Science.gov

Sample records for 18f-fdg-avid tissue sites

  1. 18F-FDG-avid brunner gland hyperplasia.

    PubMed

    Park, Seol Hoon; Park, Kwang-Min; Kim, Jae Seung

    2014-08-01

    Brunner gland hyperplasia, a rare duodenal tumor, usually presents with benign features. A 68-year-old man with a history of anemia presented with a polypoid duodenal mass that was detected by CT and esophagogastroduodenoscopy. This mass showed high F-FDG avidity on PET/CT and was histopathologically confirmed as Brunner gland hyperplasia. We suggest that Brunner gland hyperplasia should be considered in the differential diagnosis of F-FDG-avid duodenal tumors.

  2. Mucosa-associated lymphoid tissue lymphoma with unusual 18F-FDG hypermetabolism arising at the colorectal anastomosis

    PubMed Central

    Zhang, Na-Sha; Shi, Fang; Kong, Li; Zhu, Hui

    2017-01-01

    Mucosa-associated lymphoid tissue (MALT) lymphoma usually originates from the stomach and presents with low 18F-fluorodeoxyglucose (FDG) avidity with average maximum standard uptake value of 3.6. Colorectal MALT lymphoma is a rare entity that contributes to 1.6% of all MALT lymphomas and < 0.2% of large intestinal malignancies. The case reported herein firstly revealed stage IIE MALT lymphoma with unexpected higher 18F-FDG avidity of 18.9 arising at the colorectal anastomosis in a patient with a surgical history for sigmoid adenocarcinoma, which was strongly suspected as local recurrence before histopathological and immunohistochemical examinations. After accurate diagnosis, the patient received four cycles of standard R-CVP regimen (rituximab, cyclophosphamide, vincristine and prednisone), combined target therapy and chemotherapy, instead of radiotherapy recommended by National Comprehensive Cancer Network guidelines. He tolerated the treatment well and reached complete remission. PMID:28210093

  3. Correlation of 18F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    PubMed Central

    Shusharina, Nadya; Cho, Joseph; Sharp, Gregory C.; Choi, Noah C.

    2014-01-01

    Purpose To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography (18F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial 18F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUVmax) (≥50% of SUVmax) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUVmax. The VOI of pretherapy and posttherapy 18F-FDG PET images were correlated for the extent of overlap. Results The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions VOI defined by the SUVmax- ≥50% isocontour may be a biological target volume for escalated radiation dose. PMID:24725696

  4. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    SciTech Connect

    Shusharina, Nadya Cho, Joseph; Sharp, Gregory C.; Choi, Noah C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.

  5. 18F-FDG PET/CT and extragastric MALT lymphoma: role of Ki-67 score and plasmacytic differentiation.

    PubMed

    Albano, Domenico; Bosio, Giovanni; Giubbini, Raffaele; Bertagna, Francesco

    2017-03-07

    The detection rate of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in extragastric mucosa associated lymphoid tissue (MALT) lymphoma is under debate and the reason is not clear. Our aim was to investigate the metabolic behavior of extragastric MALT lymphoma and whether the histological features (Ki-67 index and plasmacytic differentiation, PD) might explain it. PET/CT images were analyzed visually and semi-quantitatively and compared with Ki-67 index and PD. Seventy-two patients were included. Twelve of 18 patients with PD showed intense 18F-FDG uptake; on the contrary, 42 of 54 patients without PD had positive 18F-FDG PET/CT. Twenty-six of 27 patients with Ki-67 > 15% had 18F-FDG-avid lesions; 28 of 45 patients with Ki-67 ≤ 15% had positive 18F-FDG PET/CT. 18F-FDG avidity was significantly associated with Ki-67 index (p < .001) and not correlated with PD (p = .352). Maximum standardized uptake value (SUVmax), lesion-to-liver SUVmax ratio and lesion-to-blood pool SUVmax ratio were not correlated with Ki-67 index or PD. 18F-FDG avidity was noted in 75% and is correlated only with Ki-67.

  6. Combined use of 18F-FDG and 18F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study

    PubMed Central

    Sachpekidis, Christos; Thieke, Christian; Askoxylakis, Vasileios; Nicolay, Nils H; Huber, Peter E; Thomas, Michael; Dimitrakopoulou, Georgia; Debus, Juergen; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    Aim of this study was to evaluate and compare, by means of dynamic and static PET/CT, the distribution patterns and pharmacokinetics of fluorine-18 fluorodeoxyglucose (18F-FDG) and of fluorine-18-fluoromisonidazole (18F-FMISO) in non-small cell lung cancer (NSCLC) patients scheduled for intensity modulated radiation therapy (IMRT). Thirteen patients suffering from inoperable stage III NSCLC underwent PET/CTs with 18F-FDG and 18F-FMISO for tumor metabolism and hypoxia assessment accordingly. Evaluation of PET/CT studies was based on visual analysis, semi-quantitative (SUV) calculations and absolute quantitative estimations, after application of a two-tissue compartment model and a non-compartmental approach. 18F-FDG PET/CT revealed all thirteen primary lung tumors as sites of increased 18F-FDG uptake. Six patients demonstrated also in total 43 18F-FDG avid metastases; these patients were excluded from radiotherapy. 18F-MISO PET/CT demonstrated 12/13 primary lung tumors with faint tracer uptake. Only one tumor was clearly 18F-FMISO avid, (SUVaverage = 3.4, SUVmax = 5.0). Mean values for 18F-FDG, as derived from dPET/CT data, were SUVaverage = 8.9, SUVmax = 15.1, K1 = 0.23, k2 = 0.53, k3 = 0.17, k4 = 0.02, influx = 0.05 and fractal dimension (FD) = 1.25 for the primary tumors. The respective values for 18F-FMISO were SUVaverage = 1.4, SUVmax = 2.2, K1 = 0.26, k2 = 0.56, k3 = 0.06, k4 = 0.06, influx = 0.02 and FD = 1.14. No statistically significant correlation was observed between the two tracers. 18F-FDG PET/CT changed therapy management in six patients, by excluding them from planned IMRT. 18F-FMISO PET/CT revealed absence of significant tracer uptake in the majority of the 18F-FDG avid NSCLCs. Lack of correlation between the two tracers’ kinetics indicates that they reflect different molecular mechanisms and implies the discordance between increased glycolysis and hypoxia in the malignancy. PMID:25973334

  7. Increased (18)F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT.

    PubMed

    Metser, Ur; Even-Sapir, Einat

    2007-05-01

    The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) in the field of oncology is rapidly evolving; however, (18)F-FDG is not tumor specific. Aside from physiological uptake (18)F-FDG also may accumulate in benign processes. Knowledge of these (18)F-FDG-avid nonmalignant lesions is essential for accurate PET interpretation in oncologic patients to avoid a false-positive interpretation. Through the systematic review of the reports of PET/computed tomography (CT) studies performed in oncologic patients during a 6-month period, we found benign nonphysiological uptake of (18)F-FDG in more than 25% of studies. In half of these, (18)F-FDG uptake was moderate or marked in intensity, similar to that of malignant sites. A total of 73% of benign lesions were inflammatory in nature, with post-traumatic bone and soft-tissue abnormalities (including iatrogenic injury) and benign tumors accounting for the remainder. The differentiation of benign from malignant uptake of (18)F-FDG on PET alone may be particularly challenging as a result of the low anatomical resolution of PET and paucity of anatomical landmarks. Fusion imaging, namely PET/CT, has been shown to improve not only the sensitivity of PET interpretation but also its specificity. Aside from better anatomical localization of lesions on PET/CT, morphological characterization of lesions on CT often may improve the diagnostic accuracy of nonspecific (18)F-FDG uptake. Correlation with CT on fused PET/CT data may obviate the need for further evaluation or biopsy in more than one-third of scintigraphic equivocal lesions. Familiarity with (18)F-FDG-avid nonmalignant lesions also may extend the use of (18)F-FDG-PET imaging beyond the field of oncology. We have tabulated our experience with benign entities associated with increased (18)F-FDG uptake on whole-body PET/CT from 12,000 whole-body (18)F-FDG-PET/CT studies performed during a 4-year period.

  8. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  9. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  10. Dirigent proteins and dirigent sites in lignifying tissues

    NASA Technical Reports Server (NTRS)

    Burlat, V.; Kwon, M.; Davin, L. B.; Lewis, N. G.

    2001-01-01

    Tissue-specific dirigent protein gene expression and associated dirigent (site) localization were examined in various organs of Forsythia intermedia using tissue printing, in situ mRNA hybridization and immunolabeling techniques, respectively. Dirigent protein gene expression was primarily noted in the undifferentiated cambial regions of stem sections, whereas dirigent protein sites were detected mainly in the vascular cambium and ray parenchyma cell initials. Immunolocalization also revealed cross-reactivity with particular regions of the lignified cell walls, these being coincident with the known sites of initiation of lignin deposition. These latter regions are considered to harbor contiguous arrays of dirigent (monomer binding) sites for initiation of lignin biopolymer assembly. Dirigent protein mRNA expression was also localized in the vascular regions of roots and petioles, whereas in leaves the dirigent sites were primarily associated with the palisade layers and the vascular bundle. That is, dirigent protein mediated lignan biosynthesis was initiated primarily in the cambium and ray cell initial regions of stems as well as in the leaf palisade layers, this being in accordance with the occurrence of the lignans for defense purposes. Within lignified secondary xylem cell walls, however, dirigent sites were primarily localized in the S(1) sublayer and compound middle lamella, these being coincident with previously established sites for initiation of macromolecular lignin biosynthesis. Once initiation occurs, lignification is proposed to continue through template polymerization.

  11. Imidazoline binding sites and receptors in cardiovascular tissue.

    PubMed

    Molderings, G J; Göthert, M

    1999-01-01

    1. Imidazoline binding sites and receptors and their endogenous ligands have been identified in cardiovascular tissue of various species including human beings. 2. I2- (but only exceptionally I1-)imidazoline binding sites have been shown to exist on cardiac myocytes and vascular smooth muscle cells; at present, their functional role is unknown. 3. The sympathetic nerves supplying the cardiovascular system are endowed with presynaptic inhibitory imidazoline receptors that may become of therapeutic relevance as targets of drugs. 4. ATP-sensitive K+ channels present in heart and blood vessels can be blocked by several imidazolines and guanidines; hence, those drugs can interfere with the cardioprotective effects resulting from K(ATP) channel activation by a decrease in the endogenous ligand ATP or by drugs. 5. Imidazoline derivatives exhibit antiarrhythmic properties that are due to a reduction of sympathetic tone by central and peripheral mechanisms and to blockade of postsynaptic alpha2-adrenoceptors in the heart and coronary arteries. 6. Agmatine and clonidine-displacing substance, which are endogenous ligands at imidazoline and alpha2-receptors, are present in the blood serum and appear to participate in vascular smooth muscle proliferation and blood pressure regulation.

  12. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites

    PubMed Central

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2016-01-01

    Phosphorylation is the most widespread and well studied reversible posttranslational modification. Discovering tissue-specific preferences of phosphorylation sites is important as phosphorylation plays a role in regulating almost every cellular activity and disease state. Here we present a comprehensive analysis of global and tissue-specific sequence and structure properties of phosphorylation sites utilizing recent proteomics data. We identified tissue-specific motifs in both sequence and spatial environments of phosphorylation sites. Target site preferences of kinases across tissues indicate that, while many kinases mediate phosphorylation in all tissues, there are also kinases that exhibit more tissue-specific preferences which, notably, are not caused by tissue-specific kinase expression. We also demonstrate that many metabolic pathways are differentially regulated by phosphorylation in different tissues. PMID:27332813

  13. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  14. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    SciTech Connect

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.

    1987-01-01

    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  15. Vascular tissue is the first site of damage in the TCDD-exposed fish embryo

    SciTech Connect

    Cantrell, S.; Tillitt, D.; Hannink, M.

    1995-12-31

    The planar halogenated hydrocarbons (PHHs) are a group of environmental contaminants that exert adverse biological effects in most vertebrate organisms. Embryonic development is the most sensitive life stage to the effects of these compounds. The reason for the enhanced sensitivity to PHHs during early life stages is unknown. To study TCDD-induced embryotoxicity, a fish species the medaka was the organism of choice. The authors localized the initial site of tissue damage in the developing embryo and investigated the mechanism of TCDD-induced tissue damage. There were three parts to this study, (1) observation of morphological anomalies in the TCDD-treated embryo, (2) immunohistochemical detection of DNA damage in the tissues of TCDD-treated embryos, and (3) test the ability of an antioxidant to delay the onset of initial tissue damage. Morphological observations show that the first visual lesions that occur in the TCDD treated embryo occur at stage 36, about day 6 post fertilization. The lesions are localized in the cardiac vasculature. Immunohistochemical staining, using the terminal nucleotide transferase assay (TdT-assay) which detects DNA damage showed that the initial site of tissue damage was in the vasculature in the cardiac region. Tissue damage was detected in neural tissue and muscle tissue at later time points. TCDD is known to induce oxidative stress in a variety of organisms, therefore; the authors tested to see if oxidative stress may play a role in TCDD-induced embryotoxicity. The TCDD-treated embryos were cultured in the antioxidant N-acetyl cysteine (NAC) and the morphological observations and TdT-assay were repeated. They found that NAC was able to delay the onset of tissue damage and NAC was able to reduce total mortality in the embryo. The results from this study indicate that the cardiac vasculature is the initial site of tissue damage.

  16. Quantitative morphometric measurements using site selective image cytometry of intact tissue.

    PubMed

    Kwon, Hyuk-Sang; Nam, Yoon Sung; Wiktor-Brown, Dominika M; Engelward, Bevin P; So, Peter T C

    2009-02-06

    Site selective two-photon tissue image cytometry has previously been successfully applied to measure the number of rare cells in three-dimensional tissue specimens up to cubic millimetres in size. However, the extension of this approach for high-throughput quantification of cellular morphological states has not been demonstrated. In this paper, we report the use of site-selective tissue image cytometry for the study of homologous recombination (HR) events during cell division in the pancreas of transgenic mice. Since HRs are rare events, recombinant cells distribute sparsely inside the organ. A detailed measurement throughout the whole tissue is thus not practical. Instead, the site selective two-photon tissue cytometer incorporates a low magnification, wide field, one-photon imaging subsystem that rapidly identifies regions of interest containing recombinant cell clusters. Subsequently, high-resolution three-dimensional assays based on two-photon microscopy can be performed only in these regions of interest. We further show that three-dimensional morphology extraction algorithms can be used to analyse the resultant high-resolution two-photon image stacks providing information not only on the frequency and the distribution of these recombinant cell clusters and their constituent cells, but also on their morphology.

  17. Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation.

    PubMed

    Burghard, Alice; Lenarz, Thomas; Kral, Andrej; Paasche, Gerrit

    2014-06-01

    Tissue formation around the electrode array of a cochlear implant has been suggested to influence preservation of residual hearing as well as electrical hearing performance of implanted subjects. Further, inhomogeneity in the electrical properties of the scala tympani shape the electrical field and affect current spread. Intracochlear trauma due to electrode insertion and the insertion site itself are commonly seen as triggers for the tissue formation. The present study investigates whether the insertion site, round window membrane (RWM) vs. cochleostomy (CS), or the sealing material, no seal vs. muscle graft vs. carboxylate cement, have an influence on the amount of fibrous tissue and/or new bone formation after CI implantation in the guinea pig. Hearing thresholds were determined by auditory brainstem response (ABR) measurements prior to implantation and after 28 days. The amount of tissue formation was quantified by evaluation of microscopic images obtained by a grinding/polishing procedure to keep the CI in place during histological processing. An insertion via the round window membrane resulted after 28 days in less tissue formation in the no seal and muscle seal condition compared to the cochleostomy approach. Between these two sealing techniques there was no difference. Sealing the cochlea with carboxylate cement resulted always in a strong new bone formation and almost total loss of residual hearing. The amount of tissue formation and the hearing loss correlated at 1-8 kHz. Consequently, the use of carboxylate cement as a sealing material in cochlear implantation should be avoided even in animal studies, whereas sealing the insertion site with a muscle graft did not induce an additional tissue growth compared to omitting a seal. For hearing preservation the round window approach should be used.

  18. Rare Intensely Fluorine-18-fluorodeoxyglucose Avid Large Retropharyngeal Goiter in a Patient with Invasive Breast Carcinoma

    PubMed Central

    Kviatkovsky, Bina; Landau, Elliot; Siddique, Muhammad; Brenner, Arnold

    2016-01-01

    Diffuse increased fluorine-18-fluorodeoxyglucose (18F-FDG) avidity on positron emission tomography (PET) scans has been demonstrated in patients with chronic thyroiditis, likely secondary to increased inflammatory cell glucose uptake. A complex association has been demonstrated between breast cancer and thyroid disease, although the mechanism remains elusive. Development of chronic thyroiditis and/or goiter in breast cancer patients has been suggested to convey a more favorable prognosis. Goiter extension is almost exclusively into retrosternal space, with only a handful of cases reported with superior extension into retropharyngeal space. We present a rare case of a diffusely enlarged goiter extending superior and posterior into the retropharyngeal space with an associated intense 18F-FDG avidity standardized uptake value maximum (SUVmax) of 16.1 in a patient with invasive ductal breast cancer. To our knowledge, this represents the first published case of diffusely 18F-FDG avid goiter with retropharyngeal extension. PMID:27195179

  19. Tissue-specific in vivo transcription start sites of the human and murine cystic fibrosis genes.

    PubMed

    White, N L; Higgins, C F; Trezise, A E

    1998-03-01

    The in vivo transcription start sites of the human cystic fibrosis transmembrane conductance regulator gene ( CFTR ) and its murine homologue ( Cftr ) have been mapped in a range of tissues using the technique of 5' rapid amplification of cDNA ends (5' RACE). These are the first in vivo transcription start sites for CFTR or Cftr to be reported. Distinct, tissue-specific patterns of CFTR start site usage were identified in both mouse and human. In particular, striking variation in the position of the murine Cftr transcription start site was seen along the length of the intestinal tract; different start sites being utilized in ileum and in duodenum. In humans, distinct transcription start sites are utilized in adult and foetal lungs. In addition, a novel 5'-untranslated exon of murine Cftr , denoted exon -1, was identified and shown to be expressed exclusively in mouse testis. Expression of exon -1-containing Cftr transcripts was shown by mRNA in situ hybridization to be confined to the germ cells and to be regulated during spermatogenesis.

  20. Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain

    PubMed Central

    Sopory, Shailaja; Kwon, Sunjong; Wehrli, Marcel; Christian, Jan L.

    2010-01-01

    BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 site of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range. PMID:20659445

  1. Adipose tissue is the first colonization site of Leptospira interrogans in subcutaneously infected hamsters

    PubMed Central

    Ozuru, Ryo; Saito, Mitsumasa; Kanemaru, Takaaki; Miyahara, Satoshi; Villanueva, Sharon Y. A. M.; Murray, Gerald L.; Adler, Ben; Fujii, Jun; Yoshida, Shin-ichi

    2017-01-01

    Leptospirosis is one of the most widespread zoonoses in the world, and its most severe form in humans, “Weil’s disease,” may lead to jaundice, hemorrhage, renal failure, pulmonary hemorrhage syndrome, and sometimes,fatal multiple organ failure. Although the mechanisms underlying jaundice in leptospirosis have been gradually unraveled, the pathophysiology and distribution of leptospires during the early stage of infection are not well understood. Therefore, we investigated the hamster leptospirosis model, which is the accepted animal model of human Weil’s disease, by using an in vivo imaging system to observe the whole bodies of animals infected with Leptospira interrogans and to identify the colonization and growth sites of the leptospires during the early phase of infection. Hamsters, infected subcutaneously with 104 bioluminescent leptospires, were analyzed by in vivo imaging, organ culture, and microscopy. The results showed that the luminescence from the leptospires spread through each hamster’s body sequentially. The luminescence was first detected at the injection site only, and finally spread to the central abdomen, in the liver area. Additionally, the luminescence observed in the adipose tissue was the earliest detectable compared with the other organs, indicating that the leptospires colonized the adipose tissue at the early stage of leptospirosis. Adipose tissue cultures of the leptospires became positive earlier than the blood cultures. Microscopic analysis revealed that the leptospires colonized the inner walls of the blood vessels in the adipose tissue. In conclusion, this is the first study to report that adipose tissue is an important colonization site for leptospires, as demonstrated by microscopy and culture analyses of adipose tissue in the hamster model of Weil’s disease. PMID:28245231

  2. Controlling activation site density by low-energy far-field stimulation in cardiac tissue.

    PubMed

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  3. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  4. Site-targeted acoustic contrast agent detects molecular expression of tissue factor after balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Hall, Christopher S.; Abendschein, Dana R.; Scherrer, David E.; Scott, Michael J.; Marsh, Jon N.; Wickline, Samuel A.; Lanza, Gregory M.

    2000-04-01

    Complex molecular signaling heralds the early stages of pathologies such as angiogenesis, inflammation, and cellular responses to mechanically damaged coronary arteries after balloon angioplasty. In previous studies, we have demonstrated acoustic enhancement of blood clot morphology with the use of a nongaseous, ligand-targeted acoustic nanoparticle emulsion delivered to areas of thrombosis both in vitro and in vivo. In this paper, we characterize the early expression of tissue factor which contributes to subsequent arterial restenosis. Tissue factor is a 42kd glycoprotein responsible for blood coagulation but also plays a well-described role in cancer metastasis, angiogenesis, and vascular restenosis. This study was designed to determine whether the targeted contrast agent could localize tissue factor expressed within the wall of balloon-injured arteries. Both carotid arteries of five pigs (20 kg) were injured using an 8 X 20 mm angioplasty balloon. The carotids were treated in situ with a perfluorocarbon nanoparticle emulsion covalently complexed to either specific anti-tissue factor polyclonal F(ab) fragments (treatment) or non-specific IgG F(ab) fragments (control). Intravascular ultrasound (30 MHz) images of the arteries were obtained before and after exposure to the emulsions. Tissue- factor targeted ultrasonic contrast agent acoustically enhanced the subintima and media at the site of balloon- induced injury compared with control contrast arteries (p less than 0.05). Immunohistochemical staining confirmed the presence of increased tissue factor at the sites of acoustic enhancement. Binding of the targeted agents was demonstrated in vitro by scanning electron microscope images of cultured smooth muscle cells that constitutively express tissue factor. This study demonstrates the concept of molecular imaging and localization of carotid arteries' tissue factor in vivo using a new, nanoparticulate emulsion. Enhancement of the visualization of the molecular

  5. Functional integrity of the interrenal tissue of yellow perch from contaminated sites tested in vivo

    SciTech Connect

    Girard, C.; Brodeur, J.C.; Hontela, A.

    1995-12-31

    The normal activation of the hypothalamo-pituitary-interrenal axis (HPI axis) in response to capture is disrupted in fish subjected to life-long exposure to heavy metals, PCBs and PAHs. The ability to increase plasma cortisol in yellow perch (Perca flavescens) from sites contaminated by heavy metals and organic compounds, and from a reference site was assessed by the Capture stress test and by the ACTH Challenge test, a new standardized in vivo method designed for field studies. The effects of seasonal factors, such as temperature and gonadal maturity on these tests were investigated. Measures of liver and muscle glycogen and histopathology were made to further characterize the biochemical and structural changes that may occur along with hormonal changes. The Capture stress test showed that an acute source of stress induced a lower cortisol response in fish from the highly contaminated site compared to the reference site, revealing a functional impairment of the HPI axis. The ACTH Challenge test showed that the hormonal responsiveness of the cortisol-secreting interrenal tissue, stimulated by a standard dose of ACTH injected i.p., was lower in fish from the highly contaminated site than the reference site. Spring is the season during which the impairment was the most evident. The possibility of using the reduced capacity of feral fish to respond to a standardized ACTH Challenge as an early bioindicator of toxic stress is discussed.

  6. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    SciTech Connect

    Yamada, Tomoya Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  7. Ontogeny of basic fibroblast growth factor binding sites in mouse ocular tissues

    SciTech Connect

    Fayein, N.A.; Courtois, Y.; Jeanny, J.C. )

    1990-05-01

    Basic fibroblast growth factor (bFGF) binding to ocular tissues has been studied by autoradiographical and biochemical approaches directly performed on sections during mouse embryonic and postnatal development. Frozen sections of embryos (9 to 18 days), newborns, and adults (1 day to 6 months) were incubated with iodinated bFGF. One specific FGF binding site (KD = 2.5 nM) is colocalized with heparan sulfate proteoglycans of the basement membranes and is heparitinase sensitive. It first appears at Day 9 around the neural tube, the optic vesicles, and below the head ectoderm and by Day 14 of embryonic development is found in all basement membranes of the eye. At Day 16, very intensely labeled patches appear, corresponding to mast cells which have been characterized by metachromatic staining of their heparin-rich granulations with toluidine blue. In addition to the latter binding, we have also observed a general diffuse distribution of silver grains on all tissues and preferentially in the ecto- and neuroectodermic tissues. From Days 17-18, there is heterogeneous labeling inside the retina, localized in the pigmented epithelium and in three different layers colocalized with the inner and outer plexiform layers and with the inner segments of the photoreceptors. This binding is heparitinase resistant but N-glycanase sensitive and may represent a second specific binding site corresponding to cellular FGF receptors (KD = 280 pM). Both types of binding patterns observed suggest a significant role for bFGF in eye development and physiology.

  8. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  9. Remodelling of periodontal tissues adjacent to sites treated according to the principles of guided tissue regeneration (GTR).

    PubMed

    Brägger, U; Hämmerle, C H; Mombelli, A; Bürgin, W; Lang, N P

    1992-10-01

    The aim of the present study was to assess the remodelling of alveolar bone adjacent to periodontal sites following therapy according to the principles of guided tissue regeneration (GTR) using computer-assisted densitometric image analysis (CADIA), and to compare the radiographic results to traditional clinical parameters. As required for digital subtraction analyses, periodically reproducible radiographs were obtained using a modification of the Rinn System and individual acrylic bite blocks for periodical identical radiographs. Ideally, a digital subtraction image from a site where absolutely no change in density had occurred would show a perfect cancellation of the structures. An average grey level value of 128 (the middle of the digitizer grey level range set by software) would show up at each pixel. Areas with grey levels < 128 in the subtraction image would indicate loss in density and grey levels > 128 would indicate increase in density. Within the subtraction images, areas were defined using the cursor to draw "regions of interest" (ROI) projected on the bony defect exposed to GTR covering the crestal bone as well as the region of potential "bonefill". The mean, median, the standard deviation and range of the grey levels of pixels within a particular ROI were calculated. Similarly sized ROI were drawn in bone areas not exposed to the GTR procedure serving as controls. The differences in the mean grey levels of all pixels within a particular ROI between the baseline, 3 and 12 months images were calculated for documentation of gain or loss in density. From 14 patients, standardized radiographs were available from baseline, 3 months and 12 months postsurgically, depicting one infraosseous defect before and after treatment according to the principles of GTR. The densitometric changes observed in these defects were compared to the clinically assessed changes measured at the site with the deepest baseline pocket depth. A mean clinical attachment gain of 2.36 mm

  10. The use of a prosthetic tissue expander to displace bowel from a brachytherapy implant site

    SciTech Connect

    Armstrong, J.G.; Harrison, L.B.; Dattoli, M.; Concepcion, R.; Minsky, B.D.; Fortner, J. )

    1990-12-01

    We describe the use of a prosthetic maneuver to displace bowel from an implant site. The patient presented with a recurrent low grade fibrosarcoma which was grossly excised with positive microscopic margins in the right paravertebral area. For this reason we performed an Iridium-192 implant using afterloading catheters. Because of several dense adhesions, it was not possible to mobilize an omental sling over the implant site. To prevent the small bowel from lying on the catheters, we inserted a prosthetic breast tissue expander. This was expanded with saline and bacitracin solution and placed in the tumor bed overlying the catheters, thereby displacing the small bowel away from the sources. A postoperative CT scan with gastrograffin demonstrated that this procedure was effective. There were no complications. We conclude that such devices are suitable for use under these circumstances and can achieve the objective of decreasing the dose of radiation to the small bowel.

  11. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  12. Prognostic Value of PLAGL1-Specific CpG Site Methylation in Soft-Tissue Sarcomas

    PubMed Central

    Peille, Anne-Lise; Brouste, Veronique; Kauffmann, Audrey; Lagarde, Pauline; Le Morvan, Valerie; Coindre, Jean-Michel; Chibon, Frederic; Bresson-Bepoldin, Laurence

    2013-01-01

    Soft tissue sarcomas (STS) are rare, complex tumors with a poor prognosis. The identification of new prognostic biomarkers is needed to improve patient management. Our aim was to determine the methylation status of the 118 CpG sites in the PLAGL1 tumor-suppressor gene P1 CpG island promoter and study the potential prognostic impact of PLAGL1 promoter methylation CpG sites in STS. Training cohorts constituted of 28 undifferentiated sarcomas (US) and 35 leiomyosarcomas (LMS) were studied. PLAGL1 mRNA expression was investigated by microarray analysis and validated by RT-qPCR. Pyrosequencing was used to analyze quantitative methylation of the PLAGL1 promoter. Associations between global promoter or specific CpG site methylation and mRNA expression were evaluated using Pearson’s product moment correlation coefficient. Cox univariate and multivariate proportional hazard models were used to assess the predictive power of CpG site methylation status. Sixteen CpG sites associated with PLAGL1 mRNA expression were identified in US and 6 in LMS. Statistical analyses revealed an association between CpG107 methylation status and both overall and metastasis-free survival in US, which was confirmed in a validation cohort of 37 US. The exhaustive study of P1 PLAGL1 promoter methylation identified a specific CpG site methylation correlated with mRNA expression, which was predictive for both metastasis-free and overall survival and may constitute the first US-specific biomarker. Such a biomarker may be relevant for identifying patients likely to derive greater benefit from treatment. PMID:24260468

  13. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants.

  14. [Dental implantation and soft tissue augmentation after ridge preservation in a molar site: a case report].

    PubMed

    Zhao, L P; Zhan, Y L; Hu, W J; Wang, H J; Wei, Y P; Zhen, M; Xu, T; Liu, Y S

    2016-12-18

    For ideal implant rehabilitation, an adequate bone volume, optical implant position, and stable and healthy soft tissue are required. The reduction of alveolar bone and changes in its morphology subsequent to tooth extraction will result in insufficient amount of bone and adversely affect the ability to optimally place dental implants in edentulous sites. Preservation of alveolar bone volume through ridge preservation has been demonstrated to reduce the vertical and horizontal contraction of the alveolar bone crest after tooth extraction and reduce the need for additional bone augmentation procedures during implant placement. In this case, a patient presented with a mandible molar of severe periodontal disease, the tooth was removed as atraumatically as possible and the graft material of Bio-Oss was loosely placed in the alveolar socket without condensation and covered with Bio-Gide to reconstruct the defects of the alveolar ridge. Six months later, there were sufficient height and width of the alveolar ridge for the dental implant, avoiding the need of additional bone augmentation and reducing the complexity and unpredictability of the implant surgery. Soft tissue defects, such as gingival and connective tissue, played crucial roles in long-term implant success. Peri-implant plastic surgery facilitated development of healthy peri-implant structure able to withstand occlusal forces and mucogingival stress. Six months after the implant surgery, the keratinized gingiva was absent in the buccal of the implant and the vestibular groove was a little shallow. The free gingival graft technique was used to solve the vestibulum oris groove supersulcus and the absence of keratinized gingiva around the implant. The deepening of vestibular groove and broadening of keratinized gingiva were conducive to the long-term health and stability of the tissue surrounding the implant. Implant installation and prosthetic restoration showed favorable outcome after six months.

  15. Setting site-specific water-quality standards by using tissue residue criteria and bioaccumulation data. Part 1. Methodology.

    PubMed

    Toll, John E; Tear, Lucinda M; DeForest, David K; Brix, Kevin V; Adams, William J

    2005-01-01

    We have developed a method for determining site-specific water-quality standards (SSWQSs) for substances regulated based on tissue residues. The method uses a multisite regression model to solve for the conditional prior probability density function (PDF) on water concentration, given that tissue concentration equals a tissue residue threshold. The method then uses site-specific water and tissue concentration data to update the probabilities on a Monte Carlo sample of the prior PDF by using Bayesian Monte Carlo analysis. The resultant posterior PDF identifies the water concentration that, if met at the site, would provide a desired level of confidence of meeting the tissue residue threshold contingent on model assumptions. This allows for derivation of a SSWQS. The method is fully reproducible, statistically rigorous, and easily implemented. A useful property of the method is that the model is sensitive to the amount of site-specific data available, that is, a more conservative or protective number (water concentration) is derived when the data set is small or the variance is large. Likewise, as the site water concentration increases above the water-quality standard, more site-specific information is needed to demonstrate a safe concentration at the site. A companion paper demonstrates the method by using selenium as an example.

  16. The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis

    PubMed Central

    Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.

    2013-01-01

    Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844

  17. Analysis of XMRV integration sites from human prostate cancer tissues suggests PCR contamination rather than genuine human infection.

    PubMed

    Garson, Jeremy A; Kellam, Paul; Towers, Greg J

    2011-02-25

    XMRV is a gammaretrovirus associated in some studies with human prostate cancer and chronic fatigue syndrome. Central to the hypothesis of XMRV as a human pathogen is the description of integration sites in DNA from prostate tumour tissues. Here we demonstrate that 2 of 14 patient-derived sites are identical to sites cloned in the same laboratory from experimentally infected DU145 cells. Identical integration sites have never previously been described in any retrovirus infection. We propose that the patient-derived sites are the result of PCR contamination. This observation further undermines the notion that XMRV is a genuine human pathogen.

  18. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues.

    PubMed

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner.

  19. Exploring the Feasibility of Multi-Site Flow Cytometric Processing of Gut Associated Lymphoid Tissue with Centralized Data Analysis for Multi-Site Clinical Trials

    PubMed Central

    McGowan, Ian; Anton, Peter A.; Elliott, Julie; Cranston, Ross D.; Duffill, Kathryn; Althouse, Andrew D.; Hawkins, Kevin L.; De Rosa, Stephen C.

    2015-01-01

    The purpose of this study was to determine whether the development of a standardized approach to the collection of intestinal tissue from healthy volunteers, isolation of gut associated lymphoid tissue mucosal mononuclear cells (MMC), and characterization of mucosal T cell phenotypes by flow cytometry was sufficient to minimize differences in the normative ranges of flow parameters generated at two trial sites. Forty healthy male study participants were enrolled in Pittsburgh and Los Angeles. MMC were isolated from rectal biopsies using the same biopsy acquisition and enzymatic digestion protocols. As an additional comparator, peripheral blood mononuclear cells (PBMC) were collected from the study participants. For quality control, cryopreserved PBMC from a single donor were supplied to both sites from a central repository (qPBMC). Using a jointly optimized standard operating procedure, cells were isolated from tissue and blood and stained with monoclonal antibodies targeted to T cell phenotypic markers. Site-specific flow data were analyzed by an independent center which analyzed all data from both sites. Ranges for frequencies for overall CD4+ and CD8+ T cells, derived from the qPBMC samples, were equivalent at both UCLA and MWRI. However, there were significant differences across sites for the majority of T cell activation and memory subsets in qPBMC as well as PBMC and MMC. Standardized protocols to collect, stain, and analyze MMC and PBMC, including centralized analysis, can reduce but not exclude variability in reporting flow data within multi-site studies. Based on these data, centralized processing, flow cytometry, and analysis of samples may provide more robust data across multi-site studies. Centralized processing requires either shipping of fresh samples or cryopreservation and the decision to perform centralized versus site processing needs to take into account the drawbacks and restrictions associated with each method. PMID:26010577

  20. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    SciTech Connect

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  1. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    PubMed Central

    Abellán, P. Gómez; Santos, C. Gómez; Madrid, J. A.; Milagro, F. I.; Campion, J.; Martínez, J. A.; Luján, J. A.; Ordovás, J. M.; Garaulet, M.

    2015-01-01

    Introduction Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. Objective We investigated the ex vivo circadian behavior of leptin and its receptor expression in human adipose tissue (AT). Subjects and methods Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). Anthropometric variables and fasting plasma glucose, leptin, lipids and lipoprotein concentrations were determined. In order to investigate rhythmic expression pattern of leptin and its receptor, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h, using quantitative real-time PCR. Results Leptin expression showed an oscillatory pattern that was consistent with circadian rhythm in cultured AT. Similar patterns were noted for the leptin receptor. Leptin showed its achrophase (maximum expression) during the night, which might be associated to a lower degree of fat accumulation and higher mobilization. When comparing both fat depots, visceral AT anticipated its expression towards afternoon and evening hours. Interestingly, leptin plasma values were associated with decreased amplitude of LEP rhythm. This association was lost when adjusting for waist circumference. Conclusion Circadian rhythmicity has been demonstrated in leptin and its receptor in human AT cultures in a site-specific manner. This new knowledge paves the way for a better understanding of the autocrine/paracrine role of leptin in human AT. PMID:22411388

  2. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    SciTech Connect

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.; Barker, D.L.

    1985-12-01

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.

  3. Rapid changes in number of GDP binding sites on brown adipose tissue mitochondria

    SciTech Connect

    Swick, A.G.; Swick, R.W.

    1986-08-01

    (TH)GDP binding to brown adipose tissue (BAT) mitochondria increased more than twofold in 20 min when rats were moved from 27 to 4C. When animals housed at 4C for 2 h were returned to 27C, GDP binding decreased sharply in 20 min and returned to control levels in 2 h. These results are consistent with a rapid unmasking and remasking of GDP bindings sites. GDP binding to mitochondria from warm and acutely cold treated rats was not modified by prior swelling, by freeze-thawing, nor by sonication of the mitochondria before assay. GDP-inhibitable proton conductance, as measured by passive swelling, was unaffected by this brief exposure to cold but more than doubled in rats kept at 4C for 10 days. The authors hypothesize that the rate of GDP-inhibitable swelling may be a reflection of uncoupling protein concentration in the BAT mitochondria, whereas physiological thermogenic activity is more appropriately indicated by GDP binding. The alterations in binding activity appear not to be due to changes in the mitochondrial membrane integrity.

  4. Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations?

    PubMed

    Hammarlund-Udenaes, Margareta

    2010-03-01

    Active-site concentrations can be defined as the concentrations of unbound, pharmacologically active substances at the site of action. In contrast, the total concentrations of the drug in plasma/organ/tissue also include the protein- or tissue-bound molecules that are pharmacologically inactive. Plasma and whole tissue concentrations are used as predictors of effects and side effects because of their ease of sampling, while the concentrations of unbound drug in tissue are more difficult to measure. However, with the introduction of microdialysis and subsequently developed techniques, it has become possible to test the free drug hypothesis. The brain is an interesting organ in this regard because of the presence of the blood-brain barrier with its tight junctions and active efflux and influx transporters. We have proposed that research into brain drug delivery be divided into three main areas: the rate of delivery (PS, CL(in)), the extent of delivery (K(p,uu)) and the non-specific affinity of the drug to brain tissue, described by the volume of distribution of unbound drug in the brain (V(u,brain)). In this way, the concentration of unbound drug at the target site can be estimated from the total brain concentration and the plasma concentration after measuring the fraction of unbound drug. Results so far fully support the theory that active site concentrations are the best predictors when active transport is present. However, there is an urgent need to collect more relevant data for predicting active site concentrations in tissues with active transporters in their plasma membranes.

  5. Matricryptic sites control tissue injury responses in the cardiovascular system: relationships to pattern recognition receptor regulated events.

    PubMed

    Davis, George E

    2010-03-01

    This review addresses new concepts related to the importance of how cells within the cardiovascular system respond to matricryptic sites generated from the extracellular matrix (ECM) following tissue injury. A model is presented whereby matricryptic sites exposed from the ECM result in activation of multiple cell surface receptors including integrins, scavenger receptors, and toll-like receptors which together are hypothesized to coactivate downstream signaling pathways which alter cell behaviors following tissue injury. Of great interest are the relationships between matricryptic fragments of ECM called matricryptins and other stimuli that activate cells during injury states such as released components from cells (DNA, RNA, cytoskeletal components such as actin) or products from infectious agents in innate immunity responses. These types of cell activating molecules, which are composed of repeating molecular elements, are known to interact with pattern recognition receptors that (i) are expressed from cell surfaces, (ii) are released from cells following tissue injury, or (iii) circulate as components of plasma. Thus, cell recognition of matricryptic sites from the ECM appears to be an important component of a broad cell and tissue sensory system to detect and respond to environmental cues generated following varied types of tissue injury.

  6. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers.

    PubMed

    Kalantzi, I; Pergantis, S A; Black, K D; Shimmield, T M; Papageorgiou, N; Tsapakis, M; Karakassis, I

    2016-03-01

    Twenty-eight metals and elements were measured in the muscle, liver, gills, bone and intestine of farmed seabass and gilthead seabream from four Mediterranean fish farms. The influence of fish species and the effect of environmental conditions on the metal accumulation in fish tissues was investigated. Most concentrations were lower in muscle and higher in liver and bone than in other body tissues. Seabass accumulates more elements in its tissues than seabream. Fish reared in coarse, oxic sites accumulate more elements with higher concentrations in muscle, bone and intestine and with lower concentrations in liver and gills than fish reared in silty, anoxic sites. This may be attributed to feed type and sediment properties. According to the metal pollution index, hazard quotient, selenium health benefit values, carcinogenic risk of arsenic, maximum safe consumption and the permitted limits, the consumption of both farmed species should be considered as safe for human health.

  7. Determination of anesthetic molecule environments by infrared spectroscopy. II. Multiple sites for nitrous oxide in proteins, lipids, and brain tissue.

    PubMed

    Hazzard, J H; Gorga, J C; Caughey, W S

    1985-08-01

    The presence of molecules of the general anesthetic nitrous oxide (N2O) in oils, esters, proteins, red cells, cream, lipid vesicles, and brain tissue upon exposure to the gas was observed by infrared spectroscopy. Analysis of the N-N-O antisymmetric stretch band reveals a distribution of N2O molecules among several sites of differing polarity in these solutions and tissues. The sensitivity of the band intensity and frequency to the number and strength of the dipoles in the solvating molecules is demonstrated by the resolution of N2O-ester and N2O-alkane interactions in acetic acid ethyl ester and oleic acid methyl ester. In all aqueous solutions and in all tissues a population of N2O molecules in water is observed. At least two sites of N2O-protein interaction are observed in purified hemoglobin A and packed red cells; multiple N2O sites may also be present in bovine serum albumin. Two sites of N2O-lipid interaction are observed in whipping cream and in an aqueous suspension of phosphatidylcholine vesicles. The sites providing the least polar immediate environment to N2O in hemoglobin, cream, and vesicles give similar band frequencies to those found in pure alkane solvents. Infrared spectra of bovine brain tissue, upon exposure to N2O, show N2O molecules present in water and in two less-polar environments. Analysis of spectra of N2O in cerebellum tissue removed from a dog under halothane-N2O anesthesia reveals, in addition to N2O in water, a single population of N2O molecules in an alkane-like environment. Infrared spectroscopy provides a unique means of probing the structure of the environment of N2O and should prove useful in correlating anesthetic potency with anesthetic environment under physiological conditions.

  8. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots.

    PubMed

    Liao, Qiumei; Yu, Ying; Cao, Yujuan; Lin, Bixia; Wei, Jingjing

    2015-02-01

    The fluorescence labelling of plant hormone binding sites is an important analytical technique in research on the molecular mechanisms of plant hormone activities. The authors synthesised a jasmonic acid (JA)-conjugated ZnS:Mn quantum dot (QD) probe, with a cubic structure and average hydrodynamic sizes of about 17.0 nm. The maximum fluorescence emission of the probe was recorded at about 585 nm. The probe was used for fluorescence labelling of JA binding sites in mung bean seedling tissues. Analysis revealed that the probe exhibited high selectivity to JA binding sites and good performance in eliminating interference from background fluorescence in plant tissues. In addition, the probe did not exhibit any apparent biotoxicity, and is much more suitable than probes constructed from CdTe QDs for the analysis of biological samples.

  9. The mouse cornea as a transplantation site for live imaging of engineered tissue constructs.

    PubMed

    Poché, Ross A; Saik, Jennifer E; West, Jennifer L; Dickinson, Mary E

    2010-04-01

    The field of tissue engineering aims to recapitulate healthy human organs and 3-D tissue structures in vitro and then transplant these constructs in vivo where they can be effectively integrated within the recipient patient and become perfused by the host circulation. To improve the design of materials for artificial tissue scaffolds, it would be ideal to have a high-throughput imaging system that allows one to directly monitor transplanted tissue constructs in live animals over an extended period of time. By combining such an assay with transgenic, cell-specific fluorescent reporters, one could monitor such parameters as tissue construct perfusion, donor cell survival, and donor-host cell interaction/integration. Here, we describe a protocol for a modified version of the classical corneal micropocket angiogenesis assay, employing it as a live imaging "window" to monitor angiogenic poly(ethylene glycol) (PEG)-based hydrogel tissue constructs.

  10. Target site pharmacokinetics of linezolid after single and multiple doses in diabetic patients with soft tissue infection.

    PubMed

    Eslam, Roza Badr; Burian, Angela; Vila, Greisa; Sauermann, Robert; Hammer, Alexandra; Frenzel, Dorothea; Minichmayr, Iris K; Kloft, Charlotte; Matzneller, Peter; Oesterreicher, Zoe; Zeitlinger, Markus

    2014-09-01

    The underlying pathology of diabetic wounds, i.e. impairment of macro- and microcirculation, might also impact target site penetration of antibacterial drugs. To compare tissue concentrations of linezolid in infected and not infected tissue 10 patients suffering from type 2 diabetes with foot infection were included in the study. Tissue penetration of linezolid was assessed using in vivo microdialysis at the site of infection as well as in non-inflamed subcutaneous adipose tissue. All patients were investigated after receiving a single dose of linezolid and five patients in addition at steady state. After a single dose of linezolid significantly higher area under the concentration vs. time curve over 8 hours (AUC0-8 ) and maximum concentrations (Cmax )-values were observed in plasma (65.5 ± 21.2 mg*h/L and 16.4 ± 4.6 mg/L) as compared to inflamed (36.3 ± 22.9  mg*h/L and 6.6 ± 3.6 mg/L) and non-inflamed tissue (33.0 ± 17.7 mg*h/L and 6.7 ± 3.6 mg/L). Multiple administrations of linezolid led to disappearance of significant differences in Cmax and AUC0-8 between plasma, inflamed, and non-inflamed tissue. Approximately 2-fold increase of Cmax and AUC0-8 -values in tissue was observed at steady state as compared to the first administration. Penetration of linezolid is not impaired in diabetic foot infection but equilibrium between plasma and tissue might be delayed.

  11. Liver tissue engineering at extrahepatic sites in mice as a potential new therapy for genetic liver diseases.

    PubMed

    Ohashi, Kazuo; Waugh, Jacob M; Dake, Michael D; Yokoyama, Takashi; Kuge, Hiroyuki; Nakajima, Yoshiyuki; Yamanouchi, Masaki; Naka, Hiroyuki; Yoshioka, Akira; Kay, Mark A

    2005-01-01

    Liver tissue engineering using hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation or liver-directed gene therapy to correct various types of hepatic insufficiency. Hepatocytes are not sustained when transplanted under the kidney capsule of syngeneic mice. However, when we transplanted hepatocytes with the extracellular matrix components extracted from Engelbreth-Holm-Swarm cells, hepatocytes survived for at least 140 days and formed small liver tissues. Liver engineering in hemophilia A mice reconstituted 5% to 10% of normal clotting activity, enough to reduce the bleeding time and have a therapeutic benefit. Conversely, the subcutaneous space did not support the persistent survival of hepatocytes with Engelbreth-Holm-Swarm gel matrix. We hypothesized that establishing a local vascular network at the transplantation site would reduce graft loss. To test this idea, we provided a potent angiogenic agent before hepatocyte transplantation into the subcutaneous space. With this procedure, persistent survival was achieved for the length of the experiment (120 days). To establish that these engineered liver tissues also retained their native regeneration potential in vivo, we induced two different modes of proliferative stimulus to the naive liver and confirmed that hepatocytes within the extrahepatic tissues regenerated with activity similar to that of naive liver. In conclusion, our studies indicate that liver tissues can be engineered and maintained at extrahepatic sites, retain their capacity for regeneration in vivo, and used to successfully treat genetic disorders.

  12. Engineering liver tissues under the kidney capsule site provides therapeutic effects to hemophilia B mice.

    PubMed

    Ohashi, Kazuo; Tatsumi, Kohei; Utoh, Rie; Takagi, Soichi; Shima, Midori; Okano, Teruo

    2010-01-01

    Recent advances in liver tissue engineering have encouraged further investigation into the evaluation of therapeutic benefits based on animal disease models. In the present study, liver tissues were engineered in coagulation factor IX knockout (FIX-KO) mice, a mouse model of hemophilia B, to determine if the tissue engineering approach would provide therapeutic benefits. Primary hepatocytes were isolated from the liver of wild-type mice and suspended in a mixture of culture medium and extracellular matrix components. The hepatocyte suspension was injected into the space under the bilateral kidney capsules of the FIX-KO mice to engineer liver tissues. The plasma FIX activities (FIX:C) of the untreated FIX-KO mice were undetectable at any time point. In contrast, the liver tissue engineered FIX-KO mice achieved 1.5-2.5% of plasma FIX activities (FIX:C) and this elevated FIX:C level persisted throughout the 90 day experimental period. Significant FIX mRNA expression levels were found in the engineered liver tissues at levels similar to the wild-type livers. The present study demonstrates that liver tissue engineering could provide therapeutic benefits in the treatment of hemophilia B.

  13. Molecular genotyping of Echinococcus granulosus using formalin-fixed paraffin-embedded preparations from human isolates in unusual tissue sites.

    PubMed

    Hizem, A; M'rad, S; Oudni-M'rad, M; Mestiri, S; Hammedi, F; Mezhoud, H; Zakhama, A; Mokni, M; Babba, H

    2016-07-01

    Cystic echinococcosis (CE) caused by Echinococcus granulosus remains a serious problem worldwide for issues relating to public health and the economy. The most predominantly affected sites are the liver and the lungs, but other organs such as the heart, the spleen and the peritoneum can also be infected. Access to cysts from uncommon sites has limited genomic and molecular investigations. In the present study, genotypes of E. granulosus sensu lato were identified from formalin-fixed paraffin-embedded tissues (FF-PETs) implicated in human CE. Tissue samples were obtained from 57 patients with histologically confirmed CE. DNA samples were analysed using Egss 1 polymerase chain reaction (PCR) specific to the mitochondrial 12S rRNA gene of E. granulosus sensu stricto. All cysts were typed as E. granulosus sensu stricto with up to 35% of the liver and 16.6% of lungs being the most frequently infected, and up to 48.4% of samples being from rare sites. No correlation was found between cyst site and either the gender or the age of patients. This study demonstrates the possibility of exploiting atypical cysts using FF-PET samples and highlights the predominance of E. granulosus sensu stricto species in the Tunisian population, even in unusual infection sites.

  14. Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Lixin; Zhang, Miao; Yu, Ping

    2011-03-01

    We report imaging studies on site-specific peptide-targeting in tumor tissues using newly developed optical peptide probes and spectral-domain optical coherence tomography (SD-OCT). The system used two broadband superluminescent light emission diodes with different central wavelengths. An electro-optic modulation in the reference beam was used to get full-range deep imaging inside tumor tissues. The optical probes were based on Bombesin (BBN) that is a fourteen amino acid peptide. BBN has high binding affinity to gastrin-releasing peptide (GRP) receptors overexpressed on several human cancer cell lines. Fluorescence BBN probes were developed by conjugating the last eight residues of BBN, -Q-W-A-V-G-H-L-M-(NH2), with Alexa Flour 680 or Alexa Fluor 750 dye molecules via amino acid linker -G-G-G. The SD-OCT imaging can identify normal tissue and tumor tissue through the difference in scattering coefficient, and trace the BBN conjugate probes through the absorption of the dye molecules using the twowavelength algorithm. We performed the specific uptake and receptor-blocking experiments of the optical BBN probes in severely compromised immunodeficient mouse model bearing human PC-3 prostate tumor xenografts. Tumor and muscle tissues were collected and used for SD-OCT imaging. The SD-OCT images showed fluorescence traces of the BBN probes in the peptide-targeted tumor tissues. Our results demonstrated that SD-OCT is a potential tool for preclinical and clinical early cancer detection.

  15. Metal(loid)s in sediment, lobster and mussel tissues near historical gold mine sites.

    PubMed

    Walker, Tony R; Grant, Jon

    2015-12-15

    Previous studies near historical gold mining districts in Nova Scotia have identified significant enrichment of metal(loid)s in coastal marine sediments. Most of this inventory is buried below biologically active zones, although in some areas arsenic has bioaccumulated in marine biota resulting in localised bivalve shellfish closures. Isaacs Harbour is poised for future industrial development, but before potential impacts are predicted, current marine baseline conditions must be determined. To address this gap, this study established a baseline using surface sediments and biota (mussel and lobster tissues), to provide a broader picture of metal(loid)s in the marine environment. Results confirmed previous studies showing that most sediment metal(loid) concentrations still exceeded Canadian Marine Sediment Quality Guidelines, and also provided evidence of Canadian Food Inspection Agency fish tissue exceedances of arsenic in lobster and lead in mussel tissues indicating that some bioaccumulation of legacy contaminants in marine biota continues to the present day.

  16. Tissue radionuclide concentrations in water birds and upland birds on the Hanford Site (USA) from 1971-2009.

    PubMed

    Delistraty, Damon; Van Verst, Scott

    2011-08-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result, there is a need to characterize contaminant effects on site biota. Within this framework, the main purpose of our study was to evaluate radionuclide concentrations in bird tissue, obtained from the Hanford Environmental Information System (HEIS). The database was sorted by avian group (water bird vs. upland bird), radionuclide (over 20 analytes), tissue (muscle, bone, liver), location (onsite vs. offsite), and time period (1971-1990 vs. 1991-2009). Onsite median concentrations in water birds were significantly higher (Bonferroni P < 0.05) than those in onsite upland birds for Cs-137 in muscle (1971-1990) and Sr-90 in bone (1991-2009), perhaps due to behavioral, habitat, or trophic species differences. Onsite median concentrations in water birds were higher (borderline significance with Bonferroni P = 0.05) than those in offsite birds for Cs-137 in muscle (1971-1990). Onsite median concentrations in the earlier time period were significantly higher (Bonferroni P < 0.05) than those in the later time period for Co-60, Cs-137, Eu-152, and Sr-90 in water bird muscle and for Cs-137 in upland bird muscle tissue. Median concentrations of Sr-90 in bone were significantly higher (Bonferroni P < 0.05) than those in muscle for both avian groups and both locations. Over the time period, 1971-2009, onsite median internal dose was estimated for each radionuclide in water bird and upland bird tissues. However, a meaningful dose comparison between bird groups was not possible, due to a dissimilar radionuclide inventory, mismatch of time periods for input radionuclides, and lack of an external dose estimate. Despite these limitations, our results contribute toward ongoing efforts to characterize ecological risk at the Hanford Site.

  17. Soft Tissue Giant Cell Tumour of Low Malignant Potential: A Rare Tumour at a Rare Site

    PubMed Central

    Bhat, Amoolya; V., Geethamani; C., Vijaya

    2013-01-01

    “Soft tissue giant cell tumour of low malignant potential” is considered as the soft tissue counterpart of osteoclastoma of the bone. It is a primary soft tissue tumour which is classified under the category of fibrohistiocytic tumours of intermediate malignancy.Seventy percent of the tumours involve the extremities and only about seven percent of them arise in head and neck region. They are composed of nodules of histiocytes in a vascular stroma, with multinucleated osteoclast-like giant cells positive for vimentin, smooth muscle actin (SMA), CD68 and Tarterate Resistant Acid Phosphatase (TRAP). We are presenting a case of a 75-year-old man who had a nodule on the ala of the nose. Histopathology showed a histiocytic lesion. Benign fibrous histiocytoma, plexiform fibrohistiocytic tumour, solitary reticulohistiocytoma and histioid leprosy were ruled out by using special stains and immunostains. Expression of smooth muscle actin and CD68 confirmed the diagnosis of a soft tissue giant cell tumour with a low malignant potential. PMID:24551690

  18. Tissue adhesive to treat 2-site corneal melting associated with topical ketorolac use.

    PubMed

    Marcon, Alexandre S; Rapuano, Christopher J; Tabas, Janine G

    2003-02-01

    We report a case of a 78-year-old man presenting with 2 discrete areas of sterile corneal melting associated with chronic use of topical ketorolac after uneventful clear corneal phacoemulsification. He was treated successfully with tissue adhesive application. Patients receiving chronic topical ketorolac treatment, especially those with ocular surface abnormalities, can present with severe complications such as corneal melting.

  19. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...

  20. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloid-β pathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA

  1. PCB in tissue concentrations in great blue heron occupying a Superfund site: Risk assessment implications

    SciTech Connect

    Halbrook, R.S.; Brewer, R.; Mitchell, J.M.

    1994-12-31

    Using existing ambient concentrations of chemicals and conservative assumptions, preliminary risk assessment has indicated that piscivorous wildlife along the Clinch River adjacent to the Oak Ridge Reservation (ORR), Oak Ridge, TN are potentially at risk from exposure to PCBs. Total PCB concentrations in great blue heron egg and chick liver tissue (7.69 {mu}g/g and 1.91 {mu}g/g, respectively) collected from a tributary to the Clinch River passing through the ORR, were significantly greater than concentrations in egg and chick liver tissue (1.24 {mu}g/g and 0.71 {mu}g/g, respectively) collected off the ORR. Mono and non-ortho CB congeners also were greater in heron tissues collected on the ORR compared to those collected off the ORR. Reproductive parameters (eggs/nest and chicks/nest) were not significantly different between locations. These data indicate that herons nesting on the ORR are exposed to PCBs, however, concentrations are insufficient to illicit a detectable adverse reproductive response in this species. Risk assessment implications are that piscivorous species utilizing habitats on the ORR are accumulating environmental contaminants greater than back ground concentrations for this region, however, only the most sensitive species are probably adversely effected. Continued monitoring will provide base-line data for evaluating natural resource damages and remediation decisions.

  2. Binding of bovine thyrotropin to specific sites in thyroid tissue from control and hemithyroidectomized rats

    SciTech Connect

    Clark, O.H.; Lambert, W.R.; Amir, S.M.; Ingbar, S.H.

    1985-12-01

    The binding of 125I-bovine thyrotropin to thyroid particulate fractions from sham-operated (control) and hemithyroidectomized rats was compared to determine if a change in either the number of bovine thyroid-stimulating hormone (bTSH) binding sites or their affinity for bTSH occurs in physiological situations that evoke changes in the intensity of thyroid stimulation. Following hemithyroidectomy serum TSH levels increase and the remnant thyroid lobe enlarges. Because of compensatory thyroid hypertrophy the concentration of TSH binding sites in the thyroid glands from hemithyroidectomized and control rats was related to particulate protein concentration, to the degree of thyroid cellularity as indicated by DNA concentration, and to the concentration of the plasma membrane markers, 5'-nucleotidase and magnesium-dependent ATPase. In each of four experiments, saturation studies revealed that the maximum specific binding of TSH per unit particulate protein and per thyroid lobe was greater in particulates from remnant than from control thyroid lobes. When related to DNA concentration, the concentration of TSH binding sites in remnant lobes was approximately twice that in control lobes. Because of an increase in plasma membrane markers per lobe after hemithyroidectomy, however, there was no difference in the number of TSH binding sites when related to the concentrations of the membrane marker enzymes in the particulate fractions. As judged from Scatchard analysis, the affinity of TSH binding was lower in remnant than in control lobes. This was partially but not completely due to the increased concentration of particulate protein in the remnant thyroid. These experiments demonstrate that the increase in serum TSH levels after hemithyroidectomy in the rat is associated with alterations in TSH receptor capacity and affinity.

  3. Identification of hormone esters in injection site in muscle tissues by LC/MS/MS.

    PubMed

    Costain, R M; Fesser, A C E; McKenzie, D; Mizuno, M; MacNeil, J D

    2008-12-01

    The detection of hormone abuse for growth promotion in food animal production is a global concern. Initial testing for hormones in Canada was directed at the compounds approved for use in beef cattle, melengestrol acetate, trenbolone acetate and zeranol, and the banned compound diethylstilbestrol (DES). No hormonal growth promoters are approved for use in veal production in Canada. However, instances of use of trenbolone and clenbuterol were detected in Canada in the 1990s. During the development of a new analytical method for testosterone and progesterone, there were reports of suspicious injection sites being found in veal calves. Upon implementation of the method, analysis of investigative samples revealed significant residues of testosterone in some injection sites. To prove that the source of these residues was exogenous, a fully validated method for hormone esters was developed to confirm the presence of exogenous hormones in these injection sites. The QUECHERS model was employed in methods development and resulted in a simple, effective extraction technique that consisted of sample pre-homogenization, liquid/liquid partitioning, extract dilution, filtration and use of LC/MS/MS to provide detection selectivity. The result was an adaptable MS/MS confirmation technique that meets the needs of Canadian regulatory authorities to confirm the misuse of injectable testosterone, and potentially other hormones, in food animal production.

  4. Incidence of soft tissue sarcomas in an Italian area affected by illegal waste dumping sites.

    PubMed

    Benedetti, Marta; Fazzo, Lucia; Buzzoni, Carlotta; Comba, Pietro; Magnani, Corrado; Fusco, Mario

    2015-01-01

    The aim of the present study was to investigate the possible association between occurrence of soft tissue sarcomas (STS) and residence in an Italian area affected by illegal practices of dumping and setting fire to both hazardous and solid urban wastes. Standardized incidence ratios (SIRs) were computed separately for STS and some specific STS subtypes. The analysis was performed for the total population and for specific age groups, namely, children, adolescents, and adults. In adults, no significant increase in STS was found other than for gastrointestinal stromal tumors in males. A nonsignificant increase in incidence of STS was observed for male children and female adolescents. The results of the present study do not allow conclusions for a causal association. In the absence of previous epidemiological studies on this issue, further investigations are needed.

  5. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  6. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  7. Benzodiazepine binding sites in rat interscapular brown adipose tissue: effect of cold environment, denervation and endocrine ablations

    SciTech Connect

    Solveyra, C.G.; Romeo, H.E.; Rosenstein, R.E.; Estevez, A.G.; Cardinali, D.P.

    1988-01-01

    /sup 3/H-Flunitrazepam (FNZP) binding was examined in a crude membrane fraction obtained from rat interscapular brown adipose tissue (IBAT). A single population of binding sites was apparent with dissociation constant (K/sub D/) = 0.47 +/- 0.04 uM and maximal number of binding sites (B/sub max/ = 31 +/- 5 pmol.mg prot/sup -1/. From the activity of several benzodiazepine (BZP) analogs to compete for the binding, the peripheral nature of FNZP binding was tentatively established. Similar BZP binding sites were detectable in isolated IBAT mitochondria. Exposure of rats to 4 /sup 0/C for 15 days decreased B/sub max/ significantly without affecting K/sub D/. Cold-induced decrease in B/sub max/ of BZP binding was prevented by surgical IBAT denervation. Denervation prevented or impaired the increased activity of the mitochondrial markers succinate dehydrogenase and malate dehydrogenase in IBAT of cold-exposed rats, but did not affect monoamine oxidase activity. Their results indicate that BZP binding in rat IBAT may belong to the peripheral type, is decreased by a cold environment through activation of peripheral sympathetic nerves and is affected by hypophysectomy. BZP and GDP binding in IBAT mitochondria seem not to be functionally related. 23 references, 4 figures, 3 tables.

  8. Tissue engineering with recombinant human platelet-derived growth factor BB for implant site development.

    PubMed

    Nevins, Marc L; Reynolds, Mark A

    2011-03-01

    Currently, PDGF-BB is FDA-approved for periodontal regeneration as part of a dental bone-filling device only. Although this device uses beta-TCP as the scaffold carrier, there has been considerable clinical interest in combining this growth factor with other bone replacement grafts, particularly bone allografts. This article reports on clinical experiences using rhPDGF-BB with bone allografts for implant site development. After careful evaluation of clinical parameters and consideration of current and emerging evidence, the off-label use of rhPDGF-BB was determined in the following case reports to be consistent with good clinical practice and in the patient's best interest. Clinical, radiographic, and histologic observations from the following selected cases are presented to illustrate treatment outcomes achieved using this combination strategy: ridge preservation for extraction sockets with alveolar wall defects; ridge preservation for extraction sockets minimally invasive techniques; lateral ridge augmentation; and sinus augmentation. All of the cases presented and reviewed were surgically managed using 0.5 ml of 0.3 mg/ml of rhPDGF delivered using a particulate bone allograft (FDBA or DFDBA) as a scaffold. Controlled clinical trials are necessary to establish the relative effectiveness of rhPDGF-BB combined with different mammalian scaffolds for alveolar augmentation.

  9. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children

    SciTech Connect

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavare, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth . E-mail: Liz.Crowne@ubht.swest.nhs.uk

    2005-08-15

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNF{alpha} exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h(3) versus 69 h(4); P = 0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P = 0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P = 0.014) and further elevated by acute exposure to TNF{alpha} (+230(52)%; P = 0.019 versus +123(24)%; P = 0.025, respectively). TNF{alpha} also significantly increased basal glucose transport rates (+44(14)%; P = 0.006 versus +34(11)%; P = 0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNF{alpha} exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.

  10. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children.

    PubMed

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavaré, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth

    2005-08-15

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFalpha exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h3 versus 69 h4; P=0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P=0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P=0.014) and further elevated by acute exposure to TNFalpha (+230(52)%; P=0.019 versus +123(24)%; P=0.025, respectively). TNFalpha also significantly increased basal glucose transport rates (+44(14)%; P=0.006 versus +34(11)%; P=0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFalpha exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.

  11. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    PubMed

    Nickerson, Cheryl A; Ott, C Mark; Castro, Sarah L; Garcia, Veronica M; Molina, Thomas C; Briggler, Jeffrey T; Pitt, Amber L; Tavano, Joseph J; Byram, J Kelly; Barrila, Jennifer; Nickerson, Max A

    2011-01-01

    Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969-2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a

  12. An intramembranous ossification model for the in silico analysis of bone tissue formation in tooth extraction sites.

    PubMed

    Corredor-Gómez, Jennifer Paola; Rueda-Ramírez, Andrés Mauricio; Gamboa-Márquez, Miguel Alejandro; Torres-Rodríguez, Carolina; Cortés-Rodríguez, Carlos Julio

    2016-07-21

    The accurate modeling of biological processes allows us to predict the spatiotemporal behavior of living tissues by computer-aided (in silico) testing, a useful tool for the development of medical strategies, avoiding the expenses and potential ethical implications of in vivo experimentation. A model for bone healing in mouth would be useful for selecting proper surgical techniques in dental procedures. In this paper, the formulation and implementation of a model for Intramembranous Ossification is presented aiming to describe the complex process of bone tissue formation in tooth extraction sites. The model consists in a mathematical description of the mechanisms in which different types of cells interact, synthesize and degrade extracellular matrices under the influence of biochemical factors. Special attention is given to angiogenesis, oxygen-dependent effects and growth factor-induced apoptosis of fibroblasts. Furthermore, considering the depth-dependent vascularization of mandibular bone and its influence on bone healing, a functional description of the cell distribution on the severed periodontal ligament (PDL) is proposed. The developed model was implemented using the finite element method (FEM) and successfully validated by simulating an animal in vivo experiment on dogs reported in the literature. A good fit between model outcome and experimental data was obtained with a mean absolute error of 3.04%. The mathematical framework presented here may represent an important tool for the design of future in vitro and in vivo tests, as well as a precedent for future in silico studies on osseointegration and mechanobiology.

  13. Tissue classification of large-scale multi-site MR data using fuzzy k-nearest neighbor method

    NASA Astrophysics Data System (ADS)

    Ghayoor, Ali; Paulsen, Jane S.; Kim, Regina E. Y.; Johnson, Hans J.

    2016-03-01

    This paper describes enhancements to automate classification of brain tissues for multi-site degenerative magnetic resonance imaging (MRI) data analysis. Processing of large collections of MR images is a key research technique to advance our understanding of the human brain. Previous studies have developed a robust multi-modal tool for automated tissue classification of large-scale data based on expectation maximization (EM) method initialized by group-wise prior probability distributions. This work aims to augment the EM-based classification using a non-parametric fuzzy k-Nearest Neighbor (k-NN) classifier that can model the unique anatomical states of each subject in the study of degenerative diseases. The presented method is applicable to multi-center heterogeneous data analysis and is quantitatively validated on a set of 18 synthetic multi-modal MR datasets having six different levels of noise and three degrees of bias-field provided with known ground truth. Dice index and average Hausdorff distance are used to compare the accuracy and robustness of the proposed method to a state-of-the-art classification method implemented based on EM algorithm. Both evaluation measurements show that presented enhancements produce superior results as compared to the EM only classification.

  14. Tissue Harvesting Site and Culture Medium Affect Attachment, Growth, and Phenotype of Ex Vivo Expanded Oral Mucosal Epithelial Cells.

    PubMed

    Islam, Rakibul; Eidet, Jon Roger; Badian, Reza A; Lippestad, Marit; Messelt, Edward; Griffith, May; Dartt, Darlene A; Utheim, Tor Paaske

    2017-04-06

    Transplantation of cultured oral mucosal epithelial cells (OMECs) is a promising treatment strategy for limbal stem cell deficiency. In order to improve the culture method, we investigated the effects of four culture media and tissue harvesting sites on explant attachment, growth, and phenotype of OMECs cultured from Sprague-Dawley rats. Neither choice of media or harvesting site impacted the ability of the explants to attach to the culture well. Dulbecco's modified Eagle's medium/Ham's F12 (DMEM) and Roswell Park Memorial Institute 1640 medium (RPMI) supported the largest cellular outgrowth. Fold outgrowth was superior from LL explants compared to explants from the buccal mucosa (BM), HP, and transition zone of the lower lip (TZ) after six-day culture. Putative stem cell markers were detected in cultures grown in DMEM and RPMI. In DMEM, cells from TZ showed higher colony-forming efficiency than LL, BM, and HP. In contrast to RPMI, DMEM both expressed the putative stem cell marker Bmi-1 and yielded cell colonies. Our data suggest that OMECs from LL and TZ cultured in DMEM give rise to undifferentiated cells with high growth capacity, and hence are the most promising for treatment of limbal stem cell deficiency.

  15. Measurement site and the association between visceral and abdominal subcutaneous adipose tissue with metabolic risk in women.

    PubMed

    Kuk, Jennifer L; Church, Timothy S; Blair, Steven N; Ross, Robert

    2010-07-01

    The associations between visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (ASAT) and metabolic risk may be influenced by measurement site. The aim of this study was to compare the strength of the associations between VAT and ASAT, as assessed by a cross-sectional image (area) or total volume, and prevalent metabolic syndrome (MetS). We also examined the association between changes in abdominal AT area and volume with concomitant changes in metabolic risk. Abdominal AT volume and areas were derived using ~35 continuous computed tomography (CT) images from T10-T11 to L5-S1 in overweight or obese postmenopausal women before (n = 67) and after (n = 39) a 6-month exercise intervention. At baseline, measurement site did not influence the inter-relationship between ASAT area and total volume, and between ASAT and MetS. Conversely, VAT areas at L1-L2 and L2-L3 were stronger correlates of VAT volume at baseline (L1-L2 (r = 0.94), L2-L3 (r = 0.95), L4-L5 (r = 0.89)) and changes therein (L1-L2 (r = 0.77), L2-L3 (r = 0.75), L4-L5 (r = 0.55)) as compared to L4-L5, but were not significantly better predictors of MetS as compared to L4-L5 or the total volume (L2-L3: odds ratio (OR) = 2.68 (1.6-4.4), L1-L2: OR = 1.88 (1.2-3.0), L4-L5: OR = 2.56 (1.6-4.1), volume: OR = 2.07 (1.1-3.8)). Changes in VAT and ASAT were not associated with changes in MetS (P > 0.10). Although measurement site has an impact on the prediction of VAT volume, this does not translate into an improved prediction for the MetS. Thus, there is not enough evidence to support changing the current research practice of assessing VAT volume or at L4-L5 for the prediction of metabolic risk.

  16. Comparison of the Biobullet versus traditional pharmaceutical injection techniques on injection-site tissue damage and tenderness in beef subprimals.

    PubMed

    Sullivan, M M; Vanoverbeke, D L; Kinman, L A; Krehbiel, C R; Hilton, G G; Morgan, J B

    2009-02-01

    The incidence and severity of injection-site lesions has decreased since the development of the Beef Quality Assurance program. The objective was to evaluate the route of administration and the pharmaceutical product on the impact on tenderness, collagen concentration, and lesion occurrence in muscles of chucks and rounds. A total of 144 yearling steers (initial BW = 383 +/- 29.4 kg) were selected and transported to Oklahoma State University. Steers were blocked into 2 groups of 72 based on initial BW and were randomly allocated, within block, into pens of 6 head per pen (12 pens per block). Each pen was randomly assigned an injection protocol. On May 19, 2006 (d 0), steers were administered one of the following treatment injections: a standard Biobullet containing 100 mg of ceftiofur sodium (Naxel, Pfizer Inc., New York, NY); a traditional needle and syringe dose of ceftiofur sodium; a standard Biobullet containing BallistiVac infectious bovine rhinotracheitis (IBR; Titanium 5, SolidTech Animal Health, Newcastle, OK); a traditional needle and syringe dose of IBR; a traditional needle and syringe dose of Vira Shield 5 (Grand Laboratories Inc., Freeman, SD); a standard placebo Biobullet; or a traditional needle and syringe dose of sterile water. Percentage of samples with an identifiable lesion did not differ by drug administered or injection method. Warner-Bratzler shear force values of lesion center cores in chucks tended to be different (P = 0.07) from cores from the control steaks and at 2.54 and 5.08 cm away from the lesion center. Lesion centers from the Biobullet-BallistiVac IBR had a Warner-Bratzler shear force value of 7.01 kg, which was greater (P < 0.05) than values for lesion centers from chucks injected with a Biobullet-placebo (6.27 kg) or needle-ceftiofur sodium (5.08 kg). No significant differences (P > 0.10) were observed in the total collagenous connective tissue in samples extracted from the chuck or round. The comparison of lesion site and

  17. Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis--phylogeny, site-directed mutagenesis, and expression in nonanther tissues.

    PubMed

    Jepson, Christina; Karppinen, Katja; Daku, Rhys M; Sterenberg, Brian T; Suh, Dae-Yeon

    2014-09-01

    Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues.

  18. [New challenge of tissue repair and regenerative medicine: to achieve a perfect repair and regeneration of multiple tissues in wound sites].

    PubMed

    Fu, X B

    2016-01-01

    Great achievements in the study of tissue repair and regeneration have been made, and many of these successes have been shown to be beneficial to the patients in recent years. However, perfect tissue repair and regeneration of damaged tissues and organs remain to be great challenges in the management of trauma and diseases. Based on the progress in developmental biology in animals and advances in stem cell biology, it is possible to attain the aim of perfect repair and regeneration by means of somatic cell reprogramming and different inducing techniques.

  19. Study on Metal Concentrations in Tissues of Mallard and Pochard from Two Major Wintering Sites in Southeastern Caspian Sea, Iran.

    PubMed

    Sinka-Karimi, Mohammad Hosein; Pourkhabbaz, Ali Reza; Hassanpour, Mehdi; Levengood, Jeffrey M

    2015-09-01

    We examined concentrations of cadmium, chromium, iron, lead and zinc in the kidney, liver, and pectoral muscle of Mallards (Anas platyrhynchos; n = 30) and Pochards (Aythya ferina; n = 30) from two important wintering sites in the southeastern Caspian Sea in the winter of 2012. Mean lead concentrations (µg g(-1) ww) in livers (2.36 ± 1.00) of Pochard and in kidneys (3.43 ± 0.91) of Mallard exceeded the exposure threshold levels in liver (1.5 µg g(-1) ww) and kidney (3 µg g(-1) ww) of waterfowl. Mean cadmium concentrations in livers (1.63 ± 0.66) of Pochards exceeded the background level of this metal in liver (1 µg g(-1) ww) of waterfowl. Chromium, iron and zinc concentrations were within the normal range as reported in other duck studies. Gender-related and inter-specific variation of metal concentrations in analyzed tissues were observed (t test, p < 0.05). Our results indicated that waterfowl using the Miankalah and Gomishan International Wetlands are being exposed to elevated concentrations of cadmium and lead.

  20. DDTs in rice frogs (Rana limnocharis) from an agricultural site, South China: tissue distribution, biomagnification, and potential toxic effects assessment.

    PubMed

    Wu, Jiang-Ping; Zhang, Ying; Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian

    2012-04-01

    Contamination with agricultural pesticides such as dichlorodiphenyltrichloroethane (DDT) and its metabolites, dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), is among several proposed stressors contributing to the global declines in amphibian populations and species biodiversity. These chemicals were examined in insects and in the muscle, liver, and eggs of rice frogs (Rana limnocharis) from the paddy fields of an agricultural site in South China. The ΣDDT (sum of DDT, DDE, and DDD) concentrations ranged from 154 to 915, 195 to 1,400, and 165 to 1,930 ng/g lipid weight in the muscle, liver, and eggs, respectively. All the DDTs (DDT, DDE, and DDD) showed higher affinity for the liver relative to muscle tissue and can be maternally transferred to eggs in female frogs. The average biomagnification factors for DDTs ranged from 1.6 to 1.9 and 1.5 to 2.9 in female and male frogs, respectively, providing clear evidence of their biomagnification from insects to frogs. Compared with the reported DDT levels demonstrated to have toxic effects on frogs, DDTs in the present frogs are unlikely to constitute an immediate health risk. However, the adverse impacts of high DDT residues in eggs on the hatching success and their potential toxicity to the newly metamorphosed larval frogs should be assessed further.

  1. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury.

    PubMed

    Hawryluk, Gregory W J; Phan, Nicolas; Ferguson, Adam R; Morabito, Diane; Derugin, Nikita; Stewart, Campbell L; Knudson, M Margaret; Manley, Geoffrey; Rosenthal, Guy

    2016-11-01

    OBJECTIVE The optimal site for placement of tissue oxygen probes following traumatic brain injury (TBI) remains unresolved. The authors used a previously described swine model of focal TBI and studied brain tissue oxygen tension (PbtO2) at the sites of contusion, proximal and distal to contusion, and in the contralateral hemisphere to determine the effect of probe location on PbtO2 and to assess the effects of physiological interventions on PbtO2 at these different sites. METHODS A controlled cortical impact device was used to generate a focal lesion in the right frontal lobe in 12 anesthetized swine. PbtO2 was measured using Licox brain tissue oxygen probes placed at the site of contusion, in pericontusional tissue (proximal probe), in the right parietal region (distal probe), and in the contralateral hemisphere. PbtO2 was measured during normoxia, hyperoxia, hypoventilation, and hyperventilation. RESULTS Physiological interventions led to expected changes, including a large increase in partial pressure of oxygen in arterial blood with hyperoxia, increased intracranial pressure (ICP) with hypoventilation, and decreased ICP with hyperventilation. Importantly, PbtO2 decreased substantially with proximity to the focal injury (contusion and proximal probes), and this difference was maintained at different levels of fraction of inspired oxygen and partial pressure of carbon dioxide in arterial blood. In the distal and contralateral probes, hypoventilation and hyperventilation were associated with expected increased and decreased PbtO2 values, respectively. However, in the contusion and proximal probes, these effects were diminished, consistent with loss of cerebrovascular CO2 reactivity at and near the injury site. Similarly, hyperoxia led to the expected rise in PbtO2 only in the distal and contralateral probes, with little or no effect in the proximal and contusion probes, respectively. CONCLUSIONS PbtO2 measurements are strongly influenced by the distance from the

  2. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection.

    PubMed

    Damouche, Abderaouf; Lazure, Thierry; Avettand-Fènoël, Véronique; Huot, Nicolas; Dejucq-Rainsford, Nathalie; Satie, Anne-Pascale; Mélard, Adeline; David, Ludivine; Gommet, Céline; Ghosn, Jade; Noel, Nicolas; Pourcher, Guillaume; Martinez, Valérie; Benoist, Stéphane; Béréziat, Véronique; Cosma, Antonio; Favier, Benoit; Vaslin, Bruno; Rouzioux, Christine; Capeau, Jacqueline; Müller-Trutwin, Michaela; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Lambotte, Olivier; Bourgeois, Christine

    2015-09-01

    Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic

  3. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection

    PubMed Central

    Damouche, Abderaouf; Huot, Nicolas; Dejucq-Rainsford, Nathalie; Satie, Anne-Pascale; Mélard, Adeline; David, Ludivine; Gommet, Céline; Ghosn, Jade; Noel, Nicolas; Pourcher, Guillaume; Martinez, Valérie; Benoist, Stéphane; Béréziat, Véronique; Cosma, Antonio; Favier, Benoit; Vaslin, Bruno; Rouzioux, Christine; Capeau, Jacqueline; Müller-Trutwin, Michaela; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Lambotte, Olivier; Bourgeois, Christine

    2015-01-01

    Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic

  4. Surgery for Soft Tissue Sarcomas

    MedlinePlus

    ... Tissue Sarcoma Treating Soft Tissue Sarcomas Surgery for Soft Tissue Sarcomas Depending on the site and stage ... of Soft Tissue Sarcomas, by Stage More In Soft Tissue Sarcoma About Soft Tissue Sarcoma Causes, Risk ...

  5. DNA adducts in hematopoietic tissues and blood of the mummichog (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, Virginia.

    PubMed

    Rose, W L; French, B L; Reichert, W L; Faisal, M

    2000-01-01

    Hydrophobic DNA adducts were examined in liver, anterior kidney, spleen, and blood of tumor-prone mummichog (Fundulus heterclitus) from the creosote-contaminated Atlantic Wood (AW) site (Elizabeth River, Virginia). DNA adducts eluted in a diagonal radioactive zone, characteristic of polycyclic aromatic hydrocarbon exposure, in all examined tissues of AW fish. Mummichog demonstrated significantly higher levels of DNA adducts in spleen (394 +/- 109 nmol adducts/mol nucleotides) than in liver (201 +/- 77 nmol adducts/mol nucleotides) or anterior kidney (211 +/- 68 nmol adducts/mol nucleotides; P = 0.036). The levels of DNA adducts in the pooled blood (pool of four) were 142 nmol adducts/mol nucleotides. DNA adducts were not detected in the liver, anterior kidney, spleen and blood of fish collected from the reference site (< 2 nmol adducts/mol nucleotides). The high levels of DNA adducts detected in tissues of AW mummichog may be linked to the increased cancer incidence and immunosuppression in this population.

  6. Identification of a 5-Methylcytosine Site that may Regulate C/EBPβ Binding and Determine Tissue-Specific Expression of the BPI Gene in Piglets

    PubMed Central

    Sun, Li; Wang, Jing; Yin, Xuemei; Sun, Shouyong; Zi, Chen; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2016-01-01

    Bactericidal/permeability-increasing protein (BPI) plays an important role in innate immune defense in mammals. A previous study showed that BPI gene expression correlates to gram-negative bacteria resistance. However, this gene showed tissue-specific expression in piglets and strongly expressed only in the digestive tract. To investigate the mechanisms governing the tissue-specificity, bisulfite sequencing PCR and next generation sequencing were used for high accuracy methylation quantitation of CpG islands of BPI gene upstream in 11 different tissues from weaned Yorkshire piglets. Additionally, qPCR was used to examine mRNA levels of BPI gene as well as transcription factor. We additionally analyzed transcriptional regulation by studying key 5-methylcytosine sites and transcription factors. Results showed that BPI mRNA levels significantly correlated with the overall methylation as well as methylation at mC-15 which was non-CpG site, no significant correlation could be found between the BPI and transcription factor mRNA levels, EMSA test showed that C/EBPβ could interact with BPI wild-type promoter DNA, but not methylated DNA. So we confirmed that methylation of mC-15 residue could inhibit the ability of C/EBPβ binding to the BPI promoter and affect the expression, and this mechanism probably plays a role in the tissue specificity of BPI gene expression in weaned piglets. PMID:27338589

  7. Anterior wrist and medial malleolus as the novel sites of tissue selection: a retrospective study on electric shock death through the hand-to-foot circuit pathway.

    PubMed

    Xu, Guangtao; Su, Ruibing; Lv, Junyao; Hu, Bo; Gu, Huan; Li, Xianxian; Gu, Jiang; Yu, Xiaojun

    2017-01-06

    Our previous work demonstrated that characteristic changes could occur in the anterior wrist and medial malleolus in electric deaths through the hand-to-foot electric circuit pathway in an electric shock rat model. However, whether the same phenomenon occurs in humans is unknown. The aim of the present retrospective study was to ascertain whether the anterior wrist and medial malleolus could also be selected as the promising and significant sites in electric death through the hand-to-foot circuit pathway. Nineteen human cases from the autopsy and one clinical survivor who sustained a severe electric shock through the hand-to-foot circuit pathway were analyzed. Additional ten autopsy patients who died from traffic accidents and sudden cardiac attacks were used as the control group. Histopathological changes in the soft tissues of the anterior wrist and medial malleolus in all autopsy patients, as well as the electric current pathway of the survivor, were observed. The results showed that the nuclear polarizations in the anterior wrist and medial malleolus soft tissues of the electric death were extremely noticeable as compared with the controls. The most severe electrical injury in the survivor occurred in the anterior wrist. These findings suggest that the soft tissues of the anterior wrist and/or the medial malleolus as the narrowest parts of the limbs could be used as the complementary sites for tissue selection and considered as necessary locations for examinations to assess the electric death in medicolegal identification.

  8. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition.

    PubMed

    Fitoussi, A; Dellu-Hagedorn, F; De Deurwaerdère, P

    2013-01-01

    The dopamine (DA), noradrenalin (NA) and serotonin (5-HT) monoaminergic systems are deeply involved in cognitive processes via their influence on cortical and subcortical regions. The widespread distribution of these monoaminergic networks is one of the main difficulties in analyzing their functions and interactions. To address this complexity, we assessed whether inter-individual differences in monoamine tissue contents of various brain areas could provide information about their functional relationships. We used a sensitive biochemical approach to map endogenous monoamine tissue content in 20 rat brain areas involved in cognition, including 10 cortical areas and examined correlations within and between the monoaminergic systems. Whereas DA content and its respective metabolite largely varied across brain regions, the NA and 5-HT contents were relatively homogenous. As expected, the tissue content varied among individuals. Our analyses revealed a few specific relationships (10%) between the tissue content of each monoamine in paired brain regions and even between monoamines in paired brain regions. The tissue contents of NA, 5-HT and DA were inter-correlated with a high incidence when looking at a specific brain region. Most correlations found between cortical areas were positive while some cortico-subcortical relationships regarding the DA, NA and 5-HT tissue contents were negative, in particular for DA content. In conclusion, this work provides a useful database of the monoamine tissue content in numerous brain regions. It suggests that the regulation of these neuromodulatory systems is achieved mainly at the terminals, and that each of these systems contributes to the regulation of the other two.

  9. New collagen matrix to avoid the reduction of keratinized tissue during guided bone regeneration in postextraction sites.

    PubMed

    De Santis, Daniele; Cucchi, Alessandro; de Gemmis, Antonio; Nocini Pier, Francesco

    2012-05-01

    For decades, there has been an ongoing controversy regarding the need for an "adequate" width of keratinized gingiva/mucosa to preserve periodontal and implant health. Today, the presence of a certain width of keratinized tissue is recommended for achieving long-term periodontal and implant success, and therefore, a new collagen matrix has been developed to enhance the width of keratinized gingiva/mucosa. During postextraction socket preservation, guided bone regeneration techniques require complete coverage of the barrier membrane to reduce the risk of infection, occasionally causing a reduction of the width of keratinized tissue. Using the new collagen matrix, it is possible to leave the membrane intentionally uncovered, without suturing the surgical flap above it, to avoid the reduction of such tissue.

  10. Evidences of basal lactate production in the main white adipose tissue sites of rats. Effects of sex and a cafeteria diet.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Sabater, David; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: perigonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and frozen. The complete WAT weight in each site was measured. Gene expression analysis of key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plasma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate levels and their relationships with lactate dehydrogenase activity and gene expressions were also measured. A main conclusion is the high production of lactate by WAT, practically irrespective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to produce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in WAT, a main function of the lactate dehydrogenase path may be that of converting excess available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to help control glycaemia and/or providing short chain substrates for use as energy source elsewhere. More information must be gathered before a conclusive role of WAT in the control of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is definitely established.

  11. A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling

    PubMed Central

    1995-01-01

    Degradation of type I collagen, the most abundant collagen, is initiated by collagenase cleavage at a highly conserved site between Gly775 and Ile776 of the alpha 1 (I) chain. Mutations at or around this site render type I collagen resistant to collagenase digestion in vitro. We show here that mice carrying a collagenase-resistant mutant Col1a-1 transgene die late in embryo-genesis, ascribable to overexpression of the transgene, since the same mutation introduced into the endogenous Col1a-1 gene by gene targeting permitted normal development of mutant mice to young adulthood. With increasing age, animals carrying the targeted mutation developed marked fibrosis of the dermis similar to that in human scleroderma. Postpartum involution of the uterus in the mutant mice was also impaired, with persistence of collagenous nodules in the uterine wall. Although type I collagen from the homozygous mutant mice was resistant to cleavage by human or rat fibroblast collagenases at the helical site, only the rat collagenase cleaved collagen trimers at an additional, novel site in the nonhelical N-telopeptide domain. Our results suggest that cleavage by murine collagenase at the N-telopeptide site could account for resorption of type I collagen during embryonic and early adult life. During intense collagen resorption, however, such as in the immediate postpartum uterus and in the dermis later in life, cleavage at the helical site is essential for normal collagen turnover. Thus, type I collagen is degraded by at least two differentially controlled mechanisms involving collagenases with distinct, but overlapping, substrate specificities. PMID:7790374

  12. Quantitation of DNA and hemoglobin adducts and apurinic/apyrimidinic sites in tissues of F344 rats exposed to propylene oxide by inhalation.

    PubMed

    Ríos-Blanco, M N; Faller, T H; Nakamura, J; Kessler, W; Kreuzer, P E; Ranasinghe, A; Filser, J G; Swenberg, J A

    2000-11-01

    Propylene oxide (PO) is a relatively weak mutagen that induces nasal tumor formation in rats during long-term inhalation studies at high exposures (> or =300 p.p.m.), concentrations that also cause cytotoxicity and increases in cell proliferation. Direct alkylation of DNA by PO leads mainly to the formation of N:7-(2-hydroxypropyl)guanine (7-HPG). In this study, the accumulation of 7-HPG in tissues of male F344 rats exposed to 500 p. p.m. PO (6 h/day, 5 days/week for 4 weeks) by the inhalation route was measured by gas chromatography-high resolution mass spectrometry (GC-HRMS). In animals killed up to 7 h following the end of the last exposure the levels of 7-HPG (pmol/micromol guanine) in nasal respiratory tissue, nasal olfactory tissue, lung, spleen, liver and testis DNA were 606.2 +/- 53.0, 297.5 +/- 56.5, 69.8 +/- 3.8, 43.0 +/- 3.8, 27.5 +/- 2.4 and 14.2 +/- 0.7, respectively. The amounts of 7-HPG in the same tissues of animals killed 3 days after cessation of exposure were 393.3 +/- 57.0, 222.7 +/- 29.5, 51.5 +/- 1.2, 26.7 +/- 1.0, 18.0 +/- 2.6 and 10.4 +/- 0.1. A comparable rate of disappearance of 7-HPG was found among all tissues. DNA from lymphocytes pooled from four rats killed at the end of the last exposure was found to have 39.6 pmol adduct/micromol guanine. Quantitation of DNA apurinic/apyrimidinic sites, potentially formed after adduct loss by chemical depurination or DNA repair, showed no difference between tissues from control and exposed rats. The level of N:-(2-hydroxypropyl)valine in hemoglobin of exposed rats was also determined using a modified Edman degradation method followed by GC-HRMS analysis. The value obtained was 90.2 +/- 10.3 pmol/mg globin. These data demonstrate that nasal respiratory tissue, which is the target tissue for carcinogenesis, has a much greater level of alkylation of DNA than non-target tissues.

  13. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    PubMed

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  14. What Is the Ideal Free Flap for Soft Tissue Reconstruction? A Ten-Year Experience of Microsurgical Reconstruction Using 334 Latissimus Dorsi Flaps From a Universal Donor Site.

    PubMed

    Kim, Jeong Tae; Kim, Sang Wha; Youn, Seungki; Kim, Youn Hwan

    2015-07-01

    Microsurgical free tissue transfer is regarded as the best available method of tissue reconstruction for intractable defects. The ideal soft tissue flap is thought to be the anterolateral thigh flap. On the basis of 334 procedures involving the latissimus dorsi (LD) flap, we discuss the advantages of the LD flap over the current universal option, and we aimed to establish whether the LD could also gain universal status in all reconstructive fields.Three hundred thirty-four reconstructive procedures using the LD flap were performed in 322 patients between September 2002 and July 2012. In accordance with defect characteristics, we performed 334 procedures using flaps, which included the LD muscle flap with skin graft, the myocutaneous flap, the muscle-sparing flap, the perforator flap, the chimeric flap, and the 2-flap technique using the serratus anterior branch.Flap-related complications occurred in 21 patients (6.3%), including total and partial flap failure. In 253 cases, the donor site was closed primarily, and in the remaining cases, we used split-thickness skin grafts. Donor-site complications occurred in 20 cases (6%). In 11 of the 182 cases, no suitable perforators were identified during surgery.The advantages of the LD as a donor site include the possibility of various harvesting positions without position change, versatility of components, availability of muscle to fill extensive defects, and presence of thick fascia to enable full abdominal reconstruction. On the basis of our experience, we concluded that this flap has the potential to be used as widely as, or in preference to, the anterolateral thigh flap in most reconstructive areas.

  15. Role of sensitivity of zinc oxide nanorods (ZnO-NRs) based photosensitizers in hepatocellular site of biological tissue

    NASA Astrophysics Data System (ADS)

    Atif, M.; Fakhar-E-Alam, M.; Alsalhi, M. S.

    2011-11-01

    Zinc oxide nanorods (ZnO-NRs) with high surface to volume ratio and bio compatibility are used as an efficient photosensitizer carrier system for achievement of Hepatocellular cancer cell (HepG2) necrosis within few minutes. Present study highlights the role of effectiveness of ZnO-NRs in photodynamic therapy (PDT). We have grown the ZnO-NRs on the tip of borosilicate glass capillaries (0.5 μm diameter). The grown ZnO-NRs were conjugated using Photofrin® and ALA for the efficient intracellular drug delivery, which produces reactive oxygen species (ROS) via photochemical reactions leading to cell death within few minutes after exposing UV light (240 nm). Viability of controlled and treated HepG2 cells with optimum dose of light (UV-visible) has been assessed by neutral red assay (NRA). The results were verified by staining of mitochondria using Mitotracker® red as an efficient dye as well as ROS detection. ZnO-NRs based Phogem® (PG) treated normal liver tissues of Sprague-Dawley rats were used as comparative experimental model. Morphological apoptotic changes in liver tissue of Sprague-Dawley rats before and after ZnO-NRs conjugated with photosensitizer (PS)-mediated PDT were investigated by microscopic examination.

  16. Pericoronary Adipose Tissue as Storage and Supply Site for Oxidized Low-Density Lipoprotein in Human Coronary Plaques

    PubMed Central

    Uchida, Yasumi; Uchida, Yasuto; Shimoyama, Ei; Hiruta, Nobuyuki; Kishimoto, Toshihiko; Watanabe, Soichiro

    2016-01-01

    Objectives It is generally believed that low-density lipoprotein enters the vascular wall from its lumen and oxidized (oxLDL), after which it plays an important role in atherosclerosis. Because voluminous epicardial adipose tissue is a risk factor for coronary events, there is a possibility that the pericoronary adipose tissue (PCAT), which is a part of epicardial adipose tissue, acts as a risk factor by supplying oxLDL to the coronary arterial wall. The present study was performed whether PCAT stores and supplies oxLDL to the coronary wall. Methods Localization of oxLDL in PCAT and its relation to plaque morphology were examined by immunohistochemical techniques in 27 epicardial coronary arteries excised from 9 human autopsy cases. Results OxLDL deposited in all PCAT of the studied cases. The percent (%) incidence of oxLDL in the intima of 25 normal segment, 19 white plaques, 15 yellow plaques without necrotic core (NC) and 10 yellow plaques with NC, was 32, 84, 93 (p<0.05 vs normal segments and yellow plaques with NC), and 30, respectively. OxLDL deposited either in dotted or diffuse pattern. Double immunohistochemical staining revealed that the dotted oxLDL was that contained in CD68(+)-macrophages. The oxLDL-containing macrophages were observed in the interstitial space but not inside of the vasa vasorum, and they traversed PCAT, adventitia, external and internal elastic laminae, suggesting their migration towards the intima. Diffuse oxLDL deposits were observed in 17 preparations, the majority of which were co-localized with the vasa vasorum in outer or in both inner and outer halves of intima, and rarely in the inner half alone. Conclusions The results suggested that PCAT is a supply source of oxLDL to coronary intima and acts as a risk factor for coronary events, that oxLDL increasingly deposits in the intima with plaque growth and decreases after plaque maturation, and therefore molecular therapies targeting the PCAT before plaque growth could be effective

  17. Porous polymer scaffold for on-site delivery of stem cells--Protects from oxidative stress and potentiates wound tissue repair.

    PubMed

    Geesala, Ramasatyaveni; Bar, Nimai; Dhoke, Neha R; Basak, Pratyay; Das, Amitava

    2016-01-01

    Wound healing by cell transplantation techniques often suffer setbacks due to oxidative stress encountered at injury sites. A porous polyethyleneglycol-polyurethane (PEG-PU) scaffold that facilitates cell delivery and boosts tissue repair was developed through semi-interpenetrating polymer network approach. The key physico-chemical properties assessed confirms these polymeric matrices are highly thermostable, barostable, degrade at an acidic pH (5.8), biodegradable, cytocompatible and possess excellent porosity. Mechanism of cellular penetration into porous polymer networks was evident by a ≥6 - fold increase in gene expression of MMP-13 and MMP-2 via activation of Akt and Erk. H2O2-induced apoptosis of mouse bone marrow stem cells (BMSCs) was abrogated in presence of polymer networks indicating a protective effect from oxidative stress. Transplantation of BMSC + PEG-PU at murine excisional splint wound site depicted significant increase in fibroblast proliferation, collagen deposition, anti-oxidant enzyme activities of catalase, SOD and GPx. Furthermore it significantly decreased expression of pro-inflammatory cytokines (IL-1β, TNF-α, IL-8, etc) with a concomitant increase in anti-inflammatory cytokines (IL-10, IL-13) at an early healing period of day 7. Finally, immunostaining revealed an enhanced engraftment and vascularity indicating an accelerated wound tissue closure. This pre-clinical study demonstrates the proof-of-concept and further necessitates their clinical evaluation as potential cell delivery vehicle scaffolds.

  18. Investigation into dosimetric effect of a MAGNA-SITE{sup TM} tissue expander on post-mastectomy radiotherapy

    SciTech Connect

    Thompson, Rosemary C.A.; Morgan, Andrew M.

    2005-06-15

    It is increasingly common for radiotherapy departments to encounter high density objects in patients being planned for radiotherapy. Many cases, such as artificial hip prostheses, are well documented. In our cancer center we have recently come across a new type of implant--a McGhan Style 133 Tissue Expander--implanted in patients who have undergone a mastectomy and will in future have breast reconstruction. This type of implant contains a small rare earth magnet encased in a titanium body, which induces significant perturbations in the dose distribution. These perturbations have been measured using a p-type semiconductor diode. Attenuation of up to 30% of local dose has been observed for a single beam. However, in more realistic clinical situations using tangential parallel opposed beams, it is estimated that part of the planning target volume maybe be underdosed by approximately 10%. Comparisons have been made between measured attenuation and that calculated by a treatment planning system, which demonstrates inadequate modeling of the dose perturbation caused by the implant in this case.

  19. RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae1

    PubMed Central

    Subramanian, Senthil; Graham, Madge Y.; Yu, Oliver; Graham, Terrence L.

    2005-01-01

    Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing. PMID:15778457

  20. [Polychlorinated biphenyls and their methylsulfonyl metabolites in fish from an electronic waste recycling site in south China: tissue distribution and human dietary exposure].

    PubMed

    Tang, Bin; Luo, Xiao-Jun; Zeng, Yan-Hong; Mai, Bi-Xian

    2014-12-01

    In the present study, we determined polychlorinated biphenyls and their methylsulfonyl metabolites (MeSO2-PCBs) in the tissues of two fish species-mud carp and northern snakehead-from a natural pond in an electronic waste recycling site in the Pearl River Delta, Southern China. The mean concentrations of PCBs (Σ PCBs )varied from 560 to 10 462 ng x g(-1) wet weight, and from 580 to 50 492 ng x g(-1) wet weight in the tissues of mud carp and northern snakehead, respectively, with the highest levels found in the liver. Lipid contents played an important role in the determination of tissue distribution of PCBs. The mean concentrations of Σ MeSO2-PCBs varied between 0.44 and 53 ng x g(-1) wet weight in tissues of mud carp, while varied between 1.86 and 132 ng x g(-1) wet weight in northern snakehead. These levels were one order of magnitude greater than the highest levels of MeSO2-PCBs previously reported in fish. The EF values of chiral PCBs in mud carp were lower than those in the sediments, with an exception of PCB149. However, the declined EFs in mud carp were rebounded in northern snakehead, and some values were even higher than those in the sediment. This result may suggest that the mud carp and the northern snakehead preferred to biotransform different enantiomers of PCB congeners. The elevated levels of Σ PCBs and Σ MeSO2-PCBs detected in the present study indicated a high exposure risk to the local residents. Restricting the consumption of these fish in the local markets is important and essential for reducing the health risks to local residents.

  1. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site.

    PubMed

    Feng, Huan; Qian, Yu; Gallagher, Frank J; Zhang, Weiguo; Yu, Lizhong; Liu, Changjun; Jones, Keith W; Tappero, Ryan

    2016-03-01

    Liberty State Park in New Jersey, USA, is a "brownfield" site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May-September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT) techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.

  2. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site

    DOE PAGES

    Feng, Huan; Qian, Yu; Gallagher, Frank J.; ...

    2015-11-01

    Liberty State Park in New Jersey, USA, is a “brownfield” site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May–September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT)more » techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.« less

  3. Anterior wrist and medial malleolus: the optimal sites for tissue selection in electric death through hand-to-foot circuit pathway.

    PubMed

    Xu, Guangtao; Su, Ruibing; Lv, Junyao; Lai, Xiaoping; Li, Xianxian; Wu, Jiayan; Hu, Bo; Xu, Long; Shen, Ruilin; Gu, Jiang; Yu, Xiaojun

    2017-03-01

    Specific morphological changes may be absent in some cases of electrocution shocked by the voltage of 220 V or lower. In this study, we attempted to demonstrate that the anterior wrist and medial malleolus were the optimal sites with promising and significant changes in electric death through the hand-to-foot circuit pathway. We established an electric shock rat model and observed histopathologic changes in the anterior wrist and medial malleolus. The results showed that the current intensities in the left anterior wrist and right medial malleolus were remarkably higher than those in the other sites, and the nuclei long/short (L/S) axis ratios of the arterial endotheliocyte and the skeletal muscle cell in these two areas were significantly higher than those in other parts of the body. These findings suggested that the anterior wrist and/or medial malleolus soft tissues as the narrowest parts of the limbs could be used as promising and useful sites for the assessment of electrical shock death, especially in forensic pathologic evaluation.

  4. Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site

    SciTech Connect

    Mathews, Teresa J; Fortner, Allison M; Jett, Robert T; Peterson, Mark J; Carriker, Neil; Morris, Jesse G; Gable, Jennifer

    2014-01-01

    In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

  5. Tissue Mercury Concentrations and Survival of Tree Swallow Embryos, Nestlings and Young Adult Females on a Contaminated Site.

    PubMed

    Taylor, Capwell E; Cristol, Daniel A

    2015-10-01

    Tree swallows nesting on mercury-contaminated sites along the South River in Virginia, USA were monitored for reproductive success. The bodies of nestlings found deceased in their nest boxes were collected, along with blood and feather samples from the adult parents and surviving siblings. We also measured hatching and fledging success of the clutches and the annual recapture rate of adults. We found that the body feathers of deceased nestlings contained significantly higher concentrations of mercury (12.89 ± 8.42 μg/g, n = 15) than those of nestlings that survived to fledge (7.41 ± 4.79 μg/g, n = 15). However, mothers of more successful clutches (>75 % hatching) did not differ in mercury concentrations from females with less successful clutches (<50 % hatching). Additionally, adult females breeding for the first time that returned to breed the following year did not differ in blood mercury from females of the same age that bred once but never returned. Our results suggest that mercury had its greatest effect on these songbirds during the nestling stage, whereas for embryos or first-time breeding females, other factors likely played larger roles in mortality.

  6. In vivo tissue engineering of musculoskeletal tissues.

    PubMed

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues.

  7. Tissue distribution of products of the mouse decay-accelerating factor (DAF) genes. Exploitation of a Daf1 knock-out mouse and site-specific monoclonal antibodies.

    PubMed

    Lin, F; Fukuoka, Y; Spicer, A; Ohta, R; Okada, N; Harris, C L; Emancipator, S N; Medof, M E

    2001-10-01

    Decay-accelerating factor (DAF) is a membrane regulator of C3 activation that protects self cells from autologous complement attack. In humans, DAF is uniformly expressed as a glycosylphosphatidylinositol (GPI)-anchored molecule. In mice, both GPI-anchored and transmembrane-anchored DAF proteins are produced, each of which can be derived from two different genes (Daf1 and Daf2). In this report, we describe a Daf1 gene knock-out mouse arising as the first product of a strategy for targeting one or both Daf genes. As part of the work, we characterize recently described monoclonal antibodies against murine DAF protein using deletion mutants synthesized in yeast, and then employ the monoclonal antibodies in conjunction with wild-type and the Daf1 knock-out mice to determine the tissue distribution of the mouse Daf1 and Daf2 gene products. To enhance the immunohistochemical detection of murine DAF protein, we utilized the sensitive tyramide fluorescence method. In wild-type mice, we found strong DAF labelling of glomeruli, airway and gut epithelium, the spleen, vascular endothelium throughout all tissues, and seminiferous tubules of the testis. In Daf1 knock-out mice, DAF labelling was ablated in most tissues, but strong labelling of the testis and splenic dendritic cells remained. In both sites, reverse transcription-polymerase chain reaction analyses identified both GPI and transmembrane forms of Daf2 gene-derived protein. The results have relevance for studies of in vivo murine DAF function and of murine DAF structure.

  8. Genetic correlations among fatty acid compositions in different sites of fat tissues, meat production, and meat quality traits in Duroc pigs.

    PubMed

    Suzuki, K; Ishida, M; Kadowaki, H; Shibata, T; Uchida, H; Nishida, A

    2006-08-01

    This study estimated genetic parameters for fatty acids of different sites of fat tissue, meat production, and meat quality traits of Duroc pigs selected during 7 generations for ADG, LM area, backfat thickness (BF), and intramuscular fat (IMF). For this study, 394 barrows and 153 gilts were slaughtered at 105 kg of BW. High heritabilities for C18:0 of outer and inner subcutaneous fat tissue were estimated, respectively, as 0.54 and 0.51; those of intermuscular and intramuscular fat were 0.40 and 0.51, respectively. Genetic and phenotypic correlations of ADG and BF with saturated fatty acids of outer and inner subcutaneous fat were positive, but those with C16:1 and C18:2 were negative, and those with C18:1 were nearly zero. Genetic and phenotypic correlations between LM area and respective fatty acids showed opposite results. Respective genetic and phenotypic correlations of melting points with C18:0 and C18:1 were positive and high, and negative and high, respectively. Genetic correlations between cooking loss and SFA (C14:0, C16:0, and C18:0) of IMF were positive and moderate: 0.56, 0.47, and 0.47, respectively. On the other hand, monosaturated fatty acid of C18:1 was highly and negatively correlated with cooking loss (-0.61). Moreover, high genetic correlation between meat color (pork color standard and lightness) and fatty acid compositions of IMF suggest that the SFA (C14:0, C16:0, and C18:0) were correlated genetically with meat lightness and that unsaturated fatty acid compositions (C18:1 and C18:2) were correlated with meat darkness. Results of this study suggest that the fatty acid composition of adipose tissue is correlated genetically with meat production and meat quality traits.

  9. Sites of particle retention and lung tissue responses to chronically inhaled diesel exhaust and coal dust in rats and cynomolgus monkeys.

    PubMed Central

    Nikula, K J; Avila, K J; Griffith, W C; Mauderly, J L

    1997-01-01

    The usefulness of pulmonary carcinogenicity data from rats exposed to high concentrations of particles for quantitatively predicting lung cancer risk in humans exposed to much lower environmental or occupational concentrations has been questioned. The results of several chronic inhalation bioassays of poorly soluble, nonfibrous particles have suggested that rats may be more prone than other rodent species to develop persistent pulmonary epithelial hyperplasia, metaplasia, and tumors in response to the accumulation of inhaled particles. In addition, rats and primates differ in their pulmonary anatomy and rate of particle clearance from the lung. This paper reviews results of recent Lovelace Respiratory Research Institute (Albuquerque, NM) investigations that directly compared the anatomical patterns of particle retention and the lung tissue responses of rats and monkeys exposed chronically to high occupational concentrations of poorly soluble particles. Lung sections from male cynomolgus monkeys and F344 rats exposed 7 hr/day, 5 days/week for 24 months to filtered ambient air, diesel exhaust (2 mg soot/m3), coal dust (2 mg respirable particulate material/m3), or diesel exhaust and coal dust combined (1 mg soot and 1 mg respirable coal dust/m3) were obtained from a study conducted at the U.S. National Institute for Occupational Safety and Health and examined histopathologically and morphometrically. Within each species, the sites of particle retention and lung tissue responses were the same for diesel soot, coal dust, and combined material. Rats retained a significantly greater portion of the particulate material in the lumens of alveolar ducts and alveoli than monkeys. Conversely, monkeys retained a significantly greater portion of the particulate material in the interstitium than rats. Rats, but not monkeys, had significant alveolar epithelial hyperplastic, inflammatory, and septal fibrotic responses to the retained particles. These results suggest that anatomic

  10. Multi-Body-Site Microbiome and Culture Profiling of Military Trainees Suffering from Skin and Soft Tissue Infections at Fort Benning, Georgia.

    PubMed

    Singh, Jatinder; Johnson, Ryan C; Schlett, Carey D; Elassal, Emad M; Crawford, Katrina B; Mor, Deepika; Lanier, Jeffrey B; Law, Natasha N; Walters, William A; Teneza-Mora, Nimfa; Bennett, Jason W; Hall, Eric R; Millar, Eugene V; Ellis, Michael W; Merrell, D Scott

    2016-01-01

    Skin and soft tissue infections (SSTIs) are common in the general population, with increased prevalence among military trainees. Previous research has revealed numerous nasal microbial signatures that correlate with SSTI development and Staphylococcus aureus colonization. Thus, we hypothesized that the ecology of the inguinal, oropharynx, and perianal regions may also be altered in response to SSTI and/or S. aureus colonization. We collected body site samples from 46 military trainees with purulent abscess (SSTI group) as well as from 66 asymptomatic controls (non-SSTI group). We also collected abscess cavity samples to assess the microbial composition of these infections. Samples were analyzed by culture, and the microbial communities were characterized by high-throughput sequencing. We found that the nasal, inguinal, and perianal regions were similar in microbial composition and significantly differed from the oropharynx. We also observed differences in Anaerococcus and Streptococcus abundance between the SSTI and non-SSTI groups for the nasal and oropharyngeal regions, respectively. Furthermore, we detected community membership differences between the SSTI and non-SSTI groups for the nasal and inguinal sites. Compared to that of the other regions, the microbial compositions of the nares of S. aureus carriers and noncarriers were dramatically different; we noted an inverse correlation between the presence of Corynebacterium and the presence of Staphylococcus in the nares. This correlation was also observed for the inguinal region. Culture analysis revealed elevated methicillin-resistant S. aureus (MRSA) colonization levels for the SSTI group in the nasal and inguinal body sites. Together, these data suggest significant microbial variability in patients with SSTI as well as between S. aureus carriers and noncarriers. IMPORTANCE While it is evident that nasal colonization with S. aureus increases the likelihood of SSTI, there is a significant lack of

  11. Trends in concentrations of polychlorinated biphenyls in fish tissue from selected sites in the Delaware River basin in New Jersey, New York, and Pennsylvania, 1969-98

    USGS Publications Warehouse

    Riva-Murray, Karen; Brightbill, Robin A.; Bilger, Michael D.

    2003-01-01

    Trends in concentrations of polychlorinated biphenyls in fish tissue from selected sites in the Delaware River basin in New Jersey, New York, and Pennsylvania, 1969-98 by Karen Riva-Murray, Robin A. Brightbill, and Michael D. Bilger U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 01-4066 ABSTRACT Polychlorinated biphenyl (PCB) concentrations in fish tissue collected during the 1990's from selected sites in the Delaware River Basin were compared with concentrations in fish tissue collected during 1969-88. Data collected by State and Federal agencies on concentrations in whole-body common carp (Cyprinus carpio) and white sucker (Catostomus commersoni), and edible portions of American eel (Anguilla rostrata), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) during 1969-98 were compiled to define temporal trends in concentrations of PCBs in fish tissue from selected segments of the Delaware River, Lehigh River, Schuylkill River, and Brandywine Creek. The Delaware River in the vicinity of Trenton, New Jersey and Yardley, Pennsylvania (above the tidal influence) had the largest long-term data set among the sites considered for this study and was the only site with sufficient data for statistical analysis. A general pattern of decline in PCB concentrations during 1969-98 was apparent for this river segment. PCB concentrations in whole-body white sucker from this lower Delaware River segment declined during 1969-98 from a highest concentration of 7 micrograms per gram (?g/g, wet weight) in a sample collected during 1972 to 0.26 ?g/g (wet weight) in a sample collected during 1998. PCB concentration was negatively correlated with year (Spearman rank correlation -0.46, p < 0.08, n = 15); especially after removal of a sample from 1977 with an unusually low concentration (Spearman rank correlation -0.53, p = 0.05, n = 14). PCB concentrations in edible flesh of American eel declined during 1975-95, from a highest concentration of 3

  12. Residues of polybrominated diphenyl ethers in frogs (Rana limnocharis) from a contaminated site, South China: tissue distribution, biomagnification, and maternal transfer.

    PubMed

    Wu, Jiang-Ping; Luo, Xiao-Jun; Zhang, Ying; Chen, She-Jun; Mai, Bi-Xian; Guan, Yun-Tao; Yang, Zhong-Yi

    2009-07-15

    Environmental pollutants are suspected to be a cause of global declines in amphibian populations, but few data are available on the bioaccumulation of polybrominated diphenyl ethers (PBDEs) in amphibians. To examine the tissue distribution, biomagnification potential, and maternal transfer of PBDEs in frogs, eighteen PBDE congeners were measured in the muscle, liver, and egg tissues of rice frogs (Rana limnocharis) and insects collected from an electronic waste (e-waste) recycling site in South China. PBDE levels in the frogs ranged from 0.63 to 11.6, 4.57 to 56.2, and 10.7 to 125 ng/g wet wt in the muscles, livers, and eggs, respectively. The frogs exhibited a unique congener profile, compared to those in aquatic and terrestrial species, with BDEs 99, 153, 183, 209, and 47 as the dominant congeners, intermediating between aquatic and terrestrial species. Most of the PBDE congeners in general showed higher affinity to liver than to muscle tissue. Except for BDEs 28, 47, 66, 138, and 206, the average biomagnification factors (BMFs) for all PBDE congeners were greater than 1.0, providing clear evidence of their biomagnification from insects to frogs. A parabolic relationship between log BMFs and bromine atom numbers or log Kow of PBDEs was observed, with the maximum BMF values for PBDEs with 6 bromine atoms (or at a log K(ow) of approximately 8.0). Relatively higher levels of 3-MeO-BDE 47 were found in male frogs, suggesting that male frogs in the present study might have higher metabolic capacity for PBDEs compared to female frogs. The ratio of levels in egg/female liver, indicating mother-to-egg transfer capacity, increased with increasing bromine atom numbers up to 7 and then declined as the bromine atom numbers rose. This indicated that the physicochemical properties of the congeners (e.g., K(ow), molecular sizes, and structures), resulting in different affinities to transport proteins, might impact their maternal transfer in frogs.

  13. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    PubMed

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  14. miR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites.

    PubMed

    Rinnerthaler, Gabriel; Hackl, Hubert; Gampenrieder, Simon Peter; Hamacher, Frank; Hufnagl, Clemens; Hauser-Kronberger, Cornelia; Zehentmayr, Franz; Fastner, Gerd; Sedlmayer, Felix; Mlineritsch, Brigitte; Greil, Richard

    2016-01-26

    For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan(®) Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)(®) microarrays from Agilent(®) was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort.

  15. Effect of the harvest procedure and tissue site on the osteogenic function of and gene expression in human mesenchymal stem cells

    PubMed Central

    HENRICH, DIRK; NAU, CHRISTOPH; KRAFT, SASKIA BO; ZOLLFRANK, MAXIMILIAN; KONTRADOWITZ, KERSTIN; OPPERMANN, ELSIE; SCHULTHEISS, JUDITH; MEIER, SIMON; FRANK, JOHANNES; MARZI, INGO; SEEBACH, CAROLINE

    2016-01-01

    Evidence has indicated that mesenchymal stem cells (MSCs) harvested with the Reamer/Irrigator/Aspirator (RIA) procedure exhibited an improved osteogenic differentiation capability compared with MSCs obtained by bone marrow aspiration from the iliac crest. In the present study, we hypothesized that the harvest procedure indeed influences the osteogenic activity of human MSCs more than the tissue site itself. Concentration [by colony forming unit-fibroblast (CFU-F) assay], calcification (by von Kossa staining), collagen deposition, gene expression and the gene methylation of the bone morphogenetic protein (BMP)-2 pathway [BMP2, SMAD5 and runt-related transcription factor 2 (RUNX2)], the Wnt pathway [WNT3, dickkopf-1 (DKK1), low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin] and osteogenic genes [alkaline phosphatase (ALP), collagen, type I, alpha 1 (COL1A) and osteocalcin] were analyzed in the MSCs isolated intraoperatively from the iliac crest with a spoon (n=14), from the femur with a spoon (n=7), from the femur with the RIA procedure (n=13) and from the iliac crest by fine-needle aspiration (n=8, controls). A Bonferroni-Holm corrected p-value <0.05 indicated a statistically significant difference. The concentration of CFU-F in the MSCs was increased in the RIA debris in comparison with that in the iliac crest aspirates (trend) and the femur (spoon, significant). Calcium deposition was highest in the femur-derived MSCs (by RIA) and was significantly increased in comparison with that in the iliac crest-derived MSCs (spoon, aspirate). The gene expression of BMP2, SMAD5, RUNX2, osteocalcin, and COL1A was significantly increased in the femur-derived MSCs (spoon) and the iliac crest aspirate derived-MSCs in comparison with that in the femur-derived MSCs (by RIA). There was no significant diversity between the samples obtained using a spoon (from the femur or iliac crest). Calcium deposition and osteogenic gene expression decreased significantly

  16. Effect of the harvest procedure and tissue site on the osteogenic function of and gene expression in human mesenchymal stem cells.

    PubMed

    Henrich, Dirk; Nau, Christoph; Kraft, Saskia Bo; Zollfrank, Maximilian; Kontradowitz, Kerstin; Oppermann, Elsie; Schultheiss, Judith; Meier, Simon; Frank, Johannes; Marzi, Ingo; Seebach, Caroline

    2016-04-01

    Evidence has indicated that mesenchymal stem cells (MSCs) harvested with the Reamer/Irrigator/Aspirator (RIA) procedure exhibited an improved osteogenic differentiation capability compared with MSCs obtained by bone marrow aspiration from the iliac crest. In the present study, we hypothesized that the harvest procedure indeed influences the osteogenic activity of human MSCs more than the tissue site itself. Concentration [by colony forming unit-fibroblast (CFU-F) assay], calcification (by von Kossa staining), collagen deposition, gene expression and the gene methylation of the bone morphogenetic protein (BMP)-2 pathway [BMP2, SMAD5 and runt-related transcription factor 2 (RUNX2)], the Wnt pathway [WNT3, dickkopf-1 (DKK1), low-density lipoprotein receptor‑related protein 5 (LRP5) and β-catenin] and osteogenic genes [alkaline phosphatase (ALP), collagen, type I, alpha 1 (COL1A) and osteocalcin] were analyzed in the MSCs isolated intraoperatively from the iliac crest with a spoon (n=14), from the femur with a spoon (n=7), from the femur with the RIA procedure (n=13) and from the iliac crest by fine-needle aspiration (n=8, controls). A Bonferroni-Holm corrected p-value <0.05 indicated a statistically significant difference. The concentration of CFU-F in the MSCs was increased in the RIA debris in comparison with that in the iliac crest aspirates (trend) and the femur (spoon, significant). Calcium deposition was highest in the femur-derived MSCs (by RIA) and was significantly increased in comparison with that in the iliac crest-derived MSCs (spoon, aspirate). The gene expression of BMP2, SMAD5, RUNX2, osteocalcin, and COL1A was significantly increased in the femur-derived MSCs (spoon) and the iliac crest aspirate derived-MSCs in comparison with that in the femur-derived MSCs (by RIA). There was no significant diversity between the samples obtained using a spoon (from the femur or iliac crest). Calcium deposition and osteogenic gene expression decreased significantly

  17. Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions

    PubMed Central

    Adlanmerini, Marine; Solinhac, Romain; Abot, Anne; Fabre, Aurélie; Raymond-Letron, Isabelle; Guihot, Anne-Laure; Boudou, Frédéric; Sautier, Lucile; Vessières, Emilie; Kim, Sung Hoon; Lière, Philippe; Fontaine, Coralie; Krust, Andrée; Chambon, Pierre; Katzenellenbogen, John A.; Gourdy, Pierre; Shaul, Philip W.; Henrion, Daniel; Arnal, Jean-François; Lenfant, Françoise

    2014-01-01

    Estrogen receptor alpha (ERα) activation functions AF-1 and AF-2 classically mediate gene transcription in response to estradiol (E2). A fraction of ERα is targeted to plasma membrane and elicits membrane-initiated steroid signaling (MISS), but the physiological roles of MISS in vivo are poorly understood. We therefore generated a mouse with a point mutation of the palmitoylation site of ERα (C451A-ERα) to obtain membrane-specific loss of function of ERα. The abrogation of membrane localization of ERα in vivo was confirmed in primary hepatocytes, and it resulted in female infertility with abnormal ovaries lacking corpora lutea and increase in luteinizing hormone levels. In contrast, E2 action in the uterus was preserved in C451A-ERα mice and endometrial epithelial proliferation was similar to wild type. However, E2 vascular actions such as rapid dilatation, acceleration of endothelial repair, and endothelial NO synthase phosphorylation were abrogated in C451A-ERα mice. A complementary mutant mouse lacking the transactivation function AF-2 of ERα (ERα-AF20) provided selective loss of function of nuclear ERα actions. In ERα-AF20, the acceleration of endothelial repair in response to estrogen–dendrimer conjugate, which is a membrane-selective ER ligand, was unaltered, demonstrating integrity of MISS actions. In genome-wide analysis of uterine gene expression, the vast majority of E2-dependent gene regulation was abrogated in ERα-AF20, whereas in C451A-ERα it was nearly fully preserved, indicating that membrane-to-nuclear receptor cross-talk in vivo is modest in the uterus. Thus, this work genetically segregated membrane versus nuclear actions of a steroid hormone receptor and demonstrated their in vivo tissue-specific roles. PMID:24371309

  18. Primary gastric Hodgkin's lymphoma: favourable outcome following multi-agent chemotherapy without surgical intervention.

    PubMed

    Quintyne, K I; Mulcahy, E; Wallis, F; Wilson, L; Gupta, R K

    2011-02-15

    The authors report the case of a 51-year-old man who presented with left-sided abdominal pain and weight loss associated with drenching night sweats. Preliminary blood tests yielded no specific cause for his symptoms, but abdominal ultrasound revealed multiple hepatic lesions and peripancreatic lymphadenopathy. Further imaging, including positron emission tomography (PET)/CT, revealed fludeoxyglucose 18F (FDG) avid uptake within lymphadenopathy above and below the diaphragm and also noted gastric thickening. Diagnosis was established with gastric biopsy and revealed gastric Hodgkin's lymphoma. He was started on and tolerated multi-agent chemotherapy. Repeated PET/CT and gastric biopsy showed complete metabolic and pathologic response to treatment.

  19. Fireworks-induced chest wall granulomatous disease: 18F-FDG PET/CT imaging.

    PubMed

    Le, Stephanie T; Nguyen, Ba Duong

    2014-04-01

    The authors present a case of 18F-FDG-avid granulomatous reaction induced by fireworks injury of the chest wall in a patient with esophageal adenocarcinoma. This hypermetabolic lesion, involving the right pectoralis muscles, appeared slightly more prominent on restaging PET/CT imaging following chemotherapy and radiation therapy. Excisional biopsy of the lesion established the diagnosis of foreign-body granulomatous-type inflammation with surrounding foci of non-polarizable black foreign material and ruled out malignancy. The patient recalled accidentally shooting himself in the chest with a Roman candle at the age of 3.

  20. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  1. (18)F-FDG PET/CT in bilateral primary adrenal T-cell lymphoma.

    PubMed

    Santhosh, Sampath; Mittal, Bhagwant Rai; Shankar, Praveen; Kashyap, Raghava; Bhattacharya, Anish; Singh, Baljinder; Das, Ashim; Bhansali, Anil

    2011-01-01

    Primary adrenal lymphoma is extremely rare. We report a young patient who presented with non- specific symptoms of fever and abdominal pain. Conventional imaging modalities demonstrated bilateral bulky adrenal masses, and whole-body fluorine-18-fluorodesoxyglucose ((18)F-FDG) positron emission tomography/computed tomography showed intense (18)F-FDG-avid bilateral adrenal masses with no evidence of extra-adrenal spread. A pathological diagnosis of non-Hodgkin lymphoma of peripheral T-cell type was made. The present case indicates that primary adrenal lymphoma should be included in the differential diagnosis of bilateral adrenal masses.

  2. Association of a change in chromatin structure with a tissue-specific switch in transcription start sites in the alpha 2(I) collagen gene.

    PubMed Central

    Beck, K M; Seekamp, A H; Askew, G R; Mei, Z; Farrell, C M; Wang, S; Lukens, L N

    1991-01-01

    Chick embryonic sternal chondrocytes do not synthesize alpha 2(I) collagen until they are shifted by treatment with 5-bromo-2'-deoxyuridine (BrdUrd) to a fibroblastic phenotype, yet they transcribe this gene as rapidly as BrdUrd-treated cells. To examine further this transcription, the DNase I hypersensitive sites were mapped in the 5' region of this gene in chondrocytes, BrdUrd-treated chondrocytes, fibroblasts and three types of non-transcribing cells. A DNase I hypersensitive site at -200 bp, previously shown to be associated with the active transcription of this gene in fibroblasts, is not present in chondrocyte chromatin. The chondrocyte alpha 2(I) gene contains, however, a novel major hypersensitive site in the DNA region corresponding to the fibroblast intron 2, near the chondrocyte-specific transcription initiation site of this gene. This novel hypersensitive site is associated with the use of this alternate start site by chondrocytes, since it is lost when BrdUrd treatment causes these chondrocytes to switch to the initiation of transcription at the fibroblast start site. The BrdUrd-treated chondrocytes contain the same alpha 2(I) hypersensitive sites as fibroblasts, except that fibroblasts have an additional, previously unreported, site at -1000 bp. Images PMID:1717939

  3. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  4. Relatively high rates of G:C → A:T transitions at CpG sites were observed in certain epithelial tissues including pancreas and submaxillary gland of adult big blue® mice.

    PubMed

    Prtenjaca, Anita; Tarnowski, Heather E; Marr, Alison M; Heney, Melanie A; Creamer, Laura; Sathiamoorthy, Sarmitha; Hill, Kathleen A

    2014-01-01

    With few exceptions, spontaneous mutation frequency and pattern are similar across tissue types and relatively constant in young to middle adulthood in wild type mice. Underrepresented in surveys of spontaneous mutations across murine tissues is the diversity of epithelial tissues. For the first time, spontaneous mutations were detected in pancreas and submaxillary gland and compared with kidney, lung, and male germ cells from five adult male Big Blue® mice. Mutation load was assessed quantitatively through measurement of mutant and mutation frequency and qualitatively through identification of mutations and characterization of recurrent mutations, multiple mutations, mutation pattern, and mutation spectrum. A total of 9.6 million plaque forming units were screened, 226 mutants were collected, and 196 independent mutations were identified. Four novel mutations were discovered. Spontaneous mutation frequency was low in pancreas and high in the submaxillary gland. The submaxillary gland had multiple recurrent mutations in each of the mice and one mutant had two independent mutations. Mutation patterns for epithelial tissues differed from that observed in male germ cells with a striking bias for G:C to A:T transitions at CpG sites. A comprehensive review of lacI spontaneous mutation patterns in young adult mice and rats identified additional examples of this mutational bias. An overarching observation about spontaneous mutation frequency in adult tissues of the mouse remains one of stability. A repeated observation in certain epithelial tissues is a higher rate of G:C to A:T transitions at CpG sites and the underlying mechanisms for this bias are not known.

  5. Tissue distribution of polybrominated diphenyl ethers (PBDEs) in captive domestic pigs, Sus scrofa, from a village near an electronic waste recycling site in South China.

    PubMed

    Li, Y F; Yang, Z Z; Wang, C H; Yang, Z J; Qin, Z F; Fu, S

    2010-02-01

    The dominant part of PBDEs residue in pig tissues was BDE-47 accounted for 48.2% approximately 66.9%, followed by BDE-99 from 15.9% to 24.2%. When the data were on lipid weight basis, the summation operatorPBDEs concentrations in tissues of individual pig showed the same order of liver > muscle, intestine > fat. Principal component analysis and PBDE congener mean concentration ratios of muscle versus liver (M/L), fat versus liver (F/L) and intestine versus liver (I/L) showed the higher accumulation ability of PBDEs in liver than in other tissues. And the PBDE mean concentration ratios of M/L, F/L and I/L had the trend of decrease with increasing bromination degree of PBDE congeners.

  6. Bioaccumulative characteristics of tetrabromobisphenol A and hexabromocyclododecanes in multi-tissues of prey and predator fish from an e-waste site, South China.

    PubMed

    Tang, Bin; Zeng, Yan-Hong; Luo, Xiao-Jun; Zheng, Xiao-Bo; Mai, Bi-Xian

    2015-08-01

    Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) were analyzed in 12 tissues of prey (mud carp) and predator (northern snakehead) fish from an e-waste area, South China. The TBBPA concentrations in different tissues ranged from 0.03 to 2.85 ng/g wet weight (ww) in mud carp and 0.04 to 1.30 ng/g ww in northern snakehead. The concentrations of HBCDs ranged from 0.07 to 96.9 ng/g ww in mud carp and 0.18 to 240 ng/g ww in northern snakehead. HBCD levels in tissues were correlated with lipid content for both fish species, while this correlation was only found in mud carp for TBBPA. Meanwhile, northern snakehead exhibited higher HBCD levels but lower TBBPA levels than mud carps. These observations are attributed to the more polar and reactive properties of TBBPA than HBCDs. α-HBCD was the predominant diastereoisomer of HBCDs in all tissues of mud carp and northern snakehead, except for chyme of mud carp. All the analyzed tissues in mud carp showed an enrichment of (+)-α-HBCD enantiomer with EF (enantiomeric fraction) values of 0.53-0.62, but that in northern snakehead showed an enrichment of (-)-α-HBCD enantiomer with EF values of 0.35-0.5. Considering the fact that the mud carp is one of the diet items of northern snakehead, the different enantiomer accumulation characteristics of α-HBCD between the two fish species in the present study indicated that prey and predator fish could prefer to biotransform different enantiomers of α-HBCD.

  7. Determination of 240Pu/239Pu isotopic ratios in human tissues collected from areas around the Semipalatinsk Nuclear Test Site by sector-field high resolution ICP-MS.

    PubMed

    Yamamoto, M; Oikawa, S; Sakaguchi, A; Tomita, J; Hoshi, M; Apsalikov, K N

    2008-09-01

    Information on the 240Pu/239Pu isotope ratios in human tissues for people living around the Semipalatinsk Nuclear Test Site (SNTS) was deduced from 9 sets of soft tissues and bones, and 23 other bone samples obtained by autopsy. Plutonium was radiochemically separated and purified, and plutonium isotopes (239Pu and 240Pu) were determined by sector-field high resolution inductively coupled plasma-mass spectrometry. For most of the tissue samples from the former nine subjects, low 240Pu/239Pu isotope ratios were determined: bone, 0.125 +/- 0.018 (0.113-0.145, n = 4); lungs, 0.063 +/- 0.010 (0.051-0.078, n = 5); and liver, 0.148 +/- 0.026 (0.104-0.189, n = 9). Only 239Pu was detected in the kidney samples; the amount of 240Pu was too small to be measured, probably due to the small size of samples analyzed. The mean 240Pu/239Pu isotope ratio for bone samples from the latter 23 subjects was 0.152 +/- 0.034, ranging from 0.088 to 0.207. A significant difference (a two-tailed Student's t test; 95% significant level, alpha = 0.05) between mean 240Pu/239Pu isotope ratios for the tissue samples and for the global fallout value (0.178 +/- 0.014) indicated that weapons-grade plutonium from the atomic bombs has been incorporated into the human tissues, especially lungs, in the residents living around the SNTS. The present 239,240Pu concentrations in bone, lung, and liver samples were, however, not much different from ranges found for human tissues from other countries that were due solely to global fallout during the 1970's-1980's.

  8. From the global to the local: possible pathways for the transduction of Indo-Sino-Tibetan cognitive-behavioral practices into site-specific, tissue-regenerative effects.

    PubMed

    Bushell, William C; Spector, Novera Herbert; Theise, Neil D

    2009-08-01

    While skepticism regarding the possibilities for a productive meeting (metaphorically or actual) between Western medicine and biology and older healing and health practices of traditional cultures may be prevalent, there are many theoretical points of meeting and much experimental data to suggest that cognitive-behavioral practices (C-Bp) of the latter may induce testable and reproducible phenomena for the former. Such modulation or modification of tissue regeneration by C-Bp presumably must work through systemic signaling of some kind. Several possible mechanisms for such signaling are recognized and will be reviewed here: humoral, neurological, cell trafficking, and bioelectromagnetic/energy mediated. Nonetheless, while cultures and techniques may be varied, human bodies are more alike than dissimilar. We indicate that great profit may be had for all participating cultures in establishing a common language, shared criteria for designing experiments and interpreting data, and cooperative goals for the promotion of tissue integrity and regeneration.

  9. A 150-base pair 5' region of the MHC class I HLA-B7 gene is sufficient to direct tissue-specific expression and locus control region activity: the alpha site determines efficient expression and in vivo occupancy at multiple cis-active sites throughout this region.

    PubMed

    Kushida, M M; Dey, A; Zhang, X L; Campbell, J; Heeney, M; Carlyle, J; Ganguly, S; Ozato, K; Vasavada, H; Chamberlain, J W

    1997-11-15

    To characterize cis- and trans-acting mechanisms that regulate MHC class I transcription during development and in adult tissues, we have used transgenic mice to study a series of human MHC (HLA)-B7 class I gene constructs. Previous studies identified the 5' -0.66-kb to -0.075-kb region as sufficient to direct appropriate and efficient tissue-specific levels of HLA-B7 RNA relative to H-2 class I. Results here show that DNA 5' of -0.26 kb is not required for any aspect of expression. As the expression level correlated with the transgene copy number, was comparable to H-2 or a per-gene copy basis and was independent of integration site, the -0.075 to -0.26-kb segment also functions as a locus control region. With this region, sequences 3' of -0.075 kb, possibly at the promoter, appear to direct the appropriate tissue distribution. Of conserved sequences in the -0.075 to -0.26-kb region, enhancer B box is nonessential. In contrast, in vivo "footprinting" implicated region I/ enhancer A/NF-kappaB, IFN consensus/response sequence, and alpha in class I regulation as they are "occupied" in a tissue-specific pattern that correlates with expression. Mutation of alpha leads to decreased expression and loss of occupancy not only at alpha but also at region I/enhancer A/NF-kappaB and IFN consensus/response sequence. Thus, site alpha is an essential class I regulatory element, the dominant function of which is to mediate tissue-specific occupancy at multiple adjacent cis-active sites, possibly by facilitating stable synergistic interactions between factors at these distinct elements.

  10. Chromatin studies reveal that an ERE is located far upstream of a vitellogenin gene and that a distal tissue-specific hypersensitive site is conserved for two coordinately regulated vitellogenin genes.

    PubMed Central

    Burch, J B; Fischer, A H

    1990-01-01

    Estrogen induces the expression of three vitellogenin genes in chicken hepatocytes. To survey the vitellogenin III (VTGIII) gene region for possible distal regulatory sequences, we identified tissue-specific hypersensitive (HS) sites within a 45 kb chromatin region spanning this gene. Five constitutive HS sites were found to mark the VTGIII gene region in hormone-naive hepatocytes. Strikingly, the constitutive HS site located 5.5 kb upstream of the VTGIII gene and a previously identified HS site located within the coordinately regulated VTGII gene mapped to nearly identical copies of a 72 bp sequence. Moreover, it would appear that there has been evolutionary pressure to retain specifically this 72 bp of VTGII-like sequence near the VTGIII gene subsequent to the VTGIII and VTGII genes becoming unlinked approximately 16 Myr ago. Two additional sets of HS sites were induced in the VTGIII gene region in response to estrogen. One set mapped immediately upstream of the gene in the vicinity of what we show to be a functional estrogen response element (ERE). The other induced HS site mapped 7.5 kb upstream of the gene. This far-upstream region was sequenced and was found to contain two imperfect ERE consensus sequences spaced 88 bp apart. In transient expression assays neither of these individual imperfect ERE sequences was functional, but a fragment spanning both sequences behaved as a strong ERE. In contrast to this synergism between imperfect ERE sequences, the presence of an NF-1 binding site 23 bp away from the more distal imperfect ERE sequence was not sufficient to render the latter a functional ERE in our assays. Images PMID:2377458

  11. Analysis of heavy metals from water, sediment, and tissues of Labeo angra (Hamilton, 1822), from an Ox-box lake- an wetland site from Assam, India.

    PubMed

    Das, Suchismita; Choudhury, Shamim Sultana

    2016-01-01

    The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.

  12. Reduction of a large fish tissue analyte database: identifying and assessing data specific to a remediation site for risk assessment application.

    PubMed

    Tachovsky, J A; Urban, J D; Wikoff, D Staskal; Haws, L C; Harris, M A

    2010-07-01

    The Lower Passaic River (LPR) is one of the most heavily industrialized waterways in the US with both historical and continuing discharges of chemicals from point and non-point sources. Significant efforts have been initiated on behalf of public, private, and regulatory entities to restore this degraded urban river. Considerable attention has been devoted to characterizing environmental media with respect to human and ecological risk. As part of these efforts, a wealth of environmental data have been collected and analyzed for a variety of metals, pesticides, organic compounds, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins/furans (PCDD/Fs), and dioxin-like compounds. The objectives of the study described in this paper were two-fold: (1) to generate LPR-specific data for use in human health risk assessment by characterizing concentrations of contaminants in LPR fish tissue samples based on publicly available data using a methodical and transparent approach, and (2) using the resulting data, to calculate the contaminant concentrations in a "Representative Fish," which is a representation of proportional fish tissue concentrations calculated based upon consumption patterns of LPR anglers. The data reduction, processing, and analyses described provide a representative dataset for the conduct of a human health assessment associated with fish consumption from the LPR.

  13. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    PubMed Central

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  14. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration.

    PubMed

    Castiglioni, Alessandra; Corna, Gianfranca; Rigamonti, Elena; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E; Mondino, Anna; Wagers, Amy J; Manfredi, Angelo A; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.

  15. Immunohistochemical localization of galectins-1 and -3 and monitoring of tissue galectin-binding sites during tubular regeneration after renal ischemia reperfusion in the rat.

    PubMed

    Vansthertem, David; Cludts, Stéphanie; Nonclercq, Denis; Gossiaux, Annabel; Saussez, Sven; Legrand, Alexandre; Gabius, Hans-Joachim; Toubeau, Gérard

    2010-11-01

    Endogenous lectins act as effectors of cellular activities such as growth regulation, migration and adhesion. In this study, we report the histochemical detection of galectins and their binding sites in rat kidneys after ischemic injury (35 min) with regard to renal regeneration. In this context, we have shown in a previous publication (Vansthertem et al., 2008) that extrarenal cells (CD44+, vimentin +) could be involved in this process of tubular restoration. In controls, galectin-1 is expressed by fusiform-shaped cells within cortical and medullar interstitium. Two days after ischemia, the number of positive interstitial cells increased temporarily within OSOM in the vicinity of altered tubules to later reach control level. After ischemia, we identified a population of galectin-3 (+), CD44 (+), and vimentin (+) interstitial round cells located in the outer stripe of outer medulla (OSOM) in the vicinity of necrotic tubules, but also in the lumen of adjacent blood vessels. The immunocytochemical characteristics of theses cells, along with their distribution within OSOM, suggest the involvement of a unique cell population during kidney regeneration. On the other hand, the distribution and density of binding sites for galectins within OSOM were not modified after ischemia and remained similar to controls. Altogether, our observations suggest that galectin-3 may be involved in the complex process of kidney regeneration following ischemia/reperfusion injury.

  16. Mutation of the f-protein cleavage site of avian paramyxovirus type 7 results in furin cleavage, fusion promotion, and increased replication in vitro but not increased replication, tissue tropism, or virulence in chickens.

    PubMed

    Xiao, Sa; Khattar, Sunil K; Subbiah, Madhuri; Collins, Peter L; Samal, Siba K

    2012-04-01

    We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position -1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position -3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens.

  17. Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an 'intron' bearing a hidden break site.

    PubMed Central

    Melen, G J; Pesce, C G; Rossi, M S; Kornblihtt, A R

    1999-01-01

    Splitting and apparent splicing of ribosomal RNA, both previously unknown in vertebrates, were found in rodents of the genus Ctenomys. Instead of being formed by a single molecule of 4.4 kb, 28S rRNA is split in two molecules of 2.6 and 1.8 kb. A hidden break, mapping within a 106 bp 'intron' located in the D6 divergent region, is expressed in mature ribosomes of liver, lung, heart and spleen, as well as in primary fibroblast cultures. Testis-specific processing eliminates the intron and concomitantly the break site, producing non-split 28S rRNA molecules exclusively in this organ. The intron is flanked by two 9 bp direct repeats, revealing the acquisition by insertion of a novel rRNA processing strategy in the evolution of higher organisms. PMID:10357822

  18. A Site-Specific Integrated Col2.3GFP Reporter Identifies Osteoblasts Within Mineralized Tissue Formed In Vivo by Human Embryonic Stem Cells.

    PubMed

    Xin, Xiaonan; Jiang, Xi; Wang, Liping; Stover, Mary Louise; Zhan, Shuning; Huang, Jianping; Goldberg, A Jon; Liu, Yongxing; Kuhn, Liisa; Reichenberger, Ernst J; Rowe, David W; Lichtler, Alexander C

    2014-10-01

    The use of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) for study and treatment of bone diseases or traumatic bone injuries requires efficient protocols to differentiate hESCs/iPSCs into cells with osteogenic potential and the ability to isolate differentiated osteoblasts for analysis. We have used zinc finger nuclease technology to deliver a construct containing the Col2.3 promoter driving GFPemerald to the AAVS1 site (referred to as a "safe harbor" site), in human embryonic stem cells (H9Zn2.3GFP), with the goal of marking the cells that have become differentiated osteoblasts. In teratomas formed using these cells, we identified green fluorescent protein (GFP)-positive cells specifically associated with in vivo bone formation. We also differentiated the cells into a mesenchymal stem cell population with osteogenic potential and implanted them into a mouse calvarial defect model. We observed GFP-positive cells associated with alizarin complexone-labeled newly formed bone surfaces. The cells were alkaline phosphatase-positive, and immunohistochemistry with human specific bone sialoprotein (BSP) antibody indicates that the GFP-positive cells are also associated with the human BSP-containing matrix, demonstrating that the Col2.3GFP construct marks cells in the osteoblast lineage. Single-cell cloning generated a 100% Col2.3GFP-positive cell population, as demonstrated by fluorescence in situ hybridization using a GFP probe. The karyotype was normal, and pluripotency was demonstrated by Tra1-60 immunostaining, pluripotent low density reverse transcription-polymerase chain reaction array and embryoid body formation. These cells will be useful to develop optimal osteogenic differentiation protocols and to isolate osteoblasts from normal and diseased iPSCs for analysis.

  19. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  20. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site

    SciTech Connect

    Feng, Huan; Qian, Yu; Gallagher, Frank J.; Zhang, Weiguo; Yu, Lizhong; Liu, Chang -Jun; Jones, Keith W.; Tappero, Ryan

    2015-11-01

    Liberty State Park in New Jersey, USA, is a “brownfield” site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May–September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT) techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.

  1. TNF-α is expressed at sites of parasite and tissue destruction in the spleen of mice acutely infected with Trypanosoma cruzi

    PubMed Central

    LIMA, ELIANITA SUZART; ANDRADE, ZILTON A; ANDRADE, SONIA G

    2001-01-01

    Mice infected with a macrophagotropic strain of Trypanosoma cruzi develop progressive splenomegaly due to reactive hyperplasia with increased number of lymphocytes and macrophages, culminating in parasite disintegration and necrosis of parasitized cells. Necrotic changes have been attributed to the liberation of toxic cytokines, including TNF-α, from parasitized macrophages. In the present study, the presence of TNF‐α was investigated in situ. In addition the participation of destroyed parasites in inducing the liberation of TNF-α was examined in two highly susceptible mice strains (C3H and Swiss) and a more resistant strain (DBA). Swiss (90) C3H/He (83) and DBA (30) mice were infected with the Peruvian strain of T. cruzi. Nineteen infected Swiss mice, and 22 infected C3H/He were treated with Benznidazole (one or two doses, 100 mg/kg bw/day), on the 8th and 9th days after infection. Necrotic splenic lesions occurred in both susceptible and resistant strains of mice. Although differing in degree, lesions were more intense in C3H and Swiss than in DBA mice. Comparing untreated and treated susceptible mice, necrotic lesions were significantly less intense in the latter. By specific monoclonal antibody immunolabelling, TNF-α was demonstrated in the cytoplasm of macrophages and within necrotic areas, from Swiss, C3H/He and DBA mouse spleens. In conclusion, TNF-α, probably synthesized by macrophages, was strongly expressed at the sites of parasite and cell destruction, thus appearing to play a pivotal role in splenic necrotic changes associated with severe experimental T. cruzi infection. PMID:11846839

  2. The immunohistochemical expression profile of osteopontin in normal human tissues using two site-specific antibodies reveals a wide distribution of positive cells and extensive expression in the central and peripheral nervous systems.

    PubMed

    Kunii, Yasuto; Niwa, Shin-ichi; Hagiwara, Yoshiaki; Maeda, Masahiro; Seitoh, Tsutomu; Suzuki, Toshimitsu

    2009-09-01

    To elucidate the cellular distribution of osteopontin (OPN) in normal human tissues, we undertook immunohistochemistry using two site-specific OPN antibodies. The 10A16 monoclonal antibody was raised against the amino acid sequence just downstream of the thrombin cleavage site, while the O-17 polyclonal antibody was raised against the N-terminal peptide. Each antibody has been confirmed previously to react with both whole OPN and its relevant fragments. The expression pattern for these two antibodies was similar in distribution. In addition, we also identified expression in Ebner's gland, type II pneumocytes, Kupffer cells, cells of the endocrine organs, anterior lens capsule and ciliary body, synovial type A cells, mesothelia, adipocytes, and mast cells. Neurons and glia in the central nervous system and spinal cord, cranial and peripheral nerve sheaths, ganglion cells in the sympathetic ganglion, intestinal plexuses, retina, and choroid plexus also regularly exhibited OPN positivity. Testicular germ cells, pancreatic exocrine cells, and follicular dendritic cells reacted with 10A16 only, whereas lutein cells and taste bud cells exhibited O-17 reactivity alone. These minor differences were hypothesized to reflect the state of OPN in the cells; that is, whether OPN was in its whole molecule or fragmented form. In conclusion, we demonstrate that OPN is widely distributed in normal human cells, particularly those comprising the central and peripheral nervous systems.

  3. High Resolution Structures of p-Aminobenzamidine- and Benzamidine- VIIa/Soluble Tissue Factor: Unpredicted Conformation of the 192-193 Peptide Bond and Mapping of Ca2+, Mg2+, Na+ an Zn2+ Sites in Facto VIIa

    SciTech Connect

    Bajaj,S.; Schmidt, A.; Agah, S.; Bajaj, M.; Padmanabhan, K.

    2006-01-01

    Factor VIIa (FVIIa) consists of a {gamma}-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like domains, and a protease domain. FVIIa binds seven Ca{sup 2+} ions in the Gla, one in the EGF1, and one in the protease domain. However, blood contains both Ca{sup 2+} and Mg{sup 2+}, and the Ca{sup 2+} sites in FVIIa that could be specifically occupied by Mg{sup 2+} are unknown. Furthermore, FVIIa contains a Na{sup +} and two Zn{sup 2+} sites, but ligands for these cations are undefined. We obtained p-aminobenzamidine-VIIa/soluble tissue factor (sTF) crystals under conditions containing Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, and Zn{sup 2+}. The crystal diffracted to 1.8{angstrom} resolution, and the final structure has an R-factor of 19.8%. In this structure, the Gla domain has four Ca{sup 2+} and three bound Mg{sup 2+}. The EGF1 domain contains one Ca{sup 2+} site, and the protease domain contains one Ca{sup 2+}, one Na{sup +}, and two Zn{sup 2+} sites. {sup 45}Ca{sup 2+} binding in the presence/absence of Mg{sup 2+} to FVIIa, Gla-domainless FVIIa, and prothrombin fragment 1 supports the crystal data. Furthermore, unlike in other serine proteases, the amide N of Gly{sup 193} in FVIIa points away from the oxyanion hole in this structure. Importantly, the oxyanion hole is also absent in the benzamidine-FVIIa/sTF structure at 1.87{angstrom} resolution. However, soaking benzamidine-FVIIa/sTF crystals with D-Phe-Pro-Arg-chloromethyl ketone results in benzamidine displacement, D-Phe-Pro-Arg incorporation, and oxyanion hole formation by a flip of the 192-193 peptide bond in FVIIa. Thus, it is the substrate and not the TF binding that induces oxyanion hole formation and functional active site geometry in FVIIa. Absence of oxyanion hole is unusual and has biologic implications for FVIIa macromolecular substrate specificity and catalysis.

  4. (/sup 3/H)leukotriene B/sub 4/ binding to the guinea pig spleen membranes: a rich tissue source for a high affinity leukotriene B/sub 4/ receptor site

    SciTech Connect

    Cheng, J.B.; Kohi, F.; Townley, R.G.

    1986-03-05

    To select a tissue rich for the high affinity leukotriene (LT)B/sub 4/ receptor site, they compared binding of 1 nM (/sup 3/H)LTB/sub 4/ (180 Ci/mmol) to the crude membrane preparations of guinea pig spleen, thymus, lung, uterus, bladder, brain, adrenal gland, small intestine, liver, kidney and heart. They found that the membrane preparations from spleen contained the highest binding activity per mg protein. They characterized the LTB/sub 4/ binding to the spleen preparation in detail. LTB/sub 4/ binding was rapid, reversible, stereoselective and saturable. The data from equilibrium experiments showed a linear Scatchard plot with a K/sub d/ of 1.6 nM and a binding site density of 259 fmol/mg prot. The rank order of agents competing for spleen (/sup 3/H)LTB/sub 4/ binding at 25/sup 0/C was: LTB/sub 4/ (K/sub i/ = 2.8 nM) > 20-OH-LTB/sub 4/ (23 nM) > LTA/sub 4/ (48 nM) > LTA/sub 4/ methyl ester (0.13 ..mu..M) > 20-COOH-LTB/sub 4/ (> 6.6 ..mu..M) greater than or equal to arachidonic acid (0.15 mM) similarly ordered FPL-55,712 (0.11 mM). At 4/sup 0/C, LTB/sub 4/ (2.3 nM) competed at least 10x more effectively than 20-OH-LTB/sub 4/ (29 nM) and 20-COOH-LTB/sub 4/ (> 6.6 ..mu..M). HPLC analysis indicated that incubation of 84 ng LTB/sub 4/ with the spleen membrane at 25/sup 0/C did not result in the formation of 20-OH-LTB/sub 4/ (< 1 ng) in the filtrate. They conclude that guinea pig spleen contains a rich tissue source of high affinity (/sup 3/H)LTB/sub 4/ receptor binding sites.

  5. Normal osteoid tissue

    PubMed Central

    Raina, Vinita

    1972-01-01

    The results of a histological study of normal osteoid tissue in man, the monkey, the dog, and the rat, using thin microtome sections of plastic-embedded undecalcified bone, are described. Osteoid tissue covers the entire bone surface, except for areas of active resorption, although the thickness of the layer of osteoid tissue varies at different sites and in different species of animals. The histological features of osteoid tissue, apart from its amount, are the same in the different species studied. Distinct bands or zones are recognizable in some layers of osteoid tissue, particularly those of greatest thickness, and their significance is discussed. Some of the histological features of the calcification front are described. Images PMID:4111820

  6. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor.

    PubMed

    Ng, Kay-Siong; Leung, How-Wing; Wong, Peter T-H; Low, Chian-Ming

    2012-07-20

    Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.

  7. Tissue types (image)

    MedlinePlus

    There are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports other tissues and binds them together (bone, blood, and lymph tissues). ...

  8. The CD11a binding site of efalizumab in psoriatic skin tissue as analyzed by Multi-Epitope Ligand Cartography robot technology. Introduction of a novel biological drug-binding biochip assay.

    PubMed

    Bonnekoh, B; Böckelmann, R; Pommer, A J; Malykh, Y; Philipsen, L; Gollnick, H

    2007-01-01

    Efalizumab (Raptiva) is an immunomodulating recombinant humanized IgG1 monoclonal antibody that binds to CD11a, the alpha-subunit of leukocyte function antigen-1 (LFA-1). By blocking the binding of LFA-1 to ICAM-1, efalizumab inhibits the adhesion of leukocytes to other cell types and interferes with the migration of T lymphocytes to sites of inflammation (including psoriatic skin plaques). Analysis of the response in patients treated with efalizumab to date shows that distinct groups of responders and nonresponders to the drug exist. It would therefore be of great practical value to be able to predict which patients are most likely to respond to treatment, by identifying key parameters in the mechanism of action of efalizumab. Detailed investigation and detection of multiple epitopes in microcompartments of skin tissue has until recently been restricted by the available technology. However, the newly developed technique of Multi-Epitope Ligand Cartography (MELC) robot technology combines proteomics and biomathematical tools to visualize protein networks at the cellular and subcellular levels in situ, and to decipher cell functions. The MELC technique, which is outlined in this paper, was used to help characterize the binding of efalizumab to affected and unaffected psoriatic skin as compared to normal control skin under ex vivomodel conditions. Efalizumab was labeled with fluorescein isothiocyanate and integrated into a MELC library of more than 40 antibodies. These antibodies were selected for their potential to detect epitopes which may be indicative of (a) various cell types, (b) structural components of the extracellular matrix, or (c) the processes of cell proliferation, activation and adhesion. Efalizumab bound to CD11a in affected psoriatic skin by a factor 15x and 32x higher than in unaffected psoriatic skin and normal control skin, respectively. CD11a and the efalizumab binding site were primarily expressed in the extravascular dermis, whereas CD54 (ICAM

  9. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  10. Tissue Issues

    ERIC Educational Resources Information Center

    Metz, James

    2016-01-01

    Every day, 27,000 trees are used to make bathroom tissue. Americans use an average of 23.6 rolls per person per year, and more than 7 billion rolls of toilet paper are sold yearly in the United States alone. Perhaps the amount of bathroom tissue used can be reduced by changing the dimensions of the paper or the core. This brief article presents…

  11. Tissue Classification

    SciTech Connect

    Robinson, David Gerald

    2015-01-01

    The project began as a e ort to support InLight and Lumidigm. With the sale of the companies to a non-New Mexico entity, the project then focused on supporting a new company Medici Technologies. The Small Business (SB) is attempting to quantify glucose in tissue using a series of short interferometer scans of the nger. Each scan is produced from a novel presentation of the nger to the device. The intent of the project is to identify and, if possible, implement improved methods for classi cation, feature selection, and training to improve the performance of predictive algorithms used for tissue classi cation.

  12. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  13. Benign hormone-secreting adenoma within a larger adrenocortical mass showing intensely increased activity on (18)F-FDG PET/CT.

    PubMed

    Papadakis, Georgios Z; Millo, Corina; Stratakis, Constantine A

    2016-10-01

    Adrenal adenomas usually show (18)F-FDG activity less than that of the liver parenchyma. However, lipid-poor and hormone-secreting adenomas have been reported to show mild (18)F-FDG avidity. We report on a 51-year-old female with clinical symptoms of hypercortisolemia and a large right adrenal mass detected on CT. Post-contrast CT images showed an enhancing focus in the lower pole of the mass, with corresponding markedly increased activity on (18)F-FDG PET/CT. Right adrenalectomy was performed and histology revealed a benign adenoma, indicating that functioning benign adenomas can show intensely increased metabolic activity on (18)F-FDG mimicking malignancy.

  14. Bilateral primary renal lymphoma in a pediatric patient: staging and response evaluation with ¹⁸F-FDG PET/CT.

    PubMed

    Dhull, V S; Mukherjee, A; Karunanithi, S; Durgapal, P; Bal, C; Kumar, R

    2015-01-01

    Primary renal lymphoma (PRL) is a rare disease. We here present the case of an 8-year-old child who presented with bilateral renal masses. On biopsy, it was confirmed to be B-cell non-Hodgkin's lymphoma. (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET/CT) for staging demonstrated (18)F-FDG avid bilateral renal masses, with no other abnormal focus. Follow up (18)F-FDG PET/CT showed complete resolution of the disease after six cycles of chemotherapy. Here we have highlighted the potential role of (18)F-FDG PET/CT in staging and response evaluation of a patient with PRL and presented a brief review.

  15. TNT metabolites in animal tissues

    SciTech Connect

    Shugart, L.R.

    1990-01-01

    The overall objectives of this project are: to provide quantitative analytical procedures for the analysis of TNT and at least eight of its metabolites in animal tissues; and to obtain representative samples of tissues from animals from designated Army sites, and to determine the presence or absence of TNT and its metabolites in these samples. The study is divided into two Phases corresponding to the stated overall objectives of the project. 5 figs., 4 tabs.

  16. Tissue macerating instrument

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.; Burnett, J. E. (Inventor)

    1977-01-01

    A surgical tissue macerating and removal tool is described which has a rotating rod with a cutting member at one end and which disposed in a tube which is then contained in an extension of the tool handle. A frusto-conical member extends into the extension at the cutter member end of the rotating rod with its small end engaging the tube. The portion of the frusto-conical member outside of the extension forms a tissue engaging member and may be cut-off at an angle to the axis of the rod to form a tissue engaging edge. Apertures are provided in the extension adjacent the frusto-concial member so that treatment fluid supplied in the annular space between the tube and the extension may flow to the operative site. An aperture is provided in the frustoconical member between the extension and the tube so that fluid may also flow into the tube where it mixes with macerated tissue being directed through an aperture in the tube to a passageway which may have suction applied to help remove macerated material.

  17. Dinitrotoluene in deer tissues

    SciTech Connect

    Shugart, L.R.

    1991-09-30

    Badger Army Ammunition Plant (BAAP), Baraboo, Wisconsin, has within a security-fenced area, a herd of whitetail deer. The US Army and the State of Wisconsin, Department of Health and Social Services have determined that approximately 20 of the deer be harvested and tissue samples thus collected be analyzed for 2,4- and 2,6-dinitrotoluene (2,4- and 2,6-DNT) by high pressure liquid chromatography (HPLC) to a sensitivity of 0.1 part per million (ppm). The HPLC analyses will be done at the Oak Ridge National Laboratory (ORNL) following protocol used previously for similar work for other government sites. ORNL shall instruct Olin relative to the quantity and type of tissue required, storage and shipment requirements, and other information to ensure that all protocol and chain of custody requirements are clear. A final report will be made to Olin Corporation upon completion of the HPLC analyses.

  18. Tissue engineering for periodontal regeneration.

    PubMed

    Kao, Richard T; Conte, Greg; Nishimine, Dee; Dault, Scott

    2005-03-01

    As a result of periodontal regeneration research, a series of clinical techniques have emerged that permit tissue engineering to be performed for more efficient regeneration and repair of periodontal defects and improved implant site development. Historically, periodontal regeneration research has focused on a quest for "magic filler" material. This search has led to the development of techniques utilizing autologous bone and bone marrow, allografts, xenografts, and various man-made bone substitutes. Though these techniques have had limited success, the desire for a more effective regenerative approach has resulted in the development of tissue engineering techniques. Tissue engineering is a relatively new field of reconstructive biology which utilizes mechanical, cellular, or biologic mediators to facilitate reconstruction/regeneration of a particular tissue. In periodontology, the concept of tissue engineering had its beginnings with guided tissue regeneration, a mechanical approach utilizing nonresorbable membranes to obtain regeneration in defects. In dental implantology, guided bone regeneration membranes +/- mechanical support are used for bone augmentation of proposed implant placement sites. With the availability of partially purified protein mixture from developing teeth and growth factors from recombinant technology, a new era of tissue engineering whereby biologic mediators can be used for periodontal regeneration. The advantage of recombinant growth factors is this tissue engineering device is consistent in its regenerative capacity, and variations in regenerative response are due to individual healing response and/or poor surgical techniques. In this article, the authors review how tissue engineering has advanced and discuss its impact on the clinical management of both periodontal and osseous defects in preparation for implant placement. An understanding of these new tissue engineering techniques is essential for comprehending today's ever

  19. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  20. The role of thermal feedback in electrosurgical tissue heating.

    PubMed

    Curcie, D J; Craelius, W

    1995-10-01

    Thermal dependence of tissue resistivity was incorporated into a compartmental tissue model that predicted the interaction between power delivery from electrosurgical units (ESUs) and tissue heating. Simulations showed that as tissue resistance declines with heating, a positive feedback loop from tissue to generator is created that can promote alternate site burning. This study describes how the thermal behaviour of tissue resistance influences the output of microprocessor-controlled thermal generators, especially when used in the monopolar mode.

  1. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  2. Tissue Photolithography

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil; Shibata, Darryl; Taylor, Clive

    2011-01-01

    Tissue lithography will enable physicians and researchers to obtain macromolecules with high purity (greater than 90 percent) from desired cells in conventionally processed, clinical tissues by simply annotating the desired cells on a computer screen. After identifying the desired cells, a suitable lithography mask will be generated to protect the contents of the desired cells while allowing destruction of all undesired cells by irradiation with ultraviolet light. The DNA from the protected cells can be used in a number of downstream applications including DNA sequencing. The purity (i.e., macromolecules isolated form specific cell types) of such specimens will greatly enhance the value and information of downstream applications. In this method, the specific cells are isolated on a microscope slide using photolithography, which will be faster, more specific, and less expensive than current methods. It relies on the fact that many biological molecules such as DNA are photosensitive and can be destroyed by ultraviolet irradiation. Therefore, it is possible to protect the contents of desired cells, yet destroy undesired cells. This approach leverages the technologies of the microelectronics industry, which can make features smaller than 1 micrometer with photolithography. A variety of ways has been created to achieve identification of the desired cell, and also to designate the other cells for destruction. This can be accomplished through chrome masks, direct laser writing, and also active masking using dynamic arrays. Image recognition is envisioned as one method for identifying cell nuclei and cell membranes. The pathologist can identify the cells of interest using a microscopic computerized image of the slide, and appropriate custom software. In one of the approaches described in this work, the software converts the selection into a digital mask that can be fed into a direct laser writer, e.g. the Heidelberg DWL66. Such a machine uses a metalized glass plate (with

  3. Soft tissue coverage in abdominal wall reconstruction.

    PubMed

    Baumann, Donald P; Butler, Charles E

    2013-10-01

    Abdominal wall defects requiring soft tissue coverage can be either partial-thickness defects or full-thickness composite defects. Soft tissue flap reconstruction offers significant advantages in defects that cannot be closed primarily. Flap reconstruction is performed in a single-stage procedure obviating chronic wound management. If the defect size exceeds the availability of local soft tissue for coverage, regional pedicled flaps can be delivered into the abdominal wall while maintaining blood supply from their donor site. Microsurgical free tissue transfer increases the capacity to provide soft tissue coverage for abdominal wall defects that are not amenable to either local or regional flap coverage.

  4. Site selection

    SciTech Connect

    Olsen, C.W.

    1983-07-01

    The conditions and criteria for selecting a site for a nuclear weapons test at the Nevada Test Site are summarized. Factors considered are: (1) scheduling of drill rigs, (2) scheduling of site preparation (dirt work, auger hole, surface casing, cementing), (3) schedule of event (when are drill hole data needed), (4) depth range of proposed W.P., (5) geologic structure (faults, Pz contact, etc.), (6) stratigraphy (alluvium, location of Grouse Canyon Tuff, etc.), (7) material properties (particularly montmorillonite and CO/sub 2/ content), (8) water table depth, (9) potential drilling problems (caving), (10) adjacent collapse craters and chimneys, (11) adjacent expended but uncollapsed sites, (12) adjacent post-shot or other small diameter holes, (13) adjacent stockpile emplacement holes, (14) adjacent planned events (including LANL), (15) projected needs of Test Program for various DOB's and operational separations, and (16) optimal use of NTS real estate.

  5. Controlled temperature photothermal tissue welding.

    PubMed

    C Ilesiz, I

    1999-07-01

    Photothermal tissue welding has been investigated as an alternative surgical tool to improve bonding of a variety of severed tissues. Yet, after almost two decades of research, inconsistencies in interpretation of experimental reports and, consequently, mechanism of this photothermal process as well as control of dosimetry remain an enigma. Widespread clinical use may greatly depend on full automation of light dosimetry to perform durable and reproducible welds with minimal thermal damage to surrounding and/or underlying tissues. Recognizing photothermal damage as a rate process, radiometrically measured tissue surface temperature has been studied as an indirect marker of tissue status during laser irradiation. Dosimetry control systems and surgical devices were developed to perform controlled temperature tissue welding using surface temperature feedback from the site of laser impact. Nevertheless, end points that mark the completion of a durable and stable weld have not been precisely identified, and subsequently, not incorporated into dosimetry control algorithms. This manuscript reviews thermal dosimetry control systems of the 1990s in an attempt to systematically indicate the difficulties encountered so far and to elaborate on major issues for photothermal tissue welding to become a clinical reality in the new millennium. © 1999 Society of Photo-Optical Instrumentation Engineers.

  6. Polymer concepts in tissue engineering.

    PubMed

    Peter, S J; Miller, M J; Yasko, A W; Yaszemski, M J; Mikos, A G

    1998-01-01

    Traumatic injuries, cancer treatment, and congenital abnormalities are often associated with abnormal bone shape or segmental bone loss. Restoration of normal structure and function in these cases requires replacement of the missing bone that may be accomplished by surgical transfer of natural tissue from an uninjured location elsewhere in the body. However, this procedure is limited by availability, adequate blood supply, and secondary deformities at the donor site. One strategy to overcome these problems is to develop living tissue substitutes based on synthetic biodegradable polymers. Three methods of bone regeneration using biodegradable polymers are being studied in our laboratory: tissue induction, cell transplantation, and fabrication of vascularized bone flaps. Injectable polymers are used for filling skeletal defects and guiding bone tissue growth. Their main advantage is minimizing the surgical intervention or the severity of the surgery. Polymer-cell constructs also hold great promise in the field of tissue engineering. They provide a scaffold on which cells grow and organize themselves. As the cells begin to secrete their own extracellular matrix, the polymer degrades and is eventually eliminated from the body, resulting in completely natural tissue replacement. Bone flaps can be fabricated ectopically into precise shapes and sizes. With an attached vascular supply, these flaps can be transferred into areas deficient in vascularity. This article discusses polymer concepts regarding bone tissue engineering and reviews recent advances of our laboratory on guided bone regeneration using biodegradable polymer scaffolds.

  7. Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo.

    PubMed

    Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S

    2015-05-01

    The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in

  8. Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus.

    PubMed

    Mohiti-Asli, Mahsa; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-10-01

    Wound infection presents a challenging and growing problem. With the increased prevalence and growth of multidrug-resistant bacteria, there is a mounting need to reduce and eliminate wound infections using methodologies that limit the ability of bacteria to evolve into further drug-resistant strains. A well-known strategy for combating bacterial infection and preventing wound sepsis is through the delivery of silver ions to the wound site. High surface area silver nanoparticles (AgNPs) allowing extensive silver ion release have therefore been explored in different wound dressings and/or skin substitutes. However, it has been recently shown that AgNPs can penetrate into the stratum corneum of skin or diffuse into the cellular plasma membrane, and may interfere with a variety of cellular mechanisms. The goal of this study was to introduce and evaluate a new type of high surface area metallic silver in the form of highly porous silver microparticles (AgMPs). Polylactic acid (PLA) nanofibers were successfully loaded with either highly porous AgMPs or AgNPs and the antimicrobial efficacy and cytotoxicity of the two silver-based wound dressings were assessed and compared. To better mimic the physiological environment in vivo where both human cells and bacteria are present, a novel coculture system combining human epidermal keratinocytes and Staphylococcus aureus bacteria was designed to simultaneously evaluate human skin cell cytotoxicity with antimicrobial efficacy in a three-dimensional environment. We found that highly porous AgMPs could be successfully incorporated in nanofibrous wound dressings, and exhibited comparable antimicrobial efficacy and cytotoxicity to AgNPs. Further, PLA nanofibers containing highly porous AgMPs exhibited steady silver ion release, at a greater rate of release, than nanofibers containing AgNPs. The replacement of AgNPs with the newly introduced AgMPs overcomes concerns regarding the use of nanoparticles and holds great promise as skin

  9. Biodegradable inflatable balloons for tissue separation.

    PubMed

    Basu, Arijit; Haim-Zada, Moran; Domb, Abraham J

    2016-10-01

    Confining radiation to a specific region (during radiation therapy) minimizes damage to surrounding tissues. Biodegradable inflatable balloons (bio-balloons) were developed. The device protects the normal tissues by increasing the gap between radiation source and critical structures. The radiation fades away while passing through the inflated balloon preventing the surrounding tissues from harmful radiation. These bio-balloons have also found clinical use to treat massive rotator cuff tear. This review summarizes the chemistry, engineering, and clinical development of these biomedical devices. These balloons are made of biodegradable polymers folded into the edge of a trocar and inserted between the tissues to be separated, and inflated by normal saline in the site of the application. The inserted balloon protects the tissues from radiation or mechanical stress. They remain inflated on site for two months and are finally eliminated within 12 months.

  10. Fluroine-18 labeled 28-carbomethoxy-3{beta}-(4-chlorophenyl)-8-[-3-fluoropropyl] nortropane(FPT): Synthesis and tissue distribution of a potential, radioligand for mapping cocaine receptor sites by PET

    SciTech Connect

    Keil, R.; Goodman, M.M.; Shoup, T.

    1995-05-01

    Highly potent and selective radioligands for the dopamine transporter labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for longitudinal in vivo mapping of cocaine receptor sites in the caudate by PET. Recently, we reported an iodine-123 labeled 3{beta}-aryl analog of cocaine, 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)-8-((E)-3-iodopropen-1-yl)nortropane, which was 125 times more potent than cocaine in inhibiting [I-125] RTI-55 binding to rat striatal homogenates and which showed high striatal (S) uptake (0.61% dose/g) and high S to cerebellum (C) ratio S/C=16.5 at 120 min in rats. These results demonstrated bulk tolerance at the 8-position of this I-123 analog. These findings prompted us to synthesize a new radioligand fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)-8-3-fluoropropylnortropane (FPT) as a potential cocaine receptor PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(chlorophenyl) nortropane (1) with 1-bromo-3-fluoropropane (2) in CH3CN at 80{degrees}C afforded FPT (3). In Vitro binding studies in rat striatal homogenates using [I-125] RTI-55 resulted in a Ki (nM) of 8.2 for FPT. [F-18]FPT (3) was prepared by treating 1,3-diiodopropane (4) with NCA K[F-18]/K222 for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-3-iodopropane (5) in 50% E.O.B. yield. Coupling of [F-18] 5 with 1 in CH3CN at 60{degrees}C afforded [F-18]FPT in 5% yield (not optimized) E.O.B. following HPLC purification in a total synthesis time of 100 min.. [F-18]5 was >99% radiochemically pure with a specific activity of 8 Ci/{mu}mole. Following intravenous administration to rats [F-18]FPT showed high uptake in the striatum (S) with rapid washout from the cerebellum to afford a high S/C ratios=6.2 at 120 min. Primate imaging will also be presented. These results suggest that FPT is an excellent candidate for mapping cocaine receptor sites by PET.

  11. Affinities and densities of high-affinity (/sup 3/H)muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    SciTech Connect

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-09-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using (/sup 3/H)muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using (/sup 3/H)flunitrazepam and (/sup 3/H)Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of (/sup 3/H)muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy.

  12. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  13. Undifferentiated Connective Tissue Disease

    MedlinePlus

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  14. Radiofluorinated 3-(2{prime}-fluoroethyl)-2-thienylspiperone (FETS): Synthesis, pharmacologic characterization, tissue distribution and primate imaging of a selective radioligand for mapping D2 receptor sites by PET

    SciTech Connect

    Goodman, M.M.; Shi, B.; Hoffman, J.

    1995-05-01

    Abnormally high dopaminergic neurotransmission has been implicated in schizophrenia. A number of radiolabeled analogs of spiperone, a potent antipyschotic with a high (nanomolar) affinity for dopamine D2 receptors, have been synthesized for quantifying D2 receptors in humans. An undesired property accompanying high striatal uptake of radiolabeled spiperone (SPIP) analogs is high affinity for serotonin 5-IIT2 receptors. A potent spiperone analog which selectively binds to D2 receptors would be valuable in studying regional dopaminergic aberrations in schizophrenia. We have synthesized new potent radioligands [F-18] labeled 3-(2{prime}-fluoroethyl)-2-thienylspiperone (FETS) and 3-(3{prime}-fluoropropyl)-2-thienylspiperone (FPTS) for quantifying D2 receptors by PET. In vitro binding studies for D2 receptors in rat striatal homogenates using [H-3]raclopride afforded Ki`s (nM) of 1.07 for SPIP, 2.02 for FETS, 3.45 for FES and 5.45 for FPTS. In vitro binding studies for 5-HT2 receptors in rat cortical homogenates using [H-3]ketanserin afforded Ki`s (nM) of 1.86 for SPIP, 6.03 for FES, 20 for FPTS and 67 for FETS. Thus, FETS was found to be a potent and the most selective (Ki 5-HT2/Ki D2=33.5) spiperone ligand for D2 receptors. [F-18]FETS was synthesized in 41% E.O.B. by NCA K[F-18]/K222 exchange for tosylate from 3-(2{sup {prime}}-tosylethyl)-2-thienylspiperone in CH3CN at 100{degrees}C. HPLC purification afforded [F-18]FETS with a specific activity of 8 Ci/{mu}mole in a total synthesis time of 90 min. Following femoral vein injection in rats [F-18]FETS showed good uptake and retention in striatal (S) tissue (0.91% dose/g at 60 min) with clearance from the cerebellum (C) (0.24% dose/g at 60 min) giving S/C = 3.6 at 60 min. [F-18]FETS (6.0 mCi) was also administered to a rhesus monkey and showed high uptake and retention in the basal ganglia with S/C = 6.0 and 10.0 at 1 h and 2 h post injection respectively.

  15. [Research progress in peri-implant soft tissue engineering augmentation method].

    PubMed

    Pei, Tingting; Yu, Hongqiang; Wen, Chaoju; Guo, Tianqi; Zhou, Yanmin; Peng, Huimin

    2016-05-01

    The sufficiency of hard and soft tissue at the implant site is the guarantee of long-term function, health and the appearance of implant denture. Problem of soft tissue recession at the implant site has always been bothering dentists. Traditional methods for augmentation of soft tissue such as gingival transplantation have disadvantages of instability of the increased soft-tissue and more trauma. Lately the methods that base on tissue engineering to increase the soft tissue of peri-implant sites have drawn great attention. This review focuses on the current methods of peri-implant restoration through tissue engineering, seed cells, biological scaffolds and cytokines.

  16. Tissue engineering in urothelium regeneration.

    PubMed

    Vaegler, Martin; Maurer, Sabine; Toomey, Patricia; Amend, Bastian; Sievert, Karl-Dietrich

    2015-03-01

    The development of therapeutic treatments to regenerate urothelium, manufacture tissue equivalents or neourethras for in-vivo application is a significant challenge in the field of tissue engineering. Many studies have focused on urethral defects that, in most cases, inadequately address current therapies. This article reviews the primary tissue engineering strategies aimed at the clinical requirements for urothelium regeneration while concentrating on promising investigations in the use of grafts, cellular preparations, as well as seeded or unseeded natural and synthetic materials. Despite significant progress being made in the development of scaffolds and matrices, buccal mucosa transplants have not been replaced. Recently, graft tissues appear to have an advantage over the use of matrices. These therapies depend on cell isolation and propagation in vitro that require, not only substantial laboratory resources, but also subsequent surgical implant procedures. The choice of the correct cell source is crucial when determining an in-vivo application because of the risks of tissue changes and abnormalities that may result in donor site morbidity. Addressing an appropriately-designed animal model and relevant regulatory issues is of fundamental importance for the principal investigators when a therapy using cellular components has been developed for clinical use.

  17. Soft Tissue Engineering with Micronized-Gingival Connective Tissues.

    PubMed

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2017-02-24

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm(3) ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. This article is protected by copyright. All rights reserved.

  18. Variation in alternative splicing across human tissues

    PubMed Central

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues. Conclusions This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells. PMID:15461793

  19. Tissue bionics: examples in biomimetic tissue engineering.

    PubMed

    Green, David W

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  20. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  1. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  2. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  3. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  4. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  5. Tissue damage detection by osmotic surveillance.

    PubMed

    Enyedi, Balázs; Kala, Snigdha; Nikolich-Zugich, Tijana; Niethammer, Philipp

    2013-09-01

    How tissue damage is detected to induce inflammatory responses is unclear. Most studies have focused on damage signals released by cell breakage and necrosis. Whether tissues use other cues in addition to cell lysis to detect that they are damaged is unknown. We find that osmolarity differences between interstitial fluid and the external environment mediate rapid leukocyte recruitment to sites of tissue damage in zebrafish by activating cytosolic phospholipase a2 (cPLA2) at injury sites. cPLA2 initiates the production of non-canonical arachidonate metabolites that mediate leukocyte chemotaxis through a 5-oxo-ETE receptor (OXE-R). Thus, tissues can detect damage through direct surveillance of barrier integrity, with cell swelling probably functioning as a pro-inflammatory intermediate in the process.

  6. Microbiota of Human Breast Tissue

    PubMed Central

    Urbaniak, Camilla; Cummins, Joanne; Brackstone, Muriel; Macklaim, Jean M.; Gloor, Gregory B.; Baban, Chwanrow K.; Scott, Leslie; O'Hanlon, Deidre M.; Burton, Jeremy P.; Francis, Kevin P.; Tangney, Mark

    2014-01-01

    In recent years, a greater appreciation for the microbes inhabiting human body sites has emerged. In the female mammary gland, milk has been shown to contain bacterial species, ostensibly reaching the ducts from the skin. We decided to investigate whether there is a microbiome within the mammary tissue. Using 16S rRNA sequencing and culture, we analyzed breast tissue from 81 women with and without cancer in Canada and Ireland. A diverse population of bacteria was detected within tissue collected from sites all around the breast in women aged 18 to 90, not all of whom had a history of lactation. The principal phylum was Proteobacteria. The most abundant taxa in the Canadian samples were Bacillus (11.4%), Acinetobacter (10.0%), Enterobacteriaceae (8.3%), Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium (5.8%), Comamonadaceae (5.7%), Gammaproteobacteria (5.0%), and Prevotella (5.0%). In the Irish samples the most abundant taxa were Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria welshimeri (12.1%), Propionibacterium (10.1%), and Pseudomonas (5.3%). None of the subjects had signs or symptoms of infection, but the presence of viable bacteria was confirmed in some samples by culture. The extent to which these organisms play a role in health or disease remains to be determined. PMID:24610844

  7. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  8. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  9. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  10. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  11. Tissue transfer techniques in reconstructive urology

    PubMed Central

    Bryk, Darren J; Yamaguchi, Yuka

    2015-01-01

    Tissue transfer techniques are an essential part of the reconstructive urologist's armamentarium. Flaps and graft techniques are widely used in genital and urethral reconstruction. A graft is tissue that is moved from a donor site to a recipient site without its native blood supply. The main types of grafts used in urology are full thickness grafts, split thickness skin grafts and buccal mucosa grafts. Flaps are transferred from the donor site to the recipient site on a pedicle containing its native blood supply. Flaps can be classified based on blood supply, elevation methods or the method of transfer. The most used flaps in urology include penile, preputial, and scrotal skin. We review the various techniques used in reconstructive urology and the outcomes of these techniques. PMID:26175866

  12. Chronic Wasting Disease Positive Tissue Bank

    USGS Publications Warehouse

    Wright, Scott D.

    2007-01-01

    In 2005, the USGS National Wildlife Health Center entered into an agreement with the Wyoming Game and Fish Department and the Department of Veterinary Sciences at the University of Wyoming to produce a collection of positive tissues from cervids intentionally infected with chronic wasting disease. This agreement was facilitated through the University of Wyoming Cooperative Fish and Wildlife Unit. Also, the investigators on this project sampled the animals incrementally over 2 years to show changes over time, and examined tissues from the animals by immunohistochemistry. CWD positive tissues are catalogued by species, sample site and time of infection. These data and more will soon be published.

  13. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  14. Heritable Disorders of Connective Tissue

    MedlinePlus

    ... tissue, and in the special functioning of certain tissues. Connective tissue is made up of dozens of proteins, ... as “X-linked.” Who Gets Heritable Disorders of Connective Tissue? Heritable disorders of connective tissue can affect people ...

  15. Laser/tissue interaction.

    PubMed

    Dederich, D N

    1991-01-01

    When laser light impinges on tissue, it can reflect, scatter, be absorbed, or transmit to the surrounding tissue. Absorption controls to a great degree the extent to which reflection, scattering and transmission occur, and wavelength is the primary determinant of absorption. The CO2 laser is consistently absorbed by most materials and tissues and the Nd-YAG laser wavelength is preferentially absorbed in pigmented tissues. The factors which determine the initial tissue effect include the laser wavelength, laser power, laser waveform, tissue optical properties, and tissue thermal properties. There are almost an infinite number of combinations of these factors possible, many of which would result in unacceptable damage to the tissues. This underscores the need to thoroughly test any particular combination of these factors on the conceptual, in-vitro, and in-vivo level before a treatment is offered.

  16. Connective Tissue Disorders

    MedlinePlus

    Connective tissue is the material inside your body that supports many of its parts. It is the "cellular ... their work. Cartilage and fat are examples of connective tissue. There are over 200 disorders that impact connective ...

  17. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  18. Development of tissue bank

    PubMed Central

    Narayan, R. P.

    2012-01-01

    The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole. PMID:23162240

  19. Development of tissue bank.

    PubMed

    Narayan, R P

    2012-05-01

    The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole.

  20. Tissue engineering of reproductive tissues and organs.

    PubMed

    Atala, Anthony

    2012-07-01

    Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract.

  1. Imaging of human breast tissue using polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Verma, Y.; Gautam, M.; Divakar Rao, K.; Swami, M. K.; Gupta, P. K.

    2011-12-01

    We report a study on the use of polarization sensitive optical coherence tomography (PSOCT) for discriminating malignant (invasive ductal carcinoma), benign (fibroadenoma) and normal (adipocytes) breast tissue sites. The results show that while conventional OCT, that utilizes only the intensity of light back-scattered from tissue microstructures, is able to discriminate breast tissues as normal (adipocytes) and abnormal (malignant and benign) tissues, PS-OCT helps in discriminating between malignant and benign tissue sites also. The estimated values of birefringence obtained from the PSOCT imaging show that benign breast tissue samples have significantly higher birefringence as compared to the malignant tissue samples.

  2. Ageing, adipose tissue, fatty acids and inflammation.

    PubMed

    Pararasa, Chathyan; Bailey, Clifford J; Griffiths, Helen R

    2015-04-01

    A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

  3. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  4. Histopathological evaluation of tissue undergoing thermal insult

    PubMed Central

    Chaudhary, Minal; Bonde, Dushyant; Patil, Swati; Gawande, Madhuri; Hande, Alka; Jain, Deepali

    2016-01-01

    Context: Thermal insult is the major cause of thermal injury or death and in case of death due to thermal injury the body often has to be recovered from the site. Histologically, one can predict whether the victim was alive or dead when the fire was on going. However, determination of probable cause of thermal insult to which victim subjected to be difficult when the victim's body is found somewhere else from the crime scene or accident site or found alone. Hence, histopathological evaluation of the tissue which has undergone thermal insult in such conditions could help to place evidence in front of law officials, regarding probable condition, or scenario at time of burn of victim. Aims: Keeping this as a criteria in this study we aim to evaluate burnt tissue histopathologically, that undergone various degree of thermal insult, which simulates various real life scenario for mortality in burn cases. Settings and Design: We evaluate the changes in hematoxylin and eosin staining pattern of tissue which has undergone thermal insult compared to normal tissue and also the progressive changes in staining pattern, architectural, and cellular details. Materials and Methods: Samples were taken from the patients, in various surgical procedures. Each sample was cut into five parts with close margins so that each burnt tissue is evaluated for same field or region. The tissue that obtained was immediately subjected to varying degree of temperature over a specific period so as to simulate the various real-life condition. Then the tissues were fixed, processed, and stained with routine H and E staining. The processed slides of tissue were examined under the microscope, and the staining, and architectural changes were evaluated and described. Results: Results show that there was a progressive changes in the architectural pattern of the epithelium and connective tissue showing cleft formation and vacuolization, staining pattern also shows mixing of stains progressively as the

  5. IMMUNOLOGIC STUDIES OF HEART TISSUE

    PubMed Central

    Kaplan, Melvin H.; Dallenbach, Frederick D.

    1961-01-01

    Using fluorescent antibody methods, deposits of bound gamma globulin, as determined in unfixed washed sections of auricular appendages from rheumatic hearts, were noted in a significant number (18 per cent) of 100 specimens studied. Such deposits were observed in myofibers, sarcolemma, interstitial connective tissue, and vessel walls. Albumin and fibrin were generally found absent from these sites. Control hearts from normal and pathologic material, including postmortem and biopsied specimens, in general, did not reveal such deposits. These various tissue sites which contained bound gamma globulin frequently exhibited evidence of alteration as indicated both by enhanced affinity for eosin and by strongly positive reaction with the periodic acid-Schiff reagent, and appeared comparable in some cases to "fibrinoid." Bound gamma globulin was not observed in cellular or stromal components of Aschoff lesions, nor was the occurrence of Aschoff lesions correlated with presence of bound gamma globulin. It is suggested that deposition of gamma globulin and the eosinophilic alteration associated with such deposition are related to certain of the pathologic changes of rheumatic heart disease. The nature of such deposits of gamma globulin was considered from immune and non-immune points of view. PMID:13751306

  6. New bipolar tissue ligator combines constant tissue compression and temperature guidance: histologic study and implications for treatment of hemorrhoids

    PubMed Central

    Piskun, Gregory; Tucker, Robert

    2012-01-01

    Background Several minimally invasive technologies are available to treat common soft tissue lesions including symptomatic hemorrhoids. The use of energy to deliver heat and coagulate target lesions is commonly practiced. This study compares the histologic effects produced on intestinal tissues by two energy-based systems which employ different approaches of heat delivery. Methods Two heat delivery systems were evaluated in vivo in a single porcine subject: infrared coagulator and bipolar tissue ligator utilizing constant tissue compression and temperature guidance. Eighteen treatment sites divided into three groups of six were assessed. Treatment site temperature was measured and the effects of thermal treatment in the mucosa, submucosa, submucosal vessels, and muscularis layer were scored. Lateral thermal spread beyond the energy application site was also assessed. Results Treatment site temperatures were much lower in the bipolar ligator group than in the infrared coagulator group. The mucosal and submucosal tissue changes observed in tissues treated with infrared energy and bipolar energy at 55°C were similar. Both the mucosal and submucosal tissue changes with bipolar energy at 50°C were significantly less. Conclusion Both devices achieved similar histologic results. However, the unique design of the bipolar ligator, which allows consistent capture, constant compression, and temperature monitoring of target tissue, accomplished the desired histologic changes with less muscular damage at much lower temperatures than the infrared coagulator. The use of bipolar ligation could offer clinical advantages such as reduced patient pain and a minimized chance of heat-related collateral tissue damage. PMID:23152714

  7. Regeneration of periodontal tissues: guided tissue regeneration.

    PubMed

    Villar, Cristina C; Cochran, David L

    2010-01-01

    The concept that only fibroblasts from the periodontal ligament or undifferentiated mesenchymal cells have the potential to re-create the original periodontal attachment has been long recognized. Based on this concept, guided tissue regeneration has been applied with variable success to regenerate periodontal defects. Quantitative analysis of clinical outcomes after guided tissue regeneration suggests that this therapy is a successful and predictable procedure to treat narrow intrabony defects and class II mandibular furcations, but offers limited benefits in the treatment of other types of periodontal defects.

  8. From in vitro to in situ tissue engineering.

    PubMed

    Sengupta, Debanti; Waldman, Stephen D; Li, Song

    2014-07-01

    In vitro tissue engineering enables the fabrication of functional tissues for tissue replacement. In addition, it allows us to build useful physiological and pathological models for mechanistic studies. However, the translation of in vitro tissue engineering into clinical therapies presents a number of technical and regulatory challenges. It is possible to circumvent the complexity of developing functional tissues in vitro by taking an in situ tissue engineering approach that uses the body as a native bioreactor to regenerate tissues. This approach harnesses the innate regenerative potential of the body and directs the appropriate cells to the site of injury. This review surveys the biomaterial-, cell-, and chemical factor-based strategies to engineer tissue in vitro and in situ.

  9. Tissue engineering strategies for the regeneration of orthopedic interfaces.

    PubMed

    Lu, Helen H; Subramony, Siddarth D; Boushell, Margaret K; Zhang, Xinzhi

    2010-06-01

    A major focus in the field of orthopedic tissue engineering is the development of tissue engineered bone and soft tissue grafts with biomimetic functionality to allow for their translation to the clinical setting. One of the most significant challenges of this endeavor is promoting the biological fixation of these grafts with each other as well as the implant site. Such fixation requires strategic biomimicry to be incorporated into the scaffold design in order to re-establish the critical structure-function relationship of the native soft tissue-to-bone interface. The integration of distinct tissue types (e.g. bone and soft tissues such as cartilage, ligaments, or tendons), necessitates a multi-phased or stratified scaffold with distinct yet continuous tissue regions accompanied by a gradient of mechanical properties. This review discusses tissue engineering strategies for regenerating common tissue-to-tissue interfaces (ligament-to-bone, tendon-to-bone, or cartilage-to-bone), and the strategic biomimicry implemented in stratified scaffold design for multi-tissue regeneration. Potential challenges and future directions in this emerging field will also be presented. It is anticipated that interface tissue engineering will enable integrative soft tissue repair, and will be instrumental for the development of complex musculoskeletal tissue systems with biomimetic complexity and functionality.

  10. Silk scaffolds for musculoskeletal tissue engineering

    PubMed Central

    Yao, Danyu

    2015-01-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues. PMID:26445979

  11. Silk scaffolds for musculoskeletal tissue engineering.

    PubMed

    Yao, Danyu; Liu, Haifeng; Fan, Yubo

    2016-02-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues.

  12. Clarifying Tissue Clearing

    PubMed Central

    Richardson, Douglas S.; Lichtman, Jeff W.

    2015-01-01

    Summary Biological specimens are intrinsically three dimensional; however because of the obscuring effects of light scatter, imaging deep into a tissue volume is problematic. Although efforts to eliminate the scatter by “clearing” the tissue have been ongoing for over a century, there have been a large number of recent innovations. This review introduces the physical basis for light-scatter in tissue, describes the mechanisms underlying various clearing techniques, and discusses several of the major advances in light microscopy for imaging cleared tissue. PMID:26186186

  13. The preservation of tissues for transplantation.

    PubMed

    Pegg, David E

    2006-01-01

    This paper is a written version of a lecture given during the celebration of Professor Rudolf Klen's 90th birthday. Dr. Klen played by far the major part in the introduction and the development of Tissue Banking in Europe. His concept of a tissue bank envisaged the storage of all types of cell, tissue and organ that physicians and surgeons might need for the treatment of their patients. There has been much progress towards this goal, but still the final objective remains elusive. This review of the current position starts with the recognition that some tissues are required to comprise or include cells that exhibit all the formal characteristics of life if they are to function as grafts, whereas other tissues do not. For some tissues, the preservation of mechanical properties is crucial: for others it is not. These considerations are crucial for the design of preservation methods for specific tissues: bone tendon and skin can provide useful grafts in the absence of living cells and this may even be true of cardiac valves: the crucial requirement here is that the mechanical properties remain intact. Simply freezing at around -80 degrees C may be sufficient. In contrast, many cell systems, and all metabolizing organs do require healthy cells to function. Cryopreservation is often an effective remedy for isolated cells, for example haemopoietic stem cells, but the damaging effects of the formation of ice are sufficient to rule out this approach for whole vascularised organs and for some tissues too. The damaging mechanisms are discussed, and it is concluded that the site of ice crystallization is crucial. Cartilage has hitherto been recalcitrant, but we have recently developed a method that permits this tissue to be stored at liquid nitrogen temperatures without any ice and with the recovery of living cells and intact mechanical properties after storage. Thus, many methods are available to help develop tissue banking originally envisioned by Dr. Klen.

  14. Implementation: Preparing the Site.

    ERIC Educational Resources Information Center

    Epstein, Susan Baerg

    1983-01-01

    Considers site requirements that should be specified by the library and the vendor for a library automated system located at a central site away from the library, including size of site, the environment, cleanliness, electrical power, security/safety (fire, restricted access), site certification, telecommunications, and terminal sites. (EJS)

  15. Lack of autologous tissue transmission of eosinophilic plaques in cats.

    PubMed

    Moriello, K A; Kunkle, G; Miller, L M; Crowley, A

    1990-07-01

    Autologous tissue transmission of spontaneously developing feline eosinophilic plaques was attempted in 5 cats. Macerated tissue from the plaque was vigorously rubbed onto 2 scarified skin sites in each cat. The inoculated areas were observed daily for 30 days. During that time, no clinical or histologic evidence of transmission was found.

  16. Biomimetic materials design for cardiac tissue regeneration.

    PubMed

    Dunn, David A; Hodge, Alexander J; Lipke, Elizabeth A

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. In the absence of sufficient numbers of organs for heart transplant, alternate approaches for healing or replacing diseased heart tissue are under investigation. Designing biomimetic materials to support these approaches will be essential to their overall success. Strategies for cardiac tissue engineering include injection of cells, implantation of three-dimensional tissue constructs or patches, injection of acellular materials, and replacement of valves. To replicate physiological function and facilitate engraftment into native tissue, materials used in these approaches should have properties that mimic those of the natural cardiac environment. Multiple aspects of the cardiac microenvironment have been emulated using biomimetic materials including delivery of bioactive factors, presentation of cell-specific adhesion sites, design of surface topography to guide tissue alignment and dictate cell shape, modulation of mechanical stiffness and electrical conductivity, and fabrication of three-dimensional structures to guide tissue formation and function. Biomaterials can be engineered to assist in stem cell expansion and differentiation, to protect cells during injection and facilitate their retention and survival in vivo, and to provide mechanical support and guidance for engineered tissue formation. Numerous studies have investigated the use of biomimetic materials for cardiac regeneration. Biomimetic material design will continue to exploit advances in nanotechnology to better recreate the cellular environment and advance cardiac regeneration. Overall, biomimetic materials are moving the field of cardiac regenerative medicine forward and promise to deliver new therapies in combating heart disease.

  17. Advances in Tissue Engineering

    PubMed Central

    Vacanti, Joseph

    2016-01-01

    Nearly 30 years ago, we reported on a concept now known as Tissue Engineering. Here, we report on some of the advances in this now thriving area of research. In particular, significant advances in tissue engineering of skin, liver, spinal cord, blood vessels, and other areas are discussed. PMID:26711689

  18. Holographic tissue dynamics spectroscopy

    NASA Astrophysics Data System (ADS)

    Nolte, David D.; An, Ran; Turek, John; Jeong, Kwan

    2011-08-01

    Tissue dynamics spectroscopy uses digital holography as a coherence gate to extract depth-resolved quasi-elastic dynamic light scattering from inside multicellular tumor spheroids. The temporal speckle contrast provides endogenous dynamical images of proliferating and hypoxic or necrotic tissues. Fluctuation spectroscopy similar to diffusing wave spectroscopy is performed on the dynamic speckle to generate tissue-response spectrograms that track time-resolved changes in intracellular motility in response to environmental perturbations. The spectrograms consist of several frequency bands that range from 0.005 to 5 Hz. The fluctuation spectral density and temporal autocorrelations show the signature of constrained anomalous diffusion, but with large fluctuation amplitudes caused by active processes far from equilibrium. Differences in the tissue-response spectrograms between the proliferating outer shell and the hypoxic inner core differentiate normal from starved conditions. The differential spectrograms provide an initial library of tissue-response signatures to environmental conditions of temperature, osmolarity, pH, and serum growth factors.

  19. Holographic tissue dynamics spectroscopy.

    PubMed

    Nolte, David D; An, Ran; Turek, John; Jeong, Kwan

    2011-08-01

    Tissue dynamics spectroscopy uses digital holography as a coherence gate to extract depth-resolved quasi-elastic dynamic light scattering from inside multicellular tumor spheroids. The temporal speckle contrast provides endogenous dynamical images of proliferating and hypoxic or necrotic tissues. Fluctuation spectroscopy similar to diffusing wave spectroscopy is performed on the dynamic speckle to generate tissue-response spectrograms that track time-resolved changes in intracellular motility in response to environmental perturbations. The spectrograms consist of several frequency bands that range from 0.005 to 5 Hz. The fluctuation spectral density and temporal autocorrelations show the signature of constrained anomalous diffusion, but with large fluctuation amplitudes caused by active processes far from equilibrium. Differences in the tissue-response spectrograms between the proliferating outer shell and the hypoxic inner core differentiate normal from starved conditions. The differential spectrograms provide an initial library of tissue-response signatures to environmental conditions of temperature, osmolarity, pH, and serum growth factors.

  20. TISSUE-Tregs

    PubMed Central

    Panduro, Marisella; Benoist, Christophe; Mathis, Diane

    2016-01-01

    The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3+CD4+ regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations—those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work—as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular. PMID:27168246

  1. Defining dermal adipose tissue.

    PubMed

    Driskell, Ryan R; Jahoda, Colin A B; Chuong, Cheng-Ming; Watt, Fiona M; Horsley, Valerie

    2014-09-01

    Here, we explore the evolution and development of skin-associated adipose tissue with the goal of establishing nomenclature for this tissue. Underlying the reticular dermis, a thick layer of adipocytes exists that encases mature hair follicles in rodents and humans. The association of lipid-filled cells with the skin is found in many invertebrate and vertebrate species. Historically, this layer of adipocytes has been termed subcutaneous adipose, hypodermis and subcutis. Recent data have revealed a common precursor for dermal fibroblasts and intradermal adipocytes during development. Furthermore, the development of adipocytes in the skin is independent from that of subcutaneous adipose tissue development. Finally, the role of adipocytes has been shown to be relevant for epidermal homoeostasis during hair follicle regeneration and wound healing. Thus, we propose a refined nomenclature for the cells and adipose tissue underlying the reticular dermis as intradermal adipocytes and dermal white adipose tissue, respectively.

  2. Mouse tissue fixation.

    PubMed

    Cardiff, Robert D; Miller, Claramae H; Munn, Robert J

    2014-05-01

    One of the primary goals of fixation is to stop postmortem changes that degrade the tissue and allow optimal preservation of morphologic and cytological detail as well as nucleic acid integrity. Following death, tissues soon undergo autolysis, and if organisms from the gastrointestinal, urinary, or respiratory tracts are present, their colonization can soon cause putrefaction. Time is of the essence because warmer temperatures accelerate both types of degradation. Placing the tissue into a fixative stops the postmortem changes. Fixatives have their effect on tissue by cross-linking, coagulation, or a combination of both. This article outlines the basic tissue fixation procedure and offers guidance on choosing an appropriate fixative, the timing and duration of fixation, sample storage, and quality issues.

  3. Ocean Disposal Site Monitoring

    EPA Pesticide Factsheets

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  4. Hanford Site Development Plan

    SciTech Connect

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  5. Avian Soft Tissue Surgery.

    PubMed

    Guzman, David Sanchez-Migallon

    2016-01-01

    Basic surgical instrumentation for avian soft tissue surgery includes soft tissue retractors, microsurgical instrumentation, surgical loupes, and head-mounted lights. Hemostasis is fundamental during the surgical procedures. The indications, approach, and complications associated with soft tissue surgeries of the integumentary (digit constriction repair, feather cyst excision, cranial wound repair, sternal wound repair, uropygial gland excision), gastrointestinal (ingluviotomy, crop biopsy, crop burn repair, celiotomy, coelomic hernia and pseudohernia repair, proventriculotomy, ventriculotomy, enterotomy, intestinal resection and anastomosis, cloacoplasty, cloacopexy), respiratory (rhinolith removal, sinusotomy, tracheotomy, tracheal resection and anastomosis, tracheostomy, pneumonectomy) and reproductive (ovocentesis, ovariectomy, salpingohysterectomy, cesarean section, orchidectomy, vasectomy, phallectomy) systems are reviewed.

  6. Bone Tissue Engineering: Recent Advances and Challenges

    PubMed Central

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  7. Stem cell-based meniscus tissue engineering.

    PubMed

    Mandal, Biman B; Park, Sang-Hyug; Gil, Eun Seok; Kaplan, David L

    2011-11-01

    Knee meniscus, a fibrocartilaginous tissue, is characterized by heterogeneity in extracellular matrix (ECM) and biomechanical properties, and critical for orthopedic stability, load transmission, shock absorption, and stress distribution within the knee joint. Most damage to the meniscus cannot be effectively healed by the body due to its partial avascular nature; thus, damage caused by injury or age impairs normal knee function, predisposing patients to osteoarthritis. Meniscus tissue engineering offers a possible solution to this problem by generating replacement tissue that may be implanted into the defect site to mimic the function of natural meniscal tissue. To address this need, a multiporous, multilamellar meniscus was formed using silk protein scaffolds and stem cells. The silk scaffolds were seeded with human bone marrow stem cells and differentiated over time in chondrogenic culture in the presence of transforming growth factor-beta 3 to generate meniscus-like tissue in vitro. High cellularity along with abundant ECM leading to enhanced biomechanics similar to native tissue was found. Higher levels of collagen type I and II, sulfated glycosaminoglycans along with enhanced collagen 1-α1, aggrecan, and SOX9 gene expression further confirmed differentiation and matured cell phenotype. The results of this study are a step forward toward biomechanically competent meniscus engineering, reconstituting both form and function of the native meniscus.

  8. Hanford Site Development Plan

    SciTech Connect

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP`s primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans.

  9. Tissue Culture in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Duray, Paul H.; Hatfill, Steven J.

    1997-01-01

    Attempts to simulate normal tissue micro-environments in vitro have been thwarted by the complexity and plasticity of the extracellular matrix, which is important in regulating cytoskeletal and nuclear matrix proteins. Gravity is one of the problems, tending to separate components that should be kept together. For space shuttle experiments, NASA engineers devised a double-walled rotating bioreactor, which is proving to be a useful tissue culture device on earth as well as in space.

  10. Tylosin depletion from edible pig tissues.

    PubMed

    Prats, C; El Korchi, G; Francesch, R; Arboix, M; Pérez, B

    2002-12-01

    The depletion of tylosin from edible pig tissues was studied following 5 days of intramuscular (i.m.) administration of 10 mg/kg of tylosin to 16 crossbreed pigs. Animals were slaughtered at intervals after treatment and samples of muscle, kidney, liver, skin+fat, and injection site were collected and analysed by high-performance liquid chromatography (HPLC). Seven days after the completion of treatment, the concentration of tylosin in kidney, skin+fat, and at the injection site was higher than the European Union maximal residue limit (MRL) of 100 microg/kg. Tylosin residues in all tissues were below the quantification limit (50 microg/kg) at 10 and 14 days post-treatment.

  11. Site amplifications for generic rock sites

    USGS Publications Warehouse

    Boore, D.M.; Joyner, W.B.

    1997-01-01

    Seismic shear-wave velocity as a function of depth for generic rock sites has been estimated from borehole data and studies of crustal velocities, and these velocities have been used to compute frequency-dependent amplifications for zero attenuation for use in simulations of strong ground motion. We define a generic rock site as one whose velocity at shallow depths equals the average of those from the rock sites sampled by the borehole data. Most of the boreholes are in populated areas; for that reason, the rock sites sampled are of particular engineering significance. We consider two generic rock sites: rock, corresponding to the bulk of the borehole data, and very hard rock, such as is found in glaciated regions in large areas of eastern North America or in portions of western North America. The amplifications on rock sites can be in excess of 3.5 at high frequencies, in contrast to the amplifications of less than 1.2 on very hard rock sites. The consideration of unattenuated amplification alone is computationally convenient, but what matters for ground-motion estimation is the combined effect of amplification and attenuation. For reasonable values of the attenuation parameter K0, the combined effect of attenuation and amplification for rock sites peaks between about 2 and 5 Hz with a maximum level of less than 1.8. The combined effect is about a factor of 1.5 at 1 Hz and is less than unity for frequencies in the range of 10 to 20 Hz (depending on K0). Using these amplifications, we find provisional values of about ???? = 70 bars and K0 = 0.035 sec for rock sites in western North America by fitting our empirically determined response spectra for an M 6.5 event to simulated values. The borehole data yield shear velocities (V??30) of 618 and 306 m/sec for "rock" and "soil" sites, respectively, when averaged over the upper 30 m. From this, we recommend that V??30 equals 620 and 310 m/sec for applications requiring the average velocity for rock and soil sites in

  12. [Periodontitis and tissue regeneration].

    PubMed

    Yamazaki, Kazuhisa

    2005-08-01

    Chronic periodontitis is a destructive disease that affects the supporting structures of the teeth including periodontal ligament, cementum, and alveolar bone. If left untreated, patients may lose multiple teeth and extensive prosthetic treatment will be required. In order to re-engineer lost tooth-supporting tissues, various therapeutic modalities have been used clinically. Periodontal regeneration procedures including guided tissue regeneration have achieved substantial effects. However, there are several issues to be solved. They are highly technique-sensitive, applicable to limited cases which are susceptible to treatment, and supposed to have relatively low predictability. Therefore, it is necessary to develop new approaches to improve the predictability and effectiveness of regenerative therapies for periodontal tissues. Recently, the concept of tissue engineering has been introduced to restore lost tissues more effectively where the biological process of healing is mimicked. To achieve this, integration of three key elements is required: progenitor/stem cells, growth factors and the extracellular matrix scaffold. Although it has been shown that implantation of bone marrow-derived mesenchymal stem cells into periodontal osseous defects induced regeneration of cementum, periodontal ligament and alveolar bone in dogs, further extensive preclinical studies are required. On the other hand, application of growth factors, particularly basic fibroblast growth factor in the treatment of human periodontitis, is promising and is now in clinical trial. Furthermore, the rate of release of growth factor from the scaffold also can profoundly affect the results of tissue engineering strategies and the development of new materials is expected. In addition, as tissue regenerative potential is negatively regulated by aging, the effects of aging have to be clarified to gain complete regeneration.

  13. Cellularity of adipose tissue in fetal pig.

    PubMed

    Desnoyers, F; Pascal, G; Etienne, M; Vodovar, N

    1980-03-01

    Adipose tissue cellularity was studied in the 85-day-old Large-White pig fetus. The aim of this work was to count the adipose cells of forming tissue in an animal species which could be a possible model for studying adipose tissue in humans. Using a morphometric method with electron microscopy, mean triglyceride volume per cell was determined independently of mean cell volume. This method is suitable for counting adipose cells in the early stage of differentiation whatever their size and lipid inclusion volume. Site-by-site dissection of adipose tissue was not feasible in the 85-day old fetus and adipose cell number was computed by dividing total carcass triglyceride volume by mean triglyceride volume per cell. The carcass triglyceride seemed to originate only from adipose cells. The mean total carcass triglyceride volume per fetus (1.84 g) was low but, owing to the low mean triglyceride volume per cell (180.28 microns3), the adipose cell number (11.15 X 10(9)) was relatively important, as it represented about 27% of the extramuscular adipose cell number in the Large-White adult pig (41 X 10(9)).

  14. Chemotherapy for Soft Tissue Sarcomas

    MedlinePlus

    ... Stage Soft Tissue Sarcoma Treating Soft Tissue Sarcomas Chemotherapy for Soft Tissue Sarcomas Chemotherapy (chemo) is the use of drugs given into ... Depending on the type and stage of sarcoma, chemotherapy may be given as the main treatment or ...

  15. Containment-enhanced Ho:YAG photofragmentation of soft tissues

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Guarnieri, Michael; Carson, Benjamin S.

    1998-01-01

    Laser surgery of soft tissue can exploit the power of brief, intense pulses of light to cause localized disruption of tissue with minimal effect upon surrounding tissue. In particular, studies of Ho:YAG laser surgery have shown that the effects of cavitation upon tissues and bone depend upon the physical composition of structures in the vicinity of the surgical site. For photofragmentation of occluding structures within catheters and other implant devices, it is possible to exploit the particular geometry of the catheter to amplify the effects of photofragmentation beyond those seen in bulk tissue. A Ho:YAG laser was used to photofragment occlusive material (tissue and tissue analogs) contained in glass capillary tubing and catheter tubing of the kind used in ventricular shunt implants for the management of hydrocephalus. Occluded catheters obtained from patient explants were also employed. Selection of operational parameters used in photoablation and photofragmentation of soft tissue must consider the physical composition and geometry of the treatment site. In the present case, containment of the soft tissue within relatively inelastic catheters dramatically alters the extent of photofragmentation relative to bulk (unconstrained) material. Our results indicate that the disruptive effect of cavitation bubbles is increased in catheters, due to the rapid displacement of material by cavitation bubbles comparable in size to the inner diameter of the catheter. The cylindrical geometry of the catheter lumen may additionally influence the propagation of acoustic shock waves that result from the collapse of the condensing cavitation bubbles.

  16. Optical birefringence of aorta tissues

    NASA Astrophysics Data System (ADS)

    Tang, G. C.; Wang, W. B.; Pu, Y.; Alfano, R. R.

    2010-02-01

    The optical birefringence of porcine aortic tissues including heated and non-heated tissues was studied using polarization technique. The measurements show that a whole piece of aortic tissue has birefringence properties like a uniaxial crystal. The experiment results indicate that the birefringence status of tissue have a potential application for monitoring changes of tissue structure due to burning, plastic surgery, laser tissue welding and wound healing.

  17. Tissue-level cytoprotection.

    PubMed

    Hightower, L E; Brown; Renfro, J L; Perdrizet, G A; Rewinski, M; Guidon, P T; Mistry, T; House, S D

    2000-11-01

    In vitro and ex vivo tissue models provide a useful level of biological organization for cytoprotection studies positioned between cultured cells and intact animals. We have used 2 such models, primary tissue cultures of winter flounder renal secretory epithelium and ex vivo preparations of rat intestinal tissues, the latter to access the microcirculation of exposed mesentery tissues. Herein we discuss studies indicating that differentiated functions are altered in thermotolerant or cytoprotected tissues. These functions include transepithelial transport in renal epithelium and attachment and transmigration of leukocytes across vascular endothelium in response to mediators of inflammation. Evidence pointing to inflammation as a major venue for the heat shock response in vertebrates continues to mount. One such venue is wound healing. Heat shock proteins are induced early in wound responses, and some are released into the extracellular wound fluid where they appear to function as proinflammatory cytokines. However, within responding cells in the wound, heat shock proteins contribute to the acquisition of a state of cytoprotection that protects cells from the hostile environment of the wound, an environment created to destroy pathogens and essentially sterilize the wound. We propose that the cytoprotected state is an anti-inflammatory state that contributes to limiting the inflammatory response; that is, it serves as a brake on inflammation.

  18. Tissue-level cytoprotection

    PubMed Central

    Hightower, L.E.; Brown, M.A.; Renfro, J.L.; Perdrizet, G.A.; Rewinski, M.; Guidon, P.T.; Mistry, T.; House, S.D.

    2000-01-01

    In vitro and ex vivo tissue models provide a useful level of biological organization for cytoprotection studies positioned between cultured cells and intact animals. We have used 2 such models, primary tissue cultures of winter flounder renal secretory epithelium and ex vivo preparations of rat intestinal tissues, the latter to access the microcirculation of exposed mesentery tissues. Herein we discuss studies indicating that differentiated functions are altered in thermotolerant or cytoprotected tissues. These functions include transepithelial transport in renal epithelium and attachment and transmigration of leukocytes across vascular endothelium in response to mediators of inflammation. Evidence pointing to inflammation as a major venue for the heat shock response in vertebrates continues to mount. One such venue is wound healing. Heat shock proteins are induced early in wound responses, and some are released into the extracellular wound fluid where they appear to function as proinflammatory cytokines. However, within responding cells in the wound, heat shock proteins contribute to the acquisition of a state of cytoprotection that protects cells from the hostile environment of the wound, an environment created to destroy pathogens and essentially sterilize the wound. We propose that the cytoprotected state is an anti-inflammatory state that contributes to limiting the inflammatory response; that is, it serves as a brake on inflammation. PMID:11189445

  19. [Connective tissue and inflammation].

    PubMed

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  20. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  1. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    PubMed Central

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  2. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  3. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  4. Exploring Optical Contrast in Ex-Vivo Breast Tissue Using Diffuse Reflectance Spectroscopy and Tissue Morphology

    NASA Astrophysics Data System (ADS)

    Kennedy, Stephanie Ann

    In this research, ex-vivo breast tissue is evaluated to determine which sources of optical contrast have the potential to detect malignancy at the margins in women of differing breast composition. Then, H&E images of ex-vivo breast tissue sites are quantified to further deconstruct the relationship between optical scattering and the underlying tissue morphology. H&E images were taken of the malignant and benign sites and quantified to describe the % adipose, % collagen and % glands. Adipose sites, images at 10x, were predominantly fatty and quantified according to adipocyte morphology. H&E-stained adipose tissue sections were analyzed with an automated image processing algorithm to extract average cell area and cell density. Non-adipose sites were imaged with a 2.5x objective. Grids of 200µm boxes corresponding to the 3mm x 2mm area were overlaid on each non-adipose image. The non-adipose images were classified as the following: adipose and collagen (fibroadipose); collagen and glands (fibroglandular); adipose, collagen and glands (mixed); and malignant sites. Correlations between <μs‧> and % collagen in were determined in benign sites. Age, BMI, and MBD were then correlated to <μs‧> in the adipose and non-adipose sites. Variability in <μs‧> was determined to be related to collagen and not adipose content. In order to further investigate this relationship, the importance of age, BMI and MBD was analyzed after adjusting for the % collagen. Lastly, the relationship between % collagen and % glands was analyzed to determine the relative contributions of % collagen and % glands <μ s‧>. Statistics were calculated using Wilcoxon rank-sum tests, Pearson correlation coefficients and linear fits in R. Further deconstructing the relationship between optical scattering and tissue morphology resulted in a positive relationship between <μ s‧> and % collagen. Increased variability was observed in sites with a higher percentage of collagen. In adipose tissues MBD

  5. Biomechanics of soft tissues.

    PubMed

    Miller, K

    2000-01-01

    Recent developments in Computer-Integrated and Robot-Aided Surgery (in particular, the emergence of automatic surgical tools and robots (as well as advances in Virtual Reality techniques, call for closer examination of the mechanical properties of very soft tissues (such as brain, liver, kidney, etc.). Moreover, internal organs are very susceptible to trauma. In order to protect them properly against car crash and other impact consequences we need to be able to predict the organ deformation. Such prediction can be achieved by proper mathematical modelling followed by a computer simulation. The ultimate goal of our research into the biomechanics of these tissues is development of corresponding, realistic mathematical models. This paper contains experimental results of in vitro, uniaxial, unconfined compression of swine brain tissue obtained by the author in Mechanical Engineering Laboratory, Japan, and discusses liver and kidney in vivo compression experiments conducted in Highway Safety Research Institute and the Medical Centre of The University of Michigan. The stress-strain curves for investigated tissues are concave upward for all compression rates containing no linear portion from which a meaningful elastic modulus might be determined. The tissue response stiffened as the loading speed increased, indicating a strong stress (strain rate dependence. As the step in the direction towards realistic computer simulation of injuries and surgical procedures, this paper presents two mathematical representations of brain, liver and kidney tissue stiffness. Biphasic and single-phase models are discussed. The biphasic model is shown to be inappropriate due to its inability to account for strong stress-strain relationship. Agreement between the proposed single-phase models and experiment is good for compression levels reaching 30% and for loading velocities varying over five orders of magnitude. Presented mathematical models can find applications in computer and robot

  6. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues

    PubMed Central

    Guo, Zhiyun; Maki, Miranda; Ding, Ruofan; Yang, Yalan; zhang, Bao; Xiong, Lili

    2014-01-01

    Tissue-specific miRNAs (TS miRNA) specifically expressed in particular tissues play an important role in tissue identity, differentiation and function. However, transcription factor (TF) and TS miRNA regulatory networks across multiple tissues have not been systematically studied. Here, we manually extracted 116 TS miRNAs and systematically investigated the regulatory network of TF-TS miRNA in 12 human tissues. We identified 2,347 TF-TS miRNA regulatory relations and revealed that most TF binding sites tend to enrich close to the transcription start site of TS miRNAs. Furthermore, we found TS miRNAs were regulated widely by non-tissue specific TFs and the tissue-specific expression level of TF have a close relationship with TF-genes regulation. Finally, we describe TSmiR (http://bioeng.swjtu.edu.cn/TSmiR), a novel and web-searchable database that houses interaction maps of TF-TS miRNA in 12 tissues. Taken together, these observations provide a new suggestion to better understand the regulatory network and mechanisms of TF-TS miRNAs underlying different tissues. PMID:24889152

  7. Superfund Site Assessment Process

    EPA Pesticide Factsheets

    Learn about the site assessment process used by the federal Superfund program to evaluate releases of hazardous substances that may pose a threat to human health or the environment and select an appropriate program for sites needing cleanup.

  8. Pesticide Use Site Index

    EPA Pesticide Factsheets

    The Pesticide Use Site Index will help a company (or other applicant) identify which data requirements are needed to register a pesticide product. It provides information on pesticide use sites and pesticide major use patterns.

  9. SMARTE'S SITE CHARACTERIZATION TOOL

    EPA Science Inventory

    Site Characterization involves collecting environmental data to evaluate the nature and extent of contamination. Environmental data could consist of chemical analyses of soil, sediment, water or air samples. Typically site characterization data are statistically evaluated for thr...

  10. Past Project Expo Sites

    EPA Pesticide Factsheets

    This page provides information for Project Expo sites that were featured at the LMOP Conferences in 2013 and 2014. Project Expo sites were featured as being interested in identifying project partners for the development of an LFG energy project.

  11. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis

    PubMed Central

    Swinehart, Ilea T.; Badylak, Stephen F.

    2016-01-01

    During normal morphogenesis the extracellular matrix (ECM) influences cell motility, proliferation, apoptosis, and differentiation. Tissue engineers have attempted to harness the cell signaling potential of ECM to promote the functional reconstruction, if not regeneration, of injured or missing adult tissues that otherwise heal by the formation of scar tissue. ECM bioscaffolds, derived from decellularized tissues, have been used to promote the formation of site appropriate, functional tissues in many clinical applications including skeletal muscle, fibrocartilage, lower urinary tract, and esophageal reconstruction, among others. These scaffolds function by the release or exposure of growth factors and cryptic peptides, modulation of the immune response, and recruitment of progenitor cells. Herein, we describe this process of ECM induced constructive remodeling and examine similarities to normal tissue morphogenesis. PMID:26699796

  12. Orthopaedic tissue engineering and bone regeneration.

    PubMed

    Dickson, Glenn; Buchanan, Fraser; Marsh, David; Harkin-Jones, Eileen; Little, Uel; McCaigue, Mervyn

    2007-01-01

    Orthopaedic tissue engineering combines the application of scaffold materials, cells and the release of growth factors. It has been described as the science of persuading the body to reconstitute or repair tissues that have failed to regenerate or heal spontaneously. In the case of bone regeneration 3-D scaffolds are used as a framework to guide tissue regeneration. Mesenchymal cells obtained from the patient via biopsy are grown on biomaterials in vitro and then implanted at a desired site in the patient's body. Medical implants that encourage natural tissue regeneration are generally considered more desirable than metallic implants that may need to be removed by subsequent intervention. Numerous polymeric materials, from natural and artificial sources, are under investigation as substitutes for skeletal elements such as cartilage and bone. For bone regeneration, cells (obtained mainly from bone marrow aspirate or as primary cell outgrowths from bone biopsies) can be combined with biodegradable polymeric materials and/or ceramics and absorbed growth factors so that osteoinduction is facilitated together with osteoconduction; through the creation of bioactive rather than bioinert scaffold constructs. Relatively rapid biodegradation enables advantageous filling with natural tissue while loss of polymer strength before mass is disadvantageous. Innovative solutions are required to address this and other issues such as the biocompatibility of material surfaces and the use of appropriate scaffold topography and porosity to influence bone cell gene expression.

  13. Targeting adipose tissue via systemic gene therapy.

    PubMed

    O'Neill, S M; Hinkle, C; Chen, S-J; Sandhu, A; Hovhannisyan, R; Stephan, S; Lagor, W R; Ahima, R S; Johnston, J C; Reilly, M P

    2014-07-01

    Adipose tissue has a critical role in energy and metabolic homeostasis, but it is challenging to adapt techniques to modulate adipose function in vivo. Here we develop an in vivo, systemic method of gene transfer specifically targeting adipose tissue using adeno-associated virus (AAV) vectors. We constructed AAV vectors containing cytomegalovirus promoter-regulated reporter genes, intravenously injected adult mice with vectors using multiple AAV serotypes, and determined that AAV2/8 best targeted adipose tissue. Altering vectors to contain adiponectin promoter/enhancer elements and liver-specific microRNA-122 target sites restricted reporter gene expression to adipose tissue. As proof of efficacy, the leptin gene was incorporated into the adipose-targeted expression vector, package into AAV2/8 and administered intravenously to 9- to 10-week-old ob/ob mice. Phenotypic changes were measured over an 8-week period. Leptin mRNA and protein were expressed in adipose and leptin protein was secreted into plasma. Mice responded with reversal of weight gain, decreased hyperinsulinemia and improved glucose tolerance. AAV2/8-mediated systemic delivery of an adipose-targeted expression vector can replace a gene lacking in adipose tissue and correct a mouse model of human disease, demonstrating experimental application and therapeutic potential in disorders of adipose.

  14. Polarized light propagation through tissue and tissue phantoms

    SciTech Connect

    Sankaran, V; Walsh, J T JR; Maitland, D J

    2000-02-08

    We show that standard tissue phantoms can be used to mimic the intensity and polarization properties of tissue. Polarized light propagation through biologic tissue is typically studied using tissue phantoms consisting of dilute aqueous suspensions of microspheres. The dilute phantoms can empirically match tissue polarization and intensity properties. One discrepancy between the dilute phantoms and tissue exist: common tissue phantoms, such as dilute Intralipid and dilute 1-{micro}m-diameter polystyrene microsphere suspensions, depolarize linearly polarized light more quickly than circularly polarized light. In dense tissue, however, where scatterers are often located in close proximity to one another, circularly polarized light is depolarized similar to or more quickly than linearly polarized light. We also demonstrate that polarized light propagates differently in dilute versus densely packed microsphere suspensions, which may account for the differences seen between polarized light propagation in common dilute tissue phantoms versus dense biologic tissue.

  15. Vitamin D3 in fat tissue

    PubMed Central

    Blum, Miriam; Dolnikowski, Gregory; Seyoum, Elias; Harris, Susan S.; Booth, Sarah L.; Peterson, James; Saltzman, Edward

    2010-01-01

    The literature describing vitamin D content of fat tissue is extremely limited. We conducted a pilot study that measured the concentrations of vitamin D3 in the fat tissue and serum of obese adults. These measurements were performed using a new liquid chromatography mass spectrometry (LC/MS) method. The objectives of this study were: to measure and report the vitamin D3 concentration in serum and subcutaneous fat samples from obese individuals and to examine the association of vitamin D3 in fat with vitamin D3 in serum. This cross-sectional study was conducted in 17 obese men and women who were scheduled to undergo gastric bypass surgery. The mean vitamin D3 concentration in subjects’ subcutaneous fat tissue samples was 102.8 ± 42.0 nmol/kg. The mean vitamin D3 concentration in serum was 7.78 ± 3.99 nmol/l. Vitamin D3 concentrations of fat tissue and serum were positively correlated (r = 0.68, P = 0.003). Consistent with previous findings in obese subjects, subjects in this study had suboptimal vitamin D status as demonstrated by a mean 25-hydroxyvitamin D concentration of 43.3 ± 15.4 nmol/l. In conclusion, fat tissue vitamin D3 can be measured by LC/MS and is detectable in obese subjects with suboptimal vitamin D status. Compatible with the long-standing concept that fat tissue is a storage site for vitamin D, fat tissue and serum vitamin D3 concentrations were positively correlated. PMID:18338271

  16. Does removal of the original pulp tissue before autotransplantation influence ingrowth of new tissue in the pulp chamber?

    PubMed

    Laureys, Wim G M; Dermaut, Luc R; Cuvelier, Claude A; De Pauw, Guy A M

    2010-10-01

    In an attempt to extend the indication area for autotransplantation of vital teeth, two possibilities can be proposed: (i) The enlargement of the apical foramen, with the aim to facilitate revascularization and ingrowth of new tissue. The ingrowth of tissue will eliminate the need for endodontic treatment when mature teeth are transplanted and (ii) the cryopreservation of teeth in case they cannot be transplanted immediately to the receptor site. Teeth with an ideal stage of root formation can be cryopreserved to perform transplantation later. Although pulpcell cultures survive crypreservation in vitro, the pulp tissue cannot survive the cryopreservation procedures when it is kept inside the pulpchamber. Therefore, the pulp tissue has to be removed before cryopreservation. It has been demonstrated that revascularization and ingrowth of new tissue can occur in an empty pulp chamber (1). The aim of this study was to find out if revascularization and ingrowth of new pulp tissue is influenced by removal of the original pulp tissue before autotransplantation. Twenty nine single-rooted teeth from three adult beagle dogs were transplanted after resection of the root tip. One group of teeth (n = 14) had the pulp tissue removed before transplantation. The other group (n = 15) had the original pulp left in situ. The transplanted teeth were histologically analysed 90 days post-transplantation. In the group with the tissue left in situ, 12 teeth (80%) showed a pulp chamber totally filled or at least 1/3 to 2/3 filled with viable tissue. In the group with the pulp tissue removed, 11 teeth (79%) had no or little vital tissue in the pulp chamber. The necrotic masses that develop in the original pulp tissue immediately after transplantation are a possible stimulating factor in the repair process of the pulp. As a conclusion, it can be stated that in case of autotransplantation of teeth, it is advisable to leave the pulp tissue in situ to stimulate the revascularization and

  17. [Cryopreservation of ovarian tissue].

    PubMed

    Aubard, Y; Poirot, C; Piver, P

    2002-05-01

    Ovarian tissue cryopreservation (OTCP) is a new procedure of medically assisted procreation, still at the experimental stage, whose primary aim is to store female gametes as sperm cryopreservation permits to do for male gametes. Ovarian tissue is removed very simply by laparoscopy. It survives well to freezing if the medium contains a cryoprotective agent and the rate of freezing is slow. In contrast, thawing must be rapid. There are three processes for the utilization of ovarian tissue after thawing. In vitro maturation and xenografting remain impossible for technical and ethical reasons. Autologous transplantation (orthotopic or heterotopic) of the tissue is therefore the only foreseeable method over the short term. Indications for OTCP must remain rare as long as no pregnancy has been obtained in human. At the present time, only female patients who would inevitably suffer the loss of their fertility should be able to take advantage of OTCP. Basically, this would mean women subjected to castrating anticancer therapy. It would seem reasonable to set the age limit at 35-years for carrying out OTCP. Lastly, female patients should be clearly informed that the method is still at the research stage, and in France samples must be taken in accordance with the laws governing clinical research.

  18. Nerves and Tissue Repair.

    DTIC Science & Technology

    1994-07-01

    axolotl limbs are transected the concentration of transferrin in the distal limb tissue declines rapidly and limb regeneration stops. These results...transferrin binding and expression of the transferrin gene in cells of axolotl peripheral nerve indicate that both uptake and synthesis of this factor occur

  19. Hypoelastic Soft Tissues

    PubMed Central

    Freed, Alan D.; Einstein, Daniel R.; Sacks, Michael S.

    2010-01-01

    In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters) the model does a reasonably good job of describing the non-linear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. PMID:21394222

  20. Photoacoustic thermography of tissue

    PubMed Central

    Ke, Haixin; Tai, Stephen; Wang, Lihong V.

    2014-01-01

    Abstract. Photoacoustic (PA) techniques can measure temperature in biological tissues because PA signal amplitude is sensitive to tissue temperature. So far, temperature-measuring PA techniques have focused on sensing of temperature changes at a single position. In this work, we photoacoustically measured spatial distribution of temperature in deep tissue. By monitoring the temperature at a single position using a thermocouple, the relationship between the PA signal amplitude and the actual temperature was determined. The relationship was then used to translate a PA image into a temperature map. This study showed that it is possible to calibrate the system for the temperature range of hyperthermia using single-point measurements over a smaller temperature range. Our experimental results showed a precision of −0.8±0.4°C (mean±standard error) in temperature measurement, and a spatial resolution as fine as 1.0 mm. PA techniques can be potentially applied to monitor temperature distribution deep in tissue during hyperthermia treatment of cancer. PMID:24522803

  1. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  2. Sensing in tissue bioreactors

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  3. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  5. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  6. Site Environmental Report, 1993

    SciTech Connect

    Not Available

    1994-06-01

    The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

  7. Site Development Planning Handbook

    SciTech Connect

    1981-01-01

    The Handbook provides facility managers and site planners at DOE organizations responsible for planning site developments and facilities utilization a step-by-step planning checklist to ensure that planners at each site are focusing on Department-wide goals and objectives. It begins with a brief discussion of a site development-by-objectives program design to promote, recognize, and implement opportunities for improvements in site utilization through planning. Additional information is included on: assembling existing data, plans, programs, and procedures; establishing realistic objectives; identifying site problems, opportunities; and development needs; determining priorities among development needs; developing short and long-range plans; choosing the right development solutions and meeting minimum legal site restrictions; presenting the plan; implementing elements of the plan; monitoring and reporting plan status; and modifying development program plans. (MCW)

  8. Bulk Site Reference Materials

    SciTech Connect

    Barich, J.J. III; Jones, R.R. Sr.

    1996-12-31

    The selection, manufacture and use of Bulk Site Reference Materials (BSRMs) at hazardous waste sites is discussed. BSRMs are useful in preparing stabilization/solidification (S/S) formulations for soils, ranking competing S/S processes, comparing S/S alternatives to other technologies, and in interpreting data from different test types. BSRMs are large volume samples that are representative of the physical and chemical characteristics of a site soil, and that contain contaminants at reasonably high levels. A successful BSRM is extremely homogeneous and well-characterized. While not representative of any point on the site, they contain the contaminants of the site in the matrices of the site. Design objectives for a BSRM are to produce a material that (1) maintains good fidelity to site matrices and contaminants, and (2) exhibits the lowest possible relative standard deviation.

  9. Tissue fusion bursting pressure and the role of tissue water content

    NASA Astrophysics Data System (ADS)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  10. Ethics of fetal tissue transplantation.

    PubMed

    Sanders, L M; Giudice, L; Raffin, T A

    1993-09-01

    Now that the Clinton Administration has overturned the ban on federal funding for fetal tissue transplantation, old ethical issues renew their relevance and new ethical issues arise. Is fetal tissue transplantation necessary and beneficial? Are fetal rights violated by the use of fetal tissue in research? Is there a moral danger that the potential of fetal tissue donation will encourage elective abortions? Should pregnant women be allowed to designate specific fetal transplant recipients? What criteria should be used to select fetal tissue transplants? Whose consent should be required for the use of fetal tissue for transplantation? We review the current state of clinical research with fetal tissue transplantation, the legal history of fetal tissue research, the major arguments against the use of fetal tissue for transplantation, and the new postmoratorium ethical dilemmas. We include recommendations for guidelines to govern the medical treatment of fetal tissue in transplantation.

  11. Biomimetic 3D tissue printing for soft tissue regeneration.

    PubMed

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration.

  12. Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up.

    PubMed

    Nichol, Jason W; Khademhosseini, Ali

    2009-01-01

    Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. To enhance the function of engineered tissues there is a need to generate structures that mimic the intricate architecture and complexity of native organs and tissues. With the desire to create more complex tissues with features such as developed and functional microvasculature, cell binding motifs and tissue specific morphology, tissue engineering techniques are beginning to focus on building modular microtissues with repeated functional units. The emerging field known as modular tissue engineering focuses on fabricating tissue building blocks with specific microarchitectural features and using these modular units to engineer biological tissues from the bottom up. In this review we will examine the promise and shortcomings of "bottom-up" approaches to creating engineered biological tissues. Specifically, we will survey the current techniques for controlling cell aggregation, proliferation and extracellular matrix deposition, as well as approaches to generating shape-controlled tissue modules. We will then highlight techniques utilized to create macroscale engineered biological tissues from modular microscale units.

  13. Naturally derived biomaterials for addressing inflammation in tissue regeneration

    PubMed Central

    Harley, Brendan AC

    2016-01-01

    Tissue regeneration strategies have traditionally relied on designing biomaterials that closely mimic features of the native extracellular matrix (ECM) as a means to potentially promote site-specific cellular behaviors. However, inflammation, while a necessary component of wound healing, can alter processes associated with successful tissue regeneration following an initial injury. These processes can be further magnified by the implantation of a biomaterial within the wound site. In addition to designing biomaterials to satisfy biocompatibility concerns as well as to replicate elements of the composition, structure, and mechanics of native tissue, we propose that ECM analogs should also include features that modulate the inflammatory response. Indeed, strategies that enhance, reduce, or even change the temporal phenotype of inflammatory processes have unique potential as future pro-regenerative analogs. Here, we review derivatives of three natural materials with intrinsic anti-inflammatory properties and discuss their potential to address the challenges of inflammation in tissue engineering and chronic wounds. PMID:27190254

  14. Alveolar distraction osteogenesis for implant site development.

    PubMed

    Batal, Hussam S; Cottrell, David A

    2004-02-01

    Alveolar distraction osteogenesis can be a valuable tool for implant site development. Simultaneous regeneration of hard and soft tissue and an overall decrease in treatment time compared with other methods of site preparation can be an advantage. The authors advocate the concept of "prosthetically driven alveolar distraction." Surgical planning should begin with visualization of the final restoration to determine the volume and position of the soft and hard tissue deficiency. Surgical guides will help the surgeon determine the vector of distraction. Adherence to surgical principles to avoid damage to adjacent vital structures and maintain vascular supply to the transport segment is necessary for success. Bone grafting may be necessary before or after distraction to increase the surgical success of the procedure. Close follow-up is needed to verify the appropriate distraction vector and volume. Patient management and acceptance should be considered in distractor design and placement.

  15. Synthesis of biomedical tissue

    NASA Astrophysics Data System (ADS)

    Rolland, Jannick P.; Goon, Alexei A.; Clarkson, Eric; Yu, Liyun

    1998-04-01

    Image quality assessment in medical imaging requires realistic textured background that can be statistically characterized for the computation of model observers' performance. We present a modeling framework for the synthesis of texture as well as a statistical analysis of both sample and synthesized textures. The model employs a two-component image-decomposition consisting of a slowly, spatially varying mean-background and a residual texture image. Each component is synthesized independently. The technique is demonstrated using radiological breast tissue. For statistical characterization, we compute the two-point probability density functions for the real and synthesized breast tissue textures in order to provide a complete characterization and comparison of their second-order statistics. Similar computations for other textures yield further insight into the statistical properties of these types of random fields.

  16. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  17. Transplantation of Tissue-Engineered Cartilage in an Animal Model (Xenograft and Autograft): Construct Validation.

    PubMed

    Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi

    2015-01-01

    Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.

  18. The broccoli (Brassica oleracea) phloem tissue proteome

    PubMed Central

    2013-01-01

    Background The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. Results In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. Conclusions The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes. PMID:24195484

  19. Mandibular Tissue Engineering: Past, Present, Future.

    PubMed

    Konopnicki, Sandra; Troulis, Maria J

    2015-12-01

    Almost 2 decades ago, the senior author's (M.T.J.) first article was with our mentor, Dr Leonard B. Kaban, a review article titled "Distraction Osteogenesis: Past, Present, Future." In 1998, many thought it would be impossible to have a remotely activated, small, curvilinear distractor that could be placed using endoscopic techniques. Currently, a U.S. patent for a curvilinear automated device and endoscopic techniques for minimally invasive access for jaw reconstruction exist. With minimally invasive access for jaw reconstruction, the burden to decrease donor site morbidity has increased. Distraction osteogenesis (DO) is an in vivo form of tissue engineering. The DO technique eliminates a donor site, is less invasive, requires a shorter operative time than usual procedures, and can be used for multiple reconstruction applications. Tissue engineering could further reduce morbidity and cost and increase treatment availability. The purpose of the present report was to review our experience with tissue engineering of bone: the past, present, and our vision for the future. The present report serves as a tribute to our mentor and acknowledges Dr Kaban for his incessant tutelage, guidance, wisdom, and boundless vision.

  20. Tissue Engineering Research

    DTIC Science & Technology

    2002-01-01

    on Neural Stem Cells ......................................................25 4.1 Scoring System for the Histological Appearance of Full-Thickness...intellectual property. Examples include London’s Imperial College Tissue Engineering Center with its focus on stem cell research and the new Manchester...Moderate Equivalent Allogeneic cells / immunological manipulation Extensive Active in U.S. Modest in EU Little in Japan U.S. Stem cell research Extensive in

  1. Electroacoustic Tissue Imaging

    DTIC Science & Technology

    2007-03-01

    images in Fig. 7 show the effect of applying ultrasonic radiation pressure to a Teflon sphere sandwiched between two pieces of poultry muscle tissue...polarization Pa within the object, so that the displacement vector becomes D = εE + Pa, where ε is the dielectric constant of the object and the...the potential, one dependent on the conductivity of the body, and the other on its dielectric constant. Equation 2.4 can be transformed to the

  2. Tissue Engineering Initiative

    DTIC Science & Technology

    2000-08-01

    UNCLASSIFIED AD NUMBER ADB263763 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S...Fort Detrick, MD 21702-5012. AUTHORITY USAMRMC ltr, dtd 15 May 2003 THIS PAGE IS UNCLASSIFIED AD Award Number: DAMD17-99-1-9475 TITLE: Tissue...STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Aug 00). Other requests for this document shall be

  3. Reptile Soft Tissue Surgery.

    PubMed

    Di Girolamo, Nicola; Mans, Christoph

    2016-01-01

    The surgical approach to reptiles can be challenging. Reptiles have unique physiologic, anatomic, and pathologic differences. This may result in frustrating surgical experiences. However, recent investigations provided novel, less invasive, surgical techniques. The purpose of this review was to describe the technical aspects behind soft tissue surgical techniques that have been used in reptiles, so as to provide a general guideline for veterinarians working with reptiles.

  4. Esophageal tissue engineering.

    PubMed

    Luc, Guillaume; Durand, Marlène; Collet, Denis; Guillemot, Fabien; Bordenave, Laurence

    2014-03-01

    Esophageal tissue engineering is still in an early state, and ideal methods have not been developed. Since the beginning of the 20th century, advances have been made in the materials that can be used to produce an esophageal substitute. Three approaches to scaffold-based tissue engineering have yielded good results. The first development concerned non-absorbable constructs based on silicone and collagen. The need to remove the silicone tube is the main disadvantage of this material. Polymeric absorbable scaffolds have been used since the 1990s. The main polymeric material used is poly (glycolic) acid combined with collagen. The problem of stenosis remains prevalent in most studies using an absorbable construct. Finally, decellularized scaffolds have been used since 2000. The promises of this new approach are unfulfilled. Indeed, stenosis occurs when the esophageal defect is circumferential regardless of the scaffold materials. Cell supplementation can decrease the rate of stenosis, but the type(s) of cells and their roles have not been defined. Finally, esophageal tissue engineering cannot provide a functional esophageal substitute, and further development is necessary prior to conducting human clinical studies.

  5. Connective Tissue Ulcers

    PubMed Central

    Dabiri, Ganary; Falanga, Vincent

    2013-01-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren’s syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers. PMID:23756459

  6. TOPOGRAPHIC SITE RESPONSE AT HARD ROCK SITES

    NASA Astrophysics Data System (ADS)

    Yong, A. K.; Hough, S. E.

    2009-12-01

    Site (material impedance) and topographic (geometric form) effects are known to be key factors that influence seismic ground motions. To characterize site effects, Yong et al. (2009) developed a terrain-based Vs30 prediction model using an automated classification method (Iwahashi and Pike, 2007) that relied on taxonomic criteria (slope gradient, local convexity and surface texture) developed from geomorphometry to identify 16 terrain types from a 1-km spatial resolution (SRTM30 data) digital elevation model of California. On the basis that the underlying framework for this model contains parameters (esp., local convexity) which aptly describe the geometry (i.e., base to height ratio) of relief features that are known to also control the behavior of ground motions (Bouchon, 1973), we extend our investigation to study topographic effects. Focusing on sites that would generally be considered “hard rock,” the classification scheme distinguishes 7 separate terrain types ranging from “moderately eroded mountains” to “well dissected alpine summits.” Observed 1-Hz amplification factors at Southern California Seismographic Network sites reveal a weak but systematic correlation with these 7 terrain types. Significant scatter is also found within each terrain type; typical standard deviations of logarithmic amplification factors are 0.2-0.3. Considering stations that have high amplification factors, we find some that have apparently been misclassified due to data resolution limitations. Many of the remaining stations with higher than expected amplifications are located on or near topographic peaks or ridges. The unusually high amplification factors at hard-rock sites, typically factors of 1.5-2, can most plausibly be explained as a topographic effect.

  7. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California

    SciTech Connect

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-05

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

  8. Viking landing sites

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1973-01-01

    A valley near the mouth of the 20,000-foot-deep Martian Grand Canyon has been chosen by NASA as the site of its first automated landing on the planet Mars. The landing site for the second mission of the 1975-76 Viking spacecraft will probably be an area about 1,000 miles northeast of the first site, where the likelihood of water increases the chances of finding evidence of life.

  9. Site environmental report summary

    SciTech Connect

    Not Available

    1992-12-31

    In this summary of the Fernald 1992 Site Environmental Report the authors will describe the impact of the Fernald site on man and the environment and provide results from the ongoing Environmental Monitoring Program. Also included is a summary of the data obtained from sampling conducted to determine if the site complies with DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA) requirements. These requirements are set to protect both man and the environment.

  10. Site environmental programs

    SciTech Connect

    Schmidt, J.W.; Hanf, R.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the site environmental programs. Effluent monitoring and environmental surveillance programs monitor for impacts from operations in several areas. The first area consists of the point of possible release into the environment. The second area consists of possible contamination adjacent to DOE facilities, and the third area is the general environment both on and off the site.

  11. 1994 Site environmental report

    SciTech Connect

    1995-07-01

    The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  12. 18F-FDG PET and PET/CT in diagnosis and treatment monitoring of pyrexia of unknown origin due to tuberculosis with prominent hepatosplenic involvement.

    PubMed

    Shejul, Yogesh; Chhajed, Prashant N; Basu, Sandip

    2014-09-01

    The potential of (18)F-FDG PET/CT in the diagnosis and treatment response monitoring of fever of unknown origin (resulting from hepatosplenic tuberculosis) is demonstrated in this report. The patient was a 32-y-old woman who had presented to us with a history of pyrexia of unknown origin for the past 2 mo. On investigation, she was found to have hepatic and splenic granulomas, with whole-body (18)F-FDG PET demonstrating abnormal (18)F-FDG-avid foci in the liver and spleen. Ultrasonography-guided liver biopsy was suggestive of granulomatous hepatitis. The patient was clinically nonresponsive to first-line antitubercular drugs, and second-line antitubercular medications were added subsequently in view of clinical nonresponse. The patient responded well to the treatment. The repeated CT scan at 11 mo demonstrated persistence of the splenic granulomas; however, follow-up (18)F-FDG PET/CT at the same time showed resolution of (18)F-FDG-concentrating active disease foci with suggestion of complete metabolic response, commensurate with the patient's clinical improvement.

  13. Tissue factor activity under flow.

    PubMed

    Diamond, Scott L

    2010-04-01

    Coagulation processes under flow conditions are fundamentally different when compared to whole blood clotting in a tube. Due to red blood cell migration toward the center of the vessel, platelet concentrations are elevated several-fold in the plasma layer near the wall or thrombus. Evaluation of platelet function, coagulation proteases, and pharmacological agents can utilize closed systems of constant volume that lack flow (eg. intracellular calcium measurement, automated calibrated thrombography) or include flow (eg. aggregometry or cone-and-plate viscometry). However, these laboratory approaches fail to recreate the fact that intravascular thrombosis is an open system where blood is continually flowing over a thrombotic site. In open systems, the rapid accumulation of platelets at a surface leads to platelet concentrations greatly exceeding those found in whole blood and the delivery/removal of species by convection may impact the efficacy of pharmacological agents. During a clotting event under flow, platelets can accumulate via adhesion receptors to concentrations that are 10 to 50-fold higher than that of platelet-rich plasma. Using controlled in vitro perfusions of whole blood, it is possible to determine the critical level of surface tissue factor needed to trigger full scale coagulation on collagen. Such in vitro perfusion systems also allow a determination of the potency of anti-platelet agents as a function of wall shear rate.

  14. [Tissue engineering in reconstructive urology].

    PubMed

    Engel, O; Soave, A; Rink, M; Dahlem, R; Hellwinkel, O; Chun, F K; Fisch, M

    2015-05-01

    The term tissue engineering incorporates various techniques for the production of replacement tissues and organs. In urology tissue engineering offers many promising possibilities for the reconstruction of the urinary tract. Currently, buccal mucosa and urothelial cells are most commonly used for tissue engineering of the urinary tract. Various materials have been tested for their suitability as tissue scaffolds. The ideal scaffold, however, has not yet been found. In addition to material sciences and cell culture methods, surgical techniques play an important role in reconstructive urology for the successful implantation of tissue engineered transplants.

  15. Prediction of tissue thermal damage.

    PubMed

    Li, Xin; Zhong, Yongmin; Subic, Aleksandar; Jazar, Reza; Smith, Julian; Gu, Chengfan

    2016-04-29

    This paper presents a method to characterize tissue thermal damage by taking into account the thermal-mechanical effect of soft tissues for thermal ablation. This method integrates the bio-heating conduction and non-rigid motion dynamics to describe thermal-mechanical behaviors of soft tissues and further extends the traditional tissue damage model to characterize thermal-mechanical damage of soft tissues. Simulations and comparison analysis demonstrate that the proposed method can effectively predict tissue thermal damage and it also provides reliable guidelines for control of the thermal ablation procedure.

  16. Tissue Engineering Strategies in Ligament Regeneration

    PubMed Central

    Yilgor, Caglar; Yilgor Huri, Pinar; Huri, Gazi

    2012-01-01

    Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration. PMID:22242032

  17. Savannah River Site's Site Specific Plan

    SciTech Connect

    Not Available

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  18. Tissue response: biomaterials, dental implants, and compromised osseous tissue.

    PubMed

    Babu RS, Arvind; Ogle, Orrett

    2015-04-01

    Tissue response represents an important feature in biocompatibility in implant procedures. This review article highlights the fundamental characteristics of tissue response after the implant procedure. This article also highlights the tissue response in compromised osseous conditions. Understanding the histologic events after dental implants in normal and abnormal bone reinforces the concept of case selection in dental implants.

  19. Modulation of tissue repair by regeneration enhancer elements.

    PubMed

    Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D

    2016-04-14

    How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.

  20. Designing Bioactive Delivery Systems for Tissue Regeneration

    PubMed Central

    Davis, Hillary E.

    2010-01-01

    The direct infusion of macromolecules into defect sites generally does not impart adequate physiological responses. Without the protection of delivery systems, inductive molecules may likely redistribute away from their desired locale and are vulnerable to degradation. In order to achieve efficacy, large doses supplied at interval time periods are necessary, often at great expense and ensuing detrimental side effects. The selection of a delivery system plays an important role in the rate of re-growth and functionality of regenerating tissue: not only do the release kinetics of inductive molecules and their consequent bioactivities need to be considered, but also how the delivery system interacts and integrates with its surrounding host environment. In the current review, we describe the means of release of macromolecules from hydrogels, polymeric microspheres, and porous scaffolds along with the selection and utilization of bioactive delivery systems in a variety of tissue-engineering strategies. PMID:20676773

  1. Dinitrotoluene in deer tissues. Final report

    SciTech Connect

    Shugart, L.R.

    1991-09-30

    Badger Army Ammunition Plant (BAAP), Baraboo, Wisconsin, has within a security-fenced area, a herd of whitetail deer. The US Army and the State of Wisconsin, Department of Health and Social Services have determined that approximately 20 of the deer be harvested and tissue samples thus collected be analyzed for 2,4- and 2,6-dinitrotoluene (2,4- and 2,6-DNT) by high pressure liquid chromatography (HPLC) to a sensitivity of 0.1 part per million (ppm). The HPLC analyses will be done at the Oak Ridge National Laboratory (ORNL) following protocol used previously for similar work for other government sites. ORNL shall instruct Olin relative to the quantity and type of tissue required, storage and shipment requirements, and other information to ensure that all protocol and chain of custody requirements are clear. A final report will be made to Olin Corporation upon completion of the HPLC analyses.

  2. Tissue engineering osteochondral implants for temporomandibular joint repair.

    PubMed

    Schek, R M; Taboas, J M; Hollister, S J; Krebsbach, P H

    2005-11-01

    Tissue engineering has provided an alternative to traditional strategies to repair and regenerate temporomandibular joints (TMJ). A successful strategy to engineer osteochondral tissue, such as that found in the TMJ, will produce tissue that is both biologically and mechanically functional. Image-based design (IBD) and solid free-form (SFF) fabrication can be used to generate scaffolds that are load bearing and match patient and defect site geometry. The objective of this study was to demonstrate how scaffold design, materials, and biological factors can be used in an integrated approach to regenerate a multi-tissue interface. IBD and SFF were first used to create biomimetic scaffolds with appropriate bulk geometry and microarchitecture. Biphasic composite scaffolds were then manufactured with the same techniques and used to simultaneously generate bone and cartilage in discrete regions and provide for the development of a stable interface between cartilage and subchondral bone. Poly-l-lactic acid/hydroxyapatite composite scaffolds were differentially seeded with fibroblasts transduced with an adenovirus expressing bone morphogenetic protein-7 in the ceramic phase and fully differentiated chondrocytes in the polymeric phase, and were subcutaneously implanted into mice. Following implantation in the ectopic site, the biphasic scaffolds promoted the simultaneous growth of bone, cartilage, and a mineralized interface tissue. Within the ceramic phase, the pockets of tissue generated included blood vessels, marrow stroma, and adipose tissue. This combination of IBD and SFF-fabricated biphasic scaffolds with gene and cell therapy is a promising approach to regenerate osteochondral defects and, ultimately, the TMJ.

  3. Preliminary Site Characterization Report, Rulsion Site, Colorado

    SciTech Connect

    1996-08-01

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  4. Site characterization handbook

    SciTech Connect

    Not Available

    1988-06-01

    This Handbook discusses both management and technical elements that should be considered in developing a comprehensive site characterization program. Management elements typical of any project of a comparable magnitude and complexity are combined with a discussion of strategies specific to site characterization. Information specific to the technical elements involved in site characterization is based on guidance published by the Nuclear Regulatory Commission (NRC) with respect to licensing requirements for LLW disposal facilities. The objective of this Handbook is to provide a reference for both NRC Agreement States and non-Agreement States for use in developing a comprehensive site characterization program that meets the specific objectives of the State and/or site developer/licensee. Each site characterization program will vary depending on the objectives, licensing requirements, schedules/budgets, physical characteristics of the site, proposed facility design, and the specific concerns raised by government agencies and the public. Therefore, the Handbook is not a prescriptive guide to site characterization. 18 refs., 6 figs.

  5. Tremont Field Site

    EPA Pesticide Factsheets

    Tremont Field Site is a 41.5-acre public park located northeast of the intersection of West 11th Street and Clark Avenue in Cleveland, Ohio. Through two deed transfers in 1948 and 1949, the City acquired the site from the United States Government.

  6. Plugged-in SITE.

    ERIC Educational Resources Information Center

    Phillips, Rhys

    2003-01-01

    Examines form, color, and technology at the University of Ottawa's School of Information Technology and Engineering (SITE) building, focusing on systems (e.g., SITE is a data wired building, but with no expensive raised floors or cheap dropped ceilings); assembly rather than construction (replacing standard notions of construction with the process…

  7. SAMPLING OF CONTAMINATED SITES

    EPA Science Inventory

    A critical aspect of characterization of the amount and species of contamination of a hazardous waste site is the sampling plan developed for that site. f the sampling plan is not thoroughly conceptualized before sampling takes place, then certain critical aspects of the limits o...

  8. Commercial Web Site Links.

    ERIC Educational Resources Information Center

    Thelwall, Mike

    2001-01-01

    Discusses business use of the Web and related search engine design issues as well as research on general and academic links before reporting on a survey of the links published by a collection of business Web sites. Results indicate around 66% of Web sites do carry external links, most of which are targeted at a specific purpose, but about 17%…

  9. The Iowa Validation Site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing can be used to observe the land surface hydrologic cycle, but the quantitative aspects of these observations are not well known. We present a small (1 km^2) experimental validation site, the Iowa Validation Site. Initially we have focused on validating remotely-sensed observations of ...

  10. Site Planning and Layout.

    ERIC Educational Resources Information Center

    Moore, Gary T.

    1998-01-01

    Examines five issues related to child care facility design: (1) siting the building, outdoor play, and service areas; (2) creating favorable microclimates; (3) developmentally appropriate play yards; (4) pedestrian access and site circulation; and (5) vehicular access and parking away from pedestrians and play. (KB)

  11. Sites of the Holocaust.

    ERIC Educational Resources Information Center

    McCleary, George F., Jr.

    1995-01-01

    Presents a map of Europe identifying the location of major concentration camps, extermination camps, and massacre sites during World War II. Maintains that only a few of the over 400 sites in the former Soviet Union where entire Jewish villages were exterminated are shown. (CFR)

  12. WWW: Neuroscience Web Sites

    ERIC Educational Resources Information Center

    Liu, Dennis

    2006-01-01

    The human brain contains an estimated 100 billion neurons, and browsing the Web, one might be led to believe that there's a Web site for every one of those cells. It's no surprise that there are lots of Web sites concerning the nervous system. After all, the human brain is toward the top of nearly everyone's list of favorite organs and of…

  13. Craniofacial bone tissue engineering.

    PubMed

    Wan, Derrick C; Nacamuli, Randall P; Longaker, Michael T

    2006-04-01

    Repair and reconstruction of the craniofacial skeleton represents a significant biomedical burden, with thousands of procedures per-formed annually secondary to injuries and congenital malformations. Given the multitude of current approaches, the need for more effective strategies to repair these bone deficits is apparent. This article explores two major modalities for craniofacial bone tissue engineering: distraction osteogenesis and cellular based therapies. Current understanding of the guiding principles for each of these modalities is elaborated on along with the knowledge gained from clinical and investigative studies. By laying this foundation, future directions for craniofacial distraction and cell-based bone engineering have emerged with great promise for the advancement of clinical practice.

  14. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  15. Aging changes in organs - tissue - cells

    MedlinePlus

    ... form organs. There are four basic types of tissue: Connective tissue supports other tissues and binds them together. This ... in many tissues, as do other fatty substances. Connective tissue changes, becoming more stiff. This makes the organs, ...

  16. Can Soft Tissue Sarcomas Be Found Early?

    MedlinePlus

    ... Tissue Sarcoma Early Detection, Diagnosis, and Staging Can Soft Tissue Sarcomas Be Found Early? People who have ... Your Doctor About Soft Tissue Sarcomas? More In Soft Tissue Sarcoma About Soft Tissue Sarcoma Causes, Risk ...

  17. Obtaining corneal tissue for keratoplasty.

    PubMed

    Navarro Martínez-Cantullera, A; Calatayud Pinuaga, M

    2016-10-01

    Cornea transplant is the most common tissue transplant in the world. In Spain, tissue donation activities depend upon transplant coordinator activities and the well-known Spanish model for organ and tissue donation. Tissue donor detection system and tissue donor evaluation is performed mainly by transplant coordinators using the Spanish model on donation. The evaluation of a potential tissue donor from detection until recovery is based on an exhaustive review of the medical and social history, physical examination, family interview to determine will of the deceased, and a laboratory screening test. Corneal acceptance criteria for transplantation have a wider spectrum than other tissues, as donors with active malignancies and infections are accepted for kearatoplasty in most tissue banks. Corneal evaluation during the whole process is performed to ensure the safety of the donor and the recipient, as well as an effective transplant. Last step before processing, corneal recovery, must be performed under standard operating procedures and in a correct environment.

  18. Tools to assess tissue quality.

    PubMed

    Neumeister, Veronique M

    2014-03-01

    Biospecimen science has recognized the importance of tissue quality for accurate molecular and biomarker analysis and efforts are made to standardize tissue procurement, processing and storage conditions of tissue samples. At the same time the field has emphasized the lack of standardization of processes between different laboratories, the variability inherent in the analytical phase and the lack of control over the pre-analytical phase of tissue processing. The problem extends back into tissue samples in biorepositories, which are often decades old and where documentation about tissue processing might not be available. This review highlights pre-analytical variations in tissue handling, processing, fixation and storage and emphasizes the effects of these variables on nucleic acids and proteins in harvested tissue. Finally current tools for quality control regarding molecular or biomarker analysis are summarized and discussed.

  19. Site decommissioning management plan

    SciTech Connect

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  20. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  1. Mechanisms of Laser-Tissue Interaction: II. Tissue Thermal Properties

    PubMed Central

    Ansari, Mohammad Ali; Erfanzadeh, Mohsen; Mohajerani, Ezeddin

    2013-01-01

    Laser-tissue interaction is of great interest due to its significant application in biomedical optics in both diagnostic and treatment purposes. Major aspects of the laser-tissue interaction which has to be considered in biomedical studies are the thermal properties of the tissue and the thermal changes caused by the interaction of light and tissue. In this review paper the effects of light on the tissue at different temperatures are discussed. Then, due to the noticeable importance of studying the heat transfer quantitatively, the equations governing this phenomenon are presented. Finally a method of medical diagnosis called thermography and some of its applications are explained. PMID:25606316

  2. Tissue adhesives: new perspectives in corneal perforations.

    PubMed

    Hirst, L W; Stark, W J; Jensen, A D

    1979-03-01

    In corneal perforations associated with extensive progressive corneal disease, a technique using tissue adhesive closure of the perforation site and reformation of the anterior chamber before penetrating keratoplasty or conjunctival flap mobilization has been described. Over the past year, six eyes have been successfully treated in this manner. This method allows reformation of the eye under local anesthesia as an emergency procedure without incarceration or injury of the intraocular contents and without pain to the patient. The definitive surgical procedure can then be performed safely under retrobulbar anesthesia.

  3. Tissue engineering and ENT surgery.

    PubMed

    Patel, Nimesh N; Butler, Peter E M; Buttery, Lee; Polak, Julia M; Tolley, Neil S

    2002-03-01

    Tissue engineering is the development of biological substitutes for the repair and regeneration of damaged tissues. We explain the principles of this emerging field of biotechology. The present and potential applications of tissue engineering technologies in ENT surgery are then reviewed.

  4. Polarization technology for tissue study

    NASA Astrophysics Data System (ADS)

    Simonenko, Georgy V.; Denisova, Tatyana P.; Lakodina, Nina A.; Tuchin, Valery V.; Papaev, Alexander V.

    2002-06-01

    The study of optical clearing dynamics of various connective tissues was carried out by means of polarization microscopy. Rate difference of optical clearing of such types of tissues as cartilage, meniscus, nasal septum tissues, sclera and tunica testis was found. The areas of unidirectional orientation of collagen fibers in cartilage and tunica testis were determined.

  5. Biothermomechanics of skin tissues

    NASA Astrophysics Data System (ADS)

    Xu, F.; Lu, T. J.; Seffen, K. A.

    Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.

  6. Lunar Polar Landing Sites

    NASA Astrophysics Data System (ADS)

    Kamps, Oscar; Foing, Bernard H.; Flahaut, Jessica

    2016-07-01

    An important step for a scientific mission is to assess on where the mission should be conducted. This study on landing site selection focuses on a mission to the poles of the Moon where an in-situ mission should be conducted to answer the questions with respect to volatiles and ices. The European interest for a mission to the poles of the Moon is presented in the mission concept called Heracles. This mission would be a tele-operated, sample return mission where astronauts will controlling a rover from an Orion capsule in cislunar orbit. The primary selection of landing sites was based on the scientific interest of areas near the poles. The maximum temperature map from Diviner was used to select sites where CO^2¬ should always be stable. This means that the maximum temperature is lower than 54K which is the sublimation temperature for CO^2¬ in lunar atmospheric pressure. Around these areas 14 potential regions of interest were selected. Further selection was based on the epoch of the surface in these regions of interest. It was thought that it would be of high scientific value if sites are sampled which have another epoch than already sampled by one of the Apollo or Luna missions. Only 6 sites on both North as South Pole could contain stable CO^2 ¬and were older than (Pre-)Necterian. Before a landing site and rover traverse was planned these six sites were compared on their accessibility of the areas which could contain stable CO^2. It was assumed that slope lower than 20^o is doable to rove. Eventually Amundsen and Rozhdestvenskiy West were selected as regions of interest. Assumptions for selecting landing sites was that area should have a slope lower than 5^o, a diameter of 1km, in partial illuminated area, and should not be isolated but inside an area which is in previous steps marked as accessible area to rove. By using multiple tools in ArcGIS it is possible to present the area's which were marked as potential landing sites. The closest potential landing

  7. Scaffold-free tissue engineering: organization of the tissue cytoskeleton and its effects on tissue shape.

    PubMed

    Czajka, Caitlin A; Mehesz, Agnes Nagy; Trusk, Thomas C; Yost, Michael J; Drake, Christopher J

    2014-05-01

    Work described herein characterizes tissues formed using scaffold-free, non-adherent systems and investigates their utility in modular approaches to tissue engineering. Immunofluorescence analysis revealed that all tissues formed using scaffold-free, non-adherent systems organize tissue cortical cytoskeletons that appear to be under tension. Tension in these tissues was also evident when modules (spheroids) were used to generate larger tissues. Real-time analysis of spheroid fusion in unconstrained systems illustrated modular motion that is compatible with alterations in tensions, due to the process of disassembly/reassembly of the cortical cytoskeletons required for module fusion. Additionally, tissues generated from modules placed within constrained linear molds, which restrict modular motion, deformed upon release from molds. That tissue deformation is due in full or in part to imbalanced cortical actin cytoskeleton tensions resulting from the constraints imposed by mold systems is suggested from our finding that treatment of forming tissues with Y-27632, a selective inhibitor of ROCK phosphorylation, reduced tissue deformation. Our studies suggest that the deformation of scaffold-free tissues due to tensions mediated via the tissue cortical cytoskeleton represents a major and underappreciated challenge to modular tissue engineering.

  8. Interface tissue engineering: next phase in musculoskeletal tissue repair.

    PubMed

    Sahoo, Sambit; Teh, Thomas Kh; He, Pengfei; Toh, Siew Lok; Goh, James Ch

    2011-05-01

    Increasing incidence of musculoskeletal injuries coupled with limitations in the current treatment options have necessitated tissue engineering and regenerative medicine- based approaches. Moving forward from engineering isolated musculoskeletal tissues, research strategies are now being increasingly focused on repairing and regenerating the interfaces between dissimilar musculoskeletal tissues with the aim to achieve seamless integration of engineered musculoskeletal tissues. This article reviews the state-of-the-art in the tissue engineering of musculoskeletal tissue interfaces with a focus on Singapore's contribution in this emerging field. Various biomimetic scaffold and cellbased strategies, the use of growth factors, gene therapy and mechanical loading, as well as animal models for functional validation of the tissue engineering strategies are discussed.

  9. Managing tissue bank access to the OR for tissue recovery.

    PubMed

    Trim, Robert S

    2011-08-01

    Hospitals often have tissue recovery service agreements with regional tissue banks to facilitate the donation process. The agreements that outline the tissue bank-hospital relationship frequently allow tissue bank personnel to perform tissue recovery procedures in the referring hospital's OR and may or may not specify any preparatory orientation or any written protocols for tissue bank staff members to follow. This creates the potential for unintentional breaches of protocol that can affect operation of equipment or result in contamination that may put surgical patients and staff members at risk. The OR manager is responsible for establishing appropriate orientation plans for tissue bank employees to ensure they understand and adhere to the hospital's protocols.

  10. Broadband transmission spectroscopy in tissue: application to radiofrequency tissue fusion

    NASA Astrophysics Data System (ADS)

    Floume, Timmy; Syms, Richard R. A.; Darzi, Ara W.; Hanna, George B.

    2009-05-01

    Radiofrequency tissue fusion consists in heating apposed tissue faces, which results in their sealing. Tissue transformations must be controlled to obtain reliable reproducible seal. In this paper we demonstrate how to extract information on the two main tissue transformations, thermal damage and dehydration, from continuous wave transmission spectra. A fibre based near infrared transmission spectroscopy system is presented and described theoretically. Show demonstrate that such system can be fully modeled using ray optics considerations for the coupling of the light into optical fibers, and MC simulations of light propagation in tissue. We then develop an algorithm based on the absolute measurement of attenuation and the modified Beer Lambert Law that enables the extraction of absolute tissue hydration and information on the degree of thermal damage, via scattering losses. We also discuss the basis and limit of absolute measurement during broadband submicronic tissue transmittance spectroscopy.

  11. Human ex-vivo oral tissue imaging using spectral domain polarization sensitive optical coherence tomography.

    PubMed

    Sharma, Priyanka; Verma, Yogesh; Sahu, Khageswar; Kumar, Sudhir; Varma, Amit V; Kumawat, Jyoti; Gupta, Pradeep Kumar

    2017-01-01

    We report the use of spectral domain polarization sensitive optical coherence tomography for ex-vivo imaging of human oral mandibular tissue samples. Our results show that compared to the changes observed in the epithelium thickness and the decay constant of A-scan intensity profile, a much larger degree of change was observed in the phase retardation for tissue sites progressing from normal to the malignant state. These results suggest that monitoring of tissue retardance can help in better differentiation of normal and cancerous oral tissue sites.

  12. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis

    PubMed Central

    Papusheva, Ekaterina; Heisenberg, Carl-Philipp

    2010-01-01

    Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis. PMID:20717145

  13. Pharmacological Regulation of In Situ Tissue Stem Cells Differentiation for Soft Tissue Calcification Treatment.

    PubMed

    Hu, Jia-Jie; Yin, Zi; Shen, Wei-Liang; Xie, Yu-Bin; Zhu, Ting; Lu, Ping; Cai, You-Zhi; Kong, Min-Jian; Heng, Boon Chin; Zhou, Yi-Ting; Chen, Wei-Shan; Chen, Xiao; Ouyang, Hong-Wei

    2016-04-01

    Calcification of soft tissues, such as heart valves and tendons, is a common clinical problem with limited therapeutics. Tissue specific stem/progenitor cells proliferate to repopulate injured tissues. But some of them become divergent to the direction of ossification in the local pathological microenvironment, thereby representing a cellular target for pharmacological approach. We observed that HIF-2alpha (encoded by EPAS1 inclined form) signaling is markedly activated within stem/progenitor cells recruited at calcified sites of diseased human tendons and heart valves. Proinflammatory microenvironment, rather than hypoxia, is correlated with HIF-2alpha activation and promoted osteochondrogenic differentiation of tendon stem/progenitor cells (TSPCs). Abnormal upregulation of HIF-2alpha served as a key switch to direct TSPCs differentiation into osteochondral-lineage rather than teno-lineage. Notably, Scleraxis (Scx), an essential tendon specific transcription factor, was suppressed on constitutive activation of HIF-2alpha and mediated the effect of HIF-2alpha on TSPCs fate decision. Moreover, pharmacological inhibition of HIF-2alpha with digoxin, which is a widely utilized drug, can efficiently inhibit calcification and enhance tenogenesis in vitro and in the Achilles's tendinopathy model. Taken together, these findings reveal the significant role of the tissue stem/progenitor cells fate decision and suggest that pharmacological regulation of HIF-2alpha function is a promising approach for soft tissue calcification treatment.

  14. Master Plans for Park Sites.

    ERIC Educational Resources Information Center

    Van Meter, Jerry R.

    This booklet is a general guide to park site planning. The four basic steps involved in developing a park site are a) determination of the uses of the site, b) analysis of the site potential for these uses, c) identification of the functional relationship among the uses, and d) coordination of the uses to the park sites. Uses of park sites are…

  15. The soft tissue sarcomas

    SciTech Connect

    Eilber, F.R.; Morton, D.L.; Sondak, V.K.; Economou, J.S.

    1987-01-01

    New advances in multimodality therapy of sarcomas in all anatomic sites are thoroughly described. Multimodality therapy with limb-salvage surgery for extremity tumors, sarcomas of the head and neck, trunk, intraabdominal, visceral, and genitourinary tract and cardiopulmonary system are presented. Separate sections are devoted to the management of pediatric sarcomas, pulmonary metastasis and to the pathology and radiobiology, chemotherapy, and immunotherapy of sarcomas. The text also stresses the philosophy of achieving adequate local control without radical amputation by combined surgery and chemo/radiotherapy.

  16. Laser tissue interaction in the porcine otic capsule tissue model

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Lee, Jon P.; Berns, Michael W.; White, Joel M.; Neev, Joseph

    1996-01-01

    The absence of a hard tissue model reflecting the properties of the inner and middle ear has made it difficult to draw consistent conclusions on the many experimental laser studies in ear surgery. Porcine otic capsule tissue has been studied by our group extensively in a wide variety of laser-tissue interaction studies and is an economically attractive and simple to use hard tissue source. Porcine otic capsule was harvested from the temporal bone of freshly sacrificed domestic pigs via a craniotomy approach. The technique when performed with power instruments takes less than 5 minutes and the entire otic capsule bone is removed intact as the suture line is not fused to the remaining petrous apex. The tissue specimen contains a vestibule, cochlea, oval and round windows, and internal auditory canals which can be used as an intact middle ear/inner ear system. The tissue can also be micromachined into thin slabs of bone varying for 100 - 1000 micrometers in thickness. In order to quantify more precisely the laser-tissue interactions in otic capsule, optical properties (absorption and scattering) and physical properties were determined (acoustic impedance). The tissue has been used in a wide variety of basic studies investigating the laser-tissue interactions with argon, KTP, (Nd:YAG), carbon dioxide, Ho:YAG, Er:YAG, and XeCl lasers. Porcine otic capsule is an ideal tissue on which standardized test can be performed to compare the relative effects of various laser in otosurgical models.

  17. Retroviral integration: Site matters

    PubMed Central

    Demeulemeester, Jonas; De Rijck, Jan

    2015-01-01

    Here, we review genomic target site selection during retroviral integration as a multistep process in which specific biases are introduced at each level. The first asymmetries are introduced when the virus takes a specific route into the nucleus. Next, by co‐opting distinct host cofactors, the integration machinery is guided to particular chromatin contexts. As the viral integrase captures a local target nucleosome, specific contacts introduce fine‐grained biases in the integration site distribution. In vivo, the established population of proviruses is subject to both positive and negative selection, thereby continuously reshaping the integration site distribution. By affecting stochastic proviral expression as well as the mutagenic potential of the virus, integration site choice may be an inherent part of the evolutionary strategies used by different retroviruses to maximise reproductive success. PMID:26293289

  18. Siting Air Monitoring Stations

    ERIC Educational Resources Information Center

    Ludwig, F. L.

    1978-01-01

    Describes guidelines for consideration in selecting sites for air monitoring systems. Careful selection for spatial scale and specific sources assures that the collected data are accurately representing the situation. (Author/MA)

  19. Programming for SITE.

    ERIC Educational Resources Information Center

    Mody, Bella

    1979-01-01

    Describes the Satellite Instructional Television Experiment (SITE) project in India during 1975-76, including programing patterns, formats, and audiences. Demonstrates that countries like India have the technical and managerial capability to design, operate, and maintain advanced communication technology. (JMF)

  20. Solar site test module

    NASA Technical Reports Server (NTRS)

    Kissel, R. R.; Scott, D. R.

    1980-01-01

    A solar site test module using the Rockwell AIM 65microcomputer is described. The module is designed to work at any site where an IBM site data acquisition system (SDAS) is installed and is intended primarily as a troubleshooting tool. It collects sensor information (temperatures, flow rates, etc.) and displays or prints it immediately in calibrated engineering units. It will read one sensor on demand, periodically read up to 10sensors or periodically read all sensors. Performance calculations can also be included with sensor data. Unattended operation is possible to, e.g., monitor a group of sensors once per hour. Work is underway to add a data acquisition system to the test module so that it can be used at sites which have no SDAS.

  1. Mixed connective tissue disease.

    PubMed

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies.

  2. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    PubMed

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  3. An informatics model for tissue banks – Lessons learned from the Cooperative Prostate Cancer Tissue Resource

    PubMed Central

    Patel, Ashokkumar A; Gilbertson, John R; Parwani, Anil V; Dhir, Rajiv; Datta, Milton W; Gupta, Rajnish; Berman, Jules J; Melamed, Jonathan; Kajdacsy-Balla, Andre; Orenstein, Jan; Becich, Michael J

    2006-01-01

    Background Advances in molecular biology and growing requirements from biomarker validation studies have generated a need for tissue banks to provide quality-controlled tissue samples with standardized clinical annotation. The NCI Cooperative Prostate Cancer Tissue Resource (CPCTR) is a distributed tissue bank that comprises four academic centers and provides thousands of clinically annotated prostate cancer specimens to researchers. Here we describe the CPCTR information management system architecture, common data element (CDE) development, query interfaces, data curation, and quality control. Methods Data managers review the medical records to collect and continuously update information for the 145 clinical, pathological and inventorial CDEs that the Resource maintains for each case. An Access-based data entry tool provides de-identification and a standard communication mechanism between each group and a central CPCTR database. Standardized automated quality control audits have been implemented. Centrally, an Oracle database has web interfaces allowing multiple user-types, including the general public, to mine de-identified information from all of the sites with three levels of specificity and granularity as well as to request tissues through a formal letter of intent. Results Since July 2003, CPCTR has offered over 6,000 cases (38,000 blocks) of highly characterized prostate cancer biospecimens, including several tissue microarrays (TMA). The Resource developed a website with interfaces for the general public as well as researchers and internal members. These user groups have utilized the web-tools for public query of summary data on the cases that were available, to prepare requests, and to receive tissues. As of December 2005, the Resource received over 130 tissue requests, of which 45 have been reviewed, approved and filled. Additionally, the Resource implemented the TMA Data Exchange Specification in its TMA program and created a computer program for

  4. Harnessing Cell–Biomaterial Interactions for Osteochondral Tissue Regeneration

    PubMed Central

    Kim, Kyobum; Yoon, Diana M.; Mikos, Antonios G.

    2013-01-01

    Articular cartilage that is damaged or diseased often requires surgical intervention to repair the tissue; therefore, tissue engineering strategies have been developed to aid in cartilage regeneration. Tissue engineering approaches often require the integration of cells, biomaterials, and growth factors to direct and support tissue formation. A variety of cell types have been isolated from adipose, bone marrow, muscle, and skin tissue to promote cartilage regeneration. The interaction of cells with each other and with their surrounding environment has been shown to play a key role in cartilage engineering. In tissue engineering approaches, biomaterials are commonly used to provide an initial framework for cell recruitment and proliferation and tissue formation. Modifications of the properties of biomaterials, such as creating sites for cell binding, altering their physicochemical characteristics, and regulating the delivery of growth factors, can have a significant influence on chondrogenesis. Overall, the goal is to completely restore healthy cartilage within an articular cartilage defect. This chapter aims to provide information about the importance of cell–biomaterial interactions for the chondrogenic differentiation of various cell populations that can eventually produce functional cartilage matrix that is indicative of healthy cartilage tissue. PMID:21975954

  5. Discordance of DNA Methylation Variance Between two Accessible Human Tissues

    PubMed Central

    Jiang, Ruiwei; Jones, Meaghan J.; Chen, Edith; Neumann, Sarah M.; Fraser, Hunter B.; Miller, Gregory E.; Kobor, Michael S.

    2015-01-01

    Population epigenetic studies have been seeking to identify differences in DNA methylation between specific exposures, demographic factors, or diseases in accessible tissues, but relatively little is known about how inter-individual variability differs between these tissues. This study presents an analysis of DNA methylation differences between matched peripheral blood mononuclear cells (PMBCs) and buccal epithelial cells (BECs), the two most accessible tissues for population studies, in 998 promoter-located CpG sites. Specifically we compared probe-wise DNA methylation variance, and how this variance related to demographic factors across the two tissues. PBMCs had overall higher DNA methylation than BECs, and the two tissues tended to differ most at genomic regions of low CpG density. Furthermore, although both tissues showed appreciable probe-wise variability, the specific regions and magnitude of variability differed strongly between tissues. Lastly, through exploratory association analysis, we found indication of differential association of BEC and PBMC with demographic variables. The work presented here offers insight into variability of DNA methylation between individuals and across tissues and helps guide decisions on the suitability of buccal epithelial or peripheral mononuclear cells for the biological questions explored by epigenetic studies in human populations. PMID:25660083

  6. Residues of veterinary drugs at injection sites.

    PubMed

    Reeves, P T

    2007-02-01

    Residues of veterinary drugs have potential implications for human food safety and international trade in animal-derived food commodities. A particular concern is the slow depletion of residues of some injectable formulations from the site of administration. Licensing authorities have adopted different approaches to the human food safety assessment of injection site residues. European agencies apply the maximum residue limit (MRL) for muscle to muscle at the injection site and specify a withdrawal period sufficient to ensure the ingestion of a 300 g portion of muscle, if comprised entirely of injection site tissue, does not exceed the acceptable daily intake. The agencies in Australia, Canada and the USA also exclude injection site residues from the MRL-setting process. These agencies evaluate the risk to consumers posed by potential acute manifestations resulting from the infrequent ingestion of injection site residues based on acute dietary exposure considerations. While all of these approaches protect the safety of consumers, the adoption of different approaches has potential implications for residue surveillance programs in the international trade in meat. In particular, when an exporting country establishes standards for residues at injection sites based on acute dietary exposure considerations and the importing country assesses these residues against the MRL for muscle, the unnecessary condemnation of meat and disruption to market access may result. The latter may represent a potential economical impost to the exporting country. An internationally harmonized approach to the risk analysis of residues of veterinary drugs at injection sites, which protects the safety of consumers and facilitates the international trade in meat, is needed.

  7. Laser-tissue photothermal interaction and tissue temperature change

    NASA Astrophysics Data System (ADS)

    Ives, Andrea K.; Chen, Wei R.; Jassemnejad, Baha; Bartels, Kenneth E.; Liu, Hong; Nordquist, John A.; Nordquist, Robert E.

    2000-06-01

    Responses of tissue to laser stimulation are crucial in both disease diagnostics and treatment. In general, when tissue absorbs laser energy photothermal interaction occurs. The most important signature of the photothermal reaction is the tissue temperature change during and after the laser irradiation. Experimentally, the tissue reaction to laser irradiation can be measured by numerous methods including direct temperature measurement and measurement of perfusion change. In this study, a multiple-channel temperature probe was used to measure tissue temperature change during irradiation of lasers with different wavelengths at different power settings. Tissue temperature in chicken breast tissue as well as skin and breast tumor of rats was measured during irradiation of an 805-nm diode laser. The vertical profiles of temperature were obtained using simultaneous measurement at several different locations. The absorption of laser energy by tissue was enhanced by injecting laser-absorbing dye into the tissue. A Nd:YAG laser of 1064-nm wavelength was also used to irradiate turkey breast tissue. Our results showed that both laser penetration ability and photothermal reaction depended on the wavelength of lasers. In the case of 805-nm laser, the temperature increased rapidly only in the region close to the laser source and the thermal equilibrium could be reached within a short time period. The laser absorbing dye drastically enhanced the thermal reaction, resulting in approximately 4-fold temperature increase. On the contrary, the laser beam with 1064-nm wavelength penetrated deeply into tissue and the tissue temperature continued increasing even after a 10-minute laser irradiation.

  8. Widespread sites of brain stem ventilatory chemoreceptors.

    PubMed

    Coates, E L; Li, A; Nattie, E E

    1993-07-01

    We produced local tissue acidosis in various brain stem regions with 1-nl injections of acetazolamide (AZ) to locate the sites of central chemoreception. To determine whether the local acidosis resulted in a stimulation of breathing, we performed the experiment in chloralose-urethan anesthetized vagotomized carotid-denervated (cats) paralyzed servo-ventilated cats and rats and measured phrenic nerve activity (PNA) as the response index. Measurements of extracellular brain tissue pH by glass microelectrodes showed that AZ injections induced a change in pH at the injection center equivalent to that produced by an increase in end-tidal PCO2 of approximately 36 Torr and that the change in brain pH was limited to a tissue volume with a radius of < 350 microns. We found AZ injections sites that caused a significant increase in PNA to be located 1) within 800 microns of the ventrolateral medullary surface at locations within traditional rostral and caudal chemosensitive areas and the intermediate area, 2) within the vicinity of the nucleus tractus solitarii, and 3) within the vicinity of the locus coeruleus. Single AZ injections produced increases in PNA that were < or = 69% of the maximum value observed with an increase in end-tidal PCO2. We conclude that central chemoreceptors are distributed at many locations within the brain stem, all within 1.5 mm of the surface, and that stimulation of a small fraction of all central chemoreceptors can result in a large ventilatory response.

  9. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  10. Polarized Light Propagation in Biological Tissue and Tissue Phantoms

    SciTech Connect

    Sankaran, V.; Walsh, J.T.; Maitland, D.

    1999-12-10

    Imaging through biologic tissue relies on the discrimination of weakly scattered from multiply scattered photons. The degree of polarization can be used as the discrimination criterion by which to reject multiply scattered photons. Polarized light propagation through biologic tissue is typically studied using tissue phantoms consisting of dilute aqueous suspensions of microsphere. We show that, although such phantoms are designed to match the macroscopic scattering properties of tissue (i.e.. the scattering coefficient, {mu}{sub 3}, and scattering anisotropy, g), they do not accurately represent biologic tissue for polarization-sensitive studies. In common tissue phantoms, such as dilute Intralipid and dilute 1-{micro}m-diameter polystyrene microsphere suspensions, we find that linearly polarized light is depolarized more quickly than circularly polarized light. In dense tissue, however, where scatterers are often located in close proximity to one another, circularly polarized light is depolarized similar to or more quickly than linearly polarized light. We also demonstrate that polarized light propagates differently in dilute versus densely packed microsphere suspensions, which may account for the differences seen between polarized light propagation in common dilute tissue phantoms versus dense biologic tissue.

  11. Site clearance working group

    SciTech Connect

    1997-03-01

    The Gulf of Mexico and Louisiana continue to be areas with a high level of facility removal, and the pace of removal is projected to increase. Regulations were promulgated for the Gulf of Mexico and Louisiana requiring that abandoned sites be cleared of debris that could interfere with fishing and shrimping activities. The site clearance regulations also required verification that the sites were clear. Additionally, government programs were established to compensate fishermen for losses associated with snagging their equipment on oil and gas related objects that remained on the water bottoms in areas other than active producing sites and sites that had been verified as clear of obstructions and snags. The oil and gas industry funds the compensation programs. This paper reviews the regulations and evolving operating practices in the Gulf of Mexico and Louisiana where site clearance and fisherman`s gear compensation regulations have been in place for a number of years. Although regulations and guidelines may be in place elsewhere in the world, this paper focuses on the Gulf of Mexico and Louisiana. Workshop participants are encouraged to bring up international issues during the course of the workshop. Additionally, this paper raises questions and focuses on issues that are of concern to the various Gulf of Mexico and Louisiana water surface and water bottom stakeholders. This paper does not have answers to the questions or issues. During the workshop participants will debate the questions and issues in an attempt to develop consensus opinions and/or make suggestions that can be provided to the appropriate organizations, both private and government, for possible future research or policy adjustments. Site clearance and facility removal are different activities. Facility removal deals with removal of the structures used to produce oil and gas including platforms, wells, casing, piles, pipelines, well protection structures, etc.

  12. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    SciTech Connect

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. )

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  13. Gingival Tissue Transcriptomes Identify Distinct Periodontitis Phenotypes

    PubMed Central

    Kebschull, M.; Demmer, R.T.; Grün, B.; Guarnieri, P.; Pavlidis, P.; Papapanou, P.N.

    2014-01-01

    The currently recognized principal forms of periodontitis—chronic and aggressive—lack an unequivocal, pathobiology-based foundation. We explored whether gingival tissue transcriptomes can serve as the basis for an alternative classification of periodontitis. We used cross-sectional whole-genome gene expression data from 241 gingival tissue biopsies obtained from sites with periodontal pathology in 120 systemically healthy nonsmokers with periodontitis, with available data on clinical periodontal status, subgingival microbial profiles, and serum IgG antibodies to periodontal microbiota. Adjusted model-based clustering of transcriptomic data using finite mixtures generated two distinct clusters of patients that did not align with the current classification of chronic and aggressive periodontitis. Differential expression profiles primarily related to cell proliferation in cluster 1 and to lymphocyte activation and unfolded protein responses in cluster 2. Patients in the two clusters did not differ with respect to age but presented with distinct phenotypes (statistically significantly different whole-mouth clinical measures of extent/severity, subgingival microbial burden by several species, and selected serum antibody responses). Patients in cluster 2 showed more extensive/severe disease and were more often male. The findings suggest that distinct gene expression signatures in pathologic gingival tissues translate into phenotypic differences and can provide a basis for a novel classification. PMID:24646639

  14. Timing of circadian genes in mammalian tissues

    PubMed Central

    Korenčič, Anja; Košir, Rok; Bordyugov, Grigory; Lehmann, Robert; Rozman, Damjana; Herzel, Hanspeter

    2014-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology. The cell-autonomous clock is governed by an interlocked network of transcriptional feedback loops. Hundreds of clock-controlled genes (CCGs) regulate tissue specific functions. Transcriptome studies reveal that different organs (e.g. liver, heart, adrenal gland) feature substantially varying sets of CCGs with different peak phase distributions. To study the phase variability of CCGs in mammalian peripheral tissues, we develop a core clock model for mouse liver and adrenal gland based on expression profiles and known cis-regulatory sites. ‘Modulation factors’ associated with E-boxes, ROR-elements, and D-boxes can explain variable rhythms of CCGs, which is demonstrated for differential regulation of cytochromes P450 and 12 h harmonics. By varying model parameters we explore how tissue-specific peak phase distributions can be generated. The central role of E-boxes and ROR-elements is confirmed by analysing ChIP-seq data of BMAL1 and REV-ERB transcription factors. PMID:25048020

  15. Regeneration, tissue injury and the immune response

    PubMed Central

    Godwin, James W; Brockes, Jeremy P

    2006-01-01

    The involvement of the immune system in the response to tissue injury has raised the possibility that it might influence tissue, organ or appendage regeneration following injury. One hypothesis that has been discussed is that inflammatory aspects may preclude the occurrence of regeneration, but there is also evidence for more positive roles of immune components. The vertebrate eye is an immunoprivileged site where inflammatory aspects are inhibited by several immunomodulatory mechanisms. In various newt species the ocular tissues such as the lens are regenerative and it has recently been shown that the response to local injury of the lens involves activation of antigen-presenting cells which traffic to the spleen and return to displace and engulf the lens, thereby inducing regeneration from the dorsal iris. The activation of thrombin from prothrombin in the dorsal iris is one aspect of the injury response that is important in the initiation of regeneration. The possible relationships between the immune response and the regenerative response are considered with respect to phylogenetic variation of regeneration in general, and lens regeneration in particular. PMID:17005015

  16. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects.

    PubMed

    Long, Justin M; Ray, Balmiki; Lahiri, Debomoy K

    2014-02-21

    Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β (Aβ) peptide as neuritic plaques in the brain. The short Aβ peptide is derived from the large transmembrane Aβ precursor protein (APP). The rate-limiting step in the production of Aβ from APP is mediated by the β-site APP-cleaving enzyme 1 (BACE1). Dysregulation of BACE1 levels leading to excess Aβ deposition is implicated in sporadic AD. Thus, elucidating the full complement of regulatory pathways that control BACE1 expression is key to identifying novel drug targets central to the Aβ-generating process. MicroRNAs (miRNAs) are expected to participate in this molecular network. Here, we identified a known miRNA, miR-339-5p, as a key contributor to this regulatory network. Two distinct miR-339-5p target sites were predicted in the BACE1 3'-UTR by in silico analyses. Co-transfection of miR-339-5p with a BACE1 3'-UTR reporter construct resulted in significant reduction in reporter expression. Mutation of both target sites eliminated this effect. Delivery of the miR-339-5p mimic also significantly inhibited expression of BACE1 protein in human glioblastoma cells and human primary brain cultures. Delivery of target protectors designed against the miR-339-5p BACE1 3'-UTR target sites in primary human brain cultures significantly elevated BACE1 expression. Finally, miR-339-5p levels were found to be significantly reduced in brain specimens isolated from AD patients as compared with age-matched controls. Therefore, miR-339-5p regulates BACE1 expression in human brain cells and is most likely dysregulated in at least a subset of AD patients making this miRNA a novel drug target.

  17. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration.

    PubMed

    Agung, Muhammad; Ochi, Mitsuo; Yanada, Shinobu; Adachi, Nobuo; Izuta, Yasunori; Yamasaki, Takuma; Toda, Katsuhiro

    2006-12-01

    The purpose of present study was to evaluate active mobilization effect of mesenchymal stem cells (MSCs) into injured tissues after intraarticular injection of MSCs, and to evaluate their contribution to tissue regeneration. MSCs, which were obtained from green fluorescent protein (GFP) transgenic Sprague-Dawley (SD) rat and cultivated, were injected into normal SD rats in which multiple tissues had been injured including anterior cruciate ligament (ACL), medial meniscus, and articular cartilage of the femoral condyles. At 4 weeks after injection of MSCs, fluorescent microscopic observation, immunohistochemical or histological examinations were performed to evaluate mobilization of MSCs into injured tissue and their contribution to tissue regeneration. In the group of 1 x 10(6) MSCs injection, GFP positive cells could mobilize into the injured ACL alone in all 8 knees. In the group of 1 x 10(7) MSCs injection, GFP positive cells were observed in the injured site of ACL in all 8 knees and in the injured site of medial meniscus and cartilage of femoral condyles in 6 of 8 knees. More interestingly, extracellular matrix stained by toluidine blue was present around GFP positive cells in the injured femoral condyles cartilage and medial meniscus, indicating tissue regeneration. Intraarticularly injected MSCs could mobilize into the injured tissues, and probably contributed to tissue regeneration. This study demonstrated the possibility of intraarticular injection of MSCs for the treatment of intraarticular tissue injuries including ACL, meniscus, or cartilage. If this treatment option is established, it can be minimally invasive compared to conventional surgeries for these tissues.

  18. Tissue allografts and health risks.

    PubMed

    Delloye, C

    1994-01-01

    Like vascularized transplants, tissue allografts are able to transmit viral and bacterial diseases. Transmission of HIV (Human Immunodeficiency Virus) and HCV (Hepatitis C virus) has been proved for sterilized, unprocessed and deep-frozen allografts. It is the prime responsibility of the tissue bank to select the donor correctly and to perform careful biological screening. However, standard screening is not enough to detect a seronegative but contaminated donor. It is necessary to quarantine the tissues until complementary screening confirms the absence of viral disease. If secondary screening is not possible, the tissues should be discarded or should be processed. If donor selection, relevant and appropriate screening tests and adequate procurement of tissues are carefully made, then the risk of disease transmission from tissue allografts will remain remote.

  19. Biomimetic Materials for Tissue Engineering

    PubMed Central

    Ma, Peter X

    2008-01-01

    Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for transplantation. Biomaterials play a pivotal role as scaffolds to provide three-dimensional templates and synthetic extracellular-matrix environments for tissue regeneration. It is often beneficial for the scaffolds to mimic certain advantageous characteristics of the natural extracellular matrix, or developmental or would healing programs. This article reviews current biomimetic materials approaches in tissue engineering. These include synthesis to achieve certain compositions or properties similar to those of the extracellular matrix, novel processing technologies to achieve structural features mimicking the extracellular matrix on various levels, approaches to emulate cell-extracellular matrix interactions, and biologic delivery strategies to recapitulate a signaling cascade or developmental/would-healing program. The article also provides examples of enhanced cellular/tissue functions and regenerative outcomes, demonstrating the excitement and significance of the biomimetic materials for tissue engineering and regeneration. PMID:18045729

  20. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  1. Human Tissue Stimulator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.

  2. Angiogenesis and Tissue Engineering Research

    DTIC Science & Technology

    2010-08-01

    Aikawa E. Intravital molecular imaging of small- diameter tissue-engineered vascular grafts: A feasibility study.Tissue Eng Part C Methods.2009 Sep 14...Hjortnaes J, Gottlieb D, Figueiredo JL, Melero-Martin J, Kohler RH, Bischoff J, Weissleder R, Mayer J, Aikawa E. Intravital molecular imaging of small...2010 Online Publication Date: April 9, 2010 10 MELERO-MARTIN ET AL. 31 Methods Article Intravital Molecular Imaging of Small-Diameter Tissue-Engineered

  3. Rhodanese activity in different tissues of the ostrich.

    PubMed

    Eskandarzade, N; Aminlari, M; Golami, S; Tavana, M

    2012-01-01

    1. The purpose of this investigation was to determine the activity, and compare the pattern of distribution, of rhodanese (thiosulphate: cyanide sulphurtransferase, EC. 2.8.1.1) in different tissues of male and female ostriches. 2. Tissue samples from male and female Blue Neck ostriches were assayed for rhodanese activity by the determination of thiocyanate formed by the action of the enzyme on thiosulphate and KCN. 3. Rhodanese was present in all tissues, and the highest activity was observed in the kidney and liver. Other tissues which contained significant activities of rhodanese were the duodenum, pancreas, heart, caecum and rectum. 4. Unlike other birds, the proventiculus does not appear to have an important role in cyanide detoxification in ostrich and, like mammals, the kidney and liver perform this function. 5. The results suggest that the main organs harbouring high rhodanese activity in the ostrich are associated with sites likely to be required in rhodanese mediated cyanide detoxification.

  4. Norwalk Virus–specific Binding to Oyster Digestive Tissues

    PubMed Central

    Loisy, Fabienne; Atmar, Robert L.; Hutson, Anne M.; Estes, Mary K.; Ruvoën-Clouet, Nathalie; Pommepuy, Monique; Le Pendu, Jacques

    2006-01-01

    The primary pathogens related to shellfishborne gastroenteritis outbreaks are noroviruses. These viruses show persistence in oysters, which suggests an active mechanism of virus concentration. We investigated whether Norwalk virus or viruslike particles bind specifically to oyster tissues after bioaccumulation or addition to tissue sections. Since noroviruses attach to carbohydrates of the histo-blood group family, tests using immunohistochemical analysis were performed to evaluate specific binding of virus or viruslike particles to oyster tissues through these ligands. Viral particles bind specifically to digestive ducts (midgut, main and secondary ducts, and tubules) by carbohydrate structures with a terminal N-acetylgalactosamine residue in an α linkage (same binding site used for recognition of human histo-blood group antigens). These data show that the oyster can selectively concentrate a human pathogen and that conventional depuration will not eliminate noroviruses from oyster tissue. PMID:16707048

  5. Surgical Aspects of Ovarian Tissue Removal and Ovarian Tissue Transplantation for Fertility Preservation

    PubMed Central

    Beckmann, M. W.; Dittrich, R.; Findeklee, S.; Lotz, L.

    2016-01-01

    Introduction: The removal of ovarian tissue prior to starting oncologic treatment and the subsequent transplantation of this tissue after completing therapy have become increasingly important surgical fertility-preserving techniques. The aim of this review was to investigate the different surgical techniques used for this method reported in the literature to date and to discuss the advantages and disadvantages of the respective techniques. Review: A search was done in MEDLINE using a defined algorithm to find studies published between January 2004 and December 2015. All study designs were included in our review if they contained statements on the surgical technique used. We found 16 publications (8 retrospective cohort studies, 6 case reports and 2 systematic reviews) with a total of 1898 female patients which reported on the surgical technique used for ovarian biopsy and 15 publications (7 retrospective cohort studies, 6 case reports and 2 systematic reviews) with a total of 455 women which mentioned the surgical technique used for ovarian transplantation. Different surgical techniques can be used both for ovarian biopsy and for the transplantation of ovarian tissue. A number of different surgical routes have been used, and the amount of tissue extracted, the instruments used, the treatment of the ovary, the transplantation site, the blood supply to the transplanted ovarian tissue and the procedure used for simultaneous surgical interventions vary. Conclusion: In future, one of the tasks will be to establish a standard surgical method for ovarian extraction and transplantation which will have a low rate of complications and a high pregnancy and birth rate while ensuring that the transplanted tissue is fully functional. PMID:27761026

  6. SLAC site design aesthetics

    SciTech Connect

    Hall, F.F.

    1985-10-01

    Stanford Linear Accelerator Center (SLAC) is a single mission laboratory dedicated to basic research in high energy particle physics. SLAC site also houses Stanford Synchrotron Radiation Laboratory (SSRL) which is a multi-mission laboratory for research using beams of ultraviolet light and low energy photons as emitted tangentially from SLAC colliding beam facilities. This paper discusses various aspects of SLAC site design aesthetics under the following headings: (1) imposed footprint of SLAC, (2) description of selected site, (3) use of earth cover for radiation and sight screens, (4) use of landscaping for cosmetic purposes, (5) use of exterior paint colors to soften SLAC impact on neighbors, (6) relocation of SLAC main entrance, (7) relocation of SLAC collider arcs and experimental hall, (8) parking lots and storage yards, and (9) land use zoning at SLAC.

  7. Site investigation for Magnus

    SciTech Connect

    Semple, R.M.; Rigden, W.J.

    1983-05-01

    In April 1982, BP's Magnus structure was installed about 150 km northeast of the Shetland Islands. The most northerly, deepest water platform in the North Sea, the steel tower is supported on groups of 2 m diameter piles that were driven, in good accordance with predictions, to an average penetration of 85 m in strong cohesive soils. The paper describes investigations performed at the platform site, and documents soil characteristics for conventional and state of the art pile analyses. Reference is made to several innovative techniques first used at the Magnus site that have since been incorporated into the larger North Sea investigations. Information is given about the geological history of the site. Test results are presented on soil strength and stiffness, including critical state soil mechanics parameters, on residual pore pressures after sampling, and on the effect of sample size on strength characteristics.

  8. Frequencies of restriction sites.

    PubMed Central

    Waterman, M S

    1983-01-01

    Restriction sites or other sequence patterns are usually assumed to occur according to a Poisson distribution with mean equal to the reciprocal of the probability of the given site or pattern. For situations where non-overlapping occurrences of patterns, such as restriction sites, are the objects of interest, this note shows that the Poisson assumption is frequently misleading. Both the case of base composition (independent bases) and of dinucleotide frequencies (Markov chains) are treated. Moreover, a new technique is presented which allows treatment of collections of patterns, where the departure from the Poisson assumption is even more striking. This later case includes double digests, and an example of a five enzyme digest is included. PMID:6324109

  9. Computational modeling of epithelial tissues.

    PubMed

    Smallwood, Rod

    2009-01-01

    There is an extensive literature on the computational modeling of epithelial tissues at all levels from subcellular to whole tissue. This review concentrates on behavior at the individual cell to whole tissue level, and particularly on organizational aspects, and provides an indication of where information from other areas, such as the modeling of angiogenesis, is relevant. The skin, and the lining of all of the body cavities (lung, gut, cervix, bladder etc) are epithelial tissues, which in a topological sense are the boundary between inside and outside the body. They are thin sheets of cells (usually of the order of 0.5 mm thick) without extracellular matrix, have a relatively simple structure, and contain few types of cells. They have important barrier, secretory and transport functions, which are essential for the maintenance of life, so homeostasis and wound healing are important aspects of the behavior of epithelial tissues. Carcinomas originate in epithelial tissues.There are essentially two approaches to modeling tissues--to start at the level of the tissue (i.e., a length scale of the order of 1 mm) and develop generalized equations for behavior (a continuum approach); or to start at the level of the cell (i.e., a length scale of the order of 10 µm) and develop tissue behavior as an emergent property of cellular behavior (an individual-based approach). As will be seen, these are not mutually exclusive approaches, and they come in a variety of flavors.

  10. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  11. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  12. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  13. Cell and tissue polarity in the intestinal tract during tumourigenesis: cells still know the right way up, but tissue organization is lost.

    PubMed

    Fatehullah, Aliya; Appleton, Paul L; Näthke, Inke S

    2013-01-01

    Cell and tissue polarity are tightly coupled and are vital for normal tissue homeostasis. Changes in cellular and tissue organization are common to even early stages of disease, particularly cancer. The digestive tract is the site of the second most common cause of cancer deaths in the developed world. Tumours in this tissue arise in an epithelium that has a number of axes of cell and tissue polarity. Changes in cell and tissue polarity in response to genetic changes that are known to underpin disease progression provide clues about the link between molecular-, cellular- and tissue-based mechanisms that accompany cancer. Mutations in adenomatous polyposis coli (APC) are common to most colorectal cancers in humans and are sufficient to cause tumours in mouse intestine. Tissue organoids mimic many features of whole tissue and permit identifying changes at different times after inactivation of APC. Using gut organoids, we show that tissue polarity is lost very early during cancer progression, whereas cell polarity, at least apical-basal polarity, is maintained and changes only at later stages. These observations reflect the situation in tumours and validate tissue organoids as a useful system to investigate the relationship between cell polarity and tissue organization.

  14. Waste Site Mapping

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Old aircraft considered not restorable are melted down in on-site furnaces to reclaim the aluminum in their airframes. The process produces aluminum ingots and leaves a residue known as "dross." Because dross contains contaminants like lead silver cadmium and copper, Pima County, the dross dumping site, wanted to locate areas where dross had been dumped. Dr. Larry Lepley and Sandra L. Perry used the Landsat Thematic Mapper to screen for dross. A special two-step procedure was developed to separate the dross dumps (typically no larger than 50 meters across) from the desert background. The project has opened the door for similar applications.

  15. The effect of micro-ECoG substrate footprint on the meningeal tissue response

    NASA Astrophysics Data System (ADS)

    Schendel, Amelia A.; Nonte, Michael W.; Vokoun, Corinne; Richner, Thomas J.; Brodnick, Sarah K.; Atry, Farid; Frye, Seth; Bostrom, Paige; Pashaie, Ramin; Thongpang, Sanitta; Eliceiri, Kevin W.; Williams, Justin C.

    2014-08-01

    Objective. There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. Approach. The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. Main results. It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. Significance. These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.

  16. statement of significance, location map, site plan, landscape plan, site ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    statement of significance, location map, site plan, landscape plan, site sections, evolution of cemetery landscape. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA

  17. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  18. Treatment Option Overview (Adult Soft Tissue Sarcoma)

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  19. Treatment Options for Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  20. General Information about Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  1. Stages of Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  2. Survival by Stage of Soft Tissue Sarcoma

    MedlinePlus

    ... Detection, Diagnosis, and Staging Survival by Stage of Soft Tissue Sarcoma Survival rates are often used by ... Your Doctor About Soft Tissue Sarcomas? More In Soft Tissue Sarcoma About Soft Tissue Sarcoma Causes, Risk ...

  3. Mandibular reconstruction with composite microvascular tissue transfer

    SciTech Connect

    Coleman, J.J. III; Wooden, W.A. )

    1990-10-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons (lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)). Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure.

  4. Undiagnosed connective tissue diseases

    PubMed Central

    Cavagna, Lorenzo; Codullo, Veronica; Ghio, Stefano; Scirè, Carlo Alberto; Guzzafame, Eleonora; Scelsi, Laura; Rossi, Silvia; Montecucco, Carlomaurizio; Caporali, Roberto

    2016-01-01

    Abstract Among different subgroups of pulmonary arterial hypertension (PAH), those associated with connective tissue diseases (CTDs) have distinct hemodynamic and prognostic features; a correct etiologic diagnosis is thus mandatory. To estimate frequency and prognosis of previously undiagnosed CTDs in a suspect idiopathic (i) PAH cohort. Consecutive patients with PAH confirmed by right heart catheterization referred at the Cardiology Division of our Hospital without a previous rheumatological assessment or the occurrence of other conditions explaining PAH were checked for CTD by a clinical, laboratory, and instrumental evaluation. Survival in each group has also been analyzed. In our study 17 of 49 patients were classified as CTD-PAH, corresponding to a prevalence (95% CI) of 34.7% (21.7–49.6%). ANA positivity had 94% (71.3–99.9%) sensitivity and 78.1% (60–90.7%) specificity for a diagnosis of CTD-PAH; Raynaud phenomenon (RP) showed 83.3% (51.6–97.9%) sensitivity and 100% (90.5–100%) specificity for the diagnosis of Systemic Sclerosis (SSc)-PAH. At diagnosis, SSc patients were older and had a lower creatinine clearance compared with iPAH and other CTD-PAH. After a median follow-up of 44 (2–132) months, 18 of 49 (36.7%) patients died: 31.2% in the iPAH group, 20% in the CTD-, and 58.3% in the SSc-PAH group. Mortality was significantly higher in SSc-PAH (HR 3.32, 1.11–9.95, P <0.05) versus iPAH. We show a high prevalence of undiagnosed CTDs in patients with iPAH without a previous rheumatological assessment. All patients with RP were diagnosed with SSc. Our data stress the importance of a rheumatological assessment in PAH, especially because of the unfavorable prognostic impact of an associated SSc. PMID:27684814

  5. [Soft tissue sarcoma in children and adolescents: experiences of the cooperative Soft Tissue Sarcoma Group Studies (CWS-81 - 96)].

    PubMed

    Brecht, I B; Treuner, J

    2004-10-01

    The very heterogeneous group of paediatric soft tissue sarcomas account for approximately 7 % of all malignant childhood tumours. More than one half of all cases are rhabdomyosarcomas, some of the over 20 entities are very rare. The prognosis and biology of soft tissue sarcomas in children and adolescents vary greatly depending on histological subtype, the age of the patient, the primary site, the tumour size, tumour invasiveness and the extent of disease at diagnosis. Since 1981, 2918 children and adolescents with soft tissue sarcomas were treated prospectively according to the common treatment protocols of the Cooperative Soft Tissue Sarcoma Study Group (CWS-81 - 96). The known prognostic factors were used to develop a more and more detailed risk stratification. The multimodal treatment includes the use of surgery, chemotherapy and radiotherapy and should be planned by a multidisciplinary team. That way, an overall survival of nearly 70 % over all risk groups could be achieved.

  6. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  7. Macrophage activation-induced thymosin beta 4 production: a tissue repair mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages play significant role in immunity which not only kill pathogens, produce cytokines but also clear dead tissues at the site of inflammation and stimulate wound healing. Much less is known how these cells contribute to tissue repair process. In course of our studies comparing the peptide...

  8. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-Mouth Disease virus (FMDV) has a characteristic tropism in terms of primary, secondary, and persistent infection and vesicular lesion sites. The virus targets specific tissues for primary replication. From these tissues, the virus spreads via the blood stream to a few preferred secondary in...

  9. Histotripsy Methods in Mechanical Disintegration of Tissue: Toward Clinical Applications

    PubMed Central

    Khokhlova, VA; Fowlkes, JB; Roberts, WW; Schade, GR; Xu, Z; Khokhlova, TD; Hall, TL; Maxwell, AD; Wang, YN; Cain, CA

    2015-01-01

    Purpose In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently, there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Material and Methods Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapor cavity causes tissue disintegration. Results Recent pre-clinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumors, kidney stone fragmentation, enhancing antitumor immune response, and tissue decellularization for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Conclusions Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilize different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of noninvasive surgery. PMID:25707817

  10. [Interests and potentials of adipose tissue in scleroderma].

    PubMed

    Daumas, A; Eraud, J; Hautier, A; Sabatier, F; Magalon, G; Granel, B

    2013-12-01

    Systemic sclerosis is a disorder involving the connective tissue, arterioles and microvessels. It is characterized by skin and visceral fibrosis and ischemic phenomena. Currently, therapy is limited and no antifibrotic treatment has proven its efficacy. Beyond some severe organ lesions (pulmonary arterial hypertension, pulmonary fibrosis, scleroderma renal crisis), which only concern a minority of patients, the skin sclerosis of hands and face and the vasculopathy lead to physical and psychological disability in most patients. Thus, functional improvement of hand motion and face represents a priority for patient therapy. Due to its easy obtention by fat lipopaspirate and adipocytes survival, re injection of adipose tissue is a common therapy used in plastic surgery for its voluming effect. Identification and characterization of the adipose tissue-derived stroma vascular fraction, mainly including mesenchymal stem cells, have revolutionized the science showing that adipose tissue is a valuable source of multipotent stem cells, able to migrate to site of injury and to differentiate according to the receiver tissue's needs. Due to easy harvest by liposuction, its abundance in mesenchymal cells far higher that the bone marrow, and stroma vascular fraction's ability to differentiate and secrete growth angiogenic and antiapoptotic factors, the use of adipose tissue is becoming more attractive in regenerative medicine. We here present the interest of adipose tissue use in the treatment of the hands and face in scleroderma.

  11. Application of the cell sheet technique in tissue engineering

    PubMed Central

    CHEN, GUANGNAN; QI, YIYING; NIU, LIE; DI, TUOYU; ZHONG, JINWEI; FANG, TINGTING; YAN, WEIQI

    2015-01-01

    The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering. PMID:26623011

  12. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications.

    PubMed

    Khokhlova, Vera A; Fowlkes, J Brian; Roberts, William W; Schade, George R; Xu, Zhen; Khokhlova, Tatiana D; Hall, Timothy L; Maxwell, Adam D; Wang, Yak-Nam; Cain, Charles A

    2015-03-01

    In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapour cavity causes tissue disintegration. Recent preclinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumours, kidney stone fragmentation, enhancing anti-tumour immune response, and tissue decellularisation for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilise different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of non-invasive surgery.

  13. Toward clinical application of tissue-engineered cartilage.

    PubMed

    Fulco, Ilario; Largo, René Denis; Miot, Sylvie; Wixmerten, Anke; Martin, Ivan; Schaefer, Dirk J; Haug, Martin Dieter

    2013-04-01

    Since the late 1960s, surgeons and scientists envisioned use of tissue engineering to provide an alternative treatment for tissue and organ damage by combining biological and synthetic components in such a way that a long-lasting repair was established. In addition to the treatment, the patient would also benefit from reduced donor site morbidity and operation time as compared with the standard procedures. Tremendous efforts in basic research have been done since the late 1960s to better understand chondrocyte biology and cartilage maturation and to fulfill the growing need for tissue-engineered cartilage in reconstructive, trauma, and orthopedic surgery. Starting from the first successful generation of engineered cartilaginous tissue, scientists strived to improve the properties of the cartilaginous constructs by characterizing different cell sources, modifying the environmental factors influencing cell expansion and differentiation and applying physical stimuli to modulate the mechanical properties of the construct. All these efforts have finally led to a clinical phase I trial to show the safety and feasibility of using tissue-engineered cartilage in reconstructive facial surgery. However, to bring tissue engineering into routine clinical applications and commercialize tissue-engineered grafts, further research is necessary to achieve a cost-effective, standardized, safe, and regulatory compliant process.

  14. Science. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science from the SITE (Society for Information Technology & Teacher Education) 2001 conference: (1) "Using a Computer Simulation before Dissection To Help Students Learn Anatomy" (Joseph Paul Akpan and Thomas Andre); (2) "EARTH2CLASS: A Unique Workshop/On-Line/Distance-Learning…

  15. Savannah River Site Robotics

    SciTech Connect

    2010-01-01

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  16. SITE EMERGING TECHNOLOGY Program

    EPA Science Inventory

    This document is intended as a reference guide for EPA Regional decision makers and others interested in tchnologies in the SITE Demonstration and Technologies programs. The Technologies are described in technology profiles presented in alphabetical order by developer name and se...

  17. Savannah River Site Robotics

    ScienceCinema

    None

    2016-07-12

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  18. Mathematics. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.

    This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2001 conference: "Secondary Mathematics Methods Course with Technology Units: Encouraging Pre-Service Teachers To Use Technology" (Rajee Amarasinghe); "Competency Exams in College Mathematics"…

  19. Mathematics. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.

    This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Teachers' Learning of Mathematics in the Presence of Technology: Participatory Cognitive Apprenticeship" (Mara Alagic); (2) "A Fractal Is a Pattern in Your Neighborhood" (Craig N. Bach); (3)…

  20. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  1. Science. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Roach, Linda Easley, Ed.

    This document contains the following papers on science from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Color & Light: Design and Evaluation of a Multimedia-Case for Elementary Teacher-Education" (Peter Blijleven and Ellen van den Berg); (2) "Standards-Based Design of Technology-Integrated Science…

  2. Research. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    McAlister, Kim, Ed.; Curtis, Reagan, Ed.

    This document contains the papers on research from the SITE (Society for Information Technology & Teacher Education) 2001 conference. Topics covered include: concerns of administrators and teachers in the diffusion of information technology; preservice elementary mathematics teachers' computer self efficacy, attitudes, and perceptions;…

  3. Theory. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Christensen, Paula, Ed.

    This document contains the following papers on theory from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "The Emerging Ecological Contribution of Online Resources and Tools to K-12 Classrooms" (Therese Laferriere, Robert Bracewell, Alain Breuleux); (2) "Pedagogical Ethnotechnography: A Bifocal Lens To…

  4. International. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Willis, Dee Anna, Ed.

    This document contains the following papers on international issues from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "The Management of Technological Change within Faculties in International American Schools" (Martine Audeoud); (2) "Going Global: Using a Website Development Project To…

  5. 2014 Site Environmental Report

    SciTech Connect

    Paquette, Douglas; Remien, Jason; Foley, Brian; Burke, John; Dorsch, William; Ratel, Karen; Howe, Robert; Welty, Tim; Williams, Jeffrey; Pohlpt, Peter; Lagattolla, Richard; Metz, Robert; Milligan, James; Lettieri, Lawrence

    2015-10-01

    BNL prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory’s environmental performance during the calendar year in review.

  6. International. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Willis, Dee Anna, Ed.

    This document contains the following papers on international issues from the SITE (Society for Information Technology & Teacher Education) 2001 conference: (1) "Attitudes of Malaysian Vocational Trainee Teachers towards the Integration of Computer in Teaching" (Ab. Rahim Bakar and Shamsiah Mohamed); (2) "Views from an Asian…

  7. Simulation. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Seymour, Cathy R., Ed.

    This document contains three papers on simulation from the SITE (Society for Information Technology & Teacher Education) 2001 conference. "Simulations in the Learning Cycle: A Case Study Involving 'Exploring the Nardoo'" (William M. Dwyer and Valesca E. Lopez) presents a study of middle school students using a CD-based simulation…

  8. Elementary Classroom Web Sites

    ERIC Educational Resources Information Center

    Baker, Elizabeth A.

    2007-01-01

    The purpose of this study was to understand how elementary classroom Web sites support children's literacy. From a sociocultural perspective of literacy and a transformative stance toward the integration of literacy and technology, and building on explorations of new literacies, I discuss opportunities provided by the Internet that can support…

  9. Small Wind Site Assessment Guidelines

    SciTech Connect

    Olsen, Tim; Preus, Robert

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  10. Glomangiosarcoma Arising from a Prior Biopsy Site

    PubMed Central

    Maselli, Amy M.; Jambhekar, Amani V.

    2017-01-01

    Summary: Glomangiosarcoma represents a rare malignant variant of the benign glomus tumor that typically presents as a tender, slowly growing nodule with a predilection for the lower extremities. Unlike their benign counterparts, glomangiosarcomas may display aggressive characteristics such as large size, local invasion, and a tendency to recur after excision. Although wide local excision remains the treatment of choice, rare cases of systemic metastasis have been previously reported. We present a case of glomangiosarcoma arising at a prior biopsy site after excision of an unknown soft tissue lesion. PMID:28203514

  11. Collagen for bone tissue regeneration.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Chiono, Valeria; Ciardelli, Gianluca

    2012-09-01

    In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function.

  12. Biomaterials for tissue engineering: summary.

    PubMed

    Christenson, L; Mikos, A G; Gibbons, D F; Picciolo, G L

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  13. Biomaterials for tissue engineering: summary

    NASA Technical Reports Server (NTRS)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  14. Plant Tissues. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant tissues. Presented first are an attention step and a series of questions and answers designed to convey general information about plant tissues and the effect of water and minerals on them. The following topics are among those discussed: reasons why water is important to plants,…

  15. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  16. Videofluorometer for imaging tissue metabolism

    NASA Astrophysics Data System (ADS)

    Kelly, Jeffrey J.; Rorvik, Dawn A.; Richmond, Keith N.; Barlow, Clyde H.

    1989-11-01

    A videofluorometer is described that directly acquires digital metabolic images of reduced nicotinamide adenine dinucleotide (NADH) fluorescence in tissue. NADH fluorescence provides an intrinsic indicator of the state of tissue mitochondrial oxidative metabolism. The device combines a computer-controlled fluorescence excitation system with digital image acquisition to quantify tissue bioenergetics in both spatial and time domains. Localized ischemia following coronary artery ligation in a perfused rat heart (model for a coronary artery occlusion heart attack) is used as an example to demonstrate the capabilities of the system. This videofluorometer permits monitoring changes in physiological state of organs and tissue without interfering with tissue metabolism. The digital nature of the acquired image allows detailed analysis of physiological features and their time dependence.

  17. Tissue Engineering of the Penis

    PubMed Central

    Patel, Manish N.; Atala, Anthony

    2011-01-01

    Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability. PMID:22235188

  18. MALDI tissue profiling of integral membrane proteins from ocular tissues.

    PubMed

    Thibault, Danielle B; Gillam, Christopher J; Grey, Angus C; Han, Jun; Schey, Kevin L

    2008-06-01

    MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this article, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed age related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods.

  19. Examining site-specific GPCR phosphorylation.

    PubMed

    Butcher, Adrian J; Tobin, Andrew B; Kong, Kok Choi

    2011-01-01

    Phosphorylation of G protein-coupled receptors (GPCRs) is one of the most prominent post-translation modifications mediated by agonist stimulation. This process has been shown to result not only in receptor desensitisation but also, via the recruitment of arrestin adaptor proteins, to promote receptor coupling to numerous signalling pathways. Furthermore, there is now a growing body of evidence suggesting that GPCRs may employ phosphorylation as a mechanism to regulate their cell-type-specific signalling, hence generating tissue-specific functions. These advances have resulted partly from improved methods used in the determination of phospho-acceptor sites on GPCRs and improved analysis of the consequences of phosphorylation. This chapter aims to describe the methods used in our laboratory for the investigation of site-specific phosphorylation of the M₃-muscarinic receptor. These methods could easily be applied in the study of other receptors.

  20. [Tissue engineering for jawbone].

    PubMed

    Kinoshita, Yukihiko

    2005-08-01

    One goal of jawbone reconstruction is to regenerate bone that is strong enough to support dentures or dental implants. Here we describe mandibular reconstructions using bioabsorbable poly (L-lactic acid) (PLLA) mesh and particulate cancellous bone and marrow (PCBM). PLLA mesh is made of monofilaments spun from molecular weight 20.5 x 10(4) that is elongated and woven into mesh. Mandibles of 62 patients with tumors, cysts, or alveolar atrophy were reconstructed with PLLA mesh trays/sheets and PCBM. The operative procedures were as follows: 1) a heat-softened PLLA mesh sheet or tray was cut and bent to conform to the shape and size of the bone defect; 2) PLLA mesh was fixed to the residual bone with stainless steel wire; and 3) the tray was filled with PCBM harvested from the ilium. Clinical evaluations six months after surgery showed that in 35 cases (56.5%) the results were judged to be excellent (bone formation range: beyond 2/3), in 17 cases (27.4%) they were good (bone formation range under 2/3, but re-operation unnecessary), and in 10 cases (16.1%) they were poor (cases not falling into either category above). Long-term observations showed that in 32 cases (80.0%) bone resorption was less than 10% of the regenerated bone. Among the patients wearing early dentures or dental implants, bone resorption was less. There is a good success rate for jawbone reconstruction surgery using PLLA mesh and PCBM, and patients can expect to have mandibles strong enough to support dentures and dental implants. In addition, there is an advantage of regenerating in the donor site as well. However, we need to develop therapies that combine bioactive factors to promote angiogenesis and osteogenesis or hybrid artificial bone for patients with poor regional blood circulation and for elderly patients who have too few osteoprogenitor cells.

  1. Indentation across interfaces between stiff and compliant tissues.

    PubMed

    Armitage, Oliver E; Oyen, Michelle L

    2017-01-04

    Bone-tendon, bone-ligament and bone-cartilage junctions are multi-tissue interfaces that connect materials that differ by two orders of magnitude in mechanical properties, via gradual variations in mineral content and matrix composition. These sites mediate load transfer between highly dissimilar materials and are consequently a primary site of injury during orthopedic failure. Given the large incidence rate and the lack of suitable surgical solutions for their regeneration or repair, characterization of their natural structure and subsequent replication through tissue engineering is important. Here, we evaluate the ability and accuracy of instrumented indentation to characterize the mechanical properties of both biological tissues and engineered scaffolds with interfaces between materials that contain significant changes in mechanical properties. In this study, finite element simulations and reference samples are developed that characterize how accurately indentation measures the modulus of a material as it varies with distance across a continuous interface between dissimilar tissues with multiple orders of magnitude difference in properties. Finite element simulations accurately predicted discrepancies between the modulus function across an interface observed by indentation and the true modulus function of the material and hence allow us to understand the limits of instrumented indentation as a technique for quantifying gradual changes in material properties. It was found that in order to accurately investigate mechanical property variations in tissues with significant modulus heterogeneity the indenter size should be less than 10 percent of the expected length scale of the modulus variations.

  2. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    PubMed

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site.

  3. Reservoir High's TE Site Wins Web Site of the Month

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    This article features "Mr. Rhine's Technology Education Web Site," a winner of the Web Site of the Month. This Web site was designed by Luke Rhine, a teacher at the Reservoir High School in Fulton, Maryland. Rhine's Web site offers course descriptions and syllabuses, class calendars, lectures and presentations, design briefs and other course…

  4. Tissue kallikrein activation of the epithelial Na channel

    PubMed Central

    Patel, Ankit B.; Chao, Julie

    2012-01-01

    Epithelial Na Channels (ENaC) are responsible for the apical entry of Na+ in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K+ or low-Na+ diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (INa) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity. PMID:22622459

  5. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    PubMed

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  6. Persistent trophoblastic tissue following salpingostomy for unruptured ectopic pregnancy

    SciTech Connect

    Rivlin, M.E.; Meeks, G.R.; Cowan, B.D.; Bates, G.W.

    1985-02-01

    Radioimmunoassay of beta-hCG was used to diagnose an ectopic pregnancy in a 30 year old patient and the site of pregnancy was determined by ultrasonography. A salpingostomy was performed; the ectopic pregnancy and the residual trophoblastic tissue were removed. Six weeks later a right salpingectomy was performed to remove persistent trophoblastic tissue. Histologic examination of the surgical specimen demonstrated viable chorionic villi. Serial measurements of beta-hCG are recommended following conservative surgery for ectopic gestation to assure the patient and the surgeon that the tube contains no residual products of conception.

  7. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  8. Second harmonic imaging and scoring of collagen in fibrotic tissues

    NASA Astrophysics Data System (ADS)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-04-01

    We compare second harmonic generation (SHG) to histological and immunohistochemical techniques for the visualization and scoring of collagen in biological tissues. We show that SHG microscopy is highly specific for fibrillar collagens and that combined SHG and two-photon excited fluorescence (2PEF) imaging can provide simultaneous three-dimensional visualization of collagen synthesis and assembly sites in transgenic animal models expressing GFP constructs. Finally, we propose several scores for characterizing collagen accumulation based on SHG images and appropriate for different types of collagen distributions. We illustrate the sensitivity of these scores in a murine model of renal fibrosis using a morphological segmentation of the tissue based on endogenous 2PEF signals.

  9. [Surgical site infections].

    PubMed

    Sganga, Gabriele

    2014-01-01

    Surgical site infections (SSIs) are recognized as a common surgical complication, occurring in about 2-5% of all surgical procedures. SSIs represent the third most frequent nosocomial infection, accounting for 14-16% of all infections observed in hospitalized patients and up to 38% of those observed among surgical patients. Knowledge of incidence, epidemiology, classification, process of wound healing, and pathogenesis of surgical site infection is of great importance. Given the high economic burden that infections provoke, beyond the increased morbidity and mortality, it appears mandatory to improve our tools in order to reduce their incidence, as a reduction of only 0.1% can result in a considerable saving of economic resources to be allocated to other activities, such as screening and prevention programs.

  10. Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites

    PubMed Central

    Misas-Villamil, Johana C.; Kolodziejek, Izabella; Crabill, Emerson; Kaschani, Farnusch; Niessen, Sherry; Shindo, Takayuki; Kaiser, Markus; Alfano, James R.; van der Hoorn, Renier A. L.

    2013-01-01

    Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA), a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA). Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues. PMID:23555272

  11. Developmental biology and tissue engineering.

    PubMed

    Marga, Francoise; Neagu, Adrian; Kosztin, Ioan; Forgacs, Gabor

    2007-12-01

    Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building.

  12. Polarized light interaction with tissues

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.

    2016-07-01

    This tutorial-review introduces the fundamentals of polarized light interaction with biological tissues and presents some of the recent key polarization optical methods that have made possible the quantitative studies essential for biomedical diagnostics. Tissue structures and the corresponding models showing linear and circular birefringence, dichroism, and chirality are analyzed. As the basis for a quantitative description of the interaction of polarized light with tissues, the theory of polarization transfer in a random medium is used. This theory employs the modified transfer equation for Stokes parameters to predict the polarization properties of single- and multiple-scattered optical fields. The near-order of scatterers in tissues is accounted for to provide an adequate description of tissue polarization properties. Biomedical diagnostic techniques based on polarized light detection, including polarization imaging and spectroscopy, amplitude and intensity light scattering matrix measurements, and polarization-sensitive optical coherence tomography are described. Examples of biomedical applications of these techniques for early diagnostics of cataracts, detection of precancer, and prediction of skin disease are presented. The substantial reduction of light scattering multiplicity at tissue optical clearing that leads to a lesser influence of scattering on the measured intrinsic polarization properties of the tissue and allows for more precise quantification of these properties is demonstrated.

  13. [Muscles and connective tissue: histology].

    PubMed

    Delage, J-P

    2012-10-01

    Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism.

  14. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction

    PubMed Central

    Katkar, Gajanan D.; Sundaram, Mahalingam S.; NaveenKumar, Somanathapura K.; Swethakumar, Basavarajaiah; Sharma, Rachana D.; Paul, Manoj; Vishalakshi, Gopalapura J.; Devaraja, Sannaningaiah; Girish, Kesturu S.; Kemparaju, Kempaiah

    2016-01-01

    Indian Echis carinatus bite causes sustained tissue destruction at the bite site. Neutrophils, the major leukocytes in the early defence process, accumulate at the bite site. Here we show that E. carinatus venom induces neutrophil extracellular trap (NET) formation. The NETs block the blood vessels and entrap the venom toxins at the injection site, promoting tissue destruction. The stability of NETs is attributed to the lack of NETs-degrading DNase activity in E. carinatus venom. In a mouse tail model, mice co-injected with venom and DNase 1, and neutropenic mice injected with the venom, do not develop NETs, venom accumulation and tissue destruction at the injected site. Strikingly, venom-induced mice tail tissue destruction is also prevented by the subsequent injection of DNase 1. Thus, our study suggests that DNase 1 treatment may have a therapeutic potential for preventing the tissue destruction caused by snake venom. PMID:27093631

  15. Site environmental report: 1993

    SciTech Connect

    Not Available

    1994-10-01

    The Inhalation Toxicology Research Institute (ITRI) has in place an extensive radiological and nonradiological environmental monitoring program which monitors air emissions, groundwater, soil, and ambient air around the facility. ITRI is operated in a manner that minimizes any adverse impact to the environment. The ITRI facility is in compliance with air quality and hazardous waste regulations. However, due to the previous operations of its six on-site sewage lagoons, groundwater in the ITRI vicinity contains nitrate, total dissolved solids, and sulfate contamination that exceeds state groundwater standards. Also, due to an underground fuel system leak, a localized area of groundwater is contaminated with diesel fuel. In addition, a small quantity of mixed low-level waste generated in the process of laboratory research is presently stored on site while treatment and disposal options are determined. Based on present information, the contaminant plume originating from the sewage lagoons has not migrated off the ITRI site. In addition, a groundwater assessment is underway to determine the extent of groundwater contamination and options for remediation, if required. Diesel fuel leaks and spills have been characterized, and the extent of the contamination is currently being assessed with five new monitoring wells, MW-12 through {minus}15. All underground tanks and fuel lines have been removed, along with associated contaminated soil. A soil venting and volatilization remediation system continues to operate in the area of a fuel leak, where further remediation may be required to remove diesel oil in the groundwater.

  16. 1999 SITE ENVIRONMENTAL REPORT

    SciTech Connect

    ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

    2000-09-01

    Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

  17. Astronomy. Internet site

    NASA Astrophysics Data System (ADS)

    Maksimenko, Anatoly Vasilievich

    The Internet site covers a wide area of actual astronomical topics, including 1) Astronomical News 2) Didactics of Astronomy 3) Space Research (Cosmonautics) 4) That's interesting 5) A Handbook of an astronomer 6) The Solar system 7) A Photogalery 8) Works of Schoolars 9) History of Astronomy The most important of them is the section concerning Space Research (Cosmonautics). This section covers a wide range of topics, beginning with very complete Illustrated History of Soviet Space research , the building of Soviet Rockets, a complete list of Cosmonauts with biographies, a list of all the flies. The author of the site concerns much ineterest to recent and extraordinary astronomiucal phenomena, such as Hazardous asteroids, Comets, Solar and Moon Eclipses, Meteorites, as well as to correct from the scientifical point of view interpretation of the extraordinary astronomical phenomena. The section concerning the Solar system is richly illustrated and give detailed explanations to Solar System evolution and actual state, explains many phenomena in the Solar system. THe Internet site is designed for schoolars as well as to amateur and professional astronomers.

  18. Tissue-specific ceruloplasmin gene expression in the mammary gland.

    PubMed Central

    Jaeger, J L; Shimizu, N; Gitlin, J D

    1991-01-01

    Using a ceruloplasmin cDNA clone in RNA blot analysis, a single 3.7 kb ceruloplasmin-specific transcript was detected in rat mammary gland tissue from pregnant and lactating animals. Ceruloplasmin gene expression in the mammary gland was tissue-specific, with no evidence of expression in brain, heart or other extrahepatic tissues. Ceruloplasmin mRNA was also detected in mammary gland tissue from male, virgin female and non-pregnant/multiparous animals, and the abundance of ceruloplasmin-specific transcripts in virgin female rats was independent of their stage of oestrus. In virgin female mammary gland the content of ceruloplasmin mRNA was 20% of that in hepatic tissue from these animals and approx. 2-3-fold greater than that found in mammary gland tissue of pregnant or lactating animals. Development studies revealed ceruloplasmin gene expression in male and female mammary gland by only 2 weeks of age, prior to the onset of puberty. Biosynthetic studies indicated that the ceruloplasmin mRNA in mammary gland tissue was translated into a 132 kDa protein qualitatively similar to that synthesized in liver. By in situ hybridization, ceruloplasmin gene expression was localized to the epithelium lining the mammary gland alveolar ducts, without evidence of expression in the surrounding mesenchyme. Ceruloplasmin gene expression was also detected in a human breast adenocarcinoma cell line and in biopsy tissue from women with invasive ductal carcinoma. Taken together, these data indicate that the mammary gland is a prominent site of extrahepatic ceruloplasmin gene expression and add to the evidence that ceruloplasmin biosynthesis is associated with growth and differentiation in non-hepatic tissues. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:1764031

  19. Differentiating cancerous from normal breast tissue by redox imaging

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (p<0.05) and the redox ratio Fp/(NADH+Fp) was about 27% higher in the cancerous tissues than in the normal ones (p<0.05). Our findings suggest that the redox state could differentiate between cancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  20. Stem Cells and Scaffolds for Vascularizing Engineered Tissue Constructs

    NASA Astrophysics Data System (ADS)

    Luong, E.; Gerecht, S.

    The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.

  1. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  2. Tissue patterning and cellular mechanics

    PubMed Central

    Heller, Evan

    2015-01-01

    In development, cells organize into biological tissues through cell growth, migration, and differentiation. Globally, this process is dictated by a genetically encoded program in which secreted morphogens and cell–cell interactions prompt the adoption of unique cell fates. Yet, at its lowest level, development is achieved through the modification of cell–cell adhesion and actomyosin-based contractility, which set the level of tension within cells and dictate how they pack together into tissues. The regulation of tension within individual cells and across large groups of cells is a major driving force of tissue organization and the basis of all cell shape change and cell movement in development. PMID:26504164

  3. Force transmission in epithelial tissues.

    PubMed

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues.

  4. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  5. A study of a tissue equivalent gelatine based tissue substitute

    SciTech Connect

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to a liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.

  6. Tissue engineering technology and its possible applications in oral and maxillofacial surgery.

    PubMed

    Payne, Karl F B; Balasundaram, Indran; Deb, Sanjukta; Di Silvio, Lucy; Fan, Kathleen F M

    2014-01-01

    Tissue engineering is a rapidly advancing discipline that combines the attributes of biochemical and biomaterial engineering with cell transplantation to create bio-artificial tissues and organs. For the oral and maxillofacial surgeon, the reconstruction of maxillofacial defects in hard and soft tissues is an ongoing challenge. While autologous grafts and vascularised free flaps are the current gold standard, they are not without complications at both the donor and reconstructed sites. Tissue engineering, which aims to create tissue-matched, prefabricated, prevascularised bony or soft tissue composite grafts, or both, therefore has the potential to revolutionise practice in maxillofacial surgery. We review the technology of tissue engineering and its current and future applications within the specialty, and discuss contemporary obstacles yet to be overcome.

  7. Occurrence and Distribution of Organochlorine Compounds in Biological Tissue and Bed Sediment From Streams in the Trinity River Basin, Texas, 1992-93

    USGS Publications Warehouse

    Moring, J. Bruce

    1997-01-01

    This report describes the occurrence and distribution of organochlorine compounds in biological tissue and bed sediment from the Trinity River Basin study area of the National Water-Quality Assessment Program. Concentrations of organochlorine pesticides, polychlorinated biphenyls (PCBs), and other organochlorine compounds were determined in biological tissue and surficial bed sediment from 16 stream sites in the Trinity River Basin of east-central Texas. Asiatic clams (Corbicula fluminea) were collected at 10 sites, and fish, including blue catfish (Ictalurus furcatus), common carp (Cyprinus carpio), bluegill (Lepomis cyanellus), and yellow bullhead (Ameiurus natalis) were collected at all mainstem and two tributary sites. Thirty of the 36 compounds analyzed in biological tissue or surficial bed sediment were detected in one or both media. Overall, more organochlorine compounds were detected in bed sediment than in biological tissue; however, various chlordane isomers, DDT metabolites, and PCBs were detected more frequently in tissue than in sediment. The chlordane isomers and PCBs that were detected more frequently in biological tissue also were detected more frequently at urban sites than at agricultural sites. Organochlorine compound concentrations generally were highest in fish tissue from Trinity River mainstem sites. Fish tissue from the mainstem sites contained a higher percentage of lipids than did fish- and clam-tissue samples from the tributary sites.

  8. UCP1 in adipose tissues: two steps to full browning.

    PubMed

    Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan

    2017-03-01

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues

  9. Do no harm--normal tissue effects

    NASA Technical Reports Server (NTRS)

    Hall, E. J.

    2001-01-01

    Radiation therapy confers enormous benefits that must be balanced against the possibilities for harm including late toxicity in normal tissues and radiation-induced second malignancies. A small percentage of patients experience severe late complications. The question is, do these late sequelae occur randomly, or are they confined to individuals who are genetically predisposed to radiosensitivity. Experiments with knockout mice and with patients demonstrate that individuals heterozygous for a number of genes appear to be radiosensitive. If radiosensitive patients were identified prospectively by genetic analysis, they could be spared the trauma of late sequelae. Several large studies have shown a statistically significant excess of radiation-induced malignancies in radiotherapy patients. Most second cancers are carcinomas, developing in the lining cells of the body often remote from the treatment site. Radiation-induced sarcomas appear only in the heavily irradiated areas. These are small in number but appear with a very high relative risk.

  10. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  11. [Cause and prevention of surgical site infection and hypertrophic scars].

    PubMed

    Ogawa, Rei

    2012-03-01

    Surgical site infection (SSI) occurs at the site of surgery within 1 month of an operation or within 1 year of an operation if a foreign body is implanted as part of the surgery. Most SSIs (about 70%) are superficial infections involving the skin and subcutaneous tissues only. The remaining infections are more serious and can involve tissues under the skin, organs, or implanted material. Hypertrophic scars( HSs) occur frequently on particular sites, including the anterior chest wall. The anterior chest wall is frequently subjected to skin stretching caused by the natural daily movements of the body. Most cases of SSIs and HSs can be prevented by (1) suture technique modification to prevent high stretching tension and ischemia, and (2) appropriate wound care after surgery. It would be useful to avoid subjecting wounded skin to sustained mechanical force, thereby permitting the wound to rest and heal normally.

  12. Use of forced eruption to enhance a pontic site in the anterior maxilla.

    PubMed

    Comut, Alper; Acharya, Varun; Jahangiri, Leila

    2012-11-01

    Extraction of teeth leads to bone resorption that can result in asymmetrical hard and soft tissue topography. This article describes a technique to enhance a pontic site in the anterior maxilla by using forced eruption as an alternative to conventional hard and soft tissue augmentation surgeries. Forced eruption is a well-known procedure and its use in developing a pontic site for a fixed dental prosthesis is described in this clinical report.

  13. Creosote compounds in snails obtained from Pensacola Bay, Florida, near an onshore hazardous-waste site

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.

    1987-01-01

    Snails, Thais haemostoma, were collected from two areas offshore in Pensacola Bay, Florida, near an onshore hazardous-waste site. Tissue from the snails was extracted to isolate the lipophilic compounds and analyzed by gas chromatography/mass spectrometry. Along with naturally occurring compounds, the snail tissue contained large concentrations of polycyclic aromatic compounds, such as phenanthrene, acridine, dibenzothiophene, dibenzofuran, and benzo[a]pyrene. Many of these compounds were characteristic of creosote contamination associated with the onshore hazardous-waste site.

  14. Connective tissue and bacterial deposits on rubber dam sheet and ePTFE barrier membranes in guided periodontal tissue regeneration.

    PubMed

    Apinhasmit, Wandee; Swasdison, Somporn; Tamsailom, Suphot; Suppipat, Nophadol

    2002-01-01

    The aim of this study was to compare the connective tissue and bacterial deposits on rubber dam sheets and expanded polytetrafluoroethylene membranes used as barrier membranes in guided tissue regeneration for periodontal treatment. Twenty patients having intrabony defects and/or furcation defects were surgically treated by guided tissue regeneration employing either rubber dam sheets (10 patients) or expanded polytetrafluoroethylene membranes (10 patients) as barrier membranes. Four to six weeks after the first operation, membranes were retrieved from the lesion sites and processed for scanning electron microscopy. The lesion-facing surfaces of membranes were examined for the presence of connective tissue and bacterial deposits. The differences between the numbers of fields and the distributions of connective tissue and bacteria on both types of membranes were analysed by the Chi-square test at the level of 0.05 significance. The results showed a lot of fibroblasts with their secreted extracellular matrices, known as components of the connective tissue on rubber dam sheets and expanded polytetrafluoroethylene membranes. There was no significant difference in the total number of connective tissue on both types of membranes (P = 0.456). Many bacterial forms including cocci, bacilli, filaments and spirochetes with the interbacterial matrices were identified. The total number of bacteria on rubber dam sheets was statistically less than that on expanded polytetrafluoroethylene membranes (P < 0.001). The comparable number of connective tissue on both types of membranes suggests that the healing process under both types of membranes was also comparable. Therefore, the rubber dam sheet might be used as a barrier membrane in guided tissue regeneration.

  15. Tissue migration capability of larval and adult Brugia pahangi.

    PubMed

    Chirgwin, Sharon R; Coleman, Sharon U; Porthouse, Kristina H; Klei, Thomas R

    2006-02-01

    Infection with mosquito-born filarial nematodes occurs when hosts are bitten by a vector carrying the infective third stage larvae (L3) of the parasites. These larvae, deposited on the skin by the feeding mosquito, are presumed to enter the skin via the vector-induced puncture wound. Larvae of Brugia spp. must then migrate from the entry site, penetrate various skin layers, and locate a lymphatic vessel that leads to their lymphatic predilection site. We have recently established an intradermal (ID) infection model using B. pahangi and the Mongolian gerbil, allowing us to investigate the migratory capability ofB. pahangi. Larval and adult parasites recovered from the peritoneal cavities of gerbils were capable of establishing an infection following ID (larvae) or subcutaneous (adult) injection. Third and fourth stage larvae both migrated away from the injection site within hours, although data suggest they localize to different lymphatic tissues at 3 days postinfection (DPI). Immature adult (28 day) B. pahangi also migrated away from their SC inoculation site within 7 DPI. Mature (45 day) adult B. pahangi displayed little migration away from the SC infection site, suggesting tissue migration may be limited to developing stages of the parasite.

  16. Tissue-Specific Glycosylation at the Glycopeptide Level.

    PubMed

    Medzihradszky, Katalin F; Kaasik, Krista; Chalkley, Robert J

    2015-08-01

    This manuscript describes the enrichment and mass spectrometric analysis of intact glycopeptides from mouse liver, which yielded site-specific N- and O-glycosylation data for ∼ 130 proteins. Incorporation of different sialic acid variants in both N- and O-linked glycans was observed, and the importance of using both collisional activation and electron transfer dissociation for glycopeptide analysis was illustrated. The N-glycan structures of predicted lysosomal, endoplasmic reticulum (ER), secreted and transmembrane proteins were compared. The data suggest that protein N-glycosylation differs depending on cellular location. The glycosylation patterns of several mouse liver and mouse brain glycopeptides were compared. Tissue-specific differences in glycosylation were observed between sites within the same protein: Some sites displayed a similar spectrum of glycan structures in both tissues, whereas for others no overlap was observed. We present comparative brain/liver glycosylation data on 50 N-glycosylation sites from 34 proteins and 13 O-glycosylation sites from seven proteins.

  17. Tissue channel morphology in Octopus.

    PubMed

    Browning, J; Casley-Smith, J R

    1981-01-01

    The morphology of tissue channels in muscle and neural tissues of Octopus was investigated, at the ultrastructural level, with a technique involving the precipitation of ferrocyanide ions. The numbers, sizes and conductivities of the channels were estimated from quantitative data. No evidence was gained to indicate that the low microvascular density in Octopus is coupled to an especially extensive network of extravascular channels. The tissue channel system in Octopus appears to be broadly comparable with the mammalian system; a lack of information prevents more appropriate comparisons with marine fishes. Probable functions of tissue channels in Octopus and mammals, and reasons for apparent similarities and differences in the channel organization of these divergent groups, are discussed.

  18. Mechanical Force Sensing in Tissues

    PubMed Central

    Chanet, Soline; Martin, Adam C.

    2015-01-01

    Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis. PMID:25081624

  19. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  20. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  1. Endoscopic subsurface imaging in tissues

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  2. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  3. Nanomaterials, Inflammation and Tissue Engineering

    PubMed Central

    Padmanabhan, Jagannath

    2014-01-01

    Nanomaterials exhibit unique properties that are absent in the bulk material because decreasing material size leads to an exponential increase in surface area, surface area to volume ratio, and effective stiffness, resulting in altered physiochemical properties. Diverse categories of nanomaterials such as nanoparticles, nanoporous scaffolds, nanopatterned surfaces, nanofibers and carbon nanotubes can be generated using advanced fabrication and processing techniques. These materials are being increasingly incorporated in tissue engineering scaffolds to facilitate the development of biomimetic substitutes to replace damaged tissues and organs. Long term success of nanomaterials in tissue engineering is contingent upon the inflammatory responses they elicit in vivo. This review seeks to summarize the recent developments in our understanding of biochemical and biophysical attributes of nanomaterials and the inflammatory responses they elicit, with a focus on strategies for nanomaterial design in tissue engineering applications. PMID:25421333

  4. Polymeric nanofibers in tissue engineering.

    PubMed

    Dahlin, Rebecca L; Kasper, F Kurtis; Mikos, Antonios G

    2011-10-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed.

  5. Teaching Tips: Plant Tissue Testing.

    ERIC Educational Resources Information Center

    Osborne, Ed

    1991-01-01

    Plant tissue testing can be done to monitor plant nutrition levels during the growing season and diagnose nutrient deficiency problems. They can provide feedback on crop conditions and fertility needs. (Author)

  6. Tissue engineering: A live disc

    NASA Astrophysics Data System (ADS)

    Hukins, David W. L.

    2005-12-01

    A material-cell hybrid device that mimics the anatomic shape of the intervertebral disc has been made and successfully implanted into mice to show that tissue engineering may, in the future, benefit sufferers from back pain.

  7. Infrared Analysis Using Tissue Paper.

    ERIC Educational Resources Information Center

    Owen, Noel L.; Wood, Steven G.

    1987-01-01

    Described is a quick, easy, and cheap, but effective method of obtaining infrared spectra of solids and nonvolatile liquids by Fourier transform infrared spectroscopy. The technique uses tissue paper as a support matrix. (RH)

  8. Role of morphogenetic proteins in skeletal tissue engineering and regeneration.

    PubMed

    Reddi, A H

    1998-03-01

    Morphogenesis is the developmental cascade of pattern formation and body plan establishment, culminating in the adult form. It has formed the basis for the emerging discipline of tissue engineering, which uses principles of molecular developmental biology and morphogenesis gleaned through studies on inductive signals, responding stem cells, and the extracellular matrix to design and construct spare parts that restore function to the human body. Among the many organs in the body, bone has considerable powers for regeneration and is a prototype model for tissue engineering. Implantation of demineralized bone matrix into subcutaneous sites results in local bone induction. This model mimics sequential limb morphogenesis and has permitted the isolation of bone morphogens, such as bone morphogenetic proteins (BMPs), from demineralized adult bone matrix. BMPs initiate, promote, and maintain chondrogenesis and osteogenesis, but are also involved in the morphogenesis of organs other than bone. The symbiosis of the mechanisms underlying bone induction and differentiation is critical for tissue engineering and is governed by both biomechanics (physical forces) and context (microenvironment/extracellular matrix), which can be duplicated by biomimetic biomaterials such as collagens, hydroxyapatite, proteoglycans, and cell adhesion glycoproteins, including fibronectins and laminin. Rules of tissue architecture elucidated in bone morphogenesis may provide insights into tissue engineering and be universally applicable for all organs/tissues, including bones and joints.

  9. miRNA Control of Tissue Repair and Regeneration

    PubMed Central

    Sen, Chandan K.; Ghatak, Subhadip

    2016-01-01

    Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics. PMID:26056933

  10. Optical Characterization of Parathyroid Tissues.

    PubMed

    Brandao, M P; Iwakura, R; Honorato-Sobrinho, A A; Haleplian, K; Ito, A S; de Freitas, L C Conti; Bachmann, L

    2016-07-05

    The parathyroid glands are small and often similar to lymph nodes, fat, and thyroid tissue. These glands are difficult to identify during surgery and a biopsy of the parathyroid for identification can lead to damage of the gland. The use of static and time-resolved fluorescence techniques to detect biochemical composition and tissue structure alterations could help to develop a portable, minimally invasive, and nondestructive method to assist medical evaluation of parathyroid tissues. In this study, we investigated 10 human parathyroid samples by absorbance, fluorescence, excitation, and time-resolved fluorescence measurements. Moreover, we compared the results of time-resolved fluorescence measurements with 59 samples of thyroid tissues. The fluorescence lifetimes with emission at 340 nm were 1.09 ± 0.10 and 4.46 ± 0.06 ns for healthy tissue, 1.01 ± 0.25 and 4.39 ± 0.36 ns for benign lesions, and 0.67 ± 0.36 and 3.92 ± 0.72 ns for malignant lesions. The lifetimes for benign and malignant lesions were significantly different, as attested by the analysis of variance with confidence levels higher than 87%. For each class of samples (healthy, benign, and malignant) we perceived statistical differences between the thyroid and parathyroid tissue, independently. After further investigations, fluorescence methods could become a tool to identify normal and pathological parathyroid tissues and distinguish thyroid from parathyroid tissues.

  11. Pesticidal residues in animal tissues

    USGS Publications Warehouse

    DeWitt, J.B.; Menzie, C.M.; Adomaitis, V.A.; Reichel, W.L.

    1960-01-01

    Tests with penned starlings, rats, pheasants, and ducks indicated that each species differs in sensitivity to the various pesticides. Residues in tissues are proportional to the degree of exposure during area treatment and they are also found in animals shot six or more months after treatment. The presence of more than 20-30 ppm of DDT, 20 ppm of chlordan, and 6-20 ppm of heptachlor epoxide in quail tissues indicated that the birds had ingested lethal dosages of the pesticides.

  12. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  13. Mechanobioreactors for Cartilage Tissue Engineering.

    PubMed

    Weber, Joanna F; Perez, Roman; Waldman, Stephen D

    2015-01-01

    Mechanical stimulation is an effective method to increase extracellular matrix synthesis and to improve the mechanical properties of tissue-engineered cartilage constructs. In this chapter, we describe valuable methods of imposing direct mechanical stimuli (compression or shear) to tissue-engineered cartilage constructs as well as some common analytical methods used to quantify the effects of mechanical stimuli after short-term or long-term loading.

  14. Photoacoustic Measurements in Brain Tissue

    SciTech Connect

    Kasili, P.M.; Mobley, J.; Vo-Dinh, T.

    1999-09-19

    In this work, we develop and evaluate the photoacoustic technique for recording spectra of white and gray mammalian brain tissues. In addition to the experimental work, we also discuss the geometric aspects of photoacoustic signal generation using collimated light. Spectra constructed from the peak-to-peak amplitude of the photoacoustic waveforms indicate differences in the two tissue types at wavelengths between 620 and 695 nm. The potential of the technique for non-invasive diagnosis is discussed.

  15. [Connective tissue diseases in adolescents].

    PubMed

    Peitz, J; Tantcheva-Poór, I

    2016-04-01

    In this article we provide a brief review of systemic lupus erythematosus, juvenile dermatomyositis, systemic scleroderma, and mixed connective tissue disease in adolescents. As skin manifestations often belong to the presenting symptoms and may have a significant impact on the quality of life, dermatologists play an important role in the management of patients with connective tissue diseases. Early diagnosis and therapy onset are crucial for the patients' long-term outcome.

  16. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  17. Magnetic resonance of calcified tissues

    PubMed Central

    Wehrli, Felix W.

    2016-01-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues – key among them bone – are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author’s laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI. PMID:23414678

  18. Brown adipose tissue as a secretory organ.

    PubMed

    Villarroya, Francesc; Cereijo, Rubén; Villarroya, Joan; Giralt, Marta

    2017-01-01

    Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.

  19. Multidisciplinary management of soft tissue sarcomas.

    PubMed

    Luis, Ángel Montero; Aguilar, Damián Pérez; Martín, José Antonio López

    2010-08-01

    Musculoskeletal sarcomas are a heterogeneous group of malignant neoplasms derived from connective tissue. Sarcomas represent about 1% of cancer in adults. The annual incidence in adults in Europe is around 14,000 new cases of soft tissue sarcomas (STS) and 4,800 new cases of bone sarcomas. Musculoskeletal tumours arise anywhere in the body, although lower extremities are the most common site of appearance, followed by upper extremities, trunk, retroperitoneum and head and neck area. Adequate management of STS is a stimulating challenge for oncologists. The aim of treatment should be focused on four main aspects: improving survival, avoiding local recurrence, maximising organ function and, finally, minimising morbidity. Surgery, radiotherapy and, sometimes though increasingly, chemotherapy are the pillars on which rests the modern treatment of sarcomas. The optimal management of musculoskeletal tumour requires a multidisciplinary integration of these different approaches in treatment planning right from the initial diagnoses. Referring patients to qualified centres should be desirable to achieve the maximum probability of control and even cure for STS.

  20. Cryogen spray cooling during laser tissue welding.

    PubMed

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p < 0.05). Cryogen cooling of the tissue surface during laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  1. Functional tissue engineering of ligament healing

    PubMed Central

    2010-01-01

    Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally. PMID:20492676

  2. The flux of oxygen within tissues.

    PubMed

    McCabe, Michael G P; Maguire, David J; Bourgain, Renaat

    2003-01-01

    Diffusive flux of oxygen through tissues which are essentially connective and have few cells, display reduced diffusion coefficients when compared to that through an equivalent lamina of water. In general even significant reductions can be explained in terms of the exclusions imposed on small molecular weight diffusates by the large hydrodynamic domains of the connective tissue components. An alternative way of explaining this large exclusion is to point to the very large microscopic viscosities which large interacting polymers impose upon the solvent (water). By contrast, the diffusive flux of oxygen through tissues composed of contiguously packed and actively respiring cells, shows an increased diffusive flux for oxygen when compared to that through an equivalent water lamina. This increase can be explained in terms of the substantial solubility of oxygen within the membrane phase of the cells. This high oxygen partition coefficient into cell lipids has several consequences. Firstly oxygen diffusion will be directed and two dimensional rather than random and three dimensional. Secondly this diffusion will be directed towards the oxygen-consuming sites which are located at lipid surfaces. Thirdly the aqueous oxygen partial pressure will be kept low (since re-supply is constrained while consumption is continuous). This low aqueous environment permits all of the cell soluble redox systems to be maintained efficiently at low metabolic cost, as well as minimising the risk of unscheduled oxidations. Viewed from this perspective, the high value found for oxygen partition coefficient into the erythrocyte membrane suggests that evolution of membrane structure and components may have been driven in part by the selective advantages of high oxygen solubility.

  3. Derivation of site-specific skeletal masses within the current ICRP age series.

    PubMed

    Watchman, Christopher J; Hasenauer, Deanna; Bolch, Wesley E

    2007-06-07

    The calculation of absorbed dose to the radiosensitive tissues of the skeleton is routinely performed using reference masses provided in publications from the International Commission on Radiological Protection (ICRP). These values typically include total skeleton tissue masses by reference subject age, but not by individual bone site at a given age. Site-specific variations in absorbed fractions are known to occur for internal alpha-particle and beta-particle emitters, and in certain medical dose reconstructions, site-specific estimates of marrow dose may be desirable. Furthermore, bone-site-specific tissue masses are required to properly estimate skeletal-averaged absorbed fractions and, more importantly, specific absorbed fractions for internalized radionuclides and radiopharmaceuticals. Reference masses by skeletal site are also needed in the development of ICRP compliant tomographic phantoms, as this organ system is initially segmented from medical images only as a homogeneous tissue region. ICRP reference skeletal masses are assigned based upon several independent data sources, many of which may not be entirely consistent with one another. In this study, a methodology is presented, using data from the various ICRP publications, to derive site-specific skeletal tissue masses for each member of the ICRP age series. Active marrow masses are calculated and differences are shown with respect to ICRP Publications 70 and 89 values. New data for a revised surrogate tissue region for the osteoprogenitor cells within bone marrow is presented with estimates of its total mass throughout the skeleton and for different subject ages.

  4. [Soft tissue rheumatism in erderly].

    PubMed

    Szczepański, Leszek

    2008-01-01

    Disorders of soft, peri-articular tissues are a common cause of musculoskeletal pain in elderly patients. Nevertheless, most physicians underestimate the role of soft tissue rheumatism in the pathomechanism of the pain. The impairments of soft tissue can not be diagnosed by X-rays examinations, whereas degenerative lesions of joints are easy diagnosed using this method even despite of their uncertain role in producing the symptoms. The incidence of pain syndromes originated from soft tissues differ regarding to the age of patients. In young subjects the incidence of all of them is generally low. Syndromes provoked by overloading during work: repetitive strain syndrome, canal tunnel syndrome, tennis elbow, golfers elbow, shoulder tendon coin disorders and myofascial pain syndrome are common in middle-aged patients. The morbidity of fibromialgia syndrome is also lower in old people probably as the result of diminished numbers and degenerative changes in nociceptive fibers. The syndromes prevailing in elderly patients include trochanteric syndrome and the pain syndromes provoked by muscle spasm depended on posture abnormalities. In the soft tissue pain syndrome prevention adapted to old age kinesitherapy and avoiding muscle overloading are recommended. Soft tissue pain syndromes are usually treated with non steroidal anti inflammatory drugs. In local pain syndromes better results can be obtained by local treatment. Local injections of glikocorticosteroids are usually very effective and safe.

  5. Characterization of human tissue carnosinase.

    PubMed Central

    Lenney, J F; Peppers, S C; Kucera-Orallo, C M; George, R P

    1985-01-01

    Human tissue carnosinase (EC 3.4.13.3) had optimum activity at pH9.5 and was a cysteine peptidase, being activated by dithiothreitol and inhibited by p-hydroxymercuribenzoate. By optimizing assay conditions, the activity per g of tissue was increased 10-fold compared with values in the literature. The enzyme was present in every human tissue assayed and was entirely different from serum carnosinase. Highly purified tissue carnosinase had a broader specificity than hog kidney carnosinase. Although tissue carnosinase was very strongly inhibited by bestatin, it did not hydrolyse tripeptides, and thus appears to be a dipeptidase rather than an aminopeptidase. It had a relative molecular mass of 90 000, an isoelectric point of 5.6, and a Km value of 10 mM-carnosine. Two forms of kidney and brain carnosinase were separated by high-resolution anion-exchange chromatography, although only one form was detected by various electrophoretic methods. Homocarnosinase and Mn2+-independent carnosinase were not detected in human tissues, although these enzymes are present in rat and hog kidney. PMID:4026801

  6. 1994 Site Environmental Report

    SciTech Connect

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  7. Selective pacing sites.

    PubMed

    Coppola, G; La Greca, C; Corrado, E; Ajello, L; Nogara, A; Ciaramitaro, G; Augugliaro, S; Novo, G; Novo, S; Assennato, P

    2015-04-01

    he right ventricular apex (RVA) has always been the most used pacing site, because it is easily accessible and provides a stable lead position with a low dislodgment rate. However, it is well-known that long-term right ventricular apical pacing may have deleterious effects on left ventricular function by inducing a iatrogenic left bundle branch block, which can have strong influences on the left ventricle hemodynamic performances. More specifically, RVA pacing causes abnormal contraction patterns and the consequent dyssynchrony may cause myocardial perfusion defects, histopathological alterations, left ventricular dilation and both systolic and diastolic left ventricular dysfunction. All these long-term changes could account for the higher morbidity and mortality rates observe in patients with chronic RVA pacing compared with atrial pacing. This observation led to the reassessment of traditional approaches and to the research of alternative pacing sites, in order to get to more physiological pattern of ventricular activation and to avoid deleterious effects. Then, attempts were made with: right ventricular outflow tract (RVOT) pacing, direct His bundle pacing (DHBP), parahisian pacing (PHP) and bifocal (RVA + RVOT) pacing. For example, RVOT pacing, especially in its septal portion, is superior to the RVA pacing and it would determine a contraction pattern very similar to the spontaneous one, not only because the septal portions are the first parts to became depolarized, but also for the proximity to the normal conduction system. RVOT is preferable in terms of safety too. DHBP is an attractive alternative to RVA pacing because it leads to a synchronous depolarization of myocardial cells and, therefore, to an efficient ventricular contraction. So it would be the best technique, however the procedure requires longer average implant times and dedicated instruments and it cannot be carried out in patients affected by His bundle pathologies; furthermore, due to the His

  8. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    SciTech Connect

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  9. Physical techniques for delivering microwave energy to tissues.

    PubMed Central

    Hand, J. W.

    1982-01-01

    Some of the physical aspects of delivering microwave energy to tissues have been discussed. Effective penetration of a few cm may be achieved with external applicators whilst small coaxial or cylindrical devices can induce localized heating in sites accessible to catheters or to direct invasion. To heat deep tissue sites in general, systems of greater complexity involving a number of applicators with particular phase relationships between them are required. The problems of thermometry in the presence of electromagnetic fields fall outside the scope of this article. Their solution, however, is no less important to the future of clinical hyperthermia than the development of heating techniques. Finally, it should be remembered that physiological parameters such as blood flow have appreciable effects in determining the efficacy of the physical techniques described above. PMID:6950781

  10. Lattice percolation approach to 3D modeling of tissue aging

    NASA Astrophysics Data System (ADS)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  11. Functional constraints on adaptive evolution of protein ubiquitination sites

    PubMed Central

    Lu, Liang; Li, Yang; Liu, Zhongyang; Liang, Fengji; Guo, Feifei; Yang, Shuai; Wang, Dan; He, Yangzhige; Xiong, Jianghui; Li, Dong; He, Fuchu

    2017-01-01

    It is still unclear whether there exist functional constraints on the evolution of protein ubiquitination sites, because most previous studies regarded all protein ubiquitination sites as a whole or only focused on limited structural properties. We tried to clarify the relation between functional constraints and ubiquitination sites evolution. We investigated the evolutionary conservation of human ubiquitination sites in a broad evolutionary scale from G. gorilla to S. pombe, and we found that in organisms originated after the divergence of vertebrate, ubiquitination sites are more conserved than their flanking regions, while the opposite tendency is observed before this divergence time. By grouping the ubiquitination proteins into different functional categories, we confirm that many functional constraints like certain molecular functions, protein tissue expression specificity and protein connectivity in protein-protein interaction network enhance the evolutionary conservation of ubiquitination sites. Furthermore, by analyzing the gains of ubiquitination sites at different divergence time and their functional characters, we validate that the emergences of ubiquitination sites at different evolutionary time were also affected by the uncovered functional constraints. The above results suggest that functional constraints on the adaptive evolution of ubiquitination sites increase the opportunity for ubiquitination to synthetically regulate various cellular and developmental processes during evolution. PMID:28054638

  12. Site Enforcement Tracking System (SETS): National PRP listing by site

    SciTech Connect

    Not Available

    1992-07-01

    When expending Superfund monies at a CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) site, EPA must conduct a search to identify parties with potential financial responsibility for remediation of uncontrolled hazardous waste sites. EPA regional Superfund Waste Management Staff issue a notice letter to the potentially responsible party (PRP). Data from the notice letter is used to form the Site Enforcement Tracking System (SETS). The data includes PRP name and address, a company contact person, the date the notice was issued, and the related CERCLA site name and identification number. SETS was created to track PRP identification at both NPL (National Priorities List) and non-NPL sites. SETS does not address the range of other administrative duties related to tracking the PRP. The listing by site name is organized in the following manner. Sites are sorted by state, as indicated in the site ID number. The first two characters of the site ID number constitute the state abbreviation of the site location. The listing by party name is arranged alphabetically by the name of the party and provides a company contact and address. Within each record, the sites associated with the PRP are listed. The first two characters of the site ID number constitute the state abbreviation of the site location.

  13. Eosinophil-nerve interactions and neuronal plasticity in rat gut associated lymphoid tissue (GALT) in response to enteric parasitism.

    PubMed

    O'Brien, L M; Fitzpatrick, E; Baird, A W; Campion, D P

    2008-06-15

    Intestinal lymphoid tissues and Peyer's patches (PP) are innervated sites of immune surveillance in the gastrointestinal tract. Following infection with F. hepatica, neuronal hyperplasia and significantly increased eosinophil and mast cell trafficking to colonic PP sites were evident in rat tissues. Nerve-eosinophil associations were significantly elevated in infected colon and colonic PP, as were colonic tissue levels of the circulatory recruitment factors IL-5 and eotaxin. Increased immunoreactivity for neuronal plasticity markers GAP-43 and neural cell adhesion molecule (NCAM) was also found in infected tissues. Such neuronal alterations in the PP during enteric parasitism may have functional consequences on particular or pathogen uptake.

  14. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  15. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: a review

    PubMed Central

    ORTOLANI, ALESSANDRO; BIANCHI, MICHELE; MOSCA, MASSIMILIANO; CARAVELLI, SILVIO; FUIANO, MARIO; MARCACCI, MAURILIO; RUSSO, ALESSANDRO

    2016-01-01

    Magnetic scaffolds are becoming increasingly attractive in tissue engineering, due to their ability to enhance bone tissue formation by attracting soluble factors, such as growth factors, hormones and polypeptides, directly to the implantation site, as well as their potential to improve the fixation and stability of the implant. Moreover, there is increasing evidence that the synergistic effects of magnetic scaffolds and magnetic fields can promote bone repair and regeneration. In this manuscript we review the recent innovations in bone tissue engineering that exploit magnetic biomaterials combined with static magnetic fields to enhance bone cell adhesion and proliferation, and thus bone tissue growth. PMID:28217659

  16. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    SciTech Connect

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  17. Tissue Contraction Force Microscopy for Optimization of Engineered Cardiac Tissue

    PubMed Central

    Schaefer, Jeremy A.

    2016-01-01

    We developed a high-throughput screening assay that allows for relative comparison of the twitch force of millimeter-scale gel-based cardiac tissues. This assay is based on principles taken from traction force microscopy and uses fluorescent microspheres embedded in a soft polydimethylsiloxane (PDMS) substrate. A gel-forming cell suspension is simply pipetted onto the PDMS to form hemispherical cardiac tissue samples. Recordings of the fluorescent bead movement during tissue pacing are used to determine the maximum distance that the tissue can displace the elastic PDMS substrate. In this study, fibrin gel hemispheres containing human induced pluripotent stem cell-derived cardiomyocytes were formed on the PDMS and allowed to culture for 9 days. Bead displacement values were measured and compared to direct force measurements to validate the utility of the system. The amplitude of bead displacement correlated with direct force measurements, and the twitch force generated by the tissues was the same in 2 and 4 mg/mL fibrin gels, even though the 2 mg/mL samples visually appear more contractile if the assessment were made on free-floating samples. These results demonstrate the usefulness of this assay as a screening tool that allows for rapid sample preparation, data collection, and analysis in a simple and cost-effective platform. PMID:26538167

  18. Melanin content of hamster tissues, human tissues, and various melanomas

    SciTech Connect

    Watts, K.P.; Fairchild, R.G.; Slatkin, D.N.; Greenberg, D.; Packer, S.; Atkins, H.L.; Hannon, S.J.

    1981-02-01

    Melanin content (percentage by weight) was determined in both pigmented and nonpigmented tissues of Syrian golden hamsters bearing Greene melanoma. Melanin content was also measured in various other melanoma models (B-16 in C57 mice, Harding-Passey in BALB/c mice, and KHDD in C3H mice) and in nine human melanomas, as well as in selected normal tissues. The purpose was to evaluate the possible efficacy of chlorpromazine, which is known to bind to melanin, as a vehicle for boron transport in neutron capture therapy. Successful therapy would depend upon selective uptake and absolute concentration of borated compounds in tumors; these parameters will in turn depend upon melanin concentration in melanomas and nonpigmented ''background'' tissues. Hamster whole eyes, hamster melanomas, and other well-pigmented animal melanomas were found to contain 0.3 to 0.8% melanin by weight, whereas human melanomas varied from 0.1 to 0.9% (average, 0.35%). Other tissues, with the exception of skin, were lower in content by a factor of greater than or equal to30. Melanin pigment was extracted from tissues, and the melanin content was determined spectrophotometrically. Measurements were found to be sensitive to the presence of other proteins. Previous procedures for isolating and quantifying melanin often neglected the importance of removing proteins and other interfering nonmelanic substances.

  19. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  20. Material Tissue Interaction--From Toxicity to Tissue Regeneration.

    PubMed

    Schmalz, G; Widbiller, M; Galler, K M

    2016-01-01

    The topic of material tissue interaction has gained increasing interest over recent decades from both the dental profession and the public. The primary goal initially was to avoid adverse reactions after the application of dental materials. New laboratory test methods have been developed, and currently premarket testing programs, which attempt to guarantee a basic level of patient safety, are legally required worldwide. The dentist is responsible for selecting the correct indication as well as the proper handling of any newly emerging risk. Apart from this phenomenon-oriented "inert materials concept," the "analytical concept" focuses primarily on analyzing the reasons for adverse reactions, and identifying their associated modifying factors, in order to prevent them or to develop new and more biocompatible materials. The "concept of bioactivity" involves addressing the possibility of positively influencing tissue by materials application, such as the generation of tertiary dentin or antibacterial effects. Finally, tissue regeneration may be supported and promoted by the use of various suitable materials (matrices/scaffolds) into which stem cells can migrate or be seeded, leading to cell differentiation and the generation of new tissue. These new dental materials must also fulfill additional requirements such as controlled degradability in order to be suitable for clinical use. Clearly, the field of material tissue interaction is complex and comprises a wide range of issues. To be successful as dentists in the future, practitioners should remain informed of these important new developments and have the argumentative competence to both properly advise and treat their patients.