZP binding sites were detectable in isolated IBAT mitochondria. Exposure of rats to 4 /sup 0/C for 15 days decreased B/sub max/ significantly without affecting K/sub D/. Cold-induced decrease in B/sub max/ of BZP binding was prevented by surgical IBAT denervation. Denervation prevented or impaired the increased activity of the mitochondrial markers succinate dehydrogenase and malate dehydrogenase in IBAT of cold-exposed rats, but did not affect monoamine oxidase activity. Their results indicate that BZP binding in rat IBAT may belong to the peripheral type, is decreased by a cold environment through activation of peripheral sympathetic nerves and is affected by hypophysectomy. BZP and GDP binding in IBAT mitochondria seem not to be functionally related. 23 references, 4 figures, 3 tables.

  18. Tissue-specific expression of the bovine aromatase-encoding gene uses multiple transcriptional start sites and alternative first exons.

    PubMed

    Fürbass, R; Kalbe, C; Vanselow, J

    1997-07-01

    Here we report on the genomic structure of the bovine aromatase cytochrome P450-encoding gene (Cyp19) and its tissue-specific transcript variants. The gene comprises at least 14 exons (1.1, 1.2a, 1.2b, 1.3,1.4, and 2-10) spanning more than 56 kilobases of genomic DNA. The coding area is confined to exons 2-10. Transcriptional start sites of Cyp19 were examined in granulosa cells, placenta, testis, adrenal gland, and brain, employing 5'-RACE (rapid amplification of complementary DNA ends) and primer extension. The analysis of 5'-RACE clones revealed six Cyp19 transcript variants that were different within their 5'-untranslated regions (5'-UTR). Yet, the coding region was identical in all clones. Although two of these 5'-UTR (the first 152 nucleotides of exon 2 and exon 1.4) are conserved among different species, four others (exons 1.1, 1.2a, 1.2b, and 1.3) did not show sequence homology to any other species. Transcription from exons 1.1 and 2 starts at several adjacent sites. In granulosa cells and placenta, but not in brain, a fraction of transcripts starting with exon 1.2a contains an additional untranslated exon, 1.2b, due to alternative splicing. Transcript variants comprising exon 1.1, 1.2a, 1.2b, or 1.3 were mainly found in the placenta, those with the 5'-UTR of exon 2 were predominant in granulosa cells, and transcripts with exon 1.4 prevailed in the brain. Estimates of Cyp19 transcript concentrations in six different tissues revealed high levels in granulosa cells and placenta, intermediate levels in testis and brain, and low levels in adrenal gland and liver. Our experiments demonstrate that six transcript variants of the bovine Cyp19 gene, including 9-11 exons, are expressed with tissue-specific preferences. These transcripts are presumably generated using five different promoter regions and tissue-specific alternative splicing. PMID:9202222

  19. Notch3 Activation Promotes Invasive Glioma Formation in a Tissue Site-Specific Manner

    PubMed Central

    Pierfelice, Tarran J.; Schreck, Karisa C.; Dang, Louis; Asnaghi, Laura; Gaiano, Nicholas; Eberhart, Charles G.

    2010-01-01

    While Notch signaling has been widely implicated in neoplastic growth, direct evidence for in vivo initiation of neoplasia by the pathway in murine models has been limited to tumors of lymphoid, breast, and choroid plexus cells. To examine tumorigenic potential in the eye and brain, we injected retroviruses encoding activated forms of Notch1, Notch2, or Notch3 into embryonic mice. Interestingly, the majority of animals infected with active Notch3 developed proliferative lesions comprised of pigmented ocular choroid cells, retinal and optic nerve glia, and lens epithelium. Notch3-induced lesions in the choroid, retina, and optic nerve were capable of invading adjacent tissues, suggesting that they were malignant tumors. While Notch3 activation induced choroidal tumors in up to 67% of eyes, Notch1 or Notch2 activation never resulted in such tumors. Active forms of Notch1 and Notch2 did generate a few small proliferative glial nodules in the retina and optic nerve, while Notch3 was ten-fold more efficient at generating growths, many of which were large invasive gliomas. Expression of active Notch1/Notch3 chimeric receptors implicated the RAM (RBPjk-association molecule) and transactivation domains (TAD) of Notch3 in generating choroidal and glial tumors, respectively. In contrast to our findings in the optic nerve and retina, introduction of active Notch receptors, including Notch3, into the brain never caused glial tumors. Our results highlight the differential ability of Notch receptor paralogs to initiate malignant tumor formation, and suggest that glial precursors of the optic nerve, but not the brain, are susceptible to transformation by Notch3. PMID:21245095

  20. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.

    PubMed

    Chernov, Igor P; Timchenko, Kira A; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2007-05-01

    We developed a technique of differential electrophoretic mobility shift assay (EMSA) display allowing identification of tissue-specific protein-binding sites within long genomic sequences. Using this approach, we identified 10 cell type-specific protein-binding sites (protein target sites [PTSs]) within a 137-kb human chromosome 19 region. In general, tissue-specific binding of proteins from different nuclear extracts by individual PTSs did not follow the all-or-nothing principle. Most often, PTS-protein complexes were formed in all cases, but they were different for different nuclear extracts used. PMID:17359930

  1. Influence of a cap site element on tissue-restricted expression of the glycoprotein hormone alpha-subunit gene.

    PubMed

    Cox, G S; Xiong, W

    1999-07-14

    Little is known of the transcriptional regulators important for expression of the glycoprotein hormone alpha-subunit (GPHalpha) gene in nonendocrine tumors, which secrete free alpha-subunit at an incidence of 25-80%. Consequently, attempts were made to define cis-regulatory elements and their cognate trans-acting factors that modulate promoter activity in epithelial cell types that do not normally express the glycoprotein hormones. DNA-mediated transient expression of promoter-reporter constructs was used to identify a novel negative regulatory element located at the GPHalpha gene transcription start site. Mutagenesis of this element produced a 2- to 10-fold increase in promoter activity, depending on the particular mutation and the transfected tumor cell line. Electrophoretic mobility shift analysis detected a protein that binds specifically to a DNA motif encompassing the cap site. It was present at different levels in a variety of cell types. Significantly, the degree to which activity of the wild-type promoter was suppressed relative to that of the mutant promoter was proportional to the level of cap site binding protein in the collection of cell lines examined. These results indicate that a negative regulatory element centered at the GPHalpha gene cap site and its cognate DNA-binding protein make a significant contribution to the production of alpha-subunit in a variety of tumor tissues. A detailed understanding of this cis/trans pair may further suggest a mechanism to explain, at least in part, how this gene becomes activated in nonendocrine tumors. PMID:10403838

  2. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children

    SciTech Connect

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavare, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth . E-mail: Liz.Crowne@ubht.swest.nhs.uk

    2005-08-15

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNF{alpha} exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h(3) versus 69 h(4); P = 0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P = 0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P = 0.014) and further elevated by acute exposure to TNF{alpha} (+230(52)%; P = 0.019 versus +123(24)%; P = 0.025, respectively). TNF{alpha} also significantly increased basal glucose transport rates (+44(14)%; P = 0.006 versus +34(11)%; P = 0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNF{alpha} exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.

  3. Evaluation of Microorganisms Cultured from Injured and Repressed Tissue Regeneration Sites in Endangered Giant Aquatic Ozark Hellbender Salamanders

    PubMed Central

    Nickerson, Cheryl A.; Ott, C. Mark; Castro, Sarah L.; Garcia, Veronica M.; Molina, Thomas C.; Briggler, Jeffrey T.; Pitt, Amber L.; Tavano, Joseph J.; Byram, J. Kelly; Barrila, Jennifer; Nickerson, Max A.

    2011-01-01

    Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a

  4. Early tissue responses to zoledronate, locally delivered by bone screw, into a compromised cancellous bone site: a pilot study

    PubMed Central

    2014-01-01

    Background In fracture treatment, adequate fixation of implants is crucial to long-term clinical performance. Bisphosphonates (BP), potent inhibitors of osteoclastic bone resorption, are known to increase peri-implant bone mass and accelerate primary fixation. However, adverse effects are associated with systemic use of BPs. Thus, Zoledronic acid (ZOL) a potent BP was loaded on bone screws and evaluated in a local delivery model. Whilst mid- to long-term effects are already reported, early cellular events occurring at the implant/bone interface are not well described. The present study investigated early tissue responses to ZOL locally delivered, by bone screw, into a compromised cancellous bone site. Methods ZOL was immobilized on fibrinogen coated titanium screws. Using a bilateral approach, ZOL loaded test and non-loaded control screws were implanted into femoral condyle bone defects, created by an overdrilling technique. Histological analyses of the local tissue effects such as new bone formation and osteointegration were performed at days 1, 5 and 10. Results Histological evaluation of the five day ZOL group, demonstrated a higher osseous differentiation trend. At ten days an early influx of mesenchymal and osteoprogenitor cells was seen and a higher level of cellular proliferation and differentiation (p < 5%). In the ZOL group bone-to-screw contact and bone volume values within the defect tended to increase. Local drug release did not induce any adverse cellular effects. Conclusion This study indicates that local ZOL delivery into a compromised cancellous bone site actively supports peri-implant osteogenesis, positively affecting mesenchymal cells, at earlier time points than previously reported in the literature. PMID:24656151

  5. Regulatory T cells sequentially migrate from the site of tissue inflammation to the draining LN to suppress the alloimmune response

    PubMed Central

    Zhang, Nan; Schröppel, Bernd; Lal, Girdhari; Jakubzick, Claudia; Mao, Xia; Chen, Dan; Yin, Na; Jessberger, Rolf; Ochando, Jordi C.; Ding, Yaozhong; Bromberg, Jonathan S.

    2009-01-01

    To determine site and mechanism of suppression, regulatory T cell (Treg) migration and function were investigated in an islet allograft model. Treg first migrated from blood to the inflammed allografts, this depended on CCR2, CCR4, CCR5, and P- and E-selectin ligands, and was essential for suppression of alloimmunity. In the allograft, Treg were activated, upregulated effector molecules, migrated to the draining lymph nodes (dLN) in a CCR2, CCR5, and CCR7 fashion, and this movement was essential for optimal suppression. Treg inhibited dendritic cell migration in a TGFβ and IL-10 dependent fashion; and suppressed antigen specific T effector cell migration, accumulation, and proliferation in dLNs and allografts. These results showed that sequential migration from blood to the target tissue and then to dLNs were required for nTreg to differentiate and execute fully their suppressive function, by inhibiting DC in the peripheral tissue, and T effector cell responses in dLN and allografts. PMID:19303390

  6. Effects of neonatal methylmercury exposure on adrenergic-receptor binding sites in peripheral tissues of the developing rat

    SciTech Connect

    Slotkin, T.A.; Kavlock, R.J.; Cowdery, T.; Orband, L.; Bartolome, M.

    1986-01-01

    Neonatal exposure to methylmercury produces changes in patterns of tissue growth and function, in part, due to alterations in adrenergic neuronal input. To explore the mechanisms by which these changes come about, newborn rats were exposed to methylmercury (1 or 2.5 mg/kg/day) throughout the preweaning stage and the ontogeny of adrenergic receptor binding sites evaluated in liver, kidney, heart and lung, using (/sup 3/H)prazosin (alpha 1-receptors), (/sup 3/H)rauwolscine (alpha 2-receptors) and (/sup 125/I)pindolol (beta-receptors). In the kidney, methylmercury caused decreases in beta- and alpha 1-receptor binding and increases in alpha 2-binding, and the alterations persisted into adulthood; previous work has shown that beta-receptor-mediated responses are generally enhanced in methylmercury-exposed pups, and the down-regulation of beta-receptor binding thus probably represents a compensatory action secondary to alterations in post-receptor coupling mechanisms. The effects of methylmercury on hepatic adrenergic receptors were different from those seen in the kidney, with substantial elevations in beta- and alpha-receptor binding apparent in the preweaning stage; this agrees also with the differences in effects of the mercurial on trophic reactivity and growth in the two tissues.

  7. An intramembranous ossification model for the in silico analysis of bone tissue formation in tooth extraction sites.

    PubMed

    Corredor-Gómez, Jennifer Paola; Rueda-Ramírez, Andrés Mauricio; Gamboa-Márquez, Miguel Alejandro; Torres-Rodríguez, Carolina; Cortés-Rodríguez, Carlos Julio

    2016-07-21

    The accurate modeling of biological processes allows us to predict the spatiotemporal behavior of living tissues by computer-aided (in silico) testing, a useful tool for the development of medical strategies, avoiding the expenses and potential ethical implications of in vivo experimentation. A model for bone healing in mouth would be useful for selecting proper surgical techniques in dental procedures. In this paper, the formulation and implementation of a model for Intramembranous Ossification is presented aiming to describe the complex process of bone tissue formation in tooth extraction sites. The model consists in a mathematical description of the mechanisms in which different types of cells interact, synthesize and degrade extracellular matrices under the influence of biochemical factors. Special attention is given to angiogenesis, oxygen-dependent effects and growth factor-induced apoptosis of fibroblasts. Furthermore, considering the depth-dependent vascularization of mandibular bone and its influence on bone healing, a functional description of the cell distribution on the severed periodontal ligament (PDL) is proposed. The developed model was implemented using the finite element method (FEM) and successfully validated by simulating an animal in vivo experiment on dogs reported in the literature. A good fit between model outcome and experimental data was obtained with a mean absolute error of 3.04%. The mathematical framework presented here may represent an important tool for the design of future in vitro and in vivo tests, as well as a precedent for future in silico studies on osseointegration and mechanobiology. PMID:27113783

  8. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care

    PubMed Central

    Ki, Vincent; Rotstein, Coleman

    2008-01-01

    Skin and soft tissue infections (SSTIs) involve microbial invasion of the skin and underlying soft tissues. They have variable presentations, etiologies and severities. The challenge of SSTIs is to efficiently differentiate those cases that require immediate attention and intervention, whether medical or surgical, from those that are less severe. Approximately 7% to 10% of hospitalized patients are affected by SSTIs, and they are very common in the emergency care setting. The skin has an extremely diverse ecology of organisms that may produce infection. The clinical manifestations of SSTIs are the culmination of a two-step process involving invasion and the interaction of bacteria with host defences. The cardinal signs of SSTIs involve the features of inflammatory response, with other manifestations such as fever, rapid progression of lesions and bullae. The diagnosis of SSTIs is difficult because they may commonly masquerade as other clinical syndromes. To improve the management of SSTIs, the development of a severity stratification approach to determine site of care and appropriate empirical treatment is advantageous. The selection of antimicrobial therapy is predicated on knowledge of the potential pathogens, the instrument of entry, disease severity and clinical complications. For uncomplicated mild to moderate infections, the oral route suffices, whereas for complicated severe infections, intravenous administration of antibiotics is warranted. Recognition of the potential for resistant pathogens causing SSTIs can assist in guiding appropriate selection of antibiotic therapy. PMID:19352449

  9. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites[OPEN

    PubMed Central

    Li, Wei; Vidal, Mabel; Gray, John; Doseff, Andrea I.; Grotewold, Erich

    2015-01-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop. PMID:26628745

  10. Tissue classification of large-scale multi-site MR data using fuzzy k-nearest neighbor method

    NASA Astrophysics Data System (ADS)

    Ghayoor, Ali; Paulsen, Jane S.; Kim, Regina E. Y.; Johnson, Hans J.

    2016-03-01

    This paper describes enhancements to automate classification of brain tissues for multi-site degenerative magnetic resonance imaging (MRI) data analysis. Processing of large collections of MR images is a key research technique to advance our understanding of the human brain. Previous studies have developed a robust multi-modal tool for automated tissue classification of large-scale data based on expectation maximization (EM) method initialized by group-wise prior probability distributions. This work aims to augment the EM-based classification using a non-parametric fuzzy k-Nearest Neighbor (k-NN) classifier that can model the unique anatomical states of each subject in the study of degenerative diseases. The presented method is applicable to multi-center heterogeneous data analysis and is quantitatively validated on a set of 18 synthetic multi-modal MR datasets having six different levels of noise and three degrees of bias-field provided with known ground truth. Dice index and average Hausdorff distance are used to compare the accuracy and robustness of the proposed method to a state-of-the-art classification method implemented based on EM algorithm. Both evaluation measurements show that presented enhancements produce superior results as compared to the EM only classification.

  11. Effects of Pacing Site and Stimulation History on Alternans Dynamics and the Development of Complex Spatiotemporal Patterns in Cardiac Tissue

    PubMed Central

    Gizzi, Alessio; Cherry, Elizabeth M.; Gilmour, Robert F.; Luther, Stefan; Filippi, Simonetta; Fenton, Flavio H.

    2013-01-01

    Alternans of action potential duration has been associated with T wave alternans and the development of arrhythmias because it produces large gradients of repolarization. However, little is known about alternans dynamics in large mammalian hearts. Using optical mapping to record electrical activations simultaneously from the epicardium and endocardium of 9 canine right ventricles, we demonstrate novel arrhythmogenic complex spatiotemporal dynamics. (i) Alternans predominantly develops first on the endocardium. (ii) The postulated simple progression from normal rhythm to concordant to discordant alternans is not always observed; concordant alternans can develop from discordant alternans as the pacing period is decreased. (iii) In contrast to smaller tissue preparations, multiple stationary nodal lines may exist and need not be perpendicular to the pacing site or to each other. (iv) Alternans has fully three-dimensional dynamics and the epicardium and endocardium can show significantly different dynamics: multiple nodal surfaces can be transmural or intramural and can form concave/convex surfaces resulting in islands of discordant alternans. (v) The complex spatiotemporal patterns observed during alternans are very sensitive to both the site of stimulation and the stimulation history. Alternans in canine ventricles not only exhibit larger amplitudes and persist for longer cycle length regimes compared to those found in smaller mammalian hearts, but also show novel dynamics not previously described that enhance dispersion and show high sensitivity to initial conditions. This indicates some underlying predisposition to chaos and can help to guide the design of new drugs and devices controlling and preventing arrhythmic events. PMID:23637684

  12. Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling

    PubMed Central

    Liuzzi, Anna Rita; Kift-Morgan, Ann; Lopez-Anton, Melisa; Friberg, Ida M.; Zhang, Jingjing; Brook, Amy C.; Roberts, Gareth W.; Donovan, Kieron L.; Colmont, Chantal S.; Toleman, Mark A.; Bowen, Timothy; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Fraser, Donald J.

    2016-01-01

    The antimicrobial responsiveness and function of unconventional human T cells are poorly understood, with only limited access to relevant specimens from sites of infection. Peritonitis is a common and serious complication in individuals with end-stage kidney disease receiving peritoneal dialysis. By analyzing local and systemic immune responses in peritoneal dialysis patients presenting with acute bacterial peritonitis and monitoring individuals before and during defined infectious episodes, our data show that Vγ9/Vδ2+ γδ T cells and mucosal-associated invariant T cells accumulate at the site of infection with organisms producing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and vitamin B2, respectively. Such unconventional human T cells are major producers of IFN-γ and TNF-α in response to these ligands that are shared by many microbial pathogens and affect the cells lining the peritoneal cavity by triggering local inflammation and inducing tissue remodeling with consequences for peritoneal membrane integrity. Our data uncover a crucial role for Vγ9/Vδ2 T cells and mucosal-associated invariant T cells in bacterial infection and suggest that they represent a useful predictive marker for important clinical outcomes, which may inform future stratification and patient management. These findings are likely to be applicable to other acute infections where local activation of unconventional T cells contributes to the antimicrobial inflammatory response. PMID:27527598

  13. Comparison of the Biobullet versus traditional pharmaceutical injection techniques on injection-site tissue damage and tenderness in beef subprimals.

    PubMed

    Sullivan, M M; Vanoverbeke, D L; Kinman, L A; Krehbiel, C R; Hilton, G G; Morgan, J B

    2009-02-01

    The incidence and severity of injection-site lesions has decreased since the development of the Beef Quality Assurance program. The objective was to evaluate the route of administration and the pharmaceutical product on the impact on tenderness, collagen concentration, and lesion occurrence in muscles of chucks and rounds. A total of 144 yearling steers (initial BW = 383 +/- 29.4 kg) were selected and transported to Oklahoma State University. Steers were blocked into 2 groups of 72 based on initial BW and were randomly allocated, within block, into pens of 6 head per pen (12 pens per block). Each pen was randomly assigned an injection protocol. On May 19, 2006 (d 0), steers were administered one of the following treatment injections: a standard Biobullet containing 100 mg of ceftiofur sodium (Naxel, Pfizer Inc., New York, NY); a traditional needle and syringe dose of ceftiofur sodium; a standard Biobullet containing BallistiVac infectious bovine rhinotracheitis (IBR; Titanium 5, SolidTech Animal Health, Newcastle, OK); a traditional needle and syringe dose of IBR; a traditional needle and syringe dose of Vira Shield 5 (Grand Laboratories Inc., Freeman, SD); a standard placebo Biobullet; or a traditional needle and syringe dose of sterile water. Percentage of samples with an identifiable lesion did not differ by drug administered or injection method. Warner-Bratzler shear force values of lesion center cores in chucks tended to be different (P = 0.07) from cores from the control steaks and at 2.54 and 5.08 cm away from the lesion center. Lesion centers from the Biobullet-BallistiVac IBR had a Warner-Bratzler shear force value of 7.01 kg, which was greater (P < 0.05) than values for lesion centers from chucks injected with a Biobullet-placebo (6.27 kg) or needle-ceftiofur sodium (5.08 kg). No significant differences (P > 0.10) were observed in the total collagenous connective tissue in samples extracted from the chuck or round. The comparison of lesion site and

  14. Sites and Mechanisms of Localization of Technetium-99m Phosphorus Radiopharmaceuticals in Acute Myocardial Infarcts and other Tissues

    PubMed Central

    Buja, L. Maximilian; Tofe, Andrew J.; Kulkarni, Padmakar V.; Mukherjee, Amal; Parkey, Robert W.; Francis, Marion D.; Bonte, Frederick J.; Willerson, James T.

    1977-01-01

    This study was performed to elucidate the localization at the cellular level of technetium-99m phosphorus (99mTc-P) radiopharmaceuticals in acute myocardial infarcts and the mechanisms responsible for 99mTc-P uptake in acute myocardial infarcts and other tissues. In 20 dogs with proximal left anterior descending coronary arterial ligation for 1-3 days, elevated calcium levels were measured at all sites of increased 99mTc-P uptake (acute myocardial infarcts, necrotic thoracotomy muscle, lactating breast, and normal bone); however, a consistent linear relationship between 99mTc-P and calcium levels was not observed. A strong correlation (r = 0.95 and 0.99, n = 2 dogs) was demonstrated between levels of 3H-diphosphonate and 99mTc-P in infarcted myocardium. Autoradiographic studies with 3H-diphosphonate revealed extensive labeling in the infarct periphery which contained necrotic muscle cells with features of severe calcium overloading, including widespread hypercontraction as well as more selective formation of mitochondrial calcific deposits. Autoradiography also demonstrated labeling of a small population of damaged border zone muscle cells which exhibited prominent accumulation of lipid droplets and focal, early mitochondrial calcification. Cell fractionation studies revealed major localization of both 99mTc-P and calcium in the soluble supernate and membrane-debris fractions of infarcted myocardium and less than 2% of total 99mTc-P and calcium in the mitochondrial fractions; however, electron microscopic examination showed that mitochondria with calcific deposits were not preserved in the mitochondrial fractions. In vitro studies evaluating the role of serum protein binding on tissue uptake of 99mTc-P agents demonstrated that, in spite of significant complexing with serum proteins, serum 99mTc-P activity retained the ability to adsorp to calcium hydroxyapatite and amorphous calcium phosphate. In vivo studies showed that concentration of human serum albumin

  15. Treatment of Rats with a Self-Selected Hyperlipidic Diet, Increases the Lipid Content of the Main Adipose Tissue Sites in a Proportion Similar to That of the Lipids in the Rest of Organs and Tissues

    PubMed Central

    Romero, María del Mar; Roy, Stéphanie; Pouillot, Karl; Feito, Marisol; Esteve, Montserrat; Grasa, María del Mar; Fernández-López, José-Antonio; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1–1.4%, four white AT sites lipid 28–63% of body lipid, and the rest of the body (including muscle) 38–44%. There was a good correlation between AT lipid and body lipid, but lipid in “other organs” was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the ”rest” of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed. PMID:24603584

  16. Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis--phylogeny, site-directed mutagenesis, and expression in nonanther tissues.

    PubMed

    Jepson, Christina; Karppinen, Katja; Daku, Rhys M; Sterenberg, Brian T; Suh, Dae-Yeon

    2014-09-01

    Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues. PMID:25040801

  17. Comparison of two techniques of harvesting connective tissue and its effects on healing pattern at palate and recession coverage at recipient site

    PubMed Central

    Pandit, Nymphea; Khasa, Meenakshi; Gugnani, Shalini; Malik, Rajvir; Bali, Deepika

    2016-01-01

    Aim: To compare the healing pattern in palate following harvestation of connective tissue graft by two different techniques and to compare the recession coverage at the recipient sites. Materials and Methods: 30 recession sites with Miller's class I and II recession in 16 patients were recruited for this study. Sites were randomly divided into 2 treatment groups. Group I used Unigraft Knife to harvest the connective tissue whereas in group II patients Langer & Langer techniques was used to harvest the connective tissue graft from the palate. Healing was evaluated at the donor site using- wound size(WS), immediate bleeding (iB) and delayed bleeding (dB), complete wound epithelialization (CE), sensibility disorders (S) and post operative pain (PP) at baseline, 1st, 4th, and 12th week postoperatively. Recession coverage was assessed by measuring Clinical Attachment Level (CAL), vertical recession (VR), width of keratinized gingiva (KT). Results: On comparison between Group I and II, a statistically significant larger wound size was observed in Group I. CWE was higher in Group II. A non significant difference was observed when SD, and delayed bleeding were compared at all time intervals. A non-significant difference was observed in the clinical parameters at the recipient site. Conclusion: When evaluating the WS and CWE, the Langer and Langer technique was found to be better than the Unigraft knife technique for harvesting the connective tissue graft, whereas both the techniques were found to be effective in root coverage procedure outcomes. PMID:27041892

  18. Study on Metal Concentrations in Tissues of Mallard and Pochard from Two Major Wintering Sites in Southeastern Caspian Sea, Iran.

    PubMed

    Sinka-Karimi, Mohammad Hosein; Pourkhabbaz, Ali Reza; Hassanpour, Mehdi; Levengood, Jeffrey M

    2015-09-01

    We examined concentrations of cadmium, chromium, iron, lead and zinc in the kidney, liver, and pectoral muscle of Mallards (Anas platyrhynchos; n = 30) and Pochards (Aythya ferina; n = 30) from two important wintering sites in the southeastern Caspian Sea in the winter of 2012. Mean lead concentrations (µg g(-1) ww) in livers (2.36 ± 1.00) of Pochard and in kidneys (3.43 ± 0.91) of Mallard exceeded the exposure threshold levels in liver (1.5 µg g(-1) ww) and kidney (3 µg g(-1) ww) of waterfowl. Mean cadmium concentrations in livers (1.63 ± 0.66) of Pochards exceeded the background level of this metal in liver (1 µg g(-1) ww) of waterfowl. Chromium, iron and zinc concentrations were within the normal range as reported in other duck studies. Gender-related and inter-specific variation of metal concentrations in analyzed tissues were observed (t test, p < 0.05). Our results indicated that waterfowl using the Miankalah and Gomishan International Wetlands are being exposed to elevated concentrations of cadmium and lead. PMID:26141923

  19. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection

    PubMed Central

    Damouche, Abderaouf; Huot, Nicolas; Dejucq-Rainsford, Nathalie; Satie, Anne-Pascale; Mélard, Adeline; David, Ludivine; Gommet, Céline; Ghosn, Jade; Noel, Nicolas; Pourcher, Guillaume; Martinez, Valérie; Benoist, Stéphane; Béréziat, Véronique; Cosma, Antonio; Favier, Benoit; Vaslin, Bruno; Rouzioux, Christine; Capeau, Jacqueline; Müller-Trutwin, Michaela; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Lambotte, Olivier; Bourgeois, Christine

    2015-01-01

    Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic

  20. Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse beta-globin intervening sequence 2.

    PubMed Central

    Galson, D L; Housman, D E

    1988-01-01

    To identify proteins from uninduced murine erythroleukemia nuclear extracts which specifically bind to sequences from the DNase I-hypersensitive region within the mouse beta-globin intervening sequence 2 (IVS2), a gel electrophoretic mobility shift assay was used. Two distinct sequence-specific binding proteins were detected. The specific binding sites for these factors were delineated by both DNase I protection footprinting and methylation interference. Factor B1 bound specifically to two homologous sites, B1-A and B1-B, approximately 100 base pairs apart within the IVS2 and on opposite strands. These two regions could interact with factor B1 independently. Factor B1 was limited to cells of hematopoietic lineages. Factor B2 bound to a site approximately 5 base pairs away from the B1-A site and was limited to cells of the erythroid lineage. The limited tissue distribution of these factors and the locations of their binding sites suggest that one or both of these factors may be involved in the formation of the tissue-specific DNase I-hypersensitive site in the IVS2 of the mouse beta-globin gene. Images PMID:3422099

  1. Site-specific concentrations of carotenoids in adipose tissue: relations with dietary and serum carotenoid concentrations in healthy adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary carotenoids are related to decreased risk of certain diseases. Serum and adipose tissue carotenoid concentrations are used as biomarkers of intake. This study examined relationships among concentrations of carotenoids in diet, serum and adipose tissue. Twelve women and thirteen healthy men p...

  2. Lupus erythematosus and localized scleroderma coexistent at the same sites: a rare presentation of overlap syndrome of connective-tissue diseases.

    PubMed

    Pascucci, Anabella; Lynch, Peter J; Fazel, Nasim

    2016-05-01

    Overlap syndromes are known to occur with connective-tissue diseases (CTDs). Rarely, the overlap occurs at the same tissue site. We report the case of a patient with clinical and histopathologic findings consistent with the presence of discoid lupus erythematosus (DLE) and localized scleroderma within the same lesions. Based on our case and other reported cases in the literature, the following features are common in patients with an overlap of lupus erythematosus (LE) and localized scleroderma: predilection for young women, photodistributed lesions, DLE, linear morphology clinically, and positivity along the dermoepidermal junction on direct immunofluorescence. Most patients showed good response to antimalarials, topical steroids, or systemic steroids. PMID:27274545

  3. Identification of a 5-Methylcytosine Site that may Regulate C/EBPβ Binding and Determine Tissue-Specific Expression of the BPI Gene in Piglets

    PubMed Central

    Sun, Li; Wang, Jing; Yin, Xuemei; Sun, Shouyong; Zi, Chen; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2016-01-01

    Bactericidal/permeability-increasing protein (BPI) plays an important role in innate immune defense in mammals. A previous study showed that BPI gene expression correlates to gram-negative bacteria resistance. However, this gene showed tissue-specific expression in piglets and strongly expressed only in the digestive tract. To investigate the mechanisms governing the tissue-specificity, bisulfite sequencing PCR and next generation sequencing were used for high accuracy methylation quantitation of CpG islands of BPI gene upstream in 11 different tissues from weaned Yorkshire piglets. Additionally, qPCR was used to examine mRNA levels of BPI gene as well as transcription factor. We additionally analyzed transcriptional regulation by studying key 5-methylcytosine sites and transcription factors. Results showed that BPI mRNA levels significantly correlated with the overall methylation as well as methylation at mC-15 which was non-CpG site, no significant correlation could be found between the BPI and transcription factor mRNA levels, EMSA test showed that C/EBPβ could interact with BPI wild-type promoter DNA, but not methylated DNA. So we confirmed that methylation of mC-15 residue could inhibit the ability of C/EBPβ binding to the BPI promoter and affect the expression, and this mechanism probably plays a role in the tissue specificity of BPI gene expression in weaned piglets. PMID:27338589

  4. DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific

    SciTech Connect

    Levy-Wilson, B.; Fortier, C.; Blackhart, B.D.; McCarthy, B.J.

    1988-01-01

    The authors mapped the DNase I- and micrococcal nuclease-hypersensitive sites present in the 5' end of the human apolipoprotein B (apo-B) gene in nuclei from cells expressing or not expressing the gene. Four DNase I-hypersensitive sites were found in nuclei from liver-derived HepG2 cells and intestine-derived CaCo-2 cells, which express the apo-B gene, but not in HeLa cells, which do not. These sites are located near positions -120, -440, -700, and +760 base pairs relative to the transcriptional start site. Undifferentiated CaCo-2 cells exhibited another site, near position -540. Six micrococcal nuclease-hypersensitive sites were found in nuclei from HepG2 and CaCo-2 cells, but not in HeLa cells or free DNA. These sites are located near positions -120, -390, -530, -700, -850, and +210. HepG2 cells exhibited another site, near position +460. Comparison of the DNA sequence of the 5' flanking regions of the human and mouse apo-B genes revealed a high degree of evolutionary conservation of short stretches of sequences in the immediate vicinity of each of the DNase I- and most of the micrococcal nuclease-hypersensitive sites.

  5. High affinity ( sup 3 H)glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    SciTech Connect

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D. )

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea (3H) glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of (3H) glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer (3H)glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of (3H)glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats.

  6. DNA-flow cytometry of head and neck carcinoma: the importance of uniform tissue sampling and tumor sites.

    PubMed

    Westerbeek, H A; Mooi, W J; Begg, C; Dessing, M; Balm, A J

    1992-01-01

    Flow cytometric DNA ploidy measurements using deparaffinized tumor specimens were performed on 46 squamous cell carcinomas of the head and neck, including 22 carcinomas of the oropharynx, 18 carcinomas of the larynx and six carcinomas of the oral cavity. Aneuploidy was found in 14 of these tumors with carcinomas of the larynx and oral cavity showing almost equal percentages of DNA aneuploidy (10/18 and 3/6, respectively). In contrast, only 1 of the oropharyngeal carcinomas was aneuploid. Accurate microscopy-controlled sampling of tumor tissue from the histological tissue blocks was found to be mandatory in order to obtain reliable ploidy measurements. PMID:1642865

  7. Evidences of basal lactate production in the main white adipose tissue sites of rats. Effects of sex and a cafeteria diet.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Sabater, David; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: perigonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and frozen. The complete WAT weight in each site was measured. Gene expression analysis of key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plasma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate levels and their relationships with lactate dehydrogenase activity and gene expressions were also measured. A main conclusion is the high production of lactate by WAT, practically irrespective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to produce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in WAT, a main function of the lactate dehydrogenase path may be that of converting excess available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to help control glycaemia and/or providing short chain substrates for use as energy source elsewhere. More information must be gathered before a conclusive role of WAT in the control of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is definitely established. PMID:25741703

  8. Evidences of Basal Lactate Production in the Main White Adipose Tissue Sites of Rats. Effects of Sex and a Cafeteria Diet

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Sabater, David; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: perigonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and frozen. The complete WAT weight in each site was measured. Gene expression analysis of key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plasma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate levels and their relationships with lactate dehydrogenase activity and gene expressions were also measured. A main conclusion is the high production of lactate by WAT, practically irrespective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to produce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in WAT, a main function of the lactate dehydrogenase path may be that of converting excess available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to help control glycaemia and/or providing short chain substrates for use as energy source elsewhere. More information must be gathered before a conclusive role of WAT in the control of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is definitely established. PMID:25741703

  9. Penetration of piperacillin-tazobactam into human prostate tissue and dosing considerations for prostatitis based on site-specific pharmacokinetics and pharmacodynamics.

    PubMed

    Kobayashi, Ikuo; Ikawa, Kazuro; Nakamura, Kogenta; Nishikawa, Genya; Kajikawa, Keishi; Yoshizawa, Takahiko; Watanabe, Masahito; Kato, Yoshiharu; Zennami, Kenji; Kanao, Kent; Tobiume, Motoi; Yamada, Yoshiaki; Mitsui, Kenji; Narushima, Masahiro; Morikawa, Norifumi; Sumitomo, Makoto

    2015-08-01

    This study aimed to investigate the penetration of PIPC-TAZ into human prostate, and to assess effectiveness of PIPC-TAZ against prostatitis by evaluating site-specific PK-PD. Patients with prostatic hypertrophy (n = 47) prophylactically received a 0.5 h infusion of PIPC-TAZ (8:1.2-0.25 g or 4-0.5 g) before transurethral resection of the prostate. PIPC-TAZ concentrations in plasma (0.5-5 h) and prostate tissue (0.5-1.5 h) were analyzed with a three-compartment PK model. The estimated model parameters were, then used to estimate the drug exposure time above the minimum inhibitory concentration for bacteria (T > MIC, the PD indicator for antibacterial effects) in prostate tissue for six PIPC-TAZ regimens (2.25 or 4.5 g; once, twice, three times or four times daily; 0.5 h infusions). Prostate tissue/plasma ratio of PIPC was about 36% both for the maximum drug concentration (Cmax) and the area under the drug concentration-time curve (AUC). Against MIC distributions for isolates of Escherichia coli, Klebsiella species and Proteus species, regimens of 4.5 g twice daily and 2.25 g three times daily achieved a >90% probability of attaining the bacteriostatic target for PIPC (30% T > MIC) in prostate tissue; regimens of 4.5 g three times daily and 2.25 g four times daily achieved a >90% probability of attaining the bactericidal target for PIPC (50% T > MIC) in prostate tissue. However, against Pseudomonas aeruginosa isolates, none of the tested regimens achieved a >90% probability. PIPC-TAZ is appropriate for the treatment of prostatitis from the site-specific PK-PD perspective. PMID:26050020

  10. EFFECTS OF NEONATAL METHYLMERCURY EXPOSURE ON ADRENERGIC RECEPTOR BINDING SITES IN PERIPHERAL TISSUES OF THE DEVELOPING RAT

    EPA Science Inventory

    Neonatal exposure to methylmercury produces changes in patterns of tissue growth and function, in part, due to alterations in adrenergic neuronal input. To explore the mechanisms by which these changes come about, newborn rats were exposed to methylmercury (1 or 2.5 mg/kg/day) th...

  11. Differential expression of vascular endothelial growth factor in human fetal skeletal site-specific tissues: Mandible versus femur.

    PubMed

    Marini, Mirca; Bertolai, Roberto; Ambrosini, Stefano; Sarchielli, Erica; Vannelli, Gabriella Barbara; Sgambati, Eleonora

    2015-04-01

    Vascular endothelial growth factor (VEGF) is a well-known mediator that signals through pathways in angiogenesis and osteogenesis. Angiogenesis and bone formation are coupled during either skeletal development or bone remodeling and repair occurring in postnatal life. In this study, we examined for the first time the expression of VEGF in human fetal mandibular and femoral bone in comparison with the respective adult tissues. Similarly to other craniofacial bones, but at variance with the axial and appendicular skeleton, during development mandible does not arise from mesoderm but neural crest cells of the neuroectoderm germ layer, and undergoes intramembranous instead of endochondral ossification. By quantitative real-time PCR technique, we could show that VEGF gene expression levels were significantly higher in fetal than in adult samples, especially in femoral tissue. Western blotting analysis confirmed higher protein expression of VEGF in the fetal femur respect to the mandible. Moreover, immunohistochemistry revealed that in both fetal tissues VEGF expression was mainly localized in pre- and osteoblasts. Differential expression of VEGF in femoral and mandibular bone tissues could be related to their different structure, function and development during organogenesis. PMID:25769656

  12. Donor-Site Morbidity Following Free Tissue Harvest from the Thigh: A Systematic Review and Pooled Analysis of Complications.

    PubMed

    Lakhiani, Chrisovalantis; DeFazio, Michael V; Han, Kevin; Falola, Reuben; Evans, Karen

    2016-06-01

    Background Donor-site morbidity significantly influences patient satisfaction and quality of life following reconstructive surgery. The relevant donor-site morbidities associated with more commonly utilized thigh-based flaps are reviewed. Methods A systematic search of the MEDLINE and Cochrane databases from 1994 to 2014 was conducted to identify all reports of "anterolateral thigh (ALT)," "vastus lateralis (VL)," "anteromedial thigh (AMT)," "transverse upper gracilis (TUG)," tensor fascia latae (TFL)," "gracilis," and "rectus femoris (RF)," flaps. Only studies that investigated donor-site outcomes related to pain, paresthesia, wound dehiscence, infection, hematoma, seroma, contour deformity, and/or objective functional performance were included. Case series or anecdotal reports with less than five flaps, non-English, and animal studies were excluded. Results A total of 116 articles representing 4,554 flaps were reviewed, including 2,922 ALT/VL, 148 AMT, 436 TUG, 278 TFL, 527 gracilis, and 243 RF flaps. The most frequently cited donor-site complication was paresthesia (range: 0-36.4%), followed by wound dehiscence (range: 0.9-8.3%), contour deformity (range: 0-5.2%), pain (range: 0-6.3%), and seroma (range: 0.4-2.0%). Despite mixed results regarding functional performance, pooled-analysis of dynamometric studies demonstrated a significant reduction in strength only after RF flap harvest (21%). Conclusions Donor-site morbidity for thigh-flaps is minimal and appears to be well-tolerated by the majority of patients. Nevertheless, the appropriate flap selection is highly individualized, and patients must be informed of potential complications and morbidities specific to each flap. We have established the most current review of donor-site morbidity for thigh-based flaps to aid the surgeon in this important discussion. PMID:27144952

  13. What Is the Ideal Free Flap for Soft Tissue Reconstruction? A Ten-Year Experience of Microsurgical Reconstruction Using 334 Latissimus Dorsi Flaps From a Universal Donor Site.

    PubMed

    Kim, Jeong Tae; Kim, Sang Wha; Youn, Seungki; Kim, Youn Hwan

    2015-07-01

    Microsurgical free tissue transfer is regarded as the best available method of tissue reconstruction for intractable defects. The ideal soft tissue flap is thought to be the anterolateral thigh flap. On the basis of 334 procedures involving the latissimus dorsi (LD) flap, we discuss the advantages of the LD flap over the current universal option, and we aimed to establish whether the LD could also gain universal status in all reconstructive fields.Three hundred thirty-four reconstructive procedures using the LD flap were performed in 322 patients between September 2002 and July 2012. In accordance with defect characteristics, we performed 334 procedures using flaps, which included the LD muscle flap with skin graft, the myocutaneous flap, the muscle-sparing flap, the perforator flap, the chimeric flap, and the 2-flap technique using the serratus anterior branch.Flap-related complications occurred in 21 patients (6.3%), including total and partial flap failure. In 253 cases, the donor site was closed primarily, and in the remaining cases, we used split-thickness skin grafts. Donor-site complications occurred in 20 cases (6%). In 11 of the 182 cases, no suitable perforators were identified during surgery.The advantages of the LD as a donor site include the possibility of various harvesting positions without position change, versatility of components, availability of muscle to fill extensive defects, and presence of thick fascia to enable full abdominal reconstruction. On the basis of our experience, we concluded that this flap has the potential to be used as widely as, or in preference to, the anterolateral thigh flap in most reconstructive areas. PMID:25785382

  14. Tissue reactions to particles of bone-substitute materials in intraosseous and heterotopic sites in rats: discrimination of osteoinduction, osteocompatibility, and inflammation.

    PubMed

    Eid, K; Zelicof, S; Perona, B P; Sledge, C B; Glowacki, J

    2001-09-01

    Two rat models were used to characterize tissue-specific reactions to particles of bone-substitute materials: one for osteocompatibility in a healing tibial wound and the other in a heterotopic, subcutaneous site. Small, unicortical tibial wounds in rats healed spontaneously, beginning with the rapid proliferation of intramedullary woven bone. That temporary bone was resorbed by osteoclasts and finally, the cortical wound was healed with lamellar bone and the medullary space was repopulated with marrow. When various particulate materials were implanted into fresh wounds, three types of reactions were observed. (1) Demineralized bone powder (DBP) and non-resorbable calcium phosphate (nrCP) were incorporated into the reactive medullary and cortical bone. (2) Polymethylmetlhacrylate (PMMA) particles were surrounded with a fibrous layer, but did not impair bone healing. (3) Polyethylene (PE) shards and resorbable calcium phosphates (rCPs) were inflammatory and inhibited osseous repair. Subcutaneous sites showed osteoinductive, fibrotic, or inflammatory responses to these materials. Only DBP induced endochondral osteogenesis subcutaneously. The nrCP evoked a fibrous reaction. In contrast, rCPs, PMMA, and PE shards generated inflammatory reactions with each particle being surrounded by fibrous tissue and large multinucleated giant cells. In conclusion, only DBP showed osteoinductive as well as osteocompatible properties. The nrCP was osteocompatible. The rCPs stimulated various degrees of inflammatory responses. PMMA was osteocompatible and did not interfere with the bone healing process. PE was not osteocompatible and generated foreign body reactions in both sites. Use of the two sites distinguishes osteoinductive, osteocompatible, and inflammatory properties of particles of bone-substitute materials. PMID:11562148

  15. Role of sensitivity of zinc oxide nanorods (ZnO-NRs) based photosensitizers in hepatocellular site of biological tissue

    NASA Astrophysics Data System (ADS)

    Atif, M.; Fakhar-E-Alam, M.; Alsalhi, M. S.

    2011-11-01

    Zinc oxide nanorods (ZnO-NRs) with high surface to volume ratio and bio compatibility are used as an efficient photosensitizer carrier system for achievement of Hepatocellular cancer cell (HepG2) necrosis within few minutes. Present study highlights the role of effectiveness of ZnO-NRs in photodynamic therapy (PDT). We have grown the ZnO-NRs on the tip of borosilicate glass capillaries (0.5 μm diameter). The grown ZnO-NRs were conjugated using Photofrin® and ALA for the efficient intracellular drug delivery, which produces reactive oxygen species (ROS) via photochemical reactions leading to cell death within few minutes after exposing UV light (240 nm). Viability of controlled and treated HepG2 cells with optimum dose of light (UV-visible) has been assessed by neutral red assay (NRA). The results were verified by staining of mitochondria using Mitotracker® red as an efficient dye as well as ROS detection. ZnO-NRs based Phogem® (PG) treated normal liver tissues of Sprague-Dawley rats were used as comparative experimental model. Morphological apoptotic changes in liver tissue of Sprague-Dawley rats before and after ZnO-NRs conjugated with photosensitizer (PS)-mediated PDT were investigated by microscopic examination.

  16. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor

    SciTech Connect

    Yao, K.; Niu, P.D.; Le Gac, F.; Le Bail, P.Y. )

    1991-01-01

    The present work outlines the presence of specific binding for chinook salmon growth hormone (sGH) in different tissue preparations of rainbow trout. Optimal incubation conditions (pH, Tris, MgCl{sub 2}) were determined. Specific binding was very sensitive to salt concentration during incubation. The specific binding reached a plateau after 15 and 25 hr of incubation at 12 and 4 {degree}. At 20 {degree}, specific and nonspecific binding were not stable. Specific binding dissociation was slower than association and was only partial. The binding was saturable (Bmax = 187 +/- 167 pmol), of high affinity (Ka = 2.4 +/- 0.8 10(9) M-1), and very specific for GH, properties which are in agreement with the characteristics of hormonal receptors. Sea bream and mammalian GH appeared 2- and 30-fold, respectively, less potent than cold sGH2 for displacing {sup 125}I-sGH2. Tissue preparations from ovary, testis, fat, skin, cartilage, gill, blood pellet, brain, spleen, kidney, and muscle showed significant saturable binding.

  17. Pericoronary Adipose Tissue as Storage and Supply Site for Oxidized Low-Density Lipoprotein in Human Coronary Plaques

    PubMed Central

    Uchida, Yasumi; Uchida, Yasuto; Shimoyama, Ei; Hiruta, Nobuyuki; Kishimoto, Toshihiko; Watanabe, Soichiro

    2016-01-01

    Objectives It is generally believed that low-density lipoprotein enters the vascular wall from its lumen and oxidized (oxLDL), after which it plays an important role in atherosclerosis. Because voluminous epicardial adipose tissue is a risk factor for coronary events, there is a possibility that the pericoronary adipose tissue (PCAT), which is a part of epicardial adipose tissue, acts as a risk factor by supplying oxLDL to the coronary arterial wall. The present study was performed whether PCAT stores and supplies oxLDL to the coronary wall. Methods Localization of oxLDL in PCAT and its relation to plaque morphology were examined by immunohistochemical techniques in 27 epicardial coronary arteries excised from 9 human autopsy cases. Results OxLDL deposited in all PCAT of the studied cases. The percent (%) incidence of oxLDL in the intima of 25 normal segment, 19 white plaques, 15 yellow plaques without necrotic core (NC) and 10 yellow plaques with NC, was 32, 84, 93 (p<0.05 vs normal segments and yellow plaques with NC), and 30, respectively. OxLDL deposited either in dotted or diffuse pattern. Double immunohistochemical staining revealed that the dotted oxLDL was that contained in CD68(+)-macrophages. The oxLDL-containing macrophages were observed in the interstitial space but not inside of the vasa vasorum, and they traversed PCAT, adventitia, external and internal elastic laminae, suggesting their migration towards the intima. Diffuse oxLDL deposits were observed in 17 preparations, the majority of which were co-localized with the vasa vasorum in outer or in both inner and outer halves of intima, and rarely in the inner half alone. Conclusions The results suggested that PCAT is a supply source of oxLDL to coronary intima and acts as a risk factor for coronary events, that oxLDL increasingly deposits in the intima with plaque growth and decreases after plaque maturation, and therefore molecular therapies targeting the PCAT before plaque growth could be effective

  18. RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae1

    PubMed Central

    Subramanian, Senthil; Graham, Madge Y.; Yu, Oliver; Graham, Terrence L.

    2005-01-01

    Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing. PMID:15778457

  19. [Polychlorinated biphenyls and their methylsulfonyl metabolites in fish from an electronic waste recycling site in south China: tissue distribution and human dietary exposure].

    PubMed

    Tang, Bin; Luo, Xiao-Jun; Zeng, Yan-Hong; Mai, Bi-Xian

    2014-12-01

    In the present study, we determined polychlorinated biphenyls and their methylsulfonyl metabolites (MeSO2-PCBs) in the tissues of two fish species-mud carp and northern snakehead-from a natural pond in an electronic waste recycling site in the Pearl River Delta, Southern China. The mean concentrations of PCBs (Σ PCBs )varied from 560 to 10 462 ng x g(-1) wet weight, and from 580 to 50 492 ng x g(-1) wet weight in the tissues of mud carp and northern snakehead, respectively, with the highest levels found in the liver. Lipid contents played an important role in the determination of tissue distribution of PCBs. The mean concentrations of Σ MeSO2-PCBs varied between 0.44 and 53 ng x g(-1) wet weight in tissues of mud carp, while varied between 1.86 and 132 ng x g(-1) wet weight in northern snakehead. These levels were one order of magnitude greater than the highest levels of MeSO2-PCBs previously reported in fish. The EF values of chiral PCBs in mud carp were lower than those in the sediments, with an exception of PCB149. However, the declined EFs in mud carp were rebounded in northern snakehead, and some values were even higher than those in the sediment. This result may suggest that the mud carp and the northern snakehead preferred to biotransform different enantiomers of PCB congeners. The elevated levels of Σ PCBs and Σ MeSO2-PCBs detected in the present study indicated a high exposure risk to the local residents. Restricting the consumption of these fish in the local markets is important and essential for reducing the health risks to local residents. PMID:25826938

  20. Investigation into dosimetric effect of a MAGNA-SITE{sup TM} tissue expander on post-mastectomy radiotherapy

    SciTech Connect

    Thompson, Rosemary C.A.; Morgan, Andrew M.

    2005-06-15

    It is increasingly common for radiotherapy departments to encounter high density objects in patients being planned for radiotherapy. Many cases, such as artificial hip prostheses, are well documented. In our cancer center we have recently come across a new type of implant--a McGhan Style 133 Tissue Expander--implanted in patients who have undergone a mastectomy and will in future have breast reconstruction. This type of implant contains a small rare earth magnet encased in a titanium body, which induces significant perturbations in the dose distribution. These perturbations have been measured using a p-type semiconductor diode. Attenuation of up to 30% of local dose has been observed for a single beam. However, in more realistic clinical situations using tangential parallel opposed beams, it is estimated that part of the planning target volume maybe be underdosed by approximately 10%. Comparisons have been made between measured attenuation and that calculated by a treatment planning system, which demonstrates inadequate modeling of the dose perturbation caused by the implant in this case.

  1. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site

    DOE PAGESBeta

    Feng, Huan; Qian, Yu; Gallagher, Frank J.; Zhang, Weiguo; Yu, Lizhong; Liu, Chang -Jun; Jones, Keith W.; Tappero, Ryan

    2015-11-01

    Liberty State Park in New Jersey, USA, is a “brownfield” site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May–September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT)more » techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.« less

  2. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site.

    PubMed

    Feng, Huan; Qian, Yu; Gallagher, Frank J; Zhang, Weiguo; Yu, Lizhong; Liu, Changjun; Jones, Keith W; Tappero, Ryan

    2016-03-01

    Liberty State Park in New Jersey, USA, is a "brownfield" site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May-September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT) techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation. PMID:26969063

  3. Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site

    SciTech Connect

    Mathews, Teresa J; Fortner, Allison M; Jett, Robert T; Peterson, Mark J; Carriker, Neil; Morris, Jesse G; Gable, Jennifer

    2014-01-01

    In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

  4. Nasal-associated lymphoid tissue is a site of long-term virus-specific antibody production following respiratory virus infection of mice.

    PubMed

    Liang, B; Hyland, L; Hou, S

    2001-06-01

    Nasal immunoglobulin A provides an initial defense against inhaled respiratory pathogens. However, it is not known whether the nasal-associated lymphoid tissues (NALT) are able to mount an effective long-lasting pathogen-specific immune response, nor is it known whether functional differences exist between the organized NALT (O-NALT) and the diffuse NALT lining the nasal passages (D-NALT). Here we show that although both the O-NALT and the D-NALT are capable of producing virus-specific antibody in response to influenza virus infection, the frequency of specific antibody-forming cells in the D-NALT is much greater than the frequency observed in the O-NALT. Furthermore, we show that the D-NALT but not the O-NALT is the site of long-term virus-specific humoral immunity which lasts for the life of the animal. These results indicate that the D-NALT is not only the major effector site of the NALT but also the site of local long-term specific antibody production. PMID:11333927

  5. Comprehensive site-specific whole genome profiling of stromal and epithelial colonic gene signatures in human sigmoid colon and rectal tissue.

    PubMed

    Knight, Jason M; Kim, Eunji; Ivanov, Ivan; Davidson, Laurie A; Goldsby, Jennifer S; Hullar, Meredith A J; Randolph, Timothy W; Kaz, Andrew M; Levy, Lisa; Lampe, Johanna W; Chapkin, Robert S

    2016-09-01

    The strength of associations between various exposures (e.g., diet, tobacco, chemopreventive agents) and colorectal cancer risk may partially depend on the complex interaction between epithelium and stroma across anatomic subsites. Currently, baseline data describing genome-wide coding and long noncoding gene expression profiles in the healthy colon specific to tissue type and location are lacking. Therefore, colonic mucosal biopsies from 10 healthy participants who were enrolled in a clinical study to evaluate effects of lignan supplementation on gut resiliency were used to characterize the site-specific global gene expression signatures associated with stromal vs. epithelial cells in the sigmoid colon and rectum. Using RNA-seq, we demonstrate that tissue type and location patterns of gene expression and upstream regulatory pathways are distinct. For example, consistent with a key role of stroma in the crypt niche, mRNAs associated with immunoregulatory and inflammatory processes (i.e., CXCL14, ANTXR1), smooth muscle contraction (CALD1), proliferation and apoptosis (GLP2R, IGFBP3), and modulation of extracellular matrix (MMP2, COL3A1, MFAP4) were all highly expressed in the stroma. In comparison, HOX genes (HOXA3, HOXD9, HOXD10, HOXD11, and HOXD-AS2, a HOXD cluster antisense RNA 2), and WNT5B expression were also significantly higher in sigmoid colon compared with the rectum. These findings provide strong impetus for considering colorectal tissue subtypes and location in future observational studies and clinical trials designed to evaluate the effects of exposures on colonic health. PMID:27401218

  6. Fibroblast Growth Factor 2 Internal Ribosome Entry Site (Ires) Activity Ex Vivo and in Transgenic Mice Reveals a Stringent Tissue-Specific Regulation

    PubMed Central

    Créancier, Laurent; Morello, Dominique; Mercier, Pascale; Prats, Anne-Catherine

    2000-01-01

    Fibroblast growth factor 2 (FGF-2) is a powerful mitogen involved in proliferation, differentiation, and survival of various cells including neurons. FGF-2 expression is translationally regulated; in particular, the FGF-2 mRNA contains an internal ribosome entry site (IRES) allowing cap-independent translation. Here, we have analyzed FGF-2 IRES tissue specificity ex vivo and in vivo by using a dual luciferase bicistronic vector. This IRES was active in most transiently transfected human and nonhuman cell types, with a higher activity in p53 −/− osteosarcoma and neuroblastoma cell lines. Transgenic mice were generated using bicistronic transgenes with FGF-2 IRES or encephalomyocarditis virus (EMCV) IRES. Measurements of luciferase activity revealed high FGF-2 IRES activity in 11-d-old embryos (E11) but not in the placenta; activity was high in the heart and brain of E16. FGF-2 IRES activity was low in most organs of the adult, but exceptionally high in the brain. Such spatiotemporal variations were not observed with the EMCV IRES. These data, demonstrating the strong tissue specificity of a mammalian IRES in vivo, suggest a pivotal role of translational IRES- dependent activation of FGF-2 expression during embryogenesis and in adult brain. FGF-2 IRES could constitute, thus, a powerful tool for gene transfer in the central nervous system. PMID:10893274

  7. Esterases activities and lipid peroxidation levels in muscle tissue of the shanny Lipophrys pholis along several sites from the Portuguese Coast.

    PubMed

    Solé, Montserrat; Lobera, Gemma; Lima, Daniela; Reis-Henriques, Maria Armanda; Santos, Miguel Machado

    2008-05-01

    This study is part of a project aiming to validate the use of the intertidal shanny Lipophorys pholis as a sentinel species in pollution monitoring in NW European marine ecosystems. To this end, a characterisation of acethylcholin (AChE), butyrylcholin (BChE) and propionylcholin (PrChE) esterases in L. pholis muscle was performed and the results indicated that AChE was predominant. Furthermore, the use of eserine sulphate and BW284c51 (0.64-800 microM), and iso-OMPA (0.08-16 mM), confirmed the measurement of true cholinesterases (ChEs) as well as the presence of pseudocholinesterases. The field application of these markers to L. pholis, sampled in seven locations along the Portuguese coast, revealed that fish were likely to be affected by neurotoxic compounds. This was indicated by the significant depletion of AChE (p<0.05) in animals collected at urban and industrialised sites, compared with those from reference locations. The inclusion of a marker of effect, measured as lipid peroxidation levels in muscle tissue, also revealed the existence of site differences. Overall, the study further validates the utility of L. pholis in pollution monitoring studies. PMID:18295805

  8. A Novel Computational Strategy to Identify A-to-I RNA Editing Sites by RNA-Seq Data: De Novo Detection in Human Spinal Cord Tissue

    PubMed Central

    Picardi, Ernesto; Gallo, Angela; Galeano, Federica; Tomaselli, Sara; Pesole, Graziano

    2012-01-01

    RNA editing is a post-transcriptional process occurring in a wide range of organisms. In human brain, the A-to-I RNA editing, in which individual adenosine (A) bases in pre-mRNA are modified to yield inosine (I), is the most frequent event. Modulating gene expression, RNA editing is essential for cellular homeostasis. Indeed, its deregulation has been linked to several neurological and neurodegenerative diseases. To date, many RNA editing sites have been identified by next generation sequencing technologies employing massive transcriptome sequencing together with whole genome or exome sequencing. While genome and transcriptome reads are not always available for single individuals, RNA-Seq data are widespread through public databases and represent a relevant source of yet unexplored RNA editing sites. In this context, we propose a simple computational strategy to identify genomic positions enriched in novel hypothetical RNA editing events by means of a new two-steps mapping procedure requiring only RNA-Seq data and no a priori knowledge of RNA editing characteristics and genomic reads. We assessed the suitability of our procedure by confirming A-to-I candidates using conventional Sanger sequencing and performing RNA-Seq as well as whole exome sequencing of human spinal cord tissue from a single individual. PMID:22957051

  9. Sites of particle retention and lung tissue responses to chronically inhaled diesel exhaust and coal dust in rats and cynomolgus monkeys.

    PubMed Central

    Nikula, K J; Avila, K J; Griffith, W C; Mauderly, J L

    1997-01-01

    The usefulness of pulmonary carcinogenicity data from rats exposed to high concentrations of particles for quantitatively predicting lung cancer risk in humans exposed to much lower environmental or occupational concentrations has been questioned. The results of several chronic inhalation bioassays of poorly soluble, nonfibrous particles have suggested that rats may be more prone than other rodent species to develop persistent pulmonary epithelial hyperplasia, metaplasia, and tumors in response to the accumulation of inhaled particles. In addition, rats and primates differ in their pulmonary anatomy and rate of particle clearance from the lung. This paper reviews results of recent Lovelace Respiratory Research Institute (Albuquerque, NM) investigations that directly compared the anatomical patterns of particle retention and the lung tissue responses of rats and monkeys exposed chronically to high occupational concentrations of poorly soluble particles. Lung sections from male cynomolgus monkeys and F344 rats exposed 7 hr/day, 5 days/week for 24 months to filtered ambient air, diesel exhaust (2 mg soot/m3), coal dust (2 mg respirable particulate material/m3), or diesel exhaust and coal dust combined (1 mg soot and 1 mg respirable coal dust/m3) were obtained from a study conducted at the U.S. National Institute for Occupational Safety and Health and examined histopathologically and morphometrically. Within each species, the sites of particle retention and lung tissue responses were the same for diesel soot, coal dust, and combined material. Rats retained a significantly greater portion of the particulate material in the lumens of alveolar ducts and alveoli than monkeys. Conversely, monkeys retained a significantly greater portion of the particulate material in the interstitium than rats. Rats, but not monkeys, had significant alveolar epithelial hyperplastic, inflammatory, and septal fibrotic responses to the retained particles. These results suggest that anatomic

  10. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression.

    PubMed

    Langbein, L; Heid, H W; Moll, I; Franke, W W

    1993-12-01

    /plantar epidermis was found positive. By in situ hybridization and immunolocalization we further showed that CK 9 is only expressed in the suprabasal cell layers of this special epidermal tissue. We discuss the molecular properties of CK 9 and its cell type- and body site-specific expression in relation to the special differentiation of palmar/plantar epidermis and to diseases specific for this body site. PMID:7507869

  11. Validation of dose painting of lung tumours using alanine/EPR dosimetry.

    PubMed

    Knudtsen, Ingerid Skjei; Svestad, Jørund Graadal; Skaug Sande, Erlend Peter; Rekstad, Bernt Louni; Rødal, Jan; van Elmpt, Wouter; Öllers, Michel; Hole, Eli Olaug; Malinen, Eirik

    2016-03-21

    Biologic image guided radiotherapy (RT) with escalated doses to tumour sub volumes challenges today's RT dose planning and delivery systems. In this phantom study, we verify the capability of a clinical dose planning and delivery system to deliver an 18F-FDG-PET based dose painted treatment plan to a lung tumour. Furthermore, we estimate the uncertainties of the dose painted treatment compared to conventional RT plans. An anthropomorphic thorax phantom of polystyrene and polyurethane was constructed based on CT images of a lung cancer patient. 101 EPR/alanine dosimeters were placed in separate cavities within the phantom. IMRT and VMAT plans were generated in Eclipse (version 10.0, Analytical Anisotropic Algorithm version 10.2.28, Varian Medical Systems, Inc.) for 6 and 15 MV photons, based on 18F-FDG-PET/CT images of the patient. A boost dose of 3.8 Gy/fraction was given to the 18F-FDG-avid region (biological planning volume; BTV), whereas 3.1 Gy/fraction was planned to the planning target volume (PTV, excluding the BTV). For the homogenous plans, 3.2 Gy/fraction was given to the PTV. Irradiation of the phantom was carried out at a Varian Trilogy linear accelerator (Varian Medical Systems, Inc.). Uncertainties involved in treatment planning and delivery were estimated from portal dosimetry gamma evaluation. Measured and calculated doses were compared by Bland-Altmann analysis. For all treatment plans, all dose-volume objectives could be achieved in the treatment planning system. The mean absolute differences between calculated and measured doses were small (<0.1 Gy) for BTV, PTV-BTV, lung and soft tissue. The estimated uncertainty of the planned doses was less than 3% for all plans, whereas the estimated uncertainty in the measured doses was less 2.3%. Our results show that planning and delivery of dose escalated lung cancer treatment on a clinical dose planning and delivery system has high dosimetric accuracy. The uncertainties associated with the dose escalated

  12. A dual-site two-photon fluorescent probe for visualizing lysosomes and tracking lysosomal hydrogen sulfide with two different sets of fluorescence signals in the living cells and mouse liver tissues.

    PubMed

    Liu, Yong; Meng, Fangfang; He, Longwei; Liu, Keyin; Lin, Weiying

    2016-05-19

    Herein, we have developed a novel dual-site two-photon fluorescent probe as the first paradigm of the probes, which can concurrently report lysosomes and lysosomal H2S with two different sets of fluorescence signals in the living cells and tissues. PMID:27159054

  13. REMODELING CHARACTERISTICS AND COLLAGEN DISTRIBUTION IN BIOLOGICAL SCAFFOLD MATERIALS EXPLANTED FROM HUMAN SUBJECTS AFTER ABDOMINAL SOFT TISSUE RECONSTRUCTION: AN ANALYSIS OF SCAFFOLD REMODELING CHARACTERISTICS BY PATIENT RISK FACTORS AND SURGICAL SITE CLASSIFICATIONS

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.; Deeken, Corey R.

    2014-01-01

    OBJECTIVE The study purpose was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of biologic meshes biopsied from abdominal soft tissue repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. INTRODUCTION Host characteristics and surgical site assessments may predict remodeling degree for biologic meshes used to reinforce abdominal tissue repair sites. METHODS Biologic meshes were biopsied from the abdominal tissue repair sites of n=40 patients during an abdominal re-exploration, stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics [cell types (CT), cell infiltration (CI), extracellular matrix (ECM) deposition, scaffold degradation (SD), fibrous encapsulation (FE), and neovascularization (NEO)] and a mean composite score (CR). Biopsies were stained with Sirius Red & Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a p-value ≤0.200. RESULTS The model selection process for CI score yielded 2 variables: age at mesh implantation and mesh classification (c-statistic=0.989). For CR score, the model selection process yielded 2 variables: age at mesh implantation and mesh classification (r2=0.449). CONCLUSION These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances most likely to experience non-constructive remodeling of abdominal tissue repair sites with biologic mesh reinforcement. PMID:24374547

  14. Effect of the harvest procedure and tissue site on the osteogenic function of and gene expression in human mesenchymal stem cells

    PubMed Central

    HENRICH, DIRK; NAU, CHRISTOPH; KRAFT, SASKIA BO; ZOLLFRANK, MAXIMILIAN; KONTRADOWITZ, KERSTIN; OPPERMANN, ELSIE; SCHULTHEISS, JUDITH; MEIER, SIMON; FRANK, JOHANNES; MARZI, INGO; SEEBACH, CAROLINE

    2016-01-01

    Evidence has indicated that mesenchymal stem cells (MSCs) harvested with the Reamer/Irrigator/Aspirator (RIA) procedure exhibited an improved osteogenic differentiation capability compared with MSCs obtained by bone marrow aspiration from the iliac crest. In the present study, we hypothesized that the harvest procedure indeed influences the osteogenic activity of human MSCs more than the tissue site itself. Concentration [by colony forming unit-fibroblast (CFU-F) assay], calcification (by von Kossa staining), collagen deposition, gene expression and the gene methylation of the bone morphogenetic protein (BMP)-2 pathway [BMP2, SMAD5 and runt-related transcription factor 2 (RUNX2)], the Wnt pathway [WNT3, dickkopf-1 (DKK1), low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin] and osteogenic genes [alkaline phosphatase (ALP), collagen, type I, alpha 1 (COL1A) and osteocalcin] were analyzed in the MSCs isolated intraoperatively from the iliac crest with a spoon (n=14), from the femur with a spoon (n=7), from the femur with the RIA procedure (n=13) and from the iliac crest by fine-needle aspiration (n=8, controls). A Bonferroni-Holm corrected p-value <0.05 indicated a statistically significant difference. The concentration of CFU-F in the MSCs was increased in the RIA debris in comparison with that in the iliac crest aspirates (trend) and the femur (spoon, significant). Calcium deposition was highest in the femur-derived MSCs (by RIA) and was significantly increased in comparison with that in the iliac crest-derived MSCs (spoon, aspirate). The gene expression of BMP2, SMAD5, RUNX2, osteocalcin, and COL1A was significantly increased in the femur-derived MSCs (spoon) and the iliac crest aspirate derived-MSCs in comparison with that in the femur-derived MSCs (by RIA). There was no significant diversity between the samples obtained using a spoon (from the femur or iliac crest). Calcium deposition and osteogenic gene expression decreased significantly

  15. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  16. Fireworks-induced chest wall granulomatous disease: 18F-FDG PET/CT imaging.

    PubMed

    Le, Stephanie T; Nguyen, Ba Duong

    2014-04-01

    The authors present a case of 18F-FDG-avid granulomatous reaction induced by fireworks injury of the chest wall in a patient with esophageal adenocarcinoma. This hypermetabolic lesion, involving the right pectoralis muscles, appeared slightly more prominent on restaging PET/CT imaging following chemotherapy and radiation therapy. Excisional biopsy of the lesion established the diagnosis of foreign-body granulomatous-type inflammation with surrounding foci of non-polarizable black foreign material and ruled out malignancy. The patient recalled accidentally shooting himself in the chest with a Roman candle at the age of 3. PMID:23877517

  17. Methylation similarities of two CpG sites within exon 5 of human H19 between normal tissues and testicular germ cell tumours of adolescents and adults, without correlation with allelic and total level of expression.

    PubMed Central

    Gillis, A. J.; Verkerk, A. J.; Dekker, M. C.; van Gurp, R. J.; Oosterhuis, J. W.; Looijenga, L. H.

    1997-01-01

    Testicular germ cell tumours (TGCTs) of adolescents and adults morphologically mimic different stages of embryogenesis. Established cell lines of these cancers are used as informative models to study early development. We found that, in contrast to normal development, TGCTs show a consistent biallelic expression of imprinted genes, including H19, irrespective of histology. Methylation of particular cytosine residues of H19 correlates with inhibition of expression, which has not been studied in TGCTs thus far. We investigated the methylation status of two CpG sites within the 3' region of H19 (exon 5: positions 3321 and 3324) both in normal tissues as well as in TGCTs. To obtain quantitative data of these specific sites, the ligation-mediated polymerase chain reaction technique, instead of Southern blot analysis, was applied. The results were compared with the allelic status and the total level of expression of this gene. Additionally, the undifferentiated cells and differentiated derivatives of the TGCT-derived cell line NT2-D1 were analysed. While peripheral blood showed no H19 expression and complete methylation, a heterogeneous but consistent pattern of methylation and level of expression was found in the other normal tissues, without a correlation between the two. The separate histological entities of TGCTs resembled the pattern of their nonmalignant tissues. While the CpG sites remained completely methylated in NT2-D1, H19 expression was induced upon differentiation. These data indicate that methylation of the CpG sites within exon 5 of H19 is tissue dependent, without regulating allelic status and/or total level of expression. Of special note is the finding that, also regarding methylation of these particular sites of H19, TGCTs mimic their non-malignant counterparts, in spite of their consistent biallelic expression. Images Figure 1 Figure 3 Figure 4 PMID:9310237

  18. Site-Specific Reduction of Oxidative and Lipid Metabolism in Adipose Tissue of 3′-Azido-3′-Deoxythymidine-Treated Rats▿

    PubMed Central

    Deveaud, Catherine; Beauvoit, Bertrand; Reynaud, Annabel; Bonnet, Jacques

    2007-01-01

    Although it is well accepted that treatment with some nucleoside reverse transcriptase inhibitors modifies both fat metabolism and fat distribution in humans, the mechanisms underlying these modifications are not yet known. The present investigation examined whether a decrease in oxidative capacity, induced by a chronic oral administration of 3′-azido-3′-deoxythymidine (AZT) in rats, could be associated with an alteration of the lipogenic capacity of white adipose tissues. The impact of obesity as a factor was then evaluated. Results showed that AZT treatment induced differential effects depending on anatomical localization. Indeed, in the inguinal adipose tissue, the specific activities of cytochrome c oxidase and fatty acid synthase, two rate-controlling enzymes in energy and lipogenic metabolisms, respectively, both decreased under AZT treatment, thus leading to a lowered cell lipid accumulation. Moreover, the AMP-activated protein kinase phosphorylation level tended to increase, thus implying that AZT causes an energy imbalance. Furthermore, the inguinal tissue of obese rats presented a sensitivity to AZT treatment that was higher than that of lean rats. In contrast, for epididymal tissue, no significant change in all these parameters could be detected under AZT treatment, regardless of the nutritional status of the animals. Taken together, these data demonstrate differential effects of AZT on subcutaneous adipose tissue and visceral white adipose tissue. It could be considered that the chronic decreases in energy and lipogenic metabolism of inguinal adipocyte, consecutive to AZT treatment, may lead, in the long term, to adipose tissue atrophy. PMID:17158934

  19. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  20. Identification of N-Acetyltransferase 2 (NAT2) Transcription Start Sites and Quantitation of NAT2-specific mRNA in Human Tissues

    PubMed Central

    Husain, Anwar; Zhang, Xiaoyan; Doll, Mark A.; States, J. Christopher; Barker, David F.; Hein, David W.

    2007-01-01

    Human N-acetyltransferase 2 (NAT2) genetic polymorphism is associated with drug toxicity and/or carcinogenesis in various tissues. Knowledge of NAT2 gene structure and expression are critical for understanding these associations. Previous findings suggest that human NAT2 expression is highest in liver and gut, but expressed at functional levels in other tissues. A sensitive and specific TaqMan reverse transcriptase polymerase chain reaction (RT-PCR) assay with intron-spanning primers was developed and used, together with a second TaqMan RT-PCR assay based on amplification of a NAT2 open reading frame (ORF) exon segment, to measure NAT2 mRNA in 29 different human tissues. Cap-dependent amplification of mRNA 5′ termini and review of public database information was done to more precisely define the NAT2 promoter(s) and to validate the quantitative RT-PCR assay design. The great majority (40/41) of NAT2 liver cDNAs had 5′ termini between 8682 and 8752 nucleotides upstream of the NAT2 ORF exon, and 34/40 5′-termini were at the -8711 and -8716 adenines. All of 59 NAT2 cDNAs with 5′ termini in this vicinity, including 40 of the liver isolates and 19 cDNAs in public databases from liver and other sources, showed direct splicing to the ORF exon, with no other non-coding exon detected. NAT2 mRNA was highest in liver, small intestine and colon and readily detected in most other tissues albeit at much lower levels. NAT2 expression in diverse human tissues provides further mechanistic support underlying associations between NAT2 genetic polymorphism, drug toxicity and/or chemical carcinogenesis. PMID:17287389

  1. Bioaccumulative characteristics of tetrabromobisphenol A and hexabromocyclododecanes in multi-tissues of prey and predator fish from an e-waste site, South China.

    PubMed

    Tang, Bin; Zeng, Yan-Hong; Luo, Xiao-Jun; Zheng, Xiao-Bo; Mai, Bi-Xian

    2015-08-01

    Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) were analyzed in 12 tissues of prey (mud carp) and predator (northern snakehead) fish from an e-waste area, South China. The TBBPA concentrations in different tissues ranged from 0.03 to 2.85 ng/g wet weight (ww) in mud carp and 0.04 to 1.30 ng/g ww in northern snakehead. The concentrations of HBCDs ranged from 0.07 to 96.9 ng/g ww in mud carp and 0.18 to 240 ng/g ww in northern snakehead. HBCD levels in tissues were correlated with lipid content for both fish species, while this correlation was only found in mud carp for TBBPA. Meanwhile, northern snakehead exhibited higher HBCD levels but lower TBBPA levels than mud carps. These observations are attributed to the more polar and reactive properties of TBBPA than HBCDs. α-HBCD was the predominant diastereoisomer of HBCDs in all tissues of mud carp and northern snakehead, except for chyme of mud carp. All the analyzed tissues in mud carp showed an enrichment of (+)-α-HBCD enantiomer with EF (enantiomeric fraction) values of 0.53-0.62, but that in northern snakehead showed an enrichment of (-)-α-HBCD enantiomer with EF values of 0.35-0.5. Considering the fact that the mud carp is one of the diet items of northern snakehead, the different enantiomer accumulation characteristics of α-HBCD between the two fish species in the present study indicated that prey and predator fish could prefer to biotransform different enantiomers of α-HBCD. PMID:25874430

  2. Determination of 240Pu/239Pu isotopic ratios in human tissues collected from areas around the Semipalatinsk Nuclear Test Site by sector-field high resolution ICP-MS.

    PubMed

    Yamamoto, M; Oikawa, S; Sakaguchi, A; Tomita, J; Hoshi, M; Apsalikov, K N

    2008-09-01

    Information on the 240Pu/239Pu isotope ratios in human tissues for people living around the Semipalatinsk Nuclear Test Site (SNTS) was deduced from 9 sets of soft tissues and bones, and 23 other bone samples obtained by autopsy. Plutonium was radiochemically separated and purified, and plutonium isotopes (239Pu and 240Pu) were determined by sector-field high resolution inductively coupled plasma-mass spectrometry. For most of the tissue samples from the former nine subjects, low 240Pu/239Pu isotope ratios were determined: bone, 0.125 +/- 0.018 (0.113-0.145, n = 4); lungs, 0.063 +/- 0.010 (0.051-0.078, n = 5); and liver, 0.148 +/- 0.026 (0.104-0.189, n = 9). Only 239Pu was detected in the kidney samples; the amount of 240Pu was too small to be measured, probably due to the small size of samples analyzed. The mean 240Pu/239Pu isotope ratio for bone samples from the latter 23 subjects was 0.152 +/- 0.034, ranging from 0.088 to 0.207. A significant difference (a two-tailed Student's t test; 95% significant level, alpha = 0.05) between mean 240Pu/239Pu isotope ratios for the tissue samples and for the global fallout value (0.178 +/- 0.014) indicated that weapons-grade plutonium from the atomic bombs has been incorporated into the human tissues, especially lungs, in the residents living around the SNTS. The present 239,240Pu concentrations in bone, lung, and liver samples were, however, not much different from ranges found for human tissues from other countries that were due solely to global fallout during the 1970's-1980's. PMID:18695410

  3. From the global to the local: possible pathways for the transduction of Indo-Sino-Tibetan cognitive-behavioral practices into site-specific, tissue-regenerative effects.

    PubMed

    Bushell, William C; Spector, Novera Herbert; Theise, Neil D

    2009-08-01

    While skepticism regarding the possibilities for a productive meeting (metaphorically or actual) between Western medicine and biology and older healing and health practices of traditional cultures may be prevalent, there are many theoretical points of meeting and much experimental data to suggest that cognitive-behavioral practices (C-Bp) of the latter may induce testable and reproducible phenomena for the former. Such modulation or modification of tissue regeneration by C-Bp presumably must work through systemic signaling of some kind. Several possible mechanisms for such signaling are recognized and will be reviewed here: humoral, neurological, cell trafficking, and bioelectromagnetic/energy mediated. Nonetheless, while cultures and techniques may be varied, human bodies are more alike than dissimilar. We indicate that great profit may be had for all participating cultures in establishing a common language, shared criteria for designing experiments and interpreting data, and cooperative goals for the promotion of tissue integrity and regeneration. PMID:19735241

  4. Transcriptional up-regulation of the mouse cytosolic glutathione peroxidase gene in erythroid cells is due to a tissue-specific 3' enhancer containing functionally important CACC/GT motifs and binding sites for GATA and Ets transcription factors.

    PubMed Central

    O'Prey, J; Ramsay, S; Chambers, I; Harrison, P R

    1993-01-01

    Nuclear run-on experiments have shown that the high level of expression of the mouse cytosolic glutathione peroxidase mRNA in erythroid cells is due to up-regulation of the gene at the transcriptional level. Studies of the chromatin structure around the cytosolic glutathione peroxidase gene have revealed a series of DNase I hypersensitive sites (DHSS) in the 3' flanking region of the gene in erythroid and other high-expression tissues that are lacking in low-expression cells, in addition to a DHSS over the promoter region in both high- and low-expression tissues. Functional transfection experiments have demonstrated that one of the 3' DHSS regions functions as an enhancer in erythroid cells but not in a low-expression epithelial cell line; and site-directed mutagenesis and footprinting experiments reveal that the activity of the erythroid cell-specific enhancer requires a cluster of binding sites for the CACC/GT box factors and the GATA and Ets families of transcription factors. Images PMID:8413228

  5. Cross-leg repair of large soft-tissue defects in distal sites of the feet by distally based neuro-fasciocutaneous flaps with perforating vessels.

    PubMed

    Wang, Z Q; Cao, Y L; Huang, Y F; Liu, D Q; Li, X F

    2014-01-01

    The objective of this study was to introduce a method for repairing large soft-tissue defects on the foot. Distally based neuro-fasciocutaneous flaps with perforating vessels were designed along the saphenous and sural neurovascular axes. The cutaneous perforating branches of the major arteries of the lower extremities were used as pedicles, which provided a rotation arc for the cross-leg flap to cover the large-sized soft-tissue defects on the foot. We transferred 6 neurocutaneous vascular axial flaps, including 4 saphenous neurocutaneous axial flaps (ranging from 25 x 13 to 17 x 9 cm in area) with posterior tibial perforators as the pedicle, and 2 sural neurocutaneous axial flaps (ranging from 29 x 12 to 18 x 7 cm in area) supplied by the perforating branches of the peroneal vessels. These 6 cases of neuro-fasciocutaneous flaps survived with satisfactory cosmetic appearances and functional results on follow-up at 8 to 17 months post-surgery. Placing a distally based neuro-fasciocutaneous cross-leg flap with perforating vessels is an effective method for repairing large-sized soft-tissue defects on the foot. PMID:25117303

  6. Distally Based Saphenous Neurocutaneous Perforator Flap: A Versatile Donor Site for Reconstruction of Soft Tissue Defects of the Medial Malleolar Region.

    PubMed

    Zhong, Wanrun; Lu, Shengdi; Chai, Yimin

    2016-01-01

    Repair of both simple and complex defects in the medial malleolar region continues to be a challenging task for surgeons because of the local paucity of soft tissue available for transfer. The popular neurocutaneous flap has provided a reliable and less technically demanding method for resurfacing defects of the lower extremities. We present our experience with the versatile design of the distally based saphenous neurocutaneous perforator flap to provide coverage of complex post-traumatic medial malleolar defects by harvesting multiple tissue components in various combinations. Our series included 11 patients (8 males [72.7%] and 3 females [27.3%]); mean age 39.2 (range 22 to 58) years, who were followed for a mean duration of 13.3 (range 9 to 18) months. Three flaps (27.3%) were harvested with massive subcutaneous tissue to obliterate dead space. The procedure was uneventful in 10 patients (90.9%). Venous congestion was noted in 1 patient (9.1%), in whom secondary healing was achieved with conservative treatment. PMID:26024559

  7. Chromatin studies reveal that an ERE is located far upstream of a vitellogenin gene and that a distal tissue-specific hypersensitive site is conserved for two coordinately regulated vitellogenin genes.

    PubMed Central

    Burch, J B; Fischer, A H

    1990-01-01

    Estrogen induces the expression of three vitellogenin genes in chicken hepatocytes. To survey the vitellogenin III (VTGIII) gene region for possible distal regulatory sequences, we identified tissue-specific hypersensitive (HS) sites within a 45 kb chromatin region spanning this gene. Five constitutive HS sites were found to mark the VTGIII gene region in hormone-naive hepatocytes. Strikingly, the constitutive HS site located 5.5 kb upstream of the VTGIII gene and a previously identified HS site located within the coordinately regulated VTGII gene mapped to nearly identical copies of a 72 bp sequence. Moreover, it would appear that there has been evolutionary pressure to retain specifically this 72 bp of VTGII-like sequence near the VTGIII gene subsequent to the VTGIII and VTGII genes becoming unlinked approximately 16 Myr ago. Two additional sets of HS sites were induced in the VTGIII gene region in response to estrogen. One set mapped immediately upstream of the gene in the vicinity of what we show to be a functional estrogen response element (ERE). The other induced HS site mapped 7.5 kb upstream of the gene. This far-upstream region was sequenced and was found to contain two imperfect ERE consensus sequences spaced 88 bp apart. In transient expression assays neither of these individual imperfect ERE sequences was functional, but a fragment spanning both sequences behaved as a strong ERE. In contrast to this synergism between imperfect ERE sequences, the presence of an NF-1 binding site 23 bp away from the more distal imperfect ERE sequence was not sufficient to render the latter a functional ERE in our assays. Images PMID:2377458

  8. Analysis of heavy metals from water, sediment, and tissues of Labeo angra (Hamilton, 1822), from an Ox-box lake- an wetland site from Assam, India.

    PubMed

    Das, Suchismita; Choudhury, Shamim Sultana

    2016-01-01

    The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities. PMID:26422176

  9. Effects of Antibiotics on Bone and Soft-Tissue Healing Following Immediate Single-Tooth Implant Placement Into Sites With Apical Pathology.

    PubMed

    Hosseini, Bashir; Byrd, Warren C; Preisser, John S; Khan, Asma; Duggan, Derek; Bencharit, Sompop

    2015-10-01

    Overprescription of antibiotics can cause bacterial resistance problems, leading to life-threatening illnesses and public health crises. Clinicians often believe antibiotics can prevent dental implant failure and postoperative complications. In conjunction with implant surgery, antibiotics are therefore routinely prescribed for all cases. In this double-blind, randomized controlled trial, the effects of antibiotics on the clinical outcomes of immediate implant placement upon replacing a tooth with an apical pathology were examined to compare antibiotics (n = 10) and placebo (n = 10). In each subject, a tooth with a chronic apical lesion was extracted, thoroughly curetted, irrigated, and replaced with single implant with a screw-retained custom provisional abutment/crown. Postoperative pain/discomfort was measured at 1- and 4-week postsurgical follow-up visits using visual analog scales. Facial alveolar bone and soft-tissue changes were measured using pre- and postoperative cone-beam computerized tomography and impressions. We found survival rates of 100% (antibiotics) and 78% (control). However, there was no statistical difference in means for any clinical outcome (t tests with Bonferroni adjustment for multiple testing), except for midfacial soft-tissue changes: 0.43 mm (SD, 0.76) in the antibiotics group and 1.70 mm (SD, 1.06) in the placebo group (t15 = -2.89, P = .011). The average change of the midfacial alveolar plate was 0.62 mm (SD, 0.46) and 1.34 mm (SD, 0.91) for the antibiotic and placebo groups, respectively, which did not significantly differ statistically. No significant correlation (Spearman correlation) existed between the changes in facial alveolar bone and the facial gingival margin. Antibiotics appear to have little effect on immediate implant treatment outcomes. PMID:25076118

  10. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    PubMed Central

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  11. Common Variants at Putative Regulatory Sites of the Tissue Nonspecific Alkaline Phosphatase Gene Influence Circulating Pyridoxal 5′-Phosphate Concentration in Healthy Adults123

    PubMed Central

    Carter, Tonia C; Pangilinan, Faith; Molloy, Anne M; Fan, Ruzong; Wang, Yifan; Shane, Barry; Gibney, Eileen R; Midttun, Øivind; Ueland, Per M; Cropp, Cheryl D; Kim, Yoonhee; Wilson, Alexander F; Bailey-Wilson, Joan E; Brody, Lawrence C; Mills, James L

    2015-01-01

    Background: Vitamin B-6 interconversion enzymes are important for supplying pyridoxal 5′-phosphate (PLP), the co-enzyme form, to tissues. Variants in the genes for these enzymes [tissue nonspecific alkaline phosphatase (ALPL), pyridoxamine 5′-phosphate oxidase, pyridoxal kinase, and pyridoxal phosphatase] could affect enzyme function and vitamin B-6 status. Objectives: We tested whether single-nucleotide polymorphisms (SNPs) in these genes influence vitamin B-6 status markers [plasma PLP, pyridoxal (PL), and 4-pyridoxic acid (PA)], and explored potential functional effects of the SNPs. Methods: Study subjects were young, healthy adults from Ireland (n = 2345). We measured plasma PLP, PL, and PA with liquid chromatography–tandem mass spectrometry and genotyped 66 tag SNPs in the 4 genes. We tested for associations with single SNPs in candidate genes and also performed genome-wide association study (GWAS) and gene-based analyses. Results: Seventeen SNPs in ALPL were associated with altered plasma PLP in candidate gene analyses (P < 1.89 × 10−4). In the GWAS, 5 additional ALPL SNPs were associated with altered plasma PLP (P < 5.0 × 10−8). Gene-based analyses that used the functional linear model β-spline (P = 4.04 × 10−15) and Fourier spline (P = 5.87 × 10−15) methods also showed associations between ALPL and altered plasma PLP. No SNPs in other genes were associated with plasma PLP. The association of the minor CC genotype of 1 ALPL SNP, rs1256341, with reduced ALPL expression in the HapMap Northern European ancestry population is consistent with the positive association between the CC genotype and plasma PLP in our study (P = 0.008). No SNP was associated with altered plasma PL or PA. Conclusions: In healthy adults, common variants in ALPL influence plasma PLP concentration, the most frequently used biomarker for vitamin B-6 status. Whether these associations are indicative of functional changes in vitamin B-6 status requires more investigation

  12. Mutation of the F-Protein Cleavage Site of Avian Paramyxovirus Type 7 Results in Furin Cleavage, Fusion Promotion, and Increased Replication In Vitro but Not Increased Replication, Tissue Tropism, or Virulence in Chickens

    PubMed Central

    Xiao, Sa; Khattar, Sunil K.; Subbiah, Madhuri; Collins, Peter L.

    2012-01-01

    We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position −1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position −3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens. PMID:22258248

  13. A Site-Specific Integrated Col2.3GFP Reporter Identifies Osteoblasts Within Mineralized Tissue Formed In Vivo by Human Embryonic Stem Cells.

    PubMed

    Xin, Xiaonan; Jiang, Xi; Wang, Liping; Stover, Mary Louise; Zhan, Shuning; Huang, Jianping; Goldberg, A Jon; Liu, Yongxing; Kuhn, Liisa; Reichenberger, Ernst J; Rowe, David W; Lichtler, Alexander C

    2014-10-01

    The use of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) for study and treatment of bone diseases or traumatic bone injuries requires efficient protocols to differentiate hESCs/iPSCs into cells with osteogenic potential and the ability to isolate differentiated osteoblasts for analysis. We have used zinc finger nuclease technology to deliver a construct containing the Col2.3 promoter driving GFPemerald to the AAVS1 site (referred to as a "safe harbor" site), in human embryonic stem cells (H9Zn2.3GFP), with the goal of marking the cells that have become differentiated osteoblasts. In teratomas formed using these cells, we identified green fluorescent protein (GFP)-positive cells specifically associated with in vivo bone formation. We also differentiated the cells into a mesenchymal stem cell population with osteogenic potential and implanted them into a mouse calvarial defect model. We observed GFP-positive cells associated with alizarin complexone-labeled newly formed bone surfaces. The cells were alkaline phosphatase-positive, and immunohistochemistry with human specific bone sialoprotein (BSP) antibody indicates that the GFP-positive cells are also associated with the human BSP-containing matrix, demonstrating that the Col2.3GFP construct marks cells in the osteoblast lineage. Single-cell cloning generated a 100% Col2.3GFP-positive cell population, as demonstrated by fluorescence in situ hybridization using a GFP probe. The karyotype was normal, and pluripotency was demonstrated by Tra1-60 immunostaining, pluripotent low density reverse transcription-polymerase chain reaction array and embryoid body formation. These cells will be useful to develop optimal osteogenic differentiation protocols and to isolate osteoblasts from normal and diseased iPSCs for analysis. PMID:25122686

  14. A Site-Specific Integrated Col2.3GFP Reporter Identifies Osteoblasts Within Mineralized Tissue Formed In Vivo by Human Embryonic Stem Cells

    PubMed Central

    Xin, Xiaonan; Jiang, Xi; Wang, Liping; Stover, Mary Louise; Zhan, Shuning; Huang, Jianping; Goldberg, A. Jon; Liu, Yongxing; Kuhn, Liisa; Reichenberger, Ernst J.; Rowe, David W.

    2014-01-01

    The use of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) for study and treatment of bone diseases or traumatic bone injuries requires efficient protocols to differentiate hESCs/iPSCs into cells with osteogenic potential and the ability to isolate differentiated osteoblasts for analysis. We have used zinc finger nuclease technology to deliver a construct containing the Col2.3 promoter driving GFPemerald to the AAVS1 site (referred to as a “safe harbor” site), in human embryonic stem cells (H9Zn2.3GFP), with the goal of marking the cells that have become differentiated osteoblasts. In teratomas formed using these cells, we identified green fluorescent protein (GFP)-positive cells specifically associated with in vivo bone formation. We also differentiated the cells into a mesenchymal stem cell population with osteogenic potential and implanted them into a mouse calvarial defect model. We observed GFP-positive cells associated with alizarin complexone-labeled newly formed bone surfaces. The cells were alkaline phosphatase-positive, and immunohistochemistry with human specific bone sialoprotein (BSP) antibody indicates that the GFP-positive cells are also associated with the human BSP-containing matrix, demonstrating that the Col2.3GFP construct marks cells in the osteoblast lineage. Single-cell cloning generated a 100% Col2.3GFP-positive cell population, as demonstrated by fluorescence in situ hybridization using a GFP probe. The karyotype was normal, and pluripotency was demonstrated by Tra1-60 immunostaining, pluripotent low density reverse transcription-polymerase chain reaction array and embryoid body formation. These cells will be useful to develop optimal osteogenic differentiation protocols and to isolate osteoblasts from normal and diseased iPSCs for analysis. PMID:25122686

  15. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site

    SciTech Connect

    Feng, Huan; Qian, Yu; Gallagher, Frank J.; Zhang, Weiguo; Yu, Lizhong; Liu, Chang -Jun; Jones, Keith W.; Tappero, Ryan

    2015-11-01

    Liberty State Park in New Jersey, USA, is a “brownfield” site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May–September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT) techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.

  16. TNF-α is expressed at sites of parasite and tissue destruction in the spleen of mice acutely infected with Trypanosoma cruzi

    PubMed Central

    LIMA, ELIANITA SUZART; ANDRADE, ZILTON A; ANDRADE, SONIA G

    2001-01-01

    Mice infected with a macrophagotropic strain of Trypanosoma cruzi develop progressive splenomegaly due to reactive hyperplasia with increased number of lymphocytes and macrophages, culminating in parasite disintegration and necrosis of parasitized cells. Necrotic changes have been attributed to the liberation of toxic cytokines, including TNF-α, from parasitized macrophages. In the present study, the presence of TNF‐α was investigated in situ. In addition the participation of destroyed parasites in inducing the liberation of TNF-α was examined in two highly susceptible mice strains (C3H and Swiss) and a more resistant strain (DBA). Swiss (90) C3H/He (83) and DBA (30) mice were infected with the Peruvian strain of T. cruzi. Nineteen infected Swiss mice, and 22 infected C3H/He were treated with Benznidazole (one or two doses, 100 mg/kg bw/day), on the 8th and 9th days after infection. Necrotic splenic lesions occurred in both susceptible and resistant strains of mice. Although differing in degree, lesions were more intense in C3H and Swiss than in DBA mice. Comparing untreated and treated susceptible mice, necrotic lesions were significantly less intense in the latter. By specific monoclonal antibody immunolabelling, TNF-α was demonstrated in the cytoplasm of macrophages and within necrotic areas, from Swiss, C3H/He and DBA mouse spleens. In conclusion, TNF-α, probably synthesized by macrophages, was strongly expressed at the sites of parasite and cell destruction, thus appearing to play a pivotal role in splenic necrotic changes associated with severe experimental T. cruzi infection. PMID:11846839

  17. Tissue types (image)

    MedlinePlus

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  18. Tissue Microdissection.

    PubMed

    Rabien, Anja; Kristiansen, Glen

    2016-01-01

    The new opportunities of modern assays of molecular biology can only be exploited fully if the results can be accurately correlated to the tissue phenotype under investigation. This is a general problem of non-in situ techniques, whereas results from in situ techniques are often difficult to quantify. The use of bulk tissue, which is not precisely characterized in terms of histology, has long been the basis for molecular analysis. It has, however, become apparent, that this simple approach is not sufficient for a detailed analysis of molecular alterations, which might be restricted to a specific tissue phenotype (e.g., tumor or normal tissue, stromal or epithelial cells). Microdissection is a method to provide minute amounts of histologically characterized tissues for molecular analysis with non-in situ techniques and has become an indispensable research tool. If tissue diversity is moderate and negligible, manual microdissection can be an easy and cost-efficient method of choice. In contrast, the advantage of laser microdissection is a very exact selection down to the level of a single cell, but often with a considerable time exposure to get enough material for the following analyses. The latter issue and the method of tissue preparation needed for laser microdissection are the main problems to solve if RNA, highly sensitive to degradation, shall be analyzed. This chapter focuses on optimized procedures for manual microdissection and laser microdissection to analyze RNA of malignant and nonmalignant prostate tissue. PMID:26667453

  19. Tissue Tregs.

    PubMed

    Panduro, Marisella; Benoist, Christophe; Mathis, Diane

    2016-05-20

    The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3(+)CD4(+) regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations-those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work-as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular. PMID:27168246

  20. (/sup 3/H)leukotriene B/sub 4/ binding to the guinea pig spleen membranes: a rich tissue source for a high affinity leukotriene B/sub 4/ receptor site

    SciTech Connect

    Cheng, J.B.; Kohi, F.; Townley, R.G.

    1986-03-05

    To select a tissue rich for the high affinity leukotriene (LT)B/sub 4/ receptor site, they compared binding of 1 nM (/sup 3/H)LTB/sub 4/ (180 Ci/mmol) to the crude membrane preparations of guinea pig spleen, thymus, lung, uterus, bladder, brain, adrenal gland, small intestine, liver, kidney and heart. They found that the membrane preparations from spleen contained the highest binding activity per mg protein. They characterized the LTB/sub 4/ binding to the spleen preparation in detail. LTB/sub 4/ binding was rapid, reversible, stereoselective and saturable. The data from equilibrium experiments showed a linear Scatchard plot with a K/sub d/ of 1.6 nM and a binding site density of 259 fmol/mg prot. The rank order of agents competing for spleen (/sup 3/H)LTB/sub 4/ binding at 25/sup 0/C was: LTB/sub 4/ (K/sub i/ = 2.8 nM) > 20-OH-LTB/sub 4/ (23 nM) > LTA/sub 4/ (48 nM) > LTA/sub 4/ methyl ester (0.13 ..mu..M) > 20-COOH-LTB/sub 4/ (> 6.6 ..mu..M) greater than or equal to arachidonic acid (0.15 mM) similarly ordered FPL-55,712 (0.11 mM). At 4/sup 0/C, LTB/sub 4/ (2.3 nM) competed at least 10x more effectively than 20-OH-LTB/sub 4/ (29 nM) and 20-COOH-LTB/sub 4/ (> 6.6 ..mu..M). HPLC analysis indicated that incubation of 84 ng LTB/sub 4/ with the spleen membrane at 25/sup 0/C did not result in the formation of 20-OH-LTB/sub 4/ (< 1 ng) in the filtrate. They conclude that guinea pig spleen contains a rich tissue source of high affinity (/sup 3/H)LTB/sub 4/ receptor binding sites.

  1. High Resolution Structures of p-Aminobenzamidine- and Benzamidine- VIIa/Soluble Tissue Factor: Unpredicted Conformation of the 192-193 Peptide Bond and Mapping of Ca2+, Mg2+, Na+ an Zn2+ Sites in Facto VIIa

    SciTech Connect

    Bajaj,S.; Schmidt, A.; Agah, S.; Bajaj, M.; Padmanabhan, K.

    2006-01-01

    Factor VIIa (FVIIa) consists of a {gamma}-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like domains, and a protease domain. FVIIa binds seven Ca{sup 2+} ions in the Gla, one in the EGF1, and one in the protease domain. However, blood contains both Ca{sup 2+} and Mg{sup 2+}, and the Ca{sup 2+} sites in FVIIa that could be specifically occupied by Mg{sup 2+} are unknown. Furthermore, FVIIa contains a Na{sup +} and two Zn{sup 2+} sites, but ligands for these cations are undefined. We obtained p-aminobenzamidine-VIIa/soluble tissue factor (sTF) crystals under conditions containing Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, and Zn{sup 2+}. The crystal diffracted to 1.8{angstrom} resolution, and the final structure has an R-factor of 19.8%. In this structure, the Gla domain has four Ca{sup 2+} and three bound Mg{sup 2+}. The EGF1 domain contains one Ca{sup 2+} site, and the protease domain contains one Ca{sup 2+}, one Na{sup +}, and two Zn{sup 2+} sites. {sup 45}Ca{sup 2+} binding in the presence/absence of Mg{sup 2+} to FVIIa, Gla-domainless FVIIa, and prothrombin fragment 1 supports the crystal data. Furthermore, unlike in other serine proteases, the amide N of Gly{sup 193} in FVIIa points away from the oxyanion hole in this structure. Importantly, the oxyanion hole is also absent in the benzamidine-FVIIa/sTF structure at 1.87{angstrom} resolution. However, soaking benzamidine-FVIIa/sTF crystals with D-Phe-Pro-Arg-chloromethyl ketone results in benzamidine displacement, D-Phe-Pro-Arg incorporation, and oxyanion hole formation by a flip of the 192-193 peptide bond in FVIIa. Thus, it is the substrate and not the TF binding that induces oxyanion hole formation and functional active site geometry in FVIIa. Absence of oxyanion hole is unusual and has biologic implications for FVIIa macromolecular substrate specificity and catalysis.

  2. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  3. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  4. Scar Tissue.

    PubMed

    McLean, Haydn J

    2015-12-01

    Scar tissue is associated with physical wounds and their mending, but it is also descriptive in portraying the emotional scarring that occurs following adversity, resulting in potential psychological morbidity. Provided the adversity is not severe, such challenges to adaptability may provoke Andrew Solomon's process of forging meaning and building identity. Perceiving an emotional constitution as analogous to the immune system provides a metaphor for appreciating the benefits of emotional challenges, which may provoke greater emotional resilience or posttraumatic growth. PMID:26631526

  5. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling

    PubMed Central

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  6. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling.

    PubMed

    Genovese, Luca; Brendolan, Andrea

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  7. Tissue macerating instrument

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.; Burnett, J. E. (Inventor)

    1977-01-01

    A surgical tissue macerating and removal tool is described which has a rotating rod with a cutting member at one end and which disposed in a tube which is then contained in an extension of the tool handle. A frusto-conical member extends into the extension at the cutter member end of the rotating rod with its small end engaging the tube. The portion of the frusto-conical member outside of the extension forms a tissue engaging member and may be cut-off at an angle to the axis of the rod to form a tissue engaging edge. Apertures are provided in the extension adjacent the frusto-concial member so that treatment fluid supplied in the annular space between the tube and the extension may flow to the operative site. An aperture is provided in the frustoconical member between the extension and the tube so that fluid may also flow into the tube where it mixes with macerated tissue being directed through an aperture in the tube to a passageway which may have suction applied to help remove macerated material.

  8. Dinitrotoluene in deer tissues

    SciTech Connect

    Shugart, L.R.

    1991-09-30

    Badger Army Ammunition Plant (BAAP), Baraboo, Wisconsin, has within a security-fenced area, a herd of whitetail deer. The US Army and the State of Wisconsin, Department of Health and Social Services have determined that approximately 20 of the deer be harvested and tissue samples thus collected be analyzed for 2,4- and 2,6-dinitrotoluene (2,4- and 2,6-DNT) by high pressure liquid chromatography (HPLC) to a sensitivity of 0.1 part per million (ppm). The HPLC analyses will be done at the Oak Ridge National Laboratory (ORNL) following protocol used previously for similar work for other government sites. ORNL shall instruct Olin relative to the quantity and type of tissue required, storage and shipment requirements, and other information to ensure that all protocol and chain of custody requirements are clear. A final report will be made to Olin Corporation upon completion of the HPLC analyses.

  9. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  10. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  11. Tissue Photolithography

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil; Shibata, Darryl; Taylor, Clive

    2011-01-01

    Tissue lithography will enable physicians and researchers to obtain macromolecules with high purity (greater than 90 percent) from desired cells in conventionally processed, clinical tissues by simply annotating the desired cells on a computer screen. After identifying the desired cells, a suitable lithography mask will be generated to protect the contents of the desired cells while allowing destruction of all undesired cells by irradiation with ultraviolet light. The DNA from the protected cells can be used in a number of downstream applications including DNA sequencing. The purity (i.e., macromolecules isolated form specific cell types) of such specimens will greatly enhance the value and information of downstream applications. In this method, the specific cells are isolated on a microscope slide using photolithography, which will be faster, more specific, and less expensive than current methods. It relies on the fact that many biological molecules such as DNA are photosensitive and can be destroyed by ultraviolet irradiation. Therefore, it is possible to protect the contents of desired cells, yet destroy undesired cells. This approach leverages the technologies of the microelectronics industry, which can make features smaller than 1 micrometer with photolithography. A variety of ways has been created to achieve identification of the desired cell, and also to designate the other cells for destruction. This can be accomplished through chrome masks, direct laser writing, and also active masking using dynamic arrays. Image recognition is envisioned as one method for identifying cell nuclei and cell membranes. The pathologist can identify the cells of interest using a microscopic computerized image of the slide, and appropriate custom software. In one of the approaches described in this work, the software converts the selection into a digital mask that can be fed into a direct laser writer, e.g. the Heidelberg DWL66. Such a machine uses a metalized glass plate (with

  12. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  13. [Azithromycin: tissue pharmacology].

    PubMed

    Bergogne-Bérézin, E

    1995-06-01

    Among macrolide derivatives, azithromycin which is an azalide, is a totally original new drug as to its pharmacokinetics in serum and tissues. Compared to reference compounds such as erythromycin or roxithromycin, pharmacokinetic parameters of azithromycin are characterized by: (i) much lower serum concentrations; (ii) a much longer elimination half-life (48-96 h); (iii) high and persistent tissue concentrations. The latter characteristic has been demonstrated in animal models (experimental H. influenzae pneumonia in mice) and in human studies. In lung parenchyma, azithromycin concentrations were higher and more persistent (72 h) in infected mice (12 mg/kg) as compared to non infected mice (controls) receiving the same dose of azithromycin (50 mg/kg); this may result from high intracellular concentrations in polymorphonuclear leucocytes and release of the drug at pulmonary sites of infection. In man, concentrations of azithromycin have been measured in lung parenchyma, bronchial secretions, tonsils, during exploratory or surgical conditions. After a single dose of 500 mg of azithromycin, local levels may reach up to 10 mg/kg with persistence of high levels for > or = 72 h in lungs, tonsils, sinus and bronchial secretions (1.5 to 8.6 mg/kg or mg/l). Five consecutive doses of azithromycin (500 mg per day) maintained for 10 days tonsil concentrations higher than the MICs for susceptible bacteria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8539071

  14. Chemokines and tissue injury.

    PubMed Central

    Furie, M. B.; Randolph, G. J.

    1995-01-01

    Accumulation of leukocytes at sites of inflammation is essential for host defense, yet secretory products of the white cells may augment injury by damaging surrounding healthy tissues. Members of the chemokine family of chemotactic cytokines play a fundamental role in this process by attracting and stimulating specific subsets of leukocytes. In vitro studies suggest that chemokines participate in at least three phases of leukocyte recruitment. First, they foster tight adhesion of circulating leukocytes to the vascular endothelium by activating leukocytic integrins. Second, because of their chemoattractant properties, chemokines guide leukocytes through the endothelial junctions and underlying tissue to the inflammatory focus. Finally, chemokines activate effector functions of leukocytes, including production of reactive oxygen intermediates and exocytosis of degradative enzymes. Animal studies in which antibodies are used to neutralize the activity of individual members of the chemokine family confirm that these mediators contribute to the development of both acute and chronic inflammatory conditions. A number of mechanisms may operate in vivo to limit the proinflammatory properties of chemokines. Therapies that target chemokines directly or enhance the body's mechanisms for controlling their activity may prove to be reasonable approaches for treatment of inflammatory diseases. PMID:7778669

  15. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  16. Undifferentiated Connective Tissue Disease

    MedlinePlus

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  17. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... the bacteria Streptococcus pyogenes , which is sometimes called "flesh-eating bacteria." Necrotizing soft tissue infection develops when ...

  18. Biodegradable inflatable balloons for tissue separation.

    PubMed

    Basu, Arijit; Haim-Zada, Moran; Domb, Abraham J

    2016-10-01

    Confining radiation to a specific region (during radiation therapy) minimizes damage to surrounding tissues. Biodegradable inflatable balloons (bio-balloons) were developed. The device protects the normal tissues by increasing the gap between radiation source and critical structures. The radiation fades away while passing through the inflated balloon preventing the surrounding tissues from harmful radiation. These bio-balloons have also found clinical use to treat massive rotator cuff tear. This review summarizes the chemistry, engineering, and clinical development of these biomedical devices. These balloons are made of biodegradable polymers folded into the edge of a trocar and inserted between the tissues to be separated, and inflated by normal saline in the site of the application. The inserted balloon protects the tissues from radiation or mechanical stress. They remain inflated on site for two months and are finally eliminated within 12 months. PMID:27521613

  19. Tissue C3b receptors.

    PubMed Central

    Schrieber, L; Penny, R

    1979-01-01

    Using fluorescein-labelled S. typhi coated with C3b (FBC) the presence of a receptor for C3b in normal human glomeruli has been confirmed. A quantitative system, counting the number of FBC bound per unit area of glomerulus, has been developed. Experimental variables have been studied to determine optimal conditions for FBC binding. Glomerular FBC binding has been shown to be dependent on FBC concentration, temperature and time of tissue incubation. A standardized procedure has been adopted. Using this technique we have examined a number of target tissues, including synovium, skin, lung, choroid plexus and uveal tract, which are frequently affected in systemic immune complex diseases. No evidence of this receptor has been found in these tissues. These results suggest a mechanism different from the C3b receptor operating to localise immune complexes in these non-renal sites. Images FIG. 2 PMID:527266

  20. SITE RANK

    EPA Science Inventory

    Site rank is formulated for ranking the relative hazard of contamination sources and vulnerability of drinking water wells. Site rank can be used with a variety of groundwater flow and transport models.

  1. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants.

    PubMed Central

    Baumann, K; De Paolis, A; Costantino, P; Gualberti, G

    1999-01-01

    The Dof proteins are a large family of plant transcription factors that share a single highly conserved zinc finger. The tobacco Dof protein NtBBF1 was identified by its ability to bind to regulatory domain B in the promoter of the rolB oncogene. In this study, we show that the ACT T TA target sequence of NtBBF1 in domain B is necessary for tissue-specific expression of rolB. beta-Glucuronidase (GUS) activity of tobacco plants containing a rolB promoter-GUS fusion with a mutated NtBBF1 target sequence within domain B is almost completely suppressed in apical meristems and is severely abated in the vascular system. The ACT T TA motif is shown here also to be one of the cis-regulatory elements involved in auxin induction of rolB. The pattern of NtBBF1 expression in plants is remarkably similar to that of rolB, except in mesophyll cells of mature leaves, in which only NtBBF1 expression could be detected. Ectopic expression of rolB in mesophyll cells was achieved by particle gun delivery if the NtBBF1 binding sequence was intact. These data provide evidence that in the plant, a Dof protein DNA binding sequence acts as a transcriptional regulatory motif, and they point to NtBBF1 as the protein involved in mediating tissue-specific and auxin-inducible expression of rolB. PMID:10072394

  2. [Research progress in peri-implant soft tissue engineering augmentation method].

    PubMed

    Pei, T T; Yu, H Q; Wen, C J; Guo, T Q; Zhou, Y M; Peng, H M

    2016-05-01

    The sufficiency of hard and soft tissue at the implant site is the guarantee of long-term function, health and the appearance of implant denture. Problem of soft tissue recession at the implant site has always been bothering dentists. Traditional methods for augmentation of soft tissue such as gingival transplantation have disadvantages of instability of the increased soft-tissue and more trauma. Lately the methods that base on tissue engineering to increase the soft tissue of peri-implant sites have drawn great attention. This review focuses on the current methods of peri-implant restoration through tissue engineering, seed cells, biological scaffolds and cytokines. PMID:27220393

  3. Variation in alternative splicing across human tissues

    PubMed Central

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues. Conclusions This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells. PMID:15461793

  4. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  5. Tissue damage detection by osmotic surveillance

    PubMed Central

    Enyedi, Balázs; Kala, Snigdha; Nikolich-Zugich, Tijana; Niethammer, Philipp

    2013-01-01

    How tissue damage is detected to induce inflammatory responses is unclear. Most studies have focused on damage signals released by cell breakage and necrosis1. Whether tissues utilize other cues besides cell lysis to detect that they are damaged is unknown. We find that osmolarity differences between interstitial fluid and the external environment mediate rapid leukocyte recruitment to sites of tissue damage in zebrafish by activating cytosolic phospholipase a2 (cPLA2) at injury sites. cPLA2 initiates the production of non-canonical arachidonate metabolites that mediate leukocyte chemotaxis via a 5-oxo-ETE receptor (OXE-R). Thus, tissues can detect damage through direct surveillance of barrier integrity. By this mechanism, cell-swelling likely functions as a pro-inflammatory intermediate. PMID:23934216

  6. Tissue damage detection by osmotic surveillance.

    PubMed

    Enyedi, Balázs; Kala, Snigdha; Nikolich-Zugich, Tijana; Niethammer, Philipp

    2013-09-01

    How tissue damage is detected to induce inflammatory responses is unclear. Most studies have focused on damage signals released by cell breakage and necrosis. Whether tissues use other cues in addition to cell lysis to detect that they are damaged is unknown. We find that osmolarity differences between interstitial fluid and the external environment mediate rapid leukocyte recruitment to sites of tissue damage in zebrafish by activating cytosolic phospholipase a2 (cPLA2) at injury sites. cPLA2 initiates the production of non-canonical arachidonate metabolites that mediate leukocyte chemotaxis through a 5-oxo-ETE receptor (OXE-R). Thus, tissues can detect damage through direct surveillance of barrier integrity, with cell swelling probably functioning as a pro-inflammatory intermediate in the process. PMID:23934216

  7. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  8. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  9. Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus.

    PubMed

    Mohiti-Asli, Mahsa; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-10-01

    Wound infection presents a challenging and growing problem. With the increased prevalence and growth of multidrug-resistant bacteria, there is a mounting need to reduce and eliminate wound infections using methodologies that limit the ability of bacteria to evolve into further drug-resistant strains. A well-known strategy for combating bacterial infection and preventing wound sepsis is through the delivery of silver ions to the wound site. High surface area silver nanoparticles (AgNPs) allowing extensive silver ion release have therefore been explored in different wound dressings and/or skin substitutes. However, it has been recently shown that AgNPs can penetrate into the stratum corneum of skin or diffuse into the cellular plasma membrane, and may interfere with a variety of cellular mechanisms. The goal of this study was to introduce and evaluate a new type of high surface area metallic silver in the form of highly porous silver microparticles (AgMPs). Polylactic acid (PLA) nanofibers were successfully loaded with either highly porous AgMPs or AgNPs and the antimicrobial efficacy and cytotoxicity of the two silver-based wound dressings were assessed and compared. To better mimic the physiological environment in vivo where both human cells and bacteria are present, a novel coculture system combining human epidermal keratinocytes and Staphylococcus aureus bacteria was designed to simultaneously evaluate human skin cell cytotoxicity with antimicrobial efficacy in a three-dimensional environment. We found that highly porous AgMPs could be successfully incorporated in nanofibrous wound dressings, and exhibited comparable antimicrobial efficacy and cytotoxicity to AgNPs. Further, PLA nanofibers containing highly porous AgMPs exhibited steady silver ion release, at a greater rate of release, than nanofibers containing AgNPs. The replacement of AgNPs with the newly introduced AgMPs overcomes concerns regarding the use of nanoparticles and holds great promise as skin

  10. Skin Tissue Engineering for the Infected Wound Site: Biodegradable PLA Nanofibers and a Novel Approach for Silver Ion Release Evaluated in a 3D Coculture System of Keratinocytes and Staphylococcus aureus

    PubMed Central

    Mohiti-Asli, Mahsa; Pourdeyhimi, Behnam

    2014-01-01

    Wound infection presents a challenging and growing problem. With the increased prevalence and growth of multidrug-resistant bacteria, there is a mounting need to reduce and eliminate wound infections using methodologies that limit the ability of bacteria to evolve into further drug-resistant strains. A well-known strategy for combating bacterial infection and preventing wound sepsis is through the delivery of silver ions to the wound site. High surface area silver nanoparticles (AgNPs) allowing extensive silver ion release have therefore been explored in different wound dressings and/or skin substitutes. However, it has been recently shown that AgNPs can penetrate into the stratum corneum of skin or diffuse into the cellular plasma membrane, and may interfere with a variety of cellular mechanisms. The goal of this study was to introduce and evaluate a new type of high surface area metallic silver in the form of highly porous silver microparticles (AgMPs). Polylactic acid (PLA) nanofibers were successfully loaded with either highly porous AgMPs or AgNPs and the antimicrobial efficacy and cytotoxicity of the two silver-based wound dressings were assessed and compared. To better mimic the physiological environment in vivo where both human cells and bacteria are present, a novel coculture system combining human epidermal keratinocytes and Staphylococcus aureus bacteria was designed to simultaneously evaluate human skin cell cytotoxicity with antimicrobial efficacy in a three-dimensional environment. We found that highly porous AgMPs could be successfully incorporated in nanofibrous wound dressings, and exhibited comparable antimicrobial efficacy and cytotoxicity to AgNPs. Further, PLA nanofibers containing highly porous AgMPs exhibited steady silver ion release, at a greater rate of release, than nanofibers containing AgNPs. The replacement of AgNPs with the newly introduced AgMPs overcomes concerns regarding the use of nanoparticles and holds great promise as skin

  11. Soft tissue angiosarcomas

    SciTech Connect

    Morales, P.H.; Lindberg, R.D.; Barkley, H.T.

    1981-12-01

    From 1949 to 1979, 12 patients with soft tissue angiosarcoma received radiotherapy (alone or in combination with other modalities of treatment) with curative intent at The University of Texas M.D. Anderson Hospital and Tumor Institute. The primary site was the head and neck in six patients (scalp, four; maxillary antrum, one; and oral tongue, one), the breast in four patients, and the thigh in two patients. All four patients with angiosarcoma of the scalp had advanced multifocal tumors, and two of them had clinically positive neck nodes. None of these tumors were controlled locally, and local recurrences occurred within and/or at a distance from the generous fields of irradiation. The remaining two patients with head and neck lesions had their disease controlled by surgery and postoperative irradiation. Three of the four angiosarcomas of the breast were primary cases which were treated by a combination of surgery (excisional biopsy, simple mastectomy, radical mastectomy) and postoperative irradiation. One patient also received adjuvant chemotherapy. The fourth patient was treated for scar recurrence after radical mastectomy. All four patients had their disease locally controlled, and two of them have survived over 5 years. The two patients with angiosarcoma of the thigh were treated by conservative surgical excision and postoperative irradiation. One patient had her disease controlled; the other had a local recurrence requiring hip disarticulation and subsequent hemipelvectomy for salvage.

  12. Connective Tissue Disorders

    MedlinePlus

    Connective tissue is the material inside your body that supports many of its parts. It is the "cellular ... their work. Cartilage and fat are examples of connective tissue. There are over 200 disorders that impact connective ...

  13. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  14. Live birth after ovarian tissue transplant

    NASA Astrophysics Data System (ADS)

    Lee, D. M.; Yeoman, R. R.; Battaglia, D. E.; Stouffer, R. L.; Zelinski-Wooten, M. B.; Fanton, J. W.; Wolf, D. P.

    2004-03-01

    Radiation and high-dose chemotherapy may render women with cancer prematurely sterile, a side-effect that would be avoided if ovarian tissue that had been removed before treatment could be made to function afterwards. Live offspring have been produced from transplanted ovarian tissue in mice and sheep but not in monkeys or humans, although sex steroid hormones are still secreted. Here we describe the successful transplantation of fresh ovarian tissue to a different site in a monkey, which has led to the birth of a healthy female after oocyte production, fertilization and transfer to a surrogate mother. The ectopically grafted tissue functions without surgical connection to major blood vessels and sets the stage for the transplantation of cryopreserved ovarian tissue in humans.

  15. Multispectral tissue characterization for intestinal anastomosis optimization.

    PubMed

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N D; Decker, Ryan; Kim, Peter C W; Kang, Jin U; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement. PMID:26440616

  16. Injectable fillers for facial soft tissue enhancement.

    PubMed

    Sclafani, A P; Romo, T

    2000-01-01

    Soft tissue augmentation materials have been advocated for correction of post-surgical or post-traumatic facial defects, as well as for age-related folds and wrinkles. While autogenous tissues may be the safest option, they require a second operative site. Animal-derived or synthetic materials have been advocated since the late 19th century, and have waxed and waned in popularity. In recent years, we have gained a better understanding of the physical events that occur when material is placed within or below the skin. With this knowledge, we stand at the threshold of a new era, where soft tissue fillers can be designed and customized to suit the individual patient. This article will review the major materials that have been or are now advocated for use as soft tissue fillers, and will detail their relative strengths and weaknesses in order to give the clinician a better perspective when considering a material for soft tissue augmentation. PMID:11802343

  17. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  18. Chronic Wasting Disease Positive Tissue Bank

    USGS Publications Warehouse

    Wright, Scott D.

    2007-01-01

    In 2005, the USGS National Wildlife Health Center entered into an agreement with the Wyoming Game and Fish Department and the Department of Veterinary Sciences at the University of Wyoming to produce a collection of positive tissues from cervids intentionally infected with chronic wasting disease. This agreement was facilitated through the University of Wyoming Cooperative Fish and Wildlife Unit. Also, the investigators on this project sampled the animals incrementally over 2 years to show changes over time, and examined tissues from the animals by immunohistochemistry. CWD positive tissues are catalogued by species, sample site and time of infection. These data and more will soon be published.

  19. Development of tissue bank.

    PubMed

    Narayan, R P

    2012-05-01

    The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole. PMID:23162240

  20. Fluroine-18 labeled 28-carbomethoxy-3{beta}-(4-chlorophenyl)-8-[-3-fluoropropyl] nortropane(FPT): Synthesis and tissue distribution of a potential, radioligand for mapping cocaine receptor sites by PET

    SciTech Connect

    Keil, R.; Goodman, M.M.; Shoup, T.

    1995-05-01

    Highly potent and selective radioligands for the dopamine transporter labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for longitudinal in vivo mapping of cocaine receptor sites in the caudate by PET. Recently, we reported an iodine-123 labeled 3{beta}-aryl analog of cocaine, 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)-8-((E)-3-iodopropen-1-yl)nortropane, which was 125 times more potent than cocaine in inhibiting [I-125] RTI-55 binding to rat striatal homogenates and which showed high striatal (S) uptake (0.61% dose/g) and high S to cerebellum (C) ratio S/C=16.5 at 120 min in rats. These results demonstrated bulk tolerance at the 8-position of this I-123 analog. These findings prompted us to synthesize a new radioligand fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)-8-3-fluoropropylnortropane (FPT) as a potential cocaine receptor PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(chlorophenyl) nortropane (1) with 1-bromo-3-fluoropropane (2) in CH3CN at 80{degrees}C afforded FPT (3). In Vitro binding studies in rat striatal homogenates using [I-125] RTI-55 resulted in a Ki (nM) of 8.2 for FPT. [F-18]FPT (3) was prepared by treating 1,3-diiodopropane (4) with NCA K[F-18]/K222 for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-3-iodopropane (5) in 50% E.O.B. yield. Coupling of [F-18] 5 with 1 in CH3CN at 60{degrees}C afforded [F-18]FPT in 5% yield (not optimized) E.O.B. following HPLC purification in a total synthesis time of 100 min.. [F-18]5 was >99% radiochemically pure with a specific activity of 8 Ci/{mu}mole. Following intravenous administration to rats [F-18]FPT showed high uptake in the striatum (S) with rapid washout from the cerebellum to afford a high S/C ratios=6.2 at 120 min. Primate imaging will also be presented. These results suggest that FPT is an excellent candidate for mapping cocaine receptor sites by PET.

  1. Tissue engineering of reproductive tissues and organs.

    PubMed

    Atala, Anthony

    2012-07-01

    Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract. PMID:22748231

  2. Soft Tissue Tumours of the Retroperitoneum

    PubMed Central

    Van Roggen, J. Frans Graadt

    2000-01-01

    Purpose. This review summarizes the more prevalent soft tissue tumours arising in the retroperitoneum and highlights some recent fundamental and diagnostic developments relevant to mesenchymal tumours. Discussion. The retroperitoneum is an underestimated site for benign and malignant neoplastic disease, and represents the second most common site of origin of primary malignant soft tissue tumours (sarcomas) after the deep tissues of the lower extremity. In contrast to the predominance of benign soft tissue lesions over malignant sarcomas elsewhere, retroperitoneal mesenchymal lesions are far more likely to be malignant. The differential diagnosis is primarily with the more common lymphoproliferative and parenchymatous epithelial lesions arising in this area, and with metastatic disease from known or unknown primary sites elsewhere.The most prevalent mesenchymal tumours at this site are of a lipomatous, myogenic or neural nature.Their generally late clinical presentation and poorly accessible location provides numerous clinical challenges; optimal radiological imaging and a properly performed biopsy are essential cogs in the management route. Histopathological diagnosis may be complicated, but has been aided by developments in the fields of immunohistochemistry and tumour (cyto)genetics. Despite significant advances in oncological management protocols, the prognosis remains generally less favourable than for similar tumours at more accessible sites. PMID:18521430

  3. Affinities and densities of high-affinity (/sup 3/H)muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    SciTech Connect

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-09-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using (/sup 3/H)muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using (/sup 3/H)flunitrazepam and (/sup 3/H)Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of (/sup 3/H)muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy.

  4. Value siting

    SciTech Connect

    Ferrar, T.A.; Howes, J.A.

    1995-02-01

    Finding an appropriate site is becoming an increasing challenge in building new power projects. One of the first orders of business in project development is identifying a site that offers the maximum spread between the cost of fuel and net power price. The collection of sites that exhibit an adequate spread - presenting a first-order, acceptable economic expectation - must now be subjected to an ever increasing number of political, societal, technical, and economic exclusion screens. The barriers can include cooling water constraints, community resistance, visual incompatibility, archaeological concerns and endangered species preservation issues. Most power siting difficulties can be substantially mitigated by gaining access to developed, but under-used sites, whose current owners are bound by circumstances - political or financial - that prevent them from using such locations. There are two such categories of sites: Utilities that have sites on which depreciated power production assets rest; and, The federal government, with numerous sites throughout the country, particularly military bases subject to closure under the Base Realignment and Closure (BRAC) proceedings. It is in the interests of developers, as well as consumers, investors and taxpayers, ti undertake a thorough examination of these overlooked pearls of opportunities and develop their potential.

  5. Radiofluorinated 3-(2{prime}-fluoroethyl)-2-thienylspiperone (FETS): Synthesis, pharmacologic characterization, tissue distribution and primate imaging of a selective radioligand for mapping D2 receptor sites by PET

    SciTech Connect

    Goodman, M.M.; Shi, B.; Hoffman, J.

    1995-05-01

    Abnormally high dopaminergic neurotransmission has been implicated in schizophrenia. A number of radiolabeled analogs of spiperone, a potent antipyschotic with a high (nanomolar) affinity for dopamine D2 receptors, have been synthesized for quantifying D2 receptors in humans. An undesired property accompanying high striatal uptake of radiolabeled spiperone (SPIP) analogs is high affinity for serotonin 5-IIT2 receptors. A potent spiperone analog which selectively binds to D2 receptors would be valuable in studying regional dopaminergic aberrations in schizophrenia. We have synthesized new potent radioligands [F-18] labeled 3-(2{prime}-fluoroethyl)-2-thienylspiperone (FETS) and 3-(3{prime}-fluoropropyl)-2-thienylspiperone (FPTS) for quantifying D2 receptors by PET. In vitro binding studies for D2 receptors in rat striatal homogenates using [H-3]raclopride afforded Ki`s (nM) of 1.07 for SPIP, 2.02 for FETS, 3.45 for FES and 5.45 for FPTS. In vitro binding studies for 5-HT2 receptors in rat cortical homogenates using [H-3]ketanserin afforded Ki`s (nM) of 1.86 for SPIP, 6.03 for FES, 20 for FPTS and 67 for FETS. Thus, FETS was found to be a potent and the most selective (Ki 5-HT2/Ki D2=33.5) spiperone ligand for D2 receptors. [F-18]FETS was synthesized in 41% E.O.B. by NCA K[F-18]/K222 exchange for tosylate from 3-(2{sup {prime}}-tosylethyl)-2-thienylspiperone in CH3CN at 100{degrees}C. HPLC purification afforded [F-18]FETS with a specific activity of 8 Ci/{mu}mole in a total synthesis time of 90 min. Following femoral vein injection in rats [F-18]FETS showed good uptake and retention in striatal (S) tissue (0.91% dose/g at 60 min) with clearance from the cerebellum (C) (0.24% dose/g at 60 min) giving S/C = 3.6 at 60 min. [F-18]FETS (6.0 mCi) was also administered to a rhesus monkey and showed high uptake and retention in the basal ganglia with S/C = 6.0 and 10.0 at 1 h and 2 h post injection respectively.

  6. Tissue transfer techniques in reconstructive urology

    PubMed Central

    Bryk, Darren J; Yamaguchi, Yuka

    2015-01-01

    Tissue transfer techniques are an essential part of the reconstructive urologist's armamentarium. Flaps and graft techniques are widely used in genital and urethral reconstruction. A graft is tissue that is moved from a donor site to a recipient site without its native blood supply. The main types of grafts used in urology are full thickness grafts, split thickness skin grafts and buccal mucosa grafts. Flaps are transferred from the donor site to the recipient site on a pedicle containing its native blood supply. Flaps can be classified based on blood supply, elevation methods or the method of transfer. The most used flaps in urology include penile, preputial, and scrotal skin. We review the various techniques used in reconstructive urology and the outcomes of these techniques. PMID:26175866

  7. Adipose tissue fibrosis

    PubMed Central

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. Thereby adipose tissue growth is limited and excess triglycerides are stored in ectopic tissues. Stressed adipocytes and hypoxia contribute to immune cell immigration and activation which further aggravates adipose tissue fibrosis. There is substantial evidence that adipose tissue fibrosis is linked to metabolic dysfunction, both in rodent models and in the clinical setting. Peroxisome proliferator activated receptor gamma agonists and adiponectin both reduce adipose tissue fibrosis, inflammation and insulin resistance. Current knowledge suggests that antifibrotic drugs, increasing adipose tissue oxygen supply or HIF-1 antagonists will improve adipose tissue function and thereby ameliorate metabolic diseases. PMID:25987952

  8. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  9. Transcript abundance of the pig stearoyl-CoA desaturase gene has no effect on fatty acid composition in muscle and fat tissues, but its polymorphism within the putative microRNA target site is associated with daily body weight gain and feed conversion ratio.

    PubMed

    Bartz, M; Szydlowski, M; Kociucka, B; Salamon, S; Jeleń, H H; Switonski, M

    2013-01-01

    Fatty acid composition in porcine intramuscular fat affects the dietetic value and technological properties of meat. The stearoyl-CoA desaturase (SCD) gene is a strong positional and functional candidate for fatty acid composition. Our sequence analysis in 4 breeds (Duroc, Pietrain, Polish Landrace, and Polish Large White) revealed a novel SNP in the 5'-flanking sequence and 9 novel SNP and 2 novel indels in the 3' untranslated region (UTR). Transcript level of the SCD in subcutaneous fat was significantly greater than in muscle tissue (n=83; P<0.001) and the interbreed comparison revealed a greater transcript level in the fat tissue of Polish Landrace (P<0.01). We found no association between the abundance of the SCD transcript and fatty acid composition in any of the tissues. We performed an association analysis between 4 SNP (c.-353C>T, c.-233T>C, c.*164A>G, and c.*928G>C), 1 indel (c.*2574_2576delGTC), and production traits in Polish Large White (n=185) and synthetic line 990 (n=243). The most pronounced associations were observed for the c.*928G>C polymorphism, which occurs within a predicted target site for 2 microRNA (ssc-miR-185 and ssc-miR-491). In line 990, this polymorphism was significantly associated with daily BW gain (P<0.04 under the general model) and feed conversion ratio (P<0.0004) but not with fatness traits. The same tendency, but not significant, was observed in the Polish Large White breed. When both breeds were analyzed together, these associations were again highly significant (daily BW gain P<0.003; feed conversion ratio P<0.0001). We conclude that c.*928G>C is a promising marker for both porcine traits. PMID:23048140

  10. Histopathological evaluation of tissue undergoing thermal insult

    PubMed Central

    Chaudhary, Minal; Bonde, Dushyant; Patil, Swati; Gawande, Madhuri; Hande, Alka; Jain, Deepali

    2016-01-01

    Context: Thermal insult is the major cause of thermal injury or death and in case of death due to thermal injury the body often has to be recovered from the site. Histologically, one can predict whether the victim was alive or dead when the fire was on going. However, determination of probable cause of thermal insult to which victim subjected to be difficult when the victim's body is found somewhere else from the crime scene or accident site or found alone. Hence, histopathological evaluation of the tissue which has undergone thermal insult in such conditions could help to place evidence in front of law officials, regarding probable condition, or scenario at time of burn of victim. Aims: Keeping this as a criteria in this study we aim to evaluate burnt tissue histopathologically, that undergone various degree of thermal insult, which simulates various real life scenario for mortality in burn cases. Settings and Design: We evaluate the changes in hematoxylin and eosin staining pattern of tissue which has undergone thermal insult compared to normal tissue and also the progressive changes in staining pattern, architectural, and cellular details. Materials and Methods: Samples were taken from the patients, in various surgical procedures. Each sample was cut into five parts with close margins so that each burnt tissue is evaluated for same field or region. The tissue that obtained was immediately subjected to varying degree of temperature over a specific period so as to simulate the various real-life condition. Then the tissues were fixed, processed, and stained with routine H and E staining. The processed slides of tissue were examined under the microscope, and the staining, and architectural changes were evaluated and described. Results: Results show that there was a progressive changes in the architectural pattern of the epithelium and connective tissue showing cleft formation and vacuolization, staining pattern also shows mixing of stains progressively as the

  11. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  12. [Bone tissue engineering scaffolds].

    PubMed

    Fang, Liru; Weng, Wenjian; Shen, Ge; Han, Gaorong; Santos, J D; Du, Peiyi

    2003-03-01

    Bone tissue engineering may provide an alternative to the repairs to skeletal defects resulting from disease, trauma or surgery. Scaffold has played an important role in bone tissue engineering, which functions as the architecture for bone in growth. In this paper, the authors gave a brief introduction about the requirement of bone tissue engineering scaffold, the key of the design of scaffolds and the current research on this subject. PMID:12744187

  13. Radiobiology of tissue reactions.

    PubMed

    Dörr, W

    2015-06-01

    Tissue effects of radiation exposure are observed in virtually all normal tissues, with interactions when several organs are involved. Early reactions occur in turnover tissues, where proliferative impairment results in hypoplasia; late reactions, based on combined parenchymal, vascular, and connective tissue changes, result in loss of function within the exposed volume; consequential late effects develop through interactions between early and late effects in the same organ; and very late effects are dominated by vascular sequelae. Invariably, involvement of the immune system is observed. Importantly, latent times of late effects are inversely dependent on the biologically equieffective dose. Each tissue component and--importantly--each individual symptom/endpoint displays a specific dose-effect relationship. Equieffective doses are modulated by exposure conditions: in particular, dose-rate reduction--down to chronic levels--and dose fractionation impact on late responding tissues, while overall exposure time predominantly affects early (and consequential late) reactions. Consequences of partial organ exposure are related to tissue architecture. In 'tubular' organs (gastrointestinal tract, but also vasculature), punctual exposure affects function in downstream compartments. In 'parallel' organs, such as liver or lungs, only exposure of a significant (organ-dependent) fraction of the total volume results in clinical consequences. Forthcoming studies must address biomarkers of the individual risk for tissue reactions, and strategies to prevent/mitigate tissue effects after exposure. PMID:25816259

  14. Clarifying Tissue Clearing

    PubMed Central

    Richardson, Douglas S.; Lichtman, Jeff W.

    2015-01-01

    Summary Biological specimens are intrinsically three dimensional; however because of the obscuring effects of light scatter, imaging deep into a tissue volume is problematic. Although efforts to eliminate the scatter by “clearing” the tissue have been ongoing for over a century, there have been a large number of recent innovations. This review introduces the physical basis for light-scatter in tissue, describes the mechanisms underlying various clearing techniques, and discusses several of the major advances in light microscopy for imaging cleared tissue. PMID:26186186

  15. Determination of PCBs and chlorinated hydrocarbons in marine mammal tissues.

    PubMed

    Schantz, M M; Koster, B J; Wise, S A; Becker, P R

    1993-11-01

    Selected tissues (blubber, liver, kidney and muscle) from marine mammals, which were collected as part of the Alaska Marine Mammal Tissue Archival Project (AMMTAP), were analyzed for polychlorinated biphenyl (PCB) congeners and chlorinated pesticides. Concentrations of these compounds in the different tissues were compared and blubber was selected as the primary tissue for organic contaminant analyses for the AMMTAP based on higher levels (1-2 orders of magnitude) in this tissue compared to liver, kidney and muscle. Concentrations for 15 PCB congeners and 12 chlorinated pesticides are reported for 10 different animals of three species (northern fur seal, ringed seal and belukha whale) from five different sites. PMID:8272838

  16. Silk scaffolds for musculoskeletal tissue engineering.

    PubMed

    Yao, Danyu; Liu, Haifeng; Fan, Yubo

    2016-02-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues. PMID:26445979

  17. Site Construction.

    ERIC Educational Resources Information Center

    Richardson, Eric C.

    1996-01-01

    Presents a guide to planning and building a Web site, with an emphasis on setting up a Web server. Discussion includes hiring a consultant, contracts and payment, assembly of teams, training, development of a business plan, registration of domain name, purchase of hardware and software, local area networks, and types of Internet connection. (JKP)

  18. DENTAL PULP TISSUE ENGINEERING

    PubMed Central

    Demarco, FF; Conde, MCM; Cavalcanti, B; Casagrande, L; Sakai, V; Nör, JE

    2013-01-01

    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research. PMID:21519641

  19. Tissue engineered periodontal products.

    PubMed

    Bartold, P M; Gronthos, S; Ivanovski, S; Fisher, A; Hutmacher, D W

    2016-02-01

    Attainment of periodontal regeneration is a significant clinical goal in the management of advanced periodontal defects arising from periodontitis. Over the past 30 years numerous techniques and materials have been introduced and evaluated clinically and have included guided tissue regeneration, bone grafting materials, growth and other biological factors and gene therapy. With the exception of gene therapy, all have undergone evaluation in humans. All of the products have shown efficacy in promoting periodontal regeneration in animal models but the results in humans remain variable and equivocal concerning attaining complete biological regeneration of damaged periodontal structures. In the early 2000s, the concept of tissue engineering was proposed as a new paradigm for periodontal regeneration based on molecular and cell biology. At this time, tissue engineering was a new and emerging field. Now, 14 years later we revisit the concept of tissue engineering for the periodontium and assess how far we have come, where we are currently situated and what needs to be done in the future to make this concept a reality. In this review, we cover some of the precursor products, which led to our current position in periodontal tissue engineering. The basic concepts of tissue engineering with special emphasis on periodontal tissue engineering products is discussed including the use of mesenchymal stem cells in bioscaffolds and the emerging field of cell sheet technology. Finally, we look into the future to consider what CAD/CAM technology and nanotechnology will have to offer. PMID:25900048

  20. Pharmacokinetics of Antiretrovirals in Mucosal Tissue

    PubMed Central

    Cottrell, M.L.; Srinivas, N.; Kashuba, A.D.M.

    2015-01-01

    Introduction In the absence of an HIV vaccine or cure, antiretroviral (ARV) based prevention strategies are being investigated to reduce HIV incidence. These prevention strategies depend on achieving effective drug concentrations at the site HIV exposure which is most commonly the mucosal tissues of the lower gastrointestinal tract and the female genital tract. Areas covered This article collates all known data regarding drug exposure in these vulnerable mucosal tissues, and reviews important mechanisms of ARV drug distribution. Research papers and abstracts describing antiretroviral pharmacokinetics in the female genital tract and lower gastrointestinal mucosal tissues available in MEDLINE® or presented at scientific conferences prior to December 2014 are reviewed in detail. Important influences on ARV mucosal tissue distribution, including protein binding, active drug transport, and endogenous hormones, are also reviewed. Expert opinion ARVs exhibit highly variable pharmacokinetics in mucosal tissues. In general, antiretroviral exposure is higher in the lower gastrointestinal tract compared to the female genital tract, but concentrations required for protective efficacy are largely unknown. The expected site of HIV exposure represents an important consideration when designing and optimizing antiretroviral based prevention strategies. PMID:25797064

  1. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  2. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  3. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  4. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  5. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  6. Avian Soft Tissue Surgery.

    PubMed

    Guzman, David Sanchez-Migallon

    2016-01-01

    Basic surgical instrumentation for avian soft tissue surgery includes soft tissue retractors, microsurgical instrumentation, surgical loupes, and head-mounted lights. Hemostasis is fundamental during the surgical procedures. The indications, approach, and complications associated with soft tissue surgeries of the integumentary (digit constriction repair, feather cyst excision, cranial wound repair, sternal wound repair, uropygial gland excision), gastrointestinal (ingluviotomy, crop biopsy, crop burn repair, celiotomy, coelomic hernia and pseudohernia repair, proventriculotomy, ventriculotomy, enterotomy, intestinal resection and anastomosis, cloacoplasty, cloacopexy), respiratory (rhinolith removal, sinusotomy, tracheotomy, tracheal resection and anastomosis, tracheostomy, pneumonectomy) and reproductive (ovocentesis, ovariectomy, salpingohysterectomy, cesarean section, orchidectomy, vasectomy, phallectomy) systems are reviewed. PMID:26611927

  7. Predicting DNA methylation level across human tissues

    PubMed Central

    Ma, Baoshan; Wilker, Elissa H.; Willis-Owen, Saffron A. G.; Byun, Hyang-Min; Wong, Kenny C. C.; Motta, Valeria; Baccarelli, Andrea A.; Schwartz, Joel; Cookson, William O. C. M.; Khabbaz, Kamal; Mittleman, Murray A.; Moffatt, Miriam F.; Liang, Liming

    2014-01-01

    Differences in methylation across tissues are critical to cell differentiation and are key to understanding the role of epigenetics in complex diseases. In this investigation, we found that locus-specific methylation differences between tissues are highly consistent across individuals. We developed a novel statistical model to predict locus-specific methylation in target tissue based on methylation in surrogate tissue. The method was evaluated in publicly available data and in two studies using the latest IlluminaBeadChips: a childhood asthma study with methylation measured in both peripheral blood leukocytes (PBL) and lymphoblastoid cell lines; and a study of postoperative atrial fibrillation with methylation in PBL, atrium and artery. We found that our method can greatly improve accuracy of cross-tissue prediction at CpG sites that are variable in the target tissue [R2 increases from 0.38 (original R2 between tissues) to 0.89 for PBL-to-artery prediction; from 0.39 to 0.95 for PBL-to-atrium; and from 0.81 to 0.98 for lymphoblastoid cell line-to-PBL based on cross-validation, and confirmed using cross-study prediction]. An extended model with multiple CpGs further improved performance. Our results suggest that large-scale epidemiology studies using easy-to-access surrogate tissues (e.g. blood) could be recalibrated to improve understanding of epigenetics in hard-to-access tissues (e.g. atrium) and might enable non-invasive disease screening using epigenetic profiles. PMID:24445802

  8. Predicting DNA methylation level across human tissues.

    PubMed

    Ma, Baoshan; Wilker, Elissa H; Willis-Owen, Saffron A G; Byun, Hyang-Min; Wong, Kenny C C; Motta, Valeria; Baccarelli, Andrea A; Schwartz, Joel; Cookson, William O C M; Khabbaz, Kamal; Mittleman, Murray A; Moffatt, Miriam F; Liang, Liming

    2014-04-01

    Differences in methylation across tissues are critical to cell differentiation and are key to understanding the role of epigenetics in complex diseases. In this investigation, we found that locus-specific methylation differences between tissues are highly consistent across individuals. We developed a novel statistical model to predict locus-specific methylation in target tissue based on methylation in surrogate tissue. The method was evaluated in publicly available data and in two studies using the latest IlluminaBeadChips: a childhood asthma study with methylation measured in both peripheral blood leukocytes (PBL) and lymphoblastoid cell lines; and a study of postoperative atrial fibrillation with methylation in PBL, atrium and artery. We found that our method can greatly improve accuracy of cross-tissue prediction at CpG sites that are variable in the target tissue [R(2) increases from 0.38 (original R(2) between tissues) to 0.89 for PBL-to-artery prediction; from 0.39 to 0.95 for PBL-to-atrium; and from 0.81 to 0.98 for lymphoblastoid cell line-to-PBL based on cross-validation, and confirmed using cross-study prediction]. An extended model with multiple CpGs further improved performance. Our results suggest that large-scale epidemiology studies using easy-to-access surrogate tissues (e.g. blood) could be recalibrated to improve understanding of epigenetics in hard-to-access tissues (e.g. atrium) and might enable non-invasive disease screening using epigenetic profiles. PMID:24445802

  9. Leaf Tissue Senescence

    PubMed Central

    Manos, Peter J.; Goldthwaite, Jonathan

    1975-01-01

    During winter, excised leaf tissue from Rumex obtusifolius degrades chlorophyll at twice the summer rate but the plant hormones, gibberellic acid and zeatin, inhibit the senescence rate by a constant percentage, regardless of season. PMID:16659225

  10. Tissue types (image)

    MedlinePlus

    ... called voluntary) muscles that move the skeleton, and smooth muscle, such as the muscles that surround the stomach. Nerve tissue is made up of nerve cells (neurons) and is used to carry "messages" to ...

  11. Engineered cardiac tissues

    PubMed Central

    Iyer, Rohin K.; Chiu, Loraine L. Y.; Reis, Lewis A.; Radisic, Milica

    2011-01-01

    Cardiac tissue engineering offers the promise of creating functional tissue replacements for use in the failing heart or for in vitro drug screening. The last decade has seen a great deal of progress in this field with new advances in interdisciplinary areas such as developmental biology, genetic engineering, biomaterials, polymer science, bioreactor engineering, and stem cell biology. We review here a selection of the most recent advances in cardiac tissue engineering, including the classical cell-scaffold approaches, advanced bioreactor designs, cell sheet engineering, whole organ decellularization, stem-cell based approaches, and topographical control of tissue organization and function. We also discuss current challenges in the field, such as maturation of stem cell-derived cardiac patches and vascularization. PMID:21530228

  12. Assessment of tissue oxygenation.

    PubMed

    Robertson, P W; Hart, B B

    1999-06-01

    A continuous supply of oxygen to all tissues is necessary for the efficient production of ATP, and this supply is considered sufficient when aerobic metabolism is maintained. Nonhealing wounds, necrotizing infections, radiation-induced necrosis, crush injury, decompression illness, and CO poisoning all exhibit impaired tissue oxygenation. The need for efficacy of HBO therapy in such conditions is in part determined by the prevailing state of tissue oxygen supply and demand. The methods currently available or under development for assessing the adequacy of tissue oxygenation include blood gas analysis, transcutaneous oxygen measurement, gastric tonometry, pulse oximetry, near-infrared spectroscopy, functional MR imaging, MR spectroscopy, electron paramagnetic resonance, positron emission tomography, and single photon emission computed tomography. The clinical and experimental applications of these methods are discussed and emphasis is placed on their role in hyperbaric medicine. PMID:10333450

  13. Spectromicroscopy of Brain Tissue

    NASA Astrophysics Data System (ADS)

    Frazer, Bradley; Cannara, Rachel; Gilbert, Benjamin; Destasio, Gelsomina; Ogg, Mandy; Gough, Kathy

    2001-03-01

    X-ray PhotoElectron Emission Microscopy (X-PEEM) was originally developed for studying the surface microchemistry of materials science specimens. It has then evolved into a valuable tool to investigate the magnetic properties of materials and the microchemistry of cells and tissues. We used the MEPHISTO X-PEEM instrument, installed at the UW-Synchrotron Radiation Center to detect trace concentrations of non-physiological elements in senile brain tissue specimens. These tissues contain a large number of plaques, in which all the compounds and elements that the brain does not need are disposed and stored. We hypothesized that plaques should contain elements, such as Si, B, and Al which are very abundant on the Earth crust but absent from healthy tissues. We verified this hypothesis with MEPHISTO and found evidence of Si and B, and suspect Al. We also found a higher than normal concentration of Fe.

  14. Tissue Culture in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Duray, Paul H.; Hatfill, Steven J.

    1997-01-01

    Attempts to simulate normal tissue micro-environments in vitro have been thwarted by the complexity and plasticity of the extracellular matrix, which is important in regulating cytoskeletal and nuclear matrix proteins. Gravity is one of the problems, tending to separate components that should be kept together. For space shuttle experiments, NASA engineers devised a double-walled rotating bioreactor, which is proving to be a useful tissue culture device on earth as well as in space.

  15. Facial Soft Tissue Trauma

    PubMed Central

    Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.

    2010-01-01

    Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459

  16. Biomaterials in tissue engineering.

    PubMed

    Hubbell, J A

    1995-06-01

    Biomaterials play a pivotal role in field of tissue engineering. Biomimetic synthetic polymers have been created to elicit specific cellular functions and to direct cell-cell interactions both in implants that are initially cell-free, which may serve as matrices to conduct tissue regeneration, and in implants to support cell transplantation. Biomimetic approaches have been based on polymers endowed with bioadhesive receptor-binding peptides and mono- and oligosaccharides. These materials have been patterned in two- and three-dimensions to generate model multicellular tissue architectures, and this approach may be useful in future efforts to generate complex organizations of multiple cell types. Natural polymers have also played an important role in these efforts, and recombinant polymers that combine the beneficial aspects of natural polymers with many of the desirable features of synthetic polymers have been designed and produced. Biomaterials have been employed to conduct and accelerate otherwise naturally occurring phenomena, such as tissue regeneration in wound healing in the otherwise healthy subject; to induce cellular responses that might not be normally present, such as healing in a diseased subject or the generation of a new vascular bed to receive a subsequent cell transplant; and to block natural phenomena, such as the immune rejection of cell transplants from other species or the transmission of growth factor signals that stimulate scar formation. This review introduces the biomaterials and describes their application in the engineering of new tissues and the manipulation of tissue responses. PMID:9634795

  17. Bone Tissue Engineering: Recent Advances and Challenges

    PubMed Central

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  18. Volatile Emissions from Compressed Tissue

    PubMed Central

    Dini, Francesca; Capuano, Rosamaria; Strand, Tillan; Ek, Anna-Christina; Lindgren, Margareta; Paolesse, Roberto; Di Natale, Corrado; Lundström, Ingemar

    2013-01-01

    Since almost every fifth patient treated in hospital care develops pressure ulcers, early identification of risk is important. A non-invasive method for the elucidation of endogenous biomarkers related to pressure ulcers could be an excellent tool for this purpose. We therefore found it of interest to determine if there is a difference in the emissions of volatiles from compressed and uncompressed tissue. The ultimate goal is to find a non-invasive method to obtain an early warning for the risk of developing pressure ulcers for bed-ridden persons. Chemical analysis of the emissions, collected in compresses, was made with gas-chromatography – mass spectrometry and with a chemical sensor array, the so called electronic nose. It was found that the emissions from healthy and hospitalized persons differed significantly irrespective of the site. Within each group there was a clear difference between the compressed and uncompressed site. Peaks that could be certainly deemed as markers of the compression were, however, not identified. Nonetheless, different compounds connected to the application of local mechanical pressure were found. The results obtained with GC-MS reveal the complexity of VOC composition, thus an array of non-selective chemical sensors seems to be a suitable choice for the analysis of skin emission from compressed tissues; it may represent a practical instrument for bed side diagnostics. Results show that the adopted electronic noses are likely sensitive to the total amount of the emission rather than to its composition. The development of a gas sensor-based device requires then the design of sensor receptors adequate to detect the VOCs bouquet typical of pressure. This preliminary experiment evidences the necessity of studies where each given person is followed for a long time in a ward in order to detect the insurgence of specific VOCs pattern changes signalling the occurrence of ulcers. PMID:23874929

  19. American Association of Tissue Banks

    MedlinePlus

    ... through the Gift of Cells and Tissues Tissue Bank Specialist Certification AATB offers a program for Certification ... AATB conferences, workshops, webinars & CTBS Exam prep >> Accredited Bank Search AATB's Accreditation Program ensures that tissue-banking ...

  20. Gastric tissue biopsy and culture

    MedlinePlus

    Culture - gastric tissue; Biopsy - gastric tissue ... of organisms that cause infection. A gastric tissue culture may be considered normal if it does not show certain bacteria. Stomach acids normally prevent too much bacteria from growing.

  1. Optical birefringence of aorta tissues

    NASA Astrophysics Data System (ADS)

    Tang, G. C.; Wang, W. B.; Pu, Y.; Alfano, R. R.

    2010-02-01

    The optical birefringence of porcine aortic tissues including heated and non-heated tissues was studied using polarization technique. The measurements show that a whole piece of aortic tissue has birefringence properties like a uniaxial crystal. The experiment results indicate that the birefringence status of tissue have a potential application for monitoring changes of tissue structure due to burning, plastic surgery, laser tissue welding and wound healing.

  2. Tissue engineering in urethral reconstruction—an update

    PubMed Central

    Mangera, Altaf; Chapple, Christopher R

    2013-01-01

    The field of tissue engineering is rapidly progressing. Much work has gone into developing a tissue engineered urethral graft. Current grafts, when long, can create initial donor site morbidity. In this article, we evaluate the progress made in finding a tissue engineered substitute for the human urethra. Researchers have investigated cell-free and cell-seeded grafts. We discuss different approaches to developing these grafts and review their reported successes in human studies. With further work, tissue engineered grafts may facilitate the management of lengthy urethral strictures requiring oral mucosa substitution urethroplasty. PMID:23042444

  3. Intracorporeal Electromechanical Tissue Morcellation

    PubMed Central

    Kho, Kimberly A.; Anderson, Ted L.; Nezhat, Ceana H.

    2015-01-01

    Electromechanical morcellators have come under scrutiny with concerns about complications involving iatrogenic dissemination of both benign and malignant tissues. Although the rapidly rotating blade has resulted in morcellator-related vascular and visceral injuries, equally concerning are the multiple reports in the literature demonstrating seeding of the abdominal cavity with tissue fragmented such as leiomyomas, endometriosis, adenomyosis, splenic and ovarian tissues, and occult cancers of the ovaries and uterus. Alternatives to intra-corporeal electric morcellation for tissue extirpation through the vagina and through minilaparotomy are feasible, safe, and have been shown to have comparable, if not superior, outcomes without an increased need for laparotomy. Intracorporeal morcellation within a containment bag is another option to minimize the risk of iatrogenic tissue seeding. Patient safety is a priority with balanced goals of maximizing benefits and minimizing harm. When intracorporeal electromechanical morcellation is planned, physicians should discuss the risks and consequences with their patients. Although data are being collected to quantify and understand these risks more clearly, a minimally invasive alternative to unenclosed intracorporeal morcellation is favored when available. It is incumbent on surgeons to communicate the risks of practices and devices and to advocate for continued improvement in surgical instrumentation and techniques. PMID:25198260

  4. The tissue diagnostic instrument

    PubMed Central

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-01-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection. PMID:19485522

  5. Morphology of urethral tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  6. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  7. Fetal soft tissue examinations by microdissection.

    PubMed

    Leroy, Mariline; Jocteur-Monrozier, Audrey

    2013-01-01

    This chapter describes methods for the examination of fetal abdominal and thoracic soft tissues by microdissection on either fresh (non-rodent) or fixed (rodent) specimens in order to detect structural abnormalities. With hundreds of fetuses examined for each species (rodent and non-rodent) in regulatory reproductive toxicity assessments (ICH, http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf, 2009; ICH, http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S5_R2/Step4/S5_R2__Guideline.pdf, 2005), microdissection techniques allow a thorough and relatively rapid examination of fetuses for soft tissue abnormalities. PMID:23138910

  8. Tylosin depletion from edible pig tissues.

    PubMed

    Prats, C; El Korchi, G; Francesch, R; Arboix, M; Pérez, B

    2002-12-01

    The depletion of tylosin from edible pig tissues was studied following 5 days of intramuscular (i.m.) administration of 10 mg/kg of tylosin to 16 crossbreed pigs. Animals were slaughtered at intervals after treatment and samples of muscle, kidney, liver, skin+fat, and injection site were collected and analysed by high-performance liquid chromatography (HPLC). Seven days after the completion of treatment, the concentration of tylosin in kidney, skin+fat, and at the injection site was higher than the European Union maximal residue limit (MRL) of 100 microg/kg. Tylosin residues in all tissues were below the quantification limit (50 microg/kg) at 10 and 14 days post-treatment. PMID:12443694

  9. [Tissue engineered skin and regenerative wound repair].

    PubMed

    Han, Chun-mao; Wang, Xin-gang

    2013-04-01

    Various skin defects resulting from mechanical injury, burns, chronic ulcers, and resection of tumor etc. are very common in clinic. The traditional treatment measure, such as grafting of autologous split-thickness skin remains the gold standard. However, its limitations are obvious, such as shortage of donor sites, creation of new injury, and scar formation. To realize regenerative or scarless repair of tissue defects has always been the dream of human being. The advent of tissue engineered skin (TES) provides an ideal access to tissue regeneration. After decades of development, several kinds of TES products have been developed and used in clinic, with promising effects. However, a large number of basic scientific problems regarding TES, as well as difficulties in translation of basic research to bedside should be taken into serious consideration. This article presents a comprehensive overview of strategies of construction of TES, the role of TES in regenerative wound repair, and its opportunities and challenges. PMID:23985197

  10. Tissue engineering advances in spine surgery.

    PubMed

    Makhni, Melvin C; Caldwell, Jon-Michael E; Saifi, Comron; Fischer, Charla R; Lehman, Ronald A; Lenke, Lawrence G; Lee, Francis Y

    2016-03-01

    Autograft, while currently the gold standard for bone grafting, has several significant disadvantages including limited supply, donor site pain, hematoma formation, nerve and vascular injury, and fracture. Bone allografts have their own disadvantages including reduced osteoinductive capability, lack of osteoprogenitor cells, immunogenicity and risk of disease transmission. Thus demand exists for tissue-engineered constructs that can produce viable bone while avoiding the complications associated with human tissue grafts. This review will focus on recent advancements in tissue-engineered bone graft substitutes utilizing nanoscale technology in spine surgery applications. An evaluation will be performed of bone graft substitutes, biomimetic 3D scaffolds, bone morphogenetic protein, mesenchymal stem cells and intervertebral disc regeneration strategies. PMID:26877156

  11. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  12. Tissue optical immersion clearing.

    PubMed

    Genina, Elina A; Bashkatov, Alexey N; Tuchin, Valery V

    2010-11-01

    In this article, we discuss the optical immersion method based on refractive index matching of scatterers (e.g., collagen, elastin fibers, cells and cell compartments) and the ground material (interstitial fluid and/or cytoplasm) of tissue and blood under the action of exogenous optical clearing agents. We analyze the optical clearing of fibrous and cell-structured tissues and blood from the point of view of receiving more valuable, normally hidden, information from spectroscopic and polarization measurements, confocal microscopy, optical coherence and optical projection tomography, as well as from nonlinear spectroscopies, such as two-photon fluorescence and second-harmonic generation techniques. Some important applications of the immersion technique to glucose sensing, drug delivery monitoring, improvements of image contrast and imaging depth, nondistortive delivery of laser radiation and precision tissue laser photodisruption, among others, are also described. PMID:21050092

  13. Biopsy of soft-tissue tumors.

    PubMed

    Shives, T C

    1993-04-01

    Biopsy is an integral part of the overall management of patients with soft-tissue sarcoma. The types of biopsy are fine needle, trocar, open incision or en bloc excision. There are advantages and disadvantages of each. Open biopsy requires strict adherence to a number of surgical principles. Proper execution requires determination of appropriate biopsy site, meticulous technique, and close collaboration with an experienced pathologist. Failure to adhere to these principles may result in untoward consequences for patients. PMID:8472430

  14. Neovascularization in Tissue Engineering

    PubMed Central

    Chung, Jennifer C.-Y.; Shum-Tim, Dominique

    2012-01-01

    A prerequisite for successful tissue engineering is adequate vascularization that would allow tissue engineering constructs to survive and grow. Angiogenic growth factors, alone and in combination, have been used to achieve this, and gene therapy has been used as a tool to enable sustained release of these angiogenic proteins. Cell-based therapy using endothelial cells and their precursors presents an alternative approach to tackling this challenge. These studies have occurred on a background of advancements in scaffold design and assays for assessing neovascularization. Finally, several studies have already attempted to translate research in neovascularization to clinical use in the blossoming field of therapeutic angiogenesis. PMID:24710553

  15. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  16. Adipose tissue as a medium for epidemiologic exposure assessment.

    PubMed Central

    Kohlmeier, L; Kohlmeier, M

    1995-01-01

    In the United States, adipose tissue is rarely used as a medium for assessment of prior exposures in epidemiologic studies. Adipose tissue aspirations are in general less invasive and carry less risk than phlebotomy. Tissue samples can be analyzed for a wide number of epidemiologically important exposures. Beyond reflecting long-term energy balance, this tissue offers a relatively stable depot of triglyceride and fat-soluble substances, such as fat-soluble vitamins, and pesticides. As a tissue it represents the greatest reservoir of carotenoids in the body. Halogenated hydrocarbons may be measured in concentrations of hundreds-fold greater than those in blood of the same individuals. The composition of adipose tissue also reflects the long-term dietary intakes of a number of essential fatty acids. The turnover times of all of these substances in adipose tissue remain under-researched. Sampling and storage of adipose tissue, homogeneity of sampling sites, turnover times, and the effects of diet, age, gender, race, hormones, and disease on adipose tissue composition are discussed in this review of current knowledge about adipose tissue stability. Experience in the use of adipose tissue sampling in epidemiologic studies in various countries has shown that it is simple to conduct, requires little training, carries little risk, and does not result in excessive participant refusal. PMID:7635122

  17. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    PubMed Central

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  18. Polarized light propagation through tissue and tissue phantoms

    SciTech Connect

    Sankaran, V; Walsh, J T JR; Maitland, D J

    2000-02-08

    We show that standard tissue phantoms can be used to mimic the intensity and polarization properties of tissue. Polarized light propagation through biologic tissue is typically studied using tissue phantoms consisting of dilute aqueous suspensions of microspheres. The dilute phantoms can empirically match tissue polarization and intensity properties. One discrepancy between the dilute phantoms and tissue exist: common tissue phantoms, such as dilute Intralipid and dilute 1-{micro}m-diameter polystyrene microsphere suspensions, depolarize linearly polarized light more quickly than circularly polarized light. In dense tissue, however, where scatterers are often located in close proximity to one another, circularly polarized light is depolarized similar to or more quickly than linearly polarized light. We also demonstrate that polarized light propagates differently in dilute versus densely packed microsphere suspensions, which may account for the differences seen between polarized light propagation in common dilute tissue phantoms versus dense biologic tissue.

  19. Hypoelastic Soft Tissues

    PubMed Central

    Freed, Alan D.; Einstein, Daniel R.; Sacks, Michael S.

    2010-01-01

    In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters) the model does a reasonably good job of describing the non-linear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. PMID:21394222

  20. Eye tissues study

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Bashkatov, Alexey N.; Maksimova, Irina L.; Sinichkin, Yurii P.; Simonenko, Georgy V.; Genina, Elina A.; Lakodina, Nina A.

    2001-08-01

    Theoretical and in vitro and in vivo experimental study of spectral and polarization characteristics of the human and rabbit eye tissues are presented. The possibility of control of optical properties of eye cornea, lens and sclera is discussed and realized experimentally for glucose solution as the refractive index matching factor.

  1. Adult soft tissue sarcoma

    MedlinePlus

    ... free at 5 years. Most people who survive 5 years can expect to be cancer-free at 10 years. ... most soft tissue sarcomas, and there is no way to prevent it. ... them can increase your chance of surviving this type of cancer.

  2. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  3. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  4. Tissue and Tempera.

    ERIC Educational Resources Information Center

    Derby, Marie

    1998-01-01

    Gives an art activity for second-graders where they use two art techniques, tissue gluing and tempera painting, to create brightly colored pictures of landscapes. Expounds that first the students examine a variety of landscapes by different artists, such as Paul Cezanne, and then learn the differences between the foreground and background. (CMK)

  5. Sensing in tissue bioreactors

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  6. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis.

    PubMed

    Swinehart, Ilea T; Badylak, Stephen F

    2016-03-01

    During normal morphogenesis the extracellular matrix (ECM) influences cell motility, proliferation, apoptosis, and differentiation. Tissue engineers have attempted to harness the cell signaling potential of ECM to promote the functional reconstruction, if not regeneration, of injured or missing adult tissues that otherwise heal by the formation of scar tissue. ECM bioscaffolds, derived from decellularized tissues, have been used to promote the formation of site appropriate, functional tissues in many clinical applications including skeletal muscle, fibrocartilage, lower urinary tract, and esophageal reconstruction, among others. These scaffolds function by the release or exposure of growth factors and cryptic peptides, modulation of the immune response, and recruitment of progenitor cells. Herein, we describe this process of ECM induced constructive remodeling and examine similarities to normal tissue morphogenesis. PMID:26699796

  8. Laser tissue welding: a urological surgeon's perspective.

    PubMed

    Poppas, D P; Scherr, D S

    1998-07-01

    Laser tissue welding has proven its efficacy in the laboratory setting when compared with more traditional modalities of tissue reapproximation. In the clinical environment, several areas including urethral reconstructive surgery have shown great promise. Several technological advancements including solder development, chromophore enhancement and temperature control have improved upon the welding process and have added more precision and reproducibility to the technique. The current potential applications for laser welding in urology are numerous. On a molecular level, growth factor supplementation has certain potential in improving upon weld site healing and wound strength. Laparoscopic surgery with its need for less cumbersome modes of tissue closure is a field that will greatly benefit from the technology of laser tissue welding. Surgical specialties outside of urology are also participating in developing the field of laser welding. In particular, cardiothoracic surgery, otolaryngology, plastic surgery, neurosurgery among others, have utilized the concept of laser tissue welding. There are many ares that have potential use for laser welding that have yet to be explored. Further investigation will likely reveal more applications for this valuable technology. PMID:9873775

  9. Does removal of the original pulp tissue before autotransplantation influence ingrowth of new tissue in the pulp chamber?

    PubMed

    Laureys, Wim G M; Dermaut, Luc R; Cuvelier, Claude A; De Pauw, Guy A M

    2010-10-01

    In an attempt to extend the indication area for autotransplantation of vital teeth, two possibilities can be proposed: (i) The enlargement of the apical foramen, with the aim to facilitate revascularization and ingrowth of new tissue. The ingrowth of tissue will eliminate the need for endodontic treatment when mature teeth are transplanted and (ii) the cryopreservation of teeth in case they cannot be transplanted immediately to the receptor site. Teeth with an ideal stage of root formation can be cryopreserved to perform transplantation later. Although pulpcell cultures survive crypreservation in vitro, the pulp tissue cannot survive the cryopreservation procedures when it is kept inside the pulpchamber. Therefore, the pulp tissue has to be removed before cryopreservation. It has been demonstrated that revascularization and ingrowth of new tissue can occur in an empty pulp chamber (1). The aim of this study was to find out if revascularization and ingrowth of new pulp tissue is influenced by removal of the original pulp tissue before autotransplantation. Twenty nine single-rooted teeth from three adult beagle dogs were transplanted after resection of the root tip. One group of teeth (n = 14) had the pulp tissue removed before transplantation. The other group (n = 15) had the original pulp left in situ. The transplanted teeth were histologically analysed 90 days post-transplantation. In the group with the tissue left in situ, 12 teeth (80%) showed a pulp chamber totally filled or at least 1/3 to 2/3 filled with viable tissue. In the group with the pulp tissue removed, 11 teeth (79%) had no or little vital tissue in the pulp chamber. The necrotic masses that develop in the original pulp tissue immediately after transplantation are a possible stimulating factor in the repair process of the pulp. As a conclusion, it can be stated that in case of autotransplantation of teeth, it is advisable to leave the pulp tissue in situ to stimulate the revascularization and

  10. Exploring Optical Contrast in Ex-Vivo Breast Tissue Using Diffuse Reflectance Spectroscopy and Tissue Morphology

    NASA Astrophysics Data System (ADS)

    Kennedy, Stephanie Ann

    In this research, ex-vivo breast tissue is evaluated to determine which sources of optical contrast have the potential to detect malignancy at the margins in women of differing breast composition. Then, H&E images of ex-vivo breast tissue sites are quantified to further deconstruct the relationship between optical scattering and the underlying tissue morphology. H&E images were taken of the malignant and benign sites and quantified to describe the % adipose, % collagen and % glands. Adipose sites, images at 10x, were predominantly fatty and quantified according to adipocyte morphology. H&E-stained adipose tissue sections were analyzed with an automated image processing algorithm to extract average cell area and cell density. Non-adipose sites were imaged with a 2.5x objective. Grids of 200µm boxes corresponding to the 3mm x 2mm area were overlaid on each non-adipose image. The non-adipose images were classified as the following: adipose and collagen (fibroadipose); collagen and glands (fibroglandular); adipose, collagen and glands (mixed); and malignant sites. Correlations between <μs‧> and % collagen in were determined in benign sites. Age, BMI, and MBD were then correlated to <μs‧> in the adipose and non-adipose sites. Variability in <μs‧> was determined to be related to collagen and not adipose content. In order to further investigate this relationship, the importance of age, BMI and MBD was analyzed after adjusting for the % collagen. Lastly, the relationship between % collagen and % glands was analyzed to determine the relative contributions of % collagen and % glands <μ s‧>. Statistics were calculated using Wilcoxon rank-sum tests, Pearson correlation coefficients and linear fits in R. Further deconstructing the relationship between optical scattering and tissue morphology resulted in a positive relationship between <μ s‧> and % collagen. Increased variability was observed in sites with a higher percentage of collagen. In adipose tissues MBD

  11. Site development interim removable dental prosthesis.

    PubMed

    Pasquinelli, Kirk L; Sze, Alexander J; Matosian, Alex J

    2016-07-01

    Transitioning a patient with partial edentulism through hard and soft tissue grafting to an implant restoration with an interim removable dental prosthesis (IRDP) presents a challenge to the restorative dentist. The management of grafted sites requires care, and without the appropriate design, an IRDP may impede surgical outcomes and place the graft at risk for displacement or necrosis. A site development IRDP (SDIRDP) for a grafted site must fulfill restorative goals and promote the surgical objectives for site development. A technique is described for fabricating an SDIRDP that facilitates surgical procedures and maintains prosthetic goals. PMID:26831920

  12. Biomimetic 3D tissue printing for soft tissue regeneration.

    PubMed

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration. PMID:26056727

  13. Tissue fusion bursting pressure and the role of tissue water content

    NASA Astrophysics Data System (ADS)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  14. Site selection for fat autotransplantation: some observations.

    PubMed

    Hudson, D A; Lambert, E V; Bloch, C E

    1990-01-01

    The use of autologous fat for implantation has recently received renewed attention in the plastic surgery literature. Autologous fat reportedly has been used for the treatment of wrinkles and Romberg's disease, and for buttock and breast augmentation. While some measure of success has been achieved, many surgeons report that substantial resorption of fat tissue occurs at the site of implantation. There is lack of unanimity regarding the ideal site for extraction or injection in order to minimize fat resorption. Adipose tissue samples were taken from women undergoing surgical procedures on the abdomen, gluteal-femoral region, and breast. Facial adipose tissue samples from men and women were also analyzed. Adipocytes were isolated chemically and sized microscopically. Activity of the lipogenic enzyme adipose tissue lipoprotein lipase (ATLPL) was measured in frozen samples. Results suggest that femoral site samples are somewhat larger (NS) and have greater lipogenic activity (p less than 0.03) than other sites. In our study, small facial samples had very low or unmeasurable levels of ATLPL activity. Perhaps cell size and lipogenic activity should be considered when selecting tissues for autotransplantation. PMID:2399850

  15. Genome-wide analysis of DNA methylation in hepatoblastoma tissues

    PubMed Central

    Cui, Ximao; Liu, Baihui; Zheng, Shan; Dong, Kuiran; Dong, Rui

    2016-01-01

    DNA methylation has a crucial role in cancer biology. In the present study, a genome-wide analysis of DNA methylation in hepatoblastoma (HB) tissues was performed to verify differential methylation levels between HB and normal tissues. As alpha-fetoprotein (AFP) has a critical role in HB, AFP methylation levels were also detected using pyrosequencing. Normal and HB liver tissue samples (frozen tissue) were obtained from patients with HB. Genome-wide analysis of DNA methylation in these tissues was performed using an Infinium HumanMethylation450 BeadChip, and the results were confirmed with reverse transcription-quantitative polymerase chain reaction. The Infinium HumanMethylation450 BeadChip demonstrated distinctively less methylation in HB tissues than in non-tumor tissues. In addition, methylation enrichment was observed in positions near the transcription start site of AFP, which exhibited lower methylation levels in HB tissues than in non-tumor liver tissues. Lastly, a significant negative correlation was observed between AFP messenger RNA expression and DNA methylation percentage, using linear Pearson's R correlation coefficients. The present results demonstrate differential methylation levels between HB and normal tissues, and imply that aberrant methylation of AFP in HB could reflect HB development. Expansion of these findings could provide useful insight into HB biology. PMID:27446465

  16. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  17. Nicotine and periodontal tissues

    PubMed Central

    Malhotra, Ranjan; Kapoor, Anoop; Grover, Vishakha; Kaushal, Sumit

    2010-01-01

    Tobacco use has been recognized to be a significant risk factor for the development and progression of periodontal disease. Its use is associated with increased pocket depths, loss of periodontal attachment, alveolar bone and a higher rate of tooth loss. Nicotine, a major component and most pharmacologically active agent in tobacco is likely to be a significant contributing factor for the exacerbation of periodontal diseases. Available literature suggests that nicotine affects gingival blood flow, cytokine production, neutrophil and other immune cell function; connective tissue turnover, which can be the possible mechanisms responsible for overall effects of tobacco on periodontal tissues. Inclusion of tobacco cessation as a part of periodontal therapy encourages dental professionals to become more active in tobacco cessation counseling. This will have far reaching positive effects on our patients’ oral and general health. PMID:20922084

  18. Perivascular Adipose Tissue

    PubMed Central

    Maille, Nicole; Clas, Darren; Osol, George

    2015-01-01

    Perivascular adipose tissue (PVAT) contributes to vasoregulation. The role of this adipose tissue bed in pregnancy has not been examined. Here, we tested the hypothesis that PVAT in pregnant rats decreases resistance artery tone. Mesenteric arteries from nonpregnant (NP) and late pregnant (LP) rats were exposed to phenylephrine (PHE) or KCl in the presence (+) versus absence (−) of PVAT. The LP PVAT(+) vessels showed a 44% decrease in sensitivity to PHE in the presence of PVAT. There was no attenuation of the contractile response to KCl when PVAT was present. The LP arteries perfused with LP or NP PVAT underwent vasodilation; unexpectedly, NP vessels in the presence of PVAT from LP rats sustained a 48% vasoconstriction. The PVAT attenuates vasoconstriction by a mechanism that involves hyperpolarization. The vasoconstriction observed when nonpregnant vessels were exposed to pregnant PVAT suggests pregnant vessels adapt to the vasoconstricting influence of pregnant PVAT. PMID:25527422

  19. Hard tissue laser procedures.

    PubMed

    Gimbel, C B

    2000-10-01

    A more conservative, less invasive treatment of the carious lesion has intrigued researchers and clinicians for decades. With over 170 million restorations placed worldwide each year, many of which could be treated using a laser, there exists an increasing need for understanding hard tissue laser procedures. An historical review of past scientific and clinical hard research, biophysics, and histology are discussed. A complete review of present applications and procedures along with their capabilities and limitations will give the clinician a better understanding. Clinical case studies, along with guidelines for tooth preparation and hard tissue laser applications and technological advances for diagnosis and treatment will give the clinician a look into the future. PMID:11048281

  20. Tissue blood flow mapping

    NASA Astrophysics Data System (ADS)

    Nilsson, G. E.

    1997-01-01

    The operating principles of Laser Doppler Perfusion Imaging (LDPI) for visualization of the tissue blood perfusion are explained. Using this emerging technology skin perfusion has been investigated in healthy volunteers and in patients with various conditions that affect skin blood flow. LDPI is anticipated to be particularly useful in evaluation of peripheral circulation in diabetics, as an objective tool in irritancy patch testing, assessment of burnt skin and visualization of spot-wise hyperperfusion in breast skin in association with carcinoma.

  1. Stereolithography in tissue engineering.

    PubMed

    Skoog, Shelby A; Goering, Peter L; Narayan, Roger J

    2014-03-01

    Several recent research efforts have focused on use of computer-aided additive fabrication technologies, commonly referred to as additive manufacturing, rapid prototyping, solid freeform fabrication, or three-dimensional printing technologies, to create structures for tissue engineering. For example, scaffolds for tissue engineering may be processed using rapid prototyping technologies, which serve as matrices for cell ingrowth, vascularization, as well as transport of nutrients and waste. Stereolithography is a photopolymerization-based rapid prototyping technology that involves computer-driven and spatially controlled irradiation of liquid resin. This technology enables structures with precise microscale features to be prepared directly from a computer model. In this review, use of stereolithography for processing trimethylene carbonate, polycaprolactone, and poly(D,L-lactide) poly(propylene fumarate)-based materials is considered. In addition, incorporation of bioceramic fillers for fabrication of bioceramic scaffolds is reviewed. Use of stereolithography for processing of patient-specific implantable scaffolds is also discussed. In addition, use of photopolymerization-based rapid prototyping technology, known as two-photon polymerization, for production of tissue engineering scaffolds with smaller features than conventional stereolithography technology is considered. PMID:24306145

  2. Extraocular connective tissue architecture.

    PubMed

    Miller, Joel M; Demer, Joseph L; Poukens, Vadims; Pavlovski, Dmitri S; Nguyen, Hien N; Rossi, Ethan A

    2003-01-01

    Extraocular muscle pulleys, now well known to be kinematically significant extraocular structures, have been noted in passing and described in fragments several times over the past two centuries. They were late to be fully appreciated because biomechanical modeling of the orbit was not available to derive their kinematic consequences, and because pulleys are distributed condensations of collagen, elastin and smooth muscle (SM) that are not sharply delineated. Might other mechanically significant distributed extraocular structures still be awaiting description?An imaging approach is useful for describing distributed structures, but does not seem suitable for assessing mechanical properties. However, an image that distinguished types and densities of constituent tissues could give strong hints about mechanical properties. Thus, we have developed methods for producing three dimensional (3D) images of extraocular tissues based on thin histochemically processed slices, which distinguish collagen, elastin, striated muscle and SM. Overall tissue distortions caused by embedding for sectioning, and individual-slice distortions caused by thin sectioning and subsequent histologic processing were corrected by ordered image warping with intrinsic fiducials. We describe an extraocular structure, partly included in Lockwood's ligament, which contains dense elastin and SM bands, and which might refine horizontal eye alignment as a function of vertical gaze, and torsion in down-gaze. This active structure might therefore be a factor in strabismus and a target of therapeutic intervention. PMID:12723968

  3. Lung tissue engineering.

    PubMed

    Hoganson, David M; Bassett, Erik K; Vacanti, Joseph P

    2014-01-01

    Lung tissue engineering is an emerging field focused on the development of lung replacement devices and tissue to treat patients with end stage lung disease. Microfluidic based lung assist devices have been developed that have biomimetically designed vascular networks that achieve physiologic blood flow. Gas exchange in these devices occurs across a thin respiratory membrane. Designed for intrathoracic implantation as a bridge to transplant or destination therapy, these lung assist devices will allow ambulation and hospital discharge for patients with end stage lung disease. Decellularized lungs subsequently recellularized with epithelial and endothelial cells have been implanted in small animal models with demonstration of initial gas exchange. Further development of these tissues and scaling to large animal models will validate this approach and may be an organ source for lung transplantation. Initial clinical success has been achieved with decellularized tracheal implants using autologous stem cells. Development of microfluidic lung models using similar architecture to the lung assist device technology allows study of lung biology and diseases with manipulation of lung cells and respiratory membrane strain. PMID:24896347

  4. Connective Tissue Ulcers

    PubMed Central

    Dabiri, Ganary; Falanga, Vincent

    2013-01-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren’s syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers. PMID:23756459

  5. Prediction of tissue thermal damage.

    PubMed

    Li, Xin; Zhong, Yongmin; Subic, Aleksandar; Jazar, Reza; Smith, Julian; Gu, Chengfan

    2016-04-29

    This paper presents a method to characterize tissue thermal damage by taking into account the thermal-mechanical effect of soft tissues for thermal ablation. This method integrates the bio-heating conduction and non-rigid motion dynamics to describe thermal-mechanical behaviors of soft tissues and further extends the traditional tissue damage model to characterize thermal-mechanical damage of soft tissues. Simulations and comparison analysis demonstrate that the proposed method can effectively predict tissue thermal damage and it also provides reliable guidelines for control of the thermal ablation procedure. PMID:27163325

  6. Deep tissue injury from a bioengineering point of view.

    PubMed

    Gefen, Amit

    2009-04-01

    The phrasing of the National Pressure Ulcer Advisory Panel's (NPUAP) definition of deep tissue injury (DTI) was based on case reports, clinical observations, and experience. Although etiological studies of DTI, primarily related to characterizing biomechanical factors affecting onset and progression, support and strengthen parts of the NPUAP's definition, some recent findings suggest a need to re-evaluate the wording and perhaps refine future definitions of DTI. Application of existing bioengineering research to underlying biological, physical, biomechanical, and biochemical mechanisms involved in the definition of DTI suggests the following: 1) changes in skin color - ie, deviation of the local skin color from the surroundings - may indicate a DTI might be present, but color is not useful for quantifying the severity of injury; 2) the pressure and/or shear definition is inaccurate because it creates an artificial distinction between pressure and shear, which are physically coupled, and because it ignores tensional loads; 3) palpating tissue firmness at the wound site provides limited assessment information because tissue firmness will depend on the point in time along the course of DTI development. Damaged tissues might appear stiffer than surrounding tissues if examined when muscle tissue is locally contracted due to local rigor mortis but at a later stage damage might manifest as tissues that are softer than their surroundings when digestive enzymes start decomposing necrotic tissues; 4) skin temperature changes near the DTI site may reflect inflammatory response, causing local heating, or ischemic perfusion, causing local cooling; and 5) rapid deterioration of DTI is likely occurring due to muscle tissue stiffening at the rigor mortis phase; stiffened tissues abnormally deform adjacent tissues and this effect is amplified if muscles are atrophied. The application of interdisciplinary research may help clinicians and researchers move from evolving jargons

  7. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    PubMed

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. PMID:25982415

  8. The broccoli (Brassica oleracea) phloem tissue proteome

    PubMed Central

    2013-01-01

    Background The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. Results In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. Conclusions The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes. PMID:24195484

  9. Gastric tissue biopsy and culture

    MedlinePlus

    ... laboratory test that examines the tissue sample for bacteria and other organisms that can cause disease. ... of organisms that cause infection. A gastric tissue culture may be ... Stomach acids normally prevent too much bacteria from growing.

  10. Gram stain of tissue biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003453.htm Gram stain of tissue biopsy To use the sharing features on this page, please enable JavaScript. Gram stain of tissue biopsy test involves using crystal ...

  11. Cellular phone enabled non-invasive tissue classifier.

    PubMed

    Laufer, Shlomi; Rubinsky, Boris

    2009-01-01

    Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554

  12. Fluorescence Spectroscopy of Neoplastic and Non-Neoplastic Tissues

    PubMed Central

    Ramanujam, Nirmala

    2000-01-01

    Abstract Fast and non-invasive, diagnostic techniques based on fluorescence spectroscopy have the potential to link the biochemical and morphologic properties of tissues to individual patient care. One of the most widely explored applications of fluorescence spectroscopy is the detection of endoscopically invisible, early neoplastic growth in epithelial tissue sites. Currently, there are no effective diagnostic techniques for these early tissue transformations. If fluorescence spectroscopy can be applied successfully as a diagnostic technique in this clinical context, it may increase the potential for curative treatment, and thus, reduce complications and health care costs. Steady-state, fluorescence measurements from small tissue regions as well as relatively large tissue fields have been performed. To a much lesser extent, time-resolved, fluorescence measurements have also been explored for tissue characterization. Furthermore, sources of both intrinsic (endogenous fluorophores) and extrinsic fluorescence (exogenous fluorophores) have been considered. The goal of the current report is to provide a comprehensive review on steady-state and time-resolved, fluorescence measurements of neoplastic and non-neoplastic, biologic systems of varying degrees of complexity. First, the principles and methodology of fluorescence spectroscopy are discussed. Next, the endogenous fluorescence properties of cells, frozen tissue sections and excised and intact bulk tissues are presented; fluorescence measurements from both animal and human tissue models are discussed. This is concluded with future perspectives. PMID:10933071

  13. Modulation of tissue repair by regeneration enhancer elements.

    PubMed

    Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D

    2016-04-14

    How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs. PMID:27049946

  14. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  15. Tissue allograft coding and traceability in USM Tissue Bank, Malaysia.

    PubMed

    Sheikh Ab Hamid, Suzina; Abd Rahman, Muhamad Nor Firdaus

    2010-11-01

    In Malaysia, tissue banking activities began in Universiti Sains Malaysia (USM) Tissue Bank in early 1990s. Since then a few other bone banks have been set up in other government hospitals and institutions. However, these banks are not governed by the national authority. In addition there is no requirement set by the national regulatory authority on coding and traceability for donated human tissues for transplantation. Hence, USM Tissue Bank has taken the initiatives to adopt a system that enables the traceability of tissues between the donor, the processed tissue and the recipient based on other international standards for tissue banks. The traceability trail has been effective and the bank is certified compliance to the international standard ISO 9001:2008. PMID:20582480

  16. Dinitrotoluene in deer tissues. Final report

    SciTech Connect

    Shugart, L.R.

    1991-09-30

    Badger Army Ammunition Plant (BAAP), Baraboo, Wisconsin, has within a security-fenced area, a herd of whitetail deer. The US Army and the State of Wisconsin, Department of Health and Social Services have determined that approximately 20 of the deer be harvested and tissue samples thus collected be analyzed for 2,4- and 2,6-dinitrotoluene (2,4- and 2,6-DNT) by high pressure liquid chromatography (HPLC) to a sensitivity of 0.1 part per million (ppm). The HPLC analyses will be done at the Oak Ridge National Laboratory (ORNL) following protocol used previously for similar work for other government sites. ORNL shall instruct Olin relative to the quantity and type of tissue required, storage and shipment requirements, and other information to ensure that all protocol and chain of custody requirements are clear. A final report will be made to Olin Corporation upon completion of the HPLC analyses.

  17. Tissue bioengineering in orthopedics.

    PubMed

    Hernigou, Philippe; Homma, Yasuhiro

    2012-01-01

    The use of cells for the purpose of orthopedic tissue engineering started more than 300 years ago. The first attempt of bone grafting was reported in 1668 by the Dutch surgeon Job-Van Meek'ren. In 1867, Ollier performed a series of experiments using transplanted periosteum and concluded that transplanted periosteum and bone remained alive and formed new bone. The osteogenic potential of transplanted bone marrow was later documented by Goujon in 1869, then by Macewen in 1881. Efforts of Albee and Phemister highlighted further the utility of bone transplantation for the healing of fractures and bone defects. The techniques for autografting pioneered by these individuals remained largely unchanged until today. Advances in understanding of the biology of osteogenic cells, the availability of many highly purified peptide growth factors, and the capacity to create highly specialized implantable materials have launched an explosion of new advances in bone grafting and bone regeneration, all under the banner of tissue engineering. This new field is rapidly expanding the armamentarium of orthopedic surgeons in every setting in which bone healing is required. Composites of cells and matrices are at the core of this revolution. PMID:22783330

  18. Periodontal tissue engineering strategies based on nonoral stem cells.

    PubMed

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. PMID:24293355

  19. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering.

    PubMed

    Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S

    2016-01-01

    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites. PMID:26822227

  20. Mixed connective tissue disease.

    PubMed

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies. PMID:27421219

  1. Gene expression in periodontal tissues following treatment

    PubMed Central

    Beikler, Thomas; Peters, Ulrike; Prior, Karola; Eisenacher, Martin; Flemmig, Thomas F

    2008-01-01

    Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT) was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A), Versican (CSPG-2), Matrixmetalloproteinase-1 (MMP-1), Down syndrome critical region protein-1 (DSCR-1), Macrophage inflammatory protein-2β (Cxcl-3), Inhibitor of apoptosis protein-1 (BIRC-1), Cluster of differentiation antigen 38 (CD38), Regulator of G-protein signalling-1 (RGS-1), and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS); the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2), Complement component 3 (C3), Prostaglandin-endoperoxide synthase-2 (COX-2), Interleukin-8 (IL-8), Endothelin-1 (EDN-1), Plasminogen activator inhibitor type-2 (PAI-2), Matrix-metalloproteinase-14 (MMP-14), and Interferon regulating factor-7 (IRF-7). Conclusion Gene expression profiles found in periodontal tissues following therapy

  2. Implementation: Preparing the Site.

    ERIC Educational Resources Information Center

    Epstein, Susan Baerg

    1983-01-01

    Considers site requirements that should be specified by the library and the vendor for a library automated system located at a central site away from the library, including size of site, the environment, cleanliness, electrical power, security/safety (fire, restricted access), site certification, telecommunications, and terminal sites. (EJS)

  3. The soft tissue sarcomas

    SciTech Connect

    Eilber, F.R.; Morton, D.L.; Sondak, V.K.; Economou, J.S.

    1987-01-01

    New advances in multimodality therapy of sarcomas in all anatomic sites are thoroughly described. Multimodality therapy with limb-salvage surgery for extremity tumors, sarcomas of the head and neck, trunk, intraabdominal, visceral, and genitourinary tract and cardiopulmonary system are presented. Separate sections are devoted to the management of pediatric sarcomas, pulmonary metastasis and to the pathology and radiobiology, chemotherapy, and immunotherapy of sarcomas. The text also stresses the philosophy of achieving adequate local control without radical amputation by combined surgery and chemo/radiotherapy.

  4. An informatics model for tissue banks – Lessons learned from the Cooperative Prostate Cancer Tissue Resource

    PubMed Central

    Patel, Ashokkumar A; Gilbertson, John R; Parwani, Anil V; Dhir, Rajiv; Datta, Milton W; Gupta, Rajnish; Berman, Jules J; Melamed, Jonathan; Kajdacsy-Balla, Andre; Orenstein, Jan; Becich, Michael J

    2006-01-01

    Background Advances in molecular biology and growing requirements from biomarker validation studies have generated a need for tissue banks to provide quality-controlled tissue samples with standardized clinical annotation. The NCI Cooperative Prostate Cancer Tissue Resource (CPCTR) is a distributed tissue bank that comprises four academic centers and provides thousands of clinically annotated prostate cancer specimens to researchers. Here we describe the CPCTR information management system architecture, common data element (CDE) development, query interfaces, data curation, and quality control. Methods Data managers review the medical records to collect and continuously update information for the 145 clinical, pathological and inventorial CDEs that the Resource maintains for each case. An Access-based data entry tool provides de-identification and a standard communication mechanism between each group and a central CPCTR database. Standardized automated quality control audits have been implemented. Centrally, an Oracle database has web interfaces allowing multiple user-types, including the general public, to mine de-identified information from all of the sites with three levels of specificity and granularity as well as to request tissues through a formal letter of intent. Results Since July 2003, CPCTR has offered over 6,000 cases (38,000 blocks) of highly characterized prostate cancer biospecimens, including several tissue microarrays (TMA). The Resource developed a website with interfaces for the general public as well as researchers and internal members. These user groups have utilized the web-tools for public query of summary data on the cases that were available, to prepare requests, and to receive tissues. As of December 2005, the Resource received over 130 tissue requests, of which 45 have been reviewed, approved and filled. Additionally, the Resource implemented the TMA Data Exchange Specification in its TMA program and created a computer program for

  5. Laser-tissue photothermal interaction and tissue temperature change

    NASA Astrophysics Data System (ADS)

    Ives, Andrea K.; Chen, Wei R.; Jassemnejad, Baha; Bartels, Kenneth E.; Liu, Hong; Nordquist, John A.; Nordquist, Robert E.

    2000-06-01

    Responses of tissue to laser stimulation are crucial in both disease diagnostics and treatment. In general, when tissue absorbs laser energy photothermal interaction occurs. The most important signature of the photothermal reaction is the tissue temperature change during and after the laser irradiation. Experimentally, the tissue reaction to laser irradiation can be measured by numerous methods including direct temperature measurement and measurement of perfusion change. In this study, a multiple-channel temperature probe was used to measure tissue temperature change during irradiation of lasers with different wavelengths at different power settings. Tissue temperature in chicken breast tissue as well as skin and breast tumor of rats was measured during irradiation of an 805-nm diode laser. The vertical profiles of temperature were obtained using simultaneous measurement at several different locations. The absorption of laser energy by tissue was enhanced by injecting laser-absorbing dye into the tissue. A Nd:YAG laser of 1064-nm wavelength was also used to irradiate turkey breast tissue. Our results showed that both laser penetration ability and photothermal reaction depended on the wavelength of lasers. In the case of 805-nm laser, the temperature increased rapidly only in the region close to the laser source and the thermal equilibrium could be reached within a short time period. The laser absorbing dye drastically enhanced the thermal reaction, resulting in approximately 4-fold temperature increase. On the contrary, the laser beam with 1064-nm wavelength penetrated deeply into tissue and the tissue temperature continued increasing even after a 10-minute laser irradiation.

  6. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  7. Bioengineering Beige Adipose Tissue Therapeutics

    PubMed Central

    Tharp, Kevin M.; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  8. Harnessing Cell–Biomaterial Interactions for Osteochondral Tissue Regeneration

    PubMed Central

    Kim, Kyobum; Yoon, Diana M.; Mikos, Antonios G.

    2013-01-01

    Articular cartilage that is damaged or diseased often requires surgical intervention to repair the tissue; therefore, tissue engineering strategies have been developed to aid in cartilage regeneration. Tissue engineering approaches often require the integration of cells, biomaterials, and growth factors to direct and support tissue formation. A variety of cell types have been isolated from adipose, bone marrow, muscle, and skin tissue to promote cartilage regeneration. The interaction of cells with each other and with their surrounding environment has been shown to play a key role in cartilage engineering. In tissue engineering approaches, biomaterials are commonly used to provide an initial framework for cell recruitment and proliferation and tissue formation. Modifications of the properties of biomaterials, such as creating sites for cell binding, altering their physicochemical characteristics, and regulating the delivery of growth factors, can have a significant influence on chondrogenesis. Overall, the goal is to completely restore healthy cartilage within an articular cartilage defect. This chapter aims to provide information about the importance of cell–biomaterial interactions for the chondrogenic differentiation of various cell populations that can eventually produce functional cartilage matrix that is indicative of healthy cartilage tissue. PMID:21975954

  9. Polarized Light Propagation in Biological Tissue and Tissue Phantoms

    SciTech Connect

    Sankaran, V.; Walsh, J.T.; Maitland, D.

    1999-12-10

    Imaging through biologic tissue relies on the discrimination of weakly scattered from multiply scattered photons. The degree of polarization can be used as the discrimination criterion by which to reject multiply scattered photons. Polarized light propagation through biologic tissue is typically studied using tissue phantoms consisting of dilute aqueous suspensions of microsphere. We show that, although such phantoms are designed to match the macroscopic scattering properties of tissue (i.e.. the scattering coefficient, {mu}{sub 3}, and scattering anisotropy, g), they do not accurately represent biologic tissue for polarization-sensitive studies. In common tissue phantoms, such as dilute Intralipid and dilute 1-{micro}m-diameter polystyrene microsphere suspensions, we find that linearly polarized light is depolarized more quickly than circularly polarized light. In dense tissue, however, where scatterers are often located in close proximity to one another, circularly polarized light is depolarized similar to or more quickly than linearly polarized light. We also demonstrate that polarized light propagates differently in dilute versus densely packed microsphere suspensions, which may account for the differences seen between polarized light propagation in common dilute tissue phantoms versus dense biologic tissue.

  10. Promoting Your Web Site.

    ERIC Educational Resources Information Center

    Raeder, Aggi

    1997-01-01

    Discussion of ways to promote sites on the World Wide Web focuses on how search engines work and how they retrieve and identify sites. Appropriate Web links for submitting new sites and for Internet marketing are included. (LRW)

  11. Sirtuins, Tissue Maintenance, and Tumorigenesis

    PubMed Central

    Mohrin, Mary

    2013-01-01

    Aging is a degenerative process resulting in compromised tissue maintenance and increased susceptibility to diseases, such as cancer. Recent advancements support the notion that aging is a highly regulated process governed by evolutionarily conserved pathways. In mammals, tissue-specific adult stem cells (ASCs) persist throughout the lifetime to maintain and repair tissues. While reduced ASC self-renewal is thought to contribute to compromised tissue maintenance, increased self-renewal of cancer stem cells (CSCs) may lead to tumorigenesis. It is speculated that genetic regulators of aging, such as sirtuins, are likely to impinge upon the ASC compartments to regulate tissue maintenance and tumorigenesis. In this review, we discuss the emerging evidence linking sirtuins to normal and malignant ASC self-renewal, tissue maintenance, and tumorigenesis. PMID:24019997

  12. Biomimetic Materials for Tissue Engineering

    PubMed Central

    Ma, Peter X

    2008-01-01

    Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for transplantation. Biomaterials play a pivotal role as scaffolds to provide three-dimensional templates and synthetic extracellular-matrix environments for tissue regeneration. It is often beneficial for the scaffolds to mimic certain advantageous characteristics of the natural extracellular matrix, or developmental or would healing programs. This article reviews current biomimetic materials approaches in tissue engineering. These include synthesis to achieve certain compositions or properties similar to those of the extracellular matrix, novel processing technologies to achieve structural features mimicking the extracellular matrix on various levels, approaches to emulate cell-extracellular matrix interactions, and biologic delivery strategies to recapitulate a signaling cascade or developmental/would-healing program. The article also provides examples of enhanced cellular/tissue functions and regenerative outcomes, demonstrating the excitement and significance of the biomimetic materials for tissue engineering and regeneration. PMID:18045729

  13. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  14. Immunohistochemical staining of avian influenza viruses in tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunohistochemical methods are commonly used for studying the pathogenesis of avian influenza virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and methods fo...

  15. Immunohistochemical staining of avian influenza virus in tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunohistochemical methods are commonly used for studying the pathogenesis of avian influenza (AI) virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and metho...

  16. Extracellular matrix as an inductive scaffold for functional tissue reconstruction

    PubMed Central

    BROWN, BRYAN N.; BADYLAK, STEPHEN F.

    2014-01-01

    The extracellular matrix (ECM) is a meshwork of both structural and functional proteins assembled in unique tissue-specific architectures. The ECM both provides the mechanical framework for each tissue and organ and is a substrate for cell signaling. The ECM is highly dynamic, and cells both receive signals from the ECM and contribute to its content and organization. This process of “dynamic reciprocity” is key to tissue development and for homeostasis. Based upon these important functions, ECM-based materials have been used in a wide variety of tissue engineering and regenerative medicine approaches to tissue reconstruction. It has been demonstrated that ECM-based materials, when appropriately prepared, can act as inductive templates for constructive remodeling. Specifically, such materials act as templates for the induction of de novo functional, site-appropriate, tissue formation. Herein, the diverse structural and functional roles of the ECM are reviewed to provide a rationale for the use of ECM scaffolds in regenerative medicine. Translational examples of ECM scaffolds in regenerative are provided, and the potential mechanisms by which ECM scaffolds elicit constructive remodeling are discussed. A better understanding of the ability of ECM scaffold materials to define the microenvironment of the injury site will lead to improved clinical outcomes associated with their use. PMID:24291155

  17. Citrus Tissue Culture

    PubMed Central

    Einset, John W.

    1978-01-01

    In vitro growth of explant (juice vesicle or albedo tissues) cultures from citron (Citrus medica), lemon (C. limon), grapefruit (C. paradisi), sweet orange (C. sinensis), and mandarin (C. reticulata) fruits was stimulated by addition of orange juice (10% v/v optimum) to a basal medium containing Murashige and Skoog salts, 50 grams per liter sucrose, 100 milligrams per liter myo-inositol, 5 milligrams per liter thiamine·HCl, 2 milligrams per liter 2,4-dichlorophenoxyacetic acid and 0.5 milligrams per liter kinetin. In analyzing this effect of orange juice on citron explant cultures, we failed to obtain increased yields by addition of appropriate concentrations of citric acid to the basal medium but obtained growth stimulation when the medium was supplemented with juice from an “acidless” orange variety (cv. Lima). These facts suggest that some component(s) other than citric acid is involved. Addition of the inorganic ash corresponding to 10% (v/v) orange juice to the basal medium had no effect on yields. Similarly, the stimulatory effect of orange juice could not be explained based on its content of sucrose or of organic growth factors already present in the basal medium. ImagesFig. 2 PMID:16660631

  18. Ischemic tissue injury.

    PubMed Central

    Jennings, R. B.; Ganote, C. E.; Reimer, K. A.

    1975-01-01

    The subendocardial to subepicardial gradient in the severity of ischemia following acute coronary occlusion is described. The effects of mild, moderate, and severe ischemia on cell structure and function are compared in summary form, and special attention is given to the effects of severe ischemia on myocardial cells. The characteristics of reversible and irreversible ischemic injury are defined in biologic terms. The failure of cell volume regulation in cells which have entered an irreversible state of ischemic injury is demonstrated by the use of free-hand slices in vitro. Irreversibility is associated with structural defects in the plasma membrane and is reflected in an increased slice inulin-diffusible space, increased slice H2O and Na+ content, and failure of the tissue to maintain the high K+ and Mg2+ levels characteristic of normal left ventricular myocardium. Defective cell membrane function is an early feature of irreversible ischemic injury and may be a primary event in the genesis of the irreversible state. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1180331

  19. Human Tissue Stimulator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.

  20. Osteochondral tissue engineering.

    PubMed

    Martin, Ivan; Miot, Sylvie; Barbero, Andrea; Jakob, Marcel; Wendt, David

    2007-01-01

    Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint, and therefore with the risk of inducing osteoarthritic degenerative changes. Current surgical limits in the treatment of complex joint lesions could be overcome by grafting osteochondral composite tissues, engineered by combining the patient's own cells with three-dimensional (3D) porous biomaterials of pre-defined size and shape. Various strategies have been reported for the engineering of osteochondral composites, which result from the use of one or more cell types cultured into single-component or composite scaffolds in a broad spectrum of compositions and biomechanical properties. The variety of concepts and models proposed by different groups for the generation of osteochondral grafts reflects that understanding of the requirements to restore a normal joint function is still poor. In order to introduce the use of engineered osteochondral composites in the routine clinical practice, it will be necessary to comprehensively address a number of critical issues, including those related to the size and shape of the graft to be generated, the cell type(s) and properties of the scaffold(s) to be used, the potential physical conditioning to be applied, the degree of functionality required, and the strategy for a cost-effective manufacturing. The progress made in material science, cell biology, mechanobiology and bioreactor technology will be key to support advances in this challenging field. PMID:16730354

  1. Hanford Site Development Plan

    SciTech Connect

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  2. Generalized Connective Tissue Disease in Crtap-/- Mouse

    PubMed Central

    Baldridge, Dustin; Lennington, Jennifer; Weis, MaryAnn; Homan, Erica P.; Jiang, Ming-Ming; Munivez, Elda; Keene, Douglas R.; Hogue, William R.; Pyott, Shawna; Byers, Peter H.; Krakow, Deborah; Cohn, Daniel H.; Eyre, David R.; Lee, Brendan; Morello, Roy

    2010-01-01

    Mutations in CRTAP (coding for cartilage-associated protein), LEPRE1 (coding for prolyl 3-hydroxylase 1 [P3H1]) or PPIB (coding for Cyclophilin B [CYPB]) cause recessive forms of osteogenesis imperfecta and loss or decrease of type I collagen prolyl 3-hydroxylation. A comprehensive analysis of the phenotype of the Crtap-/- mice revealed multiple abnormalities of connective tissue, including in the lungs, kidneys, and skin, consistent with systemic dysregulation of collagen homeostasis within the extracellular matrix. Both Crtap-/- lung and kidney glomeruli showed increased cellular proliferation. Histologically, the lungs showed increased alveolar spacing, while the kidneys showed evidence of segmental glomerulosclerosis, with abnormal collagen deposition. The Crtap-/- skin had decreased mechanical integrity. In addition to the expected loss of proline 986 3-hydroxylation in α1(I) and α1(II) chains, there was also loss of 3Hyp at proline 986 in α2(V) chains. In contrast, at two of the known 3Hyp sites in α1(IV) chains from Crtap-/- kidneys there were normal levels of 3-hydroxylation. On a cellular level, loss of CRTAP in human OI fibroblasts led to a secondary loss of P3H1, and vice versa. These data suggest that both CRTAP and P3H1 are required to maintain a stable complex that 3-hydroxylates canonical proline sites within clade A (types I, II, and V) collagen chains. Loss of this activity leads to a multi-systemic connective tissue disease that affects bone, cartilage, lung, kidney, and skin. PMID:20485499

  3. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  4. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  5. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  6. Fibrosis and Adipose Tissue Dysfunction

    PubMed Central

    Sun, Kai; Tordjman, Joan; Clément, Karine; Scherer, Philipp E.

    2013-01-01

    Fibrosis is increasingly appreciated as a major player in adipose tissue dysfunction. In rapidly expanding adipose tissue, pervasive hypoxia leads to an induction of HIF1α that in turn leads to a potent pro-fibrotic transcriptional program. The pathophysiological impact of adipose tissue fibrosis is likely to play an equally important role on systemic metabolic alterations as fibrotic conditions play in the liver, heart and kidney. Here, we discuss recent advances in our understanding of the genesis, modulation and systemic impact of excessive extracellular matrix (ECM) accumulation in adipose tissue of both rodents and humans and the ensuing impact on metabolic dysfunction. PMID:23954640

  7. Gingival Tissue Transcriptomes Identify Distinct Periodontitis Phenotypes

    PubMed Central

    Kebschull, M.; Demmer, R.T.; Grün, B.; Guarnieri, P.; Pavlidis, P.; Papapanou, P.N.

    2014-01-01

    The currently recognized principal forms of periodontitis—chronic and aggressive—lack an unequivocal, pathobiology-based foundation. We explored whether gingival tissue transcriptomes can serve as the basis for an alternative classification of periodontitis. We used cross-sectional whole-genome gene expression data from 241 gingival tissue biopsies obtained from sites with periodontal pathology in 120 systemically healthy nonsmokers with periodontitis, with available data on clinical periodontal status, subgingival microbial profiles, and serum IgG antibodies to periodontal microbiota. Adjusted model-based clustering of transcriptomic data using finite mixtures generated two distinct clusters of patients that did not align with the current classification of chronic and aggressive periodontitis. Differential expression profiles primarily related to cell proliferation in cluster 1 and to lymphocyte activation and unfolded protein responses in cluster 2. Patients in the two clusters did not differ with respect to age but presented with distinct phenotypes (statistically significantly different whole-mouth clinical measures of extent/severity, subgingival microbial burden by several species, and selected serum antibody responses). Patients in cluster 2 showed more extensive/severe disease and were more often male. The findings suggest that distinct gene expression signatures in pathologic gingival tissues translate into phenotypic differences and can provide a basis for a novel classification. PMID:24646639

  8. Tissue regeneration during tissue expansion and choosing an expander

    PubMed Central

    Agrawal, K.; Agrawal, S.

    2012-01-01

    This paper reviews the various aspects of tissue regeneration during the process of tissue expansion. “Creep” and mechanical and biological “stretch” are responsible for expansion. During expansion, the epidermis thickens, the dermis thins out, vascularity improves, significant angiogenesis occurs, hair telogen phase becomes shorter and the peripheral nerves, vessels and muscle fibres lengthen. Expansion is associated with molecular changes in the tissue. Almost all these biological changes are reversible after the removal of the expander.This study is also aimed at reviewing the difficulty in deciding the volume and dimension of the expander for a defect. Basic mathematical formulae and the computer programmes for calculating the dimension of tissue expanders, although available in the literature, are not popular. A user-friendly computer programme based on the easily available Microsoft Excel spread sheet has been introduced. When we feed the area of defect and base dimension of the donor area or tissue expander, this programme calculates the volume and height of the expander. The shape of the expander is decided clinically based on the availability of the donor area and the designing of the future tissue movement. Today, tissue expansion is better understood biologically and mechanically. Clinical judgement remains indispensable in choosing the size and shape of the tissue expander. PMID:22754146

  9. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  10. Treatment Options for Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  11. Treatment Option Overview (Adult Soft Tissue Sarcoma)

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  12. Stages of Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  13. Current management of pediatric soft tissue sarcomas.

    PubMed

    Sangkhathat, Surasak

    2015-11-01

    Pediatric soft tissue sarcomas are a group of malignant neoplasms arising within embryonic mesenchymal tissues during the process of differentiation into muscle, fascia and fat. The tumors have a biphasic peak for age of incidence. Rhabdomyosarcoma (RMS) is diagnosed more frequently in younger children, whereas adult-type non-RMS soft tissue sarcoma is predominately observed in adolescents. The latter group comprises a variety of rare tumors for which diagnosis can be difficult and typically requires special studies, including immunohistochemistry and molecular genetic analysis. Current management for the majority of pediatric sarcomas is based on the data from large multi-institutional trials, which has led to great improvements in outcomes over recent decades. Although surgery remains the mainstay of treatment, the curative aim cannot be achieved without adjuvant treatment. Pre-treatment staging and risk classification are of prime importance in selecting an effective treatment protocol. Tumor resectability, the response to induction chemotherapy, and radiation generally determine the risk-group, and these factors are functions of tumor site, size and biology. Surgery provides the best choice of local control of small resectable tumors in a favorable site. Radiation therapy is added when surgery leaves residual disease or there is evidence of regional spread. Chemotherapy aims to reduce the risk of relapse and improve overall survival. In addition, upfront chemotherapy reduces the aggressiveness of the required surgery and helps preserve organ function in a number of cases. Long-term survival in low-risk sarcomas is feasible, and the intensity of treatment can be reduced. In high-risk sarcoma, current research is allowing more effective disease control. PMID:26566481

  14. Current management of pediatric soft tissue sarcomas

    PubMed Central

    Sangkhathat, Surasak

    2015-01-01

    Pediatric soft tissue sarcomas are a group of malignant neoplasms arising within embryonic mesenchymal tissues during the process of differentiation into muscle, fascia and fat. The tumors have a biphasic peak for age of incidence. Rhabdomyosarcoma (RMS) is diagnosed more frequently in younger children, whereas adult-type non-RMS soft tissue sarcoma is predominately observed in adolescents. The latter group comprises a variety of rare tumors for which diagnosis can be difficult and typically requires special studies, including immunohistochemistry and molecular genetic analysis. Current management for the majority of pediatric sarcomas is based on the data from large multi-institutional trials, which has led to great improvements in outcomes over recent decades. Although surgery remains the mainstay of treatment, the curative aim cannot be achieved without adjuvant treatment. Pre-treatment staging and risk classification are of prime importance in selecting an effective treatment protocol. Tumor resectability, the response to induction chemotherapy, and radiation generally determine the risk-group, and these factors are functions of tumor site, size and biology. Surgery provides the best choice of local control of small resectable tumors in a favorable site. Radiation therapy is added when surgery leaves residual disease or there is evidence of regional spread. Chemotherapy aims to reduce the risk of relapse and improve overall survival. In addition, upfront chemotherapy reduces the aggressiveness of the required surgery and helps preserve organ function in a number of cases. Long-term survival in low-risk sarcomas is feasible, and the intensity of treatment can be reduced. In high-risk sarcoma, current research is allowing more effective disease control. PMID:26566481

  15. [Myokines - muscle tissue hormones].

    PubMed

    Stránská, Zuzana; Svačina, Štěpán

    2015-04-01

    Physical inactivity is demonstrably related to the manifestation of chronic diseases which significantly modify the quality and prognosis of life in a negative way. The benefits of exercise are surely mediated by many pathophysiological mechanisms interrelated in varying degrees, which have not yet been fully examined in their complexity. In the late 20th century it was positively proven that a working striated muscle really regulates the metabolic and physiological response in the other organs. These involve several hundred substances with autocrine, paracrine and endocrine effects. These proteins and peptides, if released into the blood stream, substantially affect the metabolism of distant organs. They were classified as "myokines" (cytokines produced by myocytes). The identified myokines include e.g. IL4, IL6, IL7, IL15, myostatin, LIF (leukemia inhibitory factor), BDNF (brain-derived neurotrophic factor), IGF1 (insulin-like growth factor), FGF2 (fibroblast growth factor 2), FGF21, FSTL1 (follistatin-related protein 1), irisin, EPO (erythropoetin) and BAIBA (β-aminoisobutyric acid). Myokines have first of all an immunoregulatory role in the human body. Another important effect of myokines is, coincidentally also in the interaction with adipose tissue, the regulation of energy homeostasis. They also affect the growth of muscle fibres and their regeneration, stimulate angiogenesis, they are involved in the regulation of glucose metabolism and have a proven effect on lipids. Considering their diverse function, myokines present a prospective therapeutic goal in the treatment of disorders of muscle growth and regeneration as well as obesity. Another recent research moves toward uncovering of the "myokine resistance" as a result of long-term muscle inactivity and its association with chronic subclinical inflammation. PMID:25894270

  16. Candidates Cell Sources to Regenerate Alveolar Bone from Oral Tissue

    PubMed Central

    Nishimura, Masahiro; Takase, Kazuma; Suehiro, Fumio; Murata, Hiroshi

    2012-01-01

    Most of the cases of dental implant surgery, especially the bone defect extensively, are essential for alveolar ridge augmentation. As known as cell therapy exerts valuable effects on bone regeneration, numerous reports using various cells from body to regenerate bone have been published, including clinical reports. Mesenchymal cells that have osteogenic activity and have potential to be harvested from intra oral site might be a candidate cells to regenerate alveolar bone, even dentists have not been harvested the cells outside of mouth. This paper presents a summary of somatic cells in edentulous tissues which could subserve alveolar bone regeneration. The candidate tissues that might have differentiation potential as mesenchymal cells for bone regeneration are alveolar bone chip, bone marrow from alveolar bone, periosteal tissue, and gingival tissue. Understanding their phenotype consecutively will provide a rational approach for alveolar ridge augmentation. PMID:22505911

  17. Norwalk Virus–specific Binding to Oyster Digestive Tissues

    PubMed Central

    Loisy, Fabienne; Atmar, Robert L.; Hutson, Anne M.; Estes, Mary K.; Ruvoën-Clouet, Nathalie; Pommepuy, Monique; Le Pendu, Jacques

    2006-01-01

    The primary pathogens related to shellfishborne gastroenteritis outbreaks are noroviruses. These viruses show persistence in oysters, which suggests an active mechanism of virus concentration. We investigated whether Norwalk virus or viruslike particles bind specifically to oyster tissues after bioaccumulation or addition to tissue sections. Since noroviruses attach to carbohydrates of the histo-blood group family, tests using immunohistochemical analysis were performed to evaluate specific binding of virus or viruslike particles to oyster tissues through these ligands. Viral particles bind specifically to digestive ducts (midgut, main and secondary ducts, and tubules) by carbohydrate structures with a terminal N-acetylgalactosamine residue in an α linkage (same binding site used for recognition of human histo-blood group antigens). These data show that the oyster can selectively concentrate a human pathogen and that conventional depuration will not eliminate noroviruses from oyster tissue. PMID:16707048

  18. Reactive Oxygen Species in Inflammation and Tissue Injury

    PubMed Central

    Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888

  19. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation.

    PubMed

    Cui, L; Houston, D A; Farquharson, C; MacRae, V E

    2016-06-01

    The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use. PMID:27072517

  20. Combination of erbium and holmium laser radiation for tissue ablation

    NASA Astrophysics Data System (ADS)

    Pratisto, Hans S.; Frenz, Martin; Koenz, Flurin; Altermatt, Hans J.; Weber, Heinz P.

    1996-05-01

    Erbium lasers emitting at 2.94 micrometers and holmium lasers emitting at 2.1 micrometers are interesting tools for cutting, drilling, smoothing and welding of water containing tissues. The high absorption coefficient of water at these wavelengths leads to their good ablation efficiency with controlled thermally altered zones around the ablation sites. Combination of pulses with both wavelengths transmitted through one fiber were used to perform incisions in soft tissue and impacts in bone disks. Histological results and scanning electron microscope evaluations reveal the strong influence of the absorption coefficient on tissue effects, especially on the ablation efficiency and the zone of thermally damaged tissue. It is demonstrated that the combination of high ablation rates and deep coagulation zones can be achieved. The results indicate that this laser system can be considered as a first step towards a multi-functional medical instrument.

  1. Developmental Potential of Vitrified Mouse Testicular Tissue after Ectopic Transplantation

    PubMed Central

    Yamini, Nazila; Pourmand, Gholamreza; Amidi, Fardin; Salehnia, Mojdeh; Ataei Nejad, Nahid; Mougahi, Seyed Mohammad

    2016-01-01

    Objective Cryopreservation of immature testicular tissue should be considered as an important factor for fertility preservation in young boys with cancer. The objective of this study is to investigate whether immature testicular tissue of mice can be successfully cryopreserved using a simple vitrification procedure to maintain testicular cell viability, proliferation, and differentiation capacity. Materials and Methods In this experimental study, immature mice testicular tissue fragments (0.5-1 mm²) were vitrified-warmed in order to assess the effect of vitrification on testicular tissue cell viability. Trypan blue staining was used to evaluate developmental capacity. Vitrified tissue (n=42) and fresh (control, n=42) were ectopically transplanted into the same strain of mature mice (n=14) with normal immunity. After 4 weeks, the graft recovery rate was determined. Hematoxylin and eosin (H&E) staining was used to evaluate germ cell differentiation, immunohistochemistry staining by proliferating cell nuclear antigen (PCNA) antibody, and terminal deoxynucleotidyl transferase (TdT) dUTP Nick- End Labeling (TUNEL) assay for proliferation and apoptosis frequency. Results Vitrification did not affect the percentage of cell viability. Vascular anastomoses was seen at the graft site. The recovery rate of the vitrified graft did not significantly differ with the fresh graft. In the vitrified graft, germ cell differentiation developed up to the secondary spermatocyte, which was similar to fresh tissue. Proliferation and apoptosis in the vitrified tissue was comparable to the fresh graft. Conclusion Vitrification resulted in a success rates similar to fresh tissue (control) in maintaining testicular cell viability and tissue function. These data provided further evidence that vitrification could be considered an alternative for cryopreservation of immature testicular tissue. PMID:27054121

  2. Plant Tissues. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant tissues. Presented first are an attention step and a series of questions and answers designed to convey general information about plant tissues and the effect of water and minerals on them. The following topics are among those discussed: reasons why water is important to plants,…

  3. URIC ACID AND TISSUE REPAIR

    PubMed Central

    NERY, Rodrigo Araldi; KAHLOW, Barbara Stadler; SKARE, Thelma L; TABUSHI, Fernando Issamu; CASTRO, Adham do Amaral e

    2015-01-01

    Uric acid, a metabolic product of purines, may exert a role in tissue healing. In this review we will explore its role as an alarm initiating the inflammatory process that is necessary for tissue repair, as a scavenger of oxygen free radicals, as a mobilizer of progenitor endothelial cells and as supporter of adaptive immune system. PMID:26734804

  4. The Stanford Tissue Microarray Database.

    PubMed

    Marinelli, Robert J; Montgomery, Kelli; Liu, Chih Long; Shah, Nigam H; Prapong, Wijan; Nitzberg, Michael; Zachariah, Zachariah K; Sherlock, Gavin J; Natkunam, Yasodha; West, Robert B; van de Rijn, Matt; Brown, Patrick O; Ball, Catherine A

    2008-01-01

    The Stanford Tissue Microarray Database (TMAD; http://tma.stanford.edu) is a public resource for disseminating annotated tissue images and associated expression data. Stanford University pathologists, researchers and their collaborators worldwide use TMAD for designing, viewing, scoring and analyzing their tissue microarrays. The use of tissue microarrays allows hundreds of human tissue cores to be simultaneously probed by antibodies to detect protein abundance (Immunohistochemistry; IHC), or by labeled nucleic acids (in situ hybridization; ISH) to detect transcript abundance. TMAD archives multi-wavelength fluorescence and bright-field images of tissue microarrays for scoring and analysis. As of July 2007, TMAD contained 205 161 images archiving 349 distinct probes on 1488 tissue microarray slides. Of these, 31 306 images for 68 probes on 125 slides have been released to the public. To date, 12 publications have been based on these raw public data. TMAD incorporates the NCI Thesaurus ontology for searching tissues in the cancer domain. Image processing researchers can extract images and scores for training and testing classification algorithms. The production server uses the Apache HTTP Server, Oracle Database and Perl application code. Source code is available to interested researchers under a no-cost license. PMID:17989087

  5. Biomaterials for tissue engineering: summary

    NASA Technical Reports Server (NTRS)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  6. Hanford Site Development Plan

    SciTech Connect

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP`s primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans.

  7. Tissue printing on nitrocellulose membrane

    SciTech Connect

    Taylor, R.; Song, Yanru; Pont-Lezica, R.; Lin, Liangshiou; Ye, Zhenghua; Varner, J.E. )

    1989-04-01

    In the 1950's Daoust developed substrate film printing on gelatin and starch films to localize protease, amylase, DNAase and RNAase activities. These procedures were adapted to plant tissues by Yomo and Taylor (1973) and by Jacobsen and Knox (1973). Membranes such as nitrocellulose bind cellular materials from cut tissue surfaces with little lateral diffusion. Thus accurate chemical prints are obtained. When the tissue is pressed firmly onto nitrocellulose a physical impression is obtained which shows the anatomy of the tissue. We have used the tissue-print technique to localize (1) proteins with labeled antibodies, (2) RNA with labeled nucleic acid probes, (3) enzymes by catalytic activity, (4) glycoproteins by fluorescent lectins, (5) lectins by fluorescent sugars, (6) cysteine-rich proteins by dansylated iodoacetamide, (7) ascorbic acid by silver nitrate, (8) soluble fluorescent compounds by direct observation.

  8. Videofluorometer for imaging tissue metabolism

    NASA Astrophysics Data System (ADS)

    Kelly, Jeffrey J.; Rorvik, Dawn A.; Richmond, Keith N.; Barlow, Clyde H.

    1989-11-01

    A videofluorometer is described that directly acquires digital metabolic images of reduced nicotinamide adenine dinucleotide (NADH) fluorescence in tissue. NADH fluorescence provides an intrinsic indicator of the state of tissue mitochondrial oxidative metabolism. The device combines a computer-controlled fluorescence excitation system with digital image acquisition to quantify tissue bioenergetics in both spatial and time domains. Localized ischemia following coronary artery ligation in a perfused rat heart (model for a coronary artery occlusion heart attack) is used as an example to demonstrate the capabilities of the system. This videofluorometer permits monitoring changes in physiological state of organs and tissue without interfering with tissue metabolism. The digital nature of the acquired image allows detailed analysis of physiological features and their time dependence.

  9. Optical Characterization of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Barrera, Frederick; Sardar, Dhiraj; Tsin, Andrew

    2008-03-01

    University of Texas at San Antonio, San Antonio, Texas 78249. An in-depth characterization of optical properties of biological tissues has been performed. The wavelength-dependent total diffuse reflection (Rd) and total transmission (Tt) measurements have been taken for individual tissue by using a double-integrating sphere setup. The index of refraction of the tissue will be determined using conventional optical techniques. The Inverse Adding Doubling (IAD) computational method is applied to the measured values of n, Rd, and Tt to calculate the optical absorption and scattering coefficients as well as the scattering anisotropy coefficients of these tissues. The Rd and Tt determined by the IAD method were compared with those generated by the Monte Carlo simulation technique. A thorough comparison of the scattering characteristics of these tissues has been made. Furthermore, a comparison of these optical scattering and absorption coefficients calculated by IAD method were compared to the values determined by the Kubelka-Munk model.

  10. MALDI Tissue Profiling of Integral Membrane Proteins from Ocular Tissues

    PubMed Central

    Thibault, Danielle B.; Gillam, Christopher J.; Grey, Angus C.; Han, Jun; Schey, Kevin L.

    2008-01-01

    MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this communication, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed aged related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods. PMID:18396059

  11. Apoptotic Genes are Differentially Expressed in Aged Gingival Tissue

    PubMed Central

    González, O.A.; Stromberg, A.J.; Huggins, P.M.; Gonzalez-Martinez, J.; Novak, M.J.; Ebersole, J.L.

    2011-01-01

    Cellular and molecular changes of the periodontium associated with a higher prevalence of oral diseases (e.g., chronic periodontitis) in aged populations have received little attention. Since impaired apoptosis during aging appears to be related to chronic inflammatory disorders, we hypothesized that the expression of genes associated with apoptotic processes are altered in aged healthy and periodontitis-affected gingival tissue. Ontology analysis of 88 genes related to apoptotic pathways was performed in gingival biopsies of healthy and periodontitis sites from young, adult, and aged non-human primates (Macaca mulatta), using the GeneChip® Rhesus Macaque Genome Array. Lower expression of anti-apoptotic and higher expression of pro-apoptotic genes were associated with healthy gingival tissue from young compared with aged animals. Few differences in gene expression were observed in healthy gingival tissue between adult and aged animals. Comparison between healthy and periodontitis gingival tissues showed that the up- or down-regulated apoptotic genes in diseased gingival tissue are different in adults compared with aged animals. These results suggest that apoptotic events normally occurring in gingival tissues could be reduced in aging,and unique aspects of apoptotic pathways are potentially involved in the pathophysiology of perio-dontal disease in adult vs. aged gingival tissues. PMID:21471327

  12. Application of the cell sheet technique in tissue engineering

    PubMed Central

    CHEN, GUANGNAN; QI, YIYING; NIU, LIE; DI, TUOYU; ZHONG, JINWEI; FANG, TINGTING; YAN, WEIQI

    2015-01-01

    The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering. PMID:26623011

  13. Histotripsy Methods in Mechanical Disintegration of Tissue: Toward Clinical Applications

    PubMed Central

    Khokhlova, VA; Fowlkes, JB; Roberts, WW; Schade, GR; Xu, Z; Khokhlova, TD; Hall, TL; Maxwell, AD; Wang, YN; Cain, CA

    2015-01-01

    Purpose In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently, there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Material and Methods Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapor cavity causes tissue disintegration. Results Recent pre-clinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumors, kidney stone fragmentation, enhancing antitumor immune response, and tissue decellularization for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Conclusions Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilize different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of noninvasive surgery. PMID:25707817

  14. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications.

    PubMed

    Khokhlova, Vera A; Fowlkes, J Brian; Roberts, William W; Schade, George R; Xu, Zhen; Khokhlova, Tatiana D; Hall, Timothy L; Maxwell, Adam D; Wang, Yak-Nam; Cain, Charles A

    2015-03-01

    In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapour cavity causes tissue disintegration. Recent preclinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumours, kidney stone fragmentation, enhancing anti-tumour immune response, and tissue decellularisation for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilise different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of non-invasive surgery. PMID:25707817

  15. SCHOOL SITE STANDARDS AND SITE SELECTION.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    THIS REPORT PRESENTS ELEMENTARY AND SECONDARY SCHOOL SITE DEVELOPMENT DATA COMPILED BY THE DIVISION OF EDUCATIONAL FACILITIES PLANNING, NEW YORK STATE EDUCATION DEPARTMENT. ENROLLMENT FIGURES USED REPRESENT THE ULTIMATE SIZE OF THE SCHOOLS. THE STANDARDS ARE MINIMUM FOR THE STATE OF NEW YORK WITH ELEMENTARY SCHOOL SITES BASED ON THREE ACRES PLUS…

  16. Commercial considerations in tissue engineering.

    PubMed

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024

  17. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California

    SciTech Connect

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-05

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

  18. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    PubMed

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding. PMID:26738200

  19. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-Mouth Disease virus (FMDV) has a characteristic tropism in terms of primary, secondary, and persistent infection and vesicular lesion sites. The virus targets specific tissues for primary replication. From these tissues, the virus spreads via the blood stream to a few preferred secondary in...

  20. Macrophage activation-induced thymosin beta 4 production: a tissue repair mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages play significant role in immunity which not only kill pathogens, produce cytokines but also clear dead tissues at the site of inflammation and stimulate wound healing. Much less is known how these cells contribute to tissue repair process. In course of our studies comparing the peptide...

  1. Trade in human tissue products.

    PubMed

    Tonti-Filippini, Nicholas; Zeps, Nikolajs

    2011-03-01

    Trade in human tissue in Australia is prohibited by state law, and in ethical guidelines by the National Health and Medical Research Council: National statement on ethical conduct in human research; Organ and tissue donation by living donors: guidelines for ethical practice for health professionals. However, trade in human tissue products is a common practice especially for: reconstructive orthopaedic or plastic surgery; novel human tissue products such as a replacement trachea created by using human mesenchymal stem cells; biomedical research using cell lines, DNA and protein provided through biobanks. Cost pressures on these have forced consideration of commercial models to sustain their operations. Both the existing and novel activities require a robust framework to enable commercial uses of human tissue products while maintaining community acceptability of such practices, but to date no such framework exists. In this article, we propose a model ethical framework for ethical governance which identifies specific ethical issues such as: privacy; unique value of a person's tissue; commodification of the body; equity and benefit to the community; perverse incentives; and "attenuation" as a potentially useful concept to help deal with the broad range of subjective views relevant to whether it is acceptable to commercialise certain human tissue products. PMID:21382003

  2. Developing a tissue perfusion sensor.

    PubMed

    Harvey, S L R; Parker, K H; O'Hare, D

    2007-01-01

    The development of a electrochemical tissue perfusion sensor is presented. The sensor is a platinum/platinum ring-disc microelectrode that relies on the principle of collector-generator to monitor mass transport within its vicinity. Tissue perfusion is a mass transport mechanism that describes the movement of respiratory gases, nutrients and metabolites in tissue. The sensor's capability of detecting perfusion at the cellular level in a continuous fashion is unique. This sensor will provide insight into the way nutrients and metabolites are transported in tissue especially in cases were perfusion is low such as in wounds or ischemic tissue. We present experimental work for the development and testing of the sensors in vitro. Experimental flow recordings in free steam solutions as well as the flow through tissue-like media are shown. Tests on post operative human tissue are also presented. The sensor's feature such as the continuous recoding capacities, spatial resolution and the measurement range from ml/min to microl/min are highlighted. PMID:18002549

  3. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  4. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  5. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    PubMed

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation. PMID:26678825

  6. In vitro NIR laser tissue welding of porcine ocular tissues

    NASA Astrophysics Data System (ADS)

    Rosen, Richard B.; Savage, Howard E.; Halder, Rabindra K.; Kartazayeu, Uladzimir; McCormick, Steven A.; Katz, Alvin; Perry, Henry D.; Alfano, Robert R.

    2005-04-01

    In this study, 72 different combinations of laser welding parameters were compared for their effectiveness in welding ocular tissue. The laser employed in the welding system was a near infrared (NIR) erbium fiber laser with a wavelength of 1.455 μm . The laser system used a motorized translational stage and shutter to control the laser exposure of the tissue being welded. The emission wavelength of the laser in the NIR range corresponds to one of the lesser absorption bands of water. Parameters of the laser welding system that could be changed to allow a more effective distribution of the laser energy and therefore management of thermal energy included: the number and kinds of intricate offset patterns of light on or around the incision, the number of lines per pattern, the power level, the speed of the laser beam movement over the tissues, the spot size, dwell time and the focus plane of the light beam in the tissue. Histopathology was used as an endpoint indication of the effects that the various sets of welding parameters had on the welded tissues. Standard Hematoxylin and Eosin stain and Sirius Red F3B (Direct Red 80) in combination with polarization microscopy were used to stain and visualize the welded ocular tissue. Paradoxically, the best cornea welds quantified using histopathology occurred with fluence of 4,500 mJ/cm2 or less while the corneal welds exhibiting the strongest tensile strengths, but most tissue damage had a delivered fluence above 7,000 mJ/cm2. The best histological representatives of welded corneas had an average delivered fluence of 2,687 mJ/cm2 and an irradiance of 14 W/cm2. Using the properly determined parameters, the NIR erbium fiber welding system provided full thickness welds without the requirement of extrinsic dyes, chromophores, or solders. The NIR laser system with the appropriately developed parameters can be used effectively to weld ocular tissues.

  7. Surgical injury induces local and distant adipose tissue browning.

    PubMed

    Longchamp, Alban; Tao, Ming; Bartelt, Alexander; Ding, Kui; Lynch, Lydia; Hine, Christopher; Corpataux, Jean-Marc; Kristal, Bruce S; Mitchell, James R; Ozaki, C Keith

    2016-01-01

    The adipose organ, which comprises brown, white and beige adipocytes, possesses remarkable plasticity in response to feeding and cold exposure. The development of beige adipocytes in white adipose tissue (WAT), a process called browning, represents a promising route to treat metabolic disorders. While surgical procedures constantly traumatize adipose tissue, its impact on adipocyte phenotype remains to be established. Herein, we studied the effect of trauma on adipocyte phenotype one day after sham, incision control, or surgical injury to the left inguinal adipose compartment. Caloric restriction was used to control for surgery-associated body temperature changes and weight loss. We characterized the trauma-induced cellular and molecular changes in subcutaneous, visceral, interscapular, and perivascular adipose tissue using histology, immunohistochemistry, gene expression, and flow cytometry analysis. After one day, surgical trauma stimulated adipose tissue browning at the site of injury and, importantly, in the contralateral inguinal depot. Browning was not present after incision only, and was largely independent of surgery-associated body temperature and weight loss. Adipose trauma rapidly recruited monocytes to the injured site and promoted alternatively activated macrophages. Conversely, PDGF receptor-positive beige progenitors were reduced. In this study, we identify adipose trauma as an unexpected driver of selected local and remote adipose tissue browning, holding important implications for the biologic response to surgical injury. PMID:27386152

  8. The light-tissue interaction of pulse oximetry.

    PubMed

    Mannheimer, Paul D

    2007-12-01

    The underlying science of pulse oximetry is based on a simple manipulation of the Lambert-Beer law, which describes the attenuation of light traveling through a mixture of absorbers. Signals from detected red and infrared light that has traveled through blood-perfused tissues are used to estimate the underlying arterial hemoglobin oxygen saturation. However, light scatters in tissue and influences some of the simplifications made in determining this relationship. Under most clinical circumstances, the empirical process that manufacturers use to calibrate the system during its design readily accommodates this and results in accurate readings. The same tissue light scattering properties allow sensors to be configured for use on opposing or adjacent surfaces, provided that the placement sites offer sufficient signal strength and are absent factors known to influence accuracy. In this paper I review the light-tissue interaction in pulse oximetry and describe some of the assumptions made and their implications. Certain deviations from the nominal conditions, whether clinical in nature or misuse of the product, can affect system performance. Consequently, users should be cautious in modifying sensors and/or using them on tissue sites not intended by the manufacturer (off-label use). While perhaps helpful for obtaining pulsatile signals or extending the lifetime of a sensor, some practices can disrupt the optical integrity of the measurement and negatively impact the oxygen saturation reading accuracy. PMID:18048891

  9. Tissue patterning and cellular mechanics

    PubMed Central

    Heller, Evan

    2015-01-01

    In development, cells organize into biological tissues through cell growth, migration, and differentiation. Globally, this process is dictated by a genetically encoded program in which secreted morphogens and cell–cell interactions prompt the adoption of unique cell fates. Yet, at its lowest level, development is achieved through the modification of cell–cell adhesion and actomyosin-based contractility, which set the level of tension within cells and dictate how they pack together into tissues. The regulation of tension within individual cells and across large groups of cells is a major driving force of tissue organization and the basis of all cell shape change and cell movement in development. PMID:26504164

  10. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  11. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  12. Tissue kallikrein activation of the epithelial Na channel

    PubMed Central

    Patel, Ankit B.; Chao, Julie

    2012-01-01

    Epithelial Na Channels (ENaC) are responsible for the apical entry of Na+ in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K+ or low-Na+ diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (INa) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity. PMID:22622459

  13. Bioactive scaffold for bone tissue engineering: An in vivo study

    NASA Astrophysics Data System (ADS)

    Livingston, Treena Lynne

    Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment

  14. Stem cells and scaffolds for vascularizing engineered tissue constructs.

    PubMed

    Luong, E; Gerecht, S

    2009-01-01

    The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs. PMID:19082932

  15. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    PubMed

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  16. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation

    PubMed Central

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif–/–and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif–/–mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  17. Stem Cells and Scaffolds for Vascularizing Engineered Tissue Constructs

    NASA Astrophysics Data System (ADS)

    Luong, E.; Gerecht, S.

    The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.

  18. Differentiating cancerous from normal breast tissue by redox imaging

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (p<0.05) and the redox ratio Fp/(NADH+Fp) was about 27% higher in the cancerous tissues than in the normal ones (p<0.05). Our findings suggest that the redox state could differentiate between cancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  19. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  20. Destructive fat tissue engineering using photodynamic and selective photothermal effects

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Yanina, Irina Yu.; Simonenko, Georgy V.

    2009-02-01

    Destructive fat tissue engineering could be realized using the optical method, which provides reduction of regional or site-specific accumulations of subcutaneous adipose tissue on the cell level. We hypothesize that light irradiation due to photodynamic and selective photothermal effects may lead to fat cell lypolytic activity (the enhancement of lipolysis of cell triglycerides due to expression of lipase activity and cell release of free fat acids (FFAs) due to temporal cell membrane porosity), and cell delayed killing due to apoptosis caused by the induced fat cell stress and/or limited cell necrosis.

  1. Persistent trophoblastic tissue following salpingostomy for unruptured ectopic pregnancy

    SciTech Connect

    Rivlin, M.E.; Meeks, G.R.; Cowan, B.D.; Bates, G.W.

    1985-02-01

    Radioimmunoassay of beta-hCG was used to diagnose an ectopic pregnancy in a 30 year old patient and the site of pregnancy was determined by ultrasonography. A salpingostomy was performed; the ectopic pregnancy and the residual trophoblastic tissue were removed. Six weeks later a right salpingectomy was performed to remove persistent trophoblastic tissue. Histologic examination of the surgical specimen demonstrated viable chorionic villi. Serial measurements of beta-hCG are recommended following conservative surgery for ectopic gestation to assure the patient and the surgeon that the tube contains no residual products of conception.

  2. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  3. Nanomaterials, Inflammation and Tissue Engineering

    PubMed Central

    Padmanabhan, Jagannath

    2014-01-01

    Nanomaterials exhibit unique properties that are absent in the bulk material because decreasing material size leads to an exponential increase in surface area, surface area to volume ratio, and effective stiffness, resulting in altered physiochemical properties. Diverse categories of nanomaterials such as nanoparticles, nanoporous scaffolds, nanopatterned surfaces, nanofibers and carbon nanotubes can be generated using advanced fabrication and processing techniques. These materials are being increasingly incorporated in tissue engineering scaffolds to facilitate the development of biomimetic substitutes to replace damaged tissues and organs. Long term success of nanomaterials in tissue engineering is contingent upon the inflammatory responses they elicit in vivo. This review seeks to summarize the recent developments in our understanding of biochemical and biophysical attributes of nanomaterials and the inflammatory responses they elicit, with a focus on strategies for nanomaterial design in tissue engineering applications. PMID:25421333

  4. Mechanical Force Sensing in Tissues

    PubMed Central

    Chanet, Soline; Martin, Adam C.

    2015-01-01

    Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis. PMID:25081624

  5. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in the walls of the heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  6. Cytodiagnosis of soft tissue tumors.

    PubMed

    Oland, J; Rosen, A; Reif, R; Sayfan, J; Orda, R

    1988-03-01

    The only acceptable definitive diagnosis of a soft tissue mass is histologic or cytologic examination. In recent years, fine-needle aspiration cytology is used in more and more centers for diagnosis of soft tissue masses. We studied 196 aspiration cytologies performed on soft tissue lesions. Out of these, in 48 cases a definitive surgical procedure or open biopsy for histology and further evaluation were performed. There were 25 sarcomas and 23 benign tumors. There was one false negative cytologic result in this group; no false positive cytologies were detected. It seems that cytodiagnosis of soft tissue masses performed by an experienced pathologist is the method of choice, permitting a good diagnostic evaluation, with almost none of the traumatic and oncologic disadvantages of the other methods of biopsy. PMID:3352270

  7. Tissue engineering: A live disc

    NASA Astrophysics Data System (ADS)

    Hukins, David W. L.

    2005-12-01

    A material-cell hybrid device that mimics the anatomic shape of the intervertebral disc has been made and successfully implanted into mice to show that tissue engineering may, in the future, benefit sufferers from back pain.

  8. Endoscopic subsurface imaging in tissues

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  9. Optical Characterization of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Mimun, L.; Barrera, Frederick; Sardar, Dhiraj; Tsin, Andrew

    2008-03-01

    University of Texas at San Antonio, San Antonio, Texas 78249 An in-depth characterization of the optical properties of biological tissues has been performed. The wavelength-dependent total diffuse reflection (Rd) and total transmission (Tt) measurements have been taken for individual tissues by using a double-integrating sphere setup. The index of refraction of the tissues will be determined using conventional optical techniques. The Kubelka Munk theory is applied to determine the scattering and absorption coefficients of these samples from the measurements of diffuse transmission and reflection. A thorough study of the scattering characteristics of these tissues has been made. *This work was supported in part by the NSF sponsored Center for Biophotonics Science and Technology (CBST) at UC Davis under Cooperative Agreement No. PHY 0120999.

  10. Infrared Analysis Using Tissue Paper.

    ERIC Educational Resources Information Center

    Owen, Noel L.; Wood, Steven G.

    1987-01-01

    Described is a quick, easy, and cheap, but effective method of obtaining infrared spectra of solids and nonvolatile liquids by Fourier transform infrared spectroscopy. The technique uses tissue paper as a support matrix. (RH)

  11. Mechanical Signaling in Reproductive Tissues

    PubMed Central

    Jorge, Soledad; Chang, Sydney; Barzilai, Joshua J.; Leppert, Phyllis

    2014-01-01

    The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction—how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces. Our objective was to examine how mechanical forces contribute significantly to physiological functions and pathogenesis in reproductive tissues. We highlight how widespread diseases of the reproductive tract, from preterm labor to tumors of the uterus and breast, result from an impairment in mechanical signaling. PMID:25001021

  12. Teaching Tips: Plant Tissue Testing.

    ERIC Educational Resources Information Center

    Osborne, Ed

    1991-01-01

    Plant tissue testing can be done to monitor plant nutrition levels during the growing season and diagnose nutrient deficiency problems. They can provide feedback on crop conditions and fertility needs. (Author)

  13. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  14. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  15. Tracheal tissue engineering in rats.

    PubMed

    Jungebluth, Philipp; Haag, Johannes C; Sjöqvist, Sebastian; Gustafsson, Ylva; Beltrán Rodríguez, Antonio; Del Gaudio, Costantino; Bianco, Alessandra; Dehnisch, Ivar; Uhlén, Per; Baiguera, Silvia; Lemon, Greg; Lim, Mei Ling; Macchiarini, Paolo

    2014-09-01

    Tissue-engineered tracheal transplants have been successfully performed clinically. However, before becoming a routine clinical procedure, further preclinical studies are necessary to determine the underlying mechanisms of in situ tissue regeneration. Here we describe a protocol using a tissue engineering strategy and orthotopic transplantation of either natural decellularized donor tracheae or artificial electrospun nanofiber scaffolds into a rat model. The protocol includes details regarding how to assess the scaffolds' biomechanical properties and cell viability before implantation. It is a reliable and reproducible model that can be used to investigate the crucial aspects and pathways of in situ tracheal tissue restoration and regeneration. The model can be established in <6 months, and it may also provide a means to investigate cell-surface interactions, cell differentiation and stem cell fate. PMID:25122525

  16. Therapeutic cloning and tissue engineering.

    PubMed

    Koh, Chester J; Atala, Anthony

    2004-01-01

    A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15094294

  17. The Nifty Assignments Site.

    ERIC Educational Resources Information Center

    Parlante, Nick

    2001-01-01

    Describes a Web site called Nifty Assignments that offers assignments for computer science education. Topics include programming assignments; student appeal; appropriateness for high school classes; and links to other related Web sites. (LRW)

  18. Field site selection

    NASA Technical Reports Server (NTRS)

    Schwarz, D. E.; Ellefsen, R. E.

    1981-01-01

    Several general guidelines should be kept in mind when considering the selection of field sites for teaching remote sensing fundamentals. Proximity and vantage point are two very practical considerations. Only through viewing a broad enough area to place the site in context can one make efficient use of a site. The effects of inclement weather when selecting sites should be considered. If field work is to be an effective tool to illustrate remote sensing principles, the following criteria are critical: (1) the site must represent the range of class interest; (2) the site must have a theme or add something no other site offers; (3) there should be intrasite variation within the theme; (4) ground resolution and spectral signature distinction should be illustrated; and (5) the sites should not be ordered sequentially.

  19. Photoacoustic Measurements in Brain Tissue

    SciTech Connect

    Kasili, P.M.; Mobley, J.; Vo-Dinh, T.

    1999-09-19

    In this work, we develop and evaluate the photoacoustic technique for recording spectra of white and gray mammalian brain tissues. In addition to the experimental work, we also discuss the geometric aspects of photoacoustic signal generation using collimated light. Spectra constructed from the peak-to-peak amplitude of the photoacoustic waveforms indicate differences in the two tissue types at wavelengths between 620 and 695 nm. The potential of the technique for non-invasive diagnosis is discussed.

  20. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  1. [Connective tissue diseases in adolescents].

    PubMed

    Peitz, J; Tantcheva-Poór, I

    2016-04-01

    In this article we provide a brief review of systemic lupus erythematosus, juvenile dermatomyositis, systemic scleroderma, and mixed connective tissue disease in adolescents. As skin manifestations often belong to the presenting symptoms and may have a significant impact on the quality of life, dermatologists play an important role in the management of patients with connective tissue diseases. Early diagnosis and therapy onset are crucial for the patients' long-term outcome. PMID:27000182

  2. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  3. The cryopreservation of composite tissues

    PubMed Central

    2009-01-01

    Cryopreservation of human cells and tissue has generated great interest in the scientific community since 1949, when the cryoprotective activity of glycerol was discovered. Nowadays, it is possible to reach the optimal conditions for the cryopreservation of a homogeneous cell population or a one cell-layer tissue with the preservation of a high pourcentage of the initial cells. Success is attained when there is a high recovery rate of cell structures and tissue components after thawing. It is more delicate to obtain cryopreservation of composite tissues and much more a whole organ. The present work deals with fundamental principles of the cryobiology of biological structures, with special attention to the transfer of liquids between intra and extracellular compartments and the initiation of the formation and aggregation of ice during freezing. The consequences of various physical and chemical reactions on biological tissue are described for different cryoprotective agents. Finally, we report a review of results on cyropreservation of various tissues, on the one hand, and various organs, on the other. We also report immunomodulation of antigenic responses to cryopreserved cells and organs. PMID:20046674

  4. Immediate versus chronic tissue expansion.

    PubMed

    Machida, B K; Liu-Shindo, M; Sasaki, G H; Rice, D H; Chandrasoma, P

    1991-03-01

    A quantitative comparison of the effects on tissues is performed between chronic tissue expansion, intraoperative expansion, and load cycling in a guinea pig model. Intra-operative expansion, which was developed by Sasaki as a method of immediate tissue expansion for small- to medium-sized defects, and load cycling, which was described by Gibson as a method using intraoperative pull, are compared with chronic tissue expansion on the basis of the following four parameters: amount of skin produced, flap viability, intraoperative tissue pressures, and histological changes. The chronically expanded group, which included booster and nonbooster expansions, produced a 137% increase in surface area, or a 52% increase in flap arc length, whereas intraoperative expansion resulted in a 31% increase in surface area, or a 15% increase in flap arc length. The load-cycled group, however, resulted in an almost negligible amount of skin increase. All three techniques exhibit immediate postexpansion stretchback. Flap viability is not impaired by any of the three techniques, in spite of the elevated pressures observed during expansion. Therefore, intraoperative expansion is effective primarily for limited expansion of small defects, whereas chronic tissue expansion still provides the greatest amount of skin increase when compared with other techniques. PMID:2029132

  5. Osteochondroma at its rarest site

    PubMed Central

    Mittal, Ankur; Srinivasulu, PSB; Ramprasd, R; Prasad, Y Siva

    2015-01-01

    Introduction: Osteochondromas usually arise from the metaphyseal region of the growing skeleton but extraskeletal cartilaginous tumors are rarest. Case Report: A 65 year old woman presented with anterior knee pain and inability to flex her knee more than 90° since 1 year. Clinical examination and imaging studies revealed a nodular calcific mass in the anterior portion of the knee i.e. patella. Following excision, histopathology confirmed the diagnosis of extra-osseous osteochondroma-like soft tissue mass, with no recurrence in 36 weeks. Conclusion: An integrated clinical-pathologic diagnosis helps to clarify the nature of extraskeletal cartilaginous tumors that can arise at unusual anatomic site viz. patella. Complete local surgical excision is the management of choice. PMID:27299045

  6. Do no harm--normal tissue effects

    NASA Technical Reports Server (NTRS)

    Hall, E. J.

    2001-01-01

    Radiation therapy confers enormous benefits that must be balanced against the possibilities for harm including late toxicity in normal tissues and radiation-induced second malignancies. A small percentage of patients experience severe late complications. The question is, do these late sequelae occur randomly, or are they confined to individuals who are genetically predisposed to radiosensitivity. Experiments with knockout mice and with patients demonstrate that individuals heterozygous for a number of genes appear to be radiosensitive. If radiosensitive patients were identified prospectively by genetic analysis, they could be spared the trauma of late sequelae. Several large studies have shown a statistically significant excess of radiation-induced malignancies in radiotherapy patients. Most second cancers are carcinomas, developing in the lining cells of the body often remote from the treatment site. Radiation-induced sarcomas appear only in the heavily irradiated areas. These are small in number but appear with a very high relative risk.

  7. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible. PMID:26076904

  8. Tissue-specific hypomethylation of the human c-K-ras gene.

    PubMed Central

    Metter, J; Cho, C

    1989-01-01

    Methylation of the c-K-ras gene was examined in a wide variety of human tissues using the methylation sensitive restriction endonuclease HpaII. All tissues showed hypomethylation in the region of exon zero. Specific hypomethylation of a particular HpaII site in the second intron was observed in gastrointestinal and tracheobronchial epithelial cell DNAs. Specific hypomethylation was also observed in a cluster of HpaII sites within the first intron in sperm, endometrium and placenta DNAs. These regions were predominantly methylated in a wide variety of other tissues, including fetal gut. The possible implications are discussed. Images PMID:2476726

  9. Soft tissue tumors of the penis: a review.

    PubMed

    Katona, Terrence M; Lopez-Beltran, Antonio; MacLennan, Gregory T; Cheng, Lirong; Montironi, Rodolfo; Cheng, Liang

    2006-08-01

    Penile soft tissue tumors comprise 5% of tumors at this site and most have been reported as isolated case reports. The purpose of this review is to aid the practicing surgical pathologist in distinguishing penile soft tissue tumors, such as sarcomatoid squamous cell carcinoma, from other prognostically and therapeutically important entities in the differential diagnosis. Clinical presentation, management, prognosis and factors influencing behavior are reviewed. The immunohistochemical profiles and salient morphologic clues that may help distinguish penile spindle cell tumors from sarcomatoid carcinomas are evaluated. Soft tissue tumors of the penis may be classified as benign or malignant, as superficial or deep and in terms of age at presentation. All are rare. The most common benign soft tissue tumors that affect the penis are vascular neoplasms, followed by tumors of neural, myoid and fibrous origin. Among reported cases, the most frequent malignant penile soft tissue tumors are Kaposi sarcoma and leiomyosarcoma. Correctly diagnosing penile soft tissue tumors is imperative, because the biologic behavior and the clinical management of these neoplasms vary considerably. Distinguishing sarcomas from sarcomatoid carcinoma and melanoma is particularly important. Accurate diagnosis is best facilitated by consideration of all available aspects of the case, including clinical information, histopathologic findings and immunohistochemical results. PMID:16927639

  10. Predicting tissue-specific enhancers in the human genome

    PubMed Central

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2007-01-01

    Determining how transcriptional regulatory signals are encoded in vertebrate genomes is essential for understanding the origins of multicellular complexity; yet the genetic code of vertebrate gene regulation remains poorly understood. In an attempt to elucidate this code, we synergistically combined genome-wide gene-expression profiling, vertebrate genome comparisons, and transcription factor binding-site analysis to define sequence signatures characteristic of candidate tissue-specific enhancers in the human genome. We applied this strategy to microarray-based gene expression profiles from 79 human tissues and identified 7187 candidate enhancers that defined their flanking gene expression, the majority of which were located outside of known promoters. We cross-validated this method for its ability to de novo predict tissue-specific gene expression and confirmed its reliability in 57 of the 79 available human tissues, with an average precision in enhancer recognition ranging from 32% to 63% and a sensitivity of 47%. We used the sequence signatures identified by this approach to successfully assign tissue-specific predictions to ∼328,000 human–mouse conserved noncoding elements in the human genome. By overlapping these genome-wide predictions with a data set of enhancers validated in vivo, in transgenic mice, we were able to confirm our results with a 28% sensitivity and 50% precision. These results indicate the power of combining complementary genomic data sets as an initial computational foray into a global view of tissue-specific gene regulation in vertebrates. PMID:17210927

  11. Dynamics of HIV infection in lymphoid tissue network.

    PubMed

    Nakaoka, Shinji; Iwami, Shingo; Sato, Kei

    2016-03-01

    Human immunodeficiency virus (HIV) is a fast replicating ribonucleic acid virus, which can easily mutate in order to escape the effects of drug administration. Hence, understanding the basic mechanisms underlying HIV persistence in the body is essential in the development of new therapies that could eradicate HIV infection. Lymphoid tissues are the primary sites of HIV infection. Despite the recent progress in real-time monitoring technology, HIV infection dynamics in a whole body is unknown. Mathematical modeling and simulations provide speculations on global behavior of HIV infection in the lymphatic system. We propose a new mathematical model that describes the spread of HIV infection throughout the lymphoid tissue network. In order to represent the volume difference between lymphoid tissues, we propose the proportionality of several kinetic parameters to the lymphoid tissues' volume distribution. Under this assumption, we perform extensive numerical computations in order to simulate the spread of HIV infection in the lymphoid tissue network. Numerical computations simulate single drug treatments of an HIV infection. One of the important biological speculations derived from this study is a drug saturation effect generated by lymphoid network connection. This implies that a portion of reservoir lymphoid tissues to which drug is not sufficiently delivered would inhibit HIV eradication despite of extensive drug injection. PMID:26507442

  12. Role of morphogenetic proteins in skeletal tissue engineering and regeneration.

    PubMed

    Reddi, A H

    1998-03-01

    Morphogenesis is the developmental cascade of pattern formation and body plan establishment, culminating in the adult form. It has formed the basis for the emerging discipline of tissue engineering, which uses principles of molecular developmental biology and morphogenesis gleaned through studies on inductive signals, responding stem cells, and the extracellular matrix to design and construct spare parts that restore function to the human body. Among the many organs in the body, bone has considerable powers for regeneration and is a prototype model for tissue engineering. Implantation of demineralized bone matrix into subcutaneous sites results in local bone induction. This model mimics sequential limb morphogenesis and has permitted the isolation of bone morphogens, such as bone morphogenetic proteins (BMPs), from demineralized adult bone matrix. BMPs initiate, promote, and maintain chondrogenesis and osteogenesis, but are also involved in the morphogenesis of organs other than bone. The symbiosis of the mechanisms underlying bone induction and differentiation is critical for tissue engineering and is governed by both biomechanics (physical forces) and context (microenvironment/extracellular matrix), which can be duplicated by biomimetic biomaterials such as collagens, hydroxyapatite, proteoglycans, and cell adhesion glycoproteins, including fibronectins and laminin. Rules of tissue architecture elucidated in bone morphogenesis may provide insights into tissue engineering and be universally applicable for all organs/tissues, including bones and joints. PMID:9528003

  13. Neutrophil swarming: an essential process of the neutrophil tissue response.

    PubMed

    Kienle, Korbinian; Lämmermann, Tim

    2016-09-01

    Neutrophil infiltration into inflamed and infected tissues is a fundamental process of the innate immune response. While neutrophil interactions with the blood vessel wall have been intensely studied over the last decades, neutrophil dynamics beyond the vasculature have for a long time remained poorly investigated. Recent intravital microscopy studies of neutrophil populations directly at the site of tissue damage or microbial invasion have changed our perspective on neutrophil responses within tissues. Swarm-like migration patterns of neutrophils, referred to as 'neutrophil swarming', have been detected in diverse tissues under conditions of sterile inflammation and infection with various pathogens, including bacteria, fungi, and parasites. Current work has begun to unravel the molecular pathways choreographing the sequential phases of highly coordinated chemotaxis followed by neutrophil accumulation and the formation of substantial neutrophil clusters. It is now clear that intercellular communication among neutrophils amplifies their recruitment in a feed-forward manner, which provides them with a level of self-organization during neutrophil swarming. This review will summarize recent developments and current concepts on neutrophil swarming, an important process of the neutrophil tissue response with a critical role in maintaining the balance between host protection and inflammation-driven tissue destruction. PMID:27558329

  14. Tissue Contraction Force Microscopy for Optimization of Engineered Cardiac Tissue.

    PubMed

    Schaefer, Jeremy A; Tranquillo, Robert T

    2016-01-01

    We developed a high-throughput screening assay that allows for relative comparison of the twitch force of millimeter-scale gel-based cardiac tissues. This assay is based on principles taken from traction force microscopy and uses fluorescent microspheres embedded in a soft polydimethylsiloxane (PDMS) substrate. A gel-forming cell suspension is simply pipetted onto the PDMS to form hemispherical cardiac tissue samples. Recordings of the fluorescent bead movement during tissue pacing are used to determine the maximum distance that the tissue can displace the elastic PDMS substrate. In this study, fibrin gel hemispheres containing human induced pluripotent stem cell-derived cardiomyocytes were formed on the PDMS and allowed to culture for 9 days. Bead displacement values were measured and compared to direct force measurements to validate the utility of the system. The amplitude of bead displacement correlated with direct force measurements, and the twitch force generated by the tissues was the same in 2 and 4 mg/mL fibrin gels, even though the 2 mg/mL samples visually appear more contractile if the assessment were made on free-floating samples. These results demonstrate the usefulness of this assay as a screening tool that allows for rapid sample preparation, data collection, and analysis in a simple and cost-effective platform. PMID:26538167

  15. Melanin content of hamster tissues, human tissues, and various melanomas

    SciTech Connect

    Watts, K.P.; Fairchild, R.G.; Slatkin, D.N.; Greenberg, D.; Packer, S.; Atkins, H.L.; Hannon, S.J.

    1981-02-01

    Melanin content (percentage by weight) was determined in both pigmented and nonpigmented tissues of Syrian golden hamsters bearing Greene melanoma. Melanin content was also measured in various other melanoma models (B-16 in C57 mice, Harding-Passey in BALB/c mice, and KHDD in C3H mice) and in nine human melanomas, as well as in selected normal tissues. The purpose was to evaluate the possible efficacy of chlorpromazine, which is known to bind to melanin, as a vehicle for boron transport in neutron capture therapy. Successful therapy would depend upon selective uptake and absolute concentration of borated compounds in tumors; these parameters will in turn depend upon melanin concentration in melanomas and nonpigmented ''background'' tissues. Hamster whole eyes, hamster melanomas, and other well-pigmented animal melanomas were found to contain 0.3 to 0.8% melanin by weight, whereas human melanomas varied from 0.1 to 0.9% (average, 0.35%). Other tissues, with the exception of skin, were lower in content by a factor of greater than or equal to30. Melanin pigment was extracted from tissues, and the melanin content was determined spectrophotometrically. Measurements were found to be sensitive to the presence of other proteins. Previous procedures for isolating and quantifying melanin often neglected the importance of removing proteins and other interfering nonmelanic substances.

  16. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  17. Material Tissue Interaction-From Toxicity to Tissue Regeneration.

    PubMed

    Schmalz, G; Widbiller, M; Galler, K M

    2016-01-01

    The topic of material tissue interaction has gained increasing interest over recent decades from both the dental profession and the public. The primary goal initially was to avoid adverse reactions after the application of dental materials. New laboratory test methods have been developed, and currently premarket testing programs, which attempt to guarantee a basic level of patient safety, are legally required worldwide. The dentist is responsible for selecting the correct indication as well as the proper handling of any newly emerging risk. Apart from this phenomenon-oriented "inert materials concept," the "analytical concept" focuses primarily on analyzing the reasons for adverse reactions, and identifying their associated modifying factors, in order to prevent them or to develop new and more biocompatible materials. The "concept of bioactivity" involves addressing the possibility of positively influencing tissue by materials application, such as the generation of tertiary dentin or antibacterial effects. Finally, tissue regeneration may be supported and promoted by the use of various suitable materials (matrices/scaffolds) into which stem cells can migrate or be seeded, leading to cell differentiation and the generation of new tissue. These new dental materials must also fulfill additional requirements such as controlled degradability in order to be suitable for clinical use. Clearly, the field of material tissue interaction is complex and comprises a wide range of issues. To be successful as dentists in the future, practitioners should remain informed of these important new developments and have the argumentative competence to both properly advise and treat their patients. PMID:26645359

  18. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction

    PubMed Central

    Katkar, Gajanan D.; Sundaram, Mahalingam S.; NaveenKumar, Somanathapura K.; Swethakumar, Basavarajaiah; Sharma, Rachana D.; Paul, Manoj; Vishalakshi, Gopalapura J.; Devaraja, Sannaningaiah; Girish, Kesturu S.; Kemparaju, Kempaiah

    2016-01-01

    Indian Echis carinatus bite causes sustained tissue destruction at the bite site. Neutrophils, the major leukocytes in the early defence process, accumulate at the bite site. Here we show that E. carinatus venom induces neutrophil extracellular trap (NET) formation. The NETs block the blood vessels and entrap the venom toxins at the injection site, promoting tissue destruction. The stability of NETs is attributed to the lack of NETs-degrading DNase activity in E. carinatus venom. In a mouse tail model, mice co-injected with venom and DNase 1, and neutropenic mice injected with the venom, do not develop NETs, venom accumulation and tissue destruction at the injected site. Strikingly, venom-induced mice tail tissue destruction is also prevented by the subsequent injection of DNase 1. Thus, our study suggests that DNase 1 treatment may have a therapeutic potential for preventing the tissue destruction caused by snake venom. PMID:27093631

  19. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction.

    PubMed

    Katkar, Gajanan D; Sundaram, Mahalingam S; NaveenKumar, Somanathapura K; Swethakumar, Basavarajaiah; Sharma, Rachana D; Paul, Manoj; Vishalakshi, Gopalapura J; Devaraja, Sannaningaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2016-01-01

    Indian Echis carinatus bite causes sustained tissue destruction at the bite site. Neutrophils, the major leukocytes in the early defence process, accumulate at the bite site. Here we show that E. carinatus venom induces neutrophil extracellular trap (NET) formation. The NETs block the blood vessels and entrap the venom toxins at the injection site, promoting tissue destruction. The stability of NETs is attributed to the lack of NETs-degrading DNase activity in E. carinatus venom. In a mouse tail model, mice co-injected with venom and DNase 1, and neutropenic mice injected with the venom, do not develop NETs, venom accumulation and tissue destruction at the injected site. Strikingly, venom-induced mice tail tissue destruction is also prevented by the subsequent injection of DNase 1. Thus, our study suggests that DNase 1 treatment may have a therapeutic potential for preventing the tissue destruction caused by snake venom. PMID:27093631

  20. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  1. Cryogen spray cooling during laser tissue welding.

    PubMed

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p < 0.05). Cryogen cooling of the tissue surface during laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing. PMID:10730969

  2. The flux of oxygen within tissues.

    PubMed

    McCabe, Michael G P; Maguire, David J; Bourgain, Renaat

    2003-01-01

    Diffusive flux of oxygen through tissues which are essentially connective and have few cells, display reduced diffusion coefficients when compared to that through an equivalent lamina of water. In general even significant reductions can be explained in terms of the exclusions imposed on small molecular weight diffusates by the large hydrodynamic domains of the connective tissue components. An alternative way of explaining this large exclusion is to point to the very large microscopic viscosities which large interacting polymers impose upon the solvent (water). By contrast, the diffusive flux of oxygen through tissues composed of contiguously packed and actively respiring cells, shows an increased diffusive flux for oxygen when compared to that through an equivalent water lamina. This increase can be explained in terms of the substantial solubility of oxygen within the membrane phase of the cells. This high oxygen partition coefficient into cell lipids has several consequences. Firstly oxygen diffusion will be directed and two dimensional rather than random and three dimensional. Secondly this diffusion will be directed towards the oxygen-consuming sites which are located at lipid surfaces. Thirdly the aqueous oxygen partial pressure will be kept low (since re-supply is constrained while consumption is continuous). This low aqueous environment permits all of the cell soluble redox systems to be maintained efficiently at low metabolic cost, as well as minimising the risk of unscheduled oxidations. Viewed from this perspective, the high value found for oxygen partition coefficient into the erythrocyte membrane suggests that evolution of membrane structure and components may have been driven in part by the selective advantages of high oxygen solubility. PMID:15174633

  3. Cell orientation in potato tuber parenchyma tissue

    NASA Astrophysics Data System (ADS)

    Gancarz, Marek; Konstankiewicz, Krystyna; Zgórska, Kazimiera

    2014-03-01

    The paper presents the results of the research of the size and shape of parenchyma tissue cells in potato tubers depending on the direction and site of sampling in tubers. An optical confocal microscope was used to observe samples in their natural state. The investigation was carried out for 1 mm thick samples cut from cylindrical samples (10x10 mm)taken in two mutually perpendicular directions of the inner and outer core of each variety. The analysis was done ten times.The methods developed for the composition and image analysis ensure obtaining a sufficient number of cells to determine tissue structure parameters (surface, shape, elongation and number of cells per 1 mm2) and decays of these parameters were obtained. Statistical analysis was performed using the λ-Kolmogorov-Smirnov compliance test.Arelationship between the direction of sampling and the size and shape of the inner core of cells was found. Greater surface area and elongation of the inner core cells for the longitudinal direction in the tuber (stolon - top) was demonstrated. There was no such a correlation for the outer core in the tubers of the cultivars examined.

  4. Site Environmental Report, 1993

    SciTech Connect

    Not Available

    1994-06-01

    The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

  5. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  6. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  7. Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor.

    PubMed Central

    Lesa, G M; Sternberg, P W

    1997-01-01

    The major determinants of receptor tissue tyrosine kinase (RTK) signaling specificity have been proposed to be Src homology 2 (SH2) binding sites, phosphotyrosine-containing oligopeptides in the cytoplasmic domain of the receptor. The Caenorhabditis elegans epidermal growth factor receptor homologue LET-23 has multiple functions during development and has eight potential SH2-binding sites in a region carboxyl terminal to its kinase domain. By analyzing transgenic nematodes for three distinct LET-23 functions, we show that six of eight potential sites function in vivo and that they are required for most, but not all, of LET-23 activity. A single site is necessary and sufficient to promote wild-type fertility. Three other sites activate the RAS pathway and are involved only in viability and vulval differentiation. A fifth site is promiscuous and can mediate all three LET-23 functions. An additional site mediates tissue-specific negative regulation. Putative SH2 binding sites are thus key effectors of both cell-specific and negative regulation in an intact organism. We suggest two distinct mechanisms for tissue-specific RTK-mediated signaling. A positive mechanism would promote RTK function through effectors present only in certain cell types. A negative mechanism would inhibit RTK function through tissue-specific negative regulators. Images PMID:9168466

  8. Site Development Planning Handbook

    SciTech Connect

    1981-01-01

    The Handbook provides facility managers and site planners at DOE organizations responsible for planning site developments and facilities utilization a step-by-step planning checklist to ensure that planners at each site are focusing on Department-wide goals and objectives. It begins with a brief discussion of a site development-by-objectives program design to promote, recognize, and implement opportunities for improvements in site utilization through planning. Additional information is included on: assembling existing data, plans, programs, and procedures; establishing realistic objectives; identifying site problems, opportunities; and development needs; determining priorities among development needs; developing short and long-range plans; choosing the right development solutions and meeting minimum legal site restrictions; presenting the plan; implementing elements of the plan; monitoring and reporting plan status; and modifying development program plans. (MCW)

  9. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  10. Drugs Approved for Soft Tissue Sarcoma

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Soft Tissue Sarcoma This page lists ... soft tissue sarcoma that are not listed here. Drugs Approved for Soft Tissue Sarcoma Cosmegen (Dactinomycin) Dactinomycin ...

  11. Donation FAQs (Bone and Tissue Allografts)

    MedlinePlus

    ... donor family services. Most organ, tissue and eye banks that are members of MTF send tissue to ... according to exact surgical specifications. Small, local tissue banks could not provide this level of quality in ...

  12. Occurrence and Distribution of Organochlorine Compounds in Biological Tissue and Bed Sediment From Streams in the Trinity River Basin, Texas, 1992-93

    USGS Publications Warehouse

    Moring, J. Bruce

    1997-01-01

    This report describes the occurrence and distribution of organochlorine compounds in biological tissue and bed sediment from the Trinity River Basin study area of the National Water-Quality Assessment Program. Concentrations of organochlorine pesticides, polychlorinated biphenyls (PCBs), and other organochlorine compounds were determined in biological tissue and surficial bed sediment from 16 stream sites in the Trinity River Basin of east-central Texas. Asiatic clams (Corbicula fluminea) were collected at 10 sites, and fish, including blue catfish (Ictalurus furcatus), common carp (Cyprinus carpio), bluegill (Lepomis cyanellus), and yellow bullhead (Ameiurus natalis) were collected at all mainstem and two tributary sites. Thirty of the 36 compounds analyzed in biological tissue or surficial bed sediment were detected in one or both media. Overall, more organochlorine compounds were detected in bed sediment than in biological tissue; however, various chlordane isomers, DDT metabolites, and PCBs were detected more frequently in tissue than in sediment. The chlordane isomers and PCBs that were detected more frequently in biological tissue also were detected more frequently at urban sites than at agricultural sites. Organochlorine compound concentrations generally were highest in fish tissue from Trinity River mainstem sites. Fish tissue from the mainstem sites contained a higher percentage of lipids than did fish- and clam-tissue samples from the tributary sites.

  13. Engineering of implantable liver tissues.

    PubMed

    Sakai, Yasuyuki; Nishikawa, M; Evenou, F; Hamon, M; Huang, H; Montagne, K P; Kojima, N; Fujii, T; Niino, T

    2012-01-01

    In this chapter, from the engineering point of view, we introduce the results from our group and related research on three typical configurations of engineered liver tissues; cell sheet-based tissues, sheet-like macroporous scaffold-based tissues, and tissues based on special scaffolds that comprise a flow channel network. The former two do not necessitate in vitro prevascularization and are thus promising in actual human clinical trials for liver diseases that can be recovered by relatively smaller tissue mass. The third approach can implant a much larger mass but is still not yet feasible. In all cases, oxygen supply is the key engineering factor. For the first configuration, direct oxygen supply using an oxygen-permeable polydimethylsiloxane membrane enables various liver cells to exhibit distinct behaviors, complete double layers of mature hepatocytes and fibroblasts, spontaneous thick tissue formation of hepatocarcinoma cells and fetal hepatocytes. Actual oxygen concentration at the cell level can be strictly controlled in this culture system. Using this property, we found that initially low then subsequently high oxygen concentrations were favorable to growth and maturation of fetal cells. For the second configuration, combination of poly-L: -lactic acid 3D scaffolds and appropriate growth factor cocktails provides a suitable microenvironment for the maturation of cells in vitro but the cell growth is limited to a certain distance from the inner surfaces of the macropores. However, implantation to the mesentery leaves of animals allows the cells again to proliferate and pack the remaining spaces of the macroporous structure, suggesting the high feasibility of 3D culture of hepatocyte progenitors for liver tissue-based therapies. For the third configuration, we proposed a design criterion concerning the dimensions of flow channels based on oxygen diffusion and consumption around the channel. Due to the current limitation in the resolution of 3D

  14. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.

    PubMed

    Rodriguez-Arco, Laura; Rodriguez, Ismael A; Carriel, Victor; Bonhome-Espinosa, Ana B; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D G; Lopez-Lopez, Modesto T

    2016-04-14

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications. PMID:27029891

  15. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    SciTech Connect

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  16. Carcinoma originating from aberrant breast tissue of the right upper anterior chest wall : a case report.

    PubMed Central

    Rho, J. Y.; Juhng, S. K.; Yoon, K. J.

    2001-01-01

    Aberrant breast tissue is usually found in proximity to the normal breast, that is, in the axillary, sternal or clavicular regions. Carcinoma occurs more frequently in the aberrant tissue of the axilla than the extra-axillary site though the overall incidence of tumors of aberrant breast tissue is low. To our knowledge, studies regarding the carcinoma of aberrant breast tissue of the extra-axillary site have been reported rarely. Here we report a recent case of carcinoma originating from the extra-axillary aberrant breast tissue, presenting as a subcutaneous nodule on the right upper anterior chest wall. It is suggested that subcutaneous nodules of uncertain origin around the periphery of the breast should be suspected for breast carcinoma as a differential diagnosis and treated properly. PMID:11511802

  17. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    SciTech Connect

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  18. Bone tissue engineering in osteoporosis.

    PubMed

    Jakob, Franz; Ebert, Regina; Ignatius, Anita; Matsushita, Takashi; Watanabe, Yoshinobu; Groll, Juergen; Walles, Heike

    2013-06-01

    Osteoporosis is a polygenetic, environmentally modifiable disease, which precipitates into fragility fractures of vertebrae, hip and radius and also confers a high risk of fractures in accidents and trauma. Aging and the genetic molecular background of osteoporosis cause delayed healing and impair regeneration. The worldwide burden of disease is huge and steadily increasing while the average life expectancy is also on the rise. The clinical need for bone regeneration applications, systemic or in situ guided bone regeneration and bone tissue engineering, will increase and become a challenge for health care systems. Apart from in situ guided tissue regeneration classical ex vivo tissue engineering of bone has not yet reached the level of routine clinical application although a wealth of scaffolds and growth factors has been developed. Engineering of complex bone constructs in vitro requires scaffolds, growth and differentiation factors, precursor cells for angiogenesis and osteogenesis and suitable bioreactors in various combinations. The development of applications for ex vivo tissue engineering of bone faces technical challenges concerning rapid vascularization for the survival of constructs in vivo. Recent new ideas and developments in the fields of bone biology, materials science and bioreactor technology will enable us to develop standard operating procedures for ex vivo tissue engineering of bone in the near future. Once prototyped such applications will rapidly be tailored for compromised conditions like vitamin D and sex hormone deficiencies, cellular deficits and high production of regeneration inhibitors, as they are prevalent in osteoporosis and in higher age. PMID:23562167

  19. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  20. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  1. Interface dynamics of competing tissues

    NASA Astrophysics Data System (ADS)

    Podewitz, Nils; Jülicher, Frank; Gompper, Gerhard; Elgeti, Jens

    2016-08-01

    Tissues can be characterized by their homeostatic stress, i.e. the value of stress for which cell division and cell death balance. When two different tissues grow in competition, a difference of their homeostatic stresses determines which tissue grows at the expense of the second. This then leads to the propagation of the interface separating the tissues. Here, we study structural and dynamical properties of this interface by combining continuum theory with mesoscopic simulations of a cell-based model. Using a simulation box that moves with the interface, we find that a stationary state exists in which the interface has a finite width and propagates with a constant velocity. The propagation velocity in the simulations depends linearly on the homeostatic stress difference, in excellent agreement with the analytical predictions. This agreement is also seen for the stress and velocity profiles. Finally, we analyzed the interface growth and roughness as a function of time and system size. We estimated growth and roughness exponents, which differ from those previously obtained for simple tissue growth.

  2. Physical techniques for delivering microwave energy to tissues.

    PubMed Central

    Hand, J. W.

    1982-01-01

    Some of the physical aspects of delivering microwave energy to tissues have been discussed. Effective penetration of a few cm may be achieved with external applicators whilst small coaxial or cylindrical devices can induce localized heating in sites accessible to catheters or to direct invasion. To heat deep tissue sites in general, systems of greater complexity involving a number of applicators with particular phase relationships between them are required. The problems of thermometry in the presence of electromagnetic fields fall outside the scope of this article. Their solution, however, is no less important to the future of clinical hyperthermia than the development of heating techniques. Finally, it should be remembered that physiological parameters such as blood flow have appreciable effects in determining the efficacy of the physical techniques described above. PMID:6950781

  3. Hanford Site Comprehensive site Compliance Evaluation Report

    SciTech Connect

    Tollefson, K.S.

    1997-08-05

    This document is the second annual submittal by WHC, ICF/KH, PNL and BHI and contains the results of inspections of the stormwater outfalls listed in the Hanford Site Storm Water Pollution Prevention Plan (SWPPP) (WHC 1993a) as required by General Permit No. WA-R-00-000F (WA-R-00-A17F): This report also describes the methods used to conduct the Storm Water Comprehensive Site Compliance Evaluation, as required in Part IV, Section D, {ampersand} C of the General Permit, summarizes the results of the compliance evaluation, and documents significant leaks and spills.

  4. Hanford Site comprehensive site compliance evaluation report

    SciTech Connect

    Tollefson, K.S.

    1995-09-01

    This document is the second annual submittal by WHC, ICF/KH, PNL and BHI and contains the results of inspections of the storm water outfalls listed in the Hanford Site Storm Water Pollution Prevention Plan (SWPPP) (WHC 1993a) as required by General Permit No. WA-R-00- 000F (WA-R-00-A17F): This report also describes the methods used to conduct the Storm Water Comprehensive Site Compliance Evaluation, as required in Part IV, Section D. $. C. of the General Permit, summarizes the results of the compliance evaluation, and documents significant leaks and spills.

  5. Connective tissue disorders in domestic animals.

    PubMed

    Halper, Jaroslava

    2014-01-01

    Though soft tissue disorders have been recognized and described to some detail in several types of domestic animals and small mammals for some years, not much progress has been made in our understanding of the biochemical basis and pathogenesis of these diseases in animals. Ehlers-Danlos syndrome described in dogs already in 1943 and later in cats affects mainly skin in these animals. The involved skin is thin and hyperextensible with easily inflicted injuries resulting in hemorrhagic wounds and atrophic scars. Joint laxity and dislocation common in people are less frequently found in dogs. No systemic complications, such as organ rupture or cardiovascular problems which have devastating consequences in people have been described in cats and dogs. The diagnosis is based on clinical presentation and on light or electron microscopic features of disorganized and fragmented collagen fibrils. Several cases of bovine and ovine dermatosparaxis analogous to human Ehlers-Danlos syndrome type VIIC were found to be caused by mutations in the procollagen I N-proteinase (pnPI) or ADAMTS2 gene, though mutations in other sites are likely responsible for other types of dermatosparaxis. Cattle suffering from a form of Marfan syndrome were described to have aortic dilatation and aneurysm together with ocular abnormalities and skeletal involvement. As in people mutations at different sites of bovine FBN1 may be responsible for Marfan phenotype. Hereditary equine regional dermal asthenia (HERDA), or hyperelastosis cutis, has been recognized in several horse breeds as affecting primarily skin, and, occasionally, tendons. A mutation in cyclophilin B, a chaperon involved in proper folding of collagens, has been identified in some cases. Degenerative suspensory ligament desmitis (DSLD) affects primarily tendons and ligaments of certain horse breeds. New data from our laboratory showed excessive accumulation of proteoglycans in organs with high content of connective tissues. We have

  6. Sex differences and hormonal modulation of deep tissue pain

    PubMed Central

    Traub, Richard J.; Ji, Yaping

    2013-01-01

    Women disproportionately suffer from many deep tissue pain conditions. Experimental studies show that women have lower pain thresholds, higher pain ratings and less tolerance to a range of painful stimuli. Most clinical and epidemiological reports suggest female gonadal hormones modulate pain for some, but not all, conditions. Similarly, animal studies support greater nociceptive sensitivity in females in many deep tissue pain models. Gonadal hormones modulate responses in primary afferents, dorsal horn neurons and supraspinal sites, but the direction of modulation is variable. This review will examine sex differences in deep tissue pain in humans and animals focusing on the role of gonadal hormones (mainly estradiol) as an underlying component of the modulation of pain sensitivity. PMID:23872333

  7. Persistent HIV-1 replication maintains the tissue reservoir during therapy

    PubMed Central

    Bedford, Trevor; Kim, Eun-Young; Archer, John; Pond, Sergei L. Kosakovsky; Chung, Yoon-Seok; Penugonda, Sudhir; Chipman, Jeffrey; Fletcher, Courtney V.; Schacker, Timothy W.; Malim, Michael H.; Rambaut, Andrew; Haase, Ashley T.; McLean, Angela R.; Wolinsky, Steven M.

    2015-01-01

    Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site of viral production, storage of viral particles in immune complexes, and viral persistence. Whilst combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. A spatial dynamic model of persistent viral replication and spread explains why the development of drug resistance is not a foregone conclusion under conditions where drug concentrations are insufficient to completely block virus replication. These data provide fresh insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and refill the viral reservoir despite potent antiretroviral therapy. PMID:26814962

  8. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA

    SciTech Connect

    Jbilo, O.; Barteles, C.F.; Chatonnet, A.; Toutant, J.P.; Lockridge, O.

    1994-12-31

    Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterase may be a first line of defense against poisons that are eaten or inhaled.

  9. Persistent HIV-1 replication maintains the tissue reservoir during therapy.

    PubMed

    Lorenzo-Redondo, Ramon; Fryer, Helen R; Bedford, Trevor; Kim, Eun-Young; Archer, John; Kosakovsky Pond, Sergei L; Chung, Yoon-Seok; Penugonda, Sudhir; Chipman, Jeffrey G; Fletcher, Courtney V; Schacker, Timothy W; Malim, Michael H; Rambaut, Andrew; Haase, Ashley T; McLean, Angela R; Wolinsky, Steven M

    2016-02-01

    Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy. PMID:26814962

  10. In vivo Analysis of White Adipose Tissue in Zebrafish

    PubMed Central

    Minchin, James E.N.; Rawls, John F.

    2016-01-01

    White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT. PMID:21951526

  11. Tissue Engineering Chamber Promotes Adipose Tissue Regeneration in Adipose Tissue Engineering Models Through Induced Aseptic Inflammation

    PubMed Central

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang

    2014-01-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin− perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34−/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction. PMID:24559078

  12. [Brown fat tissue in humans].

    PubMed

    Medvedev, L N; Elsukova, E I

    2002-01-01

    Brown adipose tissue (BAT) is universally present in mammals. Thermal production in such tissue is physiologically important for maintaining temperature homeostasis and regulation of body mass in small-size homoiotherms. At present it is clearly established that unlike other large mammals, brown adipose in man and primates is retained throughout the whole postnatal othogenesis. Therefore, BAT appears as a possible effector of pharmacogenetic protection from human excessive adiposis. Systematic reserach of various functioning aspects of this unique organ of mammals were started abroad as early as 1960-es, and are actively developing at present. Domestic research of energy circulation physiology and of thermoregulation developed mostly outside the brown adipose tissue. Therefore, the principal objective of this publication is to draw attention of experimental and clinical researches to an intriguing aspect of the issue of energy circulation in humans--the issue of brown adipose functioning. PMID:12004574

  13. Pediatric free-tissue transfer.

    PubMed

    Upton, Joseph; Guo, Lifei; Labow, Brian I

    2009-12-01

    Free-tissue transfer has facilitated and refined the reconstructive surgeon's ability to repair or reconstruct acquired or congenital defects in children. Although parallels exist between indications for free-tissue transfer in adults and children, the technical challenges and surgical skill required in pediatric patients are much greater and the level of complexity can escalate tremendously. Although this operation is difficult, the success rate is high and the results are often outstanding, with the benefit of growth and functional adaptation of the transferred tissue. Experience in this field is cumulative and creative thinking is often required. This article outlines the specific features unique to children, the most commonly used flaps, the expected results in specific regions, and the potential pitfalls to be avoided. PMID:19952700

  14. [Functional morphology of pulp tissue].

    PubMed

    Heine, H; Schaeg, G; Türk, R

    1989-01-01

    As compared with mesenchyme no genuine defense cells are developed in the tissue of the dental pulp and the nervous tissue. This is a further hint for the common development from ectoderm. The three dimensional meshwork of pulpa fibroblasts ("mesectoderm") is structured by elongated cell processes connected with each other by a variety of special cell junctions ("electronic cell coupling"). Metabolites from the microcirculation and neuropeptides from vegetative axons influence the activity of fibroblasts synthetizing groundsubstance. The meshwork of the groundsubstance has exclusion effects concerning molecules with a distinct molecular weight and charge. Thus a primitive defense system is established. With this the role of a newly described cell type of the dental pulp, the "lymphocytic pericyte" is discussed. Because of the poor capacity of the pulpa tissue for immunological reactions pathologically disorders may easily become chronically spreading their antigenic components throughout the body. PMID:2800671

  15. Focusing light through living tissue

    NASA Astrophysics Data System (ADS)

    Vellekoop, I. M.; Aegerter, C. M.

    2010-02-01

    Tissues such as skin, fat or cuticle are non-transparent because inhomogeneities in the tissue scatter light. We demonstrate experimentally that light can be focused through turbid layers of living tissue, in spite of scattering. Our method is based on the fact that coherent light forms an interference pattern, even after hundreds of scattering events. By spatially shaping the wavefront of the incident laser beam, this interference pattern was modified to make the scattered light converge to a focus. In contrast to earlier experiments, where light was focused through solid objects, we focused light through living pupae of Drosophila melanogaster. We discuss a dynamic wavefront shaping algorithm that follows changes due to microscopic movements of scattering particles in real time. We relate the performance of the algorithm to the measured timescale of the changes in the speckle pattern and analyze our experiment in the light of Laser Doppler flowmetry. Applications in particle tracking, imaging, and optical manipulation are discussed.

  16. Analysis of DNA Methylation in Various Swine Tissues

    PubMed Central

    Niu, Weiping; Yang, Runjun; Zhang, Yonghong; Qiu, Zhengyan; Sun, Boxing; Zhao, Zhihui

    2011-01-01

    DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively. In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome. PMID:21283691

  17. Normal tissue protection for improving radiotherapy: Where are the Gaps?

    PubMed Central

    Prasanna, Pataje G.S.; Stone, Helen B.; Wong, Rosemary S.; Capala, Jacek; Bernhard, Eric J.; Vikram, Bhadrasain; Coleman, C. N.

    2012-01-01

    Any tumor could be controlled by radiation therapy if sufficient dose were delivered to all tumor cells. Although technological advances in physical treatment delivery have been developed to allow more radiation dose conformity, normal tissues are invariably included in any radiation field within the tumor volume and also as part of the exit and entrance doses relevant for particle therapy. Mechanisms of normal tissue injury and related biomarkers are now being investigated, facilitating the discovery and development of a next generation of radiation protectors and mitigators. Bringing recent research advances stimulated by development of radiation countermeasures for mass casualties, to clinical cancer care requires understanding the impact of protectors and mitigators on tumor response. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects to improve outcome of radiation therapy. Such advances in knowledge of tissue and organ biology, mechanisms of injury, development of predictive biomarkers and mechanisms of radioprotection have re-energized the field of normal tissue protection and mitigation. Since various factors, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response vary among tissues, successful development of radioprotectors/mitigators/treatments may require multiple approaches to address cancer site specific needs. In this review, we discuss examples of important adverse effects of radiotherapy (acute and intermediate to late occurring, when it is delivered either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors and/or mitigators for improving radiation therapy. Also, we are providing general concepts for drug development for

  18. Composite tissue flap at perforating branches of saphenous artery: a new design for repairing composite tissue defects in anterior knee

    PubMed Central

    Sun, Guangfeng; Nie, Kaiyu; Jin, Wenhu; Wei, Zairong; Qi, Jianping; Wang, Dali

    2015-01-01

    So far it has been difficult to repair and reconstruct the composite tissue defects in knee. Saphenous artery flap has been widely used to repair complex wounds, but the design and clinical application of composite tissue flap at perforating branches of saphenous artery were not reported. In this research, we design a new composite tissue flap by carrying fascial flap in the medial gastrocnemius muscle with perforators flap in saphenous artery to repair and reconstruct the composite tissue defects in knee. By anatomic observation and analysis, we find that there exists blood-supply in netty form among saphenous arteries, medial artery below the knee, intermuscular branch in high-order position of posterior tibial artery and perforating branch in medial artery of calf. We chose saphenous artery as blood-supplying artery; utilized the netty blood-supplying mode in middle-up and medial part of shank; cut the composite tissue flap at perforating branches of saphenous artery with fascial flap carried in the medial gastrocnemius muscle; reconstructed the ligamentum patellae using medial head of gastrocnemius muscle and Achilles’s tendon; and covered the wounds at front side of knee with flap. Composite tissues were survived completely, free from infection at wounds and exosmosis of joint fluid. Motion function of knee-joint proved satisfactory, and ambulatory function was recovered. There was no complication in donor site. Composite tissue flap at perforating branches of saphenous artery with fascial flap carried in the medial gastrocnemius muscle is one of the most ideal solutions for repairing the composite tissue defects at front side of knee joint. PMID:26885090

  19. Clinical Evaluation of Papilla Reconstruction Using Subepithelial Connective Tissue Graft

    PubMed Central

    Kaushik, Alka; PK, Pal; Chopra, Deepak; Chaurasia, Vishwajit Rampratap; Masamatti, Vinaykumar S; DK, Suresh; Babaji, Prashant

    2014-01-01

    Objective: The aesthetics of the patient can be improved by surgical reconstruction of interdental papilla by using an advanced papillary flap interposed with subepithelial connective tissue graft. Materials and Methods: A total of fifteen sites from ten patients having black triangles/papilla recession in the maxillary anterior region were selected and subjected to presurgical evaluation. The sites were treated with interposed subepithelial connective tissue graft placed under a coronally advance flap. The integrity of the papilla was maintained by moving the whole of gingivopapillary unit coronally. The various parameters were analysed at different intervals. Results: There was a mean decrease in the papilla presence index score and distance from contact point to gingival margin, but it was statistically not significant. Also, there is increase in the width of the keratinized gingiva which was statistically highly significant. Conclusion: Advanced papillary flap with interposed sub–epithelial connective tissue graft can offer predictable results for the reconstruction of interdental papilla. If papilla loss occurs solely due to soft-tissue damage, reconstructive techniques can completely restore it; but if due to periodontal disease involving bone loss, reconstruction is generally incomplete and multiple surgical procedures may be required. PMID:25386529

  20. Tissue-specific patterns of allelically-skewed DNA methylation

    PubMed Central

    Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan

    2016-01-01

    ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711

  1. [Cancer in ectopic breast tissue].

    PubMed

    Røikjer, Johan; Lindmark, Ida; Knudsen, Thor

    2015-06-15

    Two different forms of ectopic breast tissue exist in human beings: supernumerary and aberrant. Both forms are usually seen alongside the milk lines, which extend from the upper limbs to the inguinal region where they give rise to mammary glands, areolas and nipples. Although ectopic- and orthotopic breast tissue are placed in different areas of the body, they still share the same ability to undergo pathological degeneration. The focus of this case report is to shed light on this unusual form of breast cancer, and raise the level of awareness in cases with lumps located in the milk lines. PMID:26101129

  2. Triacylglycerol metabolism in adipose tissue

    PubMed Central

    Ahmadian, Maryam; Duncan, Robin E; Jaworski, Kathy; Sarkadi-Nagy, Eszter; Sul, Hei Sook

    2009-01-01

    Triacylglycerol (TAG) in adipose tissue serves as the major energy storage form in higher eukaryotes. Obesity, resulting from excess white adipose tissue, has increased dramatically in recent years resulting in a serious public health problem. Understanding of adipocyte-specific TAG synthesis and hydrolysis is critical to the development of strategies to treat and prevent obesity and its closely associated diseases, for example, Type 2 diabetes, hypertension and atherosclerosis. In this review, we present an overview of the major enzymes in TAG synthesis and lipolysis, including the recent discovery of a novel adipocyte TAG hydrolase. PMID:19194515

  3. Advances in Meniscal Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Loppini, Mattia; Forriol, Francisco; Romeo, Giovanni; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Meniscal tears are the most common knee injuries and have a poor ability of healing. In the last few decades, several techniques have been increasingly used to optimize meniscal healing. Current research efforts of tissue engineering try to combine cell-based therapy, growth factors, gene therapy, and reabsorbable scaffolds to promote healing of meniscal defects. Preliminary studies did not allow to draw definitive conclusions on the use of these techniques for routine management of meniscal lesions. We performed a review of the available literature on current techniques of tissue engineering for the management of meniscal tears. PMID:25098366

  4. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  5. Scalp repair using tissue expanders.

    PubMed

    Mangubat, E Antonio

    2013-08-01

    Repair of scalp defects is often challenging, because without careful planning, excision of the defect may leave unsatisfactory cosmesis. Contemporary techniques in hair restoration surgery allow creation of natural and undetectable results, but these techniques are often unsuitable for repairing large scarred areas of hair loss. However, by using older techniques of scalp reduction and tissue expansion, excision of many large scarring defects can be accomplished. Combining older methods with modern hair restoration surgery permits the satisfactory treatment of many previously untreatable conditions. This article focuses on tissue expansion as an adjunct to repairing large scalp defects. PMID:24017990

  6. Conductivity of living intracranial tissues.

    PubMed

    Latikka, J; Kuurne, T; Eskola, H

    2001-06-01

    Resistivity values were measured from living human brain tissue in nine patients. A monopolar needle electrode was used with a measurement frequency of 50 kHz. Mean values were 3.51 Ohms m for grey matter and 3.91 Ohms m for white matter. Cerebrospiral fluid had a mean value of 0.80 Ohms m. Values for tumour tissues were dependent on the type of tumour and ranged from 2.30 to 9.70 Ohms m. PMID:11419622

  7. The enigma of vestigial tissues.

    PubMed Central

    Cohen, B.

    1976-01-01

    There are several structures and various tissues in the human body that appear to be functionless relics of ancestral or embryonic development. As such they have long been of interest and have been cited in support of theories of evolution and of oncogenesis. Evidence can be adduced to show that these remnants are not necessarily degenerate, nor are they inevitably functionless. Vestigial tissues are especially common in tooth-bearing areas of the mouth, and the span of tooth development from early embryonic life until adolescence affords unique opportunities for studying the part played by embryonic remnants in later life. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:817639

  8. Photothermally induced delayed tissue death.

    PubMed

    Gordon, Jeffrey M; Shaco-Levy, Ruthy; Feuermann, Daniel; Huleihil, Mahmoud; Mizrahi, Solly

    2006-01-01

    We report pronounced delayed tissue death in photothermal surgery performed on the livers of live healthy rats with highly concentrated sunlight (ultrabright noncoherent light). Exposure times and power levels were selected to produce immediate necroses of the order of hundreds of cubic millimeters. Pathology reveals that lesion volumes increase by up to a factor of 5 within approximately 24 h after surgery, and then stabilize. Islands of viable cells can persist within damaged tissue, in the immediate vicinity of blood vessels, but also necrose within about 48 h. PMID:16822049

  9. [Skin and soft tissue infections].

    PubMed

    Piso, R J; Bassetti, S

    2012-03-14

    Skin- and Soft tissue infections are a frequent problem in hospital as well as in ambulatory care. Diagnostic procedures and treatment principles have to include the most frequent pathogens. While the acute forms of skin and soft tissue infections, with, necrotising fasciitis as important exception, rarely cause diagnostic or therapeutic problem, the treatment of patients with recurrent furunculosis, chronic wounds and diabetic feet is often difficult and frustration for patients and physicians. This article gives an overview of the most important problems and treatment strategies. PMID:22419138

  10. Soft tissue laser in orthodontics.

    PubMed

    Gracco, Antonio; Tracey, Stephen; Lombardo, Luca; Siciliani, Giuseppe

    2011-01-01

    Today a lot of minor cosmetic surgery operations on the gingiva can easily be carried out directly by the orthodontist with a small quantity of topical anaesthetic and the use of a soft tissue laser. The Diode laser is the most commonly used laser in dentistry for minor surgery to the soft tissues. This kind of laser offers numerous advantages with respect to traditional or electric scalpels. In this article the authors will analyse several typical uses of the diode laser in daily orthodontic practice. PMID:21515234

  11. Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluation of the effects of tissue processing and dewaxing

    NASA Astrophysics Data System (ADS)

    Ali, Syed M.; Bonnier, Franck; Tfayli, Ali; Lambkin, Helen; Flynn, Kathleen; McDonagh, Vincent; Healy, Claragh; Clive Lee, T.; Lyng, Fiona M.; Byrne, Hugh J.

    2013-06-01

    Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections and the effects of tissue processing. Both hand and thigh sections of human cadavers were analyzed in their unprocessed and formalin-fixed, paraffin-processed (FFPP), and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum (SC), intermediate underlying epithelium, and dermal layers for sections from both anatomical sites. The SC is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that of the dermis is dominated by the characteristics of collagen. For a given anatomical site, little difference in layer structure and biochemistry is observed between samples from different cadavers. However, the hand and thigh sections are consistently differentiated for all cadavers, largely based on lipidic profiles. In dewaxed FFPP samples, while the SC, intermediate, and dermal layers are clearly differentiated by KMCA of Raman maps of tissue sections, the lipidic contributions to the spectra are significantly reduced, with the result that respective skin layers from different anatomical sites become indistinguishable. While efficient at removing the fixing wax, the tissue processing also efficiently removes the structurally similar lipidic components of the skin layers. In studies of dermatological processes in which lipids play an important role, such as wound healing, dewaxed samples are therefore not appropriate. Removal of the lipids does however accentuate the spectral features of the cellular and protein components, which may be more appropriate for retrospective analysis of disease progression and biochemical analysis using tissue banks.

  12. Two-photon imaging of collagen remodeling in RAFT tissue cultures

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Coleno, Mariah L.; Yomo, Tatsuro; Sun, Chung-Ho; Tromberg, Bruce J.

    2001-04-01

    Tissue remodeling is associated with both normal and abnormal processes including wound healing, fibrosis and cancer. In skin, abnormal remodeling causes permanent structural changes that can lead to hypertropic scarring and keloid formation. Normal remodeling, although fast and efficient in skin, is still imperfect, and a connective tissue scar remains at the wound site1. As a result, methods are needed to optimize tissue remodeling in vivo in all cases of wound repair. Since fibroblast-mediated contraction of engineered 3-D collagen based tissues (RAFTs) represents an in vitro model of the tissue contraction and collagen remodeling that occurs in vivo, RAFT tissue contraction studies combined with two-photon microscopy (TPM) studies are used to provide information on ways to improve tissue remodeling in vivo. In the RAFT models discussed here, tissue contraction is modulated either by application of exogenous growth factors or photodynamic therapy. During tissue contraction, TPM is used to image changes in Collagen Type I fibers in the RAFT skin models. Tissues are imaged at depth at day 15 after modulation. TPM signal analysis shows that RAFT tissues having the highest collagen density have the fastest rate of decay of fluorescent signal with depth.

  13. Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice

    PubMed Central

    Wang, Rui; Zhu, Menglin; Ye, Rongjian; Liu, Zuoxiong; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2015-01-01

    As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice. PMID:26655679

  14. TOPOGRAPHIC SITE RESPONSE AT HARD ROCK SITES

    NASA Astrophysics Data System (ADS)

    Yong, A. K.; Hough, S. E.

    2009-12-01

    Site (material impedance) and topographic (geometric form) effects are known to be key factors that influence seismic ground motions. To characterize site effects, Yong et al. (2009) developed a terrain-based Vs30 prediction model using an automated classification method (Iwahashi and Pike, 2007) that relied on taxonomic criteria (slope gradient, local convexity and surface texture) developed from geomorphometry to identify 16 terrain types from a 1-km spatial resolution (SRTM30 data) digital elevation model of California. On the basis that the underlying framework for this model contains parameters (esp., local convexity) which aptly describe the geometry (i.e., base to height ratio) of relief features that are known to also control the behavior of ground motions (Bouchon, 1973), we extend our investigation to study topographic effects. Focusing on sites that would generally be considered “hard rock,” the classification scheme distinguishes 7 separate terrain types ranging from “moderately eroded mountains” to “well dissected alpine summits.” Observed 1-Hz amplification factors at Southern California Seismographic Network sites reveal a weak but systematic correlation with these 7 terrain types. Significant scatter is also found within each terrain type; typical standard deviations of logarithmic amplification factors are 0.2-0.3. Considering stations that have high amplification factors, we find some that have apparently been misclassified due to data resolution limitations. Many of the remaining stations with higher than expected amplifications are located on or near topographic peaks or ridges. The unusually high amplification factors at hard-rock sites, typically factors of 1.5-2, can most plausibly be explained as a topographic effect.

  15. Site environmental report summary

    SciTech Connect

    Not Available

    1992-12-31

    In this summary of the Fernald 1992 Site Environmental Report the authors will describe the impact of the Fernald site on man and the environment and provide results from the ongoing Environmental Monitoring Program. Also included is a summary of the data obtained from sampling conducted to determine if the site complies with DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA) requirements. These requirements are set to protect both man and the environment.

  16. Site environmental programs

    SciTech Connect

    Schmidt, J.W.; Hanf, R.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the site environmental programs. Effluent monitoring and environmental surveillance programs monitor for impacts from operations in several areas. The first area consists of the point of possible release into the environment. The second area consists of possible contamination adjacent to DOE facilities, and the third area is the general environment both on and off the site.

  17. Viking landing sites

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1973-01-01

    A valley near the mouth of the 20,000-foot-deep Martian Grand Canyon has been chosen by NASA as the site of its first automated landing on the planet Mars. The landing site for the second mission of the 1975-76 Viking spacecraft will probably be an area about 1,000 miles northeast of the first site, where the likelihood of water increases the chances of finding evidence of life.

  18. 1994 Site environmental report

    SciTech Connect

    1995-07-01

    The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  19. Modified connective tissue punch technique to increase the vestibular/buccal keratinized tissue on flapless implant surgery: a case series.

    PubMed

    Andreasi Bassi, M; Andrisani, C; Lopez, M A; Gaudio, R M; Lombardo, L; Lauritano, D

    2016-01-01

    The aim of this article is to show a simple and predictable technique to enhance both the vestibular/buccal (V/B) gingival thickness (GT) and keratinized tissue width (KTW) improving the soft-tissue profile after flapless implant placement. The technique proposed was named Modified Connective Tissue Punch (MCTP). Fourteen patients (6 men and 8 women) aged between 35 and 69 years (mean value 48.07±13.023 years) were enrolled in this case series. Seventeen implant sites were submitted to flapless procedure. The connective punch (CP) was harvested with a motor-driven circular tissue punch and then a full-split dissection was executed, in order to create a deep pouch, beyond the mucogingival junction, on the V/B side. In this recipient site the CP was placed. The normal flapless surgical protocol was used; implants were inserted and covered with transgingival healing cap screws. GT and KTW were measured: both immediately before and after surgery; at the time of the prosthetic finalization (3-4months, respectively, for mandible and maxilla); 1 year post surgery follow-up. GT was measured at 1 mm, 2 mm and 5 mm on the V/B side, from the outline of the punch. Both KTW and GT at 1 and 2 mm can be effectively increased, while no significant effects for GT at 5 mm can be expected from this technique. Furthermore, the mean values of KTW and GT at 1 mm and 2 mm show significant increases at 3-4 months post-operative, while no further significant increments are shown at 1 year post-operative follow-up. The Authors recommend the use of the MCTP technique to reduce the number of aesthetic complications and soft tissue defects in flapless implant surgery. Longer follow-ups are needed to evaluate the stability of peri-implant tissues over time. PMID:27469545

  20. Exercise regulation of adipose tissue.

    PubMed

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  1. [Serpins in hyperplastic colon tissue].

    PubMed

    Kit, O I; Frantsiiants, E M; Kozlova, L S; Terpugov, A L

    2014-01-01

    The purpose of the study was to define α-2-macroglobulin (α-2M) and α-1-proteinase inhibitor (α-1PI) in tissues of malignant tumors and polyps of the lower parts of the colon. 28 patients had malignant tumors of the sigmoid colon or rectum (T3N0-1M0-2), 29 had polyps of the same location. Content of α-2M and α-1PI was studied in cytosols of the central, peripheral and conditionally healthy tissues (of resection line) of the mentioned hyperplasias by the ELISA method using standard test kits. Suppression of a-2M and increase of α-1PI (perifocal zone) were found in malignant tumor tissue, as well as α-1PI maintenance in tumorous focus. Increase of α-2M and decrease of α-1PI were detected in polyp tissue. Changes in physiological balance of serpins were assessed by α-1PI/α-2M ratio in comparison with the resection line. The risk of distortion of proliferation and differentiation processes increases in polyps in ineffective inhibition of proteolysis under the influence of released factors of malignancy. Endogenous or medicamentous restoration of balance of interaction of trypsin-like proteases and kallikrein with inhibitors will probably play the crucial role. PMID:25911925

  2. Biomaterials in myocardial tissue engineering

    PubMed Central

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  3. Pediatric soft tissue oral lesions.

    PubMed

    Pinto, Andres; Haberland, Christel M; Baker, Suher

    2014-04-01

    This article provides an overview of common color changes and soft tissue oral nodular abnormalities in children and adolescents. The clinical presentation and treatment options to address these conditions are presented in a concise approach, highlighting key features relevant to the oral health care professional. PMID:24655531

  4. Cycling Rho for tissue contraction.

    PubMed

    Teo, Jessica L; Yap, Alpha S

    2016-08-29

    Cell contractility, driven by the RhoA GTPase, is a fundamental determinant of tissue morphogenesis. In this issue, Mason et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201603077) reveal that cyclic inactivation of RhoA, mediated by its antagonist, C-GAP, is essential for effective contractility to occur. PMID:27551059

  5. SITE QUARTERLY REPORT HIGHLIGHTS (SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) PROGRAM)

    EPA Science Inventory

    The SITE Quarterly Report Highlights were designed to keep readers and stakeholders informed of recent developments in the SITE program. Pertinent items listed in the Highlights include (1) schedules for planned SITE Demonstrations, (2) SITE solicitation updates, (3) new developm...

  6. Ex vivo label-free microscopy of head and neck cancer patient tissues

    NASA Astrophysics Data System (ADS)

    Shah, Amy T.; Skala, Melissa C.

    2015-03-01

    Standard methods to characterize patient tissue rely on histology. This technique provides only anatomical information, so complementary imaging methods could provide beneficial phenotypic information. Cancer cells exhibit altered metabolism, and metabolic imaging could be applied to better understand cancer tissue. This study applies redox ratio, fluorescence lifetime, and second harmonic generation (SHG) imaging to ex vivo tissue from head and neck cancer patients. This high-resolution imaging technique has unique advantages of utilizing intrinsic tissue contrast, which eliminates the need for sample processing or staining, and multiphoton microscopy, which provides depth sectioning in intact tissue. This study demonstrates feasibility of these measurements in patient tissue from multiple anatomical sites and carcinoma types of head and neck cancer.

  7. Application of Tissue Culture in Ornamental Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant tissue culture can be broadly defined as the culture of plant cells, tissues, or organs under sterile or aseptic conditions. To most growers, micropropagation is the term that perhaps best describes plant tissue culture. However, plant tissue culture plays an important role through its many ap...

  8. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  9. Tissue engineering a surrogate niche for metastatic cancer cells.

    PubMed

    Seib, F Philipp; Berry, Janice E; Shiozawa, Yusuke; Taichman, Russell S; Kaplan, David L

    2015-05-01

    In breast and prostate cancer patients, the bone marrow is a preferred site of metastasis. We hypothesized that we could use tissue-engineering strategies to lure metastasizing cancer cells to tissue-engineered bone marrow. First, we generated highly porous 3D silk scaffolds that were biocompatible and amenable to bone morphogenetic protein 2 functionalization. Control and functionalized silk scaffolds were subcutaneously implanted in mice and bone marrow development was followed. Only functionalized scaffolds developed cancellous bone and red bone marrow, which appeared as early as two weeks post-implantation and further developed over the 16-week study period. This tissue-engineered bone marrow microenvironment could be readily manipulated in situ to understand the biology of bone metastasis. To test the ability of functionalized scaffolds to serve as a surrogate niche for metastasis, human breast cancer cells were injected into the mammary fat pads of mice. The treatment of animals with scaffolds had no significant effect on primary tumor growth. However, extensive metastasis was observed in functionalized scaffolds, and the highest levels for scaffolds that were in situ manipulated with receptor activator of nuclear factor kappa-B ligand (RANKL). We also applied this tissue-engineered bone marrow model in a prostate cancer and experimental metastasis setting. In summary, we were able to use tissue-engineered bone marrow to serve as a target or "trap" for metastasizing cancer cells. PMID:25771021

  10. Fluorescence and reflectance spectra of freshly excised cervical tissue

    NASA Astrophysics Data System (ADS)

    Zelenchuk, Alex R.; Oliva, Esther; Kaufman, Howard; Schomacker, Kevin T.; Bandarchi-Chamkhaleh, Bizhan; Pitts, Jonathan D.

    2002-05-01

    Fluorescence emission and diffuse reflectance spectra of freshly excised cervical tissue were studied with two specially designed contact probes. The objective of the study was to reach a better understanding of the relationship between spectroscopic measurements and cervical tissue morphology. Tissue samples from loop electro-surgical excision and hysterectomy specimens were measured within 20 to 90 minutes of excision. Emission spectra with 337 nm excitation, and reflectance spectra were collected at wavelengths between 370 and 720 nm from different tissue sites. Hematoxylin-eosin stained slides of the measured zones were obtained and compared to the spectra. In one experiment, a contact probe with a central illumination fiber and two concentric rings of detection fibers (radii 0.1 and 1 mm), was placed in contact with the epithelium and used to measure spectra from ectocervix and endocervix. The influence of 5% acetic acid on fluorescence and reflectance spectra was also investigated. In another experiment, a single 100-micron fiber probe was placed perpendicular to a cut edge of tissue and scanned to measure spectra in depth. Depth scans were made over various areas of the cervix

  11. Tissue engineering a surrogate niche for metastatic cancer cells

    PubMed Central

    Seib, F. Philipp; Berry, Janice E.; Shiozawa, Yusuke; Taichman, Russell S.; Kaplan, David L.

    2015-01-01

    In breast and prostate cancer patients, the bone marrow is a preferred site of metastasis. We hypothesized that we could use tissue-engineering strategies to lure metastasizing cancer cells to tissue-engineered bone marrow. First, we generated highly porous 3D silk scaffolds that were biocompatible and amenable to bone morphogenetic protein 2 functionalization. Control and functionalized silk scaffolds were subcutaneously implanted in mice and bone marrow development was followed. Only functionalized scaffolds developed cancellous bone and red bone marrow, which appeared as early as two weeks post-implantation and further developed over the 16-week study period. This tissue-engineered bone marrow microenvironment could be readily manipulated in situ to understand the biology of bone metastasis. To test the ability of functionalized scaffolds to serve as a surrogate niche for metastasis, human breast cancer cells were injected into the mammary fat pads of mice. The treatment of animals with scaffolds had no significant effect on primary tumor growth. However, extensive metastasis was observed in functionalized scaffolds, and the highest levels for scaffolds that were in situ manipulated with receptor activator of nuclear factor kappa-B ligand (RANKL). We also applied this tissue-engineered bone marrow model in a prostate cancer and experimental metastasis setting. In summary, we were able to use tissue-engineered bone marrow to serve as a target for metastasizing cancer cells. PMID:25771021

  12. Tissue Distribution Of Chloroaluminium Sulfonated Phthalocyanine In Dogs

    NASA Astrophysics Data System (ADS)

    M. M.; H. C.; Newman

    1989-06-01

    Chloroaluminum sulfonated phthalocyanine (A1PCS) was administered intravenously to clinically normal dogs, and A1PCS levels were determined in tissues using a sensitive assay. A1PCS accumulated to high levels in liver, spleen, bone marrow, kidney, and lung. These tissue levels confirm previous determinations in mice and rats. Only a small amount of dye was retained in skin and very small amounts in muscle and brain. A1PCS was cleared from the blood within 24 h, and excreted primarily by urine. Serum clearance was faster in males than in females. There were also significant tissue distribution differences between the genders, particularly during the first 12 h. The low levels of A1PCS in skin suggest that cutaneous photosensitivity and toxic skin reactions using this photosensitizer in photodynamic therapy of cancer may be eliminated. The difference in tissue distribution between genders is not only intriguing, but indicates that the optimal time window for treatment of various tissue sites may vary by gender.

  13. The human tri-peptide GHK and tissue remodeling.

    PubMed

    Pickart, Loren

    2008-01-01

    Tissue remodeling follows the initial phase of wound healing and stops inflammatory and scar-forming processes, then restores the normal tissue morphology. The human peptide Gly-(L-His)-(L-Lys) or GHK, has a copper 2+ (Cu(2+)) affinity similar to the copper transport site on albumin and forms GHK-Cu, a complex with Cu(2+). These two molecules activate a plethora of remodeling related processes: (1) chemoattraction of repair cells such as macrophages, mast cells, capillary cells; (2) anti-inflammatory actions (suppression of free radicals, thromboxane formation, release of oxidizing iron, transforming growth factor beta-1, tumor necrosis factor alpha and protein glycation while increasing superoxide dismutase, vessel vasodilation, blocking ultraviolet damage to skin keratinocytes and improving fibroblast recovery after X-ray treatments); (3) increases protein synthesis of collagen, elastin, metalloproteinases, anti-proteases, vascular endothelial growth factor, fibroblast growth factor 2, nerve growth factor, neutrotropins 3 and 4, and erythropoietin; (4) increases the proliferation of fibroblasts and keratinocytes; nerve outgrowth, angiogenesis, and hair follicle size. GHK-Cu stimulates wound healing in numerous models and in humans. Controlled studies on aged skin demonstrated that it tightens skin, improves elasticity and firmness, reduces fine lines, wrinkles, photodamage and hyperpigmentation. GHK-Cu also improves hair transplant success, protects hepatic tissue from tetrachloromethane poisoning, blocks stomach ulcer development, and heals intestinal ulcers and bone tissue. These results are beginning to define the complex biochemical processes that regulate tissue remodeling. PMID:18644225

  14. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    PubMed Central

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  15. Two-Photon Imaging of Microbial Immunity in Living Tissues

    PubMed Central

    Herz, Jasmin; Zinselmeyer, Bernd H.; McGavern, Dorian B.

    2013-01-01

    The immune system is highly evolved and can respond to infection throughout the body. Pathogen-specific immune cells are usually generated in secondary lymphoid tissues (e.g., spleen, lymph nodes) and then migrate to sites of infection where their functionality is shaped by the local milieu. Because immune cells are so heavily influenced by the infected tissue in which they reside, it is important that their interactions and dynamics be studied in vivo. Two-photon microscopy is a powerful approach to study host-immune interactions in living tissues, and recent technical advances in the field have enabled researchers to capture movies of immune cells and infectious agents operating in real time. These studies have shed light on pathogen entry and spread through intact tissues as well as the mechanisms by which innate and adaptive immune cells participate in thwarting infections. This review focuses on how two-photon microscopy can be used to study tissue-specific immune responses in vivo, and how this approach has advanced our understanding of host-immune interactions following infection. PMID:22846498

  16. Mechanical Forces Governing Tissue Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn

    2002-10-01

    We have refined a UV-laser microbeam to investigate the forces at play during morphogenesis, i.e. early biological development, in the fruit fly Drosophila (1). While the microbeam typically is used to ablate tissue with cellular spatial resolution, it has the capability for submicron and thus subcellular spatial resolution. The microbeam can be steered in two-dimensions and UV-laser dissection occurred in vivo while the tissue was imaged in real time using a (visible) laser-scanning confocal microscope. We investigated a morphogenic process, known as dorsal closure, in a genetically engineered strain of Drosophila where green fluorescent protein has been fused to a fragment of a native structural protein (2). This allowed us to visualize the fluorescing contours of two opposing, outer sheets of tissue closing over an inner tissue sheet. Time-lapse imaging captured the contours in native closure as well as in response to UV-laser dissection. Specific patterns of dissection essentially eliminated a selected force: by tracking the changes in contour geometry we estimated the relative magnitude of that force (mechanical jump). Using this approach we identified and characterized a set of forces governing tissue dynamics. We have developed a mechanical model for the dynamics of dorsal closure based on this data set. This model provides a theoretical framework for investigating defective closure in mutant flies. Dorsal closure is a model system for various aspects of cell movement in wound healing and vertebrate development. This research has been supported by the DoD MFEL Program as administered by the AFOSR and by the NIH. 1. M.S. Hutson, Y. Tokutake, M-S. Chang, J.W. Bloor, S. Venakides, D.P. Kiehart, and G.S. Edwards. "Laser dissection of morphogenetic dynamics in Drosophila dorsal closure." In preparation. 2. D.P. Kiehart, et al, J. Cell Biol. 149, 471 (2000).

  17. Joint and Soft Tissue Injections

    MedlinePlus

    ... possible side effects include infection, tendon rupture and muscle damage. In order to reduce your risk of infection, follow your doctor's instructions carefully and keep the injection site clean. Call your doctor right away if ...

  18. Savannah River Site's Site Specific Plan

    SciTech Connect

    Not Available

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  19. Tissue macroarrays ("microchops") for gene expression analysis.

    PubMed

    Fernández, P L; Nayach, I; Fernández, E; Fresno, L; Palacín, A; Farré, X; Campo, E; Cardesa, A

    2001-06-01

    We describe a simple system of tissue arraying with multiple tissue fragments obtained with a biopsy punch from selected areas of paraffin blocks. The new blocks thus constructed allow multiple tissue sections in which the uniform shape of the fragments coupled with a geometrical display and a significant amount of tissue per case allows a dependable, cost-effective way to screen tumors or other kinds of tissues with techniques such as immunohistochemistry. This system avoids the disadvantages of previous laborious methods of tissue arraying, such as expensive equipment and scarce tissue sampling, and it can be implemented in any institution with minimal cost and elaboration. PMID:11469691

  20. Nanotechnological strategies for engineering complex tissues

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Kohane, Daniel S.; Langer, Robert

    2011-01-01

    Tissue engineering aims at developing functional substitutes for damaged tissues and organs. Before transplantation, cells are generally seeded on biomaterial scaffolds that recapitulate the extracellular matrix and provide cells with information that is important for tissue development. Here we review the nanocomposite nature of the extracellular matrix, describe the design considerations for different tissues and discuss the impact of nanostructures on the properties of scaffolds and their uses in monitoring the behaviour of engineered tissues. We also examine the different nanodevices used to trigger certain processes for tissue development, and offer our view on the principal challenges and prospects of applying nanotechnology in tissue engineering.